1
|
Chen Z, Wei W, Hu Y, Niu Q, Yan Y. Associations between co-exposure to per- and polyfluoroalkyl substances and metabolic diseases: The mediating roles of inflammation and oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176187. [PMID: 39265689 DOI: 10.1016/j.scitotenv.2024.176187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/17/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) pose potential risks to human health. In real-world settings, humans are exposed to various PFAS through numerous pathways. OBJECTIVES This study evaluated the associations between co-exposure to PFAS and obesity and its comorbidities, along with the mediating roles of inflammation and oxidative stress. METHODS We analyzed 11,090 participants from National Health and Nutrition Examination Survey (NHANES), 2003-2018. Linear regression, logistic regression, and generalized additive models were used to assess the individual effects of PFAS exposure on obesity and its comorbidities. The environmental risk score (ERS) was calculated using the adaptive elastic-net model to assess the co-exposure effects. Linear and logistic regression models explored the associations between ERS and obesity and its comorbidities. Mediation analyses explored the roles of inflammatory (neutrophils, lymphocytes, and alkaline phosphatase) and oxidative stress (gamma-glutamyl transferase, total bilirubin, and uric acid) markers in the associations between ERS and obesity and its comorbidities. RESULTS For each unit increase in ERS, the odds of obesity and type 2 diabetes mellitus (T2DM) increased 3.60-fold (95 % CI: 2.03, 6.38) and 1.91-fold (95 % CI: 1.28, 2.86), respectively. For each unit increase in ERS, BMI increased by 2.36 (95 % CI: 1.24, 3.48) kg/m2, waist circumference increased by 6.47 (95 % CI: 3.56, 9.37) cm, and waist-to-height ratio increased by 0.04 (95 % CI: 0.02, 0.06). Lymphocytes, alkaline phosphatase, and total bilirubin were significantly associated with both ERS and obesity, with mediation proportions of 4.17 %, 3.62 %, and 7.37 %, respectively. Lymphocytes, alkaline phosphatase, total bilirubin, and uric acid were significantly associated with both ERS and T2DM, with the mediation proportions of 8.90 %, 8.74 %, 29.73 %, and 38.19 %, respectively. CONCLUSIONS Co-exposure to PFAS was associated with obesity and T2DM, and these associations may be mediated by inflammation and oxidative stress. Further mechanistic and prospective studies are required to verify these associations.
Collapse
Affiliation(s)
- Zuhai Chen
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Wanting Wei
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yunhua Hu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yizhong Yan
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China.
| |
Collapse
|
2
|
Zhang H, Zhang C, Wang Q, Fu W, Xing W, Jin P, Wu H, Bu Y, Xu D, Xu D. PFOS sub-chronic exposure selectively activates Aβ clearance pathway to improve the cognitive ability of AD mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024:125031. [PMID: 39454812 DOI: 10.1016/j.envpol.2024.125031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024]
Abstract
Perfluorooctane sulfonate (PFOS), an emerging persistent organic pollutant, has been controversial in its impact on cognitive functions. Our previous research has confirmed that the sub-chronic PFOS exposure leads to neuronal apoptosis in the cerebral cortex, impairing cognitive functions in normal mice. However, our current study presents a surprising finding: sub-chronic exposure to PFOS effectively reduces cognitive impairments in Alzheimer's disease (AD) mice and significantly retards the disease's progression. Our results indicate that PFOS exposure upregulates the expression level of insulin-degrading enzyme (IDE) in the prefrontal cortex (PFC) of AD mice, thereby selectively enhancing the amyloid-beta (Aβ) clearance pathway without affecting the Aβ production. Moreover, PFOS exposure inhibits microglial proliferation and reduces inflammatory cytokines levels in the PFC of AD mice, providing further supporting for the pivotal role of IDE in attenuating AD progression under PFOS exposure. Collectively, our study is the first to demonstrate that sub-chronic PFOS exposure can alleviates cognitive impairments in AD pathology, with the IDE-mediated Aβ clearance pathway potentially playing a critical role.
Collapse
Affiliation(s)
- Haijing Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Chao Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, 100039, China
| | - Qin Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Wenliang Fu
- Beijing Institute of Basic Medical Sciences, Beijing, 100039, China
| | - Weiwei Xing
- Beijing Institute of Basic Medical Sciences, Beijing, 100039, China
| | - Peng Jin
- Beijing Institute of Basic Medical Sciences, Beijing, 100039, China
| | - Haowei Wu
- Beijing Institute of Basic Medical Sciences, Beijing, 100039, China
| | - Yuanjing Bu
- Beijing Institute of Basic Medical Sciences, Beijing, 100039, China
| | - Dongqun Xu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Donggang Xu
- Beijing Institute of Basic Medical Sciences, Beijing, 100039, China.
| |
Collapse
|
3
|
Ramasamy Chandrasekaran P, Chinnadurai J, Lim YC, Chen CW, Tsai PC, Huang PC, Gavahian M, Andaluri G, Dong CD, Lin YC, Ponnusamy VK. Advances in perfluoro-alkylated compounds (PFAS) detection in seafood and marine environments: A comprehensive review on analytical techniques and global regulations. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:424. [PMID: 39316302 DOI: 10.1007/s10653-024-02194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/25/2024] [Indexed: 09/25/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are persistent organic pollutants that severely threaten the environment and human health due to their distinct chemical composition, extensive production, widespread distribution, bioaccumulation in nature, and long-term persistence. This review focuses on the occurrence and sources of PFAS in seafood, with a particular emphasis on advanced detection methods viz. nanoparticle-based, biosensor-based, and metal-organic frameworks-based, and mass spectrometric techniques. The challenges associated with these advanced detection technologies are also discussed. Recent research and regulatory updates about PFAS, including hazardous and potential health effects, epidemiological studies, and various risk assessment models, have been reviewed. In addition, the need for global monitoring programs and regulations on PFAS are critically reviewed by underscoring their crucial role in protecting human health and the environment. Further, approaches for reducing PFAS in seafood are highlighted with future innovative remediation directions. Although advanced PFAS analytical methods are available, selectivity, sample preparation, and sensitivity are still significant challenges associated with detection of PFAS in seafood matrices. Moreover, crucial research gaps and solutions to essential concerns are critically explored in this review.
Collapse
Affiliation(s)
- Prasath Ramasamy Chandrasekaran
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan
| | - Jeganathan Chinnadurai
- PhD Program in Life Science, College of Life Science, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes (NHRI), Miaoli, 350, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
- Department of Medical Research, China Medical University Hospital (CMUH), China Medical University (CMU), Taichung City, Taiwan
| | - Mohsen Gavahian
- Department of Food Science, Agriculture College, National Pingtung University of Science and Technology (NPUST), Pingtung, 91201, Taiwan
| | - Gangadhar Andaluri
- Civil and Environmental Engineering Department, College of Engineering, Temple University, Philadelphia, USA
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan.
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, 811, Taiwan.
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University (NSYSU), Kaohsiung, Taiwan.
- Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung City, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan.
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan.
- Department of Food Science, Agriculture College, National Pingtung University of Science and Technology (NPUST), Pingtung, 91201, Taiwan.
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, 811, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, 807, Taiwan.
| |
Collapse
|
4
|
Verley JC, McLennon E, Rein KS, Dikgang J, Kankarla V. Current trends and patterns of PFAS in agroecosystems and environment: A review. JOURNAL OF ENVIRONMENTAL QUALITY 2024. [PMID: 39256956 DOI: 10.1002/jeq2.20607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 06/13/2024] [Indexed: 09/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are one of the more well-known highly persistent organic pollutants with potential risks to agroecological systems. These compounds are of global concern due to their persistence and mobility, and they often lead to serious impacts on environmental, agricultural, and human health. In the past 20 years, the number of science publications on PFAS has risen; despite this, certain fundamental questions about PFAS occurrence, sources, mechanism of transport, and impacts on agroecosystems and the societies dependent on them are still open and evolving. There is a lack of systematic and comprehensive analysis of these concerns in agroecosystems. Therefore, we reviewed the current literature on PFAS with a focus on agroecosystems; our review suggests that PFASs are nearly ubiquitous in agricultural systems. We found the current research has limitations in analyzing PFAS in complex matrices because of their small size, distribution, and persistence within various environmental systems. There is consistency in the properties and composition of PFAS in and around agroecosystems, suggesting evidence of shared sources and similar components within different tropic levels. The introduction of new and varied sources of PFAS appear to be growing, adding to their residual accumulation in environmental matrices and leading to possible new types of chemical compounds that are difficult to assess accurately. This review determines existing research trends, understands mechanisms and incidence of PFAS within agroecosystems and their impact on human health, and thereby recommends further studies to remedy research gaps.
Collapse
Affiliation(s)
- Jackson C Verley
- Department of Marine and Earth Science, The Water School, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Everald McLennon
- Crop and Soil Science Department, Klamath Basin Research and Extension Center, Oregon State University, Klamath Falls, Oregon, USA
| | - Kathleen S Rein
- Department of Marine and Earth Science, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Johane Dikgang
- Department of Economics and Finance, The Water School, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Vanaja Kankarla
- Department of Marine and Earth Science, The Water School, Florida Gulf Coast University, Fort Myers, Florida, USA
| |
Collapse
|
5
|
Alijagic A, Sinisalu L, Duberg D, Kotlyar O, Scherbak N, Engwall M, Orešič M, Hyötyläinen T. Metabolic and phenotypic changes induced by PFAS exposure in two human hepatocyte cell models. ENVIRONMENT INTERNATIONAL 2024; 190:108820. [PMID: 38906088 DOI: 10.1016/j.envint.2024.108820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
PFAS are ubiquitous industrial chemicals with known adverse health effects, particularly on the liver. The liver, being a vital metabolic organ, is susceptible to PFAS-induced metabolic dysregulation, leading to conditions such as hepatotoxicity and metabolic disturbances. In this study, we investigated the phenotypic and metabolic responses of PFAS exposure using two hepatocyte models, HepG2 (male cell line) and HepaRG (female cell line), aiming to define phenotypic alterations, and metabolic disturbances at the metabolite and pathway levels. The PFAS mixture composition was selected based on epidemiological data, covering a broad concentration spectrum observed in diverse human populations. Phenotypic profiling by Cell Painting assay disclosed predominant effects of PFAS exposure on mitochondrial structure and function in both cell models as well as effects on F-actin, Golgi apparatus, and plasma membrane-associated measures. We employed comprehensive metabolic characterization using liquid chromatography combined with high-resolution mass spectrometry (LC-HRMS). We observed dose-dependent changes in the metabolic profiles, particularly in lipid, steroid, amino acid and sugar and carbohydrate metabolism in both cells as well as in cell media, with HepaRG cell line showing a stronger metabolic response. In cells, most of the bile acids, acylcarnitines and free fatty acids showed downregulation, while medium-chain fatty acids and carnosine were upregulated, while the cell media showed different response especially in relation to the bile acids in HepaRG cell media. Importantly, we observed also nonmonotonic response for several phenotypic features and metabolites. On the pathway level, PFAS exposure was also associated with pathways indicating oxidative stress and inflammatory responses. Taken together, our findings on PFAS-induced phenotypic and metabolic disruptions in hepatocytes shed light on potential mechanisms contributing to the broader comprehension of PFAS-related health risks.
Collapse
Affiliation(s)
- Andi Alijagic
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro SE-701 82, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Lisanna Sinisalu
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Daniel Duberg
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Oleksandr Kotlyar
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden; Centre for Applied Autonomous Sensor Systems (AASS), Mobile Robotics and Olfaction Lab (MRO), Örebro University, SE-701 82 Örebro, Sweden
| | - Nikolai Scherbak
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Matej Orešič
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland; Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Tuulia Hyötyläinen
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden.
| |
Collapse
|
6
|
Zheng X, Pan Y, Qu Y, Ji S, Wang J, Li Z, Zhao F, Wu B, Xie L, Li Y, Song H, Hu X, Qiu Y, Zhang Z, Zhang W, Yang Y, Cai J, Zhu Y, Zhu Y, Cao Z, Ji JS, Lv Y, Dai J, Shi X. Associations of Serum Per- and Polyfluoroalkyl Substances with Hyperuricemia in Adults: A Nationwide Cross-Sectional Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12875-12887. [PMID: 38980177 DOI: 10.1021/acs.est.3c11095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
There has been widespread concern about the health hazards of per- and polyfluoroalkyl substances (PFAS), which may be the risk factor for hyperuricemia with evidence still insufficient in the general population in China. Here, we conducted a nationwide study involving 9,580 adults aged 18 years or older from 2017 to 2018, measured serum concentrations of uric acid and PFAS (PFOA, PFOS, 6:2 Cl-PFESA, PFNA, PFHxS) in participants, to assess the associations of individual PFAS with hyperuricemia, and estimated a joint effect of PFAS mixtures. We found positive associations of higher serum PFAS with elevated odds of hyperuricemia in Chinese adults, with the greatest contribution from PFOA (69.37%). The nonmonotonic dose-response (NMDR) relationships were observed for 6:2 Cl-PFESA and PFHxS with hyperuricemia. Participants with less marine fish consumption, overweight, and obesity may be the sensitive groups to the effects of PFAS on hyperuricemia. We highlight the potential health hazards of legacy long-chain PFAS (PFOA) once again because of the higher weights of joint effects. This study also provides more evidence about the NMDR relationships in PFAS with hyperuricemia and emphasizes a theoretical basis for public health planning to reduce the health hazards of PFAS in sensitive groups.
Collapse
Affiliation(s)
- Xulin Zheng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingli Qu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Saisai Ji
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jinghua Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Bing Wu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Linna Xie
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yawei Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Haocan Song
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaojian Hu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yidan Qiu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Zheng Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenli Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yanwei Yang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jiayi Cai
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yuanduo Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ying Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Zhaojin Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - John S Ji
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
7
|
Tang P, Wang Y, Liao Q, Zhou Y, Huang H, Liang J, Zeng X, Qiu X. Relationship of urinary glyphosate concentrations with glycosylated hemoglobin and diabetes in US adults: a cross-sectional study. BMC Public Health 2024; 24:1644. [PMID: 38902690 PMCID: PMC11188266 DOI: 10.1186/s12889-024-19126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/13/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Glyphosate is a commonly used herbicide worldwide and is purportedly associated with multiple health effects. Research assessing the association of glyphosate concentrations with glycosylated hemoglobin (HbA1c) levels and the prevalence of diabetes is scarce. We sought to evaluate the association between urinary glyphosate levels and HbA1c levels and the prevalence of diabetes. METHODS A total of 2,745 adults in the National Health and Nutrition Examination Survey from 2013 to 2016 were included in this study. Generalized linear models (GLM) were applied to evaluate the associations of glyphosate concentrations with HbA1c levels and the prevalence of diabetes. The dose-response relationship was examined using restricted cubic splines (RCS). RESULTS Significantly positive correlations of urinary glyphosate concentrations with HbA1c levels (percentage change: 1.45; 95% CI: 0.95, 1.96; P < 0.001) and the prevalence of diabetes (OR: 1.45; 95% CI: 1.24, 1.68; P < 0.001) were found after adjustment. Compared with the lowest quartile of glyphosate levels, the highest quartile was positively associated with HbA1c levels (percentage change: 4.19; 95% CI: 2.54, 5.85; P < 0.001) and the prevalence of diabetes (OR: 1.89; 95% CI: 1.37, 2.63; P < 0.001). The RCS curves demonstrated a monotonically increasing dose-response relationship between urinary glyphosate levels and the prevalence of diabetes and HbA1c levels. CONCLUSIONS Urinary glyphosate concentrations are positively associated with HBA1c levels and the prevalence of diabetes. To verify our findings, additional large-scale prospective investigations are required.
Collapse
Affiliation(s)
- Peng Tang
- Department of Epidemiology, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning , Guangxi, 530021, China
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, 100191, China
| | - Yican Wang
- Chinese Center for Disease Control and Prevention, National Institute for Occupational Health and Poison Control, Beijing, 100050, China
| | - Qian Liao
- Department of Epidemiology, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning , Guangxi, 530021, China
| | - Yong Zhou
- School of Public Health, Xiangnan University, Chenzhou, 423000, China
| | - Huishen Huang
- Department of Epidemiology, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning , Guangxi, 530021, China
| | - Jun Liang
- Department of Epidemiology, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning , Guangxi, 530021, China
| | - Xiaoyun Zeng
- Department of Epidemiology, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning , Guangxi, 530021, China.
| | - Xiaoqiang Qiu
- Department of Epidemiology, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning , Guangxi, 530021, China.
| |
Collapse
|
8
|
Mao W, Qu J, Liu H, Guo R, Liao K, Wu S, Hangbiao J, Hu Z. Associations between urinary concentrations of benzothiazole, benzotriazole, and their derivatives and lung cancer: A nested case-control study. ENVIRONMENTAL RESEARCH 2024; 251:118750. [PMID: 38522739 DOI: 10.1016/j.envres.2024.118750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Benzothiazole (BTH), benzotriazole (BTR), and their respective derivatives (BTHs and BTRs) are emerging environmental pollutants with widespread human exposure and oncogenic potential. Studies have demonstrated adverse effects of exposure to certain BTHs and BTRs on the respiratory system. However, no study has examined the associations between exposure to BTHs and BTRs and lung cancer risk. We aimed to examine the associations between urinary concentrations of BTHs and BTRs and the risk of lung cancer in the general population from Quzhou, China. We conducted a nested case-control study in an ongoing prospective Quzhou Environmental Exposure and Human Health (QEEHH) cohort, involving 20, 694 participants who provided urine samples during April 2019-July 2020. With monthly follow-up until November 2022, 212 lung cancer cases were recruited and 1:1 matched with healthy controls based on age and sex. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) of lung cancer risk associated with urinary BTHs and BTRs concentrations using conditional logistic regression models after controlling for potential covariates. We also examined effect modification by several covariates, including sex, socioeconomic status, smoking status, alcohol consumption, and dietary habit. Creatinine-corrected urinary BTH and 2-hydroxy-benzothiazole (2-OH-BTH) levels were significantly associated with the risk of lung cancer, after adjusting for a variety of covariates. Participants in the highest quartile of BTH had a 95% higher risk of lung cancer, compared with those in the lowest quartile (adjusted OR = 1.95, 95% CI: 1.08-3.49; p for trend = 0.01). Participants with higher levels of urinary 2-OH-BTH had an 83% higher risk of lung cancer than those with lower levels (adjusted OR = 1.83, 95% CI: 1.16-2.88; p for trend = 0.01). Exposure to elevated levels of BTH and 2-OH-BTH may be associated with an increased risk of lung cancer. These associations were not modified by socio-demographic characteristics.
Collapse
Affiliation(s)
- Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Huimeng Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, PR China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, PR China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Kaizhen Liao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, PR China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, PR China
| | - Jin Hangbiao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China.
| | - Zefu Hu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China.
| |
Collapse
|
9
|
Kang H, Kim SH. Associations between serum perfluoroalkyl and polyfluoroalkyl concentrations and diabetes mellitus in the Korean general population: Insights from the Korean National Environmental Health Survey 2018-2020. Int J Hyg Environ Health 2024; 259:114385. [PMID: 38676994 DOI: 10.1016/j.ijheh.2024.114385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
AIMS Recent epidemiologic research has examined the relationship between perfluoroalkyl and polyfluoroalkyl substances (PFAS) and diabetes mellitus with inconclusive findings. In this cross-sectional study, we aimed to explore the association between serum PFAS concentrations and the prevalence of prediabetes and pre-diagnostic diabetes in the general Korean population as well as the combined effects of exposure to mixed PFAS compounds. METHODS We analyzed data from participants aged ≥19 years enrolled in the Korean National Environmental Health Survey Cycle 4 (2018-2020). Individuals diagnosed with diabetes were excluded to minimize potential bias. We identified cases of pre-diagnostic diabetes based on the HbA1c level ≥6.5% and prediabetes as HbA1c levels of 5.7-6.49%. Serum concentrations of PFAS, including perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDeA), perfluorohexane sulfonic acid (PFHxS), and perfluorooctane sulfonic acid (PFOS), were quantified using high-performance liquid chromatography-tandem mass spectrometry. Survey-weighted logistic regression models were used to assess the relationships between PFAS levels and diabetes risk, adjusting for covariates. Additionally, Bayesian kernel machine regression (BKMR) was used to investigate the combined effects of exposure to mixed PFAS compounds. RESULTS In the study population excluding participants with diagnosed diabetes (n = 2709), the prevalence of pre-diagnostic diabetes and prediabetes was 4.8% and 30.1%, respectively. Significant positive associations were found between serum PFHxS and PFOS quartiles and pre-diagnostic diabetes risk. Likewise, among those without diagnosed or pre-diagnostic diabetes (n = 2579), the highest quartiles of PFDeA, PFHxS, and PFOS and the overall PFAS level were associated with an increased risk of prediabetes compared with the lowest quartiles. BKMR analysis revealed a significant positive association between overall serum PFAS level and prediabetes risk, which was most marked for PFOS. CONCLUSIONS These findings highlight the potential health implications of PFAS exposure and prediabetes risk. Further research is needed to validate these associations and identify potential mechanistic pathways.
Collapse
Affiliation(s)
- Habyeong Kang
- Institute of Health Sciences, College of Health Science, Korea University, Seoul, South Korea
| | - Shin-Hye Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, South Korea.
| |
Collapse
|
10
|
Holder C, Cohen Hubal EA, Luh J, Lee MG, Melnyk LJ, Thomas K. Systematic evidence mapping of potential correlates of exposure for per- and poly-fluoroalkyl substances (PFAS) based on measured occurrence in biomatrices and surveys of dietary consumption and product use. Int J Hyg Environ Health 2024; 259:114384. [PMID: 38735219 DOI: 10.1016/j.ijheh.2024.114384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/05/2024] [Accepted: 04/21/2024] [Indexed: 05/14/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are widely observed in environmental media and often are found in indoor environments as well as personal-care and consumer products. Humans may be exposed through water, food, indoor dust, air, and the use of PFAS-containing products. Information about relationships between PFAS exposure sources and pathways and the amounts found in human biomatrices can inform source-contribution assessments and provide targets for exposure reduction. This work collected and collated evidence for correlates of PFAS human exposure as measured through sampling of biomatrices and surveys of dietary consumption and use of consumer products and articles. A systematic evidence mapping approach was applied to perform a literature search, conduct title-abstract and full-text screening, and to extract primary data into a comprehensive database for 16 PFAS. Parameters of interest included: sampling dates and locations, cohort descriptors, PFAS measured in a human biomatrix, information about food consumption in 11 categories, use of products/articles in 11 categories, and reported correlation values (and their statistical strength). The literature search and screening process yielded 103 studies with information for correlates of PFAS exposures. Detailed data were extracted and compiled on measures of PFAS correlations between biomatrix concentrations and dietary consumption and other product/article use. A majority of studies (61/103; 59%) were published after 2015 with few (8/103; 8%) prior to 2010. Studies were most abundant for dietary correlates (n = 94) with fewer publications reporting correlate assessments for product use (n = 56), while some examined both. PFOA and PFOS were assessed in almost all studies, followed by PFHxS, PFNA, and PFDA which were included in >50% of the studies. No relevant studies included PFNS or PFPeS. Among the 94 studies of dietary correlates, significant correlations were reported in 83% of the studies for one or more PFAS. The significant dietary correlations most commonly were for seafood, meats/eggs, and cereals/grains/pulses. Among the 56 studies of product/article correlates, significant correlations were reported in 70% of the studies. The significant product/article correlations most commonly were for smoking/tobacco, cosmetics/toiletries, non-stick cookware, and carpet/flooring/furniture and housing. Six of 11 product/article categories included five or fewer studies, including food containers and stain- and water-resistant products. Significant dietary and product/article correlations most commonly were positive. Some studies found a mix of positive and negative correlations depending on the PFAS, specific correlate, and specific response level, particularly for fats/oils, dairy consumption, food containers, and cosmetics/toiletries. Most of the significant findings for cereals/grains/pulses were negative correlations. Substantial evidence was found for correlations between dietary intake and biomatrix levels for several PFAS in multiple food groups. Studies examining product/article use relationships were relatively sparse, except for smoking/tobacco, and would benefit from additional research. The resulting database can inform further assessments of dietary and product use exposure relationships and can inform new research to better understand PFAS source-to-exposure relationships. The search strategy should be extended and implemented to support living evidence review in this rapidly advancing area.
Collapse
Affiliation(s)
| | - Elaine A Cohen Hubal
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA, 27711.
| | | | | | - Lisa Jo Melnyk
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, Cincinnati, OH, 45268, USA.
| | - Kent Thomas
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA, 27711.
| |
Collapse
|
11
|
Schlezinger JJ, Gokce N. Perfluoroalkyl/Polyfluoroalkyl Substances: Links to Cardiovascular Disease Risk. Circ Res 2024; 134:1136-1159. [PMID: 38662859 PMCID: PMC11047059 DOI: 10.1161/circresaha.124.323697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Conservative estimates by the World Health Organization suggest that at least a quarter of global cardiovascular diseases are attributable to environmental exposures. Associations between air pollution and cardiovascular risk have garnered the most headlines and are strong, but less attention has been paid to other omnipresent toxicants in our ecosystem. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are man-made chemicals that are extensively used in industrial and consumer products worldwide and in aqueous film-forming foam utilized in firefighting. As such, our exposure to PFAS is essentially ubiquitous. Given the long half-lives of these degradation-resistant chemicals, virtually, all people are carrying a body burden of PFAS. Health concerns related to PFAS are growing such that the National Academies of Sciences, Engineering and Medicine has recommended standards for clinical follow-up of individuals with high PFAS blood levels, including prioritizing screening for dyslipidemia. The link between PFAS and dyslipidemia has been extensively investigated, and evidence for associations is compelling. However, dyslipidemia is not the only cardiovascular risk factor with which PFAS is associated. Here, we review the epidemiological evidence for links between PFAS of concern identified by the National Academies of Sciences, Engineering and Medicine and risk factors for cardiovascular disease, including overweight/obesity, glucose intolerance, hypertension, dyslipidemia, and hyperuricemia. Moreover, we review the potential connections of PFAS with vascular disease and atherosclerosis. While observational data support associations between the National Academies of Sciences, Engineering and Medicine PFAS and selected cardiac risk factors, additional research is needed to establish causation and better understand how exposure to PFAS leads to the development of these conditions.
Collapse
Affiliation(s)
| | - Noyan Gokce
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
12
|
Yang S, Li X, Jiang Z. The interaction of perfluoroalkyl acids and a family history of diabetes on arthritis: analyses of 2011-2018 NHANES. BMC Public Health 2024; 24:448. [PMID: 38347551 PMCID: PMC10863084 DOI: 10.1186/s12889-024-17879-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/24/2024] [Indexed: 02/15/2024] Open
Abstract
Whether a family history of diabetes (FHD) and exposure to perfluoroalkyl acids (PFAAs) are correlated with an increased risk of developing arthritis remains unclear. This cross-sectional study was conducted to explore the correlations between FHD or exposure to PFAAs and arthritis as well as their interaction using the National Health and Nutrition Examination Survey (NHANES). In total, 6,194 participants aged ≥ 20 years from the 2011-2018 NHANES were enrolled. PFAAs are a cluster of synthetic chemicals, including perfluorononanoic acid (PFNA), perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorodecanoic acid (PFDA) and perfluorohexane sulfonic acid (PFHxS). FHD was evaluated using self-reported questionnaires. Arthritis was classified into three types, rheumatoid arthritis (RA), osteoarthritis (OA), and others, which were diagnosed using questionnaires. Generalized linear models (GLMs) were used to test the correlation between FHD and arthritis. To examine the joint effects of PFAAs and FHD on arthritis, interaction terms were applied in the GLM. Arthritis incidence was 26.7% among all participants. FHD was associated with both RA [OR = 1.70 (95% CI: 1.15-2.50)] and other types of arthritis [OR = 1.62 (95% CI: 1.21-2.16)]. However, the relationship between FHD and OA was not significant after adjustment (P = 0.18). Interaction outcomes indicated that higher PFDA levels increased the association between FHD and arthritis. FHD is associated with an increased incidence of arthritis, which may be increased by PFDA. Given the heavy burden of arthritis, preventive measures for arthritis and reduction of PFAAs exposure for patients with FHD are required.
Collapse
Affiliation(s)
- Shuting Yang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Xuqi Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China.
| | - Zhengdong Jiang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China.
| |
Collapse
|
13
|
Trasande L, Sargis RM. Endocrine-disrupting chemicals: Mainstream recognition of health effects and implications for the practicing internist. J Intern Med 2024; 295:259-274. [PMID: 38037246 PMCID: PMC11457725 DOI: 10.1111/joim.13748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Rapidly advancing evidence documents that a broad array of synthetic chemicals found ubiquitously in the environment contribute to disease and disability across the lifespan. Although the early literature focused on early life exposures, endocrine-disrupting chemicals (EDCs) are now understood to contribute substantially to chronic disease in adulthood, especially metabolic, cardiovascular, and reproductive consequences as well as endocrine cancers. The contribution to mortality is substantial, with over 90,000 deaths annually and at least $39 billion/year in lost economic productivity in the United States (US) due to exposure to certain phthalates that are used as plasticizers in food packaging. Importantly, exposures are disproportionately high in low-income and minoritized populations, driving disparities in these conditions. Though non-Hispanic Blacks and Mexican Americans comprise 12.6% and 13.5% of the US population, they bear 16.5% and 14.6% of the disease burden due to EDCs, respectively. Many of these exposures can be modified through safe and simple behavioral changes supported by proactive government action to both limit known hazardous exposures and to proactively screen new industrial chemicals prior to their use. Routine healthcare maintenance should include guidance to reduce EDC exposures, and a recent report by the Institute of Medicine suggests that testing be conducted, particularly in populations heavily exposed to perfluoroalkyl substances-chemicals used in nonstick coatings as well as oil- and water-resistant clothing.
Collapse
Affiliation(s)
- Leonardo Trasande
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
- NYU Wagner Graduate School of Public Service, New York, NY, USA
| | - Robert M. Sargis
- Department of Medicine; Division of Endocrinology, Diabetes, and Metabolism; University of Illinois at Chicago, Chicago, IL, USA
- Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, IL, USA
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
14
|
Aker A, Ayotte P, Caron-Beaudoin É, Ricard S, Gaudreau É, Lemire M. Cardiometabolic health and per and polyfluoroalkyl substances in an Inuit population. ENVIRONMENT INTERNATIONAL 2023; 181:108283. [PMID: 37883911 DOI: 10.1016/j.envint.2023.108283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
INTRODUCTION The cardiometabolic health status of Inuit in Nunavik has worsened in the last thirty years. The high concentrations of perfluoroalkyl acids (PFAAs) may be contributing to this since PFAAs have been linked with hypercholesterolemia, diabetes, and high blood pressure. The aim of this study was to examine the association between a PFAAs mixture and lipid profiles, Type II diabetes, prediabetes, and high blood pressure in this Inuit population. METHODS We included 1212 participants of the Qanuilirpitaa? 2017 survey aged 16-80 years. Two mixture models (quantile g-computation and Bayesian Kernel Machine Regression (BKMR)) were used to investigate the associations between six PFAAs (PFHxS, PFOS, PFOA and three long-chain PFAAs (PFNA, PFDA and PFUnDA)) with five lipid profiles and three cardiometabolic outcomes. Non-linearity and interaction between PFAAs were further assessed. RESULTS An IQR increase in all PFAAs congeners resulted in an increase in total cholesterol (β 0.15, 95% confidence interval (CI) 0.06, 0.24), low-density lipoprotein cholesterol (LDL) (β 0.08, 95% CI 0.01, 0.16), high-density lipoprotein cholesterol (HDL) (β 0.04, 95% CI 0.002, 0.08), apolipoprotein B-100 (β 0.03, 95% CI 0.004, 0.05), and prediabetes (OR 1.80, 95% CI 1.11, 2.91). There was no association between PFAAs and triglycerides, diabetes, or high blood pressure. Long-chain PFAAs congeners were the main contributors driving the associations. Associations were largely linear, and there was no evidence of interaction between the PFAAs congeners. CONCLUSIONS Our study provides further evidence of increasing circulating lipids with increased exposure to PFAAs. The increased risk of prediabetes points to the influence of PFAAs on potential clinical outcomes. International regulation of PFAAs is essential to curb PFAAs exposure and related health effects in Arctic communities.
Collapse
Affiliation(s)
- Amira Aker
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et préventive, Université Laval, Québec, Quebec, Canada.
| | - Pierre Ayotte
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et préventive, Université Laval, Québec, Quebec, Canada; Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Élyse Caron-Beaudoin
- Department of Health and Society, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada
| | - Sylvie Ricard
- Nunavik Regional Board of Health and Social Services, Kuujjuaq, QC, Canada
| | - Éric Gaudreau
- Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Mélanie Lemire
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et préventive, Université Laval, Québec, Quebec, Canada; Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
15
|
Ren J, Jin T, Li R, Zhong YY, Xuan YX, Wang YL, Yao W, Yu SL, Yuan JT. Priority list of potential endocrine-disrupting chemicals in food chemical contaminants: a docking study and in vitro/epidemiological evidence integration. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:847-866. [PMID: 37920972 DOI: 10.1080/1062936x.2023.2269855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
Diet is an important exposure route of endocrine-disrupting chemicals (EDCs), but many unfiltered potential EDCs remain in food. The in silico prediction of EDCs is a popular method for preliminary screening. Potential EDCs in food were screened using Endocrine Disruptome, an open-source platform for inverse docking, to predict the binding probabilities of 587 food chemical contaminants with 18 human nuclear hormone receptor (NHR) conformations. In total, 25 contaminants were bound to multiple NHRs such as oestrogen receptor α/β and androgen receptor. These 25 compounds mainly include pesticides and per- and polyfluoroalkyl substances (PFASs). The prediction results were validated with the in vitro data. The structural features and the crucial amino acid residues of the four NHRs were also validated based on previous literature. The findings indicate that the screening has good prediction efficiency. In addition, the epidemic evidence about endocrine interference of PFASs in food on children was further validated through this screening. This study provides preliminary screening results for EDCs in food and a priority list for in vitro and in vivo research.
Collapse
Affiliation(s)
- J Ren
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - T Jin
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - R Li
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - Y Y Zhong
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - Y X Xuan
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - Y L Wang
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - W Yao
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - S L Yu
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, Henan, P. R. China
| | - J T Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| |
Collapse
|
16
|
Li H, Yang M, Yang J, Seery S, Ma C, Liu Y, Zhang X, Li A, Guo H. Per- and polyfluoroalkyl substances and the associated thyroid cancer risk: A case-control study in China. CHEMOSPHERE 2023; 337:139411. [PMID: 37419160 DOI: 10.1016/j.chemosphere.2023.139411] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/13/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
The role of perfluoroalkyl and polyfluoroalkyl substances (PFAS) as thyroid carcinogens is unclear. Therefore, we intended to identify associations between each PFAS congener and their mixture with thyroid cancer risk. This case-control study of thyroid cancer was conducted in Shijiazhuang, Hebei Province, China. Three hundred participants were recruited from January to May 2022 and were matched according to sex and age. Twelve PFAS were assessed using ultra-high-performance liquid chromatography-tandem mass spectrometry. Associations between PFAS congeners and thyroid cancer risk were considered under conditional logistic regression analysis and a restricted cubic spline model. Mixture effects were also assessed with quantile g-computation and a Bayesian kernel machine regression model. Compared to the first tertile, third tertile PFOA, PFNA, PFHxS, PFDA, and PFUnDA concentrations were associated with lower thyroid cancer risk (ORPFOA: 0.32, 95% confidence interval (CI): 0.15-0.69; ORPFNA: 0.18, 95% CI: 0.07-0.46; ORPFHxS: 0.37, 95% CI: 0.15-0.92; ORPFDA: 0.07, 95% CI: 0.02-0.23; ORPFUnDA: 0.12, 95% CI: 0.05-0.30) after adjusting for confounding factors. PFNA, PFDA, and PFUnDA had a negative dose-response relationship with thyroid cancer risk. Mixture analysis also showed that thyroid cancer risk is negatively associated with the overall mixture and carboxylates. In the overall mixture, PFOS and PFDA contributed most to positive and negative changes in thyroid cancer risk, respectively. However, PFOS, PFNA, PFDA, and PFUnDA were of equally high importance. This study is the first to confirm the effects of the PFAS mixture on thyroid cancer, and further large-scale prospective studies are still warranted to test these inverse associations.
Collapse
Affiliation(s)
- Haoran Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Ming Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, PR China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, PR China
| | - Jing Yang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Samuel Seery
- Faculty of Health and Medicine, Division of Health Research, Lancaster University, Lancaster, LA1 4YW, UK; School of Humanities and Social Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Chaoying Ma
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, PR China
| | - Xiaoguang Zhang
- Core Facilities and Centers of Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, PR China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, PR China.
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, PR China.
| |
Collapse
|
17
|
Dagar M, Kumari P, Mirza AMW, Singh S, Ain NU, Munir Z, Javed T, Virk MFI, Javed S, Qizilbash FH, Kc A, Ekhator C, Bellegarde SB. The Hidden Threat: Endocrine Disruptors and Their Impact on Insulin Resistance. Cureus 2023; 15:e47282. [PMID: 38021644 PMCID: PMC10656111 DOI: 10.7759/cureus.47282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
The association between Insulin resistance, a global health issue, and endocrine disruptors (EDCs), chemicals interfering with the endocrine system, has sparked concern in the scientific community. This article provides a comprehensive review of the existing literature regarding the intricate relationship between EDCs and insulin resistance. Phthalates, commonly found in consumer products, are well-established EDCs with documented effects on insulin-signaling pathways and metabolic processes. Epidemiological studies have connected phthalate exposure to an increased risk of type 2 diabetes mellitus (T2DM). Perfluoroalkyl substances (PFAS), persistent synthetic compounds, have shown inconsistent associations with T2DM in epidemiological research. However, studies suggest that PFAS may influence insulin resistance and overall metabolic health, with varying effects depending on specific PFAS molecules and study populations. Bisphenol A (BPA), found in plastics and resins, has emerged as a concern for glucose regulation and insulin resistance. Research has linked BPA exposure to T2DM, altered insulin release, obesity, and changes in the mass and function of insulin-secreting β-cells. Triclosan, an antibacterial agent in personal care products, exhibits gender-specific associations with T2DM risk. It may impact gut microbiota, thyroid hormones, obesity, and inflammation, raising concerns about its effects on metabolic health. Furthermore, environmental EDCs like polycyclic aromatic hydrocarbons, pesticides, and heavy metals have demonstrated associations with T2DM, insulin resistance, hypertension, and obesity. Occupational exposure to specific pesticides and heavy metals has been linked to metabolic abnormalities.
Collapse
Affiliation(s)
- Mehak Dagar
- Internal Medicine, Himalayan Institute of Medical Sciences, New Delhi, IND
| | - Priya Kumari
- Medicine, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | | | - Shivani Singh
- Medicine, MediCiti Institute of Medical Sciences, Hyderabad, IND
| | - Noor U Ain
- Medicine, Mayo Hospital, Lahore, PAK
- Medicine, King Edward Medical University, Lahore, PAK
| | - Zainab Munir
- Emergency Department, Imran Idrees Teaching Hospital, Sialkot, PAK
| | - Tamleel Javed
- Emergency Department, Imran Idrees Teaching Hospital, Sialkot, PAK
| | | | - Saleha Javed
- Emergency Department, Sheikh Zayed Hospital, Rahim Yar Khan, PAK
| | | | - Anil Kc
- Medicine and Surgery, Patan Academy of Health Sciences, Kathmandu, NPL
- Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Chukwuyem Ekhator
- Neuro-Oncology, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, USA
| | - Sophia B Bellegarde
- Pathology and Laboratory Medicine, American University of Antigua, Coolidge, ATG
| |
Collapse
|
18
|
Dunder L, Salihovic S, Elmståhl S, Lind PM, Lind L. Associations between per- and polyfluoroalkyl substances (PFAS) and diabetes in two population-based cohort studies from Sweden. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:748-756. [PMID: 36964247 PMCID: PMC10541316 DOI: 10.1038/s41370-023-00529-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) have been suggested to contribute to the development of metabolic diseases such as obesity, diabetes and non-alcoholic fatty liver disease (NAFLD). However, evidence from epidemiological studies remain divergent. The aim of the present study was to evaluate associations between PFAS exposure and prevalent diabetes in a cross-sectional analysis and fasting glucose in a longitudinal analysis. METHODS In 2373 subjects aged 45-75 years from the EpiHealth study, three PFAS; perfluorohexanesulfonic acid (PFHxS), perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) were analyzed in plasma together with information on prevalent diabetes. Participants in the PIVUS study (n = 1016 at baseline, all aged 70 years) were followed over 10 years regarding changes in plasma levels of six PFAS; PFHxS, PFOA, PFOS, perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA), and changes in plasma levels of fasting glucose. RESULTS In the EpiHealth study, no overall associations could be observed between the levels of PFOA, PFOS or PFHxS and prevalent diabetes. However, there was a significant sex-interaction for PFOA (p = 0.02), and an inverse association could be seen between PFOA (on a SD-scale) and prevalent diabetes in women only (OR: 0.71, 95% CI: 0.52, 0.96, p-value: 0.02). This association showed a non-monotonic dose-response curve. In the PIVUS study, inverse relationships could be observed between the changes in levels (ln-transformed) of PFOA and PFUnDA vs the change in fasting glucose levels (ln-transformed) over 10 years (p = 0.04 and p = 0.02, respectively). As in EpiHealth, these inverse associations were significant only in women (PFOA: β: -0.03, p = 0.02, PFUnDA: β: -0.03, p = 0.03). IMPACT Exposure to per- and polyfluoroalkyl substances (PFAS) has been linked to unfavorable human health, including metabolic disorders such as obesity, diabetes and non-alcoholic fatty liver disease. However, results from in vivo, in vitro and epidemiological studies are incoherent. The aim of the present study was therefore to investigate associations between PFAS and diabetes in a cross-sectional study and glucose levels in a longitudinal study. Results show inverse associations in women only. Results also display non-monotonic dose response curves (i.e., that only low levels of PFOA are related to higher probability of prevalent diabetes). This suggests that sex differences and complex molecular mechanisms may underlie the observed findings. A better understanding of the factors and molecular mechanisms contributing to such differences is recognized as an important direction for future research. CONCLUSIONS PFOA was found to be inversely related to both prevalent diabetes and changes in plasma glucose levels among women only. Thus, our findings suggest there are sex differences in the inverse relationship of PFOA and type 2 diabetes and glucose levels.
Collapse
Affiliation(s)
- Linda Dunder
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden.
| | | | - Sölve Elmståhl
- Division of Geriatric Medicine, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - P Monica Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Peritore AF, Gugliandolo E, Cuzzocrea S, Crupi R, Britti D. Current Review of Increasing Animal Health Threat of Per- and Polyfluoroalkyl Substances (PFAS): Harms, Limitations, and Alternatives to Manage Their Toxicity. Int J Mol Sci 2023; 24:11707. [PMID: 37511474 PMCID: PMC10380748 DOI: 10.3390/ijms241411707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Perfluorinated and polyfluorinated alkyl substances (PFAS), more than 4700 in number, are a group of widely used man-made chemicals that accumulate in living things and the environment over time. They are known as "forever chemicals" because they are extremely persistent in our environment and body. Because PFAS have been widely used for many decades, their presence is evident globally, and their persistence and potential toxicity create concern for animals, humans and environmental health. They can have multiple adverse health effects, such as liver damage, thyroid disease, obesity, fertility problems, and cancer. The most significant source of living exposure to PFAS is dietary intake (food and water), but given massive industrial and domestic use, these substances are now punctually present not only domestically but also in the outdoor environment. For example, livestock and wildlife can be exposed to PFAS through contaminated water, soil, substrate, air, or food. In this review, we have analyzed and exposed the characteristics of PFAS and their various uses and reported data on their presence in the environment, from industrialized to less populated areas. In several areas of the planet, even in areas far from large population centers, the presence of PFAS was confirmed, both in marine and terrestrial animals (organisms). Among the most common PFAS identified are undoubtedly perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), two of the most widely used and, to date, among the most studied in terms of toxicokinetics and toxicodynamics. The objective of this review is to provide insights into the toxic potential of PFAS, their exposure, and related mechanisms.
Collapse
Affiliation(s)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, Saint Louis, MO 63103, USA
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy
| | - Domenico Britti
- Department of Health Sciences, Campus Universitario "Salvatore Venuta" Viale Europa, "Magna Græcia University" of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
20
|
Jain RB, Ducatman A. Factors affecting serum PFAS concentrations among US females with surgically and naturally induced menopause: data from NHANES 2003-2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84705-84724. [PMID: 37369902 DOI: 10.1007/s11356-023-28395-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Sex hormones influence excretion of the biopersistent per-and polyfluoroalkyl substances (PFAS) in rodents, but such influences in human studies are less clear. Data from National Health and Nutrition Examination Survey (NHANES) for 2003-2018 for US females aged ≥ 20 years who reported having hysterectomy (HYST, N=1064) and who reported being in natural menopause (MENOP, N=1505) were analyzed for associations of ever use of birth control pills, past pregnancies, live births, and other factors with serum concentrations of six per- and polyfluoroalkyl substances (PFAS). For both HYST and MENOP, PFAS concentrations computed as adjusted geometric means (AGM) were higher among those who took female replacement hormone therapy (HRT) compared to nonusers in multivariable adjusted models, for example PFOS in HRT takers (10.70 ng/mL; 95% C.I. 9.46-12.11) vs. 8.70 ng/mL (95% C.I. 8.07-9.37) in nonusers (p<0.01), and PFOA in HRT users was 2.85 ng/mL (95% C.I. 2.53-3.21) vs. 2.44 ng/mL (95% C.I. 2.32-2.36) in nonusers (p=0.01), with similar findings across race/ethnicity stratifications. HYST participants with retained ovaries sometimes had higher serum PFAS than those without ovaries in post-HYST participants not taking HRT, but results had overlapping confidence intervals in all cases and were inconsistent. PFASs were inversely associated with obesity and directly associated with higher SES as reflected in poverty income ratio (PIR) in most cases, yet HRT results for the entire population are robust to adjustments for obesity and PIR. The results suggest the hypothesis that exogenous hormone use, and specifically estrogen hormones, are associated with higher serum PFAS in postmenopausal women. We discuss potential explanations for the findings, including data from other populations that estrogens may delay the onset of kidney disease, a finding which might paradoxically increase serum PFAS among the HRT population to explain some or all of our findings in a menopausal population.
Collapse
Affiliation(s)
- Ram B Jain
- 4331 Kendrick Circle, Loganville, GA, 30019, USA.
| | - Alan Ducatman
- West Virginia University School of Public Health, Morgantown, WV, USA
| |
Collapse
|
21
|
Lazarevic N, Smurthwaite KS, D'Este C, Lucas RM, Armstrong B, Clements AC, Trevenar SM, Gad I, Hosking R, Law HD, Mueller J, Bräunig J, Nilsson S, Lane J, Lal A, Lidbury BA, Korda RJ, Kirk MD. Liver and cardiometabolic markers and conditions in a cross-sectional study of three Australian communities living with environmental per- and polyfluoroalkyl substances contamination. ENVIRONMENTAL RESEARCH 2023; 226:115621. [PMID: 36898423 DOI: 10.1016/j.envres.2023.115621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/05/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) have been associated with higher cholesterol and liver function markers in some studies, but the evidence for specific cardiometabolic conditions has been inconclusive. OBJECTIVES We quantified the associations of single and combined PFAS with cardiometabolic markers and conditions in a cross-sectional study of three Australian communities with PFAS-contaminated water from the historical use of aqueous film-forming foam in firefighting activities, and three comparison communities. METHODS Participants gave blood samples for measurement of nine PFAS, four lipids, six liver function markers, and completed a survey on sociodemographic characteristics and eight cardiometabolic conditions. We estimated differences in mean biomarker concentrations per doubling in single PFAS concentrations (linear regression) and per interquartile range increase in the PFAS mixture (Bayesian kernel machine regression). We estimated prevalence ratios of biomarker concentrations outside reference limits and self-reported cardiometabolic conditions (Poisson regression). RESULTS We recruited 881 adults in exposed communities and 801 in comparison communities. We observed higher mean total cholesterol with higher single and mixture PFAS concentrations in blood serum (e.g., 0.18 mmol/L, 95% credible interval -0.06 to 0.42, higher total cholesterol concentrations with an interquartile range increase in all PFAS concentrations in Williamtown, New South Wales), with varying certainty across communities and PFAS. There was less consistency in direction of associations for liver function markers. Serum perfluorooctanoic acid (PFOA) concentrations were positively associated with the prevalence of self-reported hypercholesterolemia in one of three communities, but PFAS concentrations were not associated with self-reported type II diabetes, liver disease, or cardiovascular disease. DISCUSSION Our study is one of few that has simultaneously quantified the associations of blood PFAS concentrations with multiple biomarkers and cardiometabolic conditions in multiple communities. Our findings for total cholesterol were consistent with previous studies; however, substantial uncertainty in our estimates and the cross-sectional design limit causal inference.
Collapse
Affiliation(s)
- Nina Lazarevic
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia.
| | - Kayla S Smurthwaite
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Catherine D'Este
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia; School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Robyn M Lucas
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Bruce Armstrong
- School of Public Health, The University of Sydney, Sydney, NSW, 2206, Australia; School of Population and Global Health, The University of Western Australia, Perth, WA, 6009, Australia
| | - Archie Ca Clements
- Faculty of Health Sciences, Curtin University, Bentley, WA, 6102, Australia; Telethon Kids Institute, Nedlands, WA, 6009, Australia
| | - Susan M Trevenar
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Imogen Gad
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Rose Hosking
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Hsei Di Law
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Jochen Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Qld, 4102, Australia
| | - Jennifer Bräunig
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Qld, 4102, Australia
| | - Sandra Nilsson
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Qld, 4102, Australia
| | - Jo Lane
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Aparna Lal
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Brett A Lidbury
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Rosemary J Korda
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Martyn D Kirk
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
22
|
Valvi D, Christiani DC, Coull B, Højlund K, Nielsen F, Audouze K, Su L, Weihe P, Grandjean P. Gene-environment interactions in the associations of PFAS exposure with insulin sensitivity and beta-cell function in a Faroese cohort followed from birth to adulthood. ENVIRONMENTAL RESEARCH 2023; 226:115600. [PMID: 36868448 PMCID: PMC10101920 DOI: 10.1016/j.envres.2023.115600] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Exposure to perfluoroalkyl substances (PFAS) has been associated with changes in insulin sensitivity and pancreatic beta-cell function in humans. Genetic predisposition to diabetes may modify these associations; however, this hypothesis has not been yet studied. OBJECTIVES To evaluate genetic heterogeneity as a modifier in the PFAS association with insulin sensitivity and pancreatic beta-cell function, using a targeted gene-environment (GxE) approach. METHODS We studied 85 single-nucleotide polymorphisms (SNPs) associated with type 2 diabetes, in 665 Faroese adults born in 1986-1987. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were measured in cord whole blood at birth and in participants' serum from age 28 years. We calculated the Matsuda-insulin sensitivity index (ISI) and the insulinogenic index (IGI) based on a 2 h-oral glucose tolerance test performed at age 28. Effect modification was evaluated in linear regression models adjusted for cross-product terms (PFAS*SNP) and important covariates. RESULTS Prenatal and adult PFOS exposures were significantly associated with decreased insulin sensitivity and increased beta-cell function. PFOA associations were in the same direction but attenuated compared to PFOS. A total of 58 SNPs were associated with at least one PFAS exposure variable and/or Matsuda-ISI or IGI in the Faroese population and were subsequently tested as modifiers in the PFAS-clinical outcome associations. Eighteen SNPs showed interaction p-values (PGxE) < 0.05 in at least one PFAS-clinical outcome association, five of which passed False Discovery Rate (FDR) correction (PGxE-FDR<0.20). SNPs for which we found stronger evidence for GxE interactions included ABCA1 rs3890182, FTO rs9939609, FTO rs3751812, PPARG rs170036314 and SLC12A3 rs2289116 and were more clearly shown to modify the PFAS associations with insulin sensitivity, rather than with beta-cell function. DISCUSSION Findings from this study suggest that PFAS-associated changes in insulin sensitivity could vary between individuals as a result of genetic predisposition and warrant replication in independent larger populations.
Collapse
Affiliation(s)
- Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States.
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Brent Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Flemming Nielsen
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Pal Weihe
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Tórshavn, Faroe Islands; Centre of Health Science, Faculty of Health Sciences, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Philippe Grandjean
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
23
|
Zhang Y, Mustieles V, Wang YX, Sun Y, Agudelo J, Bibi Z, Torres N, Oulhote Y, Slitt A, Messerlian C. Folate concentrations and serum perfluoroalkyl and polyfluoroalkyl substance concentrations in adolescents and adults in the USA (National Health and Nutrition Examination Study 2003-16): an observational study. Lancet Planet Health 2023; 7:e449-e458. [PMID: 37286242 PMCID: PMC10901144 DOI: 10.1016/s2542-5196(23)00088-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/10/2023] [Accepted: 04/21/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a family of highly fluorinated aliphatic compounds, which are widely used in commercial applications, including food packaging, textiles, and non-stick cookware. Folate might counteract the effects of environmental chemical exposures. We aimed to explore the relationship between blood folate biomarker concentrations and PFAS concentrations. METHODS This observational study pooled cross-sectional data from the National Health and Nutrition Examination Survey (NHANES) 2003 to 2016 cycles. NHANES is a population-based national survey that measures the health and nutritional status of the US general population every 2 years by means of questionnaires, physical examination, and biospecimen collection. Folate concentrations in red blood cells and in serum, and perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS) concentrations in serum were examined. We used multivariable regression models to assess the percentage change in serum PFAS concentrations in relation to changes in folate biomarker concentrations. We additionally used models with restricted cubic splines to investigate the shape of these associations. FINDINGS This study included 2802 adolescents and 9159 adults who had complete data on PFAS concentrations, folate biomarkers, and covariates, were not pregnant, and had never had a cancer diagnosis at the time of the survey. The mean age was 15·4 years (SD 2·3) for adolescents and 45·5 years (17·5) for adults. The proportion of male participants was slightly higher in adolescents (1508 [54%] of 2802 participants) than in adults (3940 [49%] of 9159 participants). We found negative associations between red blood cell folate concentrations and serum concentrations of PFOS (percentage change for a 2·7 fold-increase in folate level -24·36%, 95% CI -33·21 to -14·34) and PFNA (-13·00%, -21·87 to -3·12) in adolescents, and PFOA (-12·45%, -17·28 to -7·35), PFOS (-25·30%, -29·67 to -20·65), PFNA (-21·65%, -26·19 to -16·82), and PFHxS (-11·70%, -17·32 to 5·70) in adults. Associations for serum folate concentrations and PFAS were in line with those found for red blood cell folate levels, although the magnitude of the effects was lower. Restricted cubic spline models suggested linearity of the observed associations, particularly for associations in adults. INTERPRETATION In this large-scale, nationally representative study, we found consistent inverse associations for most examined serum PFAS compounds in relation to folate concentrations measured in either red blood cells or serum among both adolescents and adults. These findings are supported by mechanistic in-vitro studies that show the potential of PFAS to compete with folate for several transporters implicated in PFAS toxicokinetics. If confirmed in experimental settings, these findings could have important implications for interventions to reduce the accumulated PFAS body burden and mitigate the related adverse health effects. FUNDING United States National Institute of Environmental Health Sciences.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research, Granada, Spain; Instituto de Investigación Biosanitaria Ibs Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
| | - Yi-Xin Wang
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Yang Sun
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | | | - Zainab Bibi
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA, USA
| | - Nicole Torres
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA, USA
| | - Youssef Oulhote
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | | | - Carmen Messerlian
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA; Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA, USA.
| |
Collapse
|
24
|
Zang L, Liu X, Xie X, Zhou X, Pan Y, Dai J. Exposure to per- and polyfluoroalkyl substances in early pregnancy, risk of gestational diabetes mellitus, potential pathways, and influencing factors in pregnant women: A nested case-control study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121504. [PMID: 36965679 DOI: 10.1016/j.envpol.2023.121504] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/27/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
Although previous studies have reported an association between maternal serum perfluoroalkyl substance (PFAS) exposure and gestational diabetes mellitus (GDM) risk, results have been inconsistent. Few studies have focused on the combined effects of emerging and legacy PFASs on glucose homeostasis while humans are always exposed to multiple PFASs simultaneously. Moreover, the potential pathways by which PFAS exposure induces GDM are unclear. A total of 295 GDM cases and 295 controls were enrolled from a prospective cohort of 2700 pregnant women in Shanghai, China. In total, 16 PFASs were determined in maternal spot serum samples in early pregnancy. We used conditional logistic regression, multiple linear regression, and Bayesian kernel machine regression (BKMR) to examine individual and joint effects of PFAS exposure on GDM risk and oral glucose tolerance test outcomes. The mediating effects of maternal serum biochemical parameters, including thyroid and liver function were further assessed. Maternal perfluorooctanoic acid (PFOA) exposure was associated with an increased risk of GDM (odds ratio (OR) = 1.68; 95% confidence interval (95% CI): 1.10, 2.57), consistent with higher concentrations in GDM cases than controls. Based on mediation analysis, an increase in the free triiodothyronine to free thyroxine ratio partially explained the effect of this association. For continuous glycemic outcomes, positive associations were observed between several PFASs and 1-h and 2-h glucose levels. In BKMR, PFAS mixture exposure showed a positive trend with GDM incidence, although the CIs were wide. These associations were more pronounced among women with normal pre-pregnancy body mass index (BMI). Mixed PFAS congeners may affect glucose homeostasis by increasing 1-h glucose levels, with perfluorononanoic acid found to be a main contributor. Exposure to PFASs was associated with increased risk of GDM and disturbance in glucose homeostasis, especially in normal weight women. The PFAS-associated disruption of maternal thyroid function may alter glucose homeostasis.
Collapse
Affiliation(s)
- Lu Zang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaorui Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xianjing Xie
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
25
|
Xu Y, Jakobsson K, Harari F, Andersson EM, Li Y. Exposure to high levels of PFAS through drinking water is associated with increased risk of type 2 diabetes-findings from a register-based study in Ronneby, Sweden. ENVIRONMENTAL RESEARCH 2023; 225:115525. [PMID: 36813069 DOI: 10.1016/j.envres.2023.115525] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Epidemiological studies linking type 2 diabetes (T2D) and exposure to per- and polyfluoroalkyl substances (PFAS), are limited and have yielded conflicting results. This register-based study aimed to investigate the risk of T2D among Swedish adults who had been exposed to PFAS from highly contaminated drinking water for decades. METHODS The study included 55,032 adults (aged ≥18 years) from the Ronneby Register Cohort, who ever lived in Ronneby during 1985-2013. Exposure was assessed using the yearly residential address and the absence ("never-high") or presence ("ever-high") of high PFAS contamination in the municipal drinking water supply; the latter was subdivided into "early-high" and "late-high" exposure with cut-off at 2005. Incident T2D cases were retrieved from the National Patient Register and the Prescription Register. Cox proportional hazard models with time-varying exposure were used to estimate hazard ratios (HRs). Stratified analyses were performed based on age (18-45 vs > 45). RESULTS Elevated HRs for T2D were observed when comparing "ever-high" to "never-high" exposure (HR 1.18, 95% CI 1.03-1.35), as well as when comparing "early-high" (HR 1.12, 95% CI 0.98-1.50) or "late-high" (HR 1.17, 95% CI 1.00-1.37) to "never-high", after adjusting for age and sex. Individuals aged 18-45 years had even higher HRs. Adjusting for the highest-achieved education level attenuated the estimates, but the directions of associations remained. Elevated HRs were also found among those who had lived in areas with a heavily contaminated water supply for 1-5 years (HR 1.26, 95% CI 0.97-1.63) and 6-10 years (HR 1.25, 95% CI 0.80-1.94). CONCLUSION This study suggests an increased risk of T2D after long-term high PFAS exposure through drinking water. In particular, a higher risk of early onset diabetes was found, indicating increased susceptibility to PFAS-related health effects at younger ages.
Collapse
Affiliation(s)
- Yiyi Xu
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Jakobsson
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Florencia Harari
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva M Andersson
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ying Li
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; SSORG-Scandinavian Surgical Outcomes Research Group, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
26
|
Zhang Y, Mustieles V, Sun Q, Coull B, McElrath T, Rifas-Shiman SL, Martin L, Sun Y, Wang YX, Oken E, Cardenas A, Messerlian C. Association of Early Pregnancy Perfluoroalkyl and Polyfluoroalkyl Substance Exposure With Birth Outcomes. JAMA Netw Open 2023; 6:e2314934. [PMID: 37256622 PMCID: PMC10233420 DOI: 10.1001/jamanetworkopen.2023.14934] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/10/2023] [Indexed: 06/01/2023] Open
Abstract
Importance Prenatal perfluoroalkyl and polyfluoroalkyl substances (PFAS) have been linked to adverse birth outcomes. Previous research showed that higher folate concentrations are associated with lower blood PFAS concentrations in adolescents and adults. Further studies are needed to explore whether prenatal folate status mitigates PFAS-related adverse birth outcomes. Objective To examine whether prenatal folate status modifies the negative associations between pregnancy PFAS concentrations, birth weight, and gestational age previously observed in a US cohort. Design, Setting, and Participants In a prospective design, a prebirth cohort of mothers or pregnant women was recruited between April 1999 and November 2002, in Project Viva, a study conducted in eastern Massachusetts. Statistical analyses were performed from May 24 and October 25, 2022. Exposure Plasma concentrations of 6 PFAS compounds were measured in early pregnancy (median gestational week, 9.6). Folate status was assessed through a food frequency questionnaire and measured in plasma samples collected in early pregnancy. Main Outcomes and Measures Birth weight and gestational age, abstracted from delivery records; birth weight z score, standardized by gestational age and infant sex; low birth weight, defined as birth weight less than 2500 g; and preterm birth, defined as birth at less than 37 completed gestational weeks. Results The cohort included a total of 1400 mother-singleton pairs. The mean (SD) age of the mothers was 32.21 (4.89) years. Most of the mothers were White (73.2%) and had a college degree or higher (69.1%). Early pregnancy plasma perfluorooctanoic acid concentration was associated with lower birth weight and birth weight z score only among mothers whose dietary folate intake (birth weight: β, -89.13 g; 95% CI, -166.84 to -11.42 g; birth weight z score: -0.13; 95% CI, -0.26 to -0.003) or plasma folate concentration (birth weight: -87.03 g; 95% CI, -180.11 to 6.05 g; birth weight z score: -0.14; 95% CI, -0.30 to 0.02) were below the 25th percentile (dietary: 660 μg/d, plasma: 14 ng/mL). No associations were found among mothers in the higher folate level groups, although the tests for heterogeneity did not reject the null. Associations between plasma perfluorooctane sulfonic acid and perfluorononanoate (PFNA) concentrations and lower birth weight, and between PFNA and earlier gestational age were noted only among mothers whose prenatal dietary folate intake or plasma folate concentration was in the lowest quartile range. No associations were found among mothers in higher folate status quartile groups. Conclusions and Relevance In this large, US prebirth cohort, early pregnancy exposure to select PFAS compounds was associated with adverse birth outcomes only among mothers below the 25th percentile of prenatal dietary or plasma folate levels.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research, Instituto de Investigación Biosanitaria Ibs, Consortium for Biomedical Research in Epidemiology and Public Health Grenada, Spain
| | - Qi Sun
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Brent Coull
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Thomas McElrath
- Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Sheryl L. Rifas-Shiman
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - Leah Martin
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Yang Sun
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Yi-Xin Wang
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Emily Oken
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, California
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston
| |
Collapse
|
27
|
Hall AM, Braun JM. Per- and Polyfluoroalkyl Substances and Outcomes Related to Metabolic Syndrome: A Review of the Literature and Current Recommendations for Clinicians. Am J Lifestyle Med 2023. [DOI: 10.1177/15598276231162802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of toxic, ubiquitous, anthropogenic chemicals known to bioaccumulate in humans. Substantial concern exists regarding the human health effects of PFAS, particularly metabolic syndrome (MetS), a precursor to cardiovascular disease, the leading cause of mortality worldwide. This narrative review provides an overview of the PFAS literature on 4 specific components of MetS: insulin resistance/glucose dysregulation, central adiposity, dyslipidemia, and blood pressure. We focus on prospective cohort studies as these provide the best body of evidence compared to other study designs. Available evidence suggests potential associations between some PFAS and type-2 diabetes in adults, dyslipidemia in children and adults, and blood pressure in adults. Additionally, some studies found that sex and physical activity may modify these relationships. Future studies should consider modification by sex and lifestyle factors (e.g., diet and physical activity), as well quantifying the impact of PFAS mixtures on MetS features and related clinical disease. Finally, clinicians can follow recently developed clinical guidance to screen for PFAS exposure in patients, measure PFAS levels, conduct additional clinical care based on PFAS levels, and advise on PFAS exposure reduction.
Collapse
Affiliation(s)
- Amber M. Hall
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| |
Collapse
|
28
|
Yu G, Wang J, Liu Y, Luo T, Meng X, Zhang R, Huang B, Sun Y, Zhang J. Metabolic perturbations in pregnant rats exposed to low-dose perfluorooctanesulfonic acid: An integrated multi-omics analysis. ENVIRONMENT INTERNATIONAL 2023; 173:107851. [PMID: 36863164 DOI: 10.1016/j.envint.2023.107851] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/22/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Emerging epidemiological evidence has linked per- and polyfluoroalkyl substances (PFAS) exposure could be linked to the disturbance of gestational glucolipid metabolism, but the toxicological mechanism is unclear, especially when the exposure is at a low level. This study examined the glucolipid metabolic changes in pregnant rats treated with relatively low dose perfluorooctanesulfonic acid (PFOS) through oral gavage during pregnancy [gestational day (GD): 1-18]. We explored the molecular mechanisms underlying the metabolic perturbation. Oral glucose tolerance test (OGTT) and biochemical tests were performed to assess the glucose homeostasis and serum lipid profiles in pregnant Sprague-Dawley (SD) rats randomly assigned to starch, 0.03 and 0.3 mg/kg·bw·d groups. Transcriptome sequencing combined with non-targeted metabolomic assays were further performed to identify differentially altered genes and metabolites in the liver of maternal rats, and to determine their correlation with the maternal metabolic phenotypes. Results of transcriptome showed that differentially expressed genes at 0.03 and 0.3 mg/kg·bw·d PFOS exposure were related to several metabolic pathways, such as peroxisome proliferator-activated receptors (PPARs) signaling, ovarian steroid synthesis, arachidonic acid metabolism, insulin resistance, cholesterol metabolism, unsaturated fatty acid synthesis, bile acid secretion. The untargeted metabolomics identified 164 and 158 differential metabolites in 0.03 and 0.3 mg/kg·bw·d exposure groups, respectively under negative ion mode of Electrospray Ionization (ESI-), which could be enriched in metabolic pathways such as α-linolenic acid metabolism, glycolysis/gluconeogenesis, glycerolipid metabolism, glucagon signaling pathway, glycine, serine and threonine metabolism. Co-enrichment analysis indicated that PFOS exposure may disturb the metabolism pathways of glycerolipid, glycolysis/gluconeogenesis, linoleic acid, steroid biosynthesis, glycine, serine and threonine. The key involved genes included down-regulated Ppp1r3c and Abcd2, and up-regulated Ogdhland Ppp1r3g, and the key metabolites such as increased glycerol 3-phosphate and lactosylceramide were further identified. Both of them were significantly associated with maternal fasting blood glucose (FBG) level. Our findings may provide mechanistic clues for clarifying metabolic toxicity of PFOS in human, especially for susceptible population such as pregnant women.
Collapse
Affiliation(s)
- Guoqi Yu
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jinguo Wang
- School of Public Health, Guilin Medical University, Guilin 541001, China
| | - Yongjie Liu
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Tingyu Luo
- School of Public Health, Guilin Medical University, Guilin 541001, China
| | - Xi Meng
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ruiyuan Zhang
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Bo Huang
- School of Public Health, Guilin Medical University, Guilin 541001, China
| | - Yan Sun
- School of Public Health, Guilin Medical University, Guilin 541001, China.
| | - Jun Zhang
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
29
|
Itoh H, Harada KH, Kasuga Y, Yokoyama S, Onuma H, Nishimura H, Kusama R, Yokoyama K, Zhu J, Harada Sassa M, Yoshida T, Tsugane S, Iwasaki M. Association between serum concentrations of perfluoroalkyl substances and global DNA methylation levels in peripheral blood leukocytes of Japanese women: A cross-sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:159923. [PMID: 36356761 DOI: 10.1016/j.scitotenv.2022.159923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 10/05/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Global DNA methylation levels in peripheral blood leukocytes can be a biomarker for cancer risk; however, levels can be changed by various factors such as environmental pollutants. We investigated the association between serum concentrations of perfluoroalkyl substances (PFASs) and global DNA methylation levels of leukocytes in a cross-sectional study using the control group of a Japanese breast cancer case-control study [397 women with a mean age of 54.1 (SD 10.1) years]. Importantly, our analysis distinguished branched PFAS isomers as different from linear isomers. The serum concentrations of 20 PFASs were measured by in-port arylation gas-chromatography negative chemical ionization mass spectrometry. Global DNA methylation levels in peripheral blood leukocytes were measured using a luminometric methylation assay. Associations between log10-transformed serum PFAS concentrations and global DNA methylation levels were evaluated by regression coefficients in multivariable robust linear regression analyses. Serum concentrations of 13 PFASs were significantly associated with increased global DNA methylation levels in leukocytes. Global DNA methylation was significantly increased by 1.45 %-3.96 % per log10-unit increase of serum PFAS concentration. Our results indicate that exposure to PFASs may increase global DNA methylation levels in peripheral blood leukocytes of Japanese women.
Collapse
Affiliation(s)
- Hiroaki Itoh
- Department of Epidemiology and Environmental Health, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Yoshio Kasuga
- Department of Surgery, Nagano Matsushiro General Hospital, 183 Matsushiro, Matsushiro-cho, Nagano, Nagano 381-1231, Japan; Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Shiro Yokoyama
- Department of Breast and Thyroid Surgery, Nagano Red Cross Hospital, 5-22-1 Wakasato, Nagano, Nagano 380-8582, Japan
| | - Hiroshi Onuma
- Department of Breast and Thyroid Surgery, Nagano Red Cross Hospital, 5-22-1 Wakasato, Nagano, Nagano 380-8582, Japan
| | - Hideki Nishimura
- Department of Chest Surgery and Breast Surgery, Nagano Municipal Hospital, 1333-1 Tomitake, Nagano, Nagano 381-8551, Japan
| | - Ritsu Kusama
- Department of Surgery, Hokushin General Hospital, 1-5-63 Nishi, Nakano, Nagano 383-8505, Japan
| | - Kazuhito Yokoyama
- Department of Epidemiology and Environmental Health, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Epidemiology and Social Medicine, International University of Health and Welfare Graduate School of Public Health, 4-1-26 Akasaka, Minato-ku, Tokyo 107-8402, Japan
| | - Jing Zhu
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan; Department of Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610061, China
| | - Mariko Harada Sassa
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Teruhiko Yoshida
- Division of Genetics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Shoichiro Tsugane
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Division of Cohort Research, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
30
|
Goodrich JA, Walker DI, He J, Lin X, Baumert BO, Hu X, Alderete TL, Chen Z, Valvi D, Fuentes ZC, Rock S, Wang H, Berhane K, Gilliland FD, Goran MI, Jones DP, Conti DV, Chatzi L. Metabolic Signatures of Youth Exposure to Mixtures of Per- and Polyfluoroalkyl Substances: A Multi-Cohort Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:27005. [PMID: 36821578 PMCID: PMC9945578 DOI: 10.1289/ehp11372] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Exposure to per- and polyfluoroalkyl substances (PFAS) is ubiquitous and has been associated with an increased risk of several cardiometabolic diseases. However, the metabolic pathways linking PFAS exposure and human disease are unclear. OBJECTIVE We examined associations of PFAS mixtures with alterations in metabolic pathways in independent cohorts of adolescents and young adults. METHODS Three hundred twelve overweight/obese adolescents from the Study of Latino Adolescents at Risk (SOLAR) and 137 young adults from the Southern California Children's Health Study (CHS) were included in the analysis. Plasma PFAS and the metabolome were determined using liquid-chromatography/high-resolution mass spectrometry. A metabolome-wide association study was performed on log-transformed metabolites using Bayesian regression with a g-prior specification and g-computation for modeling exposure mixtures to estimate the impact of exposure to a mixture of six ubiquitous PFAS (PFOS, PFHxS, PFHpS, PFOA, PFNA, and PFDA). Pathway enrichment analysis was performed using Mummichog and Gene Set Enrichment Analysis. Significance across cohorts was determined using weighted Z -tests. RESULTS In the SOLAR and CHS cohorts, PFAS exposure was associated with alterations in tyrosine metabolism (meta-analysis p = 0.00002 ) and de novo fatty acid biosynthesis (p = 0.03 ), among others. For example, when increasing all PFAS in the mixture from low (∼ 30 th percentile) to high (∼ 70 th percentile), thyroxine (T4), a thyroid hormone related to tyrosine metabolism, increased by 0.72 standard deviations (SDs; equivalent to a standardized mean difference) in the SOLAR cohort (95% Bayesian credible interval (BCI): 0.00, 1.20) and 1.60 SD in the CHS cohort (95% BCI: 0.39, 2.80). Similarly, when going from low to high PFAS exposure, arachidonic acid increased by 0.81 SD in the SOLAR cohort (95% BCI: 0.37, 1.30) and 0.67 SD in the CHS cohort (95% BCI: 0.00, 1.50). In general, no individual PFAS appeared to drive the observed associations. DISCUSSION Exposure to PFAS is associated with alterations in amino acid metabolism and lipid metabolism in adolescents and young adults. https://doi.org/10.1289/EHP11372.
Collapse
Affiliation(s)
- Jesse A Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Jingxuan He
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Xiangping Lin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brittney O Baumert
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Xin Hu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, USA
| | - Tanya L Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zoe C Fuentes
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sarah Rock
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Hongxu Wang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kiros Berhane
- Department of Biostatistics, Columbia University, New York, New York, USA
| | - Frank D Gilliland
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Michael I Goran
- Department of Pediatrics, Children's Hospital Los Angeles, Saban Research Institute, Los Angeles, California, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, USA
| | - David V Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Leda Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
31
|
Chen Z, Lu YL, Wang L, Xu J, Zhang J, Xu X, Cheng P, Yang S, Shi W. Efficient Recognition and Removal of Persistent Organic Pollutants by a Bifunctional Molecular Material. J Am Chem Soc 2023; 145:260-267. [PMID: 36538618 DOI: 10.1021/jacs.2c09866] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Persistent organic pollutants (POPs) exist widely in the environment and place significant impact on human health by bioaccumulation. Efficient recognition of POPs and their removal are highly challenging tasks because their specific structures interact often very weakly with the capture materials. Herein, a molecular nanocage (1) is studied as an efficient sensing and sorbent material for POPs, which is demonstrated by a representative and stable perfluorooctane sulfonate (PFOS) substrate containing a hydrophilic sulfonic group and a hydrophobic fluoroalkyl chain. A highly sensitive and unusual turn-on fluorescence response within 10 s and a 97% total removal of PFOS from water in 20 min have been achieved owing to the strong host-guest interactions between 1 and PFOS. The binding constant of 1 to PFOS is 2 orders of magnitude higher than state-of-the-art adsorbents for PFOS and thus represents a new benchmark material for the recognition and removal of PFOS. The host-guest interaction has been elucidated by solid-state NMR spectroscopy and single-crystal X-ray diffraction, which provide key insights at a molecular level for the design of new advanced sensing/sorbent materials for POPs.
Collapse
Affiliation(s)
- Zhonghang Chen
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yi-Lin Lu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jun Xu
- Tianjin Key Lab for Rare Earth Materials and Applications, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350 China
| | - Jing Zhang
- Tianjin Eco-Environmental Monitoring Center, Tianjin 300191, China
| | - Xiufang Xu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peng Cheng
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Sihai Yang
- Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K
| | - Wei Shi
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
32
|
Gui SY, Qiao JC, Xu KX, Li ZL, Chen YN, Wu KJ, Jiang ZX, Hu CY. Association between per- and polyfluoroalkyl substances exposure and risk of diabetes: a systematic review and meta-analysis. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:40-55. [PMID: 35970987 DOI: 10.1038/s41370-022-00464-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Emerging evidence suggests that per- and polyfluoroalkyl substances (PFAS) are endocrine disruptors and may contribute to the etiology of diabetes. OBJECTIVES This study aimed to systematically review the epidemiological evidence on the associations of PFAS with mortality and morbidity of diabetes and to quantitatively evaluate the summary effect estimates of the existing literature. METHODS We searched three electronic databases for epidemiological studies concerning PFAS and diabetes published before April 1, 2022. Summary odds ratio (OR), hazard ratio (HR), or β and their 95% confidence intervals (CIs) were respectively calculated to evaluate the association between PFAS and diabetes using random-effects model by the exposure type, and dose-response meta-analyses were also performed when possible. We also assessed the risk of bias of the studies included and the confidence in the body of evidence. RESULTS An initial literature search identified 1969 studies, of which 22 studies were eventually included. The meta-analyses indicated that the observed statistically significant PFAS-T2DM associations were consistent in cohort studies, while the associations were almost non-significant in case-control and cross-sectional studies. Dose-response meta-analysis showed a "parabolic-shaped" association between perfluorooctanoate acid (PFOA) exposure and T2DM risk. Available evidence was rated with "low" risk of bias, and the level of evidence for PFAS and incident T2DM was considered "moderate". CONCLUSIONS Our findings suggest that PFAS exposure may increase the risk of incident T2DM, and that PFOA may exert non-monotonic dose-response effect on T2DM risk. Considering the widespread exposure, persistence, and potential for adverse health effects of PFAS, further cohort studies with improvements in expanding the sample size, adjusting the covariates, and considering different types of PFAS exposure at various doses, are needed to elucidate the putative causal associations and potential mode of action of different PFAS on diabetes. IMPACT STATEMENT A growing body of evidence suggests that per- and polyfluoroalkyl substances (PFAS) are endocrine disruptors and may contribute to the development of diabetes. However, epidemiological evidence on the associations of PFAS and diabetes is inconsistent. We performed this comprehensive systematic review and meta-analysis to quantitatively synthesize the evidence. The findings of this study suggest that exposure to PFAS may increase diabetes risk among the general population. Reduced exposure to these "forever and everywhere chemicals" may be an important preventative approach to reducing the risk of diabetes across the population.
Collapse
Affiliation(s)
- Si-Yu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Jian-Chao Qiao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Ke-Xin Xu
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Ze-Lian Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, China
| | - Yue-Nan Chen
- Department of Pharmacy, School of Clinical Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Ke-Jia Wu
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Zheng-Xuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China.
| | - Cheng-Yang Hu
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
33
|
Ding E, Wang Y, Liu J, Tang S, Shi X. A review on the application of the exposome paradigm to unveil the environmental determinants of age-related diseases. Hum Genomics 2022; 16:54. [DOI: 10.1186/s40246-022-00428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractAge-related diseases account for almost half of all diseases among adults worldwide, and their incidence is substantially affected by the exposome, which is the sum of all exogenous and endogenous environmental exposures and the human body’s response to these exposures throughout the entire lifespan. Herein, we perform a comprehensive review of the epidemiological literature to determine the key elements of the exposome that affect the development of age-related diseases and the roles of aging hallmarks in this process. We find that most exposure assessments in previous aging studies have used a reductionist approach, whereby the effect of only a single environmental factor or a specific class of environmental factors on the development of age-related diseases has been examined. As such, there is a lack of a holistic and unbiased understanding of the effect of multiple environmental factors on the development of age-related diseases. To address this, we propose several research strategies based on an exposomic framework that could advance our understanding—in particular, from a mechanistic perspective—of how environmental factors affect the development of age-related diseases. We discuss the statistical methods and other methods that have been used in exposome-wide association studies, with a particular focus on multiomics technologies. We also address future challenges and opportunities in the realm of multidisciplinary approaches and genome–exposome epidemiology. Furthermore, we provide perspectives on precise public health services for vulnerable populations, public communications, the integration of risk exposure information, and the bench-to-bedside translation of research on age-related diseases.
Collapse
|
34
|
Braun JM, Papandonatos GD, Li N, Sears CG, Buckley JP, Cecil KM, Chen A, Eaton CB, Kalkwarf HJ, Kelsey KT, Lanphear BP, Yolton K. Physical activity modifies the relation between gestational perfluorooctanoic acid exposure and adolescent cardiometabolic risk. ENVIRONMENTAL RESEARCH 2022; 214:114021. [PMID: 35952751 PMCID: PMC9637371 DOI: 10.1016/j.envres.2022.114021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 06/11/2023]
Abstract
OBJECTIVE Exposure to per- and polyfluoroalkyl substances (PFAS) - endocrine disrupting chemicals - may increase cardiometabolic risk. We evaluated whether adolescent lifestyle factors modified associations between gestational PFAS exposure and cardiometabolic risk using a prospective cohort study. METHODS In 166 mother-child pairs (HOME Study), we measured concentrations of four PFAS in maternal serum collected during pregnancy. When children were age 12 years, we calculated cardiometabolic risk scores from visceral adiposity area, blood pressure, and fasting serum biomarkers. We assessed adolescent physical activity and Healthy Eating Index scores using the Physical Activity Questionnaire for Older Children (PAQ-C), actigraphy, and 24-h diet recalls. Using multivariable linear regression and weighted quantile sum regression, we examined whether physical activity or diet modified covariate-adjusted associations of PFAS and their mixture with cardiometabolic risk scores. RESULTS Physical activity modified associations between perfluorooctanoic acid (PFOA) and cardiometabolic risk scores. Each doubling of PFOA was associated with worse cardiometabolic risk scores among children with PAQ-C scores < median (β:1.4; 95% CI:0.5, 2.2, n = 82), but not among those with PAQ-C scores ≥ median (β: 0.2; 95% CI: 1.2, 0.7, n = 84) (interaction p-value = 0.01). Associations were most prominent for insulin resistance, leptin-adiponectin ratio, and visceral fat area. We observed results suggesting that physical activity modified the association of PFAS mixture with cardiometabolic risk scores, insulin resistance, and visceral fat area (interaction p-values = 0.17, 0.07, and 0.10, respectively); however, the 95% CIs of the interaction terms included the null value. We observed similar, but attenuated patterns for PFOA and actigraphy-based measures of physical activity. Diet did not modify any associations. Physical activity or diet did not modify associations for other PFAS. CONCLUSIONS Childhood physical activity modified associations of prenatal serum PFOA concentrations with children's cardiometabolic risk in this cohort, indicating that lifestyle interventions may ameliorate the adverse effects of PFOA exposure.
Collapse
Affiliation(s)
- Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, 02912, Box G-S121, United States.
| | - George D Papandonatos
- Department of Biostatistics, School of Public Health, Brown University, Providence, RI, United States
| | - Nan Li
- Department of Epidemiology, Brown University, Providence, RI, 02912, Box G-S121, United States
| | - Clara G Sears
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Johns Hopkins University School of Public Health, Baltimore, MD, United States
| | - Kim M Cecil
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Charles B Eaton
- Department of Epidemiology, Brown University, Providence, RI, 02912, Box G-S121, United States; Department of Family Medicine, Warren Alpert Medical School of Brown University, Providence, RI, United States; Kent Memorial Hospital, Warwick, RI, United States
| | - Heidi J Kalkwarf
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Karl T Kelsey
- Department of Epidemiology, Brown University, Providence, RI, 02912, Box G-S121, United States; Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kimberly Yolton
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
35
|
Chung SM, Heo DG, Kim JH, Yoon JS, Lee HW, Kim JY, Moon JS, Won KC. Perfluorinated compounds in adults and their association with fasting glucose and incident diabetes: a prospective cohort study. Environ Health 2022; 21:101. [PMID: 36289510 PMCID: PMC9597959 DOI: 10.1186/s12940-022-00915-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The endocrine disruption of perfluorinated compounds is an emerging issue. We aimed to examine the association of serum perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) levels with incident diabetes and fasting serum glucose concentration. METHODS This prospective cohort study was based on an urban-based cohort subpopulation from the Korean Genome and Epidemiology Study. Serum samples (600 µL) were received from 100 participants in the normoglycemic baseline survey (2004-2013), and concentrations of PFOA and PFOS were measured using mass spectrometry. The incidence of diabetes was tracked in the follow-up survey (2012-2016). RESULTS The mean age was 56.4 years (men, 59%). The median serum PFOA and PFOS concentrations were 4.29 ng/mL and 9.44 ng/mL, respectively. PFOA and PFOS concentrations differed according to age, sex, and residential area. After 60 months, 23 patients had diabetes. Log-transformed PFOA (lnPFOA) and log-transformed PFOS (lnPFOS) were significantly higher in those who transitioned to diabetes than in those who did not (both p < 0.05). After multivariate adjustment, lnPFOA (coefficient = 6.98, 95% CI -0.04-14, p = 0.054) and lnPFOS (coefficient = 7.06, 95% CI -0.96-15.08, p = 0.088) predicted increased fasting glucose without statistical significance. In addition, lnPFOA, but not lnPFOS, significantly predicted incident diabetes (HR = 3.98, 95% CI 1.42-11.1, p < 0.01). CONCLUSION Exposure to PFOA and PFOS may have a potential dysglycemic effect. In particular, exposure to PFOA increased the risk of diabetes. Further research with larger sample size is warranted.
Collapse
Affiliation(s)
- Seung Min Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeungnam University College of Medicine, Hyunchung-Ro 170, Nam-Gu, Daegu, 42415, Republic of Korea
| | - Dong-Gyu Heo
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Korea
| | - Ju-Hyun Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Korea
| | - Ji Sung Yoon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeungnam University College of Medicine, Hyunchung-Ro 170, Nam-Gu, Daegu, 42415, Republic of Korea
| | - Hyoung Woo Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeungnam University College of Medicine, Hyunchung-Ro 170, Nam-Gu, Daegu, 42415, Republic of Korea
| | - Jong-Yeon Kim
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Jun Sung Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeungnam University College of Medicine, Hyunchung-Ro 170, Nam-Gu, Daegu, 42415, Republic of Korea.
| | - Kyu Chang Won
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeungnam University College of Medicine, Hyunchung-Ro 170, Nam-Gu, Daegu, 42415, Republic of Korea.
| |
Collapse
|
36
|
Li L, Yu N, Wang X, Shi W, Liu H, Zhang X, Yang L, Pan B, Yu H, Wei S. Comprehensive Exposure Studies of Per- and Polyfluoroalkyl Substances in the General Population: Target, Nontarget Screening, and Toxicity Prediction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14617-14626. [PMID: 36174189 DOI: 10.1021/acs.est.2c03345] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Novel per- and polyfluoroalkyl substances (PFASs) in the environment and populations have received extensive attention; however, their distribution and potential toxic effects in the general population remain unclear. Here, a comprehensive study on PFAS screening was carried out in serum samples of 202 individuals from the general population in four cities in China. A total of 165 suspected PFASs were identified using target and nontarget analysis, including seven identified PFAS homolog series, of which 16 PFASs were validated against standards, and seven PFASs [4:2 chlorinated polyfluorinated ether sulfonate (4:2 Cl-PFESA), 7:2 chlorinated polyfluorinated ether sulfonate (7:2 Cl-PFESA), hydrosubstituted perfluoroheptanoate (H-PFHpA), chlorine-substituted perfluorooctanoate (Cl-PFOA), chlorine-substituted perfluorononanate (Cl-PFNA), chlorine-substituted perfluorodecanoate (Cl-PFDA), and perfluorodecanedioic acid (PFLDCA n = 8)] were reported for the first time in human serum. The Tox21-GCN model (a graph convolutional neural network model based on the Tox21 database) was established to predict the toxicity of the discovered PFASs, revealing that PFASs containing sulfonic acid groups exhibited multiple potential toxic effects, such as estrogenic effects and stress responses. Our study indicated that the general population was exposed to various PFASs, and the toxicity prediction results of individual PFASs suggested potential health risks that could not be ignored.
Collapse
Affiliation(s)
- Laihui Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Nanyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Xuebing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, People's Republic of China
| |
Collapse
|
37
|
Roth K, Petriello MC. Exposure to per- and polyfluoroalkyl substances (PFAS) and type 2 diabetes risk. Front Endocrinol (Lausanne) 2022; 13:965384. [PMID: 35992116 PMCID: PMC9388934 DOI: 10.3389/fendo.2022.965384] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/13/2022] [Indexed: 01/09/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous man-made chemicals found in consumer products including fabrics, food packaging, non-stick coatings, and aqueous film-forming foams. PFAS are stable and extremely resistant to degradation, resulting in high persistence throughout the environment as well as in human blood. PFAS consist of a large family of synthetic chemicals, with over 4000 distinct varieties having been identified and around 250 currently being manufactured at globally relevant levels. Numerous epidemiological studies have linked exposure to PFAS with adverse health effects ranging from immunotoxicity, cardiometabolic disease, developmental and reproductive effects, cancer, and recently type 2 diabetes. Several studies have demonstrated associations between serum PFAS concentrations and glycemic indicators of type 2 diabetes including glucose, insulin, and HOMA-IR in adolescent and adult cohorts. In addition, some studies have shown positive associations with incident type 2 diabetes and multiple PFAS. However, the link between PFAS exposure and the development of diabetes continues to be a disputed area of study, with conflicting data having been reported from various epidemiological studies. In this mini review we will summarize the current state of the literature linking PFAS to type 2 diabetes and discuss important future directions including the use of more complex mixtures-based statistical analyses.
Collapse
Affiliation(s)
- Katherine Roth
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Michael C. Petriello
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, United States
| |
Collapse
|
38
|
Kaiser AM, Zare Jeddi M, Uhl M, Jornod F, Fernandez MF, Audouze K. Characterization of Potential Adverse Outcome Pathways Related to Metabolic Outcomes and Exposure to Per- and Polyfluoroalkyl Substances Using Artificial Intelligence. TOXICS 2022; 10:toxics10080449. [PMID: 36006128 PMCID: PMC9412358 DOI: 10.3390/toxics10080449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 01/09/2023]
Abstract
Human exposure to per- and polyfluoroalkyl substances (PFAS) has been associated with numerous adverse health effects, depending on various factors such as the conditions of exposure (dose/concentration, duration, route of exposure, etc.) and characteristics associated with the exposed target (e.g., age, sex, ethnicity, health status, and genetic predisposition). The biological mechanisms by which PFAS might affect systems are largely unknown. To support the risk assessment process, AOP-helpFinder, a new artificial intelligence tool, was used to rapidly and systematically explore all available published information in the PubMed database. The aim was to identify existing associations between PFAS and metabolic health outcomes that may be relevant to support building adverse outcome pathways (AOPs). The collected information was manually organized to investigate linkages between PFAS exposures and metabolic health outcomes, including dyslipidemia, hypertension, insulin resistance, and obesity. Links between PFAS exposure and events from the existing metabolic-related AOPs were also retrieved. In conclusion, by analyzing dispersed information from the literature, we could identify some associations between PFAS exposure and components of existing AOPs. Additionally, we identified some linkages between PFAS exposure and metabolic outcomes for which only sparse information is available or which are not yet present in the AOP-wiki database that could be addressed in future research.
Collapse
Affiliation(s)
| | - Maryam Zare Jeddi
- National Institute for Public Health and Environment (RIVM), 3721 MA Bilthoven, The Netherlands
- Correspondence:
| | - Maria Uhl
- Environment Agency Austria, 1090 Vienna, Austria
| | - Florence Jornod
- Université Paris Cité, T3S, Inserm UMRS 1124, F-75006 Paris, France
| | - Mariana F. Fernandez
- Centre for Biomedical Research, E-18016 Granada, Spain
- Department of Radiology and Physical Medicine, School of Medicine, University of Granada, E-18071 Granada, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública, CIBERESP), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Karine Audouze
- Université Paris Cité, T3S, Inserm UMRS 1124, F-75006 Paris, France
| |
Collapse
|
39
|
Obsekov V, Kahn LG, Trasande L. Leveraging Systematic Reviews to Explore Disease Burden and Costs of Per- and Polyfluoroalkyl Substance Exposures in the United States. EXPOSURE AND HEALTH 2022; 15:373-394. [PMID: 37213870 PMCID: PMC10198842 DOI: 10.1007/s12403-022-00496-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/03/2022] [Accepted: 06/23/2022] [Indexed: 05/23/2023]
Abstract
Accelerating evidence confirms the contribution of per- and polyfluoroalkyl substances (PFAS) to disease burden and disability across the lifespan. Given that policy makers raise the high cost of remediation and of substituting PFAS with safer alternatives in consumer products as barriers to confronting adverse health outcomes associated with PFAS exposure, it is important to document the costs of inaction even in the presence of uncertainty. We therefore quantified disease burdens and related economic costs due to legacy PFAS exposures in the US in 2018. We leveraged systematic reviews and used meta-analytic inputs whenever possible, identified previously published exposure-response relationships, and calculated PFOA- and PFOS-attributable increases in 13 conditions. These increments were then applied to census data to determine total annual PFOA- and PFOS-attributable cases of disease, from which we calculated economic costs due to medical care and lost productivity using previously published cost-of-illness data. We identified PFAS-attributable disease costs in the US of $5.52 billion across five primary disease endpoints shown to be associated with PFAS exposure in meta-analyses. This estimate represented the lower bound, with sensitivity analyses revealing as much as $62.6 billion in overall costs. While further work is needed to assess probability of causation and establish with greater certainty effects of the broader category of PFAS, the results confirm further that public health and policy interventions are still necessary to reduce exposure to PFOA and PFOS and their endocrine-disrupting effects. This study demonstrates the large potential economic implications of regulatory inaction. Supplementary Information The online version contains supplementary material available at 10.1007/s12403-022-00496-y.
Collapse
Affiliation(s)
- Vladislav Obsekov
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY USA
| | - Linda G. Kahn
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY USA
| | - Leonardo Trasande
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY USA
- Department of Environmental Health, NYU Grossman School of Medicine, New York, NY USA
- NYU Wagner School of Public Service, New York, NY USA
- NYU School of Global Public Health, New York, NY USA
| |
Collapse
|
40
|
Park SK, Wang X, Ding N, Karvonen-Gutierrez CA, Calafat AM, Herman WH, Mukherjee B, Harlow SD. Per- and polyfluoroalkyl substances and incident diabetes in midlife women: the Study of Women's Health Across the Nation (SWAN). Diabetologia 2022; 65:1157-1168. [PMID: 35399113 PMCID: PMC9177697 DOI: 10.1007/s00125-022-05695-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/03/2022] [Indexed: 01/28/2023]
Abstract
AIMS/HYPOTHESIS Diabetogenic effects of per- and polyfluoroalkyl substances (PFAS) have been suggested. However, evidence based on prospective cohort studies is limited. We examined the association between serum PFAS concentrations and incident diabetes in the Study of Women's Health Across the Nation Multi-Pollutant Study (SWAN-MPS). METHODS We included 1237 diabetes-free women aged 45-56 years at baseline (1999-2000) who were followed up to 2017. At each follow-up visit, women with incident diabetes were identified by the presence of one or more of the following conditions: (1) use of a glucose-lowering medication at any visit; (2) fasting glucose ≥7 mmol/l on two consecutive visits while not on steroids; and (3) any two visits with self-reported diabetes and at least one visit with fasting blood glucose ≥7 mmol/l. Serum concentrations of 11 PFAS were quantified by online solid-phase extraction-HPLC-isotope dilution-tandem MS. Seven PFAS with high detection rates (>96%) (n-perfluorooctanoic acid [n-PFOA], perfluorononanoic acid [PFNA], perfluorohexane sulfonic acid [PFHxS], n-perfluorooctane sulfonic acid [n-PFOS], sum of perfluoromethylheptane sulfonic acid isomers [Sm-PFOS], 2-[N-methyl-perfluorooctane sulfonamido] acetic acid [MeFOSAA] and 2-[N-ethyl-perfluorooctane sulfonamido] acetic acid) were included in data analysis. Cox proportional hazards models were used to compute HRs and 95% CIs. Quantile-based g-computation was used to evaluate the joint effects of PFAS mixtures. RESULTS After adjustment for race/ethnicity, site, education, smoking status, alcohol consumption, total energy intake, physical activity, menopausal status and BMI, the HR (95% CI) comparing the lowest with the highest tertile was 1.67 (1.21, 2.31) for n-PFOA (ptrend = 0.001), 1.58 (1.13, 2.21) for PFHxS (ptrend = 0.003), 1.36 (0.97, 1.90) for Sm-PFOS (ptrend = 0.05), 1.85 (1.28, 2.67) for MeFOSAA (ptrend = 0.0004) and 1.64 (1.17, 2.31) for the sum of four common PFAS (n-PFOA, PFNA, PFHxS and total PFOS) (ptrend = 0.002). Exposure to seven PFAS as mixtures was associated with an HR of 2.62 (95% CI 1.12, 6.20), comparing the top with the bottom tertiles for all seven PFAS. CONCLUSIONS/INTERPRETATION This study suggests that PFAS may increase diabetes risk in midlife women. Reduced exposure to these 'forever and everywhere chemicals' may be an important preventative approach to lowering population-wide diabetes risk.
Collapse
Affiliation(s)
- Sung Kyun Park
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| | - Xin Wang
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ning Ding
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - William H Herman
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Siobán D Harlow
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
41
|
Xie Y, May AL, Chen G, Brown LP, Powers JB, Tague ED, Campagna SR, Löffler FE. Pseudomonas sp. Strain 273 Incorporates Organofluorine into the Lipid Bilayer during Growth with Fluorinated Alkanes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8155-8166. [PMID: 35642897 DOI: 10.1021/acs.est.2c01454] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anthropogenic organofluorine compounds are recalcitrant, globally distributed, and a human health concern. Although rare, natural processes synthesize fluorinated compounds, and some bacteria have evolved mechanisms to metabolize organofluorine compounds. Pseudomonas sp. strain 273 grows with 1-fluorodecane (FD) and 1,10-difluorodecane (DFD) as carbon sources, but inorganic fluoride release was not stoichiometric. Metabolome studies revealed that this bacterium produces fluorinated anabolites and phospholipids. Mass spectrometric fatty acid profiling detected fluorinated long-chain (i.e., C12-C19) fatty acids in strain 273 cells grown with FD or DFD, and lipidomic profiling determined that 7.5 ± 0.2 and 82.0 ± 1.0% of the total phospholipids in strain 273 grown with FD or DFD, respectively, were fluorinated. The detection of the fluorinated metabolites and macromolecules represents a heretofore unrecognized sink for organofluorine, an observation with consequences for the environmental fate and transport of fluorinated aliphatic compounds.
Collapse
Affiliation(s)
- Yongchao Xie
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Amanda L May
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Gao Chen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Lindsay P Brown
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Joshua B Powers
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Eric D Tague
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, Tennessee 37996, United States
- University of Tennessee - Oak Ridge Innovation Institute, Knoxville, Tennessee 37996, United States
| | - Frank E Löffler
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
42
|
Hu Y, Willett WC, Manson JAE, Rosner B, Hu FB, Sun Q. Intake of whole grain foods and risk of coronary heart disease in US men and women. BMC Med 2022; 20:192. [PMID: 35681238 PMCID: PMC9185912 DOI: 10.1186/s12916-022-02396-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/05/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Epidemiological studies have demonstrated a favorable association of whole grain intake with coronary heart disease (CHD) risk, although whether such an inverse association holds true for individual whole grain foods that have various nutritional profiles has not been examined. METHODS We followed 74,244 women from Nurses' Health Study since 1986, 91,430 women from Nurses' Health Study II since 1991, and 39,455 men from the Health Professionals Follow-Up Study since 1984, who did not have a history of cardiovascular disease or cancer at baseline. Intake of seven individual whole grain foods was repeatedly assessed using a validated semi-quantitative food frequency questionnaire every 2-4 years since baseline. CHD diagnoses were ascertained through review of medical records or death certificates. RESULTS We documented 9461 CHD cases during an average of 25.8 years' follow-up. In the multivariable-adjusted model, the pooled hazard ratio (HR) (95% CI) of CHD risk corresponding to each one serving/day consumption of total whole grains was 0.93 (0.90-0.95; p trend <0.0001). Higher consumption of most individual whole grain foods was associated with significantly lower risk of CHD. Comparing participants consuming ≥1 serving/day with those consuming < 1 serving/month, the multivariable-adjusted pooled HRs (95% CIs) of CHD were 0.83 (0.78-0.89) for whole grain cold breakfast cereal, 0.92 (0.86-0.99) for dark bread, and 1.08 (0.96-1.22) for popcorn. For other whole grain foods with lower overall intake levels, comparing intake level of ≥2 servings/week with < 1 serving/month, the pooled hazard ratios (95% CIs) were 0.79 (0.74-0.84) for oatmeal, 0.79 (0.71-0.87) for brown rice, 0.84 (0.78-0.90) for added bran, and 0.87 (0.77-0.99) for wheat germ. Cubic spline regression suggested non-linear associations for certain whole grain foods: the risk reduction plateaued approximately over 2 servings/day for total whole grains, 0.5 serving/day for both cold breakfast cereal and dark bread, 0.5 serving/week for oatmeal, 1 serving/week for brown rice, and 2 serving/week for added bran (p for non-linearity <0.01 for all associations). CONCLUSIONS These data suggest that higher consumption of total whole grains, as well as individual whole grain foods except popcorn, were significantly associated with lower CHD risk. The inverse associations may plateau at various intake levels for total whole grain and individual whole grain foods. This study provides further evidence in support of increasing whole grain intake for the prevention of CHD in US populations.
Collapse
Affiliation(s)
- Yang Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
| | - Walter C Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine Research, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jo Ann E Manson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine Research, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Preventive Medicine, Department of Medicine Research, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Bernard Rosner
- Channing Division of Network Medicine, Department of Medicine Research, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine Research, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA. .,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Channing Division of Network Medicine, Department of Medicine Research, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. .,Joslin Diabetes Center, Boston, MA, 02115, USA.
| |
Collapse
|
43
|
Lochhead P, Khalili H, Ananthakrishnan AN, Burke KE, Richter JM, Sun Q, Grandjean P, Chan AT. Plasma concentrations of perfluoroalkyl substances and risk of inflammatory bowel diseases in women: A nested case control analysis in the Nurses' Health Study cohorts. ENVIRONMENTAL RESEARCH 2022; 207:112222. [PMID: 34662575 PMCID: PMC9960490 DOI: 10.1016/j.envres.2021.112222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFASs) are synthetic compounds used in a wide variety of industrial and consumer applications. An association between PFAS exposure and risk of ulcerative colitis (UC) has been reported in a highly exposed population. However, data are limited on risk of inflammatory bowel diseases (IBD) among individuals with background population levels of PFAS exposure. OBJECTIVES We set out to examine the association between plasma PFAS concentrations and risk of IBD among women in two population-based, prospective cohort studies in which pre-diagnostic blood specimens were available. METHODS We conducted a nested case-control study in the Nurses' Health Study and Nurses' Health Study II cohorts. We identified 73 participants with incident Crohn's disease (CD) and 80 participants with incident UC who had provided blood samples before diagnosis. Cases were matched 1:2 to IBD-free controls. Plasma concentrations of five major PFASs were measured by liquid chromatography and tandem mass spectrometry. We used conditional logistic models to estimated odds ratios for risk of IBD according to log10-transformed PFAS concentrations, adjusting for potential confounders. RESULTS In multivariable models, we observed inverse associations between plasma concentrations of three PFASs and risk of CD (all P ≤ 0.012 for a standard deviation increase in log10PFAS). The inverse association with CD was strongest for perfluorodecanoate, where, compared to the lowest tertile, the odds ratio (OR) for the highest tertile was 0.39 (95% confidence interval, 0.17-0.92). No associations were observed between PFAS concentrations and UC risk. DISCUSSION Our results do not support the hypothesis that elevated PFAS exposure is associated with higher risk of UC. Contrary to expectation, our data suggest that circulating concentrations of some PFASs may be inversely associated with CD development.
Collapse
Affiliation(s)
- Paul Lochhead
- Clinical and Translational Epidemiology Unit, Massachusetts Hospital and Harvard Medical School, Boston, MA, USA; Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hamed Khalili
- Clinical and Translational Epidemiology Unit, Massachusetts Hospital and Harvard Medical School, Boston, MA, USA; Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ashwin N Ananthakrishnan
- Clinical and Translational Epidemiology Unit, Massachusetts Hospital and Harvard Medical School, Boston, MA, USA; Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kristin E Burke
- Clinical and Translational Epidemiology Unit, Massachusetts Hospital and Harvard Medical School, Boston, MA, USA; Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - James M Richter
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Philippe Grandjean
- Institute of Public Health, University of Southern Denmark, Odense, Denmark; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts Hospital and Harvard Medical School, Boston, MA, USA; Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Hoyeck MP, Matteo G, MacFarlane EM, Perera I, Bruin JE. Persistent organic pollutants and β-cell toxicity: a comprehensive review. Am J Physiol Endocrinol Metab 2022; 322:E383-E413. [PMID: 35156417 PMCID: PMC9394781 DOI: 10.1152/ajpendo.00358.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 01/09/2023]
Abstract
Persistent organic pollutants (POPs) are a diverse family of contaminants that show widespread global dispersion and bioaccumulation. Humans are continuously exposed to POPs through diet, air particles, and household and commercial products; POPs are consistently detected in human tissues, including the pancreas. Epidemiological studies show a modest but consistent correlation between exposure to POPs and increased diabetes risk. The goal of this review is to provide an overview of epidemiological evidence and an in-depth evaluation of the in vivo and in vitro evidence that POPs cause β-cell toxicity. We review evidence for six classes of POPs: dioxins, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), flame retardants, and per- and polyfluoroalkyl substances (PFAS). The available data provide convincing evidence implicating POPs as a contributing factor driving impaired glucose homeostasis, β-cell dysfunction, and altered metabolic and oxidative stress pathways in islets. These findings support epidemiological data showing that POPs increase diabetes risk and emphasize the need to consider the endocrine pancreas in toxicity assessments. Our review also highlights significant gaps in the literature assessing islet-specific endpoints after both in vivo and in vitro POP exposure. In addition, most rodent studies do not consider the impact of biological sex or secondary metabolic stressors in mediating the effects of POPs on glucose homeostasis and β-cell function. We discuss key gaps and limitations that should be assessed in future studies.
Collapse
Affiliation(s)
- Myriam P Hoyeck
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Geronimo Matteo
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Erin M MacFarlane
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Ineli Perera
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Jennifer E Bruin
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
45
|
Hu WY, Lu R, Hu DP, Imir OB, Zuo Q, Moline D, Afradiasbagharani P, Liu L, Lowe S, Birch L, Griend DJV, Madak-Erdogan Z, Prins GS. Per- and polyfluoroalkyl substances target and alter human prostate stem-progenitor cells. Biochem Pharmacol 2022; 197:114902. [PMID: 34968493 PMCID: PMC8890783 DOI: 10.1016/j.bcp.2021.114902] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) are a large family of widely used synthetic chemicals that are environmentally and biologically persistent and present in most individuals. Chronic PFAS exposure have been linked to increased prostate cancer risk in occupational settings, however, underlying mechanisms have not been interrogated. Herein we examined exposure of normal human prostate stem-progenitor cells (SPCs) to 10 nM PFOA or PFOS using serial passage of prostasphere cultures. Exposure to either PFAS for 3-4 weeks increased spheroid numbers and size indicative of elevated stem cell self-renewal and progenitor cell proliferation. Transcriptome analysis using single-cell RNA sequencing (scRNA-seq) showed 1) SPC expression of PPARs and RXRs able to mediate PFAS effects, 2) the emergence of a new cell cluster of aberrantly differentiated luminal progenitor cells upon PFOS/PFOA exposure, and 3) enrichment of cancer-associated signaling pathways. Metabolomic analysis of PFAS-exposed prostaspheres revealed increased glycolytic pathways including the Warburg effect as well as strong enrichment of serine and glycine metabolism which may promote a pre-malignant SPC fate. Finally, growth of in vivo xenografts of tumorigenic RWPE-2 human prostate cells, shown to contain cancer stem-like cells, was markedly enhanced by daily PFOS feeding to nude mice hosts. Together, these findings are the first to identify human prostate SPCs as direct PFAS targets with resultant reprogrammed transcriptomes and metabolomes that augment a preneoplastic state and may contribute to an elevated prostate cancer risk with chronic exposures.
Collapse
Affiliation(s)
- Wen-Yang Hu
- Department of Urology, College of Medicine, University of Illinois at Chicago, United States; Chicago Center for Health and Environment, University of Illinois at Chicago, United States
| | - Ranli Lu
- Department of Urology, College of Medicine, University of Illinois at Chicago, United States
| | - Dan Ping Hu
- Department of Urology, College of Medicine, University of Illinois at Chicago, United States
| | - Ozan Berk Imir
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, United States
| | - Qianying Zuo
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, United States
| | - Dan Moline
- Department of Pathology, College of Medicine, University of Illinois at Chicago, United States
| | | | - Lifeng Liu
- Department of Urology, College of Medicine, University of Illinois at Chicago, United States
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, United States
| | - Lynn Birch
- Department of Urology, College of Medicine, University of Illinois at Chicago, United States
| | - Donald J Vander Griend
- Chicago Center for Health and Environment, University of Illinois at Chicago, United States; Department of Pathology, College of Medicine, University of Illinois at Chicago, United States; University of Illinois Cancer Center, University of Illinois at Chicago, United States
| | - Zeynep Madak-Erdogan
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, United States; Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, United States; Department of Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois, Urbana-Champaign, United States; Cancer Center at Illinois, University of Illinois, Urbana-Champaign, United States
| | - Gail S Prins
- Department of Urology, College of Medicine, University of Illinois at Chicago, United States; Chicago Center for Health and Environment, University of Illinois at Chicago, United States; Department of Pathology, College of Medicine, University of Illinois at Chicago, United States; Department of Physiology & Biophysics, College of Medicine, University of Illinois at Chicago, United States; Division of Epidemiology & Biostatistics, School of Public Health, University of Illinois at Chicago, United States; University of Illinois Cancer Center, University of Illinois at Chicago, United States.
| |
Collapse
|
46
|
Wilde VK. Neonatal Jaundice and Autism: Precautionary Principle Invocation Overdue. Cureus 2022; 14:e22512. [PMID: 35228983 PMCID: PMC8873319 DOI: 10.7759/cureus.22512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 11/05/2022] Open
|
47
|
Wei H, Sun J, Shan W, Xiao W, Wang B, Ma X, Hu W, Wang X, Xia Y. Environmental chemical exposure dynamics and machine learning-based prediction of diabetes mellitus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150674. [PMID: 34597539 DOI: 10.1016/j.scitotenv.2021.150674] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/10/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND With dramatically increasing prevalence, diabetes mellitus has imposed a tremendous toll on individual well-being. Humans are exposed to various environmental chemicals, which have been postulated as underappreciated but potentially modifiable diabetes risk factors. OBJECTIVES To determine the utility of environmental chemical exposure in predicting diabetes mellitus. METHODS A total of 8501 eligible participants from NHANES 2005-2016 were randomly assigned to a discovery (N = 5953) set and a validation (N = 2548) set. We applied random forest (RF) and least absolute shrinkage and selection operator (LASSO) regression with 10-fold cross-validation in the discovery set to select features, and built an optimal model to predict diabetes mellitus, blood insulin, fasting plasma glucose (FPG) and 2-h plasma glucose after oral glucose tolerance test (2-h PG after OGTT). RESULTS The machine learning model using LASSO regression predicted diabetes with an area under the receiver operating characteristics (AUROC) of 0.80 and 0.78 in the discovery set and validation set, respectively. The linear model predicted blood insulin level with an R2 of 0.42 and 0.40 in the discovery set and validation set, respectively. For FPG, the discovery set and validation set yielded an R2 of 0.16 and 0.15, respectively. For 2-h PG after OGTT, the discovery set and validation set yielded an R2 of 0.18 and 0.17, respectively. CONCLUSION We used environmental chemical exposure, constructed machine learning models and achieved relatively accurate prediction for diabetes, emphasizing the predictive value of widespread environmental chemicals for complicated diseases.
Collapse
Affiliation(s)
- Hongcheng Wei
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jie Sun
- Department of Endocrinology, Drum Tower hospital affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing 210008, China
| | - Wenqi Shan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenwen Xiao
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Bingqian Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xuan Ma
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Weiyue Hu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
48
|
Xenobiotic-Induced Aggravation of Metabolic-Associated Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23031062. [PMID: 35162986 PMCID: PMC8834714 DOI: 10.3390/ijms23031062] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 01/09/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), which is often linked to obesity, encompasses a large spectrum of hepatic lesions, including simple fatty liver, steatohepatitis, cirrhosis and hepatocellular carcinoma. Besides nutritional and genetic factors, different xenobiotics such as pharmaceuticals and environmental toxicants are suspected to aggravate MAFLD in obese individuals. More specifically, pre-existing fatty liver or steatohepatitis may worsen, or fatty liver may progress faster to steatohepatitis in treated patients, or exposed individuals. The mechanisms whereby xenobiotics can aggravate MAFLD are still poorly understood and are currently under deep investigations. Nevertheless, previous studies pointed to the role of different metabolic pathways and cellular events such as activation of de novo lipogenesis and mitochondrial dysfunction, mostly associated with reactive oxygen species overproduction. This review presents the available data gathered with some prototypic compounds with a focus on corticosteroids and rosiglitazone for pharmaceuticals as well as bisphenol A and perfluorooctanoic acid for endocrine disruptors. Although not typically considered as a xenobiotic, ethanol is also discussed because its abuse has dire consequences on obese liver.
Collapse
|
49
|
You L, Zheng F, Su C, Wang L, Li X, Chen Q, Kou J, Wang X, Wang Y, Wang Y, Mei S, Zhang B, Liu X, Xu G. Metabolome-wide association study of serum exogenous chemical residues in a cohort with 5 major chronic diseases. ENVIRONMENT INTERNATIONAL 2022; 158:106919. [PMID: 34634623 DOI: 10.1016/j.envint.2021.106919] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Chronic diseases have become main killers affecting the health of human, and environmental pollution is a major health risk factor that cannot be ignored. It has been reported that exogenous chemical residues including pesticides, herbicides, fungicides, veterinary drugs and persistent organic pollutants are associated with chronic diseases. However, the evidence for their relationship is equivocal and the underlying mechanisms are unclear. OBJECTIVES We aim to investigate the linkages between serum exogenous chemical residues and 5 main chronic diseases including obesity, hyperuricemia, hypertension, diabetes and dyslipidemia, and further reveal the metabolic perturbations of chronic diseases related to exogenous chemical residue exposure, then gain potential mechanism insight at the metabolic level. METHODS LC-MS-based targeted and nontargeted methods were respectively performed to quantify exogenous chemical residues and acquire metabolic profiling of 496 serum samples from chronic disease patients. Non-parametric test, correlation and regression analyses were carried out to investigate the association between exogenous chemical residues and chronic diseases. Metabolome-wide association study combined with the meeting-in-the-middle strategy and mediation analysis was performed to reveal and explain exposure-related metabolic disturbances and their risk to chronic diseases. RESULTS In the association analysis of 106 serum exogenous chemical residues and 5 chronic diseases, positive associations of serum perfluoroalkyl substances (PFASs) with hyperuricemia were discovered while other associations were not significant. 240 exposure markers of PFASs and 84 disease markers of hyperuricemia were found, and 47 of them were overlapped and considered as putative effective markers. Serum uric acid, amino acids, cholesterol, carnitines, fatty acids, glycerides, glycerophospholipids, ceramides, and a part of sphingolipids were positively correlated with PFASs and associated with increased risk for hyperuricemia. Creatine, creatinine, glyceryl monooleate, phosphatidylcholine 36:6, phosphatidylethanolamine 40:6, cholesterol and sphingolipid 36:1;2O were significant markers which mediated the associations of the residues with hyperuricemia. CONCLUSIONS Our study demonstrated a significantly positive association between PFASs exposure and hyperuricemia. The most significant metabolic abnormality was lipid metabolism which not only was positively associated with PFASs, but also increased the risk of hyperuricemia.
Collapse
Affiliation(s)
- Lei You
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fujian Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Su
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Limei Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Xiang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Qianqian Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Kou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yanfeng Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Bing Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
50
|
Wise LA, Wesselink AK, Schildroth S, Calafat AM, Bethea TN, Geller RJ, Coleman CM, Fruh V, Claus Henn B, Botelho JC, Harmon QE, Thirkill M, Wegienka GR, Baird DD. Correlates of plasma concentrations of per- and poly-fluoroalkyl substances among reproductive-aged Black women. ENVIRONMENTAL RESEARCH 2022; 203:111860. [PMID: 34403666 PMCID: PMC8616815 DOI: 10.1016/j.envres.2021.111860] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals used in commercial and consumer goods. Black women are underrepresented in studies of PFAS exposure. METHODS We performed a cross-sectional analysis of correlates of plasma PFAS concentrations among 1499 Black women aged 23-35 participating in the Study of Environment, Lifestyle, and Fibroids (SELF), a Detroit-based cohort study. At baseline (2010-2012), participants provided questionnaire data on socio-demographics; behaviors; diet; and menstrual, contraceptive, and reproductive histories. Using mass spectrometry in non-fasting plasma samples collected at enrollment, we quantified several PFAS, including perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUnDA), and 2-N-methyl-perfluorooctane sulfonamido acetate (MeFOSAA). We used linear regression to calculate percentage differences (%D) and 95 % confidence intervals (CIs) for associations between selected correlates and PFAS concentrations, adjusting for all other correlates. RESULTS PFHxS, PFOS, PFOA, and PFNA were detected in ≥97 % of women; PFDA in 86 %; MeFOSAA in 70 %; and PFUnDA in 52 %. Age, income, education, and intakes of water, alcohol, and seafood were positively associated with several PFAS. Current smoking was positively associated with MeFOSAA. Body mass index was inversely associated with most PFAS, except PFHxS. Strong inverse associations (%D; 95 % CI) were observed between parity (≥3 vs. 0 births) and PFHxS (-34.7; -43.0, -25.1) and PFOA (-33.1; -39.2, -26.3); breastfeeding duration (≥6 months vs. nulliparous) and PFOA (-31.1; -37.8, -23.7), PFHxS (-24.2; -34.5, -12.3), and PFOS (-18.4; -28.3, -7.1); recent birth (<2 years ago vs. nulliparous) and PFOA (-33.1; -39.6, -25.8), PFHxS (-29.3; -39.0, -18.1), PFNA (-25.2; -32.7, -16.8), and PFOS (-18.3; -28.3, -6.9); and intensity of menstrual bleed (heavy vs. light) and PFHxS (-18.8; -28.3, -8.2), PFOS (-16.4; -24.9, -7.1), PFNA (-10.5; -17.8, -2.6), and PFOA (-10.0; -17.2, -2.1). Current use of depot medroxyprogesterone acetate (DMPA) was positively associated with PFOS (20.2; 1.4, 42.5), PFOA (16.2; 1.5, 33.0), and PFNA (15.3; 0.4, 32.4). CONCLUSIONS Reproductive factors that influence PFAS elimination showed strong associations with several PFAS (reduced concentrations with parity, recent birth, lactation, heavy menstrual bleeding; increased concentrations with DMPA use).
Collapse
Affiliation(s)
- Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| | - Amelia K Wesselink
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Traci N Bethea
- Office of Minority Health & Health Disparities Research, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Ruth J Geller
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Chad M Coleman
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Victoria Fruh
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Julianne C Botelho
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Quaker E Harmon
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Maya Thirkill
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | | | - Donna D Baird
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|