1
|
Luo X, Wang Y, Zhu Z, Ping J, Hou B, Shan W, Feng Z, Lin Y, Zhang L, Zhang Y, Wang Y. Association between window ventilation frequency and depressive symptoms among older Chinese adults. J Affect Disord 2025; 368:607-614. [PMID: 39303883 DOI: 10.1016/j.jad.2024.09.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVES Indoor air pollution exposure is harmful to people's physical and mental health, especially in the elderly population. Depressive symptoms are the most common mental health issue among elderly individuals. However, evidence linking the frequency of indoor natural ventilation to depressive symptoms in the elderly population is limited. METHODS This study included 7887 individuals 65 years and older from 2017 to 2018 the China Longitudinal Healthy Longevity Survey (CLHLS). The frequency of indoor window ventilation was measured as the self-reported times of ventilation of indoor window per week in each season, and the four seasons' scores were added up to calculate the annual ventilation frequency. Depressive symptoms were measured by the 10-item Center for Epidemiologic Studies Short Depression Scale (CESD). Using three models adjusted for demographic, socio-economic, health status, and environmental factors successively, the correlation between indoor window ventilation frequency and depressive symptoms was verified through logistic regression. RESULTS Among the 7887 elderly people included in this study, 1952 (24.7 %) had depressive symptoms. In the fully adjusted model, compared with the lower indoor annual ventilation frequency group, high indoor annual ventilation frequency group was significantly associated with a 33 % (OR: 0.67, 95%CI: 0.51-0.88) lower probability of depressive symptoms. Subgroup analysis and sensitivity analysis yielded similar results. CONCLUSIONS High frequency of window ventilation is significantly associated with the lower risk of depressive symptoms in Chinese individuals aged 65 and older. This result provides strong evidence for health intervention and policy formulation.
Collapse
Affiliation(s)
- Xinxin Luo
- Department of Psychiatry, The Third People's Hospital of Zhongshan City, Zhongshan, China
| | - Yuanlong Wang
- Department of Psychiatry, The Third People's Hospital of Zhongshan City, Zhongshan, China
| | - Zifan Zhu
- Anhui Mental Health Center, The Fourth People's Hospital, Hefei, China
| | - Junjiao Ping
- Department of Psychiatry, The Third People's Hospital of Zhongshan City, Zhongshan, China
| | - Biao Hou
- Capital Medical University, Beijing, China
| | - Wei Shan
- South China University of Technology, Guangzhou, Guangdong, China
| | - Zisheng Feng
- Shenzhen Mental Health Centre, Shenzhen Kangning Hospital, Shenzhen, China
| | - Yanan Lin
- Shenzhen Mental Health Centre, Shenzhen Kangning Hospital, Shenzhen, China
| | - Liangying Zhang
- Shenzhen Mental Health Centre, Shenzhen Kangning Hospital, Shenzhen, China
| | - Yingli Zhang
- Shenzhen Mental Health Centre, Shenzhen Kangning Hospital, Shenzhen, China.
| | - Yongjun Wang
- Shenzhen Mental Health Centre, Shenzhen Kangning Hospital, Shenzhen, China; Department of Psychiatry, The Third People's Hospital of Zhongshan City, Zhongshan, China.
| |
Collapse
|
2
|
Stefani O, Schöllhorn I, Münch M. Towards an evidence-based integrative lighting score: a proposed multi-level approach. Ann Med 2024; 56:2381220. [PMID: 39049780 PMCID: PMC11275531 DOI: 10.1080/07853890.2024.2381220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 07/27/2024] Open
Abstract
Background: Human circadian clocks are synchronized daily with the external light-dark cycle and entrained to the 24-hour day. There is increasing evidence that a lack of synchronization and circadian entrainment can lead to adverse health effects. Beyond vision, light plays a critical role in modulating many so-called non-visual functions, including sleep-wake cycles, alertness, mood and endocrine functions. To assess (and potentially optimize) the impact of light on non-visual functions, it is necessary to know the exact 'dose' (i.e. spectral irradiance and exposure duration at eye level) of 24-hour light exposures, but also to include metadata about the lighting environment, individual needs and resources. Problem statement: To address this problem, a new assessment tool is needed that uses existing metrics to provide metadata and information about light quality and quantity from all sources. In this commentary, we discuss the need to develop an evidence-based integrative lighting score that is tailored to specific audiences and lighting environments. We will summarize the most compelling evidence from the literature and outline a future plan for developing such a lighting score using internationally accepted metrics, stakeholder and user feedback. Conclusion: We propose a weighting system that combines light qualities with physiological and behavioral effects, and the use of mathematical modelling for an output score. Such a scoring system will facilitate a holistic assessment of a lighting environment, integrating all available light sources.
Collapse
Affiliation(s)
- Oliver Stefani
- Lucerne School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, Horw, Switzerland
| | - Isabel Schöllhorn
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Mirjam Münch
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Research Cluster Molecular Cognitive Neuroscience, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
McDowell RJ, Didikoglu A, Woelders T, Gatt MJ, Moffatt F, Notash S, Hut RA, Brown TM, Lucas RJ. Beyond Lux: methods for species and photoreceptor-specific quantification of ambient light for mammals. BMC Biol 2024; 22:257. [PMID: 39538277 DOI: 10.1186/s12915-024-02038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Light is a key environmental regulator of physiology and behaviour. Mistimed or insufficient light disrupts circadian rhythms and is associated with impaired health and well-being across mammals. Appropriate lighting is therefore crucial for indoor housed mammals. Light is commonly measured in lux. However, this employs a spectral weighting function for human luminance and is not suitable for 'non-visual' effects of light or use across species. In humans, a photoreceptor-specific (α-opic) metrology system has been proposed as a more appropriate way of measuring light. RESULTS Here we establish technology to allow this α-opic measurement approach to be readily extended across mammalian species, accounting for differences in photoreceptor types, photopigment spectral sensitivities, and eye anatomy. We develop a high-throughput method to derive spectral sensitivities for recombinantly expressed mammalian opsins and use it to establish the spectral sensitivity of melanopsin from 13 non-human mammals. We further address the need for simple measurement strategies for species-specific α-opic measures by developing an accessible online toolbox for calculating these units and validating an open hardware multichannel light sensor for 'point and click' measurement. We finally demonstrate that species-specific α-opic measurements are superior to photopic lux as predictors of physiological responses to light in mice and allow ecologically relevant comparisons of photosensitivity between species. CONCLUSIONS Our study presents methods for measuring light in species-specific α-opic units that are superior to the existing unit of photopic lux and holds the promise of improvements to the health and welfare of animals, scientific research reproducibility, agricultural productivity, and energy usage.
Collapse
Affiliation(s)
- Richard J McDowell
- Centre for Biological Timing, Division of Neuroscience, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Altug Didikoglu
- Centre for Biological Timing, Division of Neuroscience, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
- Department of Neuroscience, Izmir Institute of Technology, Gulbahce, Izmir, 35430, Urla, Turkey
| | - Tom Woelders
- Centre for Biological Timing, Division of Neuroscience, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Mazie J Gatt
- Centre for Biological Timing, Division of Neuroscience, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Finn Moffatt
- Centre for Biological Timing, Division of Neuroscience, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Saba Notash
- Centre for Biological Timing, Division of Neuroscience, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Roelof A Hut
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, PO BOX 11103, 9700CC, Groningen, Netherlands
| | - Timothy M Brown
- Centre for Biological Timing, Division of Diabetes Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Robert J Lucas
- Centre for Biological Timing, Division of Neuroscience, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
4
|
Shi D, Dang J, Chen H, Yang D, Yu Z, Guo L, Dong Y, Li J, Li X, Li X, Li X, Song Y. Assessment of indoor light-at-night exposure in children and adolescents during schooldays and weekends. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124689. [PMID: 39116920 DOI: 10.1016/j.envpol.2024.124689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Light-At-Night (LAN) is increasingly recognized and may has adverse health effects on children and adolescents, yet few studies have reported objective indoor LAN exposure levels for children and adolescents. In this study, we measured the indoor LAN exposure levels and duration among 897 children and adolescents aged 6-14 in Beijing, China, using portable photometers during both school days and weekends. Results indicate that the median indoor LAN exposure from 9:00 p.m. to 7:00 a.m. was 5.1 lx, with 31.8% of the subjects experiencing an average exposure above 10 lx. Additionally, from the perspective of cumulative high exposure duration, children and adolescents were exposed to more than 10 lx for approximately 64 min from 9:00 p.m. to 7:00 a.m. During the entire nighttime (from self-reported bedtime to wake-up time), the median exposure was 2.1 lx, with 16.6% averaging exposures above 10 lx. Exposure levels were significantly higher on weekends than on schooldays. Both girls and upper-grade students had higher levels of exposure and longer durations of high exposure. Girls in grade 7 (OR:2.56, 95%CI: 1.68-3.88) experienced the highest LAN exposure in our subjects compared to boys in grade 1-4. Our findings underscore the importance of promoting healthy light exposure behaviors among children and adolescents and reducing their light exposure environments to mitigate the potential health impacts of LAN.
Collapse
Affiliation(s)
- Di Shi
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China.
| | - Jiajia Dang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China.
| | - Haihua Chen
- Dongcheng Primary and Secondary School Health Care Center, Beijing, China.
| | - Dongmei Yang
- Tongzhou District Center for Disease Control and Prevention, Beijing, China.
| | - Zhaocang Yu
- Beijing Tongzhou District Primary and Secondary School Health Care Institute, Beijing, China.
| | - Lipo Guo
- Changping Health Education Center for Primary and Secondary Schools, Beijing, China.
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China.
| | - Jing Li
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China.
| | - Xiaochuan Li
- Peking Union Medical College Hospital, Beijing, 100730, China.
| | - Xue Li
- Institute of Earthquake Forecasting of the China Earthquake Administration, Wuhan, China.
| | - Xi Li
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China.
| | - Yi Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China.
| |
Collapse
|
5
|
Campbell I, Sharifpour R, Balda Aizpurua JF, Beckers E, Paparella I, Berger A, Koshmanova E, Mortazavi N, Read J, Zubkov M, Talwar P, Collette F, Sherif S, Phillips C, Lamalle L, Vandewalle G. Regional response to light illuminance across the human hypothalamus. eLife 2024; 13:RP96576. [PMID: 39466317 PMCID: PMC11517251 DOI: 10.7554/elife.96576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Light exerts multiple non-image-forming biological effects on physiology including the stimulation of alertness and cognition. However, the subcortical circuitry underlying the stimulating impact of light is not established in humans. We used 7 Tesla functional magnetic resonance imaging to assess the impact of variations in light illuminance on the regional activity of the hypothalamus while healthy young adults (N=26; 16 women; 24.3±2.9 y) were completing two auditory cognitive tasks. We find that, during both the executive and emotional tasks, higher illuminance triggered an activity increase over the posterior part of the hypothalamus, which includes part of the tuberomamillary nucleus and the posterior part of the lateral hypothalamus. In contrast, increasing illuminance evoked a decrease in activity over the anterior and ventral parts of the hypothalamus, encompassing notably the suprachiasmatic nucleus and another part of the tuberomammillary nucleus. Critically, the performance of the executive task was improved under higher illuminance and was negatively correlated with the activity of the posterior hypothalamus area. These findings reveal the distinct local dynamics of different hypothalamus regions that underlie the impact of light on cognition.
Collapse
Affiliation(s)
| | | | | | - Elise Beckers
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht UniversityMaastrichtNetherlands
| | | | - Alexandre Berger
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
- Synergia Medical SAMont-Saint-GuibertBelgium
- Institute of Neuroscience (IoNS), Department of Clinical Neuroscience, Université Catholique de Louvain (UCLouvain)Woluwe-Saint-LambertBelgium
| | | | | | - John Read
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
| | | | - Puneet Talwar
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
| | | | - Siya Sherif
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
| | | | | | | |
Collapse
|
6
|
Crawford MR, Winnebeck EC, von Schantz M, Gardani M, Miller MA, Revell V, Hare A, Horton CL, Durrant S, Steier J. The British Sleep Society position statement on Daylight Saving Time in the UK. J Sleep Res 2024:e14352. [PMID: 39439274 DOI: 10.1111/jsr.14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 10/25/2024]
Abstract
There is an ongoing debate in the United Kingdom and in other countries about whether twice-yearly changes into and out of Daylight Saving Time should be abolished. Opinions are divided about whether any abolition of Daylight Saving Time should result in permanent Standard Time, or year-long Daylight Saving Time. The British Sleep Society concludes from the available scientific evidence that circadian and sleep health are affected negatively by enforced changes of clock time (especially in a forward direction) and positively by the availability of natural daylight during the morning. Thus, our recommendation is that the United Kingdom should abolish the twice-yearly clock change and reinstate Standard Time throughout the year.
Collapse
Affiliation(s)
- Megan R Crawford
- University of Strathclyde Centre for Sleep Health, Department of Psychological Sciences and Health, University of Strathclyde, Glasgow, UK
| | - Eva C Winnebeck
- Section of Chronobiology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Malcolm von Schantz
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | - Maria Gardani
- School of Health in Social Science, Department of Clinical and Health Psychology, University of Edinburgh, Edinburgh, UK
| | - Michelle A Miller
- Directorate of Warwick Applied Health, Warwick Medical School, University of Warwick, Coventry, UK
| | - Victoria Revell
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Alanna Hare
- Department of Sleep and Ventilation, Royal Brompton and Harefield Hospitals, London, UK
- Honorary Clinical Senior Lecturer, NHLI, Imperial College London, London, UK
| | - Caroline L Horton
- Department of Psychology, Bishop Grosseteste University, Lincoln, UK
- Lincoln Sleep Research Centre, University of Lincoln, Lincoln, UK
| | - Simon Durrant
- Lincoln Sleep Research Centre, University of Lincoln, Lincoln, UK
- School of Psychology, University of Lincoln, Lincoln, UK
| | - Joerg Steier
- Centre for Human and Applied Physiological Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
7
|
Mazurek KA, Li L, Klein RJ, Rong S, Mullan AF, Jones DT, St Louis EK, Worrell GA, Chen CY. Investigating the effects of indoor lighting on measures of brain health in older adults: protocol for a cross-over randomized controlled trial. BMC Geriatr 2024; 24:816. [PMID: 39394603 PMCID: PMC11468298 DOI: 10.1186/s12877-023-04594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/13/2023] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND The worldwide number of adults aged 60 years and older is expected to double from 1 billion in 2019 to 2.1 billion by 2050. As the population lives longer, the rising incidence of chronic diseases, cognitive disorders, and behavioral health issues threaten older adults' health span. Exercising, getting sufficient sleep, and staying mentally and socially active can improve quality of life, increase independence, and potentially lower the risk for Alzheimer's disease or other dementias. Nonpharmacological approaches might help promote such behaviors. Indoor lighting may impact sleep quality, physical activity, and cognitive function. Dynamically changing indoor lighting brightness and color throughout the day has positive effects on sleep, cognitive function, and physical activity of its occupants. The aim of this study is to investigate how different indoor lighting conditions affect such health measures to promote healthier aging. METHODS This protocol is a randomized, cross-over, single-site trial followed by an exploratory third intervention. Up to 70 older adults in independent living residences at a senior living facility will be recruited. During this 16-week study, participants will experience three lighting conditions. Two cohorts will first experience a static and a dynamic lighting condition in a cluster-randomized cross-over design. The static condition lighting will have fixed brightness and color to match lighting typically provided in the facility. For the dynamic condition, brightness and color will change throughout the day with increased brightness in the morning. After the cross-over, both cohorts will experience another dynamic lighting condition with increased morning brightness to determine if there is a saturation effect between light exposure and health-related measures. Light intake, sleep quality, and physical activity will be measured using wearable devices. Sleep, cognitive function, mood, and social engagement will be assessed using surveys and cognitive assessments. DISCUSSION We hypothesize participants will have better sleep quality and greater physical activity during the dynamic lighting compared to the static lighting condition. Additionally, we hypothesize there is a maximal threshold at which health-outcomes improve based on light exposure. Study findings may identify optimal indoor lighting solutions to promote healthy aging for older adults. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05978934.
Collapse
Affiliation(s)
- Kevin A Mazurek
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Neuroscience, University of Rochester, Rochester, NY, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Linhao Li
- Well Living Lab, Rochester, MN, USA.
- Delos Living LLC, New York, NY, USA.
| | - Robert J Klein
- Well Living Lab, Rochester, MN, USA
- Delos Living LLC, New York, NY, USA
| | | | - Aidan F Mullan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Erik K St Louis
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Center for Sleep Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Gregory A Worrell
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Christina Y Chen
- Department of Community Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Ellender CM, Ruehland WR, Duce B, Joyce R, Worsnop C, Mercer J, Naughton M, Hukins CA, Wheatley J, Cunnington D. Australasian Sleep Association 2024 guidelines for sleep studies in adults. Sleep 2024; 47:zsae107. [PMID: 38721674 PMCID: PMC11467053 DOI: 10.1093/sleep/zsae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/28/2024] [Indexed: 10/12/2024] Open
Abstract
Executive summary: This document is a consensus statement of a subcommittee of experienced sleep physicians and scientists, tasked to review the literature and formulate recommendations on the indications, performance, and reporting of sleep studies, to update clinical practice from the 2017 Australasian Sleep Association (ASA) guidelines for sleep studies in adults (Douglas JA, Chai-Coetzer CL, McEvoy D, et al. Guidelines for sleep studies in adults - a position statement of the Australasian Sleep Association. Sleep Med. 2017;36(Suppl 1):S2-S22. doi:10.1016/j.sleep.2017.03.019). This document moves the focus beyond important discussions outlined in the 2017 guidelines, particularly surrounding the sensitivity and specificity of validated questionnaires and home sleep studies. The 2024 guide outlines the performance of the broad range of sleep testing available for the investigations of sleep disorders in adults including indications, strengths, limitations, and reporting standards.
Collapse
Affiliation(s)
- Claire M Ellender
- Respiratory & Sleep Medicine, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- Faculty of Medicine, University of Queensland, Saint Lucia, QLD, Australia
| | - Warren R Ruehland
- Institute for Breathing and Sleep, Heidelberg, VIC, Australia
- Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, VIC, Australia
| | - Brett Duce
- Respiratory & Sleep Medicine, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rosemarie Joyce
- Sleep Laboratory, St Vincent’s Private Hospital, East Melbourne, VIC, Australia
| | - Christopher Worsnop
- Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, VIC, Australia
| | - Jeremy Mercer
- Sleep and Respiratory Service, Southern Adelaide Local Health Network, Adelaide, SA, Australia
| | - Matthew Naughton
- Respiratory Medicine, Alfred Hospital, Melbourne, VIC, Australia
| | - Craig A Hukins
- Respiratory & Sleep Medicine, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- Faculty of Medicine, University of Queensland, Saint Lucia, QLD, Australia
| | - John Wheatley
- Department of Respiratory and Sleep Medicine, Westmead Hospital, Westmead, NSW, Australia
| | - David Cunnington
- Sunshine Coast Respiratory and Sleep, Birtinya, Queensland, Australia
| |
Collapse
|
9
|
Liang Z, Melcer E, Khotchasing K, Chen S, Hwang D, Hoang NH. The Role of Relevance in Shaping Perceptions of Sleep Hygiene Games Among University Students: Mixed Methods Study. JMIR Serious Games 2024; 12:e64063. [PMID: 39378422 PMCID: PMC11496921 DOI: 10.2196/64063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/28/2024] [Accepted: 09/22/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Sleep games are an emerging topic in the realm of serious health game research. However, designing features that are both enjoyable and effective at engaging users, particularly university students, to develop healthy sleep habits remains a challenge. OBJECTIVE This study aims to investigate user preferences for 3 sleep game prototypes, that is, Hero's Sleep Journey, Sleep Tamagotchi, and Sleepland, and to explore their popularity and perceived utility in promoting sleep health. METHODS A mixed methods approach was used in this study. Quantitative and qualitative data were collected through a co-design workshop involving 47 university students. Participants were presented with storyboard cards of game features and were asked to provide an overall rating on each game, as well as ratings for individual features. They were also encouraged to provide free-form comments on the features and suggest improvements. In addition, participants were asked to express their preferences among the 3 games regarding which game they would most like to play and which one they found most useful for promoting sleep health. RESULTS Surprisingly, while Hero's Sleep Journey was the most popular choice among participants, Sleep Tamagotchi was perceived as the most beneficial for improving sleep health. Relevance emerged as an overarching theme in the qualitative data analysis, with 3 interconnected dimensions: psychological relevance to users' personal lives, logical relevance to sleep health, and situational relevance to users' circumstantial context. We discussed how the 3 dimensions of relevance address the autonomy and relatedness constructs outlined in the self-determination theory and proposed 3 design recommendations. CONCLUSIONS Our serious sleep game prototypes demonstrated the potential to engage university students to develop healthy sleep hygiene. Future sleep game designs should aim to create a sense of relevance to users' personal lives, sleep health goals, and situational contexts. Rather than a one-size-fits-all approach, it is essential to develop a wide range of game genres and features to cater to diverse users. Aligning game features with sleep health goals and educating users on the design rationale through sleep knowledge are also important aspects. Furthermore, allowing users to customize their game experience and manage technology boundaries is necessary to nurture a sense of control and autonomy in the process of forming good sleep hygiene.
Collapse
Affiliation(s)
- Zilu Liang
- Ubiquitous and Personal Computing Lab, Kyoto University of Advanced Science, Kyoto, Japan
| | - Edward Melcer
- School of Computer Science, Carleton University, Ottawa, ON, Canada
| | - Kingkarn Khotchasing
- Ubiquitous and Personal Computing Lab, Kyoto University of Advanced Science, Kyoto, Japan
| | - Samantha Chen
- University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Daeun Hwang
- University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Nhung Huyen Hoang
- Ubiquitous and Personal Computing Lab, Kyoto University of Advanced Science, Kyoto, Japan
| |
Collapse
|
10
|
Hammad G, Wulff K, Skene DJ, Münch M, Spitschan M. Open-Source Python Module for the Analysis of Personalized Light Exposure Data from Wearable Light Loggers and Dosimeters. LEUKOS 2024; 20:380-389. [PMID: 39021508 PMCID: PMC7616232 DOI: 10.1080/15502724.2023.2296863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 11/08/2023] [Accepted: 12/12/2023] [Indexed: 07/20/2024]
Abstract
Light exposure fundamentally influences human physiology and behavior, with light being the most important zeitgeber of the circadian system. Throughout the day, people are exposed to various scenes differing in light level, spectral composition and spatio-temporal properties. Personalized light exposure can be measured through wearable light loggers and dosimeters, including wrist-worn actimeters containing light sensors, yielding time series of an individual's light exposure. There is growing interest in relating light exposure patterns to health outcomes, requiring analytic techniques to summarize light exposure properties. Building on the previously published Python-based pyActigraphy module, here we introduce the module pyLight. This module allows users to extract light exposure data recordings from a wide range of devices. It also includes software tools to clean and filter the data, and to compute common metrics for quantifying and visualizing light exposure data. For this tutorial, we demonstrate the use of pyLight in one example dataset with the following processing steps: (1) loading, accessing and visual inspection of a publicly available dataset, (2) truncation, masking, filtering and binarization of the dataset, (3) calculation of summary metrics, including time above threshold (TAT) and mean light timing above threshold (MLiT). The pyLight module paves the way for open-source, large-scale automated analyses of light-exposure data.
Collapse
Affiliation(s)
- Grégory Hammad
- Sleep & Chronobiology Group, GIGA – CRC in Vivo Imaging, University of Liège, Liège, Belgium
- Chair of Neurogenetics, Institute of Human Genetics, University Hospital, Technical University of Munich, Munich, Germany
| | - Katharina Wulff
- Department of Molecular Biology, Umea University, Umea, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umea University, Umea, Sweden
| | - Debra J. Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Mirjam Münch
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Platform for Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Manuel Spitschan
- Translational Sensory & Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- TUM School of Medicine & Health, Technical University of Munich, Munich, Germany
- TUM Institute for Advanced Study, Technical University of Munich, Garching, Germany
| |
Collapse
|
11
|
Shao Y, Li Y, Wang N, Xue Y, Wang T, Qiu F, Lu Y, Lan D, Wu H. Effect of daily light exposure on sleep in polar regions: A meta-analysis. J Sleep Res 2024; 33:e14144. [PMID: 38253963 DOI: 10.1111/jsr.14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024]
Abstract
Although studies have shown that light affects sleep in polar populations, the sample size of most studies is small. This meta-analysis provides the first systematic review of the effects of summer glare, spring and fall moderate daylight, and artificial lighting on general sleep problems (sleep duration, efficiency, and delay). This analysis included 18 studies involving 986 participants. We calculated the random effect size via an evidence-based meta-analysis that analysed the effect of bright/auxiliary light on sleep and the effect of three different types of light on sleep compared with conventional light. There was no significant correlation between specific light types and sleep duration. Intense summer light has a negative effect on sleep time and efficiency. Moderate, natural light in spring and autumn effectively delayed sleep but could not improve sleep efficiency. For artificial fill light, neither blue light nor enhanced white light has been found to have a significant effect. In summary, summer light has a detrimental effect on sleep in polar populations, and moderate natural light may be superior to conventional light. However, specific strategies to improve sleep and artificial lighting in polar populations must be explored further.
Collapse
Affiliation(s)
- Yingqi Shao
- Clinical Center for Intelligent Rehabilitation Research, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yao Li
- Clinical Center for Intelligent Rehabilitation Research, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Nan Wang
- Department of Traditional Chinese Medicine, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yan Xue
- Clinical Center for Intelligent Rehabilitation Research, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Tongyue Wang
- Clinical Center for Intelligent Rehabilitation Research, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Fengxi Qiu
- Department of Traditional Chinese Medicine, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yi Lu
- Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Danmei Lan
- Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Hengjing Wu
- Clinical Center for Intelligent Rehabilitation Research, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
12
|
Knutson KL, Reid KJ, Karanth S, Kim N, Abbott SM, Alexandria SJ, Harrington K, Thomas SJ, Lewis CE, Schreiner PJ, Carnethon MR. CARDIA sleep ancillary study: study design and methods. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 5:zpae071. [PMID: 39444491 PMCID: PMC11497611 DOI: 10.1093/sleepadvances/zpae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/16/2024] [Indexed: 10/25/2024]
Abstract
Sleep and circadian disturbances are common and are experienced more often by Black compared to White individuals. We conducted an observational study of sleep that was ancillary to an ongoing cohort study, Coronary Artery Disease in Young Adults (CARDIA). The goal of the ancillary study will be to examine potential determinants of sleep/circadian disparities between Black and White adults in future analyses. Herein we describe the study design and methodology. Our ancillary study coincided with the Year 35 examination of the CARDIA study and was conducted in two phases (due to the SARS-COV-2 pandemic). Phase 1 involved only questionnaires to assess chronotype, restless legs syndrome, and the household sleep environment. Phase 2 involved three additional questionnaires to assess sleep quality, daytime sleepiness and insomnia symptoms, as well as two sleep devices. Participants wore a wrist activity monitor to assess sleep-wake patterns and light levels for 7 days and a home sleep apnea test for 1 night. A subset also had devices objectively record light, temperature, and sound levels in their bedrooms for 7 days. Sample sizes ranged based on assessment from 2200 to 2400, completing Phase 1 questionnaires, 899 with valid wrist actigraphy data, and 619 with a valid sleep apnea test. The data will be part of the full CARDIA dataset, which is available to researchers.
Collapse
Affiliation(s)
- Kristen L Knutson
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Preventive Medicine, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Kathryn J Reid
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sunaina Karanth
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nathan Kim
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sabra M Abbott
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shaina J Alexandria
- Department of Preventive Medicine, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Katharine Harrington
- Department of Preventive Medicine, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - S Justin Thomas
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cora E Lewis
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Pamela J Schreiner
- Division of Epidemiology and Community Health School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Mercedes R Carnethon
- Department of Preventive Medicine, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
13
|
da Costa Lopes L, Ribeiro da Silva Vallim J, Tufik S, Louzada F, D'Almeida V. Associations between real-life light exposure patterns and sleep behaviour in adolescents. J Sleep Res 2024:e14315. [PMID: 39257229 DOI: 10.1111/jsr.14315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/12/2024]
Abstract
One of the most striking changes in the regulation of sleep-wake behaviour during adolescence is circadian phase delay. Light exposure synchronises circadian rhythms, impacting sleep regulation, however, the influence of real-life light exposure on sleep variations remains less clear. We aimed to describe the sleep and light exposure patterns of high school students with comparable schedules and socio-economic backgrounds, and to evaluate whether there was any association between them, considering chronotype. We analysed five school days and two free days of actigraphy records, from 35 adolescents (24 female, mean age: 16.23 ± 0.60). The sample was described using the Sleep Regularity Index (SRI), chronotype (actigraphy MSFsc), and self-reported diurnal preference (Morning/Evening Scale). Regression models were constructed to assess the impact of light exposure (daytime and nighttime) on subsequent sleep episodes; and to confirm whether the associations could be an indirect consequence of chronotype. Despite following similar routines, the SRI varied considerably (48.25 to 88.28). There was compatibility between the actigraphy proxy for chronotype and the self-reported diurnal preference, extracted using the circadian rhythm scale for adolescents. Less light exposure during the day was associated with later sleep onset and shorter sleep duration. An increase of 100 lux in average daytime light exposure advance of 8.08 minutes in sleep onset and 7.16 min in sleep offset. When the regressions were controlled for chronotype, these associations persisted. These findings facilitate discussions regarding the behavioural aspect of the impact of real-life light exposure on sleep and its potential as a target for interventions aiming to enhance adolescents' sleep quality.
Collapse
Affiliation(s)
- Luísa da Costa Lopes
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Sergio Tufik
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Sleep Institute, São Paulo, Brazil
| | - Fernando Louzada
- Department of Physiology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Vânia D'Almeida
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Baek JH, Zhu Y, Jackson CL, Mark Park YM. Artificial Light at Night and Type 2 Diabetes Mellitus. Diabetes Metab J 2024; 48:847-863. [PMID: 39313230 PMCID: PMC11449813 DOI: 10.4093/dmj.2024.0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
The widespread and pervasive use of artificial light at night (ALAN) in our modern 24-hour society has emerged as a substantial disruptor of natural circadian rhythms, potentially leading to a rise in unhealthy lifestyle-related behaviors (e.g., poor sleep; shift work). This phenomenon has been associated with an increased risk of type 2 diabetes mellitus (T2DM), which is a pressing global public health concern. However, to date, reviews summarizing associations between ALAN and T2DM have primarily focused on the limited characteristics of exposure (e.g., intensity) to ALAN. This literature review extends beyond prior reviews by consolidating recent studies from 2000 to 2024 regarding associations between both indoor and outdoor ALAN exposure and the incidence or prevalence of T2DM. We also described potential biological mechanisms through which ALAN modulates glucose metabolism. Furthermore, we outlined knowledge gaps and investigated how various ALAN characteristics beyond only light intensity (including light type, timing, duration, wavelength, and individual sensitivity) influence T2DM risk. Recognizing the detrimental impact of ALAN on sleep health and the behavioral correlates of physical activity and dietary patterns, we additionally summarized studies investigating the potential mediating role of each component in the relationship between ALAN and glucose metabolism. Lastly, we proposed implications of chronotherapies and chrononutrition for diabetes management in the context of ALAN exposure.
Collapse
Affiliation(s)
- Jong-Ha Baek
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon, Korea
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yong Zhu
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Chandra L. Jackson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
- Division of Intramural Research, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Yong-Moon Mark Park
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
15
|
Biggs AT, Seech TR, Markwald RR, Russell DW. Positive impact of sunlight exposure on mental health in a naval population. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2024; 21:666-674. [PMID: 39357060 DOI: 10.1080/15459624.2024.2388535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Naval shipboard operations impose numerous environmental and occupational stressors, which can adversely affect mental and physical health outcomes. Moreover, this operational setting also complicates the implementation of countermeasures to protect personnel from these stressors. Thus, any easily accessible or modifiable protective factors should be explored further for their potential to support the health of military personnel. Daily sunlight exposure is one such factor that has demonstrated positive effects on health outcomes. For the current study, sunlight exposure and self-reported health outcomes were explored in a large population of U.S. Navy personnel (N > 11,000). Mediator analyses examined the relationship between mental and physical health while controlling for key confounding variables such as morale and exercise. Although the overall regression models indicated only a slight impact on physical health, sunlight exposure had a significant direct effect on mental health even while controlling for the mediating influence of morale. Sunlight exposure also had an impact on morale and an indirect influence on mental health through morale. Additional analyses further supported the possible mental health benefits of sunlight exposure even while accounting for occupational differences. The results suggest that prescribed sunlight exposure aboard ships could be used to promote positive mental health during naval operations.
Collapse
Affiliation(s)
- Adam T Biggs
- Commander, Naval Surface Force, US Pacific Fleet, Coronado, California
| | - Todd R Seech
- Commander, Naval Surface Force, US Pacific Fleet, Coronado, California
| | - Rachel R Markwald
- Sleep, Tactical Efficiency, and Endurance Lab, Warfighter Performance Department, Naval Health Research Center, San Diego, California
| | - Dale W Russell
- Commander, Naval Surface Force, US Pacific Fleet, Coronado, California
- Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
16
|
Stevenson S, Suppiah H, Ruddy J, Murphy S, Driller M. Higher Levels of Morning and Daytime Light Exposure Associated with Positive Sleep Indices in Professional Team Sport Athletes. Nat Sci Sleep 2024; 16:1279-1290. [PMID: 39219616 PMCID: PMC11366245 DOI: 10.2147/nss.s471017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Objective Light exposure techniques have been recommended to combat sleep issues caused by disruption to circadian regularity in the athletic population, although studies are lacking. Methods A total of 17 professional male Australian Football athletes (age ± SD: 22 ± 3 years) wore a wrist actigraph to measure sleep parameters, and a wearable light sensor to measure melanopic equivalent daylight illuminance (mEDI, in lux) for 14 days. Participants completed three sleep questionnaires at the end of the data collection period and completed well-being surveys 6 times. The Sleep Regularity Index (SRI) for each player was also calculated from actigraphy data. Light exposure data were organised into three different timeframes: morning (wake time + 2 hours), daytime (end of morning to 6 pm), and evening (2 hours leading up to bedtime) for analysis. Repeated measures correlation was conducted for objective sleep measures and mEDI values per timeframe. Pearson's correlation was conducted on subjective sleep measures and well-being measures against mEDI values per timeframe. Results Higher morning light was associated with significantly (p < 0.001) greater total sleep time (r = 0.31). Higher daytime light exposure was associated with higher subjective sleep quality (r = 0.48, p < 0.05). Higher evening light exposure was associated with higher Athlete Sleep Screening Questionnaire (ASSQ) global scores (r = 0.52, p < 0.05). There were no other significant correlations between light exposure and sleep or well-being measures (p > 0.05). Conclusion Higher morning and daylight exposure levels were associated with various positive objective and subjective sleep measures in professional team sport athletes, supporting the need for education on optimising light exposure to improve circadian function, sleep, and health.
Collapse
Affiliation(s)
- Shauna Stevenson
- Sport, Performance, and Nutrition Research Group, School of Allied Health, Human Services, and Sport, La Trobe University, Melbourne, Australia
| | - Haresh Suppiah
- Sport, Performance, and Nutrition Research Group, School of Allied Health, Human Services, and Sport, La Trobe University, Melbourne, Australia
| | | | - Sean Murphy
- Essendon Football Club, Melbourne, Australia
| | - Matthew Driller
- Sport, Performance, and Nutrition Research Group, School of Allied Health, Human Services, and Sport, La Trobe University, Melbourne, Australia
| |
Collapse
|
17
|
Perry H, Alight A, Wilcox ME. Light, sleep and circadian rhythm in critical illness. Curr Opin Crit Care 2024; 30:283-289. [PMID: 38841914 DOI: 10.1097/mcc.0000000000001163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW Sleep and circadian disruption (SCD) are associated with worse outcomes in the ICU population. We discuss sleep, circadian physiology, the role of light in circadian entrainment and its possible role in treating SCD, with special attention to the use of light therapies and ICU design. RECENT FINDINGS The American Thoracic Society recently published an official research statement highlighting key areas required to define and treat ICU SCD. Recent literature has been predominantly observational, describing how both critical illness and the ICU environment might impair normal sleep and impact circadian rhythm. Emerging consensus guidance outlines the need for standardized light metrics in clinical trials investigating effects of light therapies. A recent proof-of-concept randomized controlled trial (RCT) showed improvement in delirium incidence and circadian alignment from ICU room redesign that included a dynamic lighting system (DLS). SUMMARY Further investigation is needed to define the optimal physical properties of light therapy in the ICU environment as well as timing and duration of light treatments. Work in this area will inform future circadian-promoting design, as well as multicomponent nonpharmacological protocols, to mitigate ICU SCD with the objective of improving patient outcomes.
Collapse
Affiliation(s)
- Heather Perry
- Department of Critical Care Medicine, Faculty of Medicine & Dentistry, University of Alberta
| | - Athina Alight
- Department of Critical Care Medicine, Faculty of Medicine & Dentistry, University of Alberta
| | - M Elizabeth Wilcox
- Department of Critical Care Medicine, Faculty of Medicine & Dentistry, University of Alberta
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
18
|
Lucas RJ, Peirson SN. Practical Advice on Measuring and Applying Light for Laboratory Mammals. J Biol Rhythms 2024; 39:323-330. [PMID: 39086225 DOI: 10.1177/07487304241259514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Light is recognized as an important component of the environment for laboratory animals. It supports vision, sets the phase of circadian clocks, and drives wide-ranging adjustments in physiological and behavioral state. Manipulating light is meanwhile a key experimental approach in the fields of vision science and chronobiology. Nevertheless, until recently, there has been no consensus on methods for quantifying light as experienced by laboratory animals. Widely adopted practices employ metrics such as illuminance (units = lux) that are designed to quantify light as experienced by human observers. These weight energy across the spectrum according to a spectral sensitivity profile for human vision that is not widely replicated for non-human species. Recently, a Consensus View was published that proposes methods of light measurement and standardization that take account of these species-specific differences in wavelength sensitivity. Here, we draw upon the contents of that consensus to provide simplified advice on light measurement in laboratory mammal experimentation and husbandry and quantitative guidance on what constitutes appropriate lighting for both visual and circadian function.
Collapse
Affiliation(s)
- Robert J Lucas
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Stuart N Peirson
- Sleep & Circadian Neuroscience Institute (SCNi), Kavli Institute for Nanoscience Discovery and Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Murray JM, Stone JE, Abbott SM, Bjorvatn B, Burgess HJ, Cajochen C, Dekker JJ, Duffy JF, Epstein LJ, Garbazza C, Harsh J, Klerman EB, Lane JM, Lockley SW, Pavlova MK, Quan SF, Reid KJ, Scheer FAJL, Sletten TL, Wright KP, Zee PC, Phillips AJK, Czeisler CA, Rajaratnam SMW. A Protocol to Determine Circadian Phase by At-Home Salivary Dim Light Melatonin Onset Assessment. J Pineal Res 2024; 76:e12994. [PMID: 39158010 DOI: 10.1111/jpi.12994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 08/20/2024]
Abstract
Internal circadian phase assessment is increasingly acknowledged as a critical clinical tool for the diagnosis, monitoring, and treatment of circadian rhythm sleep-wake disorders and for investigating circadian timing in other medical disorders. The widespread use of in-laboratory circadian phase assessments in routine practice has been limited, most likely because circadian phase assessment is not required by formal diagnostic nosologies, and is not generally covered by insurance. At-home assessment of salivary dim light melatonin onset (DLMO, a validated circadian phase marker) is an increasingly accepted approach to assess circadian phase. This approach may help meet the increased demand for assessments and has the advantages of lower cost and greater patient convenience. We reviewed the literature describing at-home salivary DLMO assessment methods and identified factors deemed to be important to successful implementation. Here, we provide specific protocol recommendations for conducting at-home salivary DLMO assessments to facilitate a standardized approach for clinical and research purposes. Key factors include control of lighting, sampling rate, and timing, and measures of patient compliance. We include findings from implementation of an optimization algorithm to determine the most efficient number and timing of samples in patients with Delayed Sleep-Wake Phase Disorder. We also provide recommendations for assay methods and interpretation. Providing definitive criteria for each factor, along with detailed instructions for protocol implementation, will enable more widespread adoption of at-home circadian phase assessments as a standardized clinical diagnostic, monitoring, and treatment tool.
Collapse
Affiliation(s)
- Jade M Murray
- School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia
| | - Julia E Stone
- School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia
| | - Sabra M Abbott
- Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bjorn Bjorvatn
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Norwegian Competence Center for Sleep Disorders, Haukeland University Hospital, Bergen, Norway
| | - Helen J Burgess
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel (UPK), Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Jip J Dekker
- Department of Data Science and AI, Monash University, Melbourne, Victoria, Australia
| | - Jeanne F Duffy
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Lawrence J Epstein
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Corrado Garbazza
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel (UPK), Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - John Harsh
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Elizabeth B Klerman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jacqueline M Lane
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Steven W Lockley
- School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Milena K Pavlova
- Department of Neurology, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Stuart F Quan
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Kathryn J Reid
- Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Frank A J L Scheer
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Tracey L Sletten
- School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia
| | - Kenneth P Wright
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Phyllis C Zee
- Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andrew J K Phillips
- Flinders Health and Medical Research Institute (Sleep Health), Flinders University, Bedford Park, South Australia, Australia
| | - Charles A Czeisler
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Shantha M W Rajaratnam
- School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
He M, Chen H, Li S, Ru T, Chen Q, Zhou G. Evening prolonged relatively low melanopic equivalent daylight illuminance light exposure increases arousal before and during sleep without altering sleep structure. J Sleep Res 2024; 33:e14113. [PMID: 38097530 DOI: 10.1111/jsr.14113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 07/17/2024]
Abstract
Light can influence many psychophysiological functions beyond vision, including alertness, circadian rhythm, and sleep, namely the non-image forming (NIF) effects of light. Melanopic equivalent daylight illuminance (mel-EDI) is currently recommended as the predictor of the NIF effects of light. Although light dose is also critical for entraining and regulating circadian cycle, it is still unknown whether relatively low mel-EDI light exposure for prolonged duration in the evening would affect pre-sleep arousal and subsequent sleep. In all, 18 healthy college students (10 females, mean [standard deviation] age 21.67 [2.03] years) underwent 2 experimental nights with a 1 week interval in a simulated bedroom environment. During experimental nights, participants were either exposed to high or low mel-EDI light (73 versus 38 lx mel-EDI, 90 versus 87 photopic lx at eye level, 150 photopic lx at table level) for 3.5 h before regular bedtime, and their sleep was monitored by polysomnography. Subjective sleepiness, mood, and resting-state electroencephalography during light exposure were also investigated. Results showed no significant differences in sleep structure and sleep quality between the two light conditions, whereas 3.5 h of exposure to high versus low mel-EDI light induced marginally higher physiological arousal in terms of a lower delta but higher beta power density before sleep, as well as a lower delta power density during sleep. Moreover, participants felt happier before sleep under exposure to high versus low mel-EDI light. These findings together with the current literature suggest that evening prolonged relatively low mel-EDI light exposure may mildly increase arousal before and during sleep but affected sleep structure less.
Collapse
Affiliation(s)
- Meiheng He
- Lab of Lighting and Physio-psychological Health, School of Psychology, South China Normal University, Guangzhou, China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China
| | - Hanyu Chen
- Lab of Lighting and Physio-psychological Health, School of Psychology, South China Normal University, Guangzhou, China
| | - Siyu Li
- Lab of Lighting and Physio-psychological Health, School of Psychology, South China Normal University, Guangzhou, China
| | - Taotao Ru
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Qingwei Chen
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China
| | - Guofu Zhou
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| |
Collapse
|
21
|
Price LLA, Dahlmann-Noor A, Khazova M. Daylight and Electric Lighting in Primary and Secondary School Classrooms in the UK-An Observational Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:942. [PMID: 39063519 PMCID: PMC11276840 DOI: 10.3390/ijerph21070942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Only a few recent studies report direct assessment or monitoring of light levels in the indoor learning environment, and no consensus exists on minimum exposures for children's health. For instance, myopia is a common progressive condition, with genetic and environmental risk factors. Reduced daylight exposure, electric lighting changes, increased near-work for school children, greater academic focus, and use of display screens and white boards may have important detrimental influences. Published assessment methods had varied limitations, such as incomplete compliance from participants wearing light loggers for extended periods. Climate-Based Daylight Modelling is encouraged in UK school design, but design approaches are impractical for post-occupancy assessments of pre-existing classrooms or ad hoc modifications. In this study, we investigated the potential for direct assessment and monitoring of classroom daylight and lighting measurements. Combined with objective assessments of outdoor exposures and class time use, the classroom data could inform design and light exposure interventions to reduce the various health impacts of inadequate daylight exposure. The relevant environmental measure for myopia depends on the hypothesized mechanism, so the illuminance, spectral distribution, and temporal light modulation from the electric lighting was also assessed.
Collapse
Affiliation(s)
| | - Annegret Dahlmann-Noor
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK;
- Institute of Ophthalmology, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
22
|
Kolind MEI, Kruse R, Petersen AS, Larsen CS, Bak LK, Højlund K, Beier CP, Stenager E, Juhl CB. Investigating the role of obesity, circadian disturbances and lifestyle factors in people with schizophrenia and bipolar disorder: Study protocol for the SOMBER trial. PLoS One 2024; 19:e0306408. [PMID: 38976708 PMCID: PMC11230533 DOI: 10.1371/journal.pone.0306408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
The aim of this study is to investigate circadian rhythms in independently living adults with obesity and mental disease, exploring the interplay between biological markers and lifestyle factors. Eighty participants divided equally into four groups; (i) people with obesity and schizophrenia; (ii) people with obesity and bipolar disorder; (iii) people with obesity without mental disease or sleep disorders, and (iv) people without obesity, mental disease or sleep disorders. Over two consecutive days, participants engage in repeated self-sampling of hair follicle and saliva; concurrently, data is collected on diet, body temperature, light exposure, sleep parameters, and physical activity by accelerometry. Hair follicles are analyzed for circadian gene expression, saliva samples for cortisol and melatonin concentrations. Circadian rhythms are investigated by cosinor analysis. The study employs a participant-tailored sampling schedule to minimize disruptions to daily routine and enhance ecological validity. The methodology aims to provide a comprehensive insight into the factors contributing to circadian disruptions in people with obesity, bipolar disorder and schizophrenia, potentially informing strategies for future management and mitigation. Trial registration: (ClinicalTrials.gov Identifier: NCT05413486).
Collapse
Affiliation(s)
- Mikkel EI Kolind
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Open Patient data Explorative Network—OPEN, University of Southern Denmark, Odense, Denmark
- Department of Endocrinology, Hospital of South West Jutland, Esbjerg, Denmark
| | - Rikke Kruse
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Anni S. Petersen
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Charlotte S. Larsen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Lasse K. Bak
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Christoph P. Beier
- Open Patient data Explorative Network—OPEN, University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Elsebeth Stenager
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Claus B. Juhl
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Open Patient data Explorative Network—OPEN, University of Southern Denmark, Odense, Denmark
- Department of Endocrinology, Hospital of South West Jutland, Esbjerg, Denmark
| |
Collapse
|
23
|
Xu M, Papatsimpa C, Schlangen L, Linnartz JP. Improving adjustment to daylight saving time transitions with light. Sci Rep 2024; 14:15001. [PMID: 38951618 PMCID: PMC11217455 DOI: 10.1038/s41598-024-65705-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
Daylight saving time (DST) is currently utilized in many countries with the rationale that it enhances the alignment between daylight hours and activity peaks in the population. The act of transitioning into and out of DST introduces disruptions to the circadian rhythm, thereby impacting sleep and overall health. Despite the substantial number of individuals affected, the consequences of this circadian disruption have often been overlooked. Here, we employ a mathematical model of the human circadian pacemaker to elucidate how the biological clock interacts with daytime and evening exposures to both natural and electrical light. This interaction plays a crucial role in determining the adaptation to the 1 hour time zone shift imposed by the transition to or from DST. In global discussions about DST, there is a prevailing assumption that individuals easily adjust to DST transitions despite a few studies indicating that the human circadian system requires several days to fully adjust to a DST transition. Our study highlights that evening light exposure changes can be the main driving force for re-entrainment, with chronobiological models predicting that people with longer intrinsic period (i.e. later chronotype) entrain more slowly to transitions to or from DST as compared to people with a shorter intrinsic period (earlier chronotype). Moreover, the model forecasts large inter-individual differences in the adaptation speed, in particular during the spring transition. The predictions derived from our model offer circadian biology-based recommendations for light exposure strategies that facilitate a more rapid adaptation to DST-related transitions or travel across a single time zone. As such, our study contributes valuable insights to the ongoing discourse on DST and its implications for human circadian rhythms.
Collapse
Affiliation(s)
- Mengzhu Xu
- Lighting and IoT lab, department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Luc Schlangen
- Human-Technology Interaction Group, department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jean-Paul Linnartz
- Lighting and IoT lab, department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
24
|
Lazar R, Degen J, Fiechter AS, Monticelli A, Spitschan M. Regulation of pupil size in natural vision across the human lifespan. ROYAL SOCIETY OPEN SCIENCE 2024; 11:191613. [PMID: 39100191 PMCID: PMC11295891 DOI: 10.1098/rsos.191613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/27/2024] [Indexed: 08/06/2024]
Abstract
Vision is mediated by light passing through the pupil, which changes in diameter from approximately 2 to 8 mm between bright and dark illumination. With age, mean pupil size declines. In laboratory experiments, factors affecting pupil size can be experimentally controlled. How the pupil reflects the change in retinal input from the visual environment under natural viewing conditions is unclear. We address this question in a field experiment (N = 83, 43 female, 18-87 years) using a custom-made wearable video-based eye tracker with a spectroradiometer measuring near-corneal spectral irradiance. Participants moved in and between indoor and outdoor environments varying in spectrum and engaged in a range of everyday tasks. Our data confirm that light-adapted pupil size is determined by light level, with a better model fit of melanopic over photopic units, and that it decreased with increasing age, yielding steeper slopes at lower light levels. We found no indication that sex, iris colour or reported caffeine consumption affects pupil size. Our exploratory results point to a role of photoreceptor integration in controlling steady-state pupil size. The data provide evidence for considering age in personalized lighting solutions and against the use of photopic illuminance alone to assess the impact of real-world lighting conditions.
Collapse
Affiliation(s)
- Rafael Lazar
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Switzerland
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Switzerland
- Department of Biomedicine, University of Basel, Switzerland
| | - Josefine Degen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Switzerland
| | - Ann-Sophie Fiechter
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Switzerland
| | - Aurora Monticelli
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Switzerland
| | - Manuel Spitschan
- Max Planck Institute for Biological Cybernetics, Translational Sensory & Circadian Neuroscience, Tübingen, Germany
- TUM School of Medicine & Health, Chronobiology & Health, Technical University of Munich, Munich, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany
| |
Collapse
|
25
|
Li AR, Thomas ML, Gonzalez MR, McCarthy MJ, Hasler BP, Tapert SF, Meruelo AD. Greater social jetlag predicts poorer NIH Toolbox crystallized cognitive and academic performance in the Adolescent Brain Cognitive Development (ABCD) study. Chronobiol Int 2024; 41:829-839. [PMID: 38771191 PMCID: PMC11292803 DOI: 10.1080/07420528.2024.2353848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024]
Abstract
Academic performance plays a crucial role in long-term educational attainment and occupational function. Chronotype refers to an individual's daily tendencies for times for waking, activity, and sleep. Social jetlag reflects the mismatch between an individual's chronotype and their social schedule. Because school typically starts early in the morning, later chronotype is often associated with daytime sleepiness, insufficient sleep, and poor academic performance. However, the relationship between academic performance, chronotype, and social jetlag has not been extensively examined in large samples like the Adolescent Brain Cognitive Development (ABCD) study. We hypothesized that greater social jetlag would predict poorer cognitive and academic performance. Year 2 (ages 11-14) cross-sectional data from the ABCD cohort (n = 6,890 adolescents) were used to evaluate academic performance (i.e. self-reported past year grades), NIH Toolbox cognitive performance measures, chronotype, and social jetlag from the Munich Chronotype Questionnaire. We found that later chronotype and greater social jetlag predicted poorer cognitive and academic performance with small effect sizes. Our findings emphasize the importance of individual differences in chronotype and social jetlag when designing class schedules, as aligning school activities with student optimal sleep-wake times may contribute to improved academic performance.
Collapse
Affiliation(s)
- Amber R. Li
- University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA
| | - Michael L. Thomas
- Colorado State University, 1876 Campus Delivery, Fort Collins, CO 80523-1876 USA
| | | | - Michael J. McCarthy
- University of California, San Diego, VA San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA 92161 USA
| | - Brant P. Hasler
- University of Pittsburgh, 3811 O’Hara St., Pittsburgh, PA 15213 USA
| | - Susan F. Tapert
- University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA
| | | |
Collapse
|
26
|
De Pasquale C, El Kazzi M, Sutherland K, Shriane AE, Vincent GE, Cistulli PA, Bin YS. Sleep hygiene - What do we mean? A bibliographic review. Sleep Med Rev 2024; 75:101930. [PMID: 38761649 DOI: 10.1016/j.smrv.2024.101930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 12/18/2023] [Accepted: 03/27/2024] [Indexed: 05/20/2024]
Abstract
There is no consensus on the definition of sleep hygiene and its components. We examined the definition of sleep hygiene based on its use in published studies. Four databases (Medline, EMBASE, PsycINFO and CINAHL) were searched from inception until December 31, 2021 for the phrase 'sleep hygiene' in the title or abstract. We identified 548 relevant studies in adults: 250 observational and 298 intervention studies. A definition of sleep hygiene was provided in only 44% of studies and converged on three themes: behavioural factors, environmental factors, and an aspect of control. Sleep hygiene components were explicitly defined in up to 70% of observational studies, but in only 35% of intervention studies. The most commonly considered components of sleep hygiene were caffeine (in 51% of studies), alcohol (46%), exercise (46%), sleep timing (45%), light (42%), napping (39%), smoking (38%), noise (37%), temperature (34%), wind-down routine (33%), stress (32%), and stimulus control (32%), although the specific details of each component varied. Lack of consistency in definitions of sleep hygiene and its components may hinder communication between researchers, clinicians, and the public, and likely limits the utility of sleep hygiene as an intervention.
Collapse
Affiliation(s)
- Carla De Pasquale
- Sleep Research Group, Charles Perkins Centre, University of Sydney, Australia
| | - Mary El Kazzi
- Sleep Research Group, Charles Perkins Centre, University of Sydney, Australia
| | - Kate Sutherland
- Sleep Research Group, Charles Perkins Centre, University of Sydney, Australia
| | - Alexandra E Shriane
- Appleton Institute, School of Health, Medical and Applied Sciences, Central Queensland University, Australia
| | - Grace E Vincent
- Appleton Institute, School of Health, Medical and Applied Sciences, Central Queensland University, Australia
| | - Peter A Cistulli
- Sleep Research Group, Charles Perkins Centre, University of Sydney, Australia; Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Department of Respiratory and Sleep Medicine, Royal North Shore Hospital, Australia
| | - Yu Sun Bin
- Sleep Research Group, Charles Perkins Centre, University of Sydney, Australia; Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia.
| |
Collapse
|
27
|
Grant LK, Kent BA, Rahman SA, St. Hilaire MA, Kirkley CL, Gregory KB, Clark T, Hanifin JP, Barger LK, Czeisler CA, Brainard GC, Lockley SW, Flynn-Evans EE. The effect of a dynamic lighting schedule on neurobehavioral performance during a 45-day simulated space mission. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 5:zpae032. [PMID: 38903700 PMCID: PMC11187988 DOI: 10.1093/sleepadvances/zpae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/15/2024] [Indexed: 06/22/2024]
Abstract
Study Objectives We previously reported that during a 45-day simulated space mission, a dynamic lighting schedule (DLS) improved circadian phase alignment and performance assessed once on selected days. This study aimed to evaluate how DLS affected performance on a 5-minute psychomotor vigilance task (PVT) administered multiple times per day on selected days. Methods Sixteen crewmembers (37.4 ± 6.7 years; 5F) underwent six cycles of 2 × 8-hour/night followed by 5 × 5-hour/night sleep opportunities. During the DLS (n = 8), daytime white light exposure was blue-enriched (~6000 K; Level 1: 1079, Level 2: 76 melanopic equivalent daytime illuminance (melEDI) lux) and blue-depleted (~3000-4000 K; L1: 21, L2: 2 melEDI lux) 3 hours before bed. In the standard lighting schedule (SLS; n = 8), lighting remained constant (~4500K; L1: 284, L2 62 melEDI lux). Effects of lighting condition (DLS/SLS), sleep condition (5/8 hours), time into mission, and their interactions, and time awake on PVT performance were analyzed using generalized linear mixed models. Results The DLS was associated with fewer attentional lapses (reaction time [RT] > 500 milliseconds) compared to SLS. Lapses, mean RT, and 10% fastest/slowest RTs were worse following 5 compared to 8 hours of sleep but not between lighting conditions. There was an effect of time into mission on RTs, likely due to sleep loss. Overall performance differed by time of day, with longer RTs at the beginning and end of the day. There were more lapses and slower RTs in the afternoon in the SLS compared to the DLS condition. Conclusions Future missions should incorporate DLS to enhance circadian alignment and performance. This paper is part of the Sleep and Circadian Rhythms: Management of Fatigue in Occupational Settings Collection.
Collapse
Affiliation(s)
- Leilah K Grant
- Division of Sleep and Circadian Disorders, Brigham & Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Brianne A Kent
- Division of Sleep and Circadian Disorders, Brigham & Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Shadab A Rahman
- Division of Sleep and Circadian Disorders, Brigham & Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Melissa A St. Hilaire
- Division of Sleep and Circadian Disorders, Brigham & Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Crystal L Kirkley
- Fatigue Countermeasures Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Kevin B Gregory
- Fatigue Countermeasures Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, USA
| | | | - John P Hanifin
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Laura K Barger
- Division of Sleep and Circadian Disorders, Brigham & Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Charles A Czeisler
- Division of Sleep and Circadian Disorders, Brigham & Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - George C Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Steven W Lockley
- Division of Sleep and Circadian Disorders, Brigham & Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Erin E Flynn-Evans
- Fatigue Countermeasures Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, USA
| |
Collapse
|
28
|
Gagné V, Turgeon R, Jomphe V, Demers CMH, Hébert M. Evaluation of the effects of blue-enriched white light on cognitive performance, arousal, and overall appreciation of lighting. Front Public Health 2024; 12:1390614. [PMID: 38813427 PMCID: PMC11133540 DOI: 10.3389/fpubh.2024.1390614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Light's non-visual effects on the biological clock, cognitive performance, alertness, and mental health are getting more recognized. These are primarily driven by blue light, which triggers specific retinal cells containing melanopsin. Traditionally, research on light has relied on correlated color temperature (CCT) as a metric of its biological influence, given that bluer light corresponds to higher Kelvin values. However, CCT proves to be an inadequate proxy of light's biological effects. A more precise metric is melanopic Equivalent Daylight Illuminance (mel-EDI), which aligns with melanopsin spectrum. Studies have reported positive cognitive impacts of blue-enriched white light. It's unclear if the mixed results are due to different mel-EDI levels since this factor wasn't assessed. Method Given recent recommendations from experts to aim for at least 250 mel-EDI exposure daily for cognitive benefits, our aim was to assess if a 50-minute exposure to LED light with 250 mel-EDI could enhance concentration and alertness, without affecting visual performance or comfort compared to conventional lighting producing around 150 mel-EDI. To ensure mel-EDI's impact, photopic lux levels were kept constant across conditions. Conditions were counterbalanced, parameters included subjective sleepiness (KSS; Karolinska Sleepiness Scale), concentration (d2-R test), visual performance (FrACT; Freiburg Visual Acuity and Contrast Test), general appreciation (VAS; Visual Analogous Scale), preferences and comfort (modified OLS; Office Lighting Survey). Results The experimental light significantly reduced sleepiness (p = 0.03, Cohen's d = 0.42) and also decreased contrast sensitivity (p = 0.01, Cohen's d = 0.50). The conventional light was found to be more comfortable (p = 0.002, Cohen's d = 0.62), cheerful (p = 0.02, Cohen's d = 0.46) and pleasant (p = 0.005, Cohen's d = 0.55) while the experimental light was perceived as brighter (p = 0.004, Cohen's d = 0.58) and tended to be more stimulating (p = 0.10). Notably, there was a preference for conventional lighting (p = 0.004, Cohen's d=0.56) and concentration was equally improved in both conditions. Discussion Despite the lack of further improvement in concentration from exposure to blue-enriched light, given the observed benefits in terms of vigilance, further research over an extended period would be justified. These findings could subsequently motivate cognitive optimization through lighting for workers that would benefit from artificial lighting such as in northern regions.
Collapse
Affiliation(s)
- Valérie Gagné
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec, QC, Canada
| | - Rose Turgeon
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec, QC, Canada
| | - Valérie Jomphe
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec, QC, Canada
| | - Claude M. H. Demers
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec, QC, Canada
- École d’Architecture, Faculté d’aménagement, d’architecture, d’art et de design, Université Laval, Quebec, QC, Canada
| | - Marc Hébert
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec, QC, Canada
- Département d’Ophtalmologie et Otorhinolaryngologie – Chirurgie Cervico-Faciale, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| |
Collapse
|
29
|
Mohammadian N, Didikoglu A, Beach C, Wright P, Mouland JW, Martial FP, Johnson S, van Tongeren M, Brown TM, Lucas RJ, Casson AJ. A Wrist-Worn Internet of Things Sensor Node for Wearable Equivalent Daylight Illuminance Monitoring. IEEE INTERNET OF THINGS JOURNAL 2024; 11:16148-16157. [PMID: 38765485 PMCID: PMC11100858 DOI: 10.1109/jiot.2024.3355330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 11/13/2023] [Accepted: 01/03/2024] [Indexed: 05/22/2024]
Abstract
Light exposure is a vital regulator of physiology and behavior in humans. However, monitoring of light exposure is not included in current wearable Internet of Things (IoT) devices, and only recently have international standards defined [Formula: see text] -optic equivalent daylight illuminance (EDI) measures for how the eye responds to light. This article reports a wearable light sensor node that can be incorporated into the IoT to provide monitoring of EDI exposure in real-world settings. We present the system design, electronic performance testing, and accuracy of EDI measurements when compared to a calibrated spectral source. This includes consideration of the directional response of the sensor, and a comparison of performance when placed on different parts of the body, and a demonstration of practical use over 7 days. Our device operates for 3.5 days between charges, with a sampling period of 30 s. It has 10 channels of measurement, over the range 415-910 nm, balancing accuracy and cost considerations. Measured [Formula: see text]-opic EDI results for 13 devices show a mean absolute error of less than 0.07 log lx, and a minimum between device correlation of 0.99. These findings demonstrate that accurate light sensing is feasible, including at wrist worn locations. We provide an experimental platform for use in future investigations in real-world light exposure monitoring and IoT-based lighting control.
Collapse
Affiliation(s)
- Navid Mohammadian
- Henry Royce Institute for Advanced Materials and the Department of Electrical and Electronic EngineeringSchool of EngineeringThe University of ManchesterM13 9PLManchesterU.K.
| | - Altug Didikoglu
- Division of Neuroscience, School of Biological SciencesThe University of ManchesterM13 9PLManchesterU.K.
| | - Christopher Beach
- Henry Royce Institute for Advanced Materials and the Department of Electrical and Electronic EngineeringSchool of EngineeringThe University of ManchesterM13 9PLManchesterU.K.
| | - Paul Wright
- Department of Electrical and Electronic EngineeringSchool of EngineeringThe University of ManchesterM13 9PLManchesterU.K.
| | - Joshua W. Mouland
- Division of Neuroscience, School of Biological SciencesThe University of ManchesterM13 9PLManchesterU.K.
| | - Franck P. Martial
- Division of Neuroscience, School of Biological SciencesThe University of ManchesterM13 9PLManchesterU.K.
| | - Sheena Johnson
- People, Management and Organisation Division, Alliance Manchester Business SchoolThe University of ManchesterM13 9PLManchesterU.K.
| | - Martie van Tongeren
- Division of Population Health, Health Services Research and Primary Care, School of Health SciencesThe University of ManchesterM13 9PLManchesterU.K.
| | - Timothy M. Brown
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical SciencesThe University of ManchesterM13 9PLManchesterU.K.
| | - Robert J. Lucas
- Division of Neuroscience, School of Biological SciencesThe University of ManchesterM13 9PLManchesterU.K.
| | - Alexander J. Casson
- Henry Royce Institute for Advanced Materials and the Department of Electrical and Electronic EngineeringSchool of EngineeringThe University of ManchesterM13 9PLManchesterU.K.
| |
Collapse
|
30
|
Chen H, Zhao D, Guo Z, Ma D, Wu Y, Chen G, Liu Y, Kong T, Wang F. U-shaped relationship between lights-out time and nocturnal oxygen saturation during the first trimester: An analysis based on the nuMOM2b-SDB data. Heliyon 2024; 10:e29494. [PMID: 38681541 PMCID: PMC11053181 DOI: 10.1016/j.heliyon.2024.e29494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024] Open
Abstract
Objective Preventing adverse events due to unstable oxygen saturation (SpO2) at night in pregnant women is of utmost importance. Poor sleep has been demonstrated to impact SpO2 levels. Nowadays, many gravida have a habit of prolonged exposure to light before sleep, which can disrupt their sleep. Therefore, this study aimed at investigate the relationship between lights-out time, sleep parameters and SpO2, exploring the underlying mechanisms. Methods The data of 2881 eligible subjects from the Nulliparous Pregnancy Outcomes Study Monitoring Mothers-to-be and Sleep Disordered Breathing (nuMOM2b-SDB) database were analyzed. Multiple linear regression models were used to investigate the relationship between lights-out time and SpO2. In addition, restricted cubic splines (RCS) were employed to fit the nonlinear correlation between the two variables. The smoothing curve method was further utilized to depict the relationship between lights-out time and SpO2 based on various subgroup variables. Results All participants were categorized according to race/ethnicity. A negative correlation was observed between nighttime lights-out time and average value of SpO2 (Avg-SpO2) (β = -0.05, p = 0.010). RCS revealed a U-shaped relationship between lights-out time and Avg-SpO2, with the turning point at 22:00. The subcomponent stratification results indicated that the Avg-SpO2 and minimum value of SpO2(Min-SpO2) of advanced maternal age decreased as the lights-out time was delayed. Furthermore, overweight and obese gravida showed lower Avg-SpO2 and Min-SpO2 levels than normal weight. Conclusions A U-shaped relationship was identified between lights-out time and nocturnal Avg-SpO2 during early pregnancy, with the inflection at 22:00. Notably, later lights-out times are associated with lower levels of Min-SpO2 for advanced maternal age. The findings suggest that appropriately adjusting the duration of light exposure before sleep and maintaining a relatively restful state may be more beneficial for the stability of SpO2 in pregnant women. Conversely, deviations from these practices could potentially lead to pathological alterations in SpO2 levels.
Collapse
Affiliation(s)
- Hongxu Chen
- School of Public Health, Xinjiang Medical University, Urumqi, 830063, China
| | - Danyang Zhao
- Medical Neurobiology Lab, Inner Mongolia Medical University, Huhhot, 010110, China
| | - Zixuan Guo
- Medical Neurobiology Lab, Inner Mongolia Medical University, Huhhot, 010110, China
| | - Duo Ma
- Department of Ultrasonography, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Yan Wu
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, China
| | - Guangxue Chen
- Department of Gynaecology and Obstetrics, Beijing Jishuitan Hospital, Beijing, 102208, China
| | - Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tiantian Kong
- Xinjiang Key Laboratory of Neurological Disorder Research, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830063, China
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, China
| |
Collapse
|
31
|
Wallace DA. Light Exposure Differs by Gender in the US: Women Have Less Bright Light Exposure than Men. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.28.24306495. [PMID: 38746463 PMCID: PMC11092728 DOI: 10.1101/2024.04.28.24306495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Light is a salient environmental exposure, serving as the primary entraining cue for the circadian system and having other, non-circadian, effects on health. Gender differences in light exposure patterns could contribute to gender differences in health outcomes and would have important implications for sleep and circadian research. Gender differences in real-world light exposure (measured over a week with wrist-worn ActiGraph GT3X+ devices) were investigated in cross- sectional data from the 2011-2014 National Health and Nutrition Examination Survey (NHANES). Measures of time above light threshold (TALT), individual photoperiod (IP), first and last timing of light (FTL and LTL, respectively), and mean light timing revised (MLiTR) at different light intensity thresholds were derived. Gender differences in light exposure were tested using two-sample t-tests, Watson's two-sample test of homogeneity, and linear regression models. Exploratory analyses to investigate work and physical activity-related factors in relation to bright light exposure were also conducted. A total of 11,318 NHANES participants (age range: 3-80+, 52.2% women) with 6 days of valid actigraphy and light data were included in the analysis. The findings suggest that for every 60 minutes of bright light (≥1,000 lux) that men receive, women receive 39.6 minutes. Men spend approximately 52% more time in bright light than women and this gender difference begins in childhood. The IP of bright light exposure is also longer for men, with earlier first and later last timing of bright light exposure compared to women. These gender differences were robust across ages and between race and ethnicity groups. While further research is needed, these gender differences in light exposure may be due to gender differences in indoor vs. outdoor activities. Future studies of gender differences in response to light exposure should consider light exposure history in study design and analysis. The results of this study may inform future health disparities research and support the importance of the study of light as an important environmental exposure and component of the human exposome.
Collapse
|
32
|
VoPham T, Ton M, Weaver MD. Spatiotemporal light exposure modeling for environmental circadian misalignment and solar jetlag. Environ Epidemiol 2024; 8:e301. [PMID: 38617425 PMCID: PMC11008630 DOI: 10.1097/ee9.0000000000000301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/12/2024] [Indexed: 04/16/2024] Open
Abstract
Background Light exposure is the most powerful resetting signal for circadian rhythms. The objective of this study was to develop and validate a high-resolution geospatial light exposure model that measures environmental circadian misalignment (or solar jetlag) as the mismatch between the social clock and sun clock, which occurs from geographic variation in light exposure leading to delayed circadian phase from relatively less morning light exposure and greater evening light exposure with increasing westward position within a time zone. Methods The light exposure model (30 m2 spatial resolution) incorporated geospatial data across the United States on time zones, elevation (using Google Earth Engine), sunrise time, and sunset time to estimate solar jetlag scores (higher values indicate higher environmental circadian misalignment). The validation study compared the light exposure model in 2022, which was linked with geocoded residential addresses of n = 20 participants in Boston, MA (eastern time zone position) and Seattle, WA (western time zone position) using a geographic information system, with illuminance values captured from wearable LYS light sensors and with sun times from the Solar Calculator. Results Western versus eastern positions within a time zone were associated with higher solar jetlag scores from the light exposure model (P < 0.01) and relatively larger differences in sunset time measured using light sensors (social clock) and the Solar Calculator (sun clock) (P = 0.04). Conclusion We developed and validated a geospatial light exposure model, enabling high spatiotemporal resolution and comprehensive characterization of geographic variation in light exposure potentially impacting circadian phase in epidemiologic studies.
Collapse
Affiliation(s)
- Trang VoPham
- Epidemiology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Mimi Ton
- Department of Epidemiology, University of Washington, Seattle, Washington
- Cancer Prevention Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Matthew D. Weaver
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
33
|
Dauchy RT, Hanifin JP, Brainard GC, Blask DE. Light: An Extrinsic Factor Influencing Animal-based Research. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63:116-147. [PMID: 38211974 PMCID: PMC11022951 DOI: 10.30802/aalas-jaalas-23-000089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 01/13/2024]
Abstract
Light is an environmental factor that is extrinsic to animals themselves and that exerts a profound influence on the regulation of circadian, neurohormonal, metabolic, and neurobehavioral systems of all animals, including research animals. These widespread biologic effects of light are mediated by distinct photoreceptors-rods and cones that comprise the conventional visual system and melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs) of the nonvisual system that interact with the rods and cones. The rods and cones of the visual system, along with the ipRGCs of the nonvisual system, are species distinct in terms of opsins and opsin concentrations and interact with one another to provide vision and regulate circadian rhythms of neurohormonal and neurobehavioral responses to light. Here, we review a brief history of lighting technologies, the nature of light and circadian rhythms, our present understanding of mammalian photoreception, and current industry practices and standards. We also consider the implications of light for vivarium measurement, production, and technological application and provide simple recommendations on artificial lighting for use by regulatory authorities, lighting manufacturers, designers, engineers, researchers, and research animal care staff that ensure best practices for optimizing animal health and well-being and, ultimately, improving scientific outcomes.
Collapse
Key Words
- blad, blue-enriched led light at daytime
- clock, circadian locomotor output kaput
- cct, correlated color temperature
- cwf, cool white fluorescent
- ign, intergeniculate nucleus
- iprgc, intrinsically photosensitive retinal ganglion cell
- hiomt, hydroxyindole-o-methyltransferase
- k, kelvin temperature
- lan, light at night
- led, light-emitting diode
- lgn, lateral geniculate nucleus
- plr, pupillary light reflex
- pot, primary optic tract
- rht, retinohypothalamic tract
- scn, suprachiasmatic nuclei
- spd, spectral power distribution.
Collapse
Affiliation(s)
- Robert T Dauchy
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana;,
| | - John P Hanifin
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - George C Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David E Blask
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
34
|
Lucas RJ, Allen AE, Brainard GC, Brown TM, Dauchy RT, Didikoglu A, Do MTH, Gaskill BN, Hattar S, Hawkins P, Hut RA, McDowell RJ, Nelson RJ, Prins JB, Schmidt TM, Takahashi JS, Verma V, Voikar V, Wells S, Peirson SN. Recommendations for measuring and standardizing light for laboratory mammals to improve welfare and reproducibility in animal research. PLoS Biol 2024; 22:e3002535. [PMID: 38470868 PMCID: PMC10931507 DOI: 10.1371/journal.pbio.3002535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Light enables vision and exerts widespread effects on physiology and behavior, including regulating circadian rhythms, sleep, hormone synthesis, affective state, and cognitive processes. Appropriate lighting in animal facilities may support welfare and ensure that animals enter experiments in an appropriate physiological and behavioral state. Furthermore, proper consideration of light during experimentation is important both when it is explicitly employed as an independent variable and as a general feature of the environment. This Consensus View discusses metrics to use for the quantification of light appropriate for nonhuman mammals and their application to improve animal welfare and the quality of animal research. It provides methods for measuring these metrics, practical guidance for their implementation in husbandry and experimentation, and quantitative guidance on appropriate light exposure for laboratory mammals. The guidance provided has the potential to improve data quality and contribute to reduction and refinement, helping to ensure more ethical animal use.
Collapse
Affiliation(s)
- Robert J. Lucas
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Annette E. Allen
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - George C. Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Timothy M. Brown
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Robert T. Dauchy
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana, United States of America
| | - Altug Didikoglu
- Department of Neuroscience, Izmir Institute of Technology, Gülbahçe, Urla, Izmir, Turkey
| | - Michael Tri H. Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Center for Life Science, Boston, Massachusetts, United States of America
| | - Brianna N. Gaskill
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Samer Hattar
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, John Edward Porter Neuroscience Research Center, Bethesda, Maryland, United States of America
| | | | - Roelof A. Hut
- Chronobiology Unit, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Richard J. McDowell
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Randy J. Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, United States of America
| | - Jan-Bas Prins
- The Francis Crick Institute, London, United Kingdom
- Leiden University Medical Centre, Leiden, the Netherlands
| | - Tiffany M. Schmidt
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Joseph S. Takahashi
- Department of Neuroscience, Peter O’Donnell Jr Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Vandana Verma
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, California, United States of America
| | - Vootele Voikar
- Laboratory Animal Center and Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sara Wells
- The Mary Lyon Centre, MRC Harwell, Harwell Campus, Oxfordshire, United Kingdom
| | - Stuart N. Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
35
|
Wallace DA, Qiu X, Schwartz J, Huang T, Scheer FAJL, Redline S, Sofer T. Light exposure during sleep is bidirectionally associated with irregular sleep timing: The multi-ethnic study of atherosclerosis (MESA). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123258. [PMID: 38159634 PMCID: PMC10947994 DOI: 10.1016/j.envpol.2023.123258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Exposure to light at night (LAN) may influence sleep timing and regularity. Here, we test whether greater light exposure during sleep (LEDS) is bidirectionally associated with greater irregularity in sleep onset timing in a large cohort of older adults in cross-sectional and short-term longitudinal (days) analyses. Light exposure and activity patterns, measured via wrist-worn actigraphy (ActiWatch Spectrum), were analyzed in 1933 participants with 6+ valid days of data in the Multi-Ethnic Study of Atherosclerosis (MESA) Exam 5 Sleep Study. Summary measures of LEDS averaged across nights were evaluated in linear and logistic regression analyses to test the association with standard deviation (SD) in sleep onset timing (continuous variable) and irregular sleep onset timing (SD > 90 min, binary). Night-to-night associations between LEDS and absolute differences in nightly sleep onset timing were also evaluated with distributed lag non-linear models and mixed models. In between-individual linear and logistic models adjusted for demographic, health, and seasonal factors, every 5-lux unit increase in LEDS was associated with a 7.8-min increase in sleep onset SD (β = 0.13 h, 95%CI:0.09-0.17) and 32% greater odds (OR = 1.32, 95%CI:1.17-1.50) of irregular sleep onset. In within-individual night-to-night mixed model analyses, every 5-lux unit increase in LEDS the night prior was associated with a 2.2-min greater deviation of sleep onset the next night (β = 0.036 h, p < 0.05). Conversely, every 1-h increase in sleep deviation was associated with a 0.35-lux increase in future LEDS (β = 0.348 lux, p < 0.05). LEDS was associated with greater irregularity in sleep onset in between-individual analyses and subsequent deviation in sleep timing in within-individual analyses, supporting a role for LEDS in irregular sleep onset timing. Greater deviation in sleep onset was also associated with greater future LEDS, suggesting a bidirectional relationship. Maintaining a dark sleeping environment and preventing LEDS may promote sleep regularity and following a regular sleep schedule may limit LEDS.
Collapse
Affiliation(s)
- Danielle A Wallace
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston ,MA, USA.
| | - Xinye Qiu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tianyi Huang
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital,Boston, MA, USA
| | - Frank A J L Scheer
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston ,MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Susan Redline
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston ,MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tamar Sofer
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston ,MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
36
|
Della Monica C, Ravindran KKG, Atzori G, Lambert DJ, Rodriguez T, Mahvash-Mohammadi S, Bartsch U, Skeldon AC, Wells K, Hampshire A, Nilforooshan R, Hassanin H, The Uk Dementia Research Institute Care Research Amp Technology Research Group, Revell VL, Dijk DJ. A Protocol for Evaluating Digital Technology for Monitoring Sleep and Circadian Rhythms in Older People and People Living with Dementia in the Community. Clocks Sleep 2024; 6:129-155. [PMID: 38534798 DOI: 10.3390/clockssleep6010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
Sleep and circadian rhythm disturbance are predictors of poor physical and mental health, including dementia. Long-term digital technology-enabled monitoring of sleep and circadian rhythms in the community has great potential for early diagnosis, monitoring of disease progression, and assessing the effectiveness of interventions. Before novel digital technology-based monitoring can be implemented at scale, its performance and acceptability need to be evaluated and compared to gold-standard methodology in relevant populations. Here, we describe our protocol for the evaluation of novel sleep and circadian technology which we have applied in cognitively intact older adults and are currently using in people living with dementia (PLWD). In this protocol, we test a range of technologies simultaneously at home (7-14 days) and subsequently in a clinical research facility in which gold standard methodology for assessing sleep and circadian physiology is implemented. We emphasize the importance of assessing both nocturnal and diurnal sleep (naps), valid markers of circadian physiology, and that evaluation of technology is best achieved in protocols in which sleep is mildly disturbed and in populations that are relevant to the intended use-case. We provide details on the design, implementation, challenges, and advantages of this protocol, along with examples of datasets.
Collapse
Affiliation(s)
- Ciro Della Monica
- Surrey Sleep Research Centre, University of Surrey, Guildford GU2 7XP, UK
- UK Dementia Research Institute Care Research & Technology Centre (CR&T), Imperial College London and the University of Surrey, London W12 0NN, UK
| | - Kiran K G Ravindran
- Surrey Sleep Research Centre, University of Surrey, Guildford GU2 7XP, UK
- UK Dementia Research Institute Care Research & Technology Centre (CR&T), Imperial College London and the University of Surrey, London W12 0NN, UK
| | - Giuseppe Atzori
- Surrey Sleep Research Centre, University of Surrey, Guildford GU2 7XP, UK
- UK Dementia Research Institute Care Research & Technology Centre (CR&T), Imperial College London and the University of Surrey, London W12 0NN, UK
| | - Damion J Lambert
- Surrey Sleep Research Centre, University of Surrey, Guildford GU2 7XP, UK
- UK Dementia Research Institute Care Research & Technology Centre (CR&T), Imperial College London and the University of Surrey, London W12 0NN, UK
| | - Thalia Rodriguez
- Surrey Sleep Research Centre, University of Surrey, Guildford GU2 7XP, UK
- UK Dementia Research Institute Care Research & Technology Centre (CR&T), Imperial College London and the University of Surrey, London W12 0NN, UK
- School of Mathematics & Physics, University of Surrey, Guildford GU2 7XH, UK
| | - Sara Mahvash-Mohammadi
- UK Dementia Research Institute Care Research & Technology Centre (CR&T), Imperial College London and the University of Surrey, London W12 0NN, UK
- Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, UK
| | - Ullrich Bartsch
- Surrey Sleep Research Centre, University of Surrey, Guildford GU2 7XP, UK
- UK Dementia Research Institute Care Research & Technology Centre (CR&T), Imperial College London and the University of Surrey, London W12 0NN, UK
| | - Anne C Skeldon
- UK Dementia Research Institute Care Research & Technology Centre (CR&T), Imperial College London and the University of Surrey, London W12 0NN, UK
- School of Mathematics & Physics, University of Surrey, Guildford GU2 7XH, UK
| | - Kevin Wells
- UK Dementia Research Institute Care Research & Technology Centre (CR&T), Imperial College London and the University of Surrey, London W12 0NN, UK
- Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, UK
| | - Adam Hampshire
- Department of Brain Sciences, Imperial College, London W12 0NN, UK
| | - Ramin Nilforooshan
- UK Dementia Research Institute Care Research & Technology Centre (CR&T), Imperial College London and the University of Surrey, London W12 0NN, UK
- Surrey and Borders Partnership NHS Foundation Trust Surrey, Chertsey KT16 9AU, UK
| | - Hana Hassanin
- UK Dementia Research Institute Care Research & Technology Centre (CR&T), Imperial College London and the University of Surrey, London W12 0NN, UK
- Surrey Clinical Research Facility, University of Surrey, Guildford GU2 7XP, UK
- NIHR Royal Surrey CRF, Royal Surrey Foundation Trust, Guildford GU2 7XX, UK
| | | | - Victoria L Revell
- Surrey Sleep Research Centre, University of Surrey, Guildford GU2 7XP, UK
- UK Dementia Research Institute Care Research & Technology Centre (CR&T), Imperial College London and the University of Surrey, London W12 0NN, UK
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford GU2 7XP, UK
- UK Dementia Research Institute Care Research & Technology Centre (CR&T), Imperial College London and the University of Surrey, London W12 0NN, UK
| |
Collapse
|
37
|
Meyer N, Lok R, Schmidt C, Kyle SD, McClung CA, Cajochen C, Scheer FAJL, Jones MW, Chellappa SL. The sleep-circadian interface: A window into mental disorders. Proc Natl Acad Sci U S A 2024; 121:e2214756121. [PMID: 38394243 PMCID: PMC10907245 DOI: 10.1073/pnas.2214756121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Sleep, circadian rhythms, and mental health are reciprocally interlinked. Disruption to the quality, continuity, and timing of sleep can precipitate or exacerbate psychiatric symptoms in susceptible individuals, while treatments that target sleep-circadian disturbances can alleviate psychopathology. Conversely, psychiatric symptoms can reciprocally exacerbate poor sleep and disrupt clock-controlled processes. Despite progress in elucidating underlying mechanisms, a cohesive approach that integrates the dynamic interactions between psychiatric disorder with both sleep and circadian processes is lacking. This review synthesizes recent evidence for sleep-circadian dysfunction as a transdiagnostic contributor to a range of psychiatric disorders, with an emphasis on biological mechanisms. We highlight observations from adolescent and young adults, who are at greatest risk of developing mental disorders, and for whom early detection and intervention promise the greatest benefit. In particular, we aim to a) integrate sleep and circadian factors implicated in the pathophysiology and treatment of mood, anxiety, and psychosis spectrum disorders, with a transdiagnostic perspective; b) highlight the need to reframe existing knowledge and adopt an integrated approach which recognizes the interaction between sleep and circadian factors; and c) identify important gaps and opportunities for further research.
Collapse
Affiliation(s)
- Nicholas Meyer
- Insomnia and Behavioural Sleep Medicine Clinic, University College London Hospitals NHS Foundation Trust, LondonWC1N 3HR, United Kingdom
- Department of Psychosis Studies, Institute of Psychology, Psychiatry, and Neuroscience, King’s College London, LondonSE5 8AF, United Kingdom
| | - Renske Lok
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA94305
| | - Christina Schmidt
- Sleep & Chronobiology Group, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology, Speech and Language, University of Liège, Liège4000, Belgium
| | - Simon D. Kyle
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Colleen A. McClung
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA15219
| | - Christian Cajochen
- Centre for Chronobiology, Department for Adult Psychiatry, Psychiatric Hospital of the University of Basel, BaselCH-4002, Switzerland
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, BaselCH-4055, Switzerland
| | - Frank A. J. L. Scheer
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Department of Neurology, Brigham and Women’s Hospital, Boston, MA02115
- Division of Sleep Medicine, Harvard Medical School, Boston, MA02115
| | - Matthew W. Jones
- School of Physiology, Pharmacology and Neuroscience, Faculty of Health and Life Sciences, University of Bristol, BristolBS8 1TD, United Kingdom
| | - Sarah L. Chellappa
- School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
| |
Collapse
|
38
|
Zhong Z, Tan X, An X, Li J, Cai J, Jiang Y, Taufique SKT, Li B, Shi Q, Zhao M, Wang Y, Luo Q, Wang H. Administration of blue light in the morning and no blue-ray light in the evening improves the circadian functions of non-24-hour shift workers. Chronobiol Int 2024; 41:267-282. [PMID: 38267234 DOI: 10.1080/07420528.2024.2305218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/07/2024] [Indexed: 01/26/2024]
Abstract
In modern 24-hour society, various round-the-clock services have entailed shift work, resulting in non-24-hour schedules. However, the extent of behavioral and physiological alterations by non-24-hour schedules remains unclear, and particularly, effective interventions to restore the circadian functions of non-24-hour shift workers are rarely explored. In this study, we investigate the effects of a simulated non-24-hour military shift work schedule on daily rhythms and sleep, and establish an intervention measure to restore the circadian functions of non-24-hour shift workers. The three stages of experiments were conducted. The stage-one experiment was to establish a comprehensive evaluation index of the circadian rhythms and sleep for all 60 participants by analyzing wristwatch-recorded physiological parameters and sleep. The stage-two experiment evaluated the effects of an intervention strategy on physiological rhythms and sleep. The stage-three experiment was to examine the participants' physiological and behavioral disturbances under the simulated non-24-hour military shift work schedule and their improvements by the optimal lighting apparatus. We found that wristwatch-recorded physiological parameters display robust rhythmicity, and the phases of systolic blood pressures and heart rates can be used as reliable estimators for the human body time. The simulated non-24-hour military shift work schedule significantly disrupts the daily rhythms of oxygen saturation levels, blood pressures, heart rates, and reduces sleep quality. Administration of blue light in the morning and no blue-ray light in the evening improves the amplitude and synchronization of daily rhythms of the non-24-hour participants. These findings demonstrate the harmful consequences of the non-24-hour shift work schedule and provide a non-invasive strategy to improve the well-being and work efficiency of the non-24-hour shift population.
Collapse
Affiliation(s)
- Zhaomin Zhong
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xiaohui Tan
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xingna An
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jie Li
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jing Cai
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Yunchun Jiang
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - S K Tahajjul Taufique
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Bo Li
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Quan Shi
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Meng Zhao
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Yali Wang
- Department of Neurology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qun Luo
- Naval Medical Center, PLA Naval Medical University, Shanghai, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
39
|
Grant LK, Gooley JJ, St Hilaire MA, Joffe H, Brainard GC, Van Reen E, Rüger M, Rajaratnam SMW, Lockley SW, Czeisler CA, Rahman SA. A pilot study of light exposure as a countermeasure for menstrual phase-dependent neurobehavioral performance impairment in women. Sleep Health 2024; 10:S34-S40. [PMID: 37748973 PMCID: PMC10959759 DOI: 10.1016/j.sleh.2023.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/27/2023]
Abstract
OBJECTIVE To examine effects of menstrual phase and nighttime light exposure on subjective sleepiness and auditory Psychomotor Vigilance Task performance. METHODS Twenty-nine premenopausal women (12 =Follicular; 17 =Luteal) completed a 6.5-hour nighttime monochromatic light exposure with varying wavelengths (420-620 nm) and irradiances (1.03-14.12 µW/cm2). Subjective sleepiness, reaction time, and attentional lapses were compared between menstrual phases in women with minimal (<33%) or substantial (≥33%) light-induced melatonin suppression. RESULTS When melatonin was not suppressed, women in the follicular phase had significantly worse reaction time (mean difference=145.1 ms, 95% CI 51.8-238.3, p < .001, Cohen's D=1.9) and lapses (mean difference=12.9 lapses, 95% CI 4.37-21.41, p < .001, Cohen's D=1.7) compared to women in the luteal phase. When melatonin was suppressed, women in the follicular phase had significantly better reaction time (mean difference=152.1 ms, 95% CI 43.88-260.3, p < .001, Cohen's D=1.7) and lapses (mean difference=12.3 lapses, 95% CI 1.14-25.6, p < .01, Cohen's D=1.6) compared to when melatonin was not suppressed, such that their performance was not different (p > .9) from women in the luteal phase. Subjective sleepiness did not differ by menstrual phase (mean difference=0.6, p > .08) or melatonin suppression (mean difference=0.2, p > .4). CONCLUSIONS Nighttime light exposure sufficient to suppress melatonin can also mitigate neurobehavioral performance deficits associated with the follicular phase. Despite the relatively small sample size, these data suggest that nighttime light may be a valuable strategy to help reduce errors and accidents in female shift workers.
Collapse
Affiliation(s)
- Leilah K Grant
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA; Mary Horrigan Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | - Joshua J Gooley
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Melissa A St Hilaire
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA; Department of Computer and Data Sciences, School of Science and Engineering, Merrimack College, North Andover, Massachusetts, USA
| | - Hadine Joffe
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA; Mary Horrigan Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Women's Hormones and Aging Research Program, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - George C Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Eliza Van Reen
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Melanie Rüger
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Shantha M W Rajaratnam
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven W Lockley
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Charles A Czeisler
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Shadab A Rahman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Lei T, Hua H, Du H, Xia J, Xu D, Liu W, Wang Y, Yang T. Molecular mechanisms of artificial light at night affecting circadian rhythm disturbance. Arch Toxicol 2024; 98:395-408. [PMID: 38103071 DOI: 10.1007/s00204-023-03647-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Artificial light at night (ALAN) pollution has been regarded as a global environmental concern. More than 80% of the global population is exposed to light pollution. Exacerbating this issue, artificially lit outdoor areas are growing by 2.2% per year, while continuously lit areas have brightened by 2.2% each year due to rapid population growth and expanding urbanization. Furthermore, the increasing prevalence of night shift work and smart device usage contributes to the inescapable influence of ALAN. Studies have shown that ALAN can disrupt endogenous biological clocks, resulting in a disturbance of the circadian rhythm, which ultimately affects various physiological functions. Up until now, scholars have studied various disease mechanisms caused by ALAN that may be related to the response of the circadian system to light. This review outlines the molecular mechanisms by which ALAN causes circadian rhythm abnormalities in sleep disorders, endocrine diseases, cardiovascular disease, cancer, immune impairment, depression, anxiety and cognitive impairments.
Collapse
Affiliation(s)
- Ting Lei
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Hui Hua
- Department of Nutrition, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Huiying Du
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Jie Xia
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Dandan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Wei Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yutong Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| | - Tianyao Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China.
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
41
|
Dijk DJ, Skeldon AC. On the need for mathematical models for integration of sleep, circadian, and environmental science for sleep health policies. Sleep Health 2024; 10:S22-S24. [PMID: 38290876 DOI: 10.1016/j.sleh.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Affiliation(s)
- Derk-Jan Dijk
- Surrey Sleep Research Centre, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK; UK Dementia Research Institute, Care Research and Technology Centre at Imperial College London, London, UK and the University of Surrey, Guildford, UK.
| | - Anne C Skeldon
- UK Dementia Research Institute, Care Research and Technology Centre at Imperial College London, London, UK and the University of Surrey, Guildford, UK; School of Mathematics and Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
42
|
Drăgoi CM, Nicolae AC, Ungurianu A, Margină DM, Grădinaru D, Dumitrescu IB. Circadian Rhythms, Chrononutrition, Physical Training, and Redox Homeostasis-Molecular Mechanisms in Human Health. Cells 2024; 13:138. [PMID: 38247830 PMCID: PMC10814043 DOI: 10.3390/cells13020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
A multitude of physiological processes, human behavioral patterns, and social interactions are intricately governed by the complex interplay between external circumstances and endogenous circadian rhythms. This multidimensional regulatory framework is susceptible to disruptions, and in contemporary society, there is a prevalent occurrence of misalignments between the circadian system and environmental cues, a phenomenon frequently associated with adverse health consequences. The onset of most prevalent current chronic diseases is intimately connected with alterations in human lifestyle practices under various facets, including the following: reduced physical activity, the exposure to artificial light, also acknowledged as light pollution, sedentary behavior coupled with consuming energy-dense nutriments, irregular eating frameworks, disruptions in sleep patterns (inadequate quality and duration), engagement in shift work, and the phenomenon known as social jetlag. The rapid evolution of contemporary life and domestic routines has significantly outpaced the rate of genetic adaptation. Consequently, the underlying circadian rhythms are exposed to multiple shifts, thereby elevating the susceptibility to disease predisposition. This comprehensive review endeavors to synthesize existing empirical evidence that substantiates the conceptual integration of the circadian clock, biochemical molecular homeostasis, oxidative stress, and the stimuli imparted by physical exercise, sleep, and nutrition.
Collapse
Affiliation(s)
- Cristina Manuela Drăgoi
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.M.D.); (A.C.N.); (A.U.); (D.M.M.)
| | - Alina Crenguţa Nicolae
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.M.D.); (A.C.N.); (A.U.); (D.M.M.)
| | - Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.M.D.); (A.C.N.); (A.U.); (D.M.M.)
| | - Denisa Marilena Margină
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.M.D.); (A.C.N.); (A.U.); (D.M.M.)
| | - Daniela Grădinaru
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.M.D.); (A.C.N.); (A.U.); (D.M.M.)
| | - Ion-Bogdan Dumitrescu
- Department of Physics and Informatics, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania;
| |
Collapse
|
43
|
Gubin D, Danilenko K, Stefani O, Kolomeichuk S, Markov A, Petrov I, Voronin K, Mezhakova M, Borisenkov M, Shigabaeva A, Yuzhakova N, Lobkina S, Weinert D, Cornelissen G. Blue Light and Temperature Actigraphy Measures Predicting Metabolic Health Are Linked to Melatonin Receptor Polymorphism. BIOLOGY 2023; 13:22. [PMID: 38248453 PMCID: PMC10813279 DOI: 10.3390/biology13010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
This study explores the relationship between the light features of the Arctic spring equinox and circadian rhythms, sleep and metabolic health. Residents (N = 62) provided week-long actigraphy measures, including light exposure, which were related to body mass index (BMI), leptin and cortisol. Lower wrist temperature (wT) and higher evening blue light exposure (BLE), expressed as a novel index, the nocturnal excess index (NEIbl), were the most sensitive actigraphy measures associated with BMI. A higher BMI was linked to nocturnal BLE within distinct time windows. These associations were present specifically in carriers of the MTNR1B rs10830963 G-allele. A larger wake-after-sleep onset (WASO), smaller 24 h amplitude and earlier phase of the activity rhythm were associated with higher leptin. Higher cortisol was associated with an earlier M10 onset of BLE and with our other novel index, the Daylight Deficit Index of blue light, DDIbl. We also found sex-, age- and population-dependent differences in the parametric and non-parametric indices of BLE, wT and physical activity, while there were no differences in any sleep characteristics. Overall, this study determined sensitive actigraphy markers of light exposure and wT predictive of metabolic health and showed that these markers are linked to melatonin receptor polymorphism.
Collapse
Affiliation(s)
- Denis Gubin
- Department of Biology, Tyumen Medical University, 625023 Tyumen, Russia
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Tyumen Medical University, 625023 Tyumen, Russia; (K.D.); (A.S.)
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Konstantin Danilenko
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Tyumen Medical University, 625023 Tyumen, Russia; (K.D.); (A.S.)
- Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| | - Oliver Stefani
- Department Engineering and Architecture, Institute of Building Technology and Energy, Lucerne University of Applied Sciences and Arts, 6048 Horw, Switzerland;
| | - Sergey Kolomeichuk
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia; (S.K.); (A.M.); (K.V.); (N.Y.)
- Laboratory of Genetics, Institute of Biology of the Karelian Science Center, Russian Academy of Sciences, 185910 Petrozavodsk, Russia
| | - Alexander Markov
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia; (S.K.); (A.M.); (K.V.); (N.Y.)
| | - Ivan Petrov
- Department of Biological & Medical Physics UNESCO, Medical University, 625023 Tyumen, Russia
| | - Kirill Voronin
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia; (S.K.); (A.M.); (K.V.); (N.Y.)
| | - Marina Mezhakova
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia; (S.K.); (A.M.); (K.V.); (N.Y.)
| | - Mikhail Borisenkov
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of the Federal Research Centre Komi Science Centre, Ural Branch of the Russian Academy of Sciences, 167982 Syktyvkar, Russia;
| | - Aislu Shigabaeva
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Tyumen Medical University, 625023 Tyumen, Russia; (K.D.); (A.S.)
| | - Natalya Yuzhakova
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia; (S.K.); (A.M.); (K.V.); (N.Y.)
| | - Svetlana Lobkina
- Healthcare Institution of Yamalo-Nenets Autonomous Okrug “Tarko-Sale Central District Hospital”, 629850 Urengoy, Russia;
| | - Dietmar Weinert
- Institute of Biology/Zoology, Martin Luther University, 06108 Halle-Wittenberg, Germany;
| | - Germaine Cornelissen
- Department of Integrated Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
44
|
Flynn-Evans EE, Rueger M, Liu AM, Galvan-Garza RC, Natapoff A, Oman CM, Lockley SW. Effectiveness of caffeine and blue-enriched light on cognitive performance and electroencephalography correlates of alertness in a spaceflight robotics simulation. NPJ Microgravity 2023; 9:93. [PMID: 38114500 PMCID: PMC10730879 DOI: 10.1038/s41526-023-00332-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/25/2023] [Indexed: 12/21/2023] Open
Abstract
Human cognitive impairment associated with sleep loss, circadian misalignment and work overload is a major concern in any high stress occupation but has potentially catastrophic consequences during spaceflight human robotic interactions. Two safe, wake-promoting countermeasures, caffeine and blue-enriched white light have been studied on Earth and are available on the International Space Station. We therefore conducted a randomized, placebo-controlled, cross-over trial examining the impact of regularly timed low-dose caffeine (0.3 mg per kg per h) and moderate illuminance blue-enriched white light (~90 lux, ~88 melEDI lux, 6300 K) as countermeasures, separately and combined, in a multi-night simulation of sleep-wake shifts experienced during spaceflight among 16 participants (7 F, ages 26-55). We find that chronic administration of low-dose caffeine improves subjective and objective correlates of alertness and performance during an overnight work schedule involving chronic sleep loss and circadian misalignment, although we also find that caffeine disrupts subsequent sleep. We further find that 90 lux of blue-enriched light moderately reduces electroencephalogram (EEG) power in the theta and delta regions, which are associated with sleepiness. These findings support the use of low-dose caffeine and potentially blue-enriched white light to enhance alertness and performance among astronauts and shiftworking populations.
Collapse
Affiliation(s)
- Erin E Flynn-Evans
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 02115, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, 02115, Boston, MA, USA
- Fatigue Countermeasures Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Melanie Rueger
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 02115, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, 02115, Boston, MA, USA
| | - Andrew M Liu
- Human Systems Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Raquel C Galvan-Garza
- Human Systems Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alan Natapoff
- Human Systems Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Charles M Oman
- Human Systems Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Steven W Lockley
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 02115, Boston, MA, USA.
- Division of Sleep Medicine, Harvard Medical School, 02115, Boston, MA, USA.
| |
Collapse
|
45
|
Bará S, Falchi F. Artificial light at night: a global disruptor of the night-time environment. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220352. [PMID: 37899010 PMCID: PMC10613534 DOI: 10.1098/rstb.2022.0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/17/2023] [Indexed: 10/31/2023] Open
Abstract
Light pollution is the alteration of the natural levels of darkness by an increased concentration of light particles in the night-time environment, resulting from human activity. Light pollution is profoundly changing the night-time environmental conditions across wide areas of the planet, and is a relevant stressor whose effects on life are being unveiled by a compelling body of research. In this paper, we briefly review the basic aspects of artificial light at night as a pollutant, describing its character, magnitude and extent, its worldwide distribution, its temporal and spectral change trends, as well as its dependence on current light production technologies and prevailing social uses of light. It is shown that the overall effects of light pollution are not restricted to local disturbances, but give rise to a global, multiscale disruption of the night-time environment. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Salvador Bará
- Departamento de Física Aplicada, Universidade de Santiago de Compostela (USC), Santiago de Compostela, 15782 Galicia Spain
| | - Fabio Falchi
- Departamento de Física Aplicada, Universidade de Santiago de Compostela (USC), Santiago de Compostela, 15782 Galicia Spain
- ISTIL Istituto di Scienza e Tecnologia dell'Inquinamento Luminoso–Light Pollution Science and Technology Institute, Via Roma, 13 - I 36016 Thiene, Italy
| |
Collapse
|
46
|
Bucher SF, Uhde L, Weigelt A, Cesarz S, Eisenhauer N, Gebler A, Kyba C, Römermann C, Shatwell T, Hines J. Artificial light at night decreases plant diversity and performance in experimental grassland communities. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220358. [PMID: 37899022 PMCID: PMC10613542 DOI: 10.1098/rstb.2022.0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/28/2023] [Indexed: 10/31/2023] Open
Abstract
Artificial light at night (ALAN) affects many areas of the world and is increasing globally. To date, there has been limited and inconsistent evidence regarding the consequences of ALAN for plant communities, as well as for the fitness of their constituent species. ALAN could be beneficial for plants as they need light as energy source, but they also need darkness for regeneration and growth. We created model communities composed of 16 plant species sown, exposed to a gradient of ALAN ranging from 'moonlight only' to conditions like situations typically found directly underneath a streetlamp. We measured plant community composition and its production (biomass), as well as functional traits of three plant species from different functional groups (grasses, herbs, legumes) in two separate harvests. We found that biomass was reduced by 33% in the highest ALAN treatment compared to the control, Shannon diversity decreased by 43% and evenness by 34% in the first harvest. Some species failed to establish in the second harvest. Specific leaf area, leaf dry matter content and leaf hairiness responded to ALAN. These responses suggest that plant communities will be sensitive to increasing ALAN, and they flag a need for plant conservation activities that consider impending ALAN scenarios. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Solveig Franziska Bucher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Lia Uhde
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04109 Leipzig, Germany
| | - Alexandra Weigelt
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, 07743 Jena, Germany
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04109 Leipzig, Germany
| | - Simone Cesarz
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, 07743 Jena, Germany
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04109 Leipzig, Germany
| | - Nico Eisenhauer
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, 07743 Jena, Germany
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04109 Leipzig, Germany
| | - Alban Gebler
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, 07743 Jena, Germany
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04109 Leipzig, Germany
| | - Christopher Kyba
- Interdisciplinary Geographic Information Sciences, Ruhr-Universität Bochum, 44780 Bochum, Germany
- Remote Sensing and Geoinformatics, Deutsches GeoForschungsZentrum GFZ, Germany
| | - Christine Römermann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Tom Shatwell
- Department of Lake Research, Helmholtz-Centre for Environmental Research – UFZ, 39114 Magdeburg, Germany
| | - Jes Hines
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, 07743 Jena, Germany
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04109 Leipzig, Germany
| |
Collapse
|
47
|
Siraji MA, Lazar RR, van Duijnhoven J, Schlangen LJM, Haque S, Kalavally V, Vetter C, Glickman GL, Smolders KCHJ, Spitschan M. An inventory of human light exposure behaviour. Sci Rep 2023; 13:22151. [PMID: 38092767 PMCID: PMC10719384 DOI: 10.1038/s41598-023-48241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
Light exposure is an essential driver of health and well-being, and individual behaviours during rest and activity modulate physiologically relevant aspects of light exposure. Further understanding the behaviours that influence individual photic exposure patterns may provide insight into the volitional contributions to the physiological effects of light and guide behavioural points of intervention. Here, we present a novel, self-reported and psychometrically validated inventory to capture light exposure-related behaviour, the Light Exposure Behaviour Assessment (LEBA). An expert panel prepared the initial 48-item pool spanning different light exposure-related behaviours. Responses, consisting of rating the frequency of engaging in the per-item behaviour on a five-point Likert-type scale, were collected in an online survey yielding responses from a geographically unconstrained sample (690 completed responses, 74 countries, 28 time zones). The exploratory factor analysis (EFA) on an initial subsample (n = 428) rendered a five-factor solution with 25 items (wearing blue light filters, spending time outdoors, using a phone and smartwatch in bed, using light before bedtime, using light in the morning and during daytime). In a confirmatory factor analysis (CFA) performed on an independent subset of participants (n = 262), we removed two additional items to attain the best fit for the five-factor solution (CFI = 0.95, TLI = 0.95, RMSEA = 0.06). The internal consistency reliability coefficient for the total instrument yielded McDonald's Omega = 0.68. Measurement model invariance analysis between native and non-native English speakers showed our model attained the highest level of invariance (residual invariance CFI = 0.95, TLI = 0.95, RMSEA = 0.05). Lastly, a short form of the LEBA (n = 18 items) was developed using Item Response Theory on the complete sample (n = 690). The psychometric properties of the LEBA indicate the usability for measuring light exposure-related behaviours. The instrument may offer a scalable solution to characterise behaviours that influence individual photic exposure patterns in remote samples. The LEBA inventory is available under the open-access CC-BY license. Instrument webpage: https://leba-instrument.org/ GitHub repository containing this manuscript: https://github.com/leba-instrument/leba-manuscript .
Collapse
Affiliation(s)
- Mushfiqul Anwar Siraji
- Department of Psychology, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
- Department of History and Philosophy, North South University, Dhaka, Bangladesh
| | - Rafael Robert Lazar
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel (UPK), Basel, Switzerland
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Juliëtte van Duijnhoven
- Department of the Built Environment, Building Lighting, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Luc J M Schlangen
- Intelligent Lighting Institute, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Industrial Engineering and Innovation Sciences, Human-Technology Interaction, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Shamsul Haque
- Department of Psychology, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Vineetha Kalavally
- Department of Electrical and Computer Systems Engineering, Monash University Malaysia, Selangor, Malaysia
| | - Céline Vetter
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, USA
- IQVIA GmbH, Frankfurt am Main, Germany
| | - Gena L Glickman
- Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, USA
| | - Karin C H J Smolders
- Intelligent Lighting Institute, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Industrial Engineering and Innovation Sciences, Human-Technology Interaction, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Manuel Spitschan
- Translational Sensory & Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
- TUM School of Medicine and Health, Technical University of Munich, Munich, Germany.
- TUM Institute of Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany.
| |
Collapse
|
48
|
Wallace DA. In the light: towards developing metrics of light regularity. Sleep 2023; 46:zsad114. [PMID: 37075470 PMCID: PMC10710984 DOI: 10.1093/sleep/zsad114] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/13/2023] [Indexed: 04/21/2023] Open
Affiliation(s)
- Danielle A Wallace
- Division of Sleep Medicine, Harvard Medical School, Boston MA, USA
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston MA, USA
| |
Collapse
|
49
|
Sletten TL. Melanopic metrics: Advancing the characterization of everyday light patterns. Proc Natl Acad Sci U S A 2023; 120:e2316004120. [PMID: 37991937 DOI: 10.1073/pnas.2316004120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023] Open
Affiliation(s)
- Tracey L Sletten
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
50
|
Beute F, Aries MB. The importance of residential dusk and dawn light exposure for sleep quality, health, and well-being. Sleep Med Rev 2023; 72:101865. [PMID: 37864914 DOI: 10.1016/j.smrv.2023.101865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
Light exposure during twilight plays a critical role in the entrainment of the human circadian system. People are most often at home during dusk and dawn, and light exposure at home - either natural or from electric light - may therefore contribute substantially to sleep and well-being. However, very little research has focused on the effects of home lighting on sleep and well-being, and even less research has investigated the effects of light exposure during twilight. Therefore, a literature study was performed to collect studies on light exposure at home during dusk and dawn. Studies looking at light exposure during dusk and dawn have focused on either electric light intervention (i.e., dusk and dawn simulation) at home or in the laboratory or daylight exposure in the bedroom (i.e., the presence and type of curtains in the bedroom). Most research has focused on dawn simulation during the darker months of the year, often using sunrise alarms. In general, study results pointed to the importance of twilight light exposure at home for sleep and well-being. These results may depend on the characteristics of the user, such as age or chronotype.
Collapse
Affiliation(s)
| | - Myriam Bc Aries
- Jönköping University, School of Engineering, Jönköping, Sweden.
| |
Collapse
|