1
|
Jairoun AA, Al-Hemyari SS, Shahwan M, Alkhoujah S, El-Dahiyat F, Jaber AAS, Zyoud SH. Towards eco-friendly pharmaceuticals: Regulatory and policy approaches for sustainable medicines use. EXPLORATORY RESEARCH IN CLINICAL AND SOCIAL PHARMACY 2025; 17:100576. [PMID: 40026320 PMCID: PMC11871503 DOI: 10.1016/j.rcsop.2025.100576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 03/05/2025] Open
Abstract
Objectives The current study aimed to investigate how regulatory frameworks and policies are used to support the use of sustainable medicines within the pharmaceutical sector. Methods The Scopus database was searched to retrieve papers. Advanced search tool of the Scopus online database was used focused on the papers that have the search query included in their titles. Data analysis incorporated bibliometric indicators like publication counts and trends, visualized through VOSviewer software version 1.6.20. Key findings A total of 43 publications on Sustainable Medicines Use were found between 2000 and 2024. Leading countries in publication output on sustainable medicines use were United Kingdom, United States, India, Italy, Portugal, and Switzerland, indicating their collaborative relationships and publication volumes. A total of 92 institutions have been involved in research on Sustainable Medicines Use. Key institutions such as the Faculty of Engineering and the Laboratory for Process and Environmental Engineering, Lowell Center for Sustainable Production, Greiner Environmental Inc., and the University of Florence are prominently featured, indicating their significant contributions to research in this area. Key journals such as the "Journal of Cleaner Production," "Business Strategy and the Environment," "Chemical Engineering Transactions," "Benchmarking," and "Lecture Notes in Mechanical Engineering" are prominently featured. The retrieved articles have been cited an average count of 22.26. The overlay visualization created using VOSviewer suggest a shift towards exploring new drug categories, innovative approaches, and the commercial aspects of sustainability. Future research directions are likely to delve deeper into innovative methods and sustainable chemical practices (green chemistry), reflecting an emphasis on developing greener processes and products. Conclusion This study offers a thorough analysis of the legislative and governmental strategies promoting the use of sustainable medicine. It offers important insights for promoting sustainability in the pharmaceutical industry by pointing out gaps, defining useful frameworks, and suggesting doable solutions. Achieving sustainable pharmaceutical practices that support worldwide environmental and public health objectives requires sustained research, policy development, and international cooperation. The area needs to keep developing and implementing sustainable methods like green chemistry to decrease environmental harm and improve sustainability. Furthermore, collaborations among academia, industry, and international organizations are essential to progress and interchange effective strategies.
Collapse
Affiliation(s)
- Ammar Abdulrahman Jairoun
- Health and Safety Department, Dubai Municipality, Dubai, United Arab Emirates
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia (USM), Pulau Pinang 11500, Malaysia
| | - Sabaa Saleh Al-Hemyari
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia (USM), Pulau Pinang 11500, Malaysia
- Pharmacy Department, Emirates Health Services, Dubai, United Arab Emirates
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Sahab Alkhoujah
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Faris El-Dahiyat
- Clinical Pharmacy Program, College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Ammar Ali Saleh Jaber
- Department of Clinical Pharmacy & Pharmacotherapeutics, Dubai Pharmacy College for Girls, AlMuhaisanah 1, Al mizhar Dubai, United Arab Emirates
| | - Sa'ed H. Zyoud
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah, National University, Nablus 44839, Palestine
- Clinical Research Centre, An-Najah National University Hospital, Nablus 44839, Palestine
| |
Collapse
|
2
|
Guerreiro ADS, de Aguiar G, Bertacini C, Godoi FGAD, Branco GS, Honji RM, Caminhas L, Rath S, Moreira RG. Multi-biomarker approach to assess the toxicity of carbamazepine, a neuropharmaceutical, in the female fish Astyanax lacustris (Teleostei: Characidae). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 114:104653. [PMID: 39947269 DOI: 10.1016/j.etap.2025.104653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
Carbamazepine (CBZ) is a pharmaceutical commonly used in the treatment of epilepsy and bipolar disorder and has been detected in different aquatic ecosystems worldwide. Considering its possible role in altering nervous system and reproduction, this study aimed to evaluate the effects of CBZ on molecular and cellular biomarkers of the teleost Astyanax lacustris. Results demonstrated that CBZ, in environmentally relevant concentrations (500 ng L-1) increases fshβ gene expression levels, decreases muscle protein content and hepatic LPO (500 ng L-1 and 1250 ng L-1 of CBZ). Nonetheless, no effects were observed towards enzymatic activities, steroid plasma levels and/or lipid content. Considering that A. lacustris inhabits clean and polluted environments, it is possible to suggest that animals possess a level of tolerance to stressors, allowing them to maintain reproductive functions regardless of environmental challenges.
Collapse
Affiliation(s)
| | - Guilherme de Aguiar
- Institute of Biosciences, Department of Physiology, University of São Paulo, USP, São Paulo, SP, Brazil
| | - Cecilia Bertacini
- Institute of Biosciences, Department of Physiology, University of São Paulo, USP, São Paulo, SP, Brazil
| | | | - Giovana Souza Branco
- Institute of Biosciences, Department of Physiology, University of São Paulo, USP, São Paulo, SP, Brazil
| | - Renato Massaaki Honji
- Institute of Biosciences, Department of Physiology, University of São Paulo, USP, São Paulo, SP, Brazil
| | - Larissa Caminhas
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | - Susanne Rath
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | - Renata Guimarães Moreira
- Institute of Biosciences, Department of Physiology, University of São Paulo, USP, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Men C, Jiang H, Ma Y, Cai H, Fu H, Li Z. A nationwide probabilistic risk assessment and a new insight into source-specific risk apportionment of antibiotics in eight typical river basins in China: Human health risk and ecological risk. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136674. [PMID: 39642732 DOI: 10.1016/j.jhazmat.2024.136674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
China is the largest producer and consumer of antibiotics, a nationwide study on the contamination of antibiotics in China is urgently needed, and source apportionment towards risks associated with antibiotics is now attracting increasing attention. In this study, based on eight antibiotics at 666 sampling sites, spatial variations and probabilistic risks (human health and ecological risk) of antibiotics in eight river basins in China were analyzed. Source-specific health and ecological risk associated with antibiotics in a typical basin was apportioned quantitatively. Results showed that mean antibiotic concentration in Haihe River Basin (HaiRB) and Yellow River Basin (178.25 and 257.36 ng·L-1, respectively) was higher than other basins. In HaiRB, the contribution of livestock and poultry breeding (31.89 %) was the largest of all sources for health risk, whereas pharmaceutical wastewater (35.97 %) was the most dominant source for ecological risk. To determine the most important source for risks associated with antibiotics, the concept of risks-targeted key source was proposed, and a risks-targeted key source apportionment model was developed. Results showed that pharmaceutical wastewater should be prior controlled among all sources. The concept and apportionment model of risks-targeted key source proposed in this study are applicable and referential for related studies.
Collapse
Affiliation(s)
- Cong Men
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Haoquan Jiang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuting Ma
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Hengjiang Cai
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Han Fu
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
4
|
Chen X, Lu X, Peng J, Su G, Meng J, Li Q, Hua Y, Hu M, Shi B. Regional disparities in PPCPs contamination of urban wastewater treatment plants: Unveiling influential factors and ecological effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125687. [PMID: 39814160 DOI: 10.1016/j.envpol.2025.125687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/16/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
This study investigates the discharge of pharmaceuticals and personal care products (PPCPs) from wastewater treatment plants (WWTPs) into natural waters, highlighting a significant correlation with regional human activities. Despite the complexity of assessing factors influencing PPCPs sources, it remains underexplored. By conducting an extensive literature review of seven categories of PPCPs in WWTPs across five typical regions of China, the study reveals both similarities and disparities in PPCPs composition. Correlation analysis and four machine learning algorithms are employed to identify affecting factors for PPCPs emissions. The findings reveal that regional differences in per capita load are affected by treatment scale and population served by WWTPs. Economic indicators, wastewater treatment efficiency, and population age structure correlate with specific PPCPs. The RF algorithms demonstrated reliable predictive capabilities for PPCPs concentrations, identifying significant influencing factors such as service population, treatment capacity, and economic development. Ecological risk assessments indicate that certain PPCPs, such as norfloxacin (NOR) and ofloxacin (OFL), pose high risks to algae. These findings underscore the necessity for region-specific strategies to address PPCPs challenges, considering factors like economic development, urbanization, and demographic characteristics, and provide valuable insights into PPCPs presence and ecological risks.
Collapse
Affiliation(s)
- Xing Chen
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China; Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiaofei Lu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Jiahua Peng
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China; Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guijin Su
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Meng
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yukang Hua
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Hu
- Integrated Natural Resources Survey Center, China Geological Survey, Beijing, 100055, China.
| | - Bin Shi
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Kumar S, D'Souza LC, Shaikh FH, Rathor P, Ratnasekhar CH, Sharma A. Multigenerational immunotoxicity assessment: A three-generation study in Drosophila melanogaster upon developmental exposure to triclosan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125860. [PMID: 39954761 DOI: 10.1016/j.envpol.2025.125860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/20/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Triclosan (TCS) is widely used as an antibacterial agent, nevertheless, its presence in different environmental matrices and its persistent environmental nature pose a significant threat to the organism, including humans. Numerous studies showed that TCS exposure could lead to multiple toxicities, including immune dysfunction. However, whether parental TCS exposure could impair the offspring's immune response remains limited. Maintaining the immune homeostasis is imperative to neutralize the pathogen and crucial for tissue repair and the organism's survival. Thus, this study aimed to assess the multigenerational immune response of TCS using Drosophila melanogaster. TCS was administered to organisms (1.0, 10, and 100.0 μg/mL) over three generations during their developing phases, and its effect on the immunological response of the unexposed progeny was evaluated. Total circulatory hemocyte (immune cells) count, crystal cell count, phagocytic activity, clotting time, gene expression related to immune response and epigenetics, ROS generation, and cell death were assessed in the offspring. A concentration-dependent decline in total hemocytes, crystal cells, phagocytic activity, and increased clotting time in the subsequent generations was observed. Furthermore, parental TCS exposure enhanced the ROS levels, induced cell death, and altered the expression of antimicrobial peptides drosomycin, diptericin, and inflammatory genes upd1, upd2, and upd3, in the offspring's hemocytes across successive generations. The upregulation of reaper hid, and grim suggests that TCS promotes apoptotic death in the offspring's hemocytes. Notably, the increased mRNA expression of epigenetic regulators dnmt2 and g9a in the hemocytes of the offspring indicates epigenetic modifications. Further, we also observed that the antioxidant N-acetylcysteine (NAC) supplementation to the parents alleviated TCS toxicity and improved immunological functions in the progeny, indicating the role of ROS in the TCS-induced multigenerational immune toxicity. This finding provides valuable insights into the potential immune risk of prenatal TCS exposure to their offspring in the higher organism.
Collapse
Affiliation(s)
- Sandeep Kumar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Leonard Clinton D'Souza
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Faiz Hanif Shaikh
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Priya Rathor
- Metabolomics Lab, Council of Scientific and Industrial Research (CSIR)-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, India
| | - C H Ratnasekhar
- Metabolomics Lab, Council of Scientific and Industrial Research (CSIR)-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, India
| | - Anurag Sharma
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India.
| |
Collapse
|
6
|
Pandey B, Pandey AK, Dubey SK. Integrated omics analyses elucidate acetaminophen biodegradation by Enterobacter sp. APAP_BS8. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124215. [PMID: 39842351 DOI: 10.1016/j.jenvman.2025.124215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/09/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Acetaminophen (APAP) is an extensively consumed over-the-counter and prescribed medication and a constituent of many active pharmaceutical compounds as well as personal care products. Its wide-scale prevalence in the environment due to inefficient treatment technologies has classified APAP as a contaminant of emerging concern. Thus, it is imperative to explore efficient and sustainable methods for remediation of contaminated environments. Considering the need for potent microbial resources, the present study deals with the evaluation of Enterobacter sp. APAP_BS8, degrading ∼88% of APAP (300 mg kg-1) in 16 days in microcosms, and accomplishes the mechanistic perspectives of degradation through in-depth insights into genomics, proteomics, and metabolomics. Whole genome analysis of the 4.9 Mbp genome sequence revealed deaminated glutathione amidase, glucosamine-6-phosphate deaminase, LLM class flavin-dependent oxidoreductase, and oxidoreductase genes can mediate the degradation. Increased expression of proteins corresponding to these genes was observed in proteome analysis. Molecular docking and simulations presented operative interaction and binding of the degradation pathway intermediates at the catalytic site of the identified enzymes. Analysis of the metabolome identified hydroxyquinol, 4-aminophenol, and 3-hydroxy-cis, cis-muconate as intermediates. The outcomes revealed that Enterobacter sp. APAP_BS8 exhibits potential enzymatic machinery for APAP degradation, thus providing scope for formulating sustainable bioremediation technologies.
Collapse
Affiliation(s)
- Bhavana Pandey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anand Kumar Pandey
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, 284128, India
| | - Suresh Kumar Dubey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
7
|
Gewurtz SB, Auyeung AS, Teslic S, Smyth SA. Pharmaceuticals and personal care products in Canadian municipal wastewater and biosolids: occurrence, fate, and time trends 2010-2013 to 2022. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:5022-5039. [PMID: 39899207 PMCID: PMC11868229 DOI: 10.1007/s11356-025-36007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
The concentrations of 135 pharmaceuticals and personal care products (PPCPs) were determined in raw influent, final effluent, and treated biosolids at Canadian wastewater treatment plants (WWTPs) to evaluate the fate of PPCPs through liquid and solids trains of typical treatment types used in Canada and to assess changes in PPCP concentrations in wastewater matrices between 2010-2013 and 2022. PPCPs dominant in influent and effluent included the antidiabetic metformin, analgesics/anti-inflammatories (acetaminophen, ibuprofen, 2-hydroxy-ibuprofen), caffeine and its metabolite (1,7 - dimethylxanthine), theophylline (a bronchodilator and metabolite of caffeine), an insect repellent (N,N-diethyl-m-toluamide, DEET), and iopamidol (a contrast media for X-rays). PPCPs dominant in biosolids differed from those in influent/effluent and included antibiotics (fluoroquinolones and doxycycline), antidepressants (sertraline, citalopram, and amitriptyline), a preservative and antimicrobial agent (triclosan), an antihistamine (diphenhydramine), and an antifungal (clotrimazole). These elevated concentrations in influent/effluent and biosolids reflected their use in Canadian communities. PPCPs dominant in influent/effluent had relatively low hydrophobicity whereas those in biosolids tended to be more hydrophobic, or electrostatic forces governed their sorption. Higher removal of PPCPs was generally observed at WWTPs that used biological treatment compared to primary physical/chemical treatment. PPCP concentration changes in wastewater matrices between 2010-2013 and 2022 were influenced by risk management measures, warnings, the development of new pharmaceuticals, the COVID-19 pandemic, and other factors. These time trends reflected the limited information available on PPCP use in Canada. Continued periodic monitoring of PPCPs is recommended to fill data gaps on community use and release to the environment.
Collapse
Affiliation(s)
- Sarah B Gewurtz
- Science and Technology Branch, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada.
| | - Alexandra S Auyeung
- Science and Technology Branch, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada
| | - Steven Teslic
- Science and Technology Branch, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada
| | - Shirley Anne Smyth
- Science and Technology Branch, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada
| |
Collapse
|
8
|
Sevgen S, Kara G, Kir AS, Şahin A, Boyaci E. A critical review of bioanalytical and clinical applications of solid phase microextraction. J Pharm Biomed Anal 2025; 252:116487. [PMID: 39378761 DOI: 10.1016/j.jpba.2024.116487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
Studying the functions, mechanisms, and effects of drugs and other exogenous compounds on biological systems, together with investigations performed to understand biosystems better, comprises one of the most fascinating areas of research. Although classical sample preparation techniques are dominantly used to infer the relevant information from the investigated system, they fail to meet various imperative requirements, such as being environmentally friendly, applicable in-vivo, and compatible with online analysis. As a chameleon in the analytical toolbox, solid phase microextraction (SPME) is one of the best tools available for studying biological systems in unconventional ways. In this review, SPME is spotlighted, and its capability for bioanalytical applications, including drug analysis, untargeted and targeted metabolomics, in-vivo and clinical studies, is scrutinized based on studies reported in the past five years. In addition, novel extractive phases and instrumental coupling strategies developed to serve bioanalytical research are discussed to give the perspective for state-of-the-art and future developments. The literature assessment showed that SPME could act as a critical tool to investigate in-vivo biological systems and provide information about the elusive portion of the metabolome. Moreover, recently introduced miniaturized SPME probes further improved the low-invasive nature of the sampling and enabled sampling even from a single cell. The coupling of SPME directly to mass spectrometry significantly reduced the total analytical workflow and became one of the promising tools suitable for fast diagnostic purposes and drug analysis. The numerous applications and advancements reported in bioanalysis using SPME show that it will continue to be an indispensable technique in the future.
Collapse
Affiliation(s)
- Sılanur Sevgen
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Gökşin Kara
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Aysegul Seyma Kir
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Alper Şahin
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Ezel Boyaci
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye.
| |
Collapse
|
9
|
Yang W, Wang F, Que Q, Fang C, Ao F, Xu Z, Chu W. Urban stormwater discharge contributes more micropollutants to surface water in humid regions of China: Comparison with treated wastewater. WATER RESEARCH 2025; 268:122712. [PMID: 39500004 DOI: 10.1016/j.watres.2024.122712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 02/27/2025]
Abstract
Micropollutants have raised increasing concern due to their adverse effect on ecosystems and human health. So far, the effects of micropollutants in urban stormwater discharge on surface water quality or ecosystem health remains unclear. In this study, target and non-target screening methods were used to quantify and identify micropollutants in urban stormwater, wastewater, and surface water in humid regions of China. Results showed that the average concentration of micropollutants in surface waters in wet weather was 1.8 times that in dry weather. The cumulative concentrations of 143 micropollutants in samples from stormwater discharge were in the range of 490-1659 ng/L, which were comparable to or exceeded those from wastewater discharge. In terms of mass load in the studying area, stormwater discharges contained 10.8 kg of micropollutants in the month, a higher level compared to 4.58 kg in treated wastewater. Furthermore, the calculated risk quotients revealed medium to high ecological risk to aquatic organisms from substances such as telmisartan, irbesartan, 1,7-dimethylxanthine, and caffeine at ng/L concentrations, which are in typical levels in urban stormwater and surface waters in wet weathers. Our study reveals that urban stormwater discharge is an important pathway for micropollutants to surface waters, and urges for increased emphasis on, and reinforcement of, urban stormwater monitoring and control measures to minimize the transport of micropollutants to receiving waterbodies.
Collapse
Affiliation(s)
- Wenyuan Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Feifei Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Qidong Que
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chao Fang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Feiyang Ao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
10
|
Ashraf M, Siddiqui MT, Galodha A, Anees S, Lall B, Chakma S, Ahammad SZ. Pharmaceuticals and personal care product modelling: Unleashing artificial intelligence and machine learning capabilities and impact on one health and sustainable development goals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176999. [PMID: 39427916 DOI: 10.1016/j.scitotenv.2024.176999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
The presence of pharmaceutical and personal care products (PPCPs) in the environment poses a significant threat to environmental resources, given their potential risks to ecosystems and human health, even in trace amounts. While mathematical modelling offers a comprehensive approach to understanding the fate and transport of PPCPs in the environment, such studies have garnered less attention compared to field and laboratory investigations. This review examines the current state of modelling PPCPs, focusing on their sources, fate and transport mechanisms, and interactions within the whole ecosystem. Emphasis is placed on critically evaluating and discussing the underlying principles, ongoing advancements, and applications of diverse multimedia models across geographically distinct regions. Furthermore, the review underscores the imperative of ensuring data quality, strategically planning monitoring initiatives, and leveraging cutting-edge modelling techniques in the quest for a more holistic understanding of PPCP dynamics. It also ventures into prospective developments, particularly the integration of Artificial Intelligence (AI) and Machine Learning (ML) methodologies, to enhance the precision and predictive capabilities of PPCP models. In addition, the broader implications of PPCP modelling on sustainability development goals (SDG) and the One Health approach are also discussed. GIS-based modelling offers a cost-effective approach for incorporating time-variable parameters, enabling a spatially explicit analysis of contaminant fate. Swin-Transformer model enhanced with Normalization Attention Modules demonstrated strong groundwater level estimation with an R2 of 82 %. Meanwhile, integrating Interferometric Synthetic Aperture Radar (InSAR) time-series with gravity recovery and climate experiment (GRACE) data has been pivotal for assessing water-mass changes in the Indo-Gangetic basin, enhancing PPCP fate and transport modelling accuracy, though ongoing refinement is necessary for a comprehensive understanding of PPCP dynamics. The review aims to establish a framework for the future development of a comprehensive PPCP modelling approach, aiding researchers and policymakers in effectively managing water resources impacted by increasing PPCP levels.
Collapse
Affiliation(s)
- Maliha Ashraf
- School of Interdisciplinary Research, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Mohammad Tahir Siddiqui
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Abhinav Galodha
- School of Interdisciplinary Research, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Sanya Anees
- Department of Electronics and Communication Engineering, Netaji Subash University of Technology (NSUT), New Delhi 110078, India.
| | - Brejesh Lall
- Bharti School of Telecommunication Technology and Management, Indian Institute of Technology, Delhi, New Delhi e110016, India
| | - Sumedha Chakma
- Department of Civil Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India.
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110016, India.
| |
Collapse
|
11
|
Samanta P, Bhattacharyya P, Samal A, Kumar A, Bhattacharjee A, Ojha PK. Ecotoxicological risk assessment of active pharmaceutical ingredients (APIs) against different aquatic species leveraging intelligent consensus prediction and i-QSTTR modeling. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136110. [PMID: 39405699 DOI: 10.1016/j.jhazmat.2024.136110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 12/01/2024]
Abstract
The increasing presence of active pharmaceutical ingredients (APIs) in aquatic ecosystems, driven by widespread human use, poses significant risks, including acute and chronic toxicity to aquatic species. However, the scarcity of experimental toxicity data on APIs and related compounds due to the high costs, time requirements, and ethical concerns associated with animal testing hinders comprehensive risk assessment. In response, we developed quantitative structure-toxicity relationship (QSTR) and interspecies quantitative structure toxicity-toxicity relationship (i-QSTTR) models for three key aquatic species: zebrafish, water fleas, and green algae, using NOEC as an endpoint, following OECD guidelines. Algae, daphnia, and fish, recognized as standard organisms in toxicity testing, are crucial bio-indicators due to their size, transparency, adaptability, and regulatory acceptance. We used partial least squares (PLS) and multiple linear regression (MLR) methods for model development alongside machine learning techniques such as Random Forest (RF), Support Vector Machines (SVM), K-nearest Neighbor (kNN), and Neural Networks (NN) to enhance the predictivity. Lipophilicity, electronegativity, unsaturation, a molecular cyclized degree in molecular structure, large fragments, aliphatic secondary C(sp2), and R-CR-R groups were identified as critical biomarkers for API toxicity. Screening of the PPDB (pesticide properties databases) and DrugBank validated the practical application of these models, offering valuable tools for regulatory decisions, safer API design, and the preservation of aquatic biodiversity.
Collapse
Affiliation(s)
- Pabitra Samanta
- Drug Discovery and Development Laboratory (DDD Lab), Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Prodipta Bhattacharyya
- Drug Discovery and Development Laboratory (DDD Lab), Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Abhisek Samal
- Drug Discovery and Development Laboratory (DDD Lab), Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Ankur Kumar
- Drug Discovery and Development Laboratory (DDD Lab), Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Arnab Bhattacharjee
- Drug Discovery and Development Laboratory (DDD Lab), Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Probir Kumar Ojha
- Drug Discovery and Development Laboratory (DDD Lab), Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
12
|
Taconet C, Hafiani EM, Daigne D, Camus F, Didier M, Paubel P, Siorat V, Tano M, Quesnel C. Potential cost savings and environmental benefits of prefilled syringes of suxamethonium in anaesthesia practice. Br J Anaesth 2024; 133:1501-1503. [PMID: 38631943 DOI: 10.1016/j.bja.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/24/2024] [Accepted: 03/01/2024] [Indexed: 04/19/2024] Open
Affiliation(s)
- Clémentine Taconet
- Department of Anesthesiology and Critical Care Medicine, Tenon University Hospital, DMU DREAM, Sorbonne Université, Paris, France.
| | - El Mahdi Hafiani
- Department of Anesthesiology and Critical Care Medicine, Tenon University Hospital, DMU DREAM, Sorbonne Université, Paris, France
| | - Daisy Daigne
- Department of Anesthesiology and Critical Care Medicine, Tenon University Hospital, DMU DREAM, Sorbonne Université, Paris, France
| | - Françoise Camus
- Department of Pharmacy, Tenon Hospital, APHP Sorbonne Université, Paris, France
| | - Matthias Didier
- Sustainable Development Projects, Assistance Publique-Hôpitaux de Paris (AP-HP), Strategy and Transformation Department, Paris, France
| | - Pascal Paubel
- General Agency of Equipment and Health Products (AGEPS), Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Health Law and Health Economics Department, Faculty of Pharmacy, Paris University, Université Paris Cité, Paris, France; Health Law Institute, Inserm, Paris University, Université Paris Cité, Paris, France
| | - Virginie Siorat
- General Agency of Equipment and Health Products (AGEPS), Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Marion Tano
- General Agency of Equipment and Health Products (AGEPS), Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Health Law and Health Economics Department, Faculty of Pharmacy, Paris University, Université Paris Cité, Paris, France; Health Law Institute, Inserm, Paris University, Université Paris Cité, Paris, France
| | - Christophe Quesnel
- Department of Anesthesiology and Critical Care Medicine, Tenon University Hospital, DMU DREAM, Sorbonne Université, Paris, France
| |
Collapse
|
13
|
Parker G, Miller FA. Tackling Pharmaceutical Pollution Along the Product Lifecycle: Roles and Responsibilities for Producers, Regulators and Prescribers. PHARMACY 2024; 12:173. [PMID: 39585099 PMCID: PMC11587451 DOI: 10.3390/pharmacy12060173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/09/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024] Open
Abstract
Pharmaceuticals produce considerable environmental harm. The industry's resource-intensive nature, coupled with high energy costs for manufacturing and transportation, contribute to the "upstream" harms from greenhouse gas emissions and ecosystem pollution, while factors such as overprescription, overuse, and pharmaceutical waste contribute to the "downstream" harms. Effectively addressing pharmaceutical pollution requires an understanding of the key roles and responsibilities along the product lifecycle. In this commentary, we argue that three actors-producers, regulators, and prescribers-have unique and interdependent responsibilities to address these issues. Producers and market access regulators are upstream actors who can manage and mitigate harms by both shifting manufacturing, business practices, and regulatory requirements and producing transparent, robust data on environmental harms. By contrast, prescribers are downstream actors whose capacity to reduce environmental harms arises principally as a "co-benefit" of reducing inappropriate prescribing and overuse. Potentially complicating the prescriber's role are the calls for prescribers to recommend "environmentally preferable medicines". These calls continue to increase, even with the sparsity of transparent and robust data on the impact of pharmaceuticals on the environment. Recognizing the interdependencies among actors, we argue that, rather than being ineffectual, these calls draw needed attention to the critical responsibility for upstream actors to prioritize data production, reporting standards and public transparency to facilitate future downstream efforts to tackle pharmaceutical pollution.
Collapse
Affiliation(s)
- Gillian Parker
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M6, Canada;
- Collaborative Centre for Climate, Health & Sustainable Care, University of Toronto, Toronto, ON M5T 3M6, Canada
| | - Fiona A. Miller
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M6, Canada;
- Collaborative Centre for Climate, Health & Sustainable Care, University of Toronto, Toronto, ON M5T 3M6, Canada
| |
Collapse
|
14
|
Murray AK, Stanton IC, Tipper HJ, Wilkinson H, Schmidt W, Hart A, Singer AC, Gaze WH. A critical meta-analysis of predicted no effect concentrations for antimicrobial resistance selection in the environment. WATER RESEARCH 2024; 266:122310. [PMID: 39217643 DOI: 10.1016/j.watres.2024.122310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Antimicrobial resistance (AMR) is one of the greatest threats to human health with a growing body of evidence demonstrating that selection for AMR can occur at environmental antimicrobial concentrations. Understanding the concentrations at which selection for resistance may occur is critical to help inform environmental risk assessments and highlight where mitigation strategies are required. A variety of experimental and data approaches have been used to determine these concentrations. However, there is minimal standardisation of existing approaches and no consensus on the relative merits of different methods. We conducted a semi-systematic literature review to collect and critically appraise available minimal selective concentration (MSC) and predicted no effect concentration for resistance (PNECR) data and the approaches used to derive them. There were 21 relevant articles providing 331 selective concentrations, ranging from 0.00087 µg/L (ciprofloxacin) to 2000 µg/L (carbenicillin). Meta-analyses of these data found that selective concentrations are highly compound-dependent, and only a subset of all antimicrobials have been the focus of most of the research. The variety of approaches that have been used, knowledge gaps and future research priorities were identified, as well as recommendations for those considering the selective risks of antimicrobials in the environment.
Collapse
Affiliation(s)
- Aimee K Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Faculty of Health and Life Sciences, Environment & Sustainability Institute, Penryn Campus, Cornwall TR10 9FE, United Kingdom.
| | - Isobel C Stanton
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, United Kingdom
| | - Holly J Tipper
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, United Kingdom
| | - Helen Wilkinson
- Chief Scientist's Group, Environment Agency, Bristol BS1 5AH, United Kingdom
| | - Wiebke Schmidt
- Chief Scientist's Group, Environment Agency, Bristol BS1 5AH, United Kingdom
| | - Alwyn Hart
- Chief Scientist's Group, Environment Agency, Bristol BS1 5AH, United Kingdom
| | - Andrew C Singer
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, United Kingdom
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Faculty of Health and Life Sciences, Environment & Sustainability Institute, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| |
Collapse
|
15
|
Sin A, Machala L, Kim M, Baďura Z, Petr M, Polaskova M, Novak P, Nadagouda MN, Dionysiou DD, Han C. Development of tungsten-modified iron oxides to decompose an over-the-counter painkiller, Acetaminophen by activating peroxymonosulfate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175472. [PMID: 39142414 PMCID: PMC11826425 DOI: 10.1016/j.scitotenv.2024.175472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/31/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Acetaminophen (APAP) is a well-known type of over-the-counter painkillers and is frequently found in surface waterbodies, causing hepatotoxicity and skin irritation. Due to its persistence and chronic effects on the environment, innovative solutions must be provided to decompose APAP, effectively. Innovative catalysts of tungsten-modified iron oxides (TF) were successfully developed via a combustion method and thoroughly characterized using SEM, TEM, XRD, XPS, a porosimetry analysis, Mössbauer spectroscopy, VSM magnetometry, and EPR. With the synthesis method, tungsten was successfully incorporated into iron oxides to form ferrites and other magnetic iron oxides with a high porosity of 19.7 % and a large surface area of 29.5 m2/g. Also, their catalytic activities for APAP degradation by activating peroxymonosulfate (PMS) were evaluated under various conditions. Under optimal conditions, TF 2.0 showed the highest APAP degradation of 95 % removal with a catalyst loading of 2.0 g/L, initial APAP concentration of 5 mg/L, PMS of 6.5 mM, and pH 2.15 at room temperature. No inhibition by solution pHs, alkalinity, and humic acid was observed for APAP degradation in this study. The catalysts also showed chemical and mechanical stability, achieving 100 % degradation of 1 mg/L APAP during reusability tests with three consecutive experiments. These results show that TFs can effectively degrade persistent contaminants of emerging concern in water, offering an impactful contribution to wastewater treatment to protect human health and the ecosystem.
Collapse
Affiliation(s)
- Aebin Sin
- Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| | - Libor Machala
- Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, 17.listopadu 1192/12, Olomouc 779 00, Czech Republic.
| | - Minhee Kim
- Ministry of Environment, 229 Misagangbyeonhangang-ro, Hanam-si, Gyeonggi-do 12902, Republic of Korea.
| | - Zdeněk Baďura
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, Olomouc 783 71, Czech Republic; Nanotechnology Centre, CEET, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic.
| | - Martin Petr
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, Olomouc 783 71, Czech Republic.
| | - Michaela Polaskova
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, Olomouc 783 71, Czech Republic
| | - Petr Novak
- Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, 17.listopadu 1192/12, Olomouc 779 00, Czech Republic.
| | - Mallikarjuna N Nadagouda
- Center for Environmental Solutions and Emergency Response, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
| | - Changseok Han
- Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Environmental Engineering, INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| |
Collapse
|
16
|
Chen X, Lu X, Zhao R, Su G, Meng J, Li Q, Hua Y, Shi B. Occurrence and risks of PPCPs of a typical mountainous region: Implications for sustainable urban water systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175714. [PMID: 39181247 DOI: 10.1016/j.scitotenv.2024.175714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Urban wastewater treatment plants (WWTPs) and drinking water treatment plants (DWTPs) play vital roles in the urban water cycle, ensuring access to safe drinking water and maintaining aquatic ecosystems. This study comprehensively assessed the occurrence and risks of pharmaceuticals and personal care products (PPCPs) in urban WWTPs and DWTPs. Our findings revealed widespread PPCPs presence, with concentrations ranging from <1 ng/L to several thousand ng/L. Significant regional disparities in occurrence and composition were observed linked to population types and economic structures. Furthermore, strong correlations were observed between DWTPs and WWTPs indicating consistent transport and transformation patterns of PPCPs within the urban water cycle. Approximately two-thirds of PPCPs were degraded post-WWTP treatment, with about one-tenth persisting in drinking water following surface water dilution and purification processes. Thus, we suggested that controlling the total concentration of the five priority PPCPs in the effluent from the WWTP to <1100 ng/L have potential to reduce the environmental and health risk of PPCPs. Additionally, this research identified influential water quality parameters, such as pH, dissolved oxygen, and temperature, through redundancy analysis. This research underscores the importance of establishing emission standards to mitigate PPCP-related risks and supports sustainable urban water system advancement.
Collapse
Affiliation(s)
- Xing Chen
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Xiaofei Lu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Renxin Zhao
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Guijin Su
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Meng
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yukang Hua
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Shi
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Terzic S, Ivankovic K, Jambrosic K, Kurtovic B, Ahel M. Bioaccumulation and tissue distribution of pharmaceuticals and their transformation products in fish along the pollution gradients of a wastewater-impacted river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177339. [PMID: 39505042 DOI: 10.1016/j.scitotenv.2024.177339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/14/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
A field study on the occurrence and distribution of forty-three pharmaceutically active compounds (PhACs) in water and fish samples from anthropogenically impacted section of the Sava River (Croatia) was performed to estimate the importance of bioaccumulation for the environmental risk assessment of PhACs. The study was performed using a highly specific LC-MS/MS method, tailored to include the most prominent PhACs from different therapeutic categories as well as their major metabolites and/or transformation products (TPs). The results revealed a widespread occurrence of PhAC residues both in water and fish samples with a large spatial variability reflecting the distance from the dominant wastewater discharges. The most prominent PhAC categories in less polluted upstream part of the river were common psychostimulants caffeine and cotinine, therapeutic opioids and cardiovascular drugs, while in the river section affected by the local municipal and industrial wastewater inputs, antibiotic drugs became clearly predominant, especially in fish tissue samples. The apparent bioconcentration factors (BCFs) of investigated PhACs varied over several orders of magnitude, from 0.02 ± 0.01 L kg-1 for O-desmethyl tramadol in fish muscle to 784 ± 260 L kg-1 for terbinafine in fish liver, indicating rather large differences in their bioconcentration potential and affinity to different tissues, with the tissue-specific BCFs increasing in the following order: muscle < gills < gonads < heart < liver < kidneys. The bioconcentration potential of most of the PhACs included in this study was only low to moderate however moderately high BCFs of certain PhACs (e.g. sertraline, terbinafine, loratadine, diazepam and azithromycin) in some tissues should be taken into consideration when assessing their potential environmental risks. Moreover, it was shown that BCFs could be strongly affected by biotransformation in fish. Risk prioritization based on risk quotient (RQ) and ToxPi index, revealed antibiotics, in particular azithromycin, and therapeutic psychoactive substances as the most hazardous pharmaceutical contaminants in the Sava River.
Collapse
Affiliation(s)
- Senka Terzic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia.
| | - Klaudija Ivankovic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Karlo Jambrosic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Bozidar Kurtovic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Marijan Ahel
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| |
Collapse
|
18
|
Djieugoue B, Nlend B, Ngo Boum-Nkot S, Celle H, Ben Nasr W, Vystavna Y, Re V, Zouari K, Trabelsi R, Etame J, Huneau F. Emerging organic compounds in surface and groundwater reflect the urban dynamics in sub-Saharan cities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177217. [PMID: 39471949 DOI: 10.1016/j.scitotenv.2024.177217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
Rapid and uncontrolled urbanization in sub-Saharan Africa has led to an increased production and expansion of synthetic chemicals, resulting in significant pollution of the aquatic environments, particularly by Emerging Organic Contaminants (EOCs). Due to the low income of the population in this region, there is often a lack of control over water and fishery resources prior to consumption. Therefore, the current study aims to use EOCs as markers of water resource quality degradation, and to assess the potential environmental risk of these compounds on some aquatic organisms. Among 120 targeted compounds, 66 were detected at 22 sites in Douala city, Cameroon, including 9 rivers and 13 groundwater samples. The detected EOCs were classified into three categories, including pharmaceuticals and personal care products (n = 55), lifestyle compounds (n = 7) and industrial compounds (n = 4). Surface water was highly impacted, with EOC total concentrations reaching 61,273 ng/L, versus 16,677 ng/L in groundwater. Contamination levels and the type of contaminants were closely linked to land use patterns in the study area. Contamination was mainly attributed to domestic, hospital and brewery's industry wastewaters, landfill and pit latrines. Consumption patterns and physicochemical properties of compounds, in particular their persistence, polarity and octanol/water gradient (Kow), explain their occurrence at high concentrations (up to μg/L) in groundwater. According to Risk Quotient (RQ) with a maximum of 93.4 in surface water and 8.5 in groundwater, about 1/3 of the identified compounds pose a serious threat to aquatic organisms, including algae, invertebrates and fish. For the first time in Central African, we revealed these high levels of water contamination by EOCs and identified the risk for the environmental health. Our study demonstrates the urgency to adopt sustainable water management strategies in large cities of the region.
Collapse
Affiliation(s)
- B Djieugoue
- Université de Douala, Faculté des Sciences, Douala, P.O. BOX 24157, Cameroon; National Engineering School of Sfax, Laboratory of Radio-Analyses and Environment, BP1173, 3038 Sfax, Tunisia
| | - B Nlend
- Université de Douala, Faculté des Sciences, Douala, P.O. BOX 24157, Cameroon
| | - S Ngo Boum-Nkot
- Université de Douala, Faculté des Sciences, Douala, P.O. BOX 24157, Cameroon
| | - H Celle
- Université de Franche-Comté, CNRS UMR 6249 Chrono-Environnement, 16 route de Gray, 25030 Besançon, France
| | - W Ben Nasr
- National Engineering School of Sfax, Laboratory of Radio-Analyses and Environment, BP1173, 3038 Sfax, Tunisia
| | - Y Vystavna
- International Atomic Energy Agency, Isotope Hydrology Section, 1400 Vienna, Austria
| | - V Re
- University of Pisa, Department of Earth Sciences, Via Santa Maria 53, 56126 Pisa, Italy
| | - K Zouari
- National Engineering School of Sfax, Laboratory of Radio-Analyses and Environment, BP1173, 3038 Sfax, Tunisia
| | - R Trabelsi
- National Engineering School of Sfax, Laboratory of Radio-Analyses and Environment, BP1173, 3038 Sfax, Tunisia
| | - J Etame
- Université de Douala, Faculté des Sciences, Douala, P.O. BOX 24157, Cameroon
| | - F Huneau
- Université de Corse Pascal Paoli, Département d'Hydrogéologie, Campus Grimaldi, BP52, 20250 Corte, France; CNRS, UMR 6134 SPE, BP52, 20250 Corte, France.
| |
Collapse
|
19
|
García M, Cherian JJ, Lertxundi U. Incorporating the One Health Philosophy into pharmacovigilance: Ecopharmacovigilance. Br J Clin Pharmacol 2024; 90:2953-2954. [PMID: 39291615 DOI: 10.1111/bcp.16254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Affiliation(s)
- Montserrat García
- Biobizkaia Health Research Institute, Osakidetza Basque Health Service, Galdakao-Usansolo Hospital, Basque Country Pharmacovigilance Unit, Galdakao, Spain
| | - Jerin Jose Cherian
- Clinical Studies and Trials Unit, Division of Development Research, Indian Council of Medical Research, New Delhi, India
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Unax Lertxundi
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, Gasteiz, Alava, Spain
| |
Collapse
|
20
|
Hanamoto S, Zaman S, Yao D, Minami Y. Occurrence and source identification of the disinfectant didecyldimethylammonium chloride in a Japanese watershed receiving effluent from swine farms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124714. [PMID: 39134168 DOI: 10.1016/j.envpol.2024.124714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/01/2024] [Accepted: 08/10/2024] [Indexed: 08/18/2024]
Abstract
Didecyldimethylammonium chloride (DDAC), a toxic quaternary ammonium compound (QAC) linked to multidrug resistance, is used widely in households and hospitals and on swine farms to prevent disease transmission. However, little is known about its occurrence in watersheds receiving livestock wastewaters or manure. We monitored DDAC and tracers (veterinary and human drugs) once a season over a year at 14 sites in a Japanese watershed where swine outnumbered humans 1.2 to 1 and where both swine and human wastewaters were largely treated on site. DDAC concentrations in sewage-treatment-plant effluent (33-52 ng/L) were close to, whereas those in river waters (3.6-16,672 ng/L) far exceeded, those reported worldwide. DDAC mass flows at the catchment outlet (1692-3816 μg/s) were higher than those of any of the drugs. DDAC concentrations were significantly correlated with total concentrations of veterinary drugs (Spearman's correlation coefficient, 0.95, P < 0.01), indicating that the major pathway of DDAC entry to surface waters was via effluent discharge from swine farms. Comparison of observed and predicted mass flows implied that a substantial percentage of DDAC was washed from the barn floor into swine excrement. To our knowledge, this is the first study to demonstrate QAC hotspots attributable to animal husbandry.
Collapse
Affiliation(s)
- Seiya Hanamoto
- Environment Preservation Center, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Samina Zaman
- Graduate School of Natural Science and Technology, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Dingwen Yao
- Graduate School of Natural Science and Technology, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yuki Minami
- Environment Preservation Center, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1192, Japan
| |
Collapse
|
21
|
Herrero-Villar M, Taggart MA, Mateo R. Pharmaceuticals in avian scavengers and other birds of prey: A toxicological perspective to improve risk assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174425. [PMID: 38969127 DOI: 10.1016/j.scitotenv.2024.174425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/06/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Pharmaceuticals are emerging contaminants given their increasing use worldwide due to intensive food production and population growth. These compounds reach the environment through different pathways with potential negative consequences for wildlife. One dramatic example occurred in Asia, where three native vulture populations collapsed almost to extinction due to acute intoxication with diclofenac, a veterinary use non-steroidal anti-inflammatory drug (NSAID). As seen with diclofenac, avian scavengers are useful sentinels to monitor for the presence of pharmaceuticals in the environment given their position at the top of the trophic chain, and in the case of obligate avian scavengers (vultures), their intimate link to domestic animal carcasses. Unfortunately, little is known about the wider exposure and potential health and population risks of pharmaceuticals to birds of prey. Here we compile literature data regarding relevant toxicological aspects of the most important pharmaceutical groups for birds of prey in terms of toxicity: NSAIDs, antibiotics, external antiparasitics and barbiturates. This work also includes critical information for future risk assessments, including concentrations of drug residues that can remain in animal tissues after treatment, or specific pharmaceutical features that might influence their toxicity in avian scavengers and other birds of prey. We also consider future research needs in this field and provide management recommendations to prevent potential intoxication events with pharmaceuticals in these species. This review highlights the need to consider specific risk assessments regarding exposure to pharmaceuticals, especially those used in veterinary medicine, for birds of prey.
Collapse
Affiliation(s)
- Marta Herrero-Villar
- Instituto de Investigación en Recursos Cinegéticos-IREC, CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13071 Ciudad Real, Spain.
| | - Mark A Taggart
- Environmental Research Institute, University of the Highlands and Islands, Castle Street, Thurso, Caithness, Scotland KW14 7JD, UK
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos-IREC, CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13071 Ciudad Real, Spain; Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| |
Collapse
|
22
|
Mattoli L, Fodaroni G, Burico M, Tamimi S, Quintiero CM, Gironi B, Murgia V, Giovagnoni E, Gianni M. Could natural-complex therapeutic products be useful for preserving biodiversity? UHPLC-qToF approaches to study the ready-biodegradability of a loperamide-based-drug and Lenodiar-Pediatric®. SUSTAINABLE CHEMISTRY AND PHARMACY 2024; 41:101715. [DOI: 10.1016/j.scp.2024.101715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Lemaire E, Gomez E, Le Yondre N, Malherbe A, Courant F. Mediterranean mussels (Mytilus galloprovincialis) exposure to fluoxetine: Bioaccumulation and biotransformation products. CHEMOSPHERE 2024; 365:143314. [PMID: 39278326 DOI: 10.1016/j.chemosphere.2024.143314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
The significant rise in antidepressant consumption in recent years was accentuated by COVID-19 pandemic. Among these antidepressant, fluoxetine, a selective serotonin re-uptake inhibitor (SSRI), is the most prescribed worldwide. The present study investigated its bioaccumulation and metabolization in the mussel Mytilus galloprovincialis, generally recognized as a reliable bioindicator for assessing environmental quality and the accumulation of various contaminants. Mussels were exposed to a nominal concentration of fluoxetine (3.1 μg/L) for 28 days. Mussels were sacrificed at day 2, 7, 14 and 28 of exposure. The order of accumulation level was gills > digestive glands > soft tissues, and a regular increase in fluoxetine and norfluoxetine was observed across the various sampling days for both digestive glands and soft tissues. The calculated bioconcentration factor (BCF) ranged from 253 at D2 to 1734 at D28 for fluoxetine, and pseudo-BCF from 7 at D2 to 64 at D28 for norfluoxetine. Non-targeted approaches highlighted ten metabolites, which are reported for the first time in Mytilus, in addition to norfluoxetine. Notably, this study highlighted two phase I metabolites and one phase II metabolite previously unreported. These findings contribute to the understanding of fluoxetine accumulation and metabolism in Mytilus and enhance the knowledge of pharmaceuticals detoxification processes in non-target organisms.
Collapse
Affiliation(s)
- E Lemaire
- Hydrosciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France
| | - E Gomez
- Hydrosciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France; Montpellier Alliance for Metabolomics and Metabolism Analysis, Platform on non-target exposomics and metabolomics (PONTEM), Biocampus, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - N Le Yondre
- Univ. Rennes, CNRS, Centre Régional de Mesures Physiques de l'Ouest (CRMPO), UAR 2025 ScanMAT, F-35042, Rennes, France
| | - A Malherbe
- Hydrosciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France
| | - F Courant
- Hydrosciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France; Montpellier Alliance for Metabolomics and Metabolism Analysis, Platform on non-target exposomics and metabolomics (PONTEM), Biocampus, CNRS, INSERM, Université de Montpellier, Montpellier, France.
| |
Collapse
|
24
|
Zhang LH, Li JN, Li YH, Min XZ, Kong DY, Han Y, Jiang C, Xiao H, Liang B, Zhang ZF. Tracing residual patterns and microbial communities of pharmaceuticals and personal care products from 17 urban landfills leachate in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135295. [PMID: 39047556 DOI: 10.1016/j.jhazmat.2024.135295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/07/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Landfill leachate contributes significantly to the presence of pharmaceuticals and personal care products (PPCPs) in the environment, and is a crucial source of contamination. To examine the occurrence of PPCPs and microbial communities, this study comprehensively investigated the concentrations of PPCPs and the abundance of microorganisms in the leachate from 17 municipal landfills across China. Generally, Lidocaine, Linear alkylbenzene sulfonate-C11, and Triclocarban, which are closely associated with human activities, exhibited a detection frequency of 100 % in the leachate. Driven by consumer demand, analgesic and antipyretic drugs have emerged as the most prominent PPCPs in leachate (accounting for 39.9 %). Notably, the Ibuprofen peaked at 56.3 μg/L. Regarding spatial distribution, the contamination of PPCPs in leachates from the eastern regions of China was significantly higher than that in other regions, owing to the level of economic development and demographic factors. Furthermore, the 16S rRNA results revealed significant differences in microbial communities among the leachates from different areas. Although the impact of PPCPs on microbial communities may not be as significant as that of environmental factors, most positive correlations between PPCPs and microorganisms indicate their potential role in providing nutrients and creating favorable conditions for microbial growth. Overall, this research offers new perspectives on the residual features of PPCPs and the microbial community structure in leachates from various regions in China.
Collapse
Affiliation(s)
- Lin-Hui Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment/School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
| | - Jin-Nong Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment/School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
| | - Yi-Hao Li
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Xi-Ze Min
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment/School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
| | - De-Yong Kong
- Liaoning HaiTianGe Environmental Protection Technology Co. Ltd., Fushun 113122, China
| | - Yue Han
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin 150028, China
| | - Chao Jiang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin 150028, China
| | - Hang Xiao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment/School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
25
|
Farías DR, Ibarra R, Estévez RA, Tlusty MF, Nyberg O, Troell M, Avendaño-Herrera R, Norden W. Towards Sustainable Antibiotic Use in Aquaculture and Antimicrobial Resistance: Participatory Experts' Overview and Recommendations. Antibiotics (Basel) 2024; 13:887. [PMID: 39335060 PMCID: PMC11428492 DOI: 10.3390/antibiotics13090887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Notably, 56 worldwide experts gathered for the Antimicrobial Assessment on Global Aquaculture Production (AGAP) series of workshops to (1) evaluate the current state of knowledge on antimicrobial use and identify existing gaps; (2) formulate strategies to identify ecologically relevant impact indicators and establish thresholds for assessment; (3) identify pivotal socioeconomic factors and effective governance mechanisms essential for implementing monitoring practices in aquaculture and extending them across sectors and countries for aquaculture sustainability; (4) develop pathways to enhance our comprehension between antibiotic use in aquaculture and antimicrobial resistance; and (5) explore potential antibiotic monitoring tools that can be universally adapted and implemented across region and sectors. The main outcomes were a roadmap for establishing investigation priorities on the relevant topics regarding antibiotic use in aquaculture, socioeconomic drivers for using antibiotics and behaviors that need more robust and transparent regulatory frameworks to guide farmers, training on antimicrobial use, and access to veterinarians and extension services agents for education. Overall, the workshop evidenced the power of collaboration in addressing complex global challenges to achieve sustainable aquaculture. Despite diligent efforts, some constraints may have inadvertently narrowed the possibility of having more experts and left some pertinent topics unaddressed, but they are needed in the discussion.
Collapse
Affiliation(s)
- Daniela R. Farías
- Monterey Bay Aquarium Global Oceans Conservation Program, 886 Cannery Row, Monterey, CA 93940, USA; (R.I.); (M.F.T.); (W.N.)
| | - Rolando Ibarra
- Monterey Bay Aquarium Global Oceans Conservation Program, 886 Cannery Row, Monterey, CA 93940, USA; (R.I.); (M.F.T.); (W.N.)
| | - Rodrigo A. Estévez
- Centro de Investigación e Innovación para el Cambio Climático, Facultad de Ciencias, Universidad Santo Tomás, Santiago 8370003, Chile;
- Instituto Milenio en Socio-Ecología Costera, Santiago 8320000, Chile
| | - Michael F. Tlusty
- Monterey Bay Aquarium Global Oceans Conservation Program, 886 Cannery Row, Monterey, CA 93940, USA; (R.I.); (M.F.T.); (W.N.)
- School for the Environment, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Oskar Nyberg
- Stockholm Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden; (O.N.); (M.T.)
| | - Max Troell
- Stockholm Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden; (O.N.); (M.T.)
- Beijer Institute of Ecological Economics, Royal Swedish Academy of Sciences, 104 05 Stockholm, Sweden
| | - Ruben Avendaño-Herrera
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar 8370035, Chile;
- Interdisciplinary Center for Aquaculture Research (INCAR), Viña del Mar 2531015, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay 2340000, Chile
| | - Wendy Norden
- Monterey Bay Aquarium Global Oceans Conservation Program, 886 Cannery Row, Monterey, CA 93940, USA; (R.I.); (M.F.T.); (W.N.)
| |
Collapse
|
26
|
Muambo KE, Kim MG, Kim DH, Park S, Oh JE. Pharmaceuticals in raw and treated water from drinking water treatment plants nationwide: Insights into their sources and exposure risk assessment. WATER RESEARCH X 2024; 24:100256. [PMID: 39291270 PMCID: PMC11406100 DOI: 10.1016/j.wroa.2024.100256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Due to the large amounts of pharmaceuticals and personal care products (PPCPs) currently being consumed and released into the environment, this study provides a comprehensive analysis of pharmaceutical pollution in both raw and treated water from full-scale drinking water treatment plants nationwide. Our investigation revealed that 30 out of 37 PPCPs were present in raw water with mean concentrations ranging from 0.01-131 ng/L. The raw water sources, surface water (ND - 147 ng/L), subsurface water (ND - 123 ng/L) and reservoir sources (ND - 135 ng/L) exhibited higher mean concentration levels of pharmaceutical residues compared to groundwater sources (ND - 1.89 ng/L). Meanwhile, in treated water, 17 of the 37 analyzed PPCPs were present with carbamazepine, clarithromycin, fluconazole, telmisartan, valsartan, and cotinine being the most common (detection frequency > 40 %), and having mean concentrations of 1.22, 0.12, 3.48, 40.1, 6.36, and 3.73 ng/L, respectively. These findings highlight that, while water treatment processes are effective, there are some persistent compounds that prove challenging to fully eliminate. Using Monte Carlo simulations, risk assessment indicated that most of these compounds are likely to have negligible impact on human health, except for the antihypertensives. Telmisartan was identified as posing the highest ecological risk (RQ > 1), warranting further investigation, and monitoring. The study concludes by prioritizing specific 14 pharmaceuticals, including telmisartan, clarithromycin, lamotrigine, cotinine, lidocaine, tramadol, and others, for future monitoring to safeguard both ecological and human health.
Collapse
Affiliation(s)
- Kimberly Etombi Muambo
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Min-Gyeong Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Da-Hye Kim
- Institute for Environment and Energy, Pusan National University Busan 46241, Republic of Korea
| | - Sangmin Park
- Department of Environmental Infrastructure Research, National Institute of Environmental Research, Ministry of Environment, Incheon 22689, South Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
- Institute for Environment and Energy, Pusan National University Busan 46241, Republic of Korea
| |
Collapse
|
27
|
Alqarni AM. Analytical Methods for the Determination of Pharmaceuticals and Personal Care Products in Solid and Liquid Environmental Matrices: A Review. Molecules 2024; 29:3900. [PMID: 39202981 PMCID: PMC11357415 DOI: 10.3390/molecules29163900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Among the various compounds regarded as emerging contaminants (ECs), pharmaceuticals and personal care products (PPCPs) are of particular concern. Their continuous release into the environment has a negative global impact on human life. This review summarizes the sources, occurrence, persistence, consequences of exposure, and toxicity of PPCPs, and evaluates the various analytical methods used in the identification and quantification of PPCPs in a variety of solid and liquid environmental matrices. The current techniques of choice for the analysis of PPCPs are state-of-the-art liquid chromatography coupled to mass spectrometry (LC-MS) or tandem mass spectrometry (LC-MS2). However, the complexity of the environmental matrices and the trace levels of micropollutants necessitate the use of advanced sample treatments before these instrumental analyses. Solid-phase extraction (SPE) with different sorbents is now the predominant method used for the extraction of PPCPs from environmental samples. This review also addresses the ongoing analytical method challenges, including sample clean-up and matrix effects, focusing on the occurrence, sample preparation, and analytical methods presently available for the determination of environmental residues of PPCPs. Continuous development of innovative analytical methods is essential for overcoming existing limitations and ensuring the consistency and diversity of analytical methods used in investigations of environmental multi-class compounds.
Collapse
Affiliation(s)
- Abdulmalik M Alqarni
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, King Faisal Road, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
28
|
Kötke D, Gandrass J, Bento CP, Ferreira CS, Ferreira AJ. Occurrence and environmental risk assessment of pharmaceuticals in the Mondego river (Portugal). Heliyon 2024; 10:e34825. [PMID: 39157411 PMCID: PMC11328081 DOI: 10.1016/j.heliyon.2024.e34825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
In this case study pharmaceuticals were analysed in the Mondego river (Portugal) and their environmental risk assessed by means of risk quotients based on an extensive retrieval of ecotoxicological data for freshwater and saltwater species. The Mondego river crosses Coimbra, the most populated city in the Portuguese Centro Region hosting a complex of regional hospitals. Environmentally relevant and prioritised pharmaceuticals were investigated in this study and their potential hazards were evaluated by conducting a separate risk assessment for the freshwater and estuary parts of the examined river section. A target analysis approach with method detection limits down to 0.01 ng L-1 was used to determine pharmaceuticals. Twenty-one prioritised target analytes out of seven therapeutical classes (antibiotics, iodinated X-ray contrast media (ICM), analgesics, lipid reducers, antiepileptics, anticonvulsants, beta-blockers) were investigated by applying ultra-high pressure liquid chromatography coupled to a triple quadrupole mass spectrometer equipped with an electrospray ionisation source. The relative pattern of pharmaceuticals along the middle to the lower Mondego showed a quite uniform picture while an approximately 40fold increase of absolute concentrations was observed downstream of the wastewater treatment plant (WWTP) discharge of Coimbra. The most frequently measured substance groups were the ICM, represented by the non-ionic ICM iopromide (βmin: 3.03 ng L-1 - βmax: 2,810 ng L-1). Environmentally more critical substances such as carbamazepine, diclofenac, and bezafibrate, with concentrations up to and 52.6 ng L-1, 59.8 ng L-1, and 10.2 ng L-1 respectively, may potentially affect aquatic wildlife. Carbamazepine revealed elevated risk quotients (RQs >1) along the middle and lower Mondego with a maximum RQ of 53 downstream of Coimbra. Especially for saltwater species, carbamazepine and clarithromycin pose high potential risks. Especially in periods of low water discharge of the Mondego river, other pharmaceuticals as diclofenac and bezafibrate may pose additional risks downstream of the WWTP.
Collapse
Affiliation(s)
- Danijela Kötke
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Organic Environmental Chemistry, Geesthacht, 21502, Germany
| | - Juergen Gandrass
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Organic Environmental Chemistry, Geesthacht, 21502, Germany
| | - Célia P.M. Bento
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Organic Environmental Chemistry, Geesthacht, 21502, Germany
- Wageningen Environmental Research, Wageningen UR, 6708 PB, Wageningen, the Netherlands
| | - Carla S.S. Ferreira
- Research Centre for Natural Resources, Environment and Society (CERNAS), Agrarian Technical School, Polytechnic Institute of Coimbra, P-3040-316, Coimbra, Portugal
- Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, SE-106 91, Stockholm, Sweden
| | - António J.D. Ferreira
- Research Centre for Natural Resources, Environment and Society (CERNAS), Agrarian Technical School, Polytechnic Institute of Coimbra, P-3040-316, Coimbra, Portugal
| |
Collapse
|
29
|
Deymeh F, Ahmadpour A, Allahresani A, Arami-Niya A. Collaborative adsorption and photocatalytic degradation of high concentration pharmaceutical pollutants in water using a novel dendritic fibrous nano-silica modified with chitosan and UiO-66. Int J Biol Macromol 2024; 275:133534. [PMID: 38950805 DOI: 10.1016/j.ijbiomac.2024.133534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/25/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
This study presents a novel hybrid mesoporous material for degrading drug pollutants in water. The hybrid materials, derived from UiO-66 metal-organic framework and chitosan, coated on nano-silica, showed excellent drug adsorption through hydrogen-bonding interactions and efficient photodegradation of antibiotics. The hybrid material's enhanced conductivity and reduced band gap significantly improved pollution reduction by minimising electron-hole recombination. This allows for more efficient charge transport and better light absorption, boosting the material's ability to break down pollutants. Structural and morphological analyses were conducted using various techniques, including scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, Brunauer-Emmett-Teller analysis, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Optimising the adsorption-photodegradation process involved investigating pH, catalyst dose, and radiation time. Non-linear optimisation revealed an efficiency exceeding 85 % for 400 mg/L tetracycline and doxycycline, the model antibiotics. The optimal parameters for maximal elimination were determined as pH = 4.3, hybrid mesosphere dose = 4.0 mg/mL, and radiation time = 10 min. Kinetic studies favored pseudo-second-order diffusion models over pseudo-first-order models. The hybrid mesosphere showed sustained efficiency after three cycles and performed well in real aqueous samples, removing over 80 % of each antibiotic. This study demonstrates the potential of the hybrid mesoporous material for removing pharmaceutical pollutants in water systems.
Collapse
Affiliation(s)
- Fatemeh Deymeh
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box 91779-48944, Mashhad, Iran; Industrial Catalysts, Adsorbents and Environment Lab., Oil and Gas Research Institute, Ferdowsi University of Mashhad, P.O. Box 91779-48974, Mashhad, Iran
| | - Ali Ahmadpour
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box 91779-48944, Mashhad, Iran; Industrial Catalysts, Adsorbents and Environment Lab., Oil and Gas Research Institute, Ferdowsi University of Mashhad, P.O. Box 91779-48974, Mashhad, Iran.
| | - Ali Allahresani
- Department of Chemistry, College of Sciences, University of Birjand, P.O. Box 97175-615, Birjand, Iran
| | - Arash Arami-Niya
- Discipline of Chemical Engineering, Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
| |
Collapse
|
30
|
Sims JL, Cole AR, Moran ZS, Mansfield CM, Possamai B, Rojo M, King RS, Matson CW, Brooks BW. The Tissue-Specific Eco-Exposome: Differential Pharmaceutical Bioaccumulation and Disposition in Fish among Trophic Positions. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1894-1902. [PMID: 38888274 DOI: 10.1002/etc.5931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/28/2024] [Accepted: 05/12/2024] [Indexed: 06/20/2024]
Abstract
Though bioaccumulation of pharmaceuticals by aquatic organisms continues to receive scientific attention, the internal disposition of these contaminants among different tissue compartments of fish species has been infrequently investigated, particularly among fish at different trophic positions. We tested a human to fish biological read-across hypothesis for contaminant disposition by examining tissue-specific accumulation in three understudied species, longnose gar (Lepisosteus osseus; piscivore), gizzard shad (Dorosoma cepedianum; planktivore/detritivore), and smallmouth buffalo (Ictiobus bubalus; benthivore), from a river influenced by municipal effluent discharge. In addition to surface water, fish plasma, and brain, gill, gonad, liver, and lateral muscle fillet tissues were analyzed via isotope dilution liquid chromatography tandem mass spectrometry. Caffeine and sucralose, two common effluent tracers, were quantitated at low micrograms per liter levels in surface water, while an anticonvulsant, carbamazepine, was observed at levels up to 37 ng/L. The selective serotonin reuptake inhibitors (SSRIs) fluoxetine and sertraline and primary metabolites were detected in at least one tissue of all three species at low micrograms per kilogram concentrations. Within each species, brain and liver of select fish contained the highest levels of SSRIs compared to plasma and other tissues, which is generally consistent with human tissue disposition patterns. However, we observed differential accumulation among specific tissue types and species. For example, mean levels of sertraline in brain and liver tissues were 13.4 µg/kg and 1.5 µg/kg in gizzard shad and 1.3 µg/kg and 7.3 µg/kg in longnose gar, respectively. In contrast, smallmouth buffalo did not consistently accumulate SSRIs to detectable levels. Tissue-specific eco-exposome efforts are necessary to understand mechanisms associated with such marked bioaccumulation and internal dispositional differences among freshwater fish species occupying different trophic positions. Environ Toxicol Chem 2024;43:1894-1902. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Jaylen L Sims
- Department of Environmental Science, Baylor University, Waco, Texas, USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Alexander R Cole
- Department of Environmental Science, Baylor University, Waco, Texas, USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Zachary S Moran
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
- Department of Biology, Baylor University, Waco, Texas, USA
| | - Charles M Mansfield
- Department of Environmental Science, Baylor University, Waco, Texas, USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Bianca Possamai
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
- Department of Biology, Baylor University, Waco, Texas, USA
| | - Macarena Rojo
- Department of Environmental Science, Baylor University, Waco, Texas, USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Ryan S King
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
- Department of Biology, Baylor University, Waco, Texas, USA
| | - Cole W Matson
- Department of Environmental Science, Baylor University, Waco, Texas, USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, Texas, USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| |
Collapse
|
31
|
Zhou X, Shi Y, Lu Y, Song S, Wang C, Wu Y, Liang R, Qian L, Xu Q, Shao X, Li X. Ecological risk assessment of commonly used antibiotics in aquatic ecosystems along the coast of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173263. [PMID: 38782267 DOI: 10.1016/j.scitotenv.2024.173263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
The consistent input of antibiotics into aquatic environments may pose risks to various creatures and ecosystems. However, risk assessment of pharmaceuticals and personal care products (PPCPs) in aquatic environments is frequently limited by the lack of toxicity data. To investigate the risk of commonly used antibiotics to various aquatic creatures, we focused on the distribution patterns and temporal dynamics of antibiotics in the coastal estuary area of China and performed a comprehensive ecological risk assessment for four antibiotics: erythromycin (ERY), tetracycline (TCN), norfloxacin (NOR) and sulfamethoxazole (SMX). An interspecies correlation estimation (ICE)-species sensitivity distribution (SSD) combined model was applied to predict the toxicity data of untested aquatic species, and an accurate ecological risk assessment procedure was developed to evaluate the risk level of PPCPs. The results of risk quotient assessments and probabilistic risk assessments (PRAs) suggested that four objective antibiotics in the Chinese coastal estuary area were at a low risk level. These antibiotics posed a high risk in antibiotic-related global hot spots, with probabilistic risk values for ERY, NOR, SMX, and TCN of 81.33 %, 27.08 %, 21.13 %, and 15.44 %, respectively. We applied an extrapolation method to overcome the lack of toxicity data in ecological risk assessment, enhanced the ecological reality of water quality criteria derivation and reduced the uncertainty of risk assessment for antibiotics.
Collapse
Affiliation(s)
- Xuan Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yajuan Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yonglong Lu
- Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems and Fujian Provincial Key Laboratory of Land and Ocean Interface, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Stake Key Laboratory of Marine Environmental Science, Xiamen University, Fujian 361102, China
| | - Shuai Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenchen Wang
- Chongqing Key Laboratory of Agricultural Waste Resource Utilization Technology and Equipment Research, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Yanqi Wu
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruoyu Liang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Li Qian
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuyun Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuqing Shao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Nath A, Ojha PK, Roy K. Modelling lethality and teratogenicity of zebrafish ( Danio rerio) due to β-lactam antibiotics employing the QSTR approach. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:565-589. [PMID: 39069787 DOI: 10.1080/1062936x.2024.2378797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
Nowadays, β-lactam antibiotics are one of the most consumed OTC (over-the-counter) medicines in the world. Its frequent use against several infectious diseases leads to the development of antibiotic resistance. Another unavoidable risk factor of β-lactam antibiotics is environmental toxicity. Numerous terrestrial as well as aquatic species have suffered due to the excessive use of these pharmaceuticals. In this present study, we have performed a toxicity assessment employing a novel in silico technique like quantitative structure-toxicity relationships (QSTRs) to explore toxicity against zebrafish (Danio rerio). We have developed single as well as inter-endpoint QSTR models for the β-lactam compounds to explore important structural attributes responsible for their toxicity, employing median lethal (LC50) and median teratogenic concentration (TC50) as the endpoints. We have shown how an inter-endpoint model can extrapolate unavailable endpoint values with the help of other available endpoint values. To verify the models' robustness, predictivity, and goodness-of-fit, several universally popular metrics for both internal and external validation were extensively employed in model validation (single endpoint models: r2 = 0.631 - 0.75, Q2F1 = 0.607 - 0.684; inter-endpoint models: r2 = 0.768 - 0.84, Q2F1 = 0.678 - 0.76). Again, these models were engaged in the prediction of these two responses for a true external set of β-lactam molecules without response values to prove the reproducibility of these models.
Collapse
Affiliation(s)
- A Nath
- Drug Discovery and Development Laboratory (DDD Lab), Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - P K Ojha
- Drug Discovery and Development Laboratory (DDD Lab), Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - K Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
33
|
Chalipa Z, Hosseinzadeh M, Nikoo MR. Performance evaluation of a new sponge-based moving bed biofilm reactor for the removal of pharmaceutical pollutants from real wastewater. Sci Rep 2024; 14:14240. [PMID: 38902342 PMCID: PMC11190270 DOI: 10.1038/s41598-024-64442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
Pharmaceutical pollutants, a group of emerging contaminants, have attracted outstanding attention in recent years, and their removal from aquatic environments has been addressed. In the current study, a new sponge-based moving bed biofilm reactor (MBBR) was developed to remove chemical oxygen demand (COD) and the pharmaceutical compound Ibuprofen (IBU). A 30-L pilot scale MBBR was constructed, which was continuously fed from the effluent of the first clarifier of the Southern Tehran wastewater treatment plant. The controlled operational parameters were pH in the natural range, Dissolved Oxygen of 1.5-2 mg/L, average suspended mixed liquor suspended solids (MLSS), and mixed liquor volatile suspended solids (MLVSS) of 1.68 ± 0.1 g/L and 1.48 ± 0.1 g/L, respectively. The effect of hydraulic retention time (HRT) (5 h, 10 h, 15 h), filling ratio (10%, 20%, 30%), and initial IBU concentration (2 mg/L, 5 mg/L, 10 mg/L) on removal efficiencies was assessed. The findings of this study revealed a COD removal efficiency ranging from 48.9 to 96.7%, with the best removal efficiency observed at an HRT of 10 h, a filling ratio of 20%, and an initial IBU concentration of 2 mg/L. Simultaneously, the IBU removal rate ranged from 25 to 92.7%, with the highest removal efficiency observed under the same HRT and filling ratio, albeit with an initial IBU concentration of 5 mg/L. An extension of HRT from 5 to 10 h significantly improved both COD and IBU removal. However, further extension from 10 to 15 h slightly enhanced the removal efficiency of COD and IBU, and even in some cases, removal efficiency decreased. Based on the obtained results, 20% of the filling ratio was chosen as the optimum state. Increasing the initial concentration of IBU from 2 to 5 mg/L generally improved COD and IBU removal, whereas an increase from 5 to 10 mg/L caused a decline in COD and IBU removal. This study also optimized the reactor's efficiency for COD and IBU removal by using response surface methodology (RSM) with independent variables of HRT, filling ratio, and initial IBU concentration. In this regard, the quadratic model was found to be significant. Utilizing the central composite design (CCD), the optimal operating parameters at an HRT of 10 h, a filling ratio of 21%, and an initial IBU concentration of 3 mg/L were pinpointed, achieving the highest COD and IBU removal efficiencies. The present study demonstrated that sponge-based MBBR stands out as a promising technology for COD and IBU removal.
Collapse
Affiliation(s)
- Zohreh Chalipa
- School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran, 1684613114, Iran
| | - Majid Hosseinzadeh
- School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran, 1684613114, Iran.
| | - Mohammad Reza Nikoo
- Department of Civil and Architectural Engineering, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
34
|
Ussery E, McMaster M, Palace V, Parrott J, Blandford NC, Frank R, Kidd K, Birceanu O, Wilson J, Alaee M, Cunningham J, Wynia A, Clark T, Campbell S, Timlick L, Michaleski S, Marshall S, Nielsen K. Effects of metformin on wild fathead minnows (Pimephales promelas) using in-lake mesocosms in a boreal lake ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172457. [PMID: 38649046 DOI: 10.1016/j.scitotenv.2024.172457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Due to its widespread use for the treatment of Type-2 diabetes, metformin is routinely detected in surface waters globally. Laboratory studies have shown that environmentally relevant concentrations of metformin can adversely affect the health of adult fish, with effects observed more frequently in males. However, the potential risk to wild fish populations has yet to be fully elucidated and remains a topic of debate. To explore whether environmentally relevant metformin exposure poses a risk to wild fish populations, the present study exposed wild fathead minnows (Pimephales promelas) to 5 or 50 μg/L metformin via 2 m diameter in-lake mesocosms deployed in a natural boreal lake in Northern Ontario at the International Institute for Sustainable Development - Experimental Lakes Area (IISD-ELA). Environmental monitoring was performed at regular intervals for 8-weeks, with fish length, weight (body, liver and gonad), condition factor, gonadosomatic index, liver-somatic index, body composition (water and biomolecules) and hematocrit levels evaluated at test termination. Metabolic endpoints were also evaluated using liver, brain and muscle tissue, and gonads were evaluated histologically. Results indicate that current environmental exposure scenarios may be sufficient to adversely impact the health of wild fish populations. Adult male fish exposed to metformin had significantly reduced whole body weight and condition factor and several male fish from the high-dose metformin had oocytes in their testes. Metformin-exposed fish had altered moisture and lipid (decrease) content in their tissues. Further, brain (increase) and liver (decrease) glycogen were altered in fish exposed to high-dose metformin. To our knowledge, this study constitutes the first effort to understand metformin's effects on a wild small-bodied fish population under environmentally relevant field exposure conditions.
Collapse
Affiliation(s)
- Erin Ussery
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Mark McMaster
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Vince Palace
- University of Manitoba, Winnipeg, Manitoba, Canada; International Institute for Sustainable Development-Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | - Joanne Parrott
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Nicholas C Blandford
- University of Manitoba, Winnipeg, Manitoba, Canada; International Institute for Sustainable Development-Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | - Richard Frank
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Karen Kidd
- McMaster University, Department of Biology, Hamilton, Ontario, Canada
| | - Oana Birceanu
- Western University, Department of Physiology and Pharmacology, London, Ontario, Canada
| | - Joanna Wilson
- McMaster University, Department of Biology, Hamilton, Ontario, Canada
| | - Mehran Alaee
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Jessie Cunningham
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Abby Wynia
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Thomas Clark
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Sheena Campbell
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Lauren Timlick
- International Institute for Sustainable Development-Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | - Sonya Michaleski
- International Institute for Sustainable Development-Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | - Stephanie Marshall
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Kristin Nielsen
- University of Texas at Austin, Department of Marine Science, Port Aransas, TX, USA
| |
Collapse
|
35
|
Ogunwole GA, Adeyemi JA, Saliu JK, Olorundare KE. A computational analysis of the molecular mechanisms underlying the effects of ibuprofen and dibutyl phthalate on gene expression in fish. Heliyon 2024; 10:e31880. [PMID: 38845962 PMCID: PMC11153241 DOI: 10.1016/j.heliyon.2024.e31880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
The impact of emerging pollutants such as ibuprofen and dibutyl phthalate on aquatic species is a growing concern and the need for proper assessment and evaluation of these toxicants is imperative. The objective of this study was to examine the toxicogenomic impacts of ibuprofen and dibutyl phthalate on Clarias gariepinus, a widely distributed African catfish species. Results showed that exposure to the test compounds caused significant changes in gene expression, including upregulation of growth hormone, interleukin, melatonin receptors, 17β-Hydroxysteroid Dehydrogenase, heat shock protein, doublesex, and mab-3 related transcription factor. On the other hand, expression of forkhead Box Protein L2 and cytochrome P450 was downregulated, revealing a potential to induce female to male sex reversal. The binding affinities and hydrophobic interactions of the test compounds with the reference genes were also studied, showing that ibuprofen had the lowest binding energy and the highest affinity for the docked genes. Both compounds revealed a mutual molecular interaction with amino acids residues within the catalytic cavity of the docked genes. These results provide new insights into the toxic effects of ibuprofen and dibutyl phthalate on Clarias gariepinus, contributing to a better understanding of the environmental impact of these pollutants.
Collapse
Affiliation(s)
- Germaine Akinola Ogunwole
- Department of Biology, School of Science, Federal University of Technology, Akure. P.M.B 704, Ondo, Nigeria
| | - Joseph Adewuyi Adeyemi
- Department of Biology, School of Science, Federal University of Technology, Akure. P.M.B 704, Ondo, Nigeria
| | - Joseph Kayode Saliu
- Department of Zoology, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria
| | - Kayode Emmanuel Olorundare
- Department of Biology, School of Science, Federal University of Technology, Akure. P.M.B 704, Ondo, Nigeria
| |
Collapse
|
36
|
Zhang LH, Li WL, Zhang ZF, Min XZ, Cai MG, Xiao H, Diao Q, Qiu Z, Li YF. Occurrence, seasonal variations, and fate of household and personal care chemicals in a wastewater treatment plant with Bacillus bioreactor process. CHEMOSPHERE 2024; 358:142179. [PMID: 38692364 DOI: 10.1016/j.chemosphere.2024.142179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/11/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Household and personal care chemicals (HPCCs) constitute a significant component of everyday products, with their global usage on the rise. HPCCs are eventually discharged into municipal wastewater treatment plants (WWTPs). However, the behaviors of HPCCs inside the Bacillus Bioreactor (BBR) process, including their prevalence, fate, and elimination mechanisms, remain underexplored. Addressing this gap, our study delves into samples collected from a BBR process at a significant WWTP in the northeast of China. Our results spotlight the dominance of linear alkylbenzene sulfonates (LASs) in the influent with concentrations ranging between 238 and 789 μg/L, much higher than the other HPCC concentrations, and remained dominant in the subsequent treatment units. After treatment using the BBR process, the concentrations of HPCCs in the effluent were diminished. Examination of different treatment units underscores the grit chamber removed over 60% of higher-concentration HPCCs, while the performance of the (RBC) tank needs to be improved. Except for the ultraviolet radiation (UV)-filters, seasonal variations exert minimal impact on the concentrations and removal efficiencies of other HPCCs in the BBR process. According to the mass balance analysis, the important mechanisms for HPCC removal were biodegradation and sludge adsorption. Also, the octocrylene (OCT) concerns raised by the environmental risk assessment of the HPCCs residuals in the final effluent, indicate a moderate risk to the surrounding aquatic environment (0.1 < RQ < 1), whereas other HPCCs have a lower risk level (RQ < 0.1). Overall, the research offers new perspectives on the fate and elimination mechanisms of HPCCs throughout the BBR process.
Collapse
Affiliation(s)
- Lin-Hui Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Wen-Long Li
- Wadsworth Center, New York State Department of Health, Albany, NY 12237, USA
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China.
| | - Xi-Ze Min
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Ming-Gang Cai
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China
| | - Hang Xiao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qing Diao
- Guizhou Wondfo Xianyi Testing Technology Co., Ltd., Guiyang 550000, China
| | - Zhen Qiu
- Guizhou Wondfo Xianyi Testing Technology Co., Ltd., Guiyang 550000, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China; IJRC-PTS-NA, Toronto, M2N 6X9, Canada
| |
Collapse
|
37
|
Richardson SD, Manasfi T. Water Analysis: Emerging Contaminants and Current Issues. Anal Chem 2024; 96:8184-8219. [PMID: 38700487 DOI: 10.1021/acs.analchem.4c01423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Affiliation(s)
- Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, JM Palms Center for GSR, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Tarek Manasfi
- Eawag, Environmental Chemistry, Uberlandstrasse 133, Dubendorf 8600, Switzerland
| |
Collapse
|
38
|
Hu R, Ren M, Liang S, Zou S, Li D. Effects of antibiotic resistance genes on health risks of rivers in habitat of wild animals under human disturbance - based on analysis of antibiotic resistance genes and virulence factors in microbes of river sediments. Ecol Evol 2024; 14:e11435. [PMID: 38799388 PMCID: PMC11126646 DOI: 10.1002/ece3.11435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/21/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Studying the ecological risk of antibiotic resistance genes (ARGs) to wild animals from human disturbance (HD) is an important aspect of "One Health". The highest risk level of ARGs is reflected in pathogenic antibiotic-resistant bacteria (PARBs). Metagenomics was used to analyze the characteristics of PARBs in river sediments. Then, the total contribution of ARGs and virulence factors (VFs) were assessed to determine the health risk of PARBs to the rivers. Results showed that HD increased the diversity and total relative abundance of ARG groups, as well as increased the kinds of PARBs, their total relative abundance, and their gene numbers of ARGs and VFs. The total health risks of PARBs in wild habitat group (CK group), agriculture group (WA group), grazing group (WG group), and domestic sewage group (WS group) were 0.067 × 10-3, -1.55 × 10-3, 87.93 × 10-3, and 153.53 × 10-3, respectively. Grazing and domestic sewage increased the health risk of PARBs. However, agriculture did not increase the total health risk of the rivers, but agriculture also introduced new pathogenic mechanisms and increased the range of drug resistance. More serious was the increased transfer risk of ARGs in the PARBs from the rivers to wild animals under agriculture and grazing. If the ARGs in the PARBs are transferred from the rivers under HD to wild animals, then wild animals may face severe challenges of acquiring new pathogenic mechanisms and developing resistance to antibiotics. Further analysis showed that the total phosphorus (TP) and dissolved organic nitrogen (DON) were related to the risk of ARGs. Therefore, controlling human emissions of TP and DON could reduce the health risk of rivers.
Collapse
Affiliation(s)
- Rongpan Hu
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of EducationChina West Normal UniversityNanchongChina
| | - Minxing Ren
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of EducationChina West Normal UniversityNanchongChina
| | - Sumei Liang
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of EducationChina West Normal UniversityNanchongChina
| | - Shuzhen Zou
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of EducationChina West Normal UniversityNanchongChina
- Key Laboratory of Conservation Biology of Rhinopithecus Roxellana at China West Normal University of Sichuan ProvinceChina West Normal UniversityNanchongChina
| | - Dayong Li
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of EducationChina West Normal UniversityNanchongChina
- Key Laboratory of Conservation Biology of Rhinopithecus Roxellana at China West Normal University of Sichuan ProvinceChina West Normal UniversityNanchongChina
- Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan ProvinceScience and Technology Department of Sichuan ProvinceChengduChina
| |
Collapse
|
39
|
Cheng R, Huang P, Ding TT, Gu ZW, Tao MT, Liu SS. Time-dependent hormesis transfer from five high-frequency personal care product components to mixtures. ENVIRONMENTAL RESEARCH 2024; 248:118418. [PMID: 38316386 DOI: 10.1016/j.envres.2024.118418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
There is potential for personal care products (PCPs) components and mixtures to induce hormesis. How hormesis is related to time and transmitted from components to mixtures are not clear. In this paper, we conducted determination of components in 16 PCP products and then ran frequent itemset mining on the component data. Five high-frequency components (HFCs), betaine (BET), 1,3-butanediol (BUT), ethylenediaminetetraacetic acid disodium salt (EDTA), glycerol (GLO), and phenoxyethanol (POE), and 14 mixtures were identified. For each mixture system, one mixture ray with the actual mixture ratios in the products was selected. Time-dependent microplate toxicity analysis was used to test the luminescence inhibition toxicity of five HFCs and 14 mixture rays to Vibrio qinghaiensis sp.-Q67 at 12 concentration gradients and eight exposure times. It is showed that BET, EDTA, POE, and 13 mixture rays containing at least one J-type component showed time-dependent hormesis. Characteristic parameters used to describe hormesis revealed that the absolute value of the maximum stimulatory effect (|Emin|) generally increased with time. Notably, mixtures composed of POE and S-type components showed greater |Emin| than POE alone at the same time. Importantly, the maximum stimulatory effective concentration, NOEC/the zero effective concentration point, and EC50 remained relatively stable. Nine hormesis transmission phenomena were observed in different mixture rays. While all mixtures primarily exhibited additive action, varying degrees of synergism and antagonism were noted in binary mixtures, with no strong synergism or antagonism observed in ternary and quaternary mixtures. These findings offer valuable insights for the screening of HFCs and their mixtures, as well as the study of hormesis transmission in personal care products.
Collapse
Affiliation(s)
- Rujun Cheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Peng Huang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ting-Ting Ding
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhong-Wei Gu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Meng-Ting Tao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
40
|
Håkonsen H, Hedenrud T. Would Pharmacy Students Advocate Green Pharmacy Given Their Preference for Medicines With Environmental Impact? AMERICAN JOURNAL OF PHARMACEUTICAL EDUCATION 2024; 88:100694. [PMID: 38574996 DOI: 10.1016/j.ajpe.2024.100694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/07/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVE To investigate the preferences among university students in Gothenburg, Sweden for medicines that have a different environmental impact with respect to effect and explore to what extent having received information about pharmaceuticals' potential harm to the environment is associated with the stated preferences. METHODS A survey was conducted among students in different study programs at the University of Gothenburg, Sweden. In all, 704 students received oral and written information about the study at the end of a lecture and were invited to take part (response rate: 83.5%). The questionnaire contained items about medicinal environmental information and 2 scenarios with fictious medicines as options for the treatment or symptom relief of minor ailments in humans. RESULTS Overall, 53.3% of the students (pharmacy students: 57.8%) had received information about the environmental impact of medicines, and 79.6% (pharmacy students: 80.6%) reported that they had concerns about the consequences. Twenty percent (pharmacy students: 9.0%) named the university as an information source. The students were most satisfied overall with the least effective and most environmentally friendly medicines. Consistently, pharmacy students gave higher scores to the most environmentally harmful medicines, especially compared with medical and health care students. Pharmacy students, who, to the same extent as medical and health care students had received information about medicines' environmental impact, were less likely to state environmentally friendly options with an inferior effect as their preferred choice. CONCLUSION Pharmacy students generally rated the medicines higher than other student groups, despite being aware of the harmful effects on the environment.
Collapse
Affiliation(s)
- Helle Håkonsen
- University of Gothenburg, Institute of Medicine, School of Public Health and Community Medicine, Gothenburg, Sweden.
| | - Tove Hedenrud
- University of Gothenburg, Institute of Medicine, School of Public Health and Community Medicine, Gothenburg, Sweden
| |
Collapse
|
41
|
Castaño-Ortiz JM, Gago-Ferrero P, Barceló D, Rodríguez-Mozaz S, Gil-Solsona R. HRMS-based suspect screening of pharmaceuticals and their transformation products in multiple environmental compartments: An alternative to target analysis? JOURNAL OF HAZARDOUS MATERIALS 2024; 465:132974. [PMID: 38218030 DOI: 10.1016/j.jhazmat.2023.132974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 01/15/2024]
Abstract
The comprehensive monitoring of pharmaceutically active compounds (PhACs) in the environment is challenging given the myriad of substances continuously discharged, the increasing number of new compounds being produced (and released), or the variety of the associated human metabolites and transformation products (TPs). Approaches such as high-resolution mass spectrometry (HRMS)-based suspect analysis have emerged to overcome the drawbacks of classical target analytical methods, e.g., restricted chemical coverage. In this study, we assess the readiness of HRMS-based suspect screening to replace or rather complement target methodologies by comparing the performance of both approaches in terms of i) detection of PhACs in various environmental samples (water, sediments, biofilm, fish plasma, muscle and liver) in a field study; ii) PhACs (semi)quantification and iii) prediction of their environmental risks. Our findings revealed that target strategies alone significantly underestimate the variety of PhACs potentially impacting the environment. However, relying solely on suspect strategies can misjudge the presence and risk of low-level but potentially risky PhACs. Additionally, semiquantitative approaches, despite slightly overestimating concentrations, can provide a realistic overview of PhACs concentrations. Hence, it is recommended to adopt a combined strategy that first evaluates suspected threats and subsequently includes the relevant ones in the established target methodologies.
Collapse
Affiliation(s)
- Jose M Castaño-Ortiz
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain
| | - Pablo Gago-Ferrero
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC) Severo Ochoa Excellence Centre, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain; Institute of Environmental Assessment and Water Research (IDAEA-CSIC) Severo Ochoa Excellence Centre, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain.
| | - Ruben Gil-Solsona
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain; Institute of Environmental Assessment and Water Research (IDAEA-CSIC) Severo Ochoa Excellence Centre, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
42
|
Stanton IC, Tipper HJ, Chau K, Klümper U, Subirats J, Murray AK. Does Environmental Exposure to Pharmaceutical and Personal Care Product Residues Result in the Selection of Antimicrobial-Resistant Microorganisms, and is this Important in Terms of Human Health Outcomes? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:623-636. [PMID: 36416260 DOI: 10.1002/etc.5498] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/14/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The environment plays a critical role in the development, dissemination, and transmission of antimicrobial resistance (AMR). Pharmaceuticals and personal care products (PPCPs) enter the environment through direct application to the environment and through anthropogenic pollution. Although there is a growing body of evidence defining minimal selective concentrations (MSCs) of antibiotics and the role antibiotics play in horizontal gene transfer (HGT), there is limited evidence on the role of non-antibiotic PPCPs. Existing data show associations with the development of resistance or effects on bacterial growth rather than calculating selective endpoints. Research has focused on laboratory-based systems rather than in situ experiments, although PPCP concentrations found throughout wastewater, natural water, and soil environments are often within the range of laboratory-derived MSCs and at concentrations shown to promote HGT. Increased selection and HGT of AMR by PPCPs will result in an increase in total AMR abundance in the environment, increasing the risk of exposure and potential transmission of environmental AMR to humans. There is some evidence to suggest that humans can acquire resistance from environmental settings, with water environments being the most frequently studied. However, because this is currently limited, we recommend that more evidence be gathered to understand the risk the environment plays in regard to human health. In addition, we recommend that future research efforts focus on MSC-based experiments for non-antibiotic PPCPS, particularly in situ, and investigate the effect of PPCP mixtures on AMR. Environ Toxicol Chem 2024;43:623-636. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | - Kevin Chau
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Uli Klümper
- Institute of Hydrobiology, Technische Universitӓt Dresden, Dresden, Germany
| | - Jessica Subirats
- Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research (IDAEA-CSIC), Barcelona, Spain
| | - Aimee K Murray
- College of Medicine and Health, University of Exeter, Cornwall, UK
| |
Collapse
|
43
|
Boxall ABA, Brooks BW. Pharmaceuticals and Personal Care Products in the Environment: What Progress Has Been Made in Addressing the Big Research Questions? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:481-487. [PMID: 38329166 DOI: 10.1002/etc.5827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Affiliation(s)
- Alistair B A Boxall
- Department of Environment and Geography, University of York, York, United Kingdom
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
| |
Collapse
|
44
|
Wilkinson JL, Thornhill I, Oldenkamp R, Gachanja A, Busquets R. Pharmaceuticals and Personal Care Products in the Aquatic Environment: How Can Regions at Risk be Identified in the Future? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:575-588. [PMID: 37818878 DOI: 10.1002/etc.5763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/11/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are an indispensable component of a healthy society. However, they are well-established environmental contaminants, and many can elicit biological disruption in exposed organisms. It is now a decade since the landmark review covering the top 20 questions on PPCPs in the environment (Boxall et al., 2012). In the present study we discuss key research priorities for the next 10 years with a focus on how regions where PPCPs pose the greatest risk to environmental and human health, either now or in the future, can be identified. Specifically, we discuss why this problem is of importance and review our current understanding of PPCPs in the aquatic environment. Foci include PPCP occurrence and what drives their environmental emission as well as our ability to both quantify and model their distribution. We highlight critical areas for future research including the involvement of citizen science for environmental monitoring and using modeling techniques to bridge the gap between research capacity and needs. Because prioritization of regions in need of environmental monitoring is needed to assess future/current risks, we also propose four criteria with which this may be achieved. By applying these criteria to available monitoring data, we narrow the focus on where monitoring efforts for PPCPs are most urgent. Specifically, we highlight 19 cities across Africa, Central America, the Caribbean, and Asia as priorities for future environmental monitoring and risk characterization and define four priority research questions for the next 10 years. Environ Toxicol Chem 2024;43:575-588. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- John L Wilkinson
- Environment and Geography Department, University of York, York, UK
| | - Ian Thornhill
- School of Environment, Education and Development, The University of Manchester, Manchester, UK
| | - Rik Oldenkamp
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Global Health and Development, University of Amsterdam, Amsterdam, The Netherlands
| | - Anthony Gachanja
- Department of Food Science and Post-Harvest Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Rosa Busquets
- Department of Chemical and Pharmaceutical Sciences, Kingston University London, Kingston-upon-Thames, UK
| |
Collapse
|
45
|
Mo J, Guo J, Iwata H, Diamond J, Qu C, Xiong J, Han J. What Approaches Should be Used to Prioritize Pharmaceuticals and Personal Care Products for Research on Environmental and Human Health Exposure and Effects? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:488-501. [PMID: 36377688 DOI: 10.1002/etc.5520] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are released from multiple anthropogenic sources and thus have a ubiquitous presence in the environment. The environmental exposure and potential effects of PPCPs on biota and humans has aroused concern within the scientific community and the public. Risk assessments are commonly conducted to evaluate the likelihood of chemicals including PPCPs that pose health threats to organisms inhabiting various environmental compartments and humans. Because thousands of PPCPs are currently used, it is impractical to assess the environmental risk of all of them due to data limitations; in addition, new PPCPs are continually being produced. Prioritization approaches, based either on exposure, hazard, or risk, provide a possible means by which those PPCPs that are likely to pose the greatest risk to the environment are identified, thereby enabling more effective allocation of resources in environmental monitoring programs in specific geographical locations and ecotoxicological investigations. In the present review, the importance and current knowledge concerning PPCP occurrence and risk are discussed and priorities for future research are proposed, in terms of PPCP exposure (e.g., optimization of exposure modeling in freshwater ecosystems and more monitoring of PPCPs in the marine environment) or hazard (e.g., differential risk of PPCPs to lower vs. higher trophic level species and risks to human health). Recommended research questions for the next 10 years are also provided, which can be answered by future studies on prioritization of PPCPs. Environ Toxicol Chem 2024;43:488-501. © 2022 SETAC.
Collapse
Affiliation(s)
- Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | | | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Jiuqiang Xiong
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Jie Han
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
46
|
Carter LJ, Armitage JM, Brooks BW, Nichols JW, Trapp S. Predicting the Accumulation of Ionizable Pharmaceuticals and Personal Care Products in Aquatic and Terrestrial Organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:502-512. [PMID: 35920339 DOI: 10.1002/etc.5451] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The extent to which chemicals bioaccumulate in aquatic and terrestrial organisms represents a fundamental consideration for chemicals management efforts intended to protect public health and the environment from pollution and waste. Many chemicals, including most pharmaceuticals and personal care products (PPCPs), are ionizable across environmentally relevant pH gradients, which can affect their fate in aquatic and terrestrial systems. Existing mathematical models describe the accumulation of neutral organic chemicals and weak acids and bases in both fish and plants. Further model development is hampered, however, by a lack of mechanistic insights for PPCPs that are predominantly or permanently ionized. Targeted experiments across environmentally realistic conditions are needed to address the following questions: (1) What are the partitioning and sorption behaviors of strongly ionizing chemicals among species? (2) How does membrane permeability of ions influence bioaccumulation of PPCPs? (3) To what extent are salts and associated complexes with PPCPs influencing bioaccumulation? (4) How do biotransformation and other elimination processes vary within and among species? (5) Are bioaccumulation modeling efforts currently focused on chemicals and species with key data gaps and risk profiles? Answering these questions promises to address key sources of uncertainty for bioaccumulation modeling of ionizable PPCPs and related contaminants. Environ Toxicol Chem 2024;43:502-512. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Laura J Carter
- School of Geography, Faculty of Environment, University of Leeds, Leeds, United Kingdom and Northern Ireland
| | | | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - John W Nichols
- Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Office of Research and Development, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Stefan Trapp
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
47
|
Bean TG, Chadwick EA, Herrero-Villar M, Mateo R, Naidoo V, Rattner BA. Do Pharmaceuticals in the Environment Pose a Risk to Wildlife? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:595-610. [PMID: 36398854 DOI: 10.1002/etc.5528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/29/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The vast majority of knowledge related to the question "To what extent do pharmaceuticals in the environment pose a risk to wildlife?" stems from the Asian vulture crisis (>99% decline of some species of Old World vultures on the Indian subcontinent related to the veterinary use of the nonsteroidal anti-inflammatory drug [NSAID] diclofenac). The hazard of diclofenac and other NSAIDs (carprofen, flunixin, ketoprofen, nimesulide, phenylbutazone) to vultures and other avian species has since been demonstrated; indeed, only meloxicam and tolfenamic acid have been found to be vulture-safe. Since diclofenac was approved for veterinary use in Spain and Italy in 2013 (home to ~95% of vultures in Europe), the risk of NSAIDs to vultures in these countries has become one of the principal concerns related to pharmaceuticals and wildlife. Many of the other bodies of work on pharmaceutical exposure, hazard and risk to wildlife also relate to adverse effects in birds (e.g., poisoning of scavenging birds in North America and Europe from animal carcasses containing pentobarbital, secondary and even tertiary poisoning of birds exposed to pesticides used in veterinary medicine as cattle dips, migratory birds as a vector for the transfer of antimicrobial and antifungal resistance). Although there is some research related to endocrine disruption in reptiles and potential exposure of aerial insectivores, there remain numerous knowledge gaps for risk posed by pharmaceuticals to amphibians, reptiles, and mammals. Developing noninvasive sampling techniques and new approach methodologies (e.g., genomic, in vitro, in silico, in ovo) is important if we are to bridge the current knowledge gaps without extensive vertebrate testing. Environ Toxicol Chem 2024;43:595-610. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
| | | | - Marta Herrero-Villar
- Instituto de Investigación en Recursos Cinegéticos, Ciudad Real, Castilla-La-Mancha, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos, Ciudad Real, Castilla-La-Mancha, Spain
| | - Vinny Naidoo
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Barnett A Rattner
- Eastern Ecological Science Center at the Patuxent Research Refuge, US Geological Survey, Laurel, Maryland, USA
| |
Collapse
|
48
|
Gaidhani PM, Chakraborty S, Ramesh K, Velayudhaperumal Chellam P, van Hullebusch ED. Molecular interactions of paraben family of pollutants with embryonic neuronal proteins of Danio rerio: A step ahead in computational toxicity towards adverse outcome pathway. CHEMOSPHERE 2024; 351:141155. [PMID: 38211790 DOI: 10.1016/j.chemosphere.2024.141155] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/28/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
The paraben family of endocrine disruptors exhibit persistent behaviours in aquatic matrices, having bio-accumulative effects and necessitating toxicity analysis and safe use, as well as prevention of food web penetration. In this study, the toxicity effects of 9 different parabens (Methyl, Ethyl, Propyl, Butyl, Heptyl, Isopropyl, Isobutyl, benzyl parabens and p-hydroxybenzoic acid) were studied against 17 neuronal proteins (Neurog1, Ascl1a, DLA, Syn2a, Ntn1a, Pitx2, and SoxB1, Her/Hes, Zic family) expressed during the early embryonic developmental stage of Danio rerio. The neuronal genes were selected as a biomarker to study the inhibitory effects on the cascade of genes expressed in the early developmental stage. The study uses trRossetta software to predict protein structures of neuronal genes, followed by structural refinement, energy minimisation, and active site prediction, evaluated using energy value, RC plot and ERRAT scores of PROCHECK and ERRAT programs. Compared to raw structures, highly confident predicted structures and quality scores were observed for refined protein with few exceptions. Based on the polarity and charge of the aminoacids, the probable pockets were identified using active site prediction, which were then used for molecular docking analysis. Further, the ADMET analysis, ligand likeliness and toxicological test revealed the paraben family of compounds as one of the most susceptible toxic and mutagenic compounds. The molecular docking results showed an interesting pattern of increasing binding affinity with increase in the carbon chains of paraben molecules. Benzyl Paraben showed higher binding affinities across all 17 neuronal proteins. Finally, gene co-occurrence/co-expression and protein-protein interaction studies using the STRING database depict that all proteins are functionally related and play essential roles in standard biological processes or pathways, conserved and expressed in diverse organisms. The interaction between paraben compounds and neuronal genes indicates high risks of inhibiting reactions in embryonic stages, emphasising the need for effective treatment measures and strict regulations.
Collapse
Affiliation(s)
- Prerna Mahesh Gaidhani
- Water Research Group, Department of Bioengineering, National Institute of Technology Agartala, India
| | - Swastik Chakraborty
- Water Research Group, Department of Bioengineering, National Institute of Technology Agartala, India
| | - Kheerthana Ramesh
- Water Research Group, Department of Bioengineering, National Institute of Technology Agartala, India
| | | | | |
Collapse
|
49
|
Sumpter JP, Johnson AC, Runnalls TJ. Pharmaceuticals in the Aquatic Environment: No Answers Yet to the Major Questions. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:589-594. [PMID: 35770719 DOI: 10.1002/etc.5421] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The presence of pharmaceuticals in the environment, especially the aquatic environment, has received a lot of attention in the last 20 plus years. Despite that attention, the two most important questions regarding pharmaceuticals in the environment still cannot be answered. It is not possible to put the threat posed by pharmaceuticals into perspective with the many other threats (stressors) facing aquatic organisms, such as low flows due to over-abstraction of water, inhibited passage of migratory species due to dams and weirs, diseases, algal blooms causing low oxygen levels and releasing toxins, eutrophication, climate change, and so on. Nor is it possible to identify which pharmaceuticals are of concern and which are not. Not only can these key questions not be answered presently, they have received extremely little attention, despite being identified 10 years ago as the two most important questions to answer. That situation must change if resources and expertise are to be effectively used to protect the environment. Environ Toxicol Chem 2024;43:589-594. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- John P Sumpter
- Institute of Environment, Health and Societies, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom
| | - Andrew C Johnson
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, United Kingdom
| | - Tamsin J Runnalls
- Institute of Environment, Health and Societies, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom
| |
Collapse
|
50
|
Oldenkamp R, Hamers T, Wilkinson J, Slootweg J, Posthuma L. Regulatory Risk Assessment of Pharmaceuticals in the Environment: Current Practice and Future Priorities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:611-622. [PMID: 36484757 DOI: 10.1002/etc.5535] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
How can data on the occurrence of pharmaceuticals and personal care products (PPCPs) in the environment and the quality of ecosystems exposed to PPCPs be used to determine whether current regulatory risk assessment schemes are effective? This is one of 20 "big questions" concerning PPCPs in the environment posed in a landmark review paper in 2012. Ten years later, we review the developments around this question, focusing on the first P in PPCPs, that is, pharmaceuticals, or more specifically the active ingredients included in them (active pharmaceutical ingredients, APIs). We illustrate how extensive data on both the occurrence of APIs and the ecotoxicological sensitivity of aquatic species to them can be used in a retrospective risk assessment. In the Netherlands, current regulatory risk assessment schemes offer insufficient protection against direct ecotoxicological effects from APIs: the toxic pressure exerted by the 39 APIs included in our study exceeds the policy-related protective threshold of 0.05 (the "95%-protection level") in at least 13% of sampled surface waters. In general, anti-inflammatory and antirheumatic products (e.g., diclofenac, ibuprofen) contributed most to the overall toxic pressure, followed by sex hormones and modulators of the genital system (e.g., ethinylestradiol) and psychoanaleptics (e.g., caffeine). We formulated three open questions for future research. The first relates to improving the availability and accessibility of good-quality ecotoxicity data on pharmaceuticals for the global scientific, regulatory, and general public. The second relates to the adaptation of regulatory risk assessment frameworks for developing regions of the world. The third relates to the integration of effect-based and ecological approaches into regulatory risk assessment practice. Environ Toxicol Chem 2024;43:611-622. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Rik Oldenkamp
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Global Health and Development, University of Amsterdam, Amsterdam, The Netherlands
| | - Timo Hamers
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - John Wilkinson
- Environment and Geography Department, University of York, York, UK
| | - Jaap Slootweg
- RIVM, Centre for Sustainability, Environment and Health, Bilthoven, The Netherlands
| | - Leo Posthuma
- RIVM, Centre for Sustainability, Environment and Health, Bilthoven, The Netherlands
- Department of Environmental Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|