1
|
Thibaut MM, Roumain M, Piron E, Gillard J, Loriot A, Neyrinck AM, Rodriguez J, Massart I, Thissen JP, Huot JR, Pin F, Bonetto A, Delzenne NM, Muccioli GG, Bindels LB. The microbiota-derived bile acid taurodeoxycholic acid improves hepatic cholesterol levels in mice with cancer cachexia. Gut Microbes 2025; 17:2449586. [PMID: 39780051 PMCID: PMC11730681 DOI: 10.1080/19490976.2025.2449586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
Alterations in bile acid profile and pathways contribute to hepatic inflammation in cancer cachexia, a syndrome worsening the prognosis of cancer patients. As the gut microbiota impinges on host metabolism through bile acids, the current study aimed to explore the functional contribution of gut microbial dysbiosis to bile acid dysmetabolism and associated disorders in cancer cachexia. Using three mouse models of cancer cachexia (the C26, MC38 and HCT116 models), we evidenced a reduction in the hepatic levels of several secondary bile acids, mainly taurodeoxycholic (TDCA). This reduction in hepatic TDCA occurred before the appearance of cachexia. Longitudinal analysis of the gut microbiota pinpointed an ASV, identified as Xylanibacter rodentium, as a bacterium potentially involved in the reduced production of TDCA. Coherently, stable isotope-based experiments highlighted a robust decrease in the microbial 7α-dehydroxylation (7α-DH) activity with no changes in the bile salt hydrolase (BSH) activity in cachectic mice. This approach also highlighted a reduced microbial 7α-hydroxysteroid dehydrogenase (7α-HSDH) and 12α-hydroxysteroid dehydrogenase (12α-HSDH) activities in these mice. The contribution of the lower production of TDCA to cancer cachexia was explored in vitro and in vivo. In vitro, TDCA prevented myotube atrophy, whereas in vivo hepatic whole transcriptome analysis revealed that TDCA administration to cachectic mice improved the unfolded protein response and cholesterol homeostasis pathways. Coherently, TDCA administration reversed hepatic cholesterol accumulation in these mice. Altogether, this work highlights the contribution of the gut microbiota to bile acid dysmetabolism and the therapeutic interest of the secondary bile acid TDCA for hepatic cholesterol homeostasis in the context of cancer cachexia. Such discovery may prove instrumental in the understanding of other metabolic diseases characterized by microbial dysbiosis. More broadly, our work demonstrates the interest and relevance of microbial activity measurements using stable isotopes, an approach currently underused in the microbiome field.
Collapse
Affiliation(s)
- Morgane M. Thibaut
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Martin Roumain
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Edwige Piron
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Justine Gillard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Axelle Loriot
- Computational Biology and Bioinformatics Unit (CBIO), de Duve Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Audrey M. Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Julie Rodriguez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Isabelle Massart
- Endocrinology, Diabetology and Nutrition Department, Institut de Recherches Expérimentales et Cliniques, UCLouvain, Université catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jean-Paul Thissen
- Endocrinology, Diabetology and Nutrition Department, Institut de Recherches Expérimentales et Cliniques, UCLouvain, Université catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Joshua R. Huot
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fabrizio Pin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrea Bonetto
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Laure B. Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Welbio Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
2
|
Naspolini NF, Schüroff PA, Vanzele PAR, Pereira-Santos D, Valim TA, Bonham KS, Fujita A, Passos-Bueno MR, Beltrão-Braga PCB, Carvalho ACPLF, Klepac-Ceraj V, Polanczyk GV, Campos AC, Taddei CR. Exclusive breastfeeding is associated with the gut microbiome maturation in infants according to delivery mode. Gut Microbes 2025; 17:2493900. [PMID: 40237336 PMCID: PMC12005435 DOI: 10.1080/19490976.2025.2493900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/29/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025] Open
Abstract
Exclusive breastfeeding (EBF) plays a crucial role in infant gut microbiome assembly and development. However, few studies have investigated the effects of EBF in restoring a perturbed microbiome. In this study, we applied whole metagenomic sequencing to assess the gut microbiome assembly in 525 Brazilian infants from 3 to 9 months of age of the Germina Cohort, demonstrating the early determinants of microbial taxonomy and function modulation. Our analysis shows that EBF alters the relative abundance of genes related to the microbiome taxonomy and function, with effects varying by delivery mode. EBF alters the pattern of carbohydrates, lipid metabolism, and cell structure pathways depending on the delivery mode. The microbiome age is closer to chronological infant age in EBF than in non-EBF infants, meaning a lower microbiome maturation index (MMI). Using a complementary machine learning approach, we show that Escherichia coli, Ruminococcus gnavus, and Clostridium neonatale, as well as vitamin K and o-antigen pathways contribute strongly to EBF prediction. Moreover, EBF influences the microbiome maturation in early life, toward a microbiome age more similar to the chronological infant's age.
Collapse
Affiliation(s)
| | - Paulo A. Schüroff
- School of Arts, Sciences and Humanity, University of Sao Paulo, Sao Paulo, Brazil
| | - Pedro A. R. Vanzele
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Davi Pereira-Santos
- Department of Applied Mathematics and Statistics, Institute of Mathematics and Computer Sciences, University of Sao Paulo, Sao Carlos, Brazil
- Departamento Acadêmico de Computação, Universidade Tecnológica Federal do Paraná (UTFPR), Câmpus Medianeira, Medianeira, Brazil
| | - Tamires Amabili Valim
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Kevin S. Bonham
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - André Fujita
- Division of Network AI Statistics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Computer Science, Institute of Mathematics and Statistics, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Patricia C. B. Beltrão-Braga
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Laboratory of Disease Modeling, Institut Pasteur de Sao Paulo, Sao Paulo, Brazil
| | - André C. P. L. F. Carvalho
- Department of Applied Mathematics and Statistics, Institute of Mathematics and Computer Sciences, University of Sao Paulo, Sao Carlos, Brazil
| | - Vanja Klepac-Ceraj
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Guilherme V. Polanczyk
- Department of Psychiatry, Faculdade de Medicina FMUSP, University of Sao Paulo, Sao Paulo, Brazil
| | - Alline C. Campos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Carla R. Taddei
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Division of Clinical Laboratory, University Hospital - University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Wu IW, Liao YC, Tsai TH, Lin CH, Shen ZQ, Chan YH, Tu CW, Chou YJ, Lo CJ, Yeh CH, Chen CY, Pan HC, Hsu HJ, Lee CC, Cheng ML, Sheu WHH, Lai CC, Sytwu HK, Tsai TF. Machine-learning assisted discovery unveils novel interplay between gut microbiota and host metabolic disturbance in diabetic kidney disease. Gut Microbes 2025; 17:2473506. [PMID: 40050256 PMCID: PMC11901534 DOI: 10.1080/19490976.2025.2473506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/24/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Diabetic kidney disease (DKD) is a serious healthcare dilemma. Nonetheless, the interplay between the functional capacity of gut microbiota and their host remains elusive for DKD. This study aims to elucidate the functional capability of gut microbiota to affect kidney function of DKD patients. A total of 990 subjects were enrolled consisting of a control group (n = 455), a type 2 diabetes mellitus group (DM, n = 204), a DKD group (n = 182) and a chronic kidney disease group (CKD, n = 149). Full-length sequencing of 16S rRNA genes from stool DNA was conducted. Three findings are pinpointed. Firstly, new types of microbiota biomarkers have been created using a machine-learning (ML) method, namely relative abundance of a microbe, presence or absence of a microbe, and the hierarchy ratio between two different taxonomies. Four different panels of features were selected to be analyzed: (i) DM vs. Control, (ii) DKD vs. DM, (iii) DKD vs. CKD, and (iv) CKD vs. Control. These had accuracy rates between 0.72 and 0.78 and areas under curve between 0.79 and 0.86. Secondly, 13 gut microbiota biomarkers, which are strongly correlated with anthropometric, metabolic and/or renal indexes, concomitantly identified by the ML algorithm and the differential abundance method were highly discriminatory. Finally, the predicted functional capability of a DKD-specific biomarker, Gemmiger spp. is enriched in carbohydrate metabolism and branched-chain amino acid (BCAA) biosynthesis. Coincidentally, the circulating levels of various BCAAs (L-valine, L-leucine and L-isoleucine) and their precursor, L-glutamate, are significantly increased in DM and DKD patients, which suggests that, when hyperglycemia is present, there has been alterations in various interconnected pathways associated with glycolysis, pyruvate fermentation and BCAA biosynthesis. Our findings demonstrate that there is a link involving the gut-kidney axis in DKD patients. Furthermore, our findings highlight specific gut bacteria that can acts as useful biomarkers; these could have mechanistic and diagnostic implications.
Collapse
Affiliation(s)
- I-Wen Wu
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yu-Chieh Liao
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | | | - Chieh-Hua Lin
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Zhao-Qing Shen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Chih-Wei Tu
- Advanced Tech BU, Acer Inc, New Taipei City, Taiwan
| | - Yi-Ju Chou
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Chi-Jen Lo
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Hsiao Yeh
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Yu Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Heng-Chih Pan
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Heng-Jung Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chin-Chan Lee
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University (MLC), Taoyuan, Taiwan
| | - Wayne Huey-Herng Sheu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Chun Lai
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Department & Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
4
|
Rodrigues CS, Gaifem J, Pereira MS, Alves MF, Silva M, Padrão N, Cavadas B, Moreira-Barbosa C, Alves I, Marcos-Pinto R, Torres J, Lavelle A, Colombel JF, Sokol H, Pinho SS. Alterations in mucosa branched N-glycans lead to dysbiosis and downregulation of ILC3: a key driver of intestinal inflammation. Gut Microbes 2025; 17:2461210. [PMID: 39918275 PMCID: PMC11810091 DOI: 10.1080/19490976.2025.2461210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/29/2024] [Accepted: 01/13/2025] [Indexed: 02/12/2025] Open
Abstract
The perturbation of the symbiotic relationship between microbes and intestinal immune system contributes to gut inflammation and Inflammatory Bowel Disease (IBD) development. The host mucosa glycans (glycocalyx) creates a major biological interface between gut microorganisms and host immunity that remains ill-defined. Glycans are essential players in IBD immunopathogenesis, even years before disease onset. However, how changes in mucosa glycosylation shape microbiome and how this impact gut immune response and inflammation remains to be clarified. Here, we revealed that alterations in the expression of complex branched N-glycans at gut mucosa surface, modeled in glycoengineered mice, resulted in dysbiosis, with a deficiency in Firmicutes bacteria. Concomitantly, this mucosa N-glycan switch was associated with a downregulation of type 3 innate lymphoid cells (ILC3)-mediated immune response, leading to the transition of ILC3 toward an ILC1 proinflammatory phenotype and increased TNFα production. In addition, we demonstrated that the mucosa glycosylation remodeling through prophylactic supplementation with glycans at steady state was able to restore microbial-derived short-chain fatty acids and microbial sensing (by NOD2 expression) alongside the rescue of the expression of ILC3 module, suppressing intestinal inflammation and controlling disease onset. In a complementary approach, we further showed that IBD patients, often displaying dysbiosis, exhibited a tendency of decreased MGAT5 expression at epithelial cells that was accompanied by reduced ILC3 expression in gut mucosa. Altogether, these results unlock the effects of alterations in mucosa glycome composition in the regulation of the bidirectional crosstalk between microbiota and gut immune response, revealing host branched N-glycans/microbiota/ILC3 axis as an essential pathway in gut homeostasis and in preventing health to intestinal inflammation transition.
Collapse
Affiliation(s)
- Cláudia S. Rodrigues
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Joana Gaifem
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
| | - Márcia S. Pereira
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Maria Francisca Alves
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Mariana Silva
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Nuno Padrão
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Bruno Cavadas
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
| | | | - Inês Alves
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
| | - Ricardo Marcos-Pinto
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Department of Gastroenterology, Centro Hospitalar do Porto, Porto, Portugal
- Centro de Investigação em Tecnologias e Serviços de Saúde, University of Porto, Porto, Portugal
| | - Joana Torres
- Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Division of Gastroenterology, Hospital da Luz, Lisbon, Portugal
| | - Aonghus Lavelle
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Gastroenterology Department, Sorbonne Université, INSERM, Paris, France
| | - Jean-Frederic Colombel
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Harry Sokol
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Gastroenterology Department, Sorbonne Université, INSERM, Paris, France
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Salomé S. Pinho
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
5
|
Sall I, Foxall R, Felth L, Maret S, Rosa Z, Gaur A, Calawa J, Pavlik N, Whistler JL, Whistler CA. Gut dysbiosis was inevitable, but tolerance was not: temporal responses of the murine microbiota that maintain its capacity for butyrate production correlate with sustained antinociception to chronic morphine. Gut Microbes 2025; 17:2446423. [PMID: 39800714 PMCID: PMC11730370 DOI: 10.1080/19490976.2024.2446423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/24/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
The therapeutic benefits of opioids are compromised by the development of analgesic tolerance, which necessitates higher dosing for pain management thereby increasing the liability for drug dependence and addiction. Rodent models indicate opposing roles of the gut microbiota in tolerance: morphine-induced gut dysbiosis exacerbates tolerance, whereas probiotics ameliorate tolerance. Not all individuals develop tolerance, which could be influenced by differences in microbiota, and yet no study design has capitalized upon this natural variation. We leveraged natural behavioral variation in a murine model of voluntary oral morphine self-administration to elucidate the mechanisms by which microbiota influences tolerance. Although all mice shared similar morphine-driven microbiota changes that largely masked informative associations with variability in tolerance, our high-resolution temporal analyses revealed a divergence in the progression of dysbiosis that best explained sustained antinociception. Mice that did not develop tolerance maintained a higher capacity for production of the short-chain fatty acid (SCFA) butyrate known to bolster intestinal barriers and promote neuronal homeostasis. Both fecal microbial transplantation (FMT) from donor mice that did not develop tolerance and dietary butyrate supplementation significantly reduced the development of tolerance independently of suppression of systemic inflammation. These findings could inform immediate therapies to extend the analgesic efficacy of opioids.
Collapse
Affiliation(s)
- Izabella Sall
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Graduate program in Molecular and Evolutionary Systems Biology, University of New Hampshire, Durham, NH, USA
| | - Randi Foxall
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Lindsey Felth
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Soren Maret
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Zachary Rosa
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Anirudh Gaur
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Jennifer Calawa
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Microbiology Graduate Program, University of New Hampshire, Durham, NH, USA
| | - Nadia Pavlik
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Jennifer L. Whistler
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, CA, USA
| | - Cheryl A. Whistler
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
6
|
Akagbosu CO, McCauley KE, Namasivayam S, Romero-Soto HN, O’Brien W, Bacorn M, Bohrnsen E, Schwarz B, Mistry S, Burns AS, Perez-Chaparro PJ, Chen Q, LaPoint P, Patel A, Krausfeldt LE, Subramanian P, Sellers BA, Cheung F, Apps R, Douagi I, Levy S, Nadler EP, Hourigan SK. Gut microbiome shifts in adolescents after sleeve gastrectomy with increased oral-associated taxa and pro-inflammatory potential. Gut Microbes 2025; 17:2467833. [PMID: 39971742 PMCID: PMC11845021 DOI: 10.1080/19490976.2025.2467833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
Bariatric surgery is highly effective in achieving weight loss in children and adolescents with severe obesity, however the underlying mechanisms are incompletely understood, and gut microbiome changes are unknown. Here, we show that adolescents exhibit significant gut microbiome and metabolome shifts several months after laparoscopic vertical sleeve gastrectomy (VSG), with increased alpha diversity and notably with enrichment of oral-associated taxa. To assess causality of the microbiome/metabolome changes in phenotype, pre-VSG and post-VSG stool was transplanted into germ-free mice. Post-VSG stool was not associated with any beneficial outcomes such as adiposity reduction compared pre-VSG stool. However, post-VSG stool exhibited a potentially inflammatory phenotype with increased intestinal Th17 and decreased regulatory T cells. Concomitantly, we found elevated fecal calprotectin and an enrichment of proinflammatory pathways in a subset of adolescents post-VSG. We show that in some adolescents, microbiome changes post-VSG may have inflammatory potential, which may be of importance considering the increased incidence of inflammatory bowel disease post-VSG.
Collapse
Affiliation(s)
- Cynthia O. Akagbosu
- Department of Gastroenterology, Weill Cornell Medicine, New York, New York, USA
| | - Kathryn E. McCauley
- Bioinformatics and Computational Biosciences Branch National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sivaranjani Namasivayam
- Clinical Microbiome Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hector N. Romero-Soto
- Clinical Microbiome Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Wade O’Brien
- Dartmouth Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Mickayla Bacorn
- Clinical Microbiome Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Eric Bohrnsen
- Research Technologies Branch, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, USA
| | - Benjamin Schwarz
- Research Technologies Branch, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, USA
| | - Shreni Mistry
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew S. Burns
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - P. Juliana Perez-Chaparro
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Qing Chen
- Clinical Microbiome Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Phoebe LaPoint
- Clinical Microbiome Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Anal Patel
- Clinical Microbiome Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lauren E. Krausfeldt
- Bioinformatics and Computational Biosciences Branch National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Poorani Subramanian
- Bioinformatics and Computational Biosciences Branch National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Brian A. Sellers
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, Maryland, USA
| | - Foo Cheung
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, Maryland, USA
| | - Richard Apps
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, Maryland, USA
| | - Iyadh Douagi
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, Maryland, USA
| | - Shira Levy
- Clinical Microbiome Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Suchitra K. Hourigan
- Clinical Microbiome Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Kordahi MC, Daniel N, Gewirtz AT, Chassaing B. Mucus-penetrating microbiota drive chronic low-grade intestinal inflammation and metabolic dysregulation. Gut Microbes 2025; 17:2455790. [PMID: 39865067 PMCID: PMC11776472 DOI: 10.1080/19490976.2025.2455790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025] Open
Abstract
Metabolic syndrome is, in humans, associated with alterations in the composition and localization of the intestinal microbiota, including encroachment of bacteria within the colon's inner mucus layer. Possible promoters of these events include dietary emulsifiers, such as carboxymethylcellulose (CMC) and polysorbate-80 (P80), which, in mice, result in altered microbiota composition, encroachment, low-grade inflammation and metabolic syndrome. While assessments of gut microbiota composition have largely focused on fecal/luminal samples, we hypothesize an outsized role for changes in mucus microbiota in driving low-grade inflammation and its consequences. In support of this notion, we herein report that both CMC and P80 led to stark changes in the mucus microbiome, markedly distinct from those observed in feces. Moreover, transfer of mucus microbiota from CMC- and P80-fed mice to germfree mice resulted in microbiota encroachment, low-grade inflammation, and various features of metabolic syndrome. Thus, we conclude that mucus-associated bacteria are pivotal determinants of intestinal inflammatory tone and host metabolism.
Collapse
Affiliation(s)
- Melissa C. Kordahi
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM U1306, CNRS UMR6047, Paris, France
- Mucosal microbiota in chronic inflammatory diseases, INSERM U1016, CNRS UMR8104, Université Paris Cité, Paris, France
| | - Noëmie Daniel
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM U1306, CNRS UMR6047, Paris, France
- Mucosal microbiota in chronic inflammatory diseases, INSERM U1016, CNRS UMR8104, Université Paris Cité, Paris, France
| | - Andrew T. Gewirtz
- Institute for Biomedical Sciences, Centre for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA
| | - Benoit Chassaing
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM U1306, CNRS UMR6047, Paris, France
- Mucosal microbiota in chronic inflammatory diseases, INSERM U1016, CNRS UMR8104, Université Paris Cité, Paris, France
- CHRU Nancy, IHU Infiny, Nancy, France
| |
Collapse
|
8
|
Brito Rodrigues P, de Rezende Rodovalho V, Sencio V, Benech N, Creskey M, Silva Angulo F, Delval L, Robil C, Gosset P, Machelart A, Haas J, Descat A, Goosens JF, Beury D, Maurier F, Hot D, Wolowczuk I, Sokol H, Zhang X, Ramirez Vinolo MA, Trottein F. Integrative metagenomics and metabolomics reveal age-associated gut microbiota and metabolite alterations in a hamster model of COVID-19. Gut Microbes 2025; 17:2486511. [PMID: 40172215 PMCID: PMC11970752 DOI: 10.1080/19490976.2025.2486511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/08/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025] Open
Abstract
Aging is a key contributor of morbidity and mortality during acute viral pneumonia. The potential role of age-associated dysbiosis on disease outcomes is still elusive. In the current study, we used high-resolution shotgun metagenomics and targeted metabolomics to characterize SARS-CoV-2-associated changes in the gut microbiota from young (2-month-old) and aged (22-month-old) hamsters, a valuable model of COVID-19. We show that age-related dysfunctions in the gut microbiota are linked to disease severity and long-term sequelae in older hamsters. Our data also reveal age-specific changes in the composition and metabolic activity of the gut microbiota during both the acute phase (day 7 post-infection, D7) and the recovery phase (D22) of infection. Aged hamsters exhibited the most notable shifts in gut microbiota composition and plasma metabolic profiles. Through an integrative analysis of metagenomics, metabolomics, and clinical data, we identified significant associations between bacterial taxa, metabolites and disease markers in the aged group. On D7 (high viral load and lung epithelial damage) and D22 (body weight loss and fibrosis), numerous amino acids, amino acid-related molecules, and indole derivatives were found to correlate with disease markers. In particular, a persistent decrease in phenylalanine, tryptophan, glutamic acid, and indoleacetic acid in aged animals positively correlated with poor recovery of body weight and/or lung fibrosis by D22. In younger hamsters, several bacterial taxa (Eubacterium, Oscillospiraceae, Lawsonibacter) and plasma metabolites (carnosine and cis-aconitic acid) were associated with mild disease outcomes. These findings support the need for age-specific microbiome-targeting strategies to more effectively manage acute viral pneumonia and long-term disease outcomes.
Collapse
Affiliation(s)
- Patrícia Brito Rodrigues
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | | | - Valentin Sencio
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Nicolas Benech
- Gastroenterology Department, Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
- Hospices Civils de Lyon, Lyon GEM Microbiota Study Group, Lyon, France
| | - Marybeth Creskey
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, University of Ottawa, Ottawa, Canada
| | - Fabiola Silva Angulo
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Lou Delval
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Cyril Robil
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Philippe Gosset
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Arnaud Machelart
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Joel Haas
- U1011-EGID, University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Amandine Descat
- EA 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, University of Lille, CHU Lille, Lille, France
| | - Jean François Goosens
- EA 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, University of Lille, CHU Lille, Lille, France
| | - Delphine Beury
- US 41 - UAR 2014 - PLBS, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Florence Maurier
- US 41 - UAR 2014 - PLBS, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - David Hot
- US 41 - UAR 2014 - PLBS, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Isabelle Wolowczuk
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Harry Sokol
- Gastroenterology Department, Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Xu Zhang
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, University of Ottawa, Ottawa, Canada
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | | | - François Trottein
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
9
|
Castagnoli R, Pala F, Subramanian P, Oguz C, Schwarz B, Lim AI, Burns AS, Fontana E, Bosticardo M, Corsino C, Angelova A, Delmonte OM, Kenney H, Riley D, Smith G, Ott de Bruin L, Oikonomou V, Dos Santos Dias L, Fink D, Bohrnsen E, Kimzey CD, Marseglia GL, Alva-Lozada G, Bergerson JRE, Brett A, Brigatti KW, Dimitrova D, Dutmer CM, Freeman AF, Ale H, Holland SM, Licciardi F, Pasic S, Poskitt LE, Potts DE, Dasso JF, Sharapova SO, Strauss KA, Ward BR, Yilmaz M, Kuhns DB, Lionakis MS, Daley SR, Kong HH, Segre JA, Villa A, Pittaluga S, Walter JE, Vujkovic-Cvijin I, Belkaid Y, Notarangelo LD. Immunopathological and microbial signatures of inflammatory bowel disease in partial RAG deficiency. J Exp Med 2025; 222:e20241993. [PMID: 40314722 DOI: 10.1084/jem.20241993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/16/2025] [Accepted: 04/10/2025] [Indexed: 05/03/2025] Open
Abstract
Partial RAG deficiency (pRD) can manifest with systemic and tissue-specific immune dysregulation, with inflammatory bowel disease (IBD) in 15% of the patients. We aimed at identifying the immunopathological and microbial signatures associated with IBD in patients with pRD and in a mouse model of pRD (Rag1w/w) with spontaneous development of colitis. pRD patients with IBD and Rag1w/w mice showed a systemic and colonic Th1/Th17 inflammatory signature. Restriction of fecal microbial diversity, abundance of pathogenic bacteria, and depletion of microbial species producing short-chain fatty acid were observed, which were associated with impaired induction of lamina propria peripheral Treg cells in Rag1w/w mice. The use of vedolizumab in Rag1w/w mice and of ustekinumab in a pRD patient were ineffective. Antibiotics ameliorated gut inflammation in Rag1w/w mice, but only bone marrow transplantation (BMT) rescued the immunopathological and microbial signatures. Our findings shed new light in the pathophysiology of gut inflammation in pRD and establish a curative role for BMT to resolve the disease phenotype.
Collapse
Affiliation(s)
- Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Poorani Subramanian
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD, USA
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Schwarz
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Hamilton, MT, USA
| | - Ai Ing Lim
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrew S Burns
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD, USA
| | | | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cristina Corsino
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Angelina Angelova
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD, USA
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Heather Kenney
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Deanna Riley
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Grace Smith
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa Ott de Bruin
- Willem-Alexander Children's Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program, Leiden University Medical Center , Leiden, Netherlands
| | - Vasileios Oikonomou
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lucas Dos Santos Dias
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Danielle Fink
- Neutrophil Monitoring Lab, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Eric Bohrnsen
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Hamilton, MT, USA
| | - Cole D Kimzey
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Hamilton, MT, USA
| | - Gian Luigi Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo , Pavia, Italy
| | - Guisela Alva-Lozada
- Allergy and Immunology Division Hospital Nacional Edgardo Rebagliati Martins , Lima, Peru
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ana Brett
- Hospital Pediátrico, Unidade Local de Saúde de Coimbra , Coimbra, Portugal
- Clínica Universitária de Pediatria, Faculdade de Medicina, Universidade de Coimbra , Coimbra, Portugal
| | | | - Dimana Dimitrova
- Experimental Transplantation and Immunotherapy Branch, National Cancer Institute of the National Institutes of Health , Bethesda, MD, USA
| | - Cullen M Dutmer
- Allergy and Immunology, Children's Healthcare of Atlanta, Emory University School of Medicine , Atlanta, GA, USA
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hanadys Ale
- Division of Immunology, Allergy and Rheumatology, Joe DiMaggio Children's Hospital, Memorial Healthcare System, Hollywood, FL, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francesco Licciardi
- Immuno-reumatologia, Pediatria Specialistica Universitaria, Ospedale Infantile Regina Margherita , Torino, Italy
| | - Srdjan Pasic
- Department of Pediatric Immunology, Mother and Child Health Institute, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | | | - David E Potts
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Joseph F Dasso
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Svetlana O Sharapova
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology , Minsk, Belarus
| | | | - Brant R Ward
- Division of Allergy and Immunology, Children's National Hospital, Washington, DC, USA
| | - Melis Yilmaz
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Douglas B Kuhns
- Neutrophil Monitoring Lab, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michail S Lionakis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephen R Daley
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology , Brisbane, Australia
| | - Heidi H Kong
- Cutaneous Microbiome and Inflammation Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julia A Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anna Villa
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute , Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jolan E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Ivan Vujkovic-Cvijin
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Immunology, Institut Pasteur, Paris, France
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Leibovitzh H, Fliss Isakov N, Werner L, Thurm T, Hirsch A, Cohen NA, Maharshak N. A Mushroom Based Prebiotic Supplement Pilot Study Among Patients with Crohn's Disease. J Diet Suppl 2025:1-14. [PMID: 40313234 DOI: 10.1080/19390211.2025.2498127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Data on a mushroom based prebiotic supplementation in patients with Crohn's disease (CD) in western population is scarce. In this pilot trial, we aimed to assess the clinical efficacy and fecal microbial compositional and functional alterations associated with 'Mycodigest,' a commercial prebiotic supplement composed of three mushroom extracts. Patients with mild to moderate CD were recruited to a single center, randomized, double-blind, placebo-controlled pilot induction trial. Clinical efficacy using the Harvey-Bradshaw index and biochemical response using C-reactive protein and fecal calprotectin were assessed at week 8 post-intervention. Fecal samples were assessed by DNA shotgun metagenomic sequencing. A multivariable linear mixed effects model was used to assess alteration in fecal microbiome composition and function pre- and post-'Mycodigest' intervention. Clinical response was higher in the 'Mycodigest' intervention (N = 10) compared to the placebo (N = 6) group (80 vs. 16.7%, respectively, p = 0.035). There were no differences in terms of biochemical response within each group pre- and post-intervention. Post-'Mycodigest' intervention, 25 species were found to be differentially abundant compared to baseline, including increase in short chain fatty acid producing bacteria, such as Parabacteroides distasonis (Beta coefficient 0.92, 95% Confidence interval [CI] 0.36-1.47) and Faecalimonas umbilicata (Beta coefficient 0.57, 95% CI 0.23-0.90). Two microbial pathways related to the metabolism of isoprenoid compounds were increased post-'Mycodigest' intervention. Mushroom based prebiotic supplementation in subjects with CD resulted in clinical improvement which may be related to post-intervention favorable compositional and functional microbial alterations.
Collapse
Affiliation(s)
- Haim Leibovitzh
- Department of Gastroenterology and Liver Diseases, IBD Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Naomi Fliss Isakov
- Department of Gastroenterology and Liver Diseases, IBD Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Health, Faculty of Medicine, School of Public Health, Tel Aviv University, Tel Aviv, Israel
| | - Lael Werner
- Department of Gastroenterology and Liver Diseases, IBD Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Thurm
- Department of Gastroenterology and Liver Diseases, IBD Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ayal Hirsch
- Department of Gastroenterology and Liver Diseases, IBD Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nathaniel Aviv Cohen
- Department of Gastroenterology and Liver Diseases, IBD Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nitsan Maharshak
- Department of Gastroenterology and Liver Diseases, IBD Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Zhang S, Clasen F, Cai H, Do T, Shoaie S, Carpenter GH. Nitrate supplementation affects taste by changing the oral metabolome and microbiome. NPJ Biofilms Microbiomes 2025; 11:69. [PMID: 40316518 DOI: 10.1038/s41522-025-00689-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 04/01/2025] [Indexed: 05/04/2025] Open
Abstract
Nitrate, an inorganic anion found in various foods is also present in saliva and has emerged as a potential prebiotic for the oral microbiome. Salivary glands concentrate nitrate from the bloodstream and release it into the oral cavity via the anion transporter sialin SLC17A5. In previous studies dietary nitrate supplementation altered oral bacteria composition, favouring genera like Rothia and Neisseria while reducing Streptococcus, Veillonella, Prevotella, and Actinomyces. The present study hypothesized that taste intensity might adapt to changes in the oral microbiome caused by nitrate supplementation. Participants underwent taste tests before, during, and after supplementation. All subjects showed greater levels of salivary nitrate during supplementation and had higher levels of Neisseria compared to before. Subjects were then grouped according to taste tests (before vs. during) as responders (ANOVA p < 0.05, n = 7), and non-responders (ANOVA p > 0.05, n = 6) and their salivary metabolome and oral microbiome further analysed. Responders had significantly less 5-amino pentanoate, formate, propionate and butyrate in saliva while non-responders showed no metabolite changes between before and during supplementation. In contrast, non-responders had increased Capnocytophaga gingivalis and altered lysosomal degradation pathways. Overall, nitrate supplementation shifted the oral microbiome composition in all subjects and when taste intensity was altered this correlated to bacteria-derived short-chain fatty acid production. This suggests taste perception is affected by the oral microbiome.
Collapse
Affiliation(s)
- Shuyuan Zhang
- Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK.
| | - Frederick Clasen
- Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Haizhuang Cai
- Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Thuy Do
- School of Dentistry, Faculty of Medicine and Health, University of Leeds, LS2 9LU, Leeds, UK
| | - Saeed Shoaie
- Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Guy H Carpenter
- Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK.
| |
Collapse
|
12
|
Aya V, Pardo-Rodriguez D, Vega LC, Cala MP, Ramírez JD. Integrating metagenomics and metabolomics to study the gut microbiome and host relationships in sports across different energy systems. Sci Rep 2025; 15:15356. [PMID: 40316630 DOI: 10.1038/s41598-025-98973-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/16/2025] [Indexed: 05/04/2025] Open
Abstract
The gut microbiome plays a critical role in modulating host metabolism, influencing energy production, nutrient utilization, and overall physiological adaptation. In athletes, these microbial functions may be further specialized to meet the unique metabolic demands of different sports disciplines. This study explored the role of the gut microbiome in modulating host metabolism among Colombian athletes by comparing elite weightlifters (n = 16) and cyclists (n = 13) through integrative omics analysis. Fecal and plasma samples collected one month before an international event underwent metagenomic, metabolomic, and lipidomic profiling. Metagenomic analysis revealed significant microbial pathways, including L-arginine biosynthesis III and fatty acid biosynthesis initiation. Key metabolic pathways, such as phenylalanine, tyrosine, and tryptophan biosynthesis; arginine biosynthesis; and folate biosynthesis, were enriched in both athlete groups. Plasma metabolomics and lipidomics revealed distinct metabolic profiles and a separation between athlete types through multivariate models, with lipid-related pathways such as lipid droplet formation and glycolipid synthesis driving the differences. Notably, elevated carnitine, amino acid, and glycerolipid levels in weightlifters suggest energy system-specific metabolic adaptations. These findings underscore the complex relationship between the gut microbiota composition and metabolic responses tailored to athletic demands, laying the groundwork for personalized strategies to optimize performance. This research highlights the potential for targeted modulation of the gut microbiota as a basis for tailored interventions to support specific energy demands in athletic disciplines.
Collapse
Affiliation(s)
- Viviana Aya
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Daniel Pardo-Rodriguez
- MetCore - Metabolomics Core Facility, Vice-Presidency for Research, Universidad de los Andes, Bogotá, Colombia
| | - Laura Camila Vega
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Mónica P Cala
- MetCore - Metabolomics Core Facility, Vice-Presidency for Research, Universidad de los Andes, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
13
|
Xiang ST, Qiu J, Mao Z, Pan X, Ma Y, Huang R, Qiu J. Alterations of early-life gut microbiome in hospitalized infants with chemical pollutants exposure. ENVIRONMENTAL RESEARCH 2025; 272:121187. [PMID: 39983969 DOI: 10.1016/j.envres.2025.121187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 02/23/2025]
Abstract
Exposure to chemical pollutants and their effects on the gut microbiome during early life are scarce, especially the effects of mixed exposures. Plasma pollutants levels were measured using gas chromatography -triple quadrupole mass spectrometer (GC-MS/MS) among 304 infants in the neonatal ward at Hunan Children's hospital, China, and gut microbiota was derived from 16S rRNA sequencing. We assessed exposure and alpha diversity using generalized linear models, and variation in beta diversity (Bray-Curtis), taxa abundance (MaAsLin2), and employed Bayesian kernel machine regression (BKMR) to investigate the association of pollutants mixture with alpha diversity and taxa. PBDE-99 was positively associated with the Chao1 index (β = 4.29, 95%CI:1.54,7.03). Exposure to the pesticides trifluralin, γ-BHC, and methidathion significantly affected beta diversity (all PFDR < 0.05). PBDE-100, β-BHC, phosalone, methiamitron, fenpropathrin, δ-BHC, and o,p'-DDT were associated with changes in taxa abundance, including negative associations [e.g., Staphylococcus, Bacteroides, Bifidobacterium, and Corynebacterium] and positive associations [e.g., Acinetobacter and Pseudomonas]. An interaction between o,p'-DDT and δ-BHC on Pseudomonas was also found in BKMR models. Our findings suggest that chemical pollutants are associated with gut microbiome changes in hospitalized infants, providing new insights into the mechanisms of chemical pollutants toxicity. Further validation is necessary to confirm these associations and explore their long-term health effects.
Collapse
Affiliation(s)
- Shi-Ting Xiang
- Pediatrics Research Institute of Hunan Province, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, 410007, China
| | - Jun Qiu
- Pediatrics Research Institute of Hunan Province, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, 410007, China; The Affiliated Children's Hospital Of Xiangya School of Medicine, Central South University (Hunan children's hospital), Hunan Provincial Key Laboratory of Pediatric Orthopedics, The School of Pediatrics, University of South China, China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Xiongfeng Pan
- Pediatrics Research Institute of Hunan Province, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, 410007, China
| | - Ye Ma
- Department of Neonatology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, 410007, China
| | - Ruiwen Huang
- Department of Neonatology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, 410007, China
| | - Jun Qiu
- Pediatrics Research Institute of Hunan Province, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, 410007, China; The Affiliated Children's Hospital Of Xiangya School of Medicine, Central South University (Hunan children's hospital), Hunan Provincial Key Laboratory of Pediatric Orthopedics, The School of Pediatrics, University of South China, China.
| |
Collapse
|
14
|
Kim SY, Woo SY, Kim HL, Chang Y, Ryu S, Kim HN. A shotgun metagenomic study identified short-chain fatty acid-producing species and their functions in the gut microbiome of adults with depressive symptoms: Large-scale shotgun sequencing data of the gut microbiota using a cross-sectional design. J Affect Disord 2025; 376:26-35. [PMID: 39894225 DOI: 10.1016/j.jad.2025.01.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND The gut-brain axis is emerging as a novel mechanism to explain depressive disorders. METHODS We performed shotgun metagenomic sequencing of stool samples obtained from 133 individuals with depression and 532 without depression. This study examined the taxonomy, functional pathways, and predicted metabolites profiles associated with depressive symptoms, using generalized linear models. To explore links between the taxonomic and functional pathway results, we compared the relative abundance of specific species contributing to pathways significantly associated with depressive symptoms. RESULTS Taxonomic composition suggested a disruption in short-chain fatty acid (SCFA)-producing capacity of the gut microbiome in the depressed group. Pathways related to SCFA biosynthesis were also depleted in this group. Faecalibacterium prausnitzii, a well-known SCFA-producing bacterium, was significantly decreased in the depressed group and was identified as a major contributor to the depleted pathways. When inferring the metabolites related to depression from metagenomic data, higher levels of docosapentaenoic acid, stearoyl ethanolamide, putrescine, and bilirubin were more likely to be found in the depressed group. CONCLUSION The present findings highlight the altered gut microbiota and associated SCFA-related pathways in individuals with depression. The depletion of F. prausnitzii and its contribution to SCFA production suggest that it is a potential therapeutic target for depression.
Collapse
Affiliation(s)
- Sun-Young Kim
- Department of Psychiatry, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - So-Youn Woo
- Department of Microbiology, College of Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Hyung-Lae Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yoosoo Chang
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Seungho Ryu
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Han-Na Kim
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea; Center for Clinical Epidemiology, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Lemons JMS, Narrowe AB, Firrman J, Mahalak KK, Liu L, Higgins S, Moustafa AM, Baudot A, Deyaert S, Van den Abbeele P. The food additive butylated hydroxyanisole minimally affects the human gut microbiome ex vivo. Food Chem 2025; 473:143037. [PMID: 39919360 DOI: 10.1016/j.foodchem.2025.143037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 02/09/2025]
Abstract
Butylated hydroxyanisole (BHA) continues to raise consumer concerns. All previous evaluations of this additive have failed to consider its effect on the gut microbiome, even though it enters the colon. An ex vivo model was used to assess the effect of BHA on microbial communities from 24 donors, aged infants to older adults. A dose of 0.35 g/L BHA elicited no statistically significant changes in the functional outputs or community structure for any age group. Although not large enough to affect community diversity, there were some significant decreases at the phylum level. Among the genes most significantly affected by treatment with BHA across age groups are those involved in lipopolysaccharide synthesis and bacterial electron transport encoded by Bacteroidota, Proteobacteria, and Verrucomicrobiota. Given what is known about the intracellular activity of BHA, these genes may hint at a mechanism behind BHA's evident, but minimally detrimental effect on the gut microbiota.
Collapse
Affiliation(s)
- Johanna M S Lemons
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
| | - Adrienne B Narrowe
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Jenni Firrman
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Karley K Mahalak
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - LinShu Liu
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Stephanie Higgins
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ahmed M Moustafa
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Microbial Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aurélien Baudot
- Cryptobiotix, Technologiepark-Zwijnaarde 82, Ghent 9052, Belgium
| | - Stef Deyaert
- Cryptobiotix, Technologiepark-Zwijnaarde 82, Ghent 9052, Belgium
| | | |
Collapse
|
16
|
Ankley PJ, Challis J, Xia P, Gong Y, Zhou Y, Hecker M, Giesy JP, Brinkmann M. Interactions of erythromycin and an antibiotic mixture with the gut microbiome of juvenile rainbow trout. CHEMOSPHERE 2025; 377:144263. [PMID: 40120561 DOI: 10.1016/j.chemosphere.2025.144263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 12/20/2024] [Accepted: 02/25/2025] [Indexed: 03/25/2025]
Abstract
Erythromycin (ERY) is a commonly used antibiotic found in wastewater effluents and the environment globally. Due to the bioactivity by which they kill and prevent bacterial growth, ERY and other antibiotics may have significant unwanted impacts on the gut microbiome of fishes. The overall objective of this project was to assess effects on the gut microbiome in response to exposure to ERY alone or in a mixture with other common antibiotics, which was accomplished in two experiments. The objectives of experiment 1 as a pilot study were to understand uptake and depuration of ERY in juvenile rainbow trout (RBT) over a 7-d exposure to three concentrations of ERY followed by a 7-d depuration period. Furthermore, throughout the study changes in gut microbiome were assessed. In experiment 2, an identical experimental design was used to assess the effects of a mixture of antibiotics containing, in addition to ERY, 100 μg/g each of ampicillin, metronidazole, and ciprofloxacin. In that study, three matrices were analyzed, with gut collected for 16S rRNA metabarcoding, blood plasma for non-targeted metabolomics, and brain tissue for mRNA-seq analysis. ERY was relatively quickly depurated from fish and gut microbiome dysbiosis was observed at 7 d after exposure, with a slight recovery after the 7-d depuration period. A greater number of plasma metabolites was dysregulated at 14 d compared to 7 d revealing distinct temporal dynamics compared to gut microbiome dysbiosis. Furthermore, several transformation products of antibiotics and biomarker metabolites were observed in plasma due to antibiotic exposure. The transcriptome of the brain was only slightly altered due to antibiotic exposure. Results of these studies will help inform aquaculture practitioners and risk assessors when assessing the potential impacts of antibiotics present in fish feed and the environment, with implications for host health.
Collapse
Affiliation(s)
- Phillip J Ankley
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada
| | - Jonathan Challis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, T1J 4B1, Canada
| | - Pu Xia
- Environmental Genomics Group, School of Biosciences, The University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Yufeng Gong
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, Canada
| | - Yutong Zhou
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, S7N 5CN, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada; Department of Veterinary Biomedical Sciences and Toxicology Centre, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada; Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA; Department of Environmental Sciences, Baylor University, Waco, 76706, USA
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, S7N 5CN, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, M5S 3H6, Canada.
| |
Collapse
|
17
|
Yang H, Simpson CA, Srivastava M, Bera A, Cappelletti M, Suh JD, Wang MB, Beswick DM, Maxim T, Basak SK, Srivatsan ES, Fischer JL, Jacobs JP, Lee JT. Biodiversity of the Bacterial and Fungal Microbiome and Associated Inflammatory Cytokine Profile in Chronic Rhinosinusitis. Int Forum Allergy Rhinol 2025; 15:502-512. [PMID: 39776217 PMCID: PMC12048767 DOI: 10.1002/alr.23519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/01/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Dysbiosis of the bacterial and fungal microbiome has been increasingly implicated in the pathogenesis of chronic rhinosinusitis (CRS). This study explores the relationship between microbiome and mycobiome biodiversity and type 2 (T2) versus non-type 2 (NT2) inflammation. METHODS Mucosal tissues from the ethmoid sinus were collected during endoscopic sinus (CRS) and skull base (controls) surgery between January 2020 and July 2021. Specimens underwent 16S rRNA (bacterial) and internal transcribed spacer (fungal) gene sequencing, along with cytokine analysis using the Luminex assay. Based on cytokine (IL-4, IL-5, IL-13) concentrations and the presence of eosinophils, CRS cases were classified into T2 or NT2 inflammatory profiles. The relationships between CRS endotype and the biodiversity of the microbiome and mycobiome were assessed. RESULTS Specimens from 92 patients (30 control, 31 CRSwNP, 31 CRSsNP) were included in the analyses. Among 62 CRS cases, 20 exhibited T2 inflammation and 42 exhibited NT2 inflammation. Compared with control specimens, NT2 specimens exhibited significantly lower amplicon sequence variants (mean difference -149, 95% CI [-261, -37], p = 0.007), Shannon index (-0.48 [-0.79, -0.16], p = 0.002), and Simpson index (-0.003 [-0.005, -0.001], p = 0.002) for bacterial alpha diversity. However, no significant differences in bacterial alpha diversity were observed between T2 specimens and controls, or between T2 and NT2 specimens. Fungal biodiversity did not differ significantly across endotype and control groups. CONCLUSION Dysbiosis of the sinus bacterial microbiome is more strongly associated with a NT2-mediated inflammatory profile than with a T2-mediated inflammatory profile.
Collapse
Affiliation(s)
- Hong‐Ho Yang
- Department of Head and Neck SurgeryDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Carra A Simpson
- Vatche and Tamar Manoukian Division of Digestive DiseasesDepartment of MedicineDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Meera Srivastava
- Department of AnatomyPhysiology and GeneticsInstitute for Molecular MedicineUniformed Services University of Health Sciences School of MedicineBethesdaMarylandUSA
| | - Alakesh Bera
- Surgery BranchNational Cancer InstituteBethesdaMarylandUSA
| | - Monica Cappelletti
- Department of Pathology and Lab MedicineDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Jeffrey D. Suh
- Department of Head and Neck SurgeryDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Marilene B. Wang
- Department of Head and Neck SurgeryDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
- Department of Surgery, Veterans Affairs Greater Los Angeles Healthcare SystemLos AngelesCaliforniaUSA
| | - Daniel M. Beswick
- Department of Head and Neck SurgeryDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Tom Maxim
- Department of Head and Neck SurgeryDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Saroj K. Basak
- Department of Surgery, Veterans Affairs Greater Los Angeles Healthcare SystemLos AngelesCaliforniaUSA
| | - Eri S. Srivatsan
- Department of Surgery, Veterans Affairs Greater Los Angeles Healthcare SystemLos AngelesCaliforniaUSA
- Department of SurgeryDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Jakob L. Fischer
- Department of Head and Neck SurgeryDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Jonathan P Jacobs
- Vatche and Tamar Manoukian Division of Digestive DiseasesDepartment of MedicineDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
- Division of Gastroenterology, Department of MedicineHepatology and Parenteral NutritionVeterans Affairs Greater Los Angeles Healthcare SystemLos AngelesCaliforniaUSA
| | - Jivianne T. Lee
- Department of Head and Neck SurgeryDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
- Department of Surgery, Veterans Affairs Greater Los Angeles Healthcare SystemLos AngelesCaliforniaUSA
| |
Collapse
|
18
|
Lee JY, Jo S, Lee J, Choi M, Kim K, Lee S, Kim HS, Bae JW, Chung SJ. Distinct gut microbiome characteristics and dynamics in patients with Parkinson's disease based on the presence of premotor rapid-eye movement sleep behavior disorders. MICROBIOME 2025; 13:108. [PMID: 40307949 PMCID: PMC12042535 DOI: 10.1186/s40168-025-02095-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/17/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Alpha-synuclein aggregation, a hallmark of Parkinson's disease (PD), is hypothesized to often begin in the enteric or peripheral nervous system in "body-first" PD and progresses through the vagus nerve to the brain, therefore REM sleep behavior disorder (RBD) precedes the PD diagnosis. In contrast, "brain-first" PD begins in the central nervous system. Evidence that gut microbiome imbalances observed in PD and idiopathic RBD exhibit similar trends supports body-first and brain-first hypothesis and highlights the role of microbiota in PD pathogenesis. However, further investigation is needed to understand distinct microbiome changes in body-first versus brain-first PD over the disease progression. RESULTS Our investigation involved 104 patients with PD and 85 of their spouses as healthy controls (HC), with 57 patients (54.8%) categorized as PD-RBD(+) and 47 patients (45.2%) as PD-RBD(-) based on RBD presence before the PD diagnosis. We evaluated the microbiome differences between these groups over the disease progression through taxonomic and functional differential abundance analyses and carbohydrate-active enzyme (CAZyme) profiles based on metagenome-assembled genomes. The PD-RBD(+) gut microbiome showed a relatively stable microbiome composition irrespective of disease stage. In contrast, PD-RBD(-) microbiome exhibited a relatively dynamic microbiome change as the disease progressed. In early-stage PD-RBD(+), Escherichia and Akkermansia, associated with pathogenic biofilm formation and host mucin degradation, respectively, were enriched, which was supported by functional analysis. We discovered that genes of the UDP-GlcNAc synthesis/recycling pathway negatively correlated with biofilm formation; this finding was further validated in a separate cohort. Furthermore, fiber intake-associated taxa were decreased in early-stage PD-RBD(+) and the biased mucin-degrading capacity of CAZyme compared to fiber degradation. CONCLUSION We determined that the gut microbiome dynamics in patients with PD according to the disease progression depend on the presence of premotor RBD. Notably, early-stage PD-RBD(+) demonstrated distinct gut microbial characteristics, potentially contributing to exacerbation of PD pathophysiology. This outcome may contribute to the development of new therapeutic strategies targeting the gut microbiome in PD. Video Abstract.
Collapse
Affiliation(s)
- Jae-Yun Lee
- Department of Biology and Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sungyang Jo
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jihyun Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Moongwan Choi
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Kijeong Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Sangjin Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Hyun Sik Kim
- Department of Biology and Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jin-Woo Bae
- Department of Biology and Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
19
|
Liechty Z, Baldwin A, Isidean S, Suvarnapunya A, Frenck R, Porter C, Goodson M. Dynamics of the gut microbiome in subjects challenged with Shigella sonnei 53G in a controlled human infection model. mSphere 2025; 10:e0090624. [PMID: 40152601 PMCID: PMC12039237 DOI: 10.1128/msphere.00906-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Shigella is a significant cause of diarrhea, predominantly affecting children in low- and middle-income countries, as well as international travelers. Not all individuals exposed to Shigella or other enteropathogens have symptomatic responses, and investigating the differences between symptomatic and asymptomatic individuals can further our understanding of enteropathogen proliferation and symptomatic responses. Here, we profiled the fecal microbiomes of 45 individuals infected with Shigella sonnei strain 53G through 16S rRNA sequencing in a controlled human infection model before and during infection, after antibiotic treatment, and after clinical recovery. This model allowed for a detailed exploration of microbiome temporal dynamics during infection, as well as a comparative analysis between those with shigellosis (defined as severe symptoms caused by Shigella infection, including severe diarrhea, fever, and/or abdominal pain) and those without shigellosis. Alpha diversity decreased to a greater degree in individuals with shigellosis. Perturbations in microbial composition during infection and antibiotic treatment were significantly larger in individuals diagnosed with shigellosis than in those who were not. Participants with shigellosis had persistent changes to their microbiomes after recovery, while those without shigellosis recovered to a composition resembling their pre-infection microbiomes. These persistent changes included taxa associated with gut inflammation, such as a decrease in Faecalibacterium and an increase in Ruminococcus gnavus. Furthermore, the initial microbiomes of participants who did not develop shigellosis had a greater abundance of taxa associated with short-chain fatty acid production than participants who did develop shigellosis, including Bifidobacterium, Roseburia, and Faecalibacterium. These data could help prevent Shigella infection or symptoms.IMPORTANCEDiarrheal disease is a major contributor to the global disease burden and can lead to an increased individual risk of chronic sequelae post-infection, such as irritable bowel syndrome, reactive arthritis, and altered gut permeability. Understanding the differential responses of individuals to enteropathogen exposure can elucidate factors that could lead to treatments or preventative measures to reduce the disease burden. Here, we use a controlled human infection model study to directly identify the effects of Shigella sonnei 53G infection on the microbiome. We identified taxa that were more or less abundant in participants who would develop shigellosis during the study, as well as persistent changes after recovery in the microbiomes of participants who developed severe symptoms. Understanding these changes could elucidate ways to prevent Shigella infection or recover altered microbiomes after recovery.CLINICAL TRIALSThis study is registered with ClinicalTrials.gov as NCT02816346.
Collapse
Affiliation(s)
- Zachary Liechty
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
- Health and Performance Technologies Division, Blue Halo, Inc., Dayton, Ohio, USA
| | - Arianna Baldwin
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Sandra Isidean
- Translational and Clinical Research Department, Naval Medical Research Command, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Akamol Suvarnapunya
- Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Robert Frenck
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Chad Porter
- Translational and Clinical Research Department, Naval Medical Research Command, Silver Spring, Maryland, USA
| | - Michael Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| |
Collapse
|
20
|
Hernández-Cacho A, García-Gavilán JF, Atzeni A, Konstanti P, Belzer C, Vioque J, Corella D, Fitó M, Vidal J, Mela V, Liang L, Torres-Collado L, Coltell O, Babio N, Clish C, Hernando-Redondo J, Martínez-González MÁ, Wang F, Moreno-Indias I, Ni J, Dennis C, Ruiz-Canela M, Tinahones FJ, Hu FB, Salas-Salvadó J. Multi-omics approach identifies gut microbiota variations associated with depression. NPJ Biofilms Microbiomes 2025; 11:68. [PMID: 40295565 PMCID: PMC12038053 DOI: 10.1038/s41522-025-00707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
The gut microbiota plays a potential role in the pathophysiology of depression through the gut-brain axis. This cross-sectional study in 400 participants from the PREDIMED-Plus study investigates the interplay between gut microbiota and depression using a multi-omics approach. Depression was defined as antidepressant use or high Beck Depression Inventory-II scores. Gut microbiota was characterized by 16S rRNA sequencing, and faecal metabolites were analysed via liquid chromatography-tandem mass spectrometry. Participants with depression exhibited significant differences in gut microbial composition and metabolic profiles. Differentially abundant taxa included Acidaminococcus, Christensenellaceae R-7 group, and Megasphaera, among others. Metabolomic analysis revealed 15 significantly altered metabolites, primarily lipids, organic acids, and benzenoids, some of which correlated with gut microbial features. This study highlights the interplay between the gut microbiota and depression, paving the way for future research to determine whether gut microbiota influences depression pathophysiology or reflects changes associated with depression.
Collapse
Affiliation(s)
- Adrián Hernández-Cacho
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús F García-Gavilán
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain.
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| | - Alessandro Atzeni
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Prokopis Konstanti
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Jesús Vioque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
| | - Dolores Corella
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Montserrat Fitó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
| | - Josep Vidal
- CIBER Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Endocrinology, Institut d'Investigacions Biomédiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Virginia Mela
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga - IBIMA, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Boston, MA, USA
| | - Laura Torres-Collado
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
| | - Oscar Coltell
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Computer Languages and Systems, Jaume I University, Castellón, Spain
| | - Nancy Babio
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Clary Clish
- The Broad Institute of Harvard and MIT, Boston, MA, USA
| | - Javier Hernando-Redondo
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
| | - Miguel Á Martínez-González
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Fenglei Wang
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Isabel Moreno-Indias
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga - IBIMA, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Jiaqi Ni
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Miguel Ruiz-Canela
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Francisco J Tinahones
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga - IBIMA, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Frank B Hu
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division for Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jordi Salas-Salvadó
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain.
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
21
|
Weathers SP, Li X, Zhu H, Damania AV, Knafl M, McKinley B, Lin H, Harrison RA, Majd NK, O'Brien BJ, Penas-Prado M, Loghin M, Kamiya-Matsuoka C, Yung WKA, Solis Soto LM, Maru DM, Wistuba I, Parra Cuentas ER, Hernandez S, Futreal A, Wargo JA, Schulze K, Darbonne WC, Ajami NJ, Woodman SE, de Groot JF. Improved overall survival in an anti-PD-L1 treated cohort of newly diagnosed glioblastoma patients is associated with distinct immune, mutation, and gut microbiome features: a single arm prospective phase I/II trial. Nat Commun 2025; 16:3950. [PMID: 40289138 PMCID: PMC12034766 DOI: 10.1038/s41467-025-56930-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/05/2025] [Indexed: 04/30/2025] Open
Abstract
This phase I/II trial aims to evaluate the efficacy of concurrent atezolizumab with radiation therapy and temozolomide (TMZ) followed by adjuvant atezolizumab and TMZ in newly diagnosed glioblastoma (GBM) patients and to identify pre-treatment correlates with outcome (N = 60). Trial number: NCT03174197. The primary outcome was overall survival (OS) whereas secondary outcomes were retrospective global-omics analyses to identify pre-treatment immune and genetic tumor features that correlated with survival. Concurrent use of atezolizumab with radiation and TMZ demonstrated OS in line with published trials for newly diagnosed GBM. Tumor genomic (WES and/or targeted NGS panel), transcriptomic (RNAseq) and tissue microenvironment imaging, as well as fecal metagenomic sequencing were conducted. Gene set enrichment analysis of tumors identified multiple immune-based transcriptomic programs to distinguish patients with longer versus shorter survival (p ≤ 0.01). GBM immune enrichment was highly associated with the pre-treatment tumor mesenchymal subtype and patient gastrointestinal bacterial taxa profile.
Collapse
Affiliation(s)
- Shiao-Pei Weathers
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - Xiqi Li
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Haifeng Zhu
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Ashish V Damania
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Mark Knafl
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Brian McKinley
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Heather Lin
- Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Rebecca A Harrison
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Nazanin K Majd
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Barbara J O'Brien
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Marta Penas-Prado
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Monica Loghin
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Carlos Kamiya-Matsuoka
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - W K Alfred Yung
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Luisa M Solis Soto
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Dipen M Maru
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Ignacio Wistuba
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Edwin R Parra Cuentas
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Sharia Hernandez
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Andrew Futreal
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Jennifer A Wargo
- Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Katja Schulze
- Genentech, Inc 1 DNA Way, San Francisco, CA, 94080, USA
| | | | - Nadim J Ajami
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Scott E Woodman
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - John F de Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Wang W, Chen Y, Rasic M, Ascoli C, Hatch JE, Nemsick NK, Deschamp AR, Davis SD, Sanders DB, Ranganathan S, Stick S, Perkins DL, Thomas Ferkol, Finn PW. An Observational Study of the Lung Microbiome and Lung Function in Young Children with Cystic Fibrosis Across Two Countries with Differing Antibiotic Practices. Microb Pathog 2025:107628. [PMID: 40288428 DOI: 10.1016/j.micpath.2025.107628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Cystic fibrosis (CF) lung disease begins early, and prophylactic antibiotics have been used to prevent Staphylococcus aureus infection. This study examined the lung microbiome in two countries with differing antibiotic practices and its relationship to lung function in young children with CF. METHODS A binational, longitudinal, observational study was performed to define the lower airway microbiome in infants with CF. 16S rRNA sequencing was performed using lavage fluid to characterize the lung microbiota in 45 infants with and without prophylactic antibiotic therapy at an average age of approximately 3 months and 14 months. The association between pulmonary function, bacterial community diversities, and taxa was assessed. RESULTS Expected CF bacterial genera and non-traditional bacteria, such as Streptococcus, were identified as core taxa. Microbial community shifts were observed in infants who received antibiotic prophylaxis, with lower alpha diversity (ANOVA, P<0.05) and a higher proportion of Streptococcus at the first visit. Beta diversity (FEV0.5z; MiRKAT, P<0.05) and Streptococcus were associated with FEV0.5z (LASSO and linear regression, β<0). Functional annotation suggested that alteration of lung microbiota may be linked to antimicrobial resistance. CONCLUSIONS Lung microbial diversity in infants with CF varied between the two countries, particularly during early infancy. A shift in the lung microbiome toward a higher relative abundance of Streptococcus was associated with reduced pulmonary function.
Collapse
Affiliation(s)
- Wangfei Wang
- Richard and Loan Hill Department of Biomedical Engineering, College of Engineering and Medicine, University of Illinois at Chicago, Chicago, IL, USA; Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Yang Chen
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mladen Rasic
- Richard and Loan Hill Department of Biomedical Engineering, College of Engineering and Medicine, University of Illinois at Chicago, Chicago, IL, USA; Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Christian Ascoli
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Joseph E Hatch
- Department of Pediatrics, UNC Children's, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Nicole K Nemsick
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ashley R Deschamp
- Department of Pediatrics, University of Nebraska Medical Center, Children's Hospital and Medical Center, Omaha, NE, USA
| | - Stephanie D Davis
- Department of Pediatrics, UNC Children's, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Don B Sanders
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarath Ranganathan
- Department of Pediatrics, University of Melbourne, Infection and Immunity, Murdoch Children's Research Institute, Parkville, Australia
| | - Stephen Stick
- Department of Pediatrics, University of Western Australia, Centre for Child Health Research, Perth, Australia
| | - David L Perkins
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA; Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| | - Thomas Ferkol
- Department of Pediatrics, UNC Children's, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| | - Patricia W Finn
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA; Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
23
|
Hansen SH, Maseng MG, Grännö O, Vestergaard MV, Bang C, Olsen BC, Lund C, Olbjørn C, Løvlund EE, Vikskjold FB, Huppertz-Hauss G, Perminow G, Yassin H, Valeur J, Aass Holten KI, Henriksen M, Bengtson MB, Ricanek P, Opheim R, Boyar R, Torp R, Frigstad SO, Aabrekk TB, Detlie TE, Kristensen VA, Strande V, Hovde Ø, Asak Ø, Jess T, Franke A, Halfvarsson J, Høivik ML, Hov JR. Fecal Microbiome Reflects Disease State and Prognosis in Inflammatory Bowel Disease in an Adult Population-Based Inception Cohort. Inflamm Bowel Dis 2025:izaf060. [PMID: 40285477 DOI: 10.1093/ibd/izaf060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Indexed: 04/29/2025]
Abstract
INTRODUCTION We aimed to determine the diagnostic and prognostic potential of baseline microbiome profiling in inflammatory bowel disease (IBD). METHODS Participants with ulcerative colitis (UC), Crohn's disease (CD), suspected IBD, and non-IBD symptomatic controls were included in the prospective population-based cohort Inflammatory Bowel Disease in South-Eastern Norway III (third iteration) based on suspicion of IBD. The participants donated fecal samples that were analyzed with 16S rRNA sequencing. Disease course severity was evaluated at the 1-year follow-up. A stringent statistical consensus approach for differential abundance analysis with 3 different tools was applied, together with machine learning modeling. RESULTS A total of 1404 individuals were included, where n = 1229 samples from adults were used in the main analyses (n = 658 UC, n = 324 CD, n = 36 IBD-U, n = 67 suspected IBD, and n = 144 non-IBD symptomatic controls). Microbiome profiles were compared with biochemical markers in machine learning models to differentiate IBD from non-IBD symptomatic controls (area under the receiver operating curve [AUC] 0.75-0.79). For UC vs controls, integrating microbiome data with biochemical markers like fecal calprotectin mildly improved classification (AUC 0.83 to 0.86, P < .0001). Extensive differences in microbiome composition between UC and CD were identified, which could be quantified as an index of differentially abundant genera. This index was validated across published datasets from 3 continents. The UC-CD index discriminated between ileal and colonic CD (linear regression, P = .008) and between colonic CD and UC (P = .005), suggesting a location-dependent gradient. Microbiome profiles outperformed biochemical markers in predicting a severe disease course in UC (AUC 0.72 vs 0.65, P < .0001), even in those with a mild disease at baseline (AUC 0.66 vs 0.59, P < .0001). CONCLUSIONS Fecal microbiome profiling at baseline held limited potential to diagnose IBD from non-IBD compared with standard-of-care. However, microbiome shows promise for predicting future disease courses in UC.
Collapse
Affiliation(s)
- Simen Hyll Hansen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway
| | - Maria Gjerstad Maseng
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Oslo University Hospital, Oslo, Norway
- Bio-Me, Oslo, Norway
| | - Olle Grännö
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Marie V Vestergaard
- Center for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Bjørn C Olsen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Telemark Hospital, Skien, Norway
| | - Charlotte Lund
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Oslo University Hospital, Oslo, Norway
| | - Christine Olbjørn
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Emma E Løvlund
- Department of Pediatric and Adolescent Medicine, Østfold Hospital Trust, Kalnes, Norway
| | - Florin B Vikskjold
- Department of Pediatric and Adolescent Medicine, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | | | - Gøri Perminow
- Department of Pediatrics, Oslo University Hospital, Oslo, Norway
| | - Hussain Yassin
- Department of Pediatrics, Telemark Hospital Kjørbekk, Skien, Norway
| | - Jørgen Valeur
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Kristina I Aass Holten
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Østfold Hospital Trust, Grålum, Norway
| | - Magne Henriksen
- Department of Gastroenterology, Østfold Hospital Trust, Grålum, Norway
| | - May-Bente Bengtson
- Department of Gastroenterology, Vestfold Hospital Trust, Tonsberg, Norway
| | - Petr Ricanek
- Department of Gastroenterology, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Randi Opheim
- Department of Gastroenterology, Oslo University Hospital, Oslo, Norway
- Department of Nursing Science, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Raziye Boyar
- Department of Medicine, Diakonhjemmet Hospital, Oslo, Norway
| | - Roald Torp
- Medical Department, Innlandet Hospital Trust, Hamar, Norway
| | - Svein O Frigstad
- Department of Medicine, Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
| | - Tone Bergene Aabrekk
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Vestfold Hospital Trust, Tonsberg, Norway
| | - Trond Espen Detlie
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Vendel A Kristensen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Oslo University Hospital, Oslo, Norway
| | - Vibeke Strande
- Department of Gastroenterology, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Øistein Hovde
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medicine, Innlandet Hospital Trust, Gjøvik, Norway
| | - Øyvind Asak
- Department of Gastroenterology, Innlandet Hospital Trust, Lillehammer, Norway
| | - Tine Jess
- Center for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jonas Halfvarsson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Marte L Høivik
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Oslo University Hospital, Oslo, Norway
| | - Johannes R Hov
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
24
|
Zhang X, Li Y, Pei Y, Yu C, Zhang X, Cao F. Association between maternal stress patterns and neonatal meconium microbiota: A prospective cohort study. J Affect Disord 2025; 383:59-68. [PMID: 40286937 DOI: 10.1016/j.jad.2025.04.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 02/01/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND This study aimed to identify maternal stress patterns and investigate their associations with neonatal meconium microbiota. METHODS A total of 465 pregnant women reported their stress conditions, including depression, anxiety, pregnancy-related anxiety, perceived stress, sleep, fear of birth, life events, and adverse childhood experiences. Meconium samples were collected from 348 newborns. Latent class analysis was used to identify the patterns of maternal stress. RESULTS Three group profiles were identified: "high negative emotion," "high ACEs-low negative emotion," and "low stress." the high ACEs-low negative emotion group and low stress group had higher levels of Chao1 diversity than the high negative emotion group (B = 0.25, P < 0.001; B = 0.18, P < 0.001, respectively). The high ACEs-low negative emotion group had higher levels of Chao1 diversity than the low stress group (B = 0.08, P = 0.001). The variations were observed in the abundance of Bacteroidetes, unidentified_Muribaculaceae, unclassified_Lachnospiraceae, unclassified_Clostridiales, unidentified_Bacteroidales, Oscillospira, and Ruminococcus among different maternal stress patterns. LIMITATIONS We did not analyze maternal microbiome samples and assessed the gut microbiota at only one time point. CONCLUSIONS These findings emphasized the need for a comprehensive approach to prenatal care that extends beyond traditional medical interventions. Addressing maternal stress through targeted support and interventions may help newborns benefit from a more favorable gut microbiota landscape.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong Province, China
| | - Yang Li
- School of Nursing, The University of Texas at Austin, Austin, USA
| | - Yifei Pei
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong Province, China
| | - Cheng Yu
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong Province, China
| | - Xiao Zhang
- School of Computer Science and Technology, Shandong University, Qingdao, Shandong Province, China
| | - Fenglin Cao
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
25
|
Asmus AE, Gaire TN, Heimer KM, Belk KE, Singer RS, Johnson TJ, Noyes NR. Fresh pork microbiota is temporally dynamic and compositionally diverse across meat, contact surfaces, and processing lines in a pork processing facility. Appl Environ Microbiol 2025; 91:e0004425. [PMID: 40178255 PMCID: PMC12016530 DOI: 10.1128/aem.00044-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
The goal of this study was to analyze the microbial profiles of meat and contact surfaces from two different processing lines in a pork processing plant, using a 16S rRNA gene amplicon sequencing workflow specifically designed to investigate fresh meat and environmental samples throughout a commercial production schedule. Results indicated that the microbiota differed between the meat and contact surface, both across the two processing lines and within each individual processing line. Differences in the microbiota composition were also strongly associated with both the specific processing dates and the time of day during processing. Much of this variation was associated with distinct amplicon sequence variants unique to each processing date and each processing line throughout the day. The abundance of key taxa associated with food safety and spoilage was also temporally dynamic across a production shift and was different between the meat and contact surface. Overall, the results of this study indicate significant differences in the microbial profiles of the meat and contact surfaces between two processing lines within the same plant. These differences are likely influenced by daily variation in processing and sanitation procedures, as well as differences in the design of the processing lines, which appear to affect the microbiotas of both the meat and contact surfaces.IMPORTANCEThis study provides critical knowledge that can be used as a foundation for tailored processes to improve fresh pork safety and quality, potentially customized to individual processing lines, time points within a shift, and/or production days. Additionally, this study provides a list of potential biological markers associated with food safety and quality that could be used by processors to develop and validate intervention strategies specific to different processing lines.
Collapse
Affiliation(s)
- A. E. Asmus
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
- Hormel Foods Corporation, Austin, Minnesota, USA
| | - T. N. Gaire
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - K. M. Heimer
- Hormel Foods Corporation, Austin, Minnesota, USA
| | - K. E. Belk
- Department of Animal Science, Colorado State University, Fort Collins, Colorado, USA
| | - R. S. Singer
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - T. J. Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - N. R. Noyes
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
26
|
Atzeni A, Hernández-Cacho A, Khoury N, Babio N, Belzer C, Vioque J, Corella D, Fitó M, Clish C, Vidal J, Konstanti P, Gonzales-Palacios S, Coltell O, Goday A, Moreno Indias I, Carlos Chillerón S, Ruiz-Canela M, Tinahones FJ, Hu FB, Salas-Salvadó J. The link between ultra-processed food consumption, fecal microbiota, and metabolomic profiles in older mediterranean adults at high cardiovascular risk. Nutr J 2025; 24:62. [PMID: 40247349 PMCID: PMC12007308 DOI: 10.1186/s12937-025-01125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/02/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Ultra-processed food (UPF) consumption has been linked to adverse metabolic outcomes, potentially mediated by alterations in gut microbiota and metabolite production. OBJECTIVE This study aims to explore the cross-sectional and longitudinal associations between NOVA-classified UPF consumption, fecal microbiota, and fecal metabolome in a population of Mediterranean older adults at high cardiovascular risk. METHODS A total of 385 individuals, aged between 55 and 75 years, were included in the study. Dietary and lifestyle information, anthropometric measurements, and stool samples were collected at baseline and after 1-year follow-up. Fecal microbiota and metabolome were assessed using 16 S rRNA sequencing and liquid chromatography-tandem mass spectrometry, respectively. RESULTS At baseline, higher UPF consumption was associated with lower abundance of Ruminococcaceae incertae sedis (β = - 0.275, P = 0.047) and lower concentrations of the metabolites propionylcarnitine (β = - 0.0003, P = 0.013) and pipecolic acid (β = - 0.0003, P = 0.040) in feces. Longitudinally, increased UPF consumption was linked to reduced abundance of Parabacteroides spp. after a 1-year follow-up (β = - 0.278, P = 0.002). CONCLUSIONS High UPF consumption was associated with less favorable gut microbiota and metabolite profiles, suggesting a possible link to reduced short-chain fatty acid (SCFA) production, altered mitochondrial energy metabolism, and impaired amino acid metabolism. These findings support the reduction of UPF consumption and the promotion of dietary patterns rich in fiber for better gut health. Further research is needed to confirm these associations and clarify the underlying mechanisms. TRIAL REGISTRATION ISRCTN89898870 ( https://doi.org/10.1186/ISRCTN89898870 ).
Collapse
Affiliation(s)
- Alessandro Atzeni
- Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
- Desenvolupament i Salut Mental (ANUT-DSM) Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Alimentació, Nutrició, Universitat Rovira i Virgili, Reus, Spain.
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.
| | - Adrián Hernández-Cacho
- Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Desenvolupament i Salut Mental (ANUT-DSM) Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Alimentació, Nutrició, Universitat Rovira i Virgili, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Nadine Khoury
- Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Desenvolupament i Salut Mental (ANUT-DSM) Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Alimentació, Nutrició, Universitat Rovira i Virgili, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Nancy Babio
- Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Desenvolupament i Salut Mental (ANUT-DSM) Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Alimentació, Nutrició, Universitat Rovira i Virgili, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Jesús Vioque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
| | - Dolores Corella
- Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Montserrat Fitó
- Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
| | - Clary Clish
- Metabolomics Platform, The Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Josep Vidal
- CIBER Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Endocrinology, Institut d'Investigacions Biomédiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Prokopis Konstanti
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Sandra Gonzales-Palacios
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
| | - Oscar Coltell
- Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Computer Languages and Systems, Universitat Jaume I, Castellón, Spain
| | - Albert Goday
- Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
- Departament de Medicina, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Isabel Moreno Indias
- Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Silvia Carlos Chillerón
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
- Epidemiología y Salud Pública, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Miguel Ruiz-Canela
- Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
- Epidemiología y Salud Pública, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Francisco J Tinahones
- Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Frank B Hu
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division for Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jordi Salas-Salvadó
- Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
- Desenvolupament i Salut Mental (ANUT-DSM) Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Alimentació, Nutrició, Universitat Rovira i Virgili, Reus, Spain.
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.
| |
Collapse
|
27
|
Pinto OHB, Biazotti BB, de Souza RSC, Yassitepe JÉDCT, Arruda P, Dante RA, Gerhardt IR. Seasonal bacterial profiles of Vellozia with distinct drought adaptations in the megadiverse campos rupestres. Sci Data 2025; 12:636. [PMID: 40240384 PMCID: PMC12003806 DOI: 10.1038/s41597-025-04984-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 04/10/2025] [Indexed: 04/18/2025] Open
Abstract
Microbial communities can vary as a function of seasonal precipitation and the phenotypic characteristics of the prevailing plant species in an ecosystem. The Brazilian campos rupestres (CRs) host a unique flora adapted to harsh conditions, including severe droughts and nutrient-poor soils. Velloziaceae, a dominant angiosperm family in CRs, exhibit contrasting drought adaptive strategies, prominently desiccation tolerance and dehydration avoidance. Here, we created a comprehensive dataset of microbial composition and dynamics of bulk soil and distinct plant compartments (leaf blade, dry sheath, aerial root, and underground root) from two desiccation-tolerant and two dehydration-avoiding, non-desiccation-tolerant Vellozia species, across four seasons (beginning and end of rainy and dry seasons) through 16S rRNA gene sequencing of 374 samples. This dataset also includes 38 soil metagenomes encompassing dry and rainy seasons from both drought adaptive strategies. Exploring an overlooked aspect of CRs biology offers significant potential for understanding plant-microbial associations and adaptations to water availability in tropical regions. The genetic data and metadata support further research for hypothesis testing and cross-study comparisons.
Collapse
Affiliation(s)
- Otávio Henrique Bezerra Pinto
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, 13083-875, Campinas, SP, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, 13083-875, Campinas, SP, Brazil
| | - Bárbara Bort Biazotti
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, 13083-875, Campinas, SP, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, 13083-875, Campinas, SP, Brazil
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, 13083-970, Campinas, SP, Brazil
| | - Rafael Soares Correa de Souza
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, 13083-875, Campinas, SP, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, 13083-875, Campinas, SP, Brazil
- Symbiomics Microbiome Solutions, Florianópolis, SC, 88050-000, Brazil
| | - Juliana Érika de Carvalho Teixeira Yassitepe
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, 13083-875, Campinas, SP, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, 13083-875, Campinas, SP, Brazil
- Embrapa Agricultura Digital, 13083-886, Campinas, SP, Brazil
| | - Paulo Arruda
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, 13083-875, Campinas, SP, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, 13083-875, Campinas, SP, Brazil
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, 13083-970, Campinas, SP, Brazil
| | - Ricardo Augusto Dante
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, 13083-875, Campinas, SP, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, 13083-875, Campinas, SP, Brazil
- Embrapa Agricultura Digital, 13083-886, Campinas, SP, Brazil
| | - Isabel Rodrigues Gerhardt
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, 13083-875, Campinas, SP, Brazil.
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, 13083-875, Campinas, SP, Brazil.
- Embrapa Agricultura Digital, 13083-886, Campinas, SP, Brazil.
| |
Collapse
|
28
|
Jadhav VV, Fasina YO, Harrison SH. Dietary polyunsaturated fatty acids effect on cecal microbiome profile of maturing broiler chicken. Poult Sci 2025; 104:105167. [PMID: 40315582 DOI: 10.1016/j.psj.2025.105167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 05/04/2025] Open
Abstract
Diet has been reported to impact the diversity and function of gut microbiota. Our study investigated the effect of dietary fat types on cecal microbial composition and predicted function in broiler chickens at days 41 and 55 of age. Four dietary fat sources were evaluated and compared to a control dietary fat source of poultry fat. These were for two diets rich in omega-3 polyunsaturated fatty acids (PUFA) - fish oil and flaxseed oil, a diet rich in long-chain saturated fatty acid (SFA) - lard, and a diet rich in medium-chain saturated fatty acid - coconut oil. At day 55, broiler chickens fed a PUFA-rich diet maintained cecal microbial diversity while broiler chickens fed a SFA-rich diet exhibited a significant reduction in diversity compared to the control diet-fed chickens. More specifically, PUFA intake was associated with elevated levels of microbial carbohydrate metabolizing capability, contributing to efficient energy utilization and enhanced short-chain fatty acid production capability. In contrast, SFA-rich diets lowered abundances for key microbial families like Lachnospiraceae and Bifidobacteriaceae hampering nutrient digestibility and pathogen resistance. The microbiomes for chickens fed lard and coconut oil diets showed a significant reduction in SCFA-producing microbial taxa abundance while the microbial functional profile indicated reduced carbohydrate metabolism. Our findings underscore the contrasting effects of SFA-rich fat and PUFA-rich fat on the cecal microbiota of broiler chickens. The results suggest that incorporating PUFA-rich dietary fats into broiler feed may offer potential benefits by modulating the cecal gut microbiota toward outcomes associated with elevated carbohydrate utilization without hampering nutrient digestibility and pathogen resistance.
Collapse
Affiliation(s)
- Vidya V Jadhav
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, USA 27411
| | - Yewande O Fasina
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, USA 27411
| | - Scott H Harrison
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, USA 27411.
| |
Collapse
|
29
|
Sammallahti H, Rezasoltani S, Pekkala S, Kokkola A, Asadzadeh Agdaei H, Azizmohhammad Looha M, Ghanbari R, Zamani F, Sadeghi A, Sarhadi VK, Tiirola M, Puolakkainen P, Knuutila S. Fecal profiling reveals a common microbial signature for pancreatic cancer in Finnish and Iranian cohorts. Gut Pathog 2025; 17:24. [PMID: 40241224 PMCID: PMC12001732 DOI: 10.1186/s13099-025-00698-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Pancreatic cancer (PC) presents a significant challenge in oncology because of its late-stage diagnosis and limited treatment options. The inadequacy of current screening methods has prompted investigations into stool-based assays and microbial classifiers as potential early detection markers. The gut microbiota composition of PC patients may be influenced by population differences, thereby impacting the accuracy of disease prediction. However, comprehensive profiling of the PC gut microbiota and analysis of these cofactors remain limited. Therefore, we analyzed the stool microbiota of 33 Finnish and 50 Iranian PC patients along with 35 Finnish and 34 Iranian healthy controls using 16S rRNA gene sequencing. We assessed similarities and differences of PC gut microbiota in both populations while considering sociocultural impacts and generated a statistical model for disease prediction based on microbial classifiers. Our aim was to expand the current understanding of the PC gut microbiota, discuss the impact of population differences, and contribute to the development of early PC diagnosis through microbial biomarkers. RESULTS Compared with healthy controls, PC patients presented reduced microbial diversity, with discernible microbial profiles influenced by factors such as ethnicity, demographics, and lifestyle. PC was marked by significantly higher abundances of facultative pathogens including Enterobacteriaceae, Enterococcaceae, and Fusobacteriaceae, and significantly lower abundances of beneficial bacteria. In particular, bacteria belonging to the Clostridia class, such as butyrate-producing Lachnospiraceae, Butyricicoccaceae, and Ruminococcaceae, were depleted. A microbial classifier for the prediction of pancreatic ductal adenocarcinoma (PDAC) was developed in the Iranian cohort and evaluated in the Finnish cohort, where it yielded a respectable AUC of 0.88 (95% CI 0.78, 0.97). CONCLUSIONS This study highlights the potential of gut microbes as biomarkers for noninvasive PC screening and the development of targeted therapies, emphasizing the need for further research to validate these findings in diverse populations. A comprehensive understanding of the role of the gut microbiome in PC could significantly enhance early detection efforts and improve patient outcomes.
Collapse
Affiliation(s)
- Heidelinde Sammallahti
- Department of Pathology, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Department of Surgery, Abdominal Center, University of Helsinki, Helsinki University Hospital, 00290, Helsinki, Finland
| | - Sama Rezasoltani
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, 52074, Aachen, Germany
| | - Satu Pekkala
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Arto Kokkola
- Department of Surgery, University of Helsinki and Helsinki University Hospital, 00290, Helsinki, Finland
| | - Hamid Asadzadeh Agdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O. Box 1985717411, Tehran, Iran
| | - Mehdi Azizmohhammad Looha
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O. Box 1985717411, Tehran, Iran
| | - Reza Ghanbari
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Virinder Kaur Sarhadi
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, 00290, Helsinki, Finland
| | - Marja Tiirola
- Department of Environmental and Biological Sciences, Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland
- BiopSense Oy, Eeronkatu 10, 40720, Jyväskylä, Finland
| | - Pauli Puolakkainen
- Department of Surgery, Abdominal Center, University of Helsinki, Helsinki University Hospital, 00290, Helsinki, Finland
| | - Sakari Knuutila
- Department of Pathology, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
30
|
Block MS, Nelson GD, Chen J, Johnson S, Yang L, Flotte TJ, Grewal EP, McWilliams RR, Kottschade LA, Domingo-Musibay E, Markovic SN, Dimou A, Montane HN, Piltin MA, Price DL, Khariwala SS, Hui JYC, Erskine CL, Strand CA, Zahrieh D, Dong H, Hieken TJ. Neoadjuvant cobimetinib and atezolizumab with or without vemurafenib for stage III melanoma: outcomes and the impact of the microbiome from the NeoACTIVATE trial. J Immunother Cancer 2025; 13:e011706. [PMID: 40234093 PMCID: PMC12001372 DOI: 10.1136/jitc-2025-011706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/01/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Neoadjuvant treatment has become standard for patients with high-risk operable stage III melanoma, but the optimal regimen is unknown. Targeted therapy approaches yield high pathological response rates, while immunotherapy regimens show favorable recurrence-free survival (RFS). NeoACTIVATE was designed to address whether a neoadjuvant combination of both targeted therapy and immunotherapy might leverage the benefits of each. METHODS We tested neoadjuvant treatment with 12 weeks of vemurafenib, cobimetinib, and atezolizumab for patients with BRAF-mutated (BRAFm) melanoma (cohort A) and cobimetinib and atezolizumab for patients with BRAF-wild-type (BRAFwt) melanoma (cohort B), regimens which we have shown generate a substantial major pathological response. After therapeutic lymph node dissection, patients received 24 weeks of adjuvant atezolizumab. Here, we report survival outcomes and their association with biomarkers assayed among the gut microbiome and peripheral blood immune subsets. RESULTS With 49 months median follow-up, the median RFS was not reached for cohort A and was 40.8 months for cohort B. At 24 months after operation, 2 of 14 cohort A patients and 4 of 13 cohort B patients had experienced distant relapse. Key findings from correlative analyses included diversity, taxonomic and functional metagenomic gut microbiome signals associated with distant metastasis-free survival at 2 years. Notably, we observed a strong correlation between low microbial arginine biosynthesis (required for T-cell activation and effector function) and early distant recurrence (p=0.0005), which correlated with taxonomic differential abundance findings. Peripheral blood immune monitoring revealed increased double-positive (CD4+CD8+) T cells in patients with early recurrence. CONCLUSIONS Neoadjuvant treatment with cobimetinib and atezolizumab±vemurafenib was associated with a low rate of distant metastasis in patients with high-risk stage III melanoma. Freedom from early distant metastasis was highly associated with taxonomic differences in gut microbiome structure and with functional pathway alterations known to modulate T cell immunity. Identification of predictive biomarkers will permit optimization of neoadjuvant therapy regimens for individual patients. TRIAL REGISTRATION NUMBER NCT03554083.
Collapse
Affiliation(s)
- Matthew S Block
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Garth D Nelson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Jun Chen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen Johnson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Lu Yang
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas James Flotte
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Eric P Grewal
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Evidio Domingo-Musibay
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | - Mara A Piltin
- Division of Breast and Melanoma Surgical Oncology, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel L Price
- Department of Otolaryngology, Mayo Clinic, Rochester, Minnesota, USA
| | - Samir S Khariwala
- Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jane Yuet Ching Hui
- Division of Surgical Oncology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | | | - Carrie A Strand
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - David Zahrieh
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Haidong Dong
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tina J Hieken
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
31
|
Schwerdtfeger LA, Montini F, Lanser TB, Ekwudo MN, Zurawski J, Tauhid S, Glanz BI, Chu R, Bakshi R, Chitnis T, Cox LM, Weiner HL. Gut microbiota and metabolites are linked to disease progression in multiple sclerosis. Cell Rep Med 2025; 6:102055. [PMID: 40185103 PMCID: PMC12047500 DOI: 10.1016/j.xcrm.2025.102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/02/2024] [Accepted: 03/11/2025] [Indexed: 04/07/2025]
Abstract
Progressive multiple sclerosis (MS) is a neurological disease with limited understanding of the biology associated with transition from relapsing to progressive disease. Intestinal microbes and metabolites are altered in MS, but relation to disease progression is largely unknown. We investigate microbiota and metabolites in subjects with stable MS, those who worsened, and in those with relapsing MS who became progressive over 2 years. We find that Eubacterium hallii, Butyricoccaceae, Blautia, and other short-chain fatty-acid-producing microbes have beneficial associations with worsening of disability, 3T magnetic resonance imaging (MRI) measures, cognition, and quality of life, while Alistipes is detrimentally associated. Global metabolomics identified serum and stool metabolites that are altered in progressive MS and in relapsing subjects who transitioned to progressive disease. Most fecal metabolites associated with disease progression are decreased, suggesting a deficiency of protective factors in the gut. Using a unique MS cohort, our findings identify gut microbiome and metabolite pathways influencing progressive MS.
Collapse
Affiliation(s)
- Luke A Schwerdtfeger
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Federico Montini
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Toby B Lanser
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Millicent N Ekwudo
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jonathan Zurawski
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Shahamat Tauhid
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bonnie I Glanz
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Renxin Chu
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Rohit Bakshi
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Tanuja Chitnis
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Laura M Cox
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Moradi J, Berggreen E, Bunæs DF, Bolstad AI, Bertelsen RJ. Microbiome composition and metabolic pathways in shallow and deep periodontal pockets. Sci Rep 2025; 15:12926. [PMID: 40234709 PMCID: PMC12000285 DOI: 10.1038/s41598-025-97531-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 04/04/2025] [Indexed: 04/17/2025] Open
Abstract
In periodontal diseases, a dysbiotic subgingival microbiome interacts complexly with the host immune response and is strongly considered a risk factor for various systemic conditions. The high prevalence of both periodontal and systemic diseases in older adults highlights the importance of characterizing the subgingival microbiome in this age group. This study specifically characterizes the composition of the subgingival microbiome and investigates the interactions between microbial niches in shallow and deep periodontal pockets in individuals in their early 70s. We collected 1928 samples from 1287 participants, all born between 1950 and 1951. Participants had either shallow (≤ 4 mm) periodontal pockets or both shallow and deep (≥ 5 mm) periodontal pockets. Distinct microbial patterns were observed in shallow and deep periodontal pockets within the same oral cavity. Deep pockets exhibited a significantly higher abundance of species from genera such as Prevotella, Centipeda, Treponema, and Fusobacterium, while shallow pockets were enriched with species from Actinomyces, Pauljensenia, Streptococcus, and Gemella. The top significant species associated with deep pockets included Fretibacterium fastidiosum, Tannerella forsythia, and Treponema denticola, whereas shallow pockets were predominantly associated with Actinomyces species and Rothia dentocariosa. Additionally, shallow pockets in individuals with both pocket types showed a positive association with Tannerella forsythia, Porphyromonas gingivalis, and Fusobacterium nucleatum compared to shallow pockets in individuals with only shallow pockets. Metabolic pathways showed significant variation with pocket depth, with pathways such as lipopolysaccharide metabolism, lipid metabolism, and polyamine biosynthesis being positively associated with deep pockets. Overall, this study provides comprehensive microbiome analyses of periodontal pockets in aging adults, contributing to a better understanding of periodontal health and its potential impact on reducing systemic health risks in aging populations.
Collapse
Affiliation(s)
- Jale Moradi
- Oral Health Center of Expertise in Western Norway, Bergen, Norway.
| | - Ellen Berggreen
- Oral Health Center of Expertise in Western Norway, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Dagmar F Bunæs
- Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | | | - Randi Jacobsen Bertelsen
- Oral Health Center of Expertise in Western Norway, Bergen, Norway.
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
33
|
Arishi RA, Cheema AS, Lai CT, Payne MS, Geddes DT, Stinson LF. Development of the breastfed infant oral microbiome over the first two years of life in the BLOSOM Cohort. Front Cell Infect Microbiol 2025; 15:1534750. [PMID: 40302925 PMCID: PMC12037575 DOI: 10.3389/fcimb.2025.1534750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
Background Acquisition and development of the oral microbiome are dynamic processes that occur over early life. This study aimed to characterize the temporal development of the oral microbiome of predominantly breastfed infants during the first two years of life. Methods Infant oral samples (n=667) were collected at ten time points from the first week to year two of life from 84 infants. Bacterial DNA profiles were analyzed using full-length 16S rRNA gene sequencing. Results The oral microbiome was dominated by Streptococcus mitis, Gemella haemolysans, and Rothia mucilaginosa. Bacterial richness decreased from 1 to 2 months (P = 0.043) and increased from 12 to 24 months (P = 0.038). Shannon diversity increased from 1 week to 1 month and again from 6 to 9 months and 9 to 12 months (all P ≤ 0.04). The composition of the infant oral microbiome was associated with multiple factors, including early pacifier use, intrapartum antibiotic prophylaxis, maternal allergy, pre-pregnancy body mass index, siblings, delivery mode, maternal age, pets at home, and birth season (all P < 0.01). Introduction of solid foods was a significant milestone in oral microbiome development, triggering an increase in bacterial diversity (richness P = 0.0004; Shannon diversity P = 0.0007), a shift in the abundance of seven species, and a change in beta diversity (P = 0.001). Conclusion These findings underscore the importance of multiple factors, particularly the introduction of solid foods, in shaping the oral microbiome of breastfed infants during early life.
Collapse
Affiliation(s)
- Roaa A. Arishi
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
- Australian Breastfeeding + Lactation Research and Science Translation (ABREAST) Network, Perth, WA, Australia
- The University of Western Australia (UWA) Centre for Human Lactation Research and Translation, Crawley, WA, Australia
- Ministry of Education, Riyadh, Saudi Arabia
| | - Ali S. Cheema
- The Kids Research Institute Australia, Nedlands, WA, Australia
| | - Ching T. Lai
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
- Australian Breastfeeding + Lactation Research and Science Translation (ABREAST) Network, Perth, WA, Australia
- The University of Western Australia (UWA) Centre for Human Lactation Research and Translation, Crawley, WA, Australia
| | - Matthew S. Payne
- Division of Obstetrics and Gynaecology, The University of Western Australia, Crawley, WA, Australia
| | - Donna T. Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
- Australian Breastfeeding + Lactation Research and Science Translation (ABREAST) Network, Perth, WA, Australia
- The University of Western Australia (UWA) Centre for Human Lactation Research and Translation, Crawley, WA, Australia
| | - Lisa F. Stinson
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
- Australian Breastfeeding + Lactation Research and Science Translation (ABREAST) Network, Perth, WA, Australia
- The University of Western Australia (UWA) Centre for Human Lactation Research and Translation, Crawley, WA, Australia
| |
Collapse
|
34
|
Gopalakrishnan V, Kumar C, Robertsen I, Morehouse C, Sparklin B, Khader S, Henry I, Johnson LK, Hertel JK, Christensen H, Sandbu R, Greasley PJ, Sellman BR, Åsberg A, Andersson S, Löfmark RJ, Hjelmesæth J, Karlsson C, Cohen TS. A multi-omics microbiome signature is associated with the benefits of gastric bypass surgery and is differentiated from diet induced weight loss through 2 years of follow-up. Mucosal Immunol 2025:S1933-0219(25)00040-6. [PMID: 40222615 DOI: 10.1016/j.mucimm.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/04/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
Roux-en-Y gastric bypass (GBP) surgery is an effective treatment for reducing body weight and correcting metabolic dysfunction in individuals with severe obesity. Herein, we characterize the differences between very low energy diet (VLED) and GBP induced weight loss by multi-omic analyses of microbiome and host features in a non-randomized, controlled, single-center study. Eighty-eight participants with severe obesity were recruited into two arms - GBP versus VLED with matching weight loss for 6 weeks and 2-years of follow-up. A dramatic shift in the distribution of gut microbial taxa and their functional capacity was seen in the GBP group at Week 2 after surgery and was sustained through 2 years. Multi-omic analyses were performed after 6 weeks of matching weight loss between the GBP and VLED groups, which pointed to microbiome derived metabolites such as indoxyl sulphate as characterizing the GBP group. We also identified an inverse association between Streptococcus parasanguinis (an oral commensal) and plasma levels of tryptophan and tyrosine. These data have important implications, as they reveal a significant robust restructuring of the microbiome away from a baseline dysbiotic state in the GBP group. Furthermore, multi-omics modelling points to potentially novel mechanistic insights at the intersection of the microbiome and host.
Collapse
Affiliation(s)
| | - Chanchal Kumar
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Ida Robertsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, PO 1068 Blindern, 0316 Oslo, Norway
| | - Christopher Morehouse
- Discovery Microbiome, Early Vaccines and Immune Therapies, Biopharmaceuticals R&D, AstraZeneca, USA
| | - Ben Sparklin
- Discovery Microbiome, Early Vaccines and Immune Therapies, Biopharmaceuticals R&D, AstraZeneca, USA
| | - Shameer Khader
- Data Science and Artificial Intelligence, Biopharmaceuticals R&D, AstraZeneca, USA.
| | - Ian Henry
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Line Kristin Johnson
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, P.O.Box 2168, 3103 Tønsberg, Norway
| | - Jens K Hertel
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, P.O.Box 2168, 3103 Tønsberg, Norway
| | - Hege Christensen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, PO 1068 Blindern, 0316 Oslo, Norway
| | - Rune Sandbu
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, P.O.Box 2168, 3103 Tønsberg, Norway
| | - Peter J Greasley
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Bret R Sellman
- Discovery Microbiome, Early Vaccines and Immune Therapies, Biopharmaceuticals R&D, AstraZeneca, USA
| | - Anders Åsberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, PO 1068 Blindern, 0316 Oslo, Norway; Department of Transplantation Medicine, Oslo University Hospital, P.O.Box 4950 Nydalen 0424 Oslo, Norway
| | - Shalini Andersson
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Rasmus Jansson Löfmark
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jøran Hjelmesæth
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, P.O.Box 2168, 3103 Tønsberg, Norway; Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, P.O. Box 1171, 0318 Oslo, Norway
| | - Cecilia Karlsson
- Late-stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Taylor S Cohen
- Late Vaccines and Immune Therapies, Biopharmaceuticals R&D, AstraZeneca, USA.
| |
Collapse
|
35
|
Townsend EC, Xu K, De La Cruz K, Huang L, Sandstrom S, Arend D, Gromek O, Scarborough J, Huttenlocher A, Gibson ALF, Kalan LR. Still not sterile: viability-based assessment of the skin microbiome following pre-surgical application of a broad-spectrum antiseptic reveals transient pathogen enrichment and long-term recovery. Microbiol Spectr 2025:e0287324. [PMID: 40207941 DOI: 10.1128/spectrum.02873-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
Broad-spectrum antiseptics such as chlorhexidine gluconate (CHG) have widespread use as pre-surgical tools to lower skin microbial burden and reduce the risk of surgical site infection. However, the short- and long-term effects of CHG on healthy skin microbial communities remain undefined due to the confounding effects of CHG binding with persistent bacterial DNA on the skin surface. Here, we aim to accurately characterize the immediate and long-term impact of pre-surgical preparation with CHG-based antiseptics on the human skin microbiome. Twenty-eight patients undergoing elective surgeries were enrolled. Swabs of the surgical site and a control site skin microbiome were collected at multiple time points before and up to 2 weeks after surgery. A propidium monoazide (PMAxx)-based viability assay was optimized to selectively evaluate DNA from live microbes in complex skin microbial communities with viability-qPCR and viable 16S ribosomal RNA gene profiling. Pre-operative CHG induces a measurable reduction in the viable microbial bioburden at the surgical site. On the day of surgery, surgical sites displayed a significant increase in the relative abundance of several SSI-associated bacterial genera including Acinetobacter, Bacillus, Escherichia-Shigella, and Pseudomonas compared to baseline. Bacillus species isolated from subjects at baseline also demonstrate resistance to CHG with minimum inhibitory concentrations exceeding 1,000 µg/mL. Although there are major skin microbiome shifts upon exposure to CHG, we also find that these shifts are largely transient. For the majority of individuals, skin microbial bioburden and community structure recover to near baseline by post-surgical follow-up.IMPORTANCESurgical site infections continue to occur despite widespread adoption of surgical antiseptics. Before surgery, patients often wash their whole body multiple times with chlorhexidine gluconate (CHG)-based antiseptic soap and have CHG applied to the surgical site in the operating room. However, the effects of CHG antiseptics on the healthy skin microbiome are undefined due to CHG persisting and binding DNA from dead cells on the skin. We optimized a viability assay to selectively target DNA from live microbes on the skin before and after exposure to CHG. Our findings demonstrate that pre-surgical application of CHG significantly reduces the bioburden on skin; however, potentially pathogenic bacteria remain. Post-surgery, the skin microbiome eventually recovers to resemble its pre-CHG exposed state. Collectively, these findings identify tangible avenues for improving antiseptic formulations and further support that the skin microbiome is viable, stable, and resilient to chemical perturbation.
Collapse
Affiliation(s)
- Elizabeth C Townsend
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kayla Xu
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Karinda De La Cruz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Lynda Huang
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Shelby Sandstrom
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Delanie Arend
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Owen Gromek
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- M.G. DeGroote Institute for Infectious Disease Research, David Bradley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - John Scarborough
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Angela L F Gibson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Lindsay R Kalan
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- M.G. DeGroote Institute for Infectious Disease Research, David Bradley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Division of Infectious Disease, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
36
|
Park JW, Yun YE, Cho JA, Yoon SI, In SA, Park EJ, Kim MS. Characterization of the phyllosphere virome of fresh vegetables and potential transfer to the human gut. Nat Commun 2025; 16:3427. [PMID: 40210629 PMCID: PMC11986028 DOI: 10.1038/s41467-025-58856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/31/2025] [Indexed: 04/12/2025] Open
Abstract
Fresh vegetables harbor diverse microorganisms on leaf surfaces, yet their viral communities remain unexplored. We investigate the diversity and ecology of phyllosphere viromes of six leafy green vegetables using virus-like particle (VLP) enrichment and shotgun metagenome sequencing. On average, 9.2 × 107 viruses are present per gram of leaf tissue. The majority (93.1 ± 6.2%) of these viruses are taxonomically unclassified. Virome compositions are distinct among vegetable types and exhibit temporal variations. Virulent phages with replication-enhancing auxiliary metabolic genes (AMGs) are more dominant than temperate phages with host fitness-benefiting AMGs. Analysis of 1498 human fecal VLP metagenomes reveals that approximately 10% of vegetable viruses are present in the human gut virome, including viruses commonly observed in multiple studies. These gut-associated vegetable viruses are enriched with short-term vegetable intake, and depleted in individuals with metabolic and immunologic disorders. Overall, this study elucidates the ecological contribution of the fresh vegetable virome to human gut virome diversity.
Collapse
Affiliation(s)
- Ji-Woo Park
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Yeo-Eun Yun
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Jin Ah Cho
- Department of Food and Nutrition, Chungnam National University, Daejeon, Republic of Korea
| | - Su-In Yoon
- Department of Food and Nutrition, Chungnam National University, Daejeon, Republic of Korea
| | - Su-A In
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Jin Park
- Department of Food Bioengineering, Jeju National University, Jeju, Republic of Korea.
| | - Min-Soo Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
37
|
Du S, Lin H, Luo Q, Man CL, Lai SH, Ho KF, Leung KMY, Lee PKH. House dust microbiome differentiation and phage-mediated antibiotic resistance and virulence dissemination in the presence of endocrine-disrupting chemicals and pharmaceuticals. MICROBIOME 2025; 13:96. [PMID: 40205515 PMCID: PMC11980161 DOI: 10.1186/s40168-025-02081-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/07/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND House dust serves as a reservoir of a diverse array of microbial life and anthropogenic chemicals, both of which can potentially influence the health of occupants, particularly those who spend significant amounts of time at home. However, the effects of anthropogenic chemicals on dust microbiomes remain poorly understood. This study investigated the presence of anthropogenic chemicals in the dust of homes occupied by elderly occupants and explored those chemicals' relationships with dust microbiomes. RESULTS We detected 69 out of 76 analyzed anthropogenic chemicals, including endocrine-disrupting chemicals, non-antibiotic pharmaceuticals, and antibiotics, in at least one house dust sample from 32 residential homes, with concentrations ranging from 2720 to 89,300 ng/g. Some of these detected compounds were pharmaceuticals regularly consumed by the occupants. The dust microbiomes were associated with varying levels of anthropogenic chemicals, forming two distinct clusters, each with unique diversity, taxonomy, metabolic functions, and resistome profiles. Higher concentrations and a greater variety of these chemicals were associated with an increased co-occurrence of antibiotic resistance and virulence genes, as well as an enhanced potential for their transfer through mobile genetic elements. Under these conditions, phages, especially phage-plasmids, facilitated the dissemination of antibiotic resistance and virulence among bacterial populations. CONCLUSIONS The findings indicate that everyday anthropogenic chemicals are important factors associated with the microbes in indoor environments. This underscores the importance of improving household chemical stewardship to reduce the health risks associated with exposure to these chemicals and their effects on indoor microbiomes. Video Abstract.
Collapse
Affiliation(s)
- Shicong Du
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Huiju Lin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Qiong Luo
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Chung Ling Man
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Sze Han Lai
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Kin Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Kenneth M Y Leung
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Patrick K H Lee
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- Low-Carbon and Climate Impact Research Centre, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
38
|
Alexandre A, Gerard À, Sergio I, Whim T, Isabelle L, Maria José C, Lorena I, Enrique H, Gerardo MA, Carolina M, José N, Vanessa B, Rubén L. Geographic Influence on Subgingival Microbiota in Health and Periodontitis: A Multinational Shotgun Metagenomic Study. J Periodontal Res 2025. [PMID: 40202358 DOI: 10.1111/jre.13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025]
Abstract
AIMS To assess the differences in the taxonomical and functional profile of the subgingival microbiota isolated from healthy subjects (HS) and patients with periodontitis (PP) from four different countries. METHODS In this study, 80 subgingival samples from HS and PP from four different countries (Belgium, Chile, Peru, and Spain) were analyzed using shotgun metagenomic sequencing. RESULTS The results indicated significant variation in α-diversity between HS and PP, segregated by country, with PP from Peru clearly standing out from the rest. In terms of composition, β-diversity was explained more by the country of origin (6.8%) than by the diagnosis (4.1%). In addition, more than 75 different taxa, 63 of which were identified at the species level, showed significantly different relative abundances when comparing the country of origin, diagnosis, and both variables combined. Moreover, 85 metabolic pathways showed significantly different relative abundances between HS and PP, with species commonly associated with periodontitis, such as Porphyromonas gingivalis and Tannerella forsythia, strongly contributing to the reinforcement of periodontitis-associated pathways. On the other hand, differences in functional profiles based on the country of origin were almost nonexistent, suggesting that variability in taxonomic profiles does not have a direct impact on healthy or periodontitis-associated functional profiles. CONCLUSION These findings suggest that microbial analysis should take into account the geographic origin of samples in order to provide a more accurate description of the subgingival microbiota. Moreover, they lay the groundwork for larger and more comprehensive studies that might analyze this phenomenon in the future.
Collapse
Affiliation(s)
| | - Àlvarez Gerard
- Department of Microbiology, Dentaid Research Center, Barcelona, Spain
| | - Isabal Sergio
- Department of Microbiology, Dentaid Research Center, Barcelona, Spain
| | - Teughels Whim
- Department of Oral Health Sciences, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Laleman Isabelle
- Department of Oral Health Sciences, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Contreras Maria José
- Faculty of Medicine, School of Dentistry, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Isbej Lorena
- Faculty of Medicine, School of Dentistry, Pontificia Universidad Católica de Chile, Santiago, Chile
- School of Health Professions Education, Maastrich University, Maastricht, the Netherlands
| | - Huapaya Enrique
- Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Peru
| | - Mendoza-Azpur Gerardo
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mor Carolina
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Nart José
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Blanc Vanessa
- Department of Microbiology, Dentaid Research Center, Barcelona, Spain
| | - León Rubén
- Department of Microbiology, Dentaid Research Center, Barcelona, Spain
| |
Collapse
|
39
|
Odendaal ML, Chu MLJN, Arp K, van Beveren GJ, Biesbroek G, Binkowska J, Bosch T, Groot JA, Hasrat R, Kuiling S, van Logchem EM, Parga PL, de Steenhuijsen Piters WAA, Bogaert D. Protocol for microbial profiling of low-biomass upper respiratory tract samples. STAR Protoc 2025; 6:103740. [PMID: 40198218 PMCID: PMC12008583 DOI: 10.1016/j.xpro.2025.103740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/31/2025] [Accepted: 03/12/2025] [Indexed: 04/10/2025] Open
Abstract
The upper respiratory tract (URT) microbiota plays a role in both acute and chronic respiratory health outcomes and consists of multiple ecologically distinct niches, all of which have low bacterial biomass. Here, we present a protocol for microbial profiling of low-biomass URT samples. We describe steps for collecting, storing, and extracting DNA. We then detail procedures for performing 16S rRNA sequencing, using an Illumina MiSeq platform, to characterize microbial communities. For complete details on the use and execution of this protocol, please refer to Odendaal et al.1.
Collapse
Affiliation(s)
- Mari-Lee Odendaal
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Mei Ling J N Chu
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Kayleigh Arp
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gina J van Beveren
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands; Spaarne Gasthuis Academy, Spaarne Gasthuis, Hoofddorp, the Netherlands
| | - Giske Biesbroek
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, University Medical Center (Amsterdam UMC), Location Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Justyna Binkowska
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Thijs Bosch
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - James A Groot
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Raiza Hasrat
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sjoerd Kuiling
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Elske M van Logchem
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Paula Lusarreta Parga
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Wouter A A de Steenhuijsen Piters
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - Debby Bogaert
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands; Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
40
|
Hisamatsu D, Ogata Y, Suda W, Mabuchi Y, Naraoka Y, Yamato T, Ikeba A, Kumagai K, Hattori M, Akazawa C. Alteration of salivary Streptococcus is associated with statin therapy in older adults: a cohort study. Front Pharmacol 2025; 16:1455753. [PMID: 40260382 PMCID: PMC12010438 DOI: 10.3389/fphar.2025.1455753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 03/05/2025] [Indexed: 04/23/2025] Open
Abstract
Background Salivary microbiome alterations are associated with chronic diseases, such as cardiovascular disease, diabetes, and dementia. These chronic diseases often coexist in older adults, leading to polypharmacy. This situation complicates the relationship between systemic diseases and salivary microbiome dysbiosis. Previous studies have demonstrated the association of the human gut microbiome with common prescription drug use, including polypharmacy. However, a comprehensive analysis of the salivary microbiome and prescription drugs is yet to be conducted in older adults. Therefore, in this study, we performed a multivariate analysis to investigate the relationship between salivary microbiomes and host variables, including prescribed drugs, cognitive function, and oral health, in Japanese older adults with different disease backgrounds. Methods We enrolled non-hospitalised 82 older adults aged ≥70 years from a Japanese village community, and collected metadata, including age, sex, body mass index, cognitive function, oral health, alcohol consumption, smoking, and common prescription drug information. We performed multivariate analyses and functional predictions on the salivary microbiome based on 16S ribosomal RNA gene amplicon sequencing, including the metadata as potential confounders. Results We observed a relationship between the human salivary microbiome and prescribed drug use in Japanese older adults with a heterogeneous background of comorbidities. The effects of several prescribed drugs, such as statins, proton pump inhibitors, and transporter/symporter inhibitors, on the salivary microbiome diversity were more prominent than those of host variables, including age, sex, and oral health. Notably, statin use was strongly correlated with a decrease in the Streptococcus abundance. Furthermore, statin intensity and obesity may be associated with altering the salivary microbiome, including functional predictions for vitamin biosynthesis and purine nucleotide degradation pathways in statin users. Conclusion Our multivariate analysis, adjusted for prescribed drug use and non-use, revealed the drug-specific alteration of salivary microbiome composition in Japanese older adults with comorbidities. To our knowledge, this study is the first to described the association of common prescription drug use with salivary microbiome alterations in older adults. Our findings indicated that prescribed drug use is a key factor in understanding the link between salivary microbiome changes and systemic diseases in older adults.
Collapse
Affiliation(s)
- Daisuke Hisamatsu
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yusuke Ogata
- Laboratory for Symbiotic Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Wataru Suda
- Laboratory for Symbiotic Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yo Mabuchi
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuna Naraoka
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Taku Yamato
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akimi Ikeba
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kyoko Kumagai
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masahira Hattori
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Laboratory for Symbiotic Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Chihiro Akazawa
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
41
|
Rytter H, Naimi S, Wu G, Lewis J, Duquesnoy M, Vigué L, Tenaillon O, Belda E, Vazquez-Gomez M, Touly N, Arnone D, Hao F, Ley RE, Clément K, Peyrin-Biroulet L, Patterson AD, Gewirtz AT, Chassaing B. In vitro microbiota model recapitulates and predicts individualised sensitivity to dietary emulsifier. Gut 2025; 74:761-774. [PMID: 39870396 PMCID: PMC12013555 DOI: 10.1136/gutjnl-2024-333925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/26/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND Non-absorbed dietary emulsifiers, including carboxymethylcellulose (CMC), directly disturb intestinal microbiota, thereby promoting chronic intestinal inflammation in mice. A randomised controlled-feeding study (Functional Research on Emulsifiers in Humans, FRESH) found that CMC also detrimentally impacts intestinal microbiota in some, but not all, healthy individuals. OBJECTIVES This study aimed to establish an approach for predicting an individual's sensitivity to dietary emulsifiers via their baseline microbiota. DESIGN We evaluated the ability of an in vitro microbiota model (MiniBioReactor Arrray, MBRA) to reproduce and predict an individual donor's sensitivity to emulsifiers. Metagenomes were analysed to identify signatures of emulsifier sensitivity. RESULTS Exposure of human microbiotas, maintained in the MBRA, to CMC recapitulated the differential CMC sensitivity previously observed in FRESH subjects. Furthermore, select FRESH control subjects (ie, not fed CMC) had microbiotas that were highly perturbed by CMC exposure in the MBRA model. CMC-induced microbiota perturbability was associated with a baseline metagenomic signature, suggesting the possibility of using one's metagenome to predict sensitivity to dietary emulsifiers. Transplant of human microbiotas that the MBRA model deemed CMC-sensitive, but not those deemed insensitive, into IL-10-/- germfree mice resulted in overt colitis following CMC feeding. CONCLUSION These results suggest that an individual's sensitivity to emulsifier is a consequence of, and can thus be predicted by, examining their baseline microbiota, paving the way to microbiota-based personalised nutrition.
Collapse
Affiliation(s)
- Héloïse Rytter
- Microbiome-Host Interactions, INSERM U1306, CNRS UMR6047, Institut Pasteur, Université Paris Cité, Paris, France
- INSERM U1016, CNRS UMR8104, Mucosal Microbiota in Chronic Inflammatory Diseases, Université de Paris, Paris, France
| | - Sabrine Naimi
- INSERM U1016, CNRS UMR8104, Mucosal Microbiota in Chronic Inflammatory Diseases, Université de Paris, Paris, France
| | - Gary Wu
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jim Lewis
- Center for Clinical Epidemiology and Biostatistics, Division of Gastroenterology and Hepatology,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maeva Duquesnoy
- Microbiome-Host Interactions, INSERM U1306, CNRS UMR6047, Institut Pasteur, Université Paris Cité, Paris, France
- INSERM U1016, CNRS UMR8104, Mucosal Microbiota in Chronic Inflammatory Diseases, Université de Paris, Paris, France
| | - Lucile Vigué
- Robustness and Evolvability of Life, CNRS UMR10 8104, INSERM U1016, Université Paris Cité, Paris, France
| | - Olivier Tenaillon
- Robustness and Evolvability of Life, CNRS UMR10 8104, INSERM U1016, Université Paris Cité, Paris, France
| | - Eugeni Belda
- Inserm, Nutrition and Obesities: Systemic Approaches Research Unit, NutriOmics, Sorbonne University, Paris, France
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, IRD, Sorbonne Université, Bondy, France
| | - Marta Vazquez-Gomez
- Inserm, Nutrition and Obesities: Systemic Approaches Research Unit, NutriOmics, Sorbonne University, Paris, France
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, IRD, Sorbonne Université, Bondy, France
| | - Nina Touly
- INFINY Institute, Nancy University Hospital, Vandœuvre-lès-Nancy, France
- INSERM, NGERE, University of Lorraine, Nancy, France
- FHU-CURE, Nancy University Hospital, Vandoeuvre les Nancy, France
- CHRU Nancy, IHU Infiny, Vandoeuvre-les-Nancy, France
| | - Djésia Arnone
- INFINY Institute, Nancy University Hospital, Vandœuvre-lès-Nancy, France
- INSERM, NGERE, University of Lorraine, Nancy, France
- FHU-CURE, Nancy University Hospital, Vandoeuvre les Nancy, France
- CHRU Nancy, IHU Infiny, Vandoeuvre-les-Nancy, France
| | - Fuhua Hao
- Center for Molecular Toxicology and Carcinogenesis, Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ruth E Ley
- Microbiome Science, Max-Planck-Institute for Biology, Tübingen, Germany
| | - Karine Clément
- Inserm, Nutrition and Obesities: Systemic Approaches Research Unit, NutriOmics, Sorbonne University, Paris, France
- Assistance Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, Paris, France
| | - Laurent Peyrin-Biroulet
- INFINY Institute, Nancy University Hospital, Vandœuvre-lès-Nancy, France
- INSERM, NGERE, University of Lorraine, Nancy, France
- FHU-CURE, Nancy University Hospital, Vandoeuvre les Nancy, France
- CHRU Nancy, IHU Infiny, Vandoeuvre-les-Nancy, France
- Department of Gastroenterology, Nancy University Hospital, Vandoeuvre-lès-Nancy, France
| | - Andrew D Patterson
- Center for Molecular Toxicology and Carcinogenesis, Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Benoit Chassaing
- Microbiome-Host Interactions, INSERM U1306, CNRS UMR6047, Institut Pasteur, Université Paris Cité, Paris, France
- INSERM U1016, CNRS UMR8104, Mucosal Microbiota in Chronic Inflammatory Diseases, Université de Paris, Paris, France
- CHRU Nancy, IHU Infiny, Vandoeuvre-les-Nancy, France
| |
Collapse
|
42
|
Zhou Y, Zhang L, Lin L, Liu Y, Li Q, Zhao Y, Zhang Y. Associations of prenatal organophosphate esters exposure with risk of eczema in early childhood, mediating role of gut microbiota. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137250. [PMID: 39827805 DOI: 10.1016/j.jhazmat.2025.137250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/01/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Few epidemiological evidence has focused on the impact of organophosphate esters (OPEs) and the risk of eczema, and underlying role of gut microbiota. Based on the Shanghai Maternal-Child Pairs Cohort, a nested case-control study including 332 eczema cases and 332 controls was conducted. Umbilical cord blood and stools were collected for OPEs detection and gut microbiota sequencing, separately. Eczema cases were identified using the International Study of Asthma and Allergies in Childhood core questionnaire and clinical diagnosis. The environmental risk score (ERS) for OPEs was developed to quantify OPEs burden. Conditional logistic regression models, multivariate analysis by linear models, negative-binomial hurdle regression, and mediation analysis were employed. Tris(2-butoxyethyl) phosphate (TBP), tris (2-butoxy ethyl) phosphate (TBEP), 2-ethylhexyl diphenyl phosphate (EHDPP), and tris(1,3-dichloro-2-propyl) phosphate (TDCPP) had detection rates > 50 %, with median concentrations ranged from 0.11 to 2.71 μg/L. TBP (OR = 1.12, 95 % CI: 1.01, 1.25), TDCPP (OR = 1.32, 95 % CI: 1.09, 1.59), and ERS (OR = 6.44, 95 % CI: 3.47, 11.94) were associated with elevated risk of eczema. OPEs exposure was correlated with increased alpha diversity and the abundance of several pathogenic bacteria, such as Klebsiella. Negative associations were observed between OPEs exposure and the abundances of Lachnospiraceae genera. Additionally, a positive correlation was identified between alpha diversity and the risk of eczema during childhood. Alpha diversity indices and Lachnospiraceae serve as significant mediators in this relationship. Results of this study indicate that prenatal exposure to OPEs is linked to an elevated risk of eczema and gut microbiota dysbiosis, potentially contributing to immunotoxicity of OPEs during early life.
Collapse
Affiliation(s)
- Yuhan Zhou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China; Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Liyi Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Ling Lin
- Nantong Center for Disease Control & Prevention, Jiangsu 226007, China
| | - Yang Liu
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Qiang Li
- Putuo District Center for Disease Control & Prevention, Shanghai 200333, China
| | - Yingya Zhao
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
43
|
Song H, Zou J, Sun Z, Pu Y, Qi W, Sun L, Li Q, Yuan C, Wang X, Gao X, Zheng Y. Nasal microbiome in relation to olfactory dysfunction and cognitive decline in older adults. Transl Psychiatry 2025; 15:122. [PMID: 40185726 PMCID: PMC11971419 DOI: 10.1038/s41398-025-03346-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/28/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
Emerging evidence has highlighted that olfactory dysfunction, a common feature of aging, is increasingly linked to cognitive decline in older adults. However, research on the underlying mechanism, particularly the role of nasal microbiome, remains limited. In this study, we investigated the associations between olfactory function, the nasal microbiome, and cognition among 510 older adults with an average age of 77.9 years. Olfactory function was assessed using the brief Chinese Smell Identification Test, and cognitive assessments were conducted via the Mini-Mental State Examination and the Revised Hasegawa Dementia Scale. Nasal microbiome profiles were generated through 16S RNA gene sequencing. We observed that olfactory dysfunction (i.e., hyposmia) was associated with a higher richness of nasal bacteria, and such observation was replicated in an external dataset. A total of 18 nasal bacterial genera were identified to be associated with olfactory function, with eight genera such as Acidovorax and Morganella being enriched in the hyposmic group. A composite microbial index of nasal olfactory function significantly improved the reclassification accuracy of traditional risk model in distinguishing hyposmic from normosmic participants (P = 0.008). Furthermore, participants with a nasal biotype dominated by Corynebacterium had a lower prevalence of mild cognitive impairment compared to those dominated by Dolosigranulum or Moraxella. Our findings suggested that the nasal microbiome may play a role in the association of olfactory function with cognition in older adults, providing new insights into the microbial mechanisms underlying hyposmia and cognitive decline.
Collapse
Affiliation(s)
- Huiling Song
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Human Phenome Institute, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaojiao Zou
- Human Phenome Institute, Fudan University, Shanghai, China
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Zhonghan Sun
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Human Phenome Institute, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanni Pu
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Human Phenome Institute, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenhao Qi
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Human Phenome Institute, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liang Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Qian Li
- Songjiang Research Institute, Songjiang Hospital, Department of Anatomy and Physiology, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changzheng Yuan
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaofeng Wang
- Human Phenome Institute, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Xiang Gao
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China.
| | - Yan Zheng
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Human Phenome Institute, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
44
|
Yang Y, Hao C, Jiao T, Yang Z, Li H, Zhang Y, Zhang W, Doherty M, Sun C, Yang T, Li J, Wu J, Zhang M, Wang Y, Xie D, Wang T, Wang N, Huang X, Li C, Gonzalez FJ, Wei J, Xie C, Zeng C, Lei G. Osteoarthritis treatment via the GLP-1-mediated gut-joint axis targets intestinal FXR signaling. Science 2025; 388:eadt0548. [PMID: 40179178 DOI: 10.1126/science.adt0548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/27/2025] [Indexed: 04/05/2025]
Abstract
Whether a gut-joint axis exists to regulate osteoarthritis is unknown. In two independent cohorts, we identified altered microbial bile acid metabolism with reduced glycoursodeoxycholic acid (GUDCA) in osteoarthritis. Suppressing farnesoid X receptor (FXR)-the receptor of GUDCA-alleviated osteoarthritis through intestine-secreted glucagon-like peptide 1 (GLP-1) in mice. GLP-1 receptor blockade attenuated these effects, whereas GLP-1 receptor activation mitigated osteoarthritis. Osteoarthritis patients exhibited a lower relative abundance of Clostridium bolteae, which promoted the formation of ursodeoxycholic acid (UDCA), a precursor of GUDCA. Treatment with C. bolteae and Food and Drug Administration-approved UDCA alleviated osteoarthritis through the gut FXR-joint GLP-1 axis in mice. UDCA use was associated with lower risk of osteoarthritis-related joint replacement in humans. These findings suggest that orchestrating the gut microbiota-GUDCA-intestinal FXR-GLP-1-joint pathway offers a potential strategy for osteoarthritis treatment.
Collapse
Affiliation(s)
- Yuanheng Yang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Hao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Tingying Jiao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China
| | - Zidan Yang
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Bioinformatics Center, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
| | - Yuqing Zhang
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Weiya Zhang
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- Pain Centre Versus Arthritis UK, Nottingham, UK
| | - Michael Doherty
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- Pain Centre Versus Arthritis UK, Nottingham, UK
| | - Chuying Sun
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tuo Yang
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Jiatian Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Wu
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
| | - Mengjiao Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yilun Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
| | - Dongxing Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
| | - Tingjian Wang
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Huang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Changjun Li
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jie Wei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Bioinformatics Center, Furong Laboratory, Changsha, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
45
|
Sommer F, Bernardes JP, Best L, Sommer N, Hamm J, Messner B, López-Agudelo VA, Fazio A, Marinos G, Kadibalban AS, Ito G, Falk-Paulsen M, Kaleta C, Rosenstiel P. Life-long microbiome rejuvenation improves intestinal barrier function and inflammaging in mice. MICROBIOME 2025; 13:91. [PMID: 40176137 PMCID: PMC11963433 DOI: 10.1186/s40168-025-02089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/10/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Alterations in the composition and function of the intestinal microbiota have been observed in organismal aging across a broad spectrum of animal phyla. Recent findings, which have been derived mostly in simple animal models, have even established a causal relationship between age-related microbial shifts and lifespan, suggesting microbiota-directed interventions as a potential tool to decelerate aging processes. To test whether a life-long microbiome rejuvenation strategy could delay or even prevent aging in non-ruminant mammals, we performed recurrent fecal microbial transfer (FMT) in mice throughout life. Transfer material was either derived from 8-week-old mice (young microbiome, yMB) or from animals of the same age as the recipients (isochronic microbiome, iMB) as control. Motor coordination and strength were analyzed by rotarod and grip strength tests, intestinal barrier function by serum LAL assay, transcriptional responses by single-cell RNA sequencing, and fecal microbial community properties by 16S rRNA gene profiling and metagenomics. RESULTS Colonization with yMB improved coordination and intestinal permeability compared to iMB. yMB encoded fewer pro-inflammatory factors and altered metabolic pathways favoring oxidative phosphorylation. Ecological interactions among bacteria in yMB were more antagonistic than in iMB implying more stable microbiome communities. Single-cell RNA sequencing analysis of intestinal mucosa revealed a salient shift of cellular phenotypes in the yMB group with markedly increased ATP synthesis and mitochondrial pathways as well as a decrease of age-dependent mesenchymal hallmark transcripts in enterocytes and TA cells, but reduced inflammatory signaling in macrophages. CONCLUSIONS Taken together, we demonstrate that life-long and repeated transfer of microbiota material from young mice improved age-related processes including coordinative ability (rotarod), intestinal permeability, and both metabolic and inflammatory profiles mainly of macrophages but also of other immune cells. Video Abstract.
Collapse
Affiliation(s)
- Felix Sommer
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Joana P Bernardes
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Lena Best
- Institute of Experimental Medicine, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Nina Sommer
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Jacob Hamm
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, Göttingen, Germany
| | - Berith Messner
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Víctor A López-Agudelo
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Antonella Fazio
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Georgios Marinos
- Institute of Experimental Medicine, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
- CAU Innovation Gmbh, Christian-Albrechts-University, Kiel, 24118, Germany
| | - A Samer Kadibalban
- Institute of Experimental Medicine, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Go Ito
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, Tokyo, Japan
- The Center for Personalized Medicine for Healthy Aging, Institute of Science Tokyo, Tokyo, Japan
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Christoph Kaleta
- Institute of Experimental Medicine, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany.
| |
Collapse
|
46
|
Sawhney SS, Thänert R, Thänert A, Hall-Moore C, Ndao IM, Mahmud B, Warner BB, Tarr PI, Dantas G. Gut microbiome evolution from infancy to 8 years of age. Nat Med 2025:10.1038/s41591-025-03610-0. [PMID: 40175737 DOI: 10.1038/s41591-025-03610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/24/2025] [Indexed: 04/04/2025]
Abstract
The human gut microbiome is most dynamic in early life. Although sweeping changes in taxonomic architecture are well described, it remains unknown how, and to what extent, individual strains colonize and persist and how selective pressures define their genomic architecture. In this study, we combined shotgun sequencing of 1,203 stool samples from 26 mothers and their twins (52 infants), sampled from childbirth to 8 years after birth, with culture-enhanced, deep short-read and long-read stool sequencing from a subset of 10 twins (20 infants) to define transmission, persistence and evolutionary trajectories of gut species from infancy to middle childhood. We constructed 3,995 strain-resolved metagenome-assembled genomes across 399 taxa, and we found that 27.4% persist within individuals. We identified 726 strains shared within families, with Bacteroidales, Oscillospiraceae and Lachnospiraceae, but not Bifidobacteriaceae, vertically transferred. Lastly, we identified weaning as a critical inflection point that accelerates bacterial mutation rates and separates functional profiles of genes accruing mutations.
Collapse
Affiliation(s)
- Sanjam S Sawhney
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert Thänert
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Anna Thänert
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Carla Hall-Moore
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - I Malick Ndao
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Bejan Mahmud
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Barbara B Warner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Phillip I Tarr
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gautam Dantas
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
47
|
Leech SM, Barrett HL, Dorey ES, Mullins T, Laurie J, Nitert MD. Consensus approach to differential abundance analysis detects few differences in the oral microbiome of pregnant women due to pre-existing type 2 diabetes mellitus. Microb Genom 2025; 11. [PMID: 40232948 DOI: 10.1099/mgen.0.001385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025] Open
Abstract
Oral microbiome dysbiosis has been proposed as a potential contributing factor to rising rates of diabetes in pregnancy, with oral health previously associated with an increased risk of numerous chronic diseases and complications in pregnancy, including gestational diabetes mellitus (GDM). However, whilst most studies examining the relationship between GDM and the oral microbiome identify significant differences, these differences are highly variable between studies. Additionally, no previous research has examined the oral microbiome of women with pre-existing type 2 diabetes mellitus (T2DM), which has greater risks of complications to both mother and baby. In this study, we compared the oral microbiome of 11 pregnant women with pre-existing T2DM with 28 pregnant normoglycaemic controls. We used shotgun metagenomic sequencing to examine buccal swab and saliva rinse samples at two time points between 26 and 38 weeks of gestation. To reduce variation caused by the choice of differential abundance analysis tool, we employed a consensus approach to identify differential taxa and pathways due to diabetes status. Differences were identified at the late time point only. In swab samples, there was increased Flavobacteriaceae, Capnocytophaga, Capnocytophaga gingivalis SGB2479, Capnocytophaga leadbetteri SGB2492 and Neisseria elongata SGB9447 abundance in T2DM as well as increased Shannon diversity and richness. In rinse samples, there was an increased abundance of Haemophilus, Pasteurellaceae, Pasteurellales and Proteobacteria. In contrast to studies of the oral microbiome in T2DM or GDM that use a single differential abundance analysis tool, our consensus approach identified few differences between pregnant women with and without T2DM.
Collapse
Affiliation(s)
- Sophie M Leech
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Helen L Barrett
- Obstetric Medicine, Royal Hospital for Women, Randwick, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Mater Research Institute, The University of Queensland, South Brisbane, QLD, Australia
| | - Emily S Dorey
- Mater Research Institute, The University of Queensland, South Brisbane, QLD, Australia
| | - Thomas Mullins
- Mater Research Institute, The University of Queensland, South Brisbane, QLD, Australia
| | - Josephine Laurie
- Obstetric Medicine, Mater Health, South Brisbane, QLD, Australia
| | - Marloes Dekker Nitert
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
48
|
Özdirik B, Berger H, Tonetti FR, Cabré N, Treichel N, Clavel T, Tacke F, Sigal M, Schnabl B. Faecal Cytolysin is Associated With Worse Survival in Patients With Primary Sclerosing Cholangitis. Liver Int 2025; 45:e16181. [PMID: 40083245 DOI: 10.1111/liv.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 03/16/2025]
Abstract
BACKGROUND AND AIMS Primary sclerosing cholangitis (PSC) is an immune-related cholangiopathy without treatment options beyond liver transplantation. The gut-liver axis, especially the role of gut microbes, has emerged as a crucial pathway contributing to PSC pathogenesis. Recent research has revealed Enterococcus (E.) faecalis and its virulence factor cytolysin to increase mortality risk in patients with alcohol-associated hepatitis. Thus, we studied the role of enterococci, particularly E. faecalis and its virulence factor genes cytolysin and gelatinase, in faecal samples from patients with PSC. METHODS To assess the relevance of Enterococcus species, we performed 16S rRNA gene amplicon analysis in faecal samples from 60 patients with PSC. We validated our findings by qPCR of faecal microbial DNA in an extended cohort of 105 patients with PSC, 104 patients with inflammatory bowel disease (IBD) and 68 healthy subjects. RESULTS High-throughput 16S rRNA amplicon analysis revealed an increased relative abundance of enterococci in PSC patients compared with healthy controls and IBD patients, respectively, (p < 0.0001). PSC patients with high enterococci abundance had a decreased probability of transplant-free survival (p = 0.028). E. faecalis and its virulence factors cytolysin and gelatinase were more abundant in patients with PSC. Higher faecal cytolysin was associated with lower overall survival (p = 0.04), while survival was independent of gelatinase levels. CONCLUSION Our data highlight the association of E. faecalis and faecal cytolysin with lower survival in patients with PSC. These data should prompt further research into the pathogenic role of cytolysin-positive E. faecalis, and to explore its role as a potential therapeutic target.
Collapse
Affiliation(s)
- Burcin Özdirik
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Hilmar Berger
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Fernanda Raya Tonetti
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Noemí Cabré
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Nicole Treichel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Sigal
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
49
|
Vaziri GJ, Caicedo B, Dahrouge N, Ryerson WG, Davenport JM, Stager M, Jones KR, Frost C, Seewagen CL, Rittenhouse TAG, Bolnick DI. Gut microbiomes are largely unchanged when exposed to their amphibian host's latitudinally variable upper thermal limit. Comp Biochem Physiol A Mol Integr Physiol 2025; 302:111816. [PMID: 39855620 DOI: 10.1016/j.cbpa.2025.111816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Climate change will increase the frequency and severity of temperature extremes. Links between host thermal physiology and their gut microbiota suggest that organisms' responses to future climates may be mediated by their microbiomes, raising the question of how the thermal environment influences the microbiome itself. Vertebrate gut microbiomes influence the physiological plasticity of their hosts via effects on immunity, metabolism, and nutrient uptake. The gut microbiota of ectothermic vertebrates in particular are responsive to long-term, sub-lethal gradual increases in environmental temperature. Whether and how the gut microbiota respond to brief exposure to temperatures at the upper limit of host physiological tolerance (CTmax) is poorly understood but could have downstream effects on host fitness. We assayed the CTmax of wood frogs (Lithobates sylvaticus) from 15 populations across a 10° latitudinal gradient. We then characterized the gut microbiota of juveniles at two time points following exposure to CTmax. Frogs from higher latitudes had lower thermal tolerance (lower CTmax) than those from lower latitudes. Unexpectedly, exposure to upper survivable temperature had little to no detectable effect on the frogs' microbiota richness, stability, or composition. Instead, we found a strong effect of time in which frogs kept in recovery conditions for four days had less diverse, but more stable gut microbiota than those that had recovered for only one day, regardless of CTmax exposure. We conclude that while wood frogs from higher latitudes have reduced thermal tolerances than those from lower latitudes, their microbial communities are largely unaffected by brief exposure to high temperatures at the edge of their physiological limits.
Collapse
Affiliation(s)
- Grace J Vaziri
- University of Connecticut, Department of Ecology and Evolutionary Biology, 75 North Eagleville Road, Storrs, CT 06269, United States of America.
| | - Bryanna Caicedo
- University of Connecticut, Department of Ecology and Evolutionary Biology, 75 North Eagleville Road, Storrs, CT 06269, United States of America
| | - Nicole Dahrouge
- University of Connecticut, Department of Natural Resources and the Environment, 1376 Storrs Road, Storrs, CT 06269, United States of America
| | - William G Ryerson
- Cornell University, College of Veterinary Medicine, 602 Tower Rd, Ithaca, NY 14853, United States of America
| | - Jon M Davenport
- Appalachian State University, Department of Biology, 572 Rivers Street, Boone, NC 28608, United States of America
| | - Maria Stager
- University of Massachusetts Amherst, Department of Biology, Amherst, MA 01003, United States of America
| | - Korin R Jones
- University of Texas at Austin, Department of Integrative Biology, 2415 Speedway #C0930, Austin, TX 78712, United States of America
| | - Carlin Frost
- University of Tennessee Institute of Agriculture, School of Natural Resources, 427 Plant Biotechnology Building 2505 E.J. Chapman Drive, Knoxville, TN 37996, United States of America
| | - Chad L Seewagen
- University of Connecticut, Department of Natural Resources and the Environment, 1376 Storrs Road, Storrs, CT 06269, United States of America; Great Hollow Nature Preserve & Ecological Research Center, 225 State Route 37, New Fairfield, CT 06812, United States of America
| | - Tracy A G Rittenhouse
- University of Connecticut, Department of Natural Resources and the Environment, 1376 Storrs Road, Storrs, CT 06269, United States of America
| | - Daniel I Bolnick
- University of Connecticut, Department of Ecology and Evolutionary Biology, 75 North Eagleville Road, Storrs, CT 06269, United States of America
| |
Collapse
|
50
|
Matthews AE, Trevelline BK, Wijeratne AJ, Boves TJ. Picky eaters: Selective microbial diet of avian ectosymbionts. J Anim Ecol 2025; 94:466-481. [PMID: 39538981 DOI: 10.1111/1365-2656.14215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Individual organisms can function as ecosystems inhabited by symbionts. Symbionts may interact with each other in ways that subsequently influence their hosts positively or negatively, although the details of how these interactions operate collectively are usually not well understood. Vane-dwelling feather mites are common ectosymbionts of birds and are proposed to confer benefits to hosts by consuming feather-degrading microbes. However, it is unknown whether these mites exhibit generalist or selective diets, or how their dietary selection could potentially impact their symbiotic functional nature. In this study, we conducted 16S rDNA and ITS1 amplicon sequencing to examine the microbial diet of feather mites. We characterized and compared the diversity and composition of bacteria and fungi in the bodies of mites living on feathers of the Prothonotary Warbler, Protonotaria citrea, to microbial assemblages present on the same feathers. We found less diverse, more compositionally similar microbial assemblages within mites than on feathers. We also found that mites were resource-selective. Based on the identity and known functions of microbes found within and presumably preferred by mites, our results suggest that these mites selectively consume feather-degrading microbes. Therefore, our results support the proposition that mites confer benefits to their hosts. This study provides insight into symbioses operating at multiple biological levels, highlights the ecological and evolutionary importance of the synergistic interactions between species, and greatly expands our understanding of feather mite biology.
Collapse
Affiliation(s)
- Alix E Matthews
- College of Sciences and Mathematics and Molecular Biosciences Program, Arkansas State University, Jonesboro, Arkansas, USA
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
- Department of Biology, Rhodes College, Memphis, Tennessee, USA
- Department of Biological Sciences, University at Buffalo (SUNY), Buffalo, New York, USA
| | - Brian K Trevelline
- Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Asela J Wijeratne
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Than J Boves
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| |
Collapse
|