1
|
Alver CG, Dominguez-Bendala J, Agarwal A. Engineered tools to study endocrine dysfunction of pancreas. BIOPHYSICS REVIEWS 2024; 5:041303. [PMID: 39449867 PMCID: PMC11498943 DOI: 10.1063/5.0220396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/04/2024] [Indexed: 10/26/2024]
Abstract
Pancreas, a vital organ with intricate endocrine and exocrine functions, is central to the regulation of the body's glucose levels and digestive processes. Disruptions in its endocrine functions, primarily regulated by islets of Langerhans, can lead to debilitating diseases such as diabetes mellitus. Murine models of pancreatic dysfunction have contributed significantly to the understanding of insulitis, islet-relevant immunological responses, and the optimization of cell therapies. However, genetic differences between mice and humans have severely limited their clinical translational relevance. Recent advancements in tissue engineering and microfabrication have ushered in a new era of in vitro models that offer a promising solution. This paper reviews the state-of-the-art engineered tools designed to study endocrine dysfunction of the pancreas. Islet on a chip devices that allow precise control of various culture conditions and noninvasive readouts of functional outcomes have led to the generation of physiomimetic niches for primary and stem cell derived islets. Live pancreatic slices are a new experimental tool that could more comprehensively recapitulate the complex cellular interplay between the endocrine and exocrine parts of the pancreas. Although a powerful tool, live pancreatic slices require more complex control over their culture parameters such as local oxygenation and continuous removal of digestive enzymes and cellular waste products for maintaining experimental functionality over long term. The combination of islet-immune and slice on chip strategies can guide the path toward the next generation of pancreatic tissue modeling for better understanding and treatment of endocrine pancreatic dysfunctions.
Collapse
Affiliation(s)
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Ashutosh Agarwal
- Author to whom correspondence should be addressed:. Tel.: +1 305 243-8925
| |
Collapse
|
2
|
Wang L, Wu J, Sramek M, Obayomi SMB, Gao P, Li Y, Matveyenko AV, Wei Z. Heterogeneous enhancer states orchestrate β cell responses to metabolic stress. Nat Commun 2024; 15:9361. [PMID: 39472434 PMCID: PMC11522703 DOI: 10.1038/s41467-024-53717-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Obesity-induced β cell dysfunction contributes to the onset of type 2 diabetes. Nevertheless, elucidating epigenetic mechanisms underlying islet dysfunction at single cell level remains challenging. Here we profile single-nuclei RNA along with enhancer marks H3K4me1 or H3K27ac in islets from lean or obese mice. Our study identifies distinct gene signatures and enhancer states correlating with β cell dysfunction trajectory. Intriguingly, while many metabolic stress-induced genes exhibit concordant changes in both H3K4me1 and H3K27ac at their enhancers, expression changes of specific subsets are solely attributable to either H3K4me1 or H3K27ac dynamics. Remarkably, a subset of H3K4me1+H3K27ac- primed enhancers prevalent in lean β cells and occupied by FoxA2 are largely absent after metabolic stress. Lastly, cell-cell communication analysis identified the nerve growth factor (NGF) as protective paracrine signaling for β cells through repressing ER stress. In summary, our findings define the heterogeneous enhancer responses to metabolic challenges in individual β cells.
Collapse
Affiliation(s)
- Liu Wang
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - Jie Wu
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - Madeline Sramek
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - S M Bukola Obayomi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - Peidong Gao
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Yan Li
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksey V Matveyenko
- Department of Physiology and Biomedical Engineering and Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zong Wei
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Scottsdale, AZ, USA.
- Division of Endocrinology, Mayo Clinic, Scottsdale, AZ, USA.
| |
Collapse
|
3
|
Tambets R, Kolde A, Kolberg P, Love MI, Alasoo K. Extensive co-regulation of neighboring genes complicates the use of eQTLs in target gene prioritization. HGG ADVANCES 2024; 5:100348. [PMID: 39210598 PMCID: PMC11416642 DOI: 10.1016/j.xhgg.2024.100348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Identifying causal genes underlying genome-wide association studies (GWASs) is a fundamental problem in human genetics. Although colocalization with gene expression quantitative trait loci (eQTLs) is often used to prioritize GWAS target genes, systematic benchmarking has been limited due to unavailability of large ground truth datasets. Here, we re-analyzed plasma protein QTL data from 3,301 individuals of the INTERVAL cohort together with 131 eQTL Catalog datasets. Focusing on variants located within or close to the affected protein identified 793 proteins with at least one cis-pQTL where we could assume that the most likely causal gene was the gene coding for the protein. We then benchmarked the ability of cis-eQTLs to recover these causal genes by comparing three Bayesian colocalization methods (coloc.susie, coloc.abf, and CLPP) and five Mendelian randomization (MR) approaches (three varieties of inverse-variance weighted MR, MR-RAPS, and MRLocus). We found that assigning fine-mapped pQTLs to their closest protein coding genes outperformed all colocalization methods regarding both precision (71.9%) and recall (76.9%). Furthermore, the colocalization method with the highest recall (coloc.susie - 46.3%) also had the lowest precision (45.1%). Combining evidence from multiple conditionally distinct colocalizing QTLs with MR increased precision to 81%, but this was accompanied by a large reduction in recall to 7.1%. Furthermore, the choice of the MR method greatly affected performance, with the standard inverse-variance-weighted MR often producing many false positives. Our results highlight that linking GWAS variants to target genes remains challenging with eQTL evidence alone, and prioritizing novel targets requires triangulation of evidence from multiple sources.
Collapse
Affiliation(s)
- Ralf Tambets
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Anastassia Kolde
- Institute of Genomics, University of Tartu, Tartu, Estonia; Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | - Peep Kolberg
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Michael I Love
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kaur Alasoo
- Institute of Computer Science, University of Tartu, Tartu, Estonia.
| |
Collapse
|
4
|
Mummey HM, Elison W, Korgaonkar K, Elgamal RM, Kudtarkar P, Griffin E, Benaglio P, Miller M, Jha A, Fox JEM, McCarthy MI, Preissl S, Gloyn AL, MacDonald PE, Gaulton KJ. Single cell multiome profiling of pancreatic islets reveals physiological changes in cell type-specific regulation associated with diabetes risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.03.606460. [PMID: 39149326 PMCID: PMC11326183 DOI: 10.1101/2024.08.03.606460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Physiological variability in pancreatic cell type gene regulation and the impact on diabetes risk is poorly understood. In this study we mapped gene regulation in pancreatic cell types using single cell multiomic (joint RNA-seq and ATAC-seq) profiling in 28 non-diabetic donors in combination with single cell data from 35 non-diabetic donors in the Human Pancreas Analysis Program. We identified widespread associations with age, sex, BMI, and HbA1c, where gene regulatory responses were highly cell type- and phenotype-specific. In beta cells, donor age associated with hypoxia, apoptosis, unfolded protein response, and external signal-dependent transcriptional regulators, while HbA1c associated with inflammatory responses and gender with chromatin organization. We identified 10.8K loci where genetic variants were QTLs for cis regulatory element (cRE) accessibility, including 20% with lineage- or cell type-specific effects which disrupted distinct transcription factor motifs. Type 2 diabetes and glycemic trait associated variants were enriched in both phenotype- and QTL-associated beta cell cREs, whereas type 1 diabetes showed limited enrichment. Variants at 226 diabetes and glycemic trait loci were QTLs in beta and other cell types, including 40 that were statistically colocalized, and annotating target genes of colocalized QTLs revealed genes with putatively novel roles in disease. Our findings reveal diverse responses of pancreatic cell types to phenotype and genotype in physiology, and identify pathways, networks, and genes through which physiology impacts diabetes risk.
Collapse
Affiliation(s)
- Hannah M Mummey
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla CA
| | - Weston Elison
- Biomedical Sciences Program, University of California San Diego, La Jolla CA, USA
| | - Katha Korgaonkar
- Department of Pediatrics, University of California San Diego, La Jolla CA, USA
| | - Ruth M Elgamal
- Biomedical Sciences Program, University of California San Diego, La Jolla CA, USA
| | - Parul Kudtarkar
- Department of Pediatrics, University of California San Diego, La Jolla CA, USA
| | - Emily Griffin
- Department of Pediatrics, University of California San Diego, La Jolla CA, USA
| | - Paola Benaglio
- Department of Pediatrics, University of California San Diego, La Jolla CA, USA
| | - Michael Miller
- Center for Epigenomics, University of California San Diego, La Jolla CA, USA
| | - Alokkumar Jha
- Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford CA, USA
| | - Jocelyn E Manning Fox
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Mark I McCarthy
- Wellcome Trust Center for Human Genetics, University of Oxford, Oxford, UK*
| | - Sebastian Preissl
- Center for Epigenomics, University of California San Diego, La Jolla CA, USA
- Department of Genetics, Stanford School of Medicine, Stanford University, Stanford CA, USA
| | - Anna L Gloyn
- Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford CA, USA
- Department of Genetics, Stanford School of Medicine, Stanford University, Stanford CA, USA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA, USA
| | - Patrick E MacDonald
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kyle J Gaulton
- Department of Pediatrics, University of California San Diego, La Jolla CA, USA
| |
Collapse
|
5
|
Kolic J, Sun WG, Cen HH, Ewald JD, Rogalski JC, Sasaki S, Sun H, Rajesh V, Xia YH, Moravcova R, Skovsø S, Spigelman AF, Manning Fox JE, Lyon J, Beet L, Xia J, Lynn FC, Gloyn AL, Foster LJ, MacDonald PE, Johnson JD. Proteomic predictors of individualized nutrient-specific insulin secretion in health and disease. Cell Metab 2024; 36:1619-1633.e5. [PMID: 38959864 PMCID: PMC11250105 DOI: 10.1016/j.cmet.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/26/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024]
Abstract
Population-level variation and mechanisms behind insulin secretion in response to carbohydrate, protein, and fat remain uncharacterized. We defined prototypical insulin secretion responses to three macronutrients in islets from 140 cadaveric donors, including those with type 2 diabetes. The majority of donors' islets exhibited the highest insulin response to glucose, moderate response to amino acid, and minimal response to fatty acid. However, 9% of donors' islets had amino acid responses, and 8% had fatty acid responses that were larger than their glucose-stimulated insulin responses. We leveraged this heterogeneity and used multi-omics to identify molecular correlates of nutrient responsiveness, as well as proteins and mRNAs altered in type 2 diabetes. We also examined nutrient-stimulated insulin release from stem cell-derived islets and observed responsiveness to fat but not carbohydrate or protein-potentially a hallmark of immaturity. Understanding the diversity of insulin responses to carbohydrate, protein, and fat lays the groundwork for personalized nutrition.
Collapse
Affiliation(s)
- Jelena Kolic
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| | - WenQing Grace Sun
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Haoning Howard Cen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jessica D Ewald
- Institute of Parasitology, McGill University, Montreal, QC, Canada
| | - Jason C Rogalski
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Shugo Sasaki
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Han Sun
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA, USA
| | - Varsha Rajesh
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA, USA
| | - Yi Han Xia
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Renata Moravcova
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Søs Skovsø
- Valkyrie Life Sciences, Vancouver, BC, Canada
| | - Aliya F Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Jocelyn E Manning Fox
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - James Lyon
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Leanne Beet
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jianguo Xia
- Institute of Parasitology, McGill University, Montreal, QC, Canada
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Anna L Gloyn
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA, USA; Wellcome Center for Human Genetics, University of Oxford, Oxford, UK
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Ewald JD, Lu Y, Ellis CE, Worton J, Kolic J, Sasaki S, Zhang D, dos Santos T, Spigelman AF, Bautista A, Dai XQ, Lyon JG, Smith NP, Wong JM, Rajesh V, Sun H, Sharp SA, Rogalski JC, Moravcova R, Cen HH, Manning Fox JE, Atlas E, Bruin JE, Mulvihill EE, Verchere CB, Foster LJ, Gloyn AL, Johnson JD, Pepper AR, Lynn FC, Xia J, MacDonald PE. HumanIslets: An integrated platform for human islet data access and analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599613. [PMID: 38948734 PMCID: PMC11212983 DOI: 10.1101/2024.06.19.599613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Comprehensive molecular and cellular phenotyping of human islets can enable deep mechanistic insights for diabetes research. We established the Human Islet Data Analysis and Sharing (HI-DAS) consortium to advance goals in accessibility, usability, and integration of data from human islets isolated from donors with and without diabetes at the Alberta Diabetes Institute (ADI) IsletCore. Here we introduce HumanIslets.com, an open resource for the research community. This platform, which presently includes data on 547 human islet donors, allows users to access linked datasets describing molecular profiles, islet function and donor phenotypes, and to perform various statistical and functional analyses at the donor, islet and single-cell levels. As an example of the analytic capacity of this resource we show a dissociation between cell culture effects on transcript and protein expression, and an approach to correct for exocrine contamination found in hand-picked islets. Finally, we provide an example workflow and visualization that highlights links between type 2 diabetes status, SERCA3b Ca2+-ATPase levels at the transcript and protein level, insulin secretion and islet cell phenotypes. HumanIslets.com provides a growing and adaptable set of resources and tools to support the metabolism and diabetes research community.
Collapse
Affiliation(s)
- Jessica D. Ewald
- Institute of Parasitology, McGill University, Montreal, QC
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yao Lu
- Institute of Parasitology, McGill University, Montreal, QC
| | - Cara E. Ellis
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | - Jessica Worton
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Surgery, University of Alberta, Edmonton, AB
| | - Jelena Kolic
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Shugo Sasaki
- Diabetes Research Group, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, School of Biomedical Engineering, University of British Columbia, Vancouver, BC
| | - Dahai Zhang
- Diabetes Research Group, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, School of Biomedical Engineering, University of British Columbia, Vancouver, BC
| | - Theodore dos Santos
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | - Aliya F. Spigelman
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | - Austin Bautista
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
| | - Xiao-Qing Dai
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | - James G. Lyon
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
| | - Nancy P. Smith
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | - Jordan M. Wong
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Surgery, University of Alberta, Edmonton, AB
| | - Varsha Rajesh
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA
| | - Han Sun
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA
| | - Seth A. Sharp
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA
| | - Jason C. Rogalski
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Renata Moravcova
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Haoning H Cen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Jocelyn E. Manning Fox
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | | | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON
| | - Jennifer E. Bruin
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON
| | - Erin E. Mulvihill
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, ON
- University of Ottawa Heart Institute, Ottawa, ON
| | - C. Bruce Verchere
- Department of Surgery, BC Children’s Hospital Research Institute and University of British Columbia, Vancouver, BC
- Department of Pathology and Laboratory Medicine, BC Children’s Hospital Research Institute and University of British Columbia, Vancouver, BC
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Anna L. Gloyn
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Andrew R. Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Surgery, University of Alberta, Edmonton, AB
| | - Francis C. Lynn
- Diabetes Research Group, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, School of Biomedical Engineering, University of British Columbia, Vancouver, BC
| | - Jianguo Xia
- Institute of Parasitology, McGill University, Montreal, QC
| | - Patrick E. MacDonald
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| |
Collapse
|
7
|
Kong S, Cai B, Li X, Zhou Z, Fang X, Yang X, Cai D, Luo X, Guo S, Nie Q. Assessment of selective breeding effects and selection signatures in Qingyuan partridge chicken and its strains. Poult Sci 2024; 103:103626. [PMID: 38513549 PMCID: PMC10966089 DOI: 10.1016/j.psj.2024.103626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/22/2024] [Accepted: 03/02/2024] [Indexed: 03/23/2024] Open
Abstract
Qingyuan partridge chicken (QYM) is a highly regarded native breed in China, highly esteemed for its exceptional breeding characteristics. However, the investigation into the selection signatures and its strains remains largely unexplored. In this study, blood sampling, DNA extracting, and high-depth resequencing were performed in 27 QYMs. Integrating the genomic data of 14 chicken (70 individuals) breeds from other researches, to analyze the genetic structure, selection signatures, and effects of selective breeding within QYM and its 3 strains (QYMA, QYMB, and QYMC). Population structure analysis revealed an independent QYM cluster, which exhibited distinct from other breeds, with each of its 3 strains displaying distinct clustering patterns. Linkage disequilibrium analysis highlighted QYMB's notably slower decay rate, potentially influenced by selection pressure from various production indicators. Examination of selection signatures uncovered genes and genetic mechanisms associated with genomic changes resulting from extensive selective breeding within the QYM and its strains. Intriguingly, diacylglycerol kinase beta (DGKB) and catenin alpha 2 (CTNNA2) were identified as commonly selected genes across the 3 QYM strains, linked to energy metabolism, muscle development, and fat metabolism. Our research validates the substantial impact of selective breeding on QYM and its strains, concurrently identifying genomic regions and signaling pathways associated with their distinctive characters. This research also establishes a fundamental framework for advancing yellow-feathered broiler breeding strategies.
Collapse
Affiliation(s)
- Shaofen Kong
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Bolin Cai
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiaojing Li
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhen Zhou
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiang Fang
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xin Yang
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Danfeng Cai
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xuehui Luo
- Qingyuan Chicken Research Institute, Qingcheng District, Qingyuan City, China
| | - Suyin Guo
- Animal Epidemic Prevention Center, Qingcheng District, Qingyuan City, China
| | - Qinghua Nie
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.
| |
Collapse
|
8
|
Kolic J, Sun WG, Cen HH, Ewald J, Rogalski JC, Sasaki S, Sun H, Rajesh V, Xia YH, Moravcova R, Skovsø S, Spigelman AF, Manning Fox JE, Lyon J, Beet L, Xia J, Lynn FC, Gloyn AL, Foster LJ, MacDonald PE, Johnson JD. Proteomic predictors of individualized nutrient-specific insulin secretion in health and disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.05.24.23290298. [PMID: 38496562 PMCID: PMC10942505 DOI: 10.1101/2023.05.24.23290298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Population level variation and molecular mechanisms behind insulin secretion in response to carbohydrate, protein, and fat remain uncharacterized despite ramifications for personalized nutrition. Here, we define prototypical insulin secretion dynamics in response to the three macronutrients in islets from 140 cadaveric donors, including those diagnosed with type 2 diabetes. While islets from the majority of donors exhibited the expected relative response magnitudes, with glucose being highest, amino acid moderate, and fatty acid small, 9% of islets stimulated with amino acid and 8% of islets stimulated with fatty acids had larger responses compared with high glucose. We leveraged this insulin response heterogeneity and used transcriptomics and proteomics to identify molecular correlates of specific nutrient responsiveness, as well as those proteins and mRNAs altered in type 2 diabetes. We also examine nutrient-responsiveness in stem cell-derived islet clusters and observe that they have dysregulated fuel sensitivity, which is a hallmark of functionally immature cells. Our study now represents the first comparison of dynamic responses to nutrients and multi-omics analysis in human insulin secreting cells. Responses of different people's islets to carbohydrate, protein, and fat lay the groundwork for personalized nutrition. ONE-SENTENCE SUMMARY Deep phenotyping and multi-omics reveal individualized nutrient-specific insulin secretion propensity.
Collapse
|
9
|
Weidemann BJ, Marcheva B, Kobayashi M, Omura C, Newman MV, Kobayashi Y, Waldeck NJ, Perelis M, Lantier L, McGuinness OP, Ramsey KM, Stein RW, Bass J. Repression of latent NF-κB enhancers by PDX1 regulates β cell functional heterogeneity. Cell Metab 2024; 36:90-102.e7. [PMID: 38171340 PMCID: PMC10793877 DOI: 10.1016/j.cmet.2023.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 07/17/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Interactions between lineage-determining and activity-dependent transcription factors determine single-cell identity and function within multicellular tissues through incompletely known mechanisms. By assembling a single-cell atlas of chromatin state within human islets, we identified β cell subtypes governed by either high or low activity of the lineage-determining factor pancreatic duodenal homeobox-1 (PDX1). β cells with reduced PDX1 activity displayed increased chromatin accessibility at latent nuclear factor κB (NF-κB) enhancers. Pdx1 hypomorphic mice exhibited de-repression of NF-κB and impaired glucose tolerance at night. Three-dimensional analyses in tandem with chromatin immunoprecipitation (ChIP) sequencing revealed that PDX1 silences NF-κB at circadian and inflammatory enhancers through long-range chromatin contacts involving SIN3A. Conversely, Bmal1 ablation in β cells disrupted genome-wide PDX1 and NF-κB DNA binding. Finally, antagonizing the interleukin (IL)-1β receptor, an NF-κB target, improved insulin secretion in Pdx1 hypomorphic islets. Our studies reveal functional subtypes of single β cells defined by a gradient in PDX1 activity and identify NF-κB as a target for insulinotropic therapy.
Collapse
Affiliation(s)
- Benjamin J Weidemann
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Biliana Marcheva
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mikoto Kobayashi
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chiaki Omura
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marsha V Newman
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yumiko Kobayashi
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nathan J Waldeck
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mark Perelis
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Louise Lantier
- Vanderbilt-NIH Mouse Metabolic Phenotyping Center, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Owen P McGuinness
- Vanderbilt-NIH Mouse Metabolic Phenotyping Center, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kathryn Moynihan Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Roland W Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
10
|
Du Z, Iyyanki T, Lessard S, Chao M, Asbrand C, Nassar D, Klinger K, de Rinaldis E, Khader S, Chatelain C. Genome-wide association study analysis of disease severity in Acne reveals novel biological insights. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.13.23298473. [PMID: 38014089 PMCID: PMC10680891 DOI: 10.1101/2023.11.13.23298473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Acne vulgaris is a common skin disease that affects >85% of teenage young adults among which >8% develop severe lesions that leaves permanent scars. Genetic heritability studies of acne in twin cohorts have estimated that the heritability for acne is 80%. Previous genome-wide association studies (GWAS) have identified 50 genetic loci associated with increased risk of developing acne when compared to healthy individuals. However only a few studies have investigated genetic association with disease severity. GWAS of disease progression may provide a more effective approach to unveil potential disease modifying therapeutic targets. Here, we performed a multi-ethnic GWAS analysis to capture disease severity in acne patients by using individuals with normal acne as a control. Our cohort consists of a total of 2,956 participants, including 290 severe acne cases and 930 normal acne controls from FinnGen, and 522 cases and 1,214 controls from BioVU. We also performed mendelian randomization (MR), colocalization analyses and transcriptome-wide association study (TWAS) to identify putative causal genes. Lastly, we performed gene-set enrichment analysis using MAGMA to implicate biological pathways that drive disease severity in Acne. We identified two new loci associated with acne severity at the genome-wide significance level, six novel associated genes by MR, colocalization and TWAS analyses, including genes CDC7, SLC7A1, ADAM23, TTLL10, CDK20 and DNAJA4 , and 5 novel pathways by MAGMA analyses. Our study suggests that the etiologies of acne susceptibility and severity have limited overlap, with only 26% of known acne risk loci presenting nominal association with acne severity and none of the novel severity associated genes reported as associated with acne risk in previous GWAS.
Collapse
|
11
|
Nguyen JP, Arthur TD, Fujita K, Salgado BM, Donovan MKR, Matsui H, Kim JH, D'Antonio-Chronowska A, D'Antonio M, Frazer KA. eQTL mapping in fetal-like pancreatic progenitor cells reveals early developmental insights into diabetes risk. Nat Commun 2023; 14:6928. [PMID: 37903777 PMCID: PMC10616100 DOI: 10.1038/s41467-023-42560-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/13/2023] [Indexed: 11/01/2023] Open
Abstract
The impact of genetic regulatory variation active in early pancreatic development on adult pancreatic disease and traits is not well understood. Here, we generate a panel of 107 fetal-like iPSC-derived pancreatic progenitor cells (iPSC-PPCs) from whole genome-sequenced individuals and identify 4065 genes and 4016 isoforms whose expression and/or alternative splicing are affected by regulatory variation. We integrate eQTLs identified in adult islets and whole pancreas samples, which reveal 1805 eQTL associations that are unique to the fetal-like iPSC-PPCs and 1043 eQTLs that exhibit regulatory plasticity across the fetal-like and adult pancreas tissues. Colocalization with GWAS risk loci for pancreatic diseases and traits show that some putative causal regulatory variants are active only in the fetal-like iPSC-PPCs and likely influence disease by modulating expression of disease-associated genes in early development, while others with regulatory plasticity likely exert their effects in both the fetal and adult pancreas by modulating expression of different disease genes in the two developmental stages.
Collapse
Affiliation(s)
- Jennifer P Nguyen
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Timothy D Arthur
- Department of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Kyohei Fujita
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Bianca M Salgado
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Margaret K R Donovan
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hiroko Matsui
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Ji Hyun Kim
- Department of Pediatrics, Dongguk University Ilsan Hospital, Goyang, South Korea
| | | | - Matteo D'Antonio
- Department of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Kelly A Frazer
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA.
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| |
Collapse
|
12
|
Kerimov N, Tambets R, Hayhurst JD, Rahu I, Kolberg P, Raudvere U, Kuzmin I, Chowdhary A, Vija A, Teras HJ, Kanai M, Ulirsch J, Ryten M, Hardy J, Guelfi S, Trabzuni D, Kim-Hellmuth S, Rayner W, Finucane H, Peterson H, Mosaku A, Parkinson H, Alasoo K. eQTL Catalogue 2023: New datasets, X chromosome QTLs, and improved detection and visualisation of transcript-level QTLs. PLoS Genet 2023; 19:e1010932. [PMID: 37721944 PMCID: PMC10538656 DOI: 10.1371/journal.pgen.1010932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/28/2023] [Accepted: 08/22/2023] [Indexed: 09/20/2023] Open
Abstract
The eQTL Catalogue is an open database of uniformly processed human molecular quantitative trait loci (QTLs). We are continuously updating the resource to further increase its utility for interpreting genetic associations with complex traits. Over the past two years, we have increased the number of uniformly processed studies from 21 to 31 and added X chromosome QTLs for 19 compatible studies. We have also implemented Leafcutter to directly identify splice-junction usage QTLs in all RNA sequencing datasets. Finally, to improve the interpretability of transcript-level QTLs, we have developed static QTL coverage plots that visualise the association between the genotype and average RNA sequencing read coverage in the region for all 1.7 million fine mapped associations. To illustrate the utility of these updates to the eQTL Catalogue, we performed colocalisation analysis between vitamin D levels in the UK Biobank and all molecular QTLs in the eQTL Catalogue. Although most GWAS loci colocalised both with eQTLs and transcript-level QTLs, we found that visual inspection could sometimes be used to distinguish primary splicing QTLs from those that appear to be secondary consequences of large-effect gene expression QTLs. While these visually confirmed primary splicing QTLs explain just 6/53 of the colocalising signals, they are significantly less pleiotropic than eQTLs and identify a prioritised causal gene in 4/6 cases.
Collapse
Affiliation(s)
- Nurlan Kerimov
- Institute of Computer Science, University of Tartu, Tartu, Estonia
- Open Targets, South Building, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Ralf Tambets
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - James D. Hayhurst
- Open Targets, South Building, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Ida Rahu
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Peep Kolberg
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Uku Raudvere
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Ivan Kuzmin
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Anshika Chowdhary
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany
| | - Andreas Vija
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Hans J. Teras
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Masahiro Kanai
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jacob Ulirsch
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Mina Ryten
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - John Hardy
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Sebastian Guelfi
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Daniah Trabzuni
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Sarah Kim-Hellmuth
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital LMU Munich, Munich, Germany
| | - William Rayner
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany
| | - Hilary Finucane
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Hedi Peterson
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Abayomi Mosaku
- Open Targets, South Building, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Helen Parkinson
- Open Targets, South Building, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Kaur Alasoo
- Institute of Computer Science, University of Tartu, Tartu, Estonia
- Open Targets, South Building, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
13
|
Lagou V, Jiang L, Ulrich A, Zudina L, González KSG, Balkhiyarova Z, Faggian A, Maina JG, Chen S, Todorov PV, Sharapov S, David A, Marullo L, Mägi R, Rujan RM, Ahlqvist E, Thorleifsson G, Gao Η, Εvangelou Ε, Benyamin B, Scott RA, Isaacs A, Zhao JH, Willems SM, Johnson T, Gieger C, Grallert H, Meisinger C, Müller-Nurasyid M, Strawbridge RJ, Goel A, Rybin D, Albrecht E, Jackson AU, Stringham HM, Corrêa IR, Farber-Eger E, Steinthorsdottir V, Uitterlinden AG, Munroe PB, Brown MJ, Schmidberger J, Holmen O, Thorand B, Hveem K, Wilsgaard T, Mohlke KL, Wang Z, Shmeliov A, den Hoed M, Loos RJF, Kratzer W, Haenle M, Koenig W, Boehm BO, Tan TM, Tomas A, Salem V, Barroso I, Tuomilehto J, Boehnke M, Florez JC, Hamsten A, Watkins H, Njølstad I, Wichmann HE, Caulfield MJ, Khaw KT, van Duijn CM, Hofman A, Wareham NJ, Langenberg C, Whitfield JB, Martin NG, Montgomery G, Scapoli C, Tzoulaki I, Elliott P, Thorsteinsdottir U, Stefansson K, Brittain EL, McCarthy MI, Froguel P, Sexton PM, Wootten D, Groop L, Dupuis J, Meigs JB, Deganutti G, Demirkan A, Pers TH, Reynolds CA, Aulchenko YS, Kaakinen MA, Jones B, Prokopenko I. GWAS of random glucose in 476,326 individuals provide insights into diabetes pathophysiology, complications and treatment stratification. Nat Genet 2023; 55:1448-1461. [PMID: 37679419 PMCID: PMC10484788 DOI: 10.1038/s41588-023-01462-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 06/27/2023] [Indexed: 09/09/2023]
Abstract
Conventional measurements of fasting and postprandial blood glucose levels investigated in genome-wide association studies (GWAS) cannot capture the effects of DNA variability on 'around the clock' glucoregulatory processes. Here we show that GWAS meta-analysis of glucose measurements under nonstandardized conditions (random glucose (RG)) in 476,326 individuals of diverse ancestries and without diabetes enables locus discovery and innovative pathophysiological observations. We discovered 120 RG loci represented by 150 distinct signals, including 13 with sex-dimorphic effects, two cross-ancestry and seven rare frequency signals. Of these, 44 loci are new for glycemic traits. Regulatory, glycosylation and metagenomic annotations highlight ileum and colon tissues, indicating an underappreciated role of the gastrointestinal tract in controlling blood glucose. Functional follow-up and molecular dynamics simulations of lower frequency coding variants in glucagon-like peptide-1 receptor (GLP1R), a type 2 diabetes treatment target, reveal that optimal selection of GLP-1R agonist therapy will benefit from tailored genetic stratification. We also provide evidence from Mendelian randomization that lung function is modulated by blood glucose and that pulmonary dysfunction is a diabetes complication. Our investigation yields new insights into the biology of glucose regulation, diabetes complications and pathways for treatment stratification.
Collapse
Affiliation(s)
- Vasiliki Lagou
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Human Genetics, Wellcome Sanger Institute, Hinxton, UK
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Longda Jiang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Anna Ulrich
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Liudmila Zudina
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Karla Sofia Gutiérrez González
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Molecular Diagnostics, Clinical Laboratory, Clinica Biblica Hospital, San José, Costa Rica
| | - Zhanna Balkhiyarova
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK
- People-Centred Artificial Intelligence Institute, University of Surrey, Guildford, UK
| | - Alessia Faggian
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK
- Laboratory for Artificial Biology, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Jared G Maina
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK
- UMR 8199-EGID, Institut Pasteur de Lille, CNRS, University of Lille, Lille, France
| | - Shiqian Chen
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Petar V Todorov
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Sodbo Sharapov
- Laboratory of Glycogenomics, Institute of Cytology and Genetics SD RAS, Novosibirsk, Russia
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - Alessia David
- Centre for Bioinformatics and System Biology, Department of Life Sciences, Imperial College London, London, UK
| | - Letizia Marullo
- Department of Evolutionary Biology, Genetic Section, University of Ferrara, Ferrara, Italy
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Roxana-Maria Rujan
- Centre for Sports, Exercise and Life Sciences, Coventry University, Conventry, UK
| | - Emma Ahlqvist
- Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | | | - Ηe Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Εvangelos Εvangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Beben Benyamin
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
- Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Robert A Scott
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Aaron Isaacs
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- CARIM School for Cardiovascular Diseases and Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, the Netherlands
- Department of Physiology, Maastricht University, Maastricht, the Netherlands
| | - Jing Hua Zhao
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Sara M Willems
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Toby Johnson
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Christa Meisinger
- Epidemiology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- IBE, Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Rona J Strawbridge
- Cardiovascular Medicine Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
- School of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Anuj Goel
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Denis Rybin
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Eva Albrecht
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Heather M Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Eric Farber-Eger
- Vanderbilt Institute for Clinical and Translational Research and Vanderbilt Translational and Clinical Cardiovascular Research Center, Nashville, TN, USA
| | | | - André G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Morris J Brown
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Julian Schmidberger
- Department of Internal Medicine I, Ulm University Medical Centre, Ulm, Germany
| | - Oddgeir Holmen
- Department of Public Health and General Practice, Norwegian University of Science and Technology, Trondheim, Norway
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Kristian Hveem
- K G Jebsen Centre for Genetic Epdiemiology, Department of Public Health and General Practice, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tom Wilsgaard
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Aleksey Shmeliov
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Marcel den Hoed
- The Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - Ruth J F Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Wolfgang Kratzer
- Department of Internal Medicine I, Ulm University Medical Centre, Ulm, Germany
| | - Mark Haenle
- Department of Internal Medicine I, Ulm University Medical Centre, Ulm, Germany
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Bernhard O Boehm
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore and Department of Endocrinology, Tan Tock Seng Hospital, Singapore City, Singapore
| | - Tricia M Tan
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, London, UK
| | - Victoria Salem
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, UK
| | - Inês Barroso
- Exeter Centre of Excellence for Diabetes Research (EXCEED), University of Exeter Medical School, Exeter, UK
| | - Jaakko Tuomilehto
- Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Diabetes Research Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jose C Florez
- Center for Genomic Medicine and Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Anders Hamsten
- Cardiovascular Medicine Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Hugh Watkins
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Inger Njølstad
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - H-Erich Wichmann
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Mark J Caulfield
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Centre for Medical Systems Biology, Leiden, the Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Netherlands Consortium for Healthy Ageing, the Hague, the Netherlands
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - John B Whitfield
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Grant Montgomery
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Chiara Scapoli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- MRC Centre for Environment and Health, Imperial College London, London, UK
- National Institute for Health Research Imperial College London Biomedical Research Centre, Imperial College London, London, UK
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Evan L Brittain
- Vanderbilt University Medical Center and the Vanderbilt Translational and Clinical Cardiovascular Research Center, Nashville, TN, USA
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Philippe Froguel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- UMR 8199-EGID, Institut Pasteur de Lille, CNRS, University of Lille, Lille, France
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Leif Groop
- Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Finnish Institute for Molecular Medicine (FIMM), Helsinki University, Helsinki, Finland
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - James B Meigs
- Programs in Metabolism and Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Giuseppe Deganutti
- Centre for Sports, Exercise and Life Sciences, Coventry University, Conventry, UK
| | - Ayse Demirkan
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK
- People-Centred Artificial Intelligence Institute, University of Surrey, Guildford, UK
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Christopher A Reynolds
- Centre for Sports, Exercise and Life Sciences, Coventry University, Conventry, UK
- School of Life Sciences, University of Essex, Colchester, UK
| | - Yurii S Aulchenko
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Laboratory of Glycogenomics, Institute of Cytology and Genetics SD RAS, Novosibirsk, Russia
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - Marika A Kaakinen
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK.
- People-Centred Artificial Intelligence Institute, University of Surrey, Guildford, UK.
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK.
| | - Inga Prokopenko
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK.
- People-Centred Artificial Intelligence Institute, University of Surrey, Guildford, UK.
- UMR 8199-EGID, Institut Pasteur de Lille, CNRS, University of Lille, Lille, France.
| |
Collapse
|
14
|
Torres JM, Sun H, Nylander V, Downes DJ, van de Bunt M, McCarthy MI, Hughes JR, Gloyn AL. Inferring causal genes at type 2 diabetes GWAS loci through chromosome interactions in islet cells. Wellcome Open Res 2023; 8:165. [PMID: 37736013 PMCID: PMC10509606 DOI: 10.12688/wellcomeopenres.18653.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 09/23/2023] Open
Abstract
Background: Resolving causal genes for type 2 diabetes at loci implicated by genome-wide association studies (GWAS) requires integrating functional genomic data from relevant cell types. Chromatin features in endocrine cells of the pancreatic islet are particularly informative and recent studies leveraging chromosome conformation capture (3C) with Hi-C based methods have elucidated regulatory mechanisms in human islets. However, these genome-wide approaches are less sensitive and afford lower resolution than methods that target specific loci. Methods: To gauge the extent to which targeted 3C further resolves chromatin-mediated regulatory mechanisms at GWAS loci, we generated interaction profiles at 23 loci using next-generation (NG) capture-C in a human beta cell model (EndoC-βH1) and contrasted these maps with Hi-C maps in EndoC-βH1 cells and human islets and a promoter capture Hi-C map in human islets. Results: We found improvements in assay sensitivity of up to 33-fold and resolved ~3.6X more chromatin interactions. At a subset of 18 loci with 25 co-localised GWAS and eQTL signals, NG Capture-C interactions implicated effector transcripts at five additional genetic signals relative to promoter capture Hi-C through physical contact with gene promoters. Conclusions: High resolution chromatin interaction profiles at selectively targeted loci can complement genome- and promoter-wide maps.
Collapse
Affiliation(s)
- Jason M. Torres
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, England, OX3 7BN, UK
| | - Han Sun
- Department of Pediatrics, Division of Endocrinology and Diabetes, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Vibe Nylander
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, Oxford, England, OX3 7L3, UK
| | - Damien J. Downes
- Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9D2, UK
| | - Martijn van de Bunt
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, England, OX3 7BN, UK
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, Oxford, England, OX3 7L3, UK
- Present address: Cytoki Pharma ApS, Tuborg Boulevard 12, Hellerup, DK-2900, Denmark
| | - Mark I. McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, England, OX3 7BN, UK
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, Oxford, England, OX3 7L3, UK
- Present address: OMNI Human Genetics, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jim R. Hughes
- Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9D2, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9D2, UK
| | - Anna L. Gloyn
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, England, OX3 7BN, UK
- Department of Pediatrics, Division of Endocrinology and Diabetes, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, Oxford, England, OX3 7L3, UK
| |
Collapse
|
15
|
Ray D, Loomis SJ, Venkataraghavan S, Tin A, Yu B, Chatterjee N, Selvin E, Duggal P. Characterizing common and rare variations in non-traditional glycemic biomarkers using multivariate approaches on multi-ancestry ARIC study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.13.23289200. [PMID: 37398180 PMCID: PMC10312851 DOI: 10.1101/2023.06.13.23289200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Glycated hemoglobin, fasting glucose, glycated albumin, and fructosamine are biomarkers that reflect different aspects of the glycemic process. Genetic studies of these glycemic biomarkers can shed light on unknown aspects of type 2 diabetes genetics and biology. While there exists several GWAS of glycated hemoglobin and fasting glucose, very few GWAS have focused on glycated albumin or fructosamine. We performed a multi-phenotype GWAS of glycated albumin and fructosamine from 7,395 White and 2,016 Black participants in the Atherosclerosis Risk in Communities (ARIC) study on the common variants from genotyped/imputed data. We found 2 genome-wide significant loci, one mapping to known type 2 diabetes gene (ARAP1/STARD10, p = 2.8 × 10-8) and another mapping to a novel gene (UGT1A, p = 1.4 × 10-8) using multi-omics gene mapping strategies in diabetes-relevant tissues. We identified additional loci that were ancestry-specific (e.g., PRKCA from African ancestry individuals, p = 1.7 × 10-8) and sex-specific (TEX29 locus in males only, p = 3.0 × 10-8). Further, we implemented multi-phenotype gene-burden tests on whole-exome sequence data from 6,590 White and 2,309 Black ARIC participants. Eleven genes across different rare variant aggregation strategies were exome-wide significant only in multi-ancestry analysis. Four out of 11 genes had notable enrichment of rare predicted loss of function variants in African ancestry participants despite smaller sample size. Overall, 8 out of 15 loci/genes were implicated to influence these biomarkers via glycemic pathways. This study illustrates improved locus discovery and potential effector gene discovery by leveraging joint patterns of related biomarkers across entire allele frequency spectrum in multi-ancestry analyses. Most of the loci/genes we identified have not been previously implicated in studies of type 2 diabetes, and future investigation of the loci/genes potentially acting through glycemic pathways may help us better understand risk of developing type 2 diabetes.
Collapse
Affiliation(s)
- Debashree Ray
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | | | - Sowmya Venkataraghavan
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Adrienne Tin
- School of Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Bing Yu
- Department of Epidemiology, UTHealth School of Public Health, Houston, TX
| | - Nilanjan Chatterjee
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Elizabeth Selvin
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
- Welch Center for Prevention, Epidemiology, & Clinical Research, Johns Hopkins University, Baltimore, MD
| | - Priya Duggal
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
16
|
Kerimov N, Tambets R, Hayhurst JD, Rahu I, Kolberg P, Raudvere U, Kuzmin I, Chowdhary A, Vija A, Teras HJ, Kanai M, Ulirsch J, Ryten M, Hardy J, Guelfi S, Trabzuni D, Kim-Hellmuth S, Rayner W, Finucane H, Peterson H, Mosaku A, Parkinson H, Alasoo K. Systematic visualisation of molecular QTLs reveals variant mechanisms at GWAS loci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535816. [PMID: 37066341 PMCID: PMC10104061 DOI: 10.1101/2023.04.06.535816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Splicing quantitative trait loci (QTLs) have been implicated as a common mechanism underlying complex trait associations. However, utilising splicing QTLs in target discovery and prioritisation has been challenging due to extensive data normalisation which often renders the direction of the genetic effect as well as its magnitude difficult to interpret. This is further complicated by the fact that strong expression QTLs often manifest as weak splicing QTLs and vice versa, making it difficult to uniquely identify the underlying molecular mechanism at each locus. We find that these ambiguities can be mitigated by visualising the association between the genotype and average RNA sequencing read coverage in the region. Here, we generate these QTL coverage plots for 1.7 million molecular QTL associations in the eQTL Catalogue identified with five quantification methods. We illustrate the utility of these QTL coverage plots by performing colocalisation between vitamin D levels in the UK Biobank and all molecular QTLs in the eQTL Catalogue. We find that while visually confirmed splicing QTLs explain just 6/53 of the colocalising signals, they are significantly less pleiotropic than eQTLs and identify a prioritised causal gene in 4/6 cases. All our association summary statistics and QTL coverage plots are freely available at https://www.ebi.ac.uk/eqtl/.
Collapse
Affiliation(s)
- Nurlan Kerimov
- Institute of Computer Science, University of Tartu, Tartu, 51009, Estonia
- Open Targets, South Building, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ralf Tambets
- Institute of Computer Science, University of Tartu, Tartu, 51009, Estonia
| | - James D Hayhurst
- Open Targets, South Building, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ida Rahu
- Institute of Computer Science, University of Tartu, Tartu, 51009, Estonia
| | - Peep Kolberg
- Institute of Computer Science, University of Tartu, Tartu, 51009, Estonia
| | - Uku Raudvere
- Institute of Computer Science, University of Tartu, Tartu, 51009, Estonia
| | - Ivan Kuzmin
- Institute of Computer Science, University of Tartu, Tartu, 51009, Estonia
| | - Anshika Chowdhary
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany
| | - Andreas Vija
- Institute of Computer Science, University of Tartu, Tartu, 51009, Estonia
| | - Hans J Teras
- Institute of Computer Science, University of Tartu, Tartu, 51009, Estonia
| | - Masahiro Kanai
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jacob Ulirsch
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mina Ryten
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London
| | - John Hardy
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London
| | - Sebastian Guelfi
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London
| | - Daniah Trabzuni
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London
| | - Sarah Kim-Hellmuth
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital LMU Munich, Munich, Germany
| | - Will Rayner
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany
| | - Hilary Finucane
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hedi Peterson
- Institute of Computer Science, University of Tartu, Tartu, 51009, Estonia
| | - Abayomi Mosaku
- Open Targets, South Building, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Helen Parkinson
- Open Targets, South Building, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Kaur Alasoo
- Institute of Computer Science, University of Tartu, Tartu, 51009, Estonia
- Open Targets, South Building, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| |
Collapse
|
17
|
Mohammadi-Motlagh HR, Sadeghalvad M, Yavari N, Primavera R, Soltani S, Chetty S, Ganguly A, Regmi S, Fløyel T, Kaur S, Mirza AH, Thakor AS, Pociot F, Yarani R. β Cell and Autophagy: What Do We Know? Biomolecules 2023; 13:biom13040649. [PMID: 37189396 DOI: 10.3390/biom13040649] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Pancreatic β cells are central to glycemic regulation through insulin production. Studies show autophagy as an essential process in β cell function and fate. Autophagy is a catabolic cellular process that regulates cell homeostasis by recycling surplus or damaged cell components. Impaired autophagy results in β cell loss of function and apoptosis and, as a result, diabetes initiation and progress. It has been shown that in response to endoplasmic reticulum stress, inflammation, and high metabolic demands, autophagy affects β cell function, insulin synthesis, and secretion. This review highlights recent evidence regarding how autophagy can affect β cells' fate in the pathogenesis of diabetes. Furthermore, we discuss the role of important intrinsic and extrinsic autophagy modulators, which can lead to β cell failure.
Collapse
Affiliation(s)
- Hamid-Reza Mohammadi-Motlagh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 67155-1616, Iran
| | - Mona Sadeghalvad
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Niloofar Yavari
- Department of Cellular and Molecular Medicine, The Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rosita Primavera
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Setareh Soltani
- Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah 67145-1673, Iran
| | - Shashank Chetty
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Abantika Ganguly
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Shobha Regmi
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Tina Fløyel
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Simranjeet Kaur
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Aashiq H Mirza
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Avnesh S Thakor
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Institute for Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Reza Yarani
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| |
Collapse
|
18
|
Mattis KK, Krentz NAJ, Metzendorf C, Abaitua F, Spigelman AF, Sun H, Ikle JM, Thaman S, Rottner AK, Bautista A, Mazzaferro E, Perez-Alcantara M, Manning Fox JE, Torres JM, Wesolowska-Andersen A, Yu GZ, Mahajan A, Larsson A, MacDonald PE, Davies B, den Hoed M, Gloyn AL. Loss of RREB1 in pancreatic beta cells reduces cellular insulin content and affects endocrine cell gene expression. Diabetologia 2023; 66:674-694. [PMID: 36633628 PMCID: PMC9947029 DOI: 10.1007/s00125-022-05856-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/17/2022] [Indexed: 01/13/2023]
Abstract
AIMS/HYPOTHESIS Genome-wide studies have uncovered multiple independent signals at the RREB1 locus associated with altered type 2 diabetes risk and related glycaemic traits. However, little is known about the function of the zinc finger transcription factor Ras-responsive element binding protein 1 (RREB1) in glucose homeostasis or how changes in its expression and/or function influence diabetes risk. METHODS A zebrafish model lacking rreb1a and rreb1b was used to study the effect of RREB1 loss in vivo. Using transcriptomic and cellular phenotyping of a human beta cell model (EndoC-βH1) and human induced pluripotent stem cell (hiPSC)-derived beta-like cells, we investigated how loss of RREB1 expression and activity affects pancreatic endocrine cell development and function. Ex vivo measurements of human islet function were performed in donor islets from carriers of RREB1 type 2 diabetes risk alleles. RESULTS CRISPR/Cas9-mediated loss of rreb1a and rreb1b function in zebrafish supports an in vivo role for the transcription factor in beta cell mass, beta cell insulin expression and glucose levels. Loss of RREB1 also reduced insulin gene expression and cellular insulin content in EndoC-βH1 cells and impaired insulin secretion under prolonged stimulation. Transcriptomic analysis of RREB1 knockdown and knockout EndoC-βH1 cells supports RREB1 as a novel regulator of genes involved in insulin secretion. In vitro differentiation of RREB1KO/KO hiPSCs revealed dysregulation of pro-endocrine cell genes, including RFX family members, suggesting that RREB1 also regulates genes involved in endocrine cell development. Human donor islets from carriers of type 2 diabetes risk alleles in RREB1 have altered glucose-stimulated insulin secretion ex vivo, consistent with a role for RREB1 in regulating islet cell function. CONCLUSIONS/INTERPRETATION Together, our results indicate that RREB1 regulates beta cell function by transcriptionally regulating the expression of genes involved in beta cell development and function.
Collapse
Affiliation(s)
- Katia K Mattis
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nicole A J Krentz
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Christoph Metzendorf
- Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - Fernando Abaitua
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Aliya F Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Han Sun
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Jennifer M Ikle
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Swaraj Thaman
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Antje K Rottner
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Austin Bautista
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Eugenia Mazzaferro
- Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | | | - Jocelyn E Manning Fox
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Jason M Torres
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | - Grace Z Yu
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Marcel den Hoed
- Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA.
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK.
| |
Collapse
|
19
|
Taylor HJ, Hung YH, Narisu N, Erdos MR, Kanke M, Yan T, Grenko CM, Swift AJ, Bonnycastle LL, Sethupathy P, Collins FS, Taylor DL. Human pancreatic islet microRNAs implicated in diabetes and related traits by large-scale genetic analysis. Proc Natl Acad Sci U S A 2023; 120:e2206797120. [PMID: 36757889 PMCID: PMC9963967 DOI: 10.1073/pnas.2206797120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 01/11/2023] [Indexed: 02/10/2023] Open
Abstract
Genetic studies have identified ≥240 loci associated with the risk of type 2 diabetes (T2D), yet most of these loci lie in non-coding regions, masking the underlying molecular mechanisms. Recent studies investigating mRNA expression in human pancreatic islets have yielded important insights into the molecular drivers of normal islet function and T2D pathophysiology. However, similar studies investigating microRNA (miRNA) expression remain limited. Here, we present data from 63 individuals, the largest sequencing-based analysis of miRNA expression in human islets to date. We characterized the genetic regulation of miRNA expression by decomposing the expression of highly heritable miRNAs into cis- and trans-acting genetic components and mapping cis-acting loci associated with miRNA expression [miRNA-expression quantitative trait loci (eQTLs)]. We found i) 84 heritable miRNAs, primarily regulated by trans-acting genetic effects, and ii) 5 miRNA-eQTLs. We also used several different strategies to identify T2D-associated miRNAs. First, we colocalized miRNA-eQTLs with genetic loci associated with T2D and multiple glycemic traits, identifying one miRNA, miR-1908, that shares genetic signals for blood glucose and glycated hemoglobin (HbA1c). Next, we intersected miRNA seed regions and predicted target sites with credible set SNPs associated with T2D and glycemic traits and found 32 miRNAs that may have altered binding and function due to disrupted seed regions. Finally, we performed differential expression analysis and identified 14 miRNAs associated with T2D status-including miR-187-3p, miR-21-5p, miR-668, and miR-199b-5p-and 4 miRNAs associated with a polygenic score for HbA1c levels-miR-216a, miR-25, miR-30a-3p, and miR-30a-5p.
Collapse
Affiliation(s)
- Henry J. Taylor
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, CambridgeCB2 0BB, UK
- Heart and Lung Research Institute, University of Cambridge, CambridgeCB2 0BB, UK
| | - Yu-Han Hung
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY14853
| | - Narisu Narisu
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Michael R. Erdos
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Matthew Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY14853
| | - Tingfen Yan
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Caleb M. Grenko
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Amy J. Swift
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Lori L. Bonnycastle
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY14853
| | - Francis S. Collins
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - D. Leland Taylor
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| |
Collapse
|
20
|
Rottner AK, Ye Y, Navarro-Guerrero E, Rajesh V, Pollner A, Bevacqua RJ, Yang J, Spigelman AF, Baronio R, Bautista A, Thomsen SK, Lyon J, Nawaz S, Smith N, Wesolowska-Andersen A, Fox JEM, Sun H, Kim SK, Ebner D, MacDonald PE, Gloyn AL. A genome-wide CRISPR screen identifies CALCOCO2 as a regulator of beta cell function influencing type 2 diabetes risk. Nat Genet 2023; 55:54-65. [PMID: 36543916 PMCID: PMC9839450 DOI: 10.1038/s41588-022-01261-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
Identification of the genes and processes mediating genetic association signals for complex diseases represents a major challenge. As many of the genetic signals for type 2 diabetes (T2D) exert their effects through pancreatic islet-cell dysfunction, we performed a genome-wide pooled CRISPR loss-of-function screen in a human pancreatic beta cell line. We assessed the regulation of insulin content as a disease-relevant readout of beta cell function and identified 580 genes influencing this phenotype. Integration with genetic and genomic data provided experimental support for 20 candidate T2D effector transcripts including the autophagy receptor CALCOCO2. Loss of CALCOCO2 was associated with distorted mitochondria, less proinsulin-containing immature granules and accumulation of autophagosomes upon inhibition of late-stage autophagy. Carriers of T2D-associated variants at the CALCOCO2 locus further displayed altered insulin secretion. Our study highlights how cellular screens can augment existing multi-omic efforts to support mechanistic understanding and provide evidence for causal effects at genome-wide association studies loci.
Collapse
Affiliation(s)
- Antje K Rottner
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Yingying Ye
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Elena Navarro-Guerrero
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Varsha Rajesh
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Alina Pollner
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Romina J Bevacqua
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Centre, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Jing Yang
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Aliya F Spigelman
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Roberta Baronio
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Austin Bautista
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Soren K Thomsen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - James Lyon
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Sameena Nawaz
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nancy Smith
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | - Jocelyn E Manning Fox
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Han Sun
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Centre, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Daniel Ebner
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford University, Stanford, CA, USA.
- Stanford Diabetes Research Centre, Stanford School of Medicine, Stanford University, Stanford, CA, USA.
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK.
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
21
|
Alghamdi TA, Krentz NA, Smith N, Spigelman AF, Rajesh V, Jha A, Ferdaoussi M, Suzuki K, Yang J, Manning Fox JE, Sun H, Sun Z, Gloyn AL, MacDonald PE. Zmiz1 is required for mature β-cell function and mass expansion upon high fat feeding. Mol Metab 2022; 66:101621. [PMID: 36307047 PMCID: PMC9643564 DOI: 10.1016/j.molmet.2022.101621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Identifying the transcripts which mediate genetic association signals for type 2 diabetes (T2D) is critical to understand disease mechanisms. Studies in pancreatic islets support the transcription factor ZMIZ1 as a transcript underlying a T2D GWAS signal, but how it influences T2D risk is unknown. METHODS β-Cell-specific Zmiz1 knockout (Zmiz1βKO) mice were generated and phenotypically characterised. Glucose homeostasis was assessed in Zmiz1βKO mice and their control littermates on chow diet (CD) and high fat diet (HFD). Islet morphology and function were examined by immunohistochemistry and in vitro islet function was assessed by dynamic insulin secretion assay. Transcript and protein expression were assessed by RNA sequencing and Western blotting. In islets isolated from genotyped human donors, we assessed glucose-dependent insulin secretion and islet insulin content by static incubation assay. RESULTS Male and female Zmiz1βKO mice were glucose intolerant with impaired insulin secretion, compared with control littermates. Transcriptomic profiling of Zmiz1βKO islets identified over 500 differentially expressed genes including those involved in β-cell function and maturity, which we confirmed at the protein level. Upon HFD, Zmiz1βKO mice fail to expand β-cell mass and become severely diabetic. Human islets from carriers of the ZMIZ1-linked T2D-risk alleles have reduced islet insulin content and glucose-stimulated insulin secretion. CONCLUSIONS β-Cell Zmiz1 is required for normal glucose homeostasis. Genetic variation at the ZMIZ1 locus may influence T2D-risk by reducing islet mass expansion upon metabolic stress and the ability to maintain a mature β-cell state.
Collapse
Affiliation(s)
- Tamadher A. Alghamdi
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G2R3, Canada
| | - Nicole A.J. Krentz
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Nancy Smith
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G2R3, Canada
| | - Aliya F. Spigelman
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G2R3, Canada
| | - Varsha Rajesh
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alokkumar Jha
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Mourad Ferdaoussi
- Department of Pediatrics, University of Alberta, Edmonton AB, T6G2R3, Canada
| | - Kunimasa Suzuki
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G2R3, Canada
| | - Jing Yang
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jocelyn E. Manning Fox
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G2R3, Canada
| | - Han Sun
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Zijie Sun
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Anna L. Gloyn
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA,Stanford Diabetes Research Centre, Stanford University, Stanford, CA, USA,Oxford Centre for Diabetes Endocrinology & Metabolism, Radcliffe Department of Medicine, University of Oxford, UK,Corresponding author. Center for Academic Medicine, Division of Endocrinology & Diabetes, Department of Pediatrics, 453 Quarry Road, Palo Alto CA, 94304, USA. http://www.bcell.org
| | - Patrick E. MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G2R3, Canada,Corresponding author. Alberta Diabetes Institute, LKS Centre, Rm. 6-126, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
22
|
Atla G, Bonàs-Guarch S, Cuenca-Ardura M, Beucher A, Crouch DJM, Garcia-Hurtado J, Moran I, Irimia M, Prasad RB, Gloyn AL, Marselli L, Suleiman M, Berney T, de Koning EJP, Kerr-Conte J, Pattou F, Todd JA, Piemonti L, Ferrer J. Genetic regulation of RNA splicing in human pancreatic islets. Genome Biol 2022; 23:196. [PMID: 36109769 PMCID: PMC9479353 DOI: 10.1186/s13059-022-02757-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 08/23/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Non-coding genetic variants that influence gene transcription in pancreatic islets play a major role in the susceptibility to type 2 diabetes (T2D), and likely also contribute to type 1 diabetes (T1D) risk. For many loci, however, the mechanisms through which non-coding variants influence diabetes susceptibility are unknown. RESULTS We examine splicing QTLs (sQTLs) in pancreatic islets from 399 human donors and observe that common genetic variation has a widespread influence on the splicing of genes with established roles in islet biology and diabetes. In parallel, we profile expression QTLs (eQTLs) and use transcriptome-wide association as well as genetic co-localization studies to assign islet sQTLs or eQTLs to T2D and T1D susceptibility signals, many of which lack candidate effector genes. This analysis reveals biologically plausible mechanisms, including the association of T2D with an sQTL that creates a nonsense isoform in ERO1B, a regulator of ER-stress and proinsulin biosynthesis. The expanded list of T2D risk effector genes reveals overrepresented pathways, including regulators of G-protein-mediated cAMP production. The analysis of sQTLs also reveals candidate effector genes for T1D susceptibility such as DCLRE1B, a senescence regulator, and lncRNA MEG3. CONCLUSIONS These data expose widespread effects of common genetic variants on RNA splicing in pancreatic islets. The results support a role for splicing variation in diabetes susceptibility, and offer a new set of genetic targets with potential therapeutic benefit.
Collapse
Affiliation(s)
- Goutham Atla
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en red Diabetes y enfermedades metabólicas asociadas (CIBERDEM), Barcelona, Spain
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Silvia Bonàs-Guarch
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en red Diabetes y enfermedades metabólicas asociadas (CIBERDEM), Barcelona, Spain.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Mirabai Cuenca-Ardura
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en red Diabetes y enfermedades metabólicas asociadas (CIBERDEM), Barcelona, Spain
| | - Anthony Beucher
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en red Diabetes y enfermedades metabólicas asociadas (CIBERDEM), Barcelona, Spain
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Daniel J M Crouch
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Javier Garcia-Hurtado
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en red Diabetes y enfermedades metabólicas asociadas (CIBERDEM), Barcelona, Spain
| | - Ignasi Moran
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Present Address: Life Sciences Department, Barcelona Supercomputing Center (BSC), 08034, Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Rashmi B Prasad
- Lund University Diabetes Centre, Clinical Research Center, Malmö, Sweden
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA, USA
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, AOUP Cisanello University Hospital, University of Pisa, Pisa, Italy
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, AOUP Cisanello University Hospital, University of Pisa, Pisa, Italy
| | - Thierry Berney
- Cell Isolation and Transplantation Center, University of Geneva, Geneva, Switzerland
| | - Eelco J P de Koning
- Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Hubrecht Institute/KNAW, Utrecht, the Netherlands
| | - Julie Kerr-Conte
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Lille (CHU Lille), Institute Pasteur Lille, U1190 -European Genomic Institute for Diabetes (EGID), F59000, Lille, France
| | - Francois Pattou
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Lille (CHU Lille), Institute Pasteur Lille, U1190 -European Genomic Institute for Diabetes (EGID), F59000, Lille, France
| | - John A Todd
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele and Università Vita-Salute San Raffaele, Milan, Italy
| | - Jorge Ferrer
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en red Diabetes y enfermedades metabólicas asociadas (CIBERDEM), Barcelona, Spain.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
23
|
Asplund O, Storm P, Chandra V, Hatem G, Ottosson-Laakso E, Mansour-Aly D, Krus U, Ibrahim H, Ahlqvist E, Tuomi T, Renström E, Korsgren O, Wierup N, Ibberson M, Solimena M, Marchetti P, Wollheim C, Artner I, Mulder H, Hansson O, Otonkoski T, Groop L, Prasad RB. Islet Gene View-a tool to facilitate islet research. Life Sci Alliance 2022; 5:e202201376. [PMID: 35948367 PMCID: PMC9366203 DOI: 10.26508/lsa.202201376] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023] Open
Abstract
Characterization of gene expression in pancreatic islets and its alteration in type 2 diabetes (T2D) are vital in understanding islet function and T2D pathogenesis. We leveraged RNA sequencing and genome-wide genotyping in islets from 188 donors to create the Islet Gene View (IGW) platform to make this information easily accessible to the scientific community. Expression data were related to islet phenotypes, diabetes status, other islet-expressed genes, islet hormone-encoding genes and for expression in insulin target tissues. The IGW web application produces output graphs for a particular gene of interest. In IGW, 284 differentially expressed genes (DEGs) were identified in T2D donor islets compared with controls. Forty percent of DEGs showed cell-type enrichment and a large proportion significantly co-expressed with islet hormone-encoding genes; glucagon (<i>GCG</i>, 56%), amylin (<i>IAPP</i>, 52%), insulin (<i>INS</i>, 44%), and somatostatin (<i>SST</i>, 24%). Inhibition of two DEGs, <i>UNC5D</i> and <i>SERPINE2</i>, impaired glucose-stimulated insulin secretion and impacted cell survival in a human β-cell model. The exploratory use of IGW could help designing more comprehensive functional follow-up studies and serve to identify therapeutic targets in T2D.
Collapse
Affiliation(s)
- Olof Asplund
- Department of Clinical Sciences, Clinical Research Centre, Lund University, Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund, Sweden
| | - Petter Storm
- Department of Clinical Sciences, Clinical Research Centre, Lund University, Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund, Sweden
- Department of Experimental Medical Science, Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund, Sweden
| | - Vikash Chandra
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Gad Hatem
- Department of Clinical Sciences, Clinical Research Centre, Lund University, Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund, Sweden
| | - Emilia Ottosson-Laakso
- Department of Clinical Sciences, Clinical Research Centre, Lund University, Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund, Sweden
| | - Dina Mansour-Aly
- Department of Clinical Sciences, Clinical Research Centre, Lund University, Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund, Sweden
| | - Ulrika Krus
- Department of Clinical Sciences, Clinical Research Centre, Lund University, Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund, Sweden
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Emma Ahlqvist
- Department of Clinical Sciences, Clinical Research Centre, Lund University, Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund, Sweden
| | - Tiinamaija Tuomi
- Department of Clinical Sciences, Clinical Research Centre, Lund University, Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund, Sweden
- Department of Endocrinology, Abdominal Centre, Helsinki University Hospital, Folkhalsan Research Center, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Erik Renström
- Department of Clinical Sciences, Clinical Research Centre, Lund University, Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Nils Wierup
- Department of Clinical Sciences, Clinical Research Centre, Lund University, Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund, Sweden
| | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Michele Solimena
- Paul Langerhans Institute Dresden of the Helmholtz Center, Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, (MPI-CBG), Dresden, Germany
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Cisanello, University Hospital, University of Pisa, Pisa, Italy
| | - Claes Wollheim
- Department of Clinical Sciences, Clinical Research Centre, Lund University, Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund, Sweden
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Isabella Artner
- Department of Clinical Sciences, Clinical Research Centre, Lund University, Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund, Sweden
| | - Hindrik Mulder
- Department of Clinical Sciences, Clinical Research Centre, Lund University, Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund, Sweden
| | - Ola Hansson
- Department of Clinical Sciences, Clinical Research Centre, Lund University, Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund, Sweden
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children's Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Leif Groop
- Department of Clinical Sciences, Clinical Research Centre, Lund University, Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund, Sweden
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Rashmi B Prasad
- Department of Clinical Sciences, Clinical Research Centre, Lund University, Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund, Sweden
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Human Tissue Laboratory at Lund University Diabetes Centre, Lund, Sweden
| |
Collapse
|
24
|
Mahajan A, Spracklen CN, Zhang W, Ng MCY, Petty LE, Kitajima H, Yu GZ, Rüeger S, Speidel L, Kim YJ, Horikoshi M, Mercader JM, Taliun D, Moon S, Kwak SH, Robertson NR, Rayner NW, Loh M, Kim BJ, Chiou J, Miguel-Escalada I, Della Briotta Parolo P, Lin K, Bragg F, Preuss MH, Takeuchi F, Nano J, Guo X, Lamri A, Nakatochi M, Scott RA, Lee JJ, Huerta-Chagoya A, Graff M, Chai JF, Parra EJ, Yao J, Bielak LF, Tabara Y, Hai Y, Steinthorsdottir V, Cook JP, Kals M, Grarup N, Schmidt EM, Pan I, Sofer T, Wuttke M, Sarnowski C, Gieger C, Nousome D, Trompet S, Long J, Sun M, Tong L, Chen WM, Ahmad M, Noordam R, Lim VJY, Tam CHT, Joo YY, Chen CH, Raffield LM, Lecoeur C, Prins BP, Nicolas A, Yanek LR, Chen G, Jensen RA, Tajuddin S, Kabagambe EK, An P, Xiang AH, Choi HS, Cade BE, Tan J, Flanagan J, Abaitua F, Adair LS, Adeyemo A, Aguilar-Salinas CA, Akiyama M, Anand SS, Bertoni A, Bian Z, Bork-Jensen J, Brandslund I, Brody JA, Brummett CM, Buchanan TA, Canouil M, Chan JCN, Chang LC, Chee ML, Chen J, Chen SH, Chen YT, Chen Z, Chuang LM, Cushman M, Das SK, de Silva HJ, Dedoussis G, Dimitrov L, Doumatey AP, Du S, Duan Q, Eckardt KU, Emery LS, Evans DS, Evans MK, Fischer K, Floyd JS, Ford I, Fornage M, Franco OH, Frayling TM, Freedman BI, Fuchsberger C, Genter P, Gerstein HC, Giedraitis V, González-Villalpando C, González-Villalpando ME, Goodarzi MO, Gordon-Larsen P, Gorkin D, Gross M, Guo Y, Hackinger S, Han S, Hattersley AT, Herder C, Howard AG, Hsueh W, Huang M, Huang W, Hung YJ, Hwang MY, Hwu CM, Ichihara S, Ikram MA, Ingelsson M, Islam MT, Isono M, Jang HM, Jasmine F, Jiang G, Jonas JB, Jørgensen ME, Jørgensen T, Kamatani Y, Kandeel FR, Kasturiratne A, Katsuya T, Kaur V, Kawaguchi T, Keaton JM, Kho AN, Khor CC, Kibriya MG, Kim DH, Kohara K, Kriebel J, Kronenberg F, Kuusisto J, Läll K, Lange LA, Lee MS, Lee NR, Leong A, Li L, Li Y, Li-Gao R, Ligthart S, Lindgren CM, Linneberg A, Liu CT, Liu J, Locke AE, Louie T, Luan J, Luk AO, Luo X, Lv J, Lyssenko V, Mamakou V, Mani KR, Meitinger T, Metspalu A, Morris AD, Nadkarni GN, Nadler JL, Nalls MA, Nayak U, Nongmaithem SS, Ntalla I, Okada Y, Orozco L, Patel SR, Pereira MA, Peters A, Pirie FJ, Porneala B, Prasad G, Preissl S, Rasmussen-Torvik LJ, Reiner AP, Roden M, Rohde R, Roll K, Sabanayagam C, Sander M, Sandow K, Sattar N, Schönherr S, Schurmann C, Shahriar M, Shi J, Shin DM, Shriner D, Smith JA, So WY, Stančáková A, Stilp AM, Strauch K, Suzuki K, Takahashi A, Taylor KD, Thorand B, Thorleifsson G, Thorsteinsdottir U, Tomlinson B, Torres JM, Tsai FJ, Tuomilehto J, Tusie-Luna T, Udler MS, Valladares-Salgado A, van Dam RM, van Klinken JB, Varma R, Vujkovic M, Wacher-Rodarte N, Wheeler E, Whitsel EA, Wickremasinghe AR, van Dijk KW, Witte DR, Yajnik CS, Yamamoto K, Yamauchi T, Yengo L, Yoon K, Yu C, Yuan JM, Yusuf S, Zhang L, Zheng W, Raffel LJ, Igase M, Ipp E, Redline S, Cho YS, Lind L, Province MA, Hanis CL, Peyser PA, Ingelsson E, Zonderman AB, Psaty BM, Wang YX, Rotimi CN, Becker DM, Matsuda F, Liu Y, Zeggini E, Yokota M, Rich SS, Kooperberg C, Pankow JS, Engert JC, Chen YDI, Froguel P, Wilson JG, Sheu WHH, Kardia SLR, Wu JY, Hayes MG, Ma RCW, Wong TY, Groop L, Mook-Kanamori DO, Chandak GR, Collins FS, Bharadwaj D, Paré G, Sale MM, Ahsan H, Motala AA, Shu XO, Park KS, Jukema JW, Cruz M, McKean-Cowdin R, Grallert H, Cheng CY, Bottinger EP, Dehghan A, Tai ES, Dupuis J, Kato N, Laakso M, Köttgen A, Koh WP, Palmer CNA, Liu S, Abecasis G, Kooner JS, Loos RJF, North KE, Haiman CA, Florez JC, Saleheen D, Hansen T, Pedersen O, Mägi R, Langenberg C, Wareham NJ, Maeda S, Kadowaki T, Lee J, Millwood IY, Walters RG, Stefansson K, Myers SR, Ferrer J, Gaulton KJ, Meigs JB, Mohlke KL, Gloyn AL, Bowden DW, Below JE, Chambers JC, Sim X, Boehnke M, Rotter JI, McCarthy MI, Morris AP. Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nat Genet 2022; 54:560-572. [PMID: 35551307 PMCID: PMC9179018 DOI: 10.1038/s41588-022-01058-3] [Citation(s) in RCA: 282] [Impact Index Per Article: 141.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/23/2022] [Indexed: 02/02/2023]
Abstract
We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 × 10-9), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background.
Collapse
Affiliation(s)
- Anubha Mahajan
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Genentech, South San Francisco, CA, USA.
| | - Cassandra N Spracklen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology and Biostatistics, University of Massachusetts Amherst, Amherst, MA, USA
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, London, UK
| | - Maggie C Y Ng
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lauren E Petty
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hidetoshi Kitajima
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai, Japan
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Cancer Center, Tohoku University Hospital, Tohoku University, Sendai, Japan
| | - Grace Z Yu
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sina Rüeger
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Leo Speidel
- Genetics Institute, University College London, London, UK
- Francis Crick Institute, London, UK
| | - Young Jin Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Republic of Korea
| | - Momoko Horikoshi
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Josep M Mercader
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Daniel Taliun
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Sanghoon Moon
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Republic of Korea
| | - Soo-Heon Kwak
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Neil R Robertson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nigel W Rayner
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Marie Loh
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A*STAR) and National University of Singapore (NUS), Singapore, Singapore
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Republic of Korea
| | - Joshua Chiou
- Biomedical Sciences Graduate Studies Program, University of California San Diego, La Jolla, CA, USA
- Internal Medicine Research Unit, Pfizer Worldwide Research, Cambridge, MA, USA
| | - Irene Miguel-Escalada
- Regulatory Genomics and Diabetes, Centre for Genomic Regulation, the Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Madrid, Spain
| | | | - Kuang Lin
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Fiona Bragg
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Jana Nano
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, the Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Amel Lamri
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Robert A Scott
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Jung-Jin Lee
- Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Alicia Huerta-Chagoya
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Departamento de Medicina Genómica y Toxicologí, a AmbientalInstituto de Investigaciones Biomédicas, UNAM, Ciudad de Mexico, Mexico, Mexico
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jin-Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Esteban J Parra
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, Ontario, Canada
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, the Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yang Hai
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, the Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - James P Cook
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Mart Kals
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ellen M Schmidt
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ian Pan
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Tamar Sofer
- Department of Biostatistics, Harvard University, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard University, Boston, MA, USA
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Department of Data Driven Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Chloe Sarnowski
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Human Genetics, and Environmental Sciences, the University of Texas Health Science Center at Houston, School of Public Health, Houston, TX, USA
| | - Christian Gieger
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Darryl Nousome
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Meng Sun
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lin Tong
- Institute for Population and Precision Health, the University of Chicago, Chicago, IL, USA
| | - Wei-Min Chen
- Department of Public Health Sciences and Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Meraj Ahmad
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - Raymond Noordam
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Victor J Y Lim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Claudia H T Tam
- Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Yoonjung Yoonie Joo
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Health and Biomedical Informatics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Institute of Data Science, Korea University, Seoul, South Korea
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cécile Lecoeur
- Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
| | - Bram Peter Prins
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Aude Nicolas
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guanjie Chen
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Richard A Jensen
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Salman Tajuddin
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Edmond K Kabagambe
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Academics, Ochsner Health, New Orleans, LA, USA
| | - Ping An
- Division of Statistical Genomics, Washington University School of Medicine, St Louis, MO, USA
| | - Anny H Xiang
- Department of Research and Evaluation, Division of Biostatistics Research, Kaiser Permanente of Southern California, Pasadena, CA, USA
| | - Hyeok Sun Choi
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Brian E Cade
- Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Jingyi Tan
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, the Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jack Flanagan
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Fernando Abaitua
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Vertex Pharmaceuticals Ltd, Oxford, UK
| | - Linda S Adair
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adebowale Adeyemo
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carlos A Aguilar-Salinas
- Unidad de Investigación en Enfermedades Metabólicas and Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Masato Akiyama
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sonia S Anand
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Alain Bertoni
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Zheng Bian
- Chinese Academy of Medical Sciences, Beijing, China
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivan Brandslund
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Biochemistry, Vejle Hospital, Vejle, Denmark
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Chad M Brummett
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Thomas A Buchanan
- Department of Medicine, Division of Endocrinology and Diabetes, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Mickaël Canouil
- Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
| | - Juliana C N Chan
- Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, the Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, the Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Li-Ching Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Miao-Li Chee
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Ji Chen
- Wellcome Sanger Institute, Hinxton, UK
- Exeter Centre of Excellence in Diabetes (ExCEeD), Exeter Medical School, University of Exeter, Exeter, UK
| | - Shyh-Huei Chen
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Lee-Ming Chuang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Mary Cushman
- Department of Medicine, University of Vermont, Colchester, VT, USA
| | - Swapan K Das
- Section on Endocrinology and Metabolism, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - H Janaka de Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - George Dedoussis
- Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | - Latchezar Dimitrov
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ayo P Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shufa Du
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qing Duan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Leslie S Emery
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Daniel S Evans
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Krista Fischer
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - James S Floyd
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ian Ford
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
| | - Myriam Fornage
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Barry I Freedman
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christian Fuchsberger
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Pauline Genter
- Department of Medicine, Division of Endocrinology and Metabolism, Lundquist Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Hertzel C Gerstein
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Clicerio González-Villalpando
- Centro de Estudios en Diabetes, Unidad de Investigacion en Diabetes y Riesgo Cardiovascular, Centro de Investigacion en Salud Poblacional, Instituto Nacional de Salud Publica, Mexico City, Mexico
| | - Maria Elena González-Villalpando
- Centro de Estudios en Diabetes, Unidad de Investigacion en Diabetes y Riesgo Cardiovascular, Centro de Investigacion en Salud Poblacional, Instituto Nacional de Salud Publica, Mexico City, Mexico
| | - Mark O Goodarzi
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David Gorkin
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
| | - Myron Gross
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Yu Guo
- Chinese Academy of Medical Sciences, Beijing, China
| | - Sophie Hackinger
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Sohee Han
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Republic of Korea
| | | | - Christian Herder
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Annie-Green Howard
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Willa Hsueh
- Department of Internal Medicine, Diabetes and Metabolism Research Center, the Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mengna Huang
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
- Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA
| | - Wei Huang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Yi-Jen Hung
- Division of Endocrine and Metabolism, Tri-Service General Hospital Songshan Branch, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Mi Yeong Hwang
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Republic of Korea
| | - Chii-Min Hwu
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Mohammad Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | | | - Masato Isono
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hye-Mi Jang
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Republic of Korea
| | - Farzana Jasmine
- Institute for Population and Precision Health, the University of Chicago, Chicago, IL, USA
| | - Guozhi Jiang
- Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Jost B Jonas
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Marit E Jørgensen
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- National Institute of Public Health, Southern Denmark University, Copenhagen, Denmark
| | - Torben Jørgensen
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Tokyo, Japan
| | - Fouad R Kandeel
- Department of Clinical Diabetes, Endocrinology & Metabolism, Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA, USA
| | | | - Tomohiro Katsuya
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Varinderpal Kaur
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jacob M Keaton
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Abel N Kho
- Division of General Internal Medicine and Geriatrics, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Health Information Partnerships, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chiea-Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Muhammad G Kibriya
- Institute for Population and Precision Health, the University of Chicago, Chicago, IL, USA
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Katsuhiko Kohara
- Department of Regional Resource Management, Ehime University Faculty of Collaborative Regional Innovation, Ehime, Japan
- Ibusuki Kozenkai Hospital, Ibusuki, Japan
| | - Jennifer Kriebel
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Kristi Läll
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | - Leslie A Lange
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Myung-Shik Lee
- Severance Biomedical Science Institute and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Nanette R Lee
- USC-Office of Population Studies Foundation, Inc., University of San Carlos, Cebu City, Philippines
| | - Aaron Leong
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Liming Li
- Department of Epidemiology and Biostatistics, Peking University Health Science Centre, Peking University, Beijing, China
| | - Yun Li
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Symen Ligthart
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Cecilia M Lindgren
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Program in Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Adam E Locke
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
- Department of Medicine, Division of Genomics and Bioinformatics, Washington University School of Medicine, St Louis, MO, USA
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Tin Louie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Andrea O Luk
- Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Xi Luo
- Department of Biostatistics and Data Science, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jun Lv
- Department of Epidemiology and Biostatistics, Peking University Health Science Centre, Peking University, Beijing, China
| | - Valeriya Lyssenko
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
- Department of Clinical Science, Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Vasiliki Mamakou
- Dromokaiteio Psychiatric Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - K Radha Mani
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Andres Metspalu
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Andrew D Morris
- The Usher Institute to the Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Girish N Nadkarni
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Digital Health Center, Digital Engineering Faculty of Hasso Plattner Institue and University Potsdam, Potsdam, Germany
- The Division of Data Driven and Digital Medicine (D3M), Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jerry L Nadler
- Department of Medicine and Pharmacology, New York Medical College, Valhalla, NY, USA
| | - Michael A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Glen Echo, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Baltimore, MD, USA
| | - Uma Nayak
- Department of Public Health Sciences and Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Suraj S Nongmaithem
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - Ioanna Ntalla
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Lorena Orozco
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Sanjay R Patel
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark A Pereira
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Annette Peters
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Fraser J Pirie
- Department of Diabetes and Endocrinology, Nelson R. Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Bianca Porneala
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Gauri Prasad
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre Campus, Ghaziabad, India
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sebastian Preissl
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
| | - Laura J Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Michael Roden
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rebecca Rohde
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kathryn Roll
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, the Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Maike Sander
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kevin Sandow
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, the Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudia Schurmann
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Digital Health Center, Digital Engineering Faculty of Hasso Plattner Institue and University Potsdam, Potsdam, Germany
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mohammad Shahriar
- Institute for Population and Precision Health, the University of Chicago, Chicago, IL, USA
- Institute for Population and Precision Health (IPPH), Biological Sciences Division, the University of Chicago, Chicago, IL, USA
| | - Jinxiu Shi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Dong Mun Shin
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Republic of Korea
| | - Daniel Shriner
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Wing Yee So
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, the Chinese University of Hong Kong, Hong Kong, China
| | - Alena Stančáková
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Adrienne M Stilp
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Konstantin Strauch
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Ken Suzuki
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, the Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Barbara Thorand
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Unnur Thorsteinsdottir
- deCODE Genetics, Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Reykjavik, Reykjavik, Iceland
| | - Brian Tomlinson
- Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Hong Kong, China
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Jason M Torres
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Fuu-Jen Tsai
- Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jaakko Tuomilehto
- Department of Health, Finnish Institute for Health and Welfare, Helsinki, Finland
- National School of Public Health, Madrid, Spain
- Department of Neuroscience and Preventive Medicine, Danube University Krems, Krems, Austria
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Teresa Tusie-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Departamento de Medicina Genómica y Toxiología, Ambiental Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Miriam S Udler
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Adan Valladares-Salgado
- Unidad de Investigacion Medica en Bioquimica, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Jan B van Klinken
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Clinical Chemistry, Laboratory of Genetic Metabolic Disease, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Rohit Varma
- Southern California Eye Institute, CHA Hollywood Presbyterian Medical Center, Los Angeles, CA, USA
| | - Marijana Vujkovic
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Niels Wacher-Rodarte
- Unidad de Investigación Médica en Epidemiologia Clinica, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | - Eleanor Wheeler
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Ko Willems van Dijk
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Danish Diabetes Academy, Odense, Denmark
| | - Chittaranjan S Yajnik
- Diabetology Research Centre, King Edward Memorial Hospital and Research Centre, Pune, India
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Loïc Yengo
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Kyungheon Yoon
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Republic of Korea
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, Peking University Health Science Centre, Peking University, Beijing, China
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Salim Yusuf
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Liang Zhang
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Leslie J Raffel
- Department of Pediatrics, Division of Genetic and Genomic Medicine, UCI Irvine School of Medicine, Irvine, CA, USA
| | - Michiya Igase
- Department of Anti-Aging Medicine, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Eli Ipp
- Department of Medicine, Division of Endocrinology and Metabolism, Lundquist Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Susan Redline
- Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yoon Shin Cho
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Michael A Province
- Division of Statistical Genomics, Washington University School of Medicine, St Louis, MO, USA
| | - Craig L Hanis
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
| | - Ya-Xing Wang
- Beijing Institute of Ophthalmology, Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Diane M Becker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Eleftheria Zeggini
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine, Munich, Germany
| | | | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | - James S Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - James C Engert
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, the Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Philippe Froguel
- Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, London, UK
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Wayne H H Sheu
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - M Geoffrey Hayes
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, the Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, the Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Tien-Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Leif Groop
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Giriraj R Chandak
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - Francis S Collins
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dwaipayan Bharadwaj
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre Campus, Ghaziabad, India
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Guillaume Paré
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michèle M Sale
- Department of Public Health Sciences and Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Habibul Ahsan
- Institute for Population and Precision Health, the University of Chicago, Chicago, IL, USA
| | - Ayesha A Motala
- Department of Diabetes and Endocrinology, Nelson R. Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kyong-Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Miguel Cruz
- Unidad de Investigacion Medica en Bioquimica, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | - Roberta McKean-Cowdin
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Harald Grallert
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Digital Health Center, Digital Engineering Faculty of Hasso Plattner Institue and University Potsdam, Potsdam, Germany
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - E-Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Department of Data Driven Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Woon-Puay Koh
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Colin N A Palmer
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, University of Dundee, Dundee, UK
| | - Simin Liu
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
- Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA
- Department of Medicine, Brown University Alpert School of Medicine, Providence, RI, USA
| | - Goncalo Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Mindich Child Health and Development Institute, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher A Haiman
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Jose C Florez
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Danish Saleheen
- Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité Universitätsmedizin, Berlin, Germany
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Shiro Maeda
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Toranomon Hospital, Tokyo, Japan
| | - Juyoung Lee
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Republic of Korea
| | - Iona Y Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Robin G Walters
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Kari Stefansson
- deCODE Genetics, Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Reykjavik, Reykjavik, Iceland
| | - Simon R Myers
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Statistics, University of Oxford, Oxford, UK
| | - Jorge Ferrer
- Regulatory Genomics and Diabetes, Centre for Genomic Regulation, the Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Madrid, Spain
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Kyle J Gaulton
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - James B Meigs
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Donald W Bowden
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jennifer E Below
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, the Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
- Genentech, South San Francisco, CA, USA.
| | - Andrew P Morris
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Department of Health Data Science, University of Liverpool, Liverpool, UK.
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, University of Manchester, Manchester, UK.
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
25
|
Abdullah AS, Ali SK. Assessment of the relationship of transcription factor 7-like 2 rs4506565 (T/A) variant with type 2 diabetes in Iraqi Arab patients. Meta Gene 2022. [DOI: 10.1016/j.mgene.2021.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
26
|
van der Vossen EWJ, Bastos D, Stols-Gonçalves D, de Goffau MC, Davids M, Pereira JPB, Li Yim AYF, Henneman P, Netea MG, de Vos WM, de Jonge W, Groen AK, Nieuwdorp M, Levin E. Effects of fecal microbiota transplant on DNA methylation in subjects with metabolic syndrome. Gut Microbes 2022; 13:1993513. [PMID: 34747338 PMCID: PMC8583152 DOI: 10.1080/19490976.2021.1993513] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Accumulating evidence shows that microbes with their theater of activity residing within the human intestinal tract (i.e., the gut microbiome) influence host metabolism. Some of the strongest results come from recent fecal microbial transplant (FMT) studies that relate changes in intestinal microbiota to various markers of metabolism as well as the pathophysiology of insulin resistance. Despite these developments, there is still a limited understanding of the multitude of effects associated with FMT on the general physiology of the host, beyond changes in gut microbiome composition. We examined the effect of either allogenic (lean donor) or autologous FMTs on the gut microbiome, plasma metabolome, and epigenomic (DNA methylation) reprogramming in peripheral blood mononuclear cells in individuals with metabolic syndrome measured at baseline (pre-FMT) and after 6 weeks (post-FMT). Insulin sensitivity was determined with a stable isotope-based 2 step hyperinsulinemic clamp and multivariate machine learning methodology was used to uncover discriminative microbes, metabolites, and DNA methylation loci. A larger gut microbiota shift was associated with an allogenic than with autologous FMT. Furthemore, the data results of the the allogenic FMT group data indicates that the introduction of new species can potentially modulate the plasma metabolome and (as a result) the epigenome. Most notably, the introduction of Prevotella ASVs directly correlated with methylation of AFAP1, a gene involved in mitochondrial function, insulin sensitivity, and peripheral insulin resistance (Rd, rate of glucose disappearance). FMT was found to have notable effects on the gut microbiome but also on the host plasma metabolome and the epigenome of immune cells providing new avenues of inquiry in the context of metabolic syndrome treatment for the manipulation of host physiology to achieve improved insulin sensitivity.
Collapse
Affiliation(s)
- Eduard W. J. van der Vossen
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Diogo Bastos
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands,Horaizon BV, Delft, The Netherlands
| | - Daniela Stols-Gonçalves
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcus C. de Goffau
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands,Wellcome Sanger Institute, Cambridge, UK
| | - Mark Davids
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Joao P. B. Pereira
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands,Horaizon BV, Delft, The Netherlands
| | - Andrew Y. F. Li Yim
- Department of Genome Diagnostics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Henneman
- Department of Genome Diagnostics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mihai G. Netea
- Department of Experimental Internal Medicine, Radboud University, Nijmegen, The Netherlands,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (Limes), University of Bonn, Bonn, Germany
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands,Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wouter de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Albert K. Groen
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands,CONTACT Max Nieuwdorp
| | - Evgeni Levin
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands,Horaizon BV, Delft, The Netherlands,Evgeni Levin Department of Vascular Medicine, Amsterdam University Medical Center, Meibergdreef 9, Room G1-143, Amsterdam1105 AZ, The Netherlands
| |
Collapse
|
27
|
Large-Scale Functional Genomics Screen to Identify Modulators of Human β-Cell Insulin Secretion. Biomedicines 2022; 10:biomedicines10010103. [PMID: 35052782 PMCID: PMC8773179 DOI: 10.3390/biomedicines10010103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disorder affecting almost half a billion people worldwide. Impaired function of pancreatic β-cells is both a hallmark of T2D and an underlying factor in the pathophysiology of the disease. Understanding the cellular mechanisms regulating appropriate insulin secretion has been of long-standing interest in the scientific and clinical communities. To identify novel genes regulating insulin secretion we developed a robust arrayed siRNA screen measuring basal, glucose-stimulated, and augmented insulin secretion by EndoC-βH1 cells, a human β-cell line, in a 384-well plate format. We screened 521 candidate genes selected by text mining for relevance to T2D biology and identified 23 positive and 68 negative regulators of insulin secretion. Among these, we validated ghrelin receptor (GHSR), and two genes implicated in endoplasmic reticulum stress, ATF4 and HSPA5. Thus, we have demonstrated the feasibility of using EndoC-βH1 cells for large-scale siRNA screening to identify candidate genes regulating β-cell insulin secretion as potential novel drug targets. Furthermore, this screening format can be adapted to other disease-relevant functional endpoints to enable large-scale screening for targets regulating cellular mechanisms contributing to the progressive loss of functional β-cell mass occurring in T2D.
Collapse
|
28
|
Bartolomé A. Stem Cell-Derived β Cells: A Versatile Research Platform to Interrogate the Genetic Basis of β Cell Dysfunction. Int J Mol Sci 2022; 23:501. [PMID: 35008927 PMCID: PMC8745644 DOI: 10.3390/ijms23010501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic β cell dysfunction is a central component of diabetes progression. During the last decades, the genetic basis of several monogenic forms of diabetes has been recognized. Genome-wide association studies (GWAS) have also facilitated the identification of common genetic variants associated with an increased risk of diabetes. These studies highlight the importance of impaired β cell function in all forms of diabetes. However, how most of these risk variants confer disease risk, remains unanswered. Understanding the specific contribution of genetic variants and the precise role of their molecular effectors is the next step toward developing treatments that target β cell dysfunction in the era of personalized medicine. Protocols that allow derivation of β cells from pluripotent stem cells, represent a powerful research tool that allows modeling of human development and versatile experimental designs that can be used to shed some light on diabetes pathophysiology. This article reviews different models to study the genetic basis of β cell dysfunction, focusing on the recent advances made possible by stem cell applications in the field of diabetes research.
Collapse
Affiliation(s)
- Alberto Bartolomé
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| |
Collapse
|
29
|
Mirzaeicheshmeh E, Zerrweck C, Centeno-Cruz F, Baca-Peynado P, Martinez-Hernandez A, García-Ortiz H, Contreras-Cubas C, Salas-Martínez MG, Saldaña-Alvarez Y, Mendoza-Caamal EC, Barajas-Olmos F, Orozco L. Alterations of DNA methylation during adipogenesis differentiation of mesenchymal stem cells isolated from adipose tissue of patients with obesity is associated with type 2 diabetes. Adipocyte 2021; 10:493-504. [PMID: 34699309 PMCID: PMC8555535 DOI: 10.1080/21623945.2021.1978157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022] Open
Abstract
Adipogenesis regulation is crucial for mature adipocyte function. In obesity, a major driver of type 2 diabetes (T2D), this process is disrupted and remains poorly characterized. Here we identified altered DNA methylation profiles in diabetic obese patients, during three adipocytes differentiation stages. We isolated mesenchymal cells from visceral adipose tissue of obese patients with and without T2D to analyse DNA methylation profiles at 0, 3, and 18 days of ex vivo differentiation and documented their impact on gene expression. Methylation and gene expression were analysed with EPIC and Clarion S arrays, respectively. Patients with T2D had epigenetic alterations in all the analysed stages, and these were mainly observed in genes important in adipogenesis, insulin resistance, cell death programming, and immune effector processes. Importantly, at 3 days, we found six-fold more methylated CpG alterations than in the other stages. This is the first study to document epigenetic markers that persist through all three adipogenesis stages and their impact on gene expression, which could be a cellular metabolic memory involved in T2D. Our data provided evidence that, throughout the adipogenesis process, alterations occur in methylation that might impact mature adipocyte function, cause tissue malfunction, and potentially, lead to the development of T2D.
Collapse
Affiliation(s)
- Elaheh Mirzaeicheshmeh
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | - Carlos Zerrweck
- Clínica de Obesidad del Hospital General Tláhuac, SSA, Mexico City, Mexico
- Facultad De Medicina, Alta Especialidad En Cirugía Bariatrica, Unam, Mexico City, Mexico
| | - Federico Centeno-Cruz
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | - Paulina Baca-Peynado
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | - Angélica Martinez-Hernandez
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | - Humberto García-Ortiz
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | - Cecilia Contreras-Cubas
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | | | - Yolanda Saldaña-Alvarez
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | | | - Francisco Barajas-Olmos
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | - Lorena Orozco
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| |
Collapse
|
30
|
Alonso L, Piron A, Morán I, Guindo-Martínez M, Bonàs-Guarch S, Atla G, Miguel-Escalada I, Royo R, Puiggròs M, Garcia-Hurtado X, Suleiman M, Marselli L, Esguerra JLS, Turatsinze JV, Torres JM, Nylander V, Chen J, Eliasson L, Defrance M, Amela R, Mulder H, Gloyn AL, Groop L, Marchetti P, Eizirik DL, Ferrer J, Mercader JM, Cnop M, Torrents D. TIGER: The gene expression regulatory variation landscape of human pancreatic islets. Cell Rep 2021; 37:109807. [PMID: 34644572 PMCID: PMC8864863 DOI: 10.1016/j.celrep.2021.109807] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/23/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022] Open
Abstract
Genome-wide association studies (GWASs) identified hundreds of signals associated with type 2 diabetes (T2D). To gain insight into their underlying molecular mechanisms, we have created the translational human pancreatic islet genotype tissue-expression resource (TIGER), aggregating >500 human islet genomic datasets from five cohorts in the Horizon 2020 consortium T2DSystems. We impute genotypes using four reference panels and meta-analyze cohorts to improve the coverage of expression quantitative trait loci (eQTL) and develop a method to combine allele-specific expression across samples (cASE). We identify >1 million islet eQTLs, 53 of which colocalize with T2D signals. Among them, a low-frequency allele that reduces T2D risk by half increases CCND2 expression. We identify eight cASE colocalizations, among which we found a T2D-associated SLC30A8 variant. We make all data available through the TIGER portal (http://tiger.bsc.es), which represents a comprehensive human islet genomic data resource to elucidate how genetic variation affects islet function and translates into therapeutic insight and precision medicine for T2D.
Collapse
Affiliation(s)
- Lorena Alonso
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | - Anthony Piron
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium; Interuniversity Institute of Bioinformatics in Brussels (IB2), Brussels 1050, Belgium
| | - Ignasi Morán
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | - Marta Guindo-Martínez
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | - Sílvia Bonàs-Guarch
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Barcelona 08013, Spain
| | - Goutham Atla
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Barcelona 08013, Spain
| | - Irene Miguel-Escalada
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Barcelona 08013, Spain
| | - Romina Royo
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | - Montserrat Puiggròs
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | - Xavier Garcia-Hurtado
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Barcelona 08013, Spain
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Jonathan L S Esguerra
- Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Malmö 214 28, Sweden
| | | | - Jason M Torres
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK; Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
| | - Vibe Nylander
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Ji Chen
- Exeter Centre of Excellence for Diabetes Research (EXCEED), University of Exeter Medical School, Exeter EX4 4PY, UK
| | - Lena Eliasson
- Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Malmö 214 28, Sweden
| | - Matthieu Defrance
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Ramon Amela
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | - Hindrik Mulder
- Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmö 214 28, Sweden
| | - Anna L Gloyn
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK; Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94304, USA; NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford OX3 7DQ, UK; Stanford Diabetes Research Centre, Stanford University, Stanford, CA 94305, USA
| | - Leif Groop
- Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Malmö 214 28, Sweden; Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmö 214 28, Sweden; Finnish Institute of Molecular Medicine Finland (FIMM), Helsinki University, Helsinki 00014, Finland
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium; WELBIO, Université Libre de Bruxelles, Brussels 1050, Belgium
| | - Jorge Ferrer
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Barcelona 08013, Spain; Section of Epigenomics and Disease, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Josep M Mercader
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain; Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium; Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels 1070, Belgium.
| | - David Torrents
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain.
| |
Collapse
|
31
|
Yang Y, Cai Z, Pan Z, Liu F, Li D, Ji Y, Zhong J, Luo H, Hu S, Song L, Yu S, Li T, Li J, Ma X, Zhang W, Zhou Z, Liu F, Zhang J. Rheb1 promotes glucose-stimulated insulin secretion in human and mouse β-cells by upregulating GLUT expression. Metabolism 2021; 123:154863. [PMID: 34375645 DOI: 10.1016/j.metabol.2021.154863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/20/2022]
Abstract
Reduced β-cell mass and impaired β-cell function are primary causes of all types of diabetes. However, the intrinsic molecular mechanism that regulates β-cell growth and function remains elusive. Here, we demonstrate that the small GTPase Rheb1 is a critical regulator of glucose-stimulated insulin secretion (GSIS) in β-cells. Rheb1 was highly expressed in mouse and human islets. In addition, β-cell-specific knockout of Rheb1 reduced the β-cell size and mass by suppressing β-cell proliferation and increasing β-cell apoptosis. However, tamoxifen-induced deletion of Rheb1 in β-cells had no significant effect on β-cell mass and size but significantly impaired GSIS. Rheb1 facilitates GSIS in human or mouse islets by upregulating GLUT1 or GLUT2 expression, respectively, in a mTORC1 signaling pathway-dependent manner. Our findings reveal a critical role of Rheb1 in regulating GSIS in β-cells and identified a new target for the therapeutic treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Yan Yang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zixin Cai
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhenhong Pan
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Fen Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Dandan Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yujiao Ji
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jiaxin Zhong
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hairong Luo
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Shanbiao Hu
- Department of Urological Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Lei Song
- Department of Urological Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Shaojie Yu
- Department of Urological Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ting Li
- Department of Liver Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jiequn Li
- Department of Liver Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xianhua Ma
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| | - Weiping Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Feng Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jingjing Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
32
|
Kerimov N, Hayhurst JD, Peikova K, Manning JR, Walter P, Kolberg L, Samoviča M, Sakthivel MP, Kuzmin I, Trevanion SJ, Burdett T, Jupp S, Parkinson H, Papatheodorou I, Yates AD, Zerbino DR, Alasoo K. A compendium of uniformly processed human gene expression and splicing quantitative trait loci. Nat Genet 2021; 53:1290-1299. [PMID: 34493866 PMCID: PMC8423625 DOI: 10.1038/s41588-021-00924-w] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
Many gene expression quantitative trait locus (eQTL) studies have published their summary statistics, which can be used to gain insight into complex human traits by downstream analyses, such as fine mapping and co-localization. However, technical differences between these datasets are a barrier to their widespread use. Consequently, target genes for most genome-wide association study (GWAS) signals have still not been identified. In the present study, we present the eQTL Catalogue ( https://www.ebi.ac.uk/eqtl ), a resource of quality-controlled, uniformly re-computed gene expression and splicing QTLs from 21 studies. We find that, for matching cell types and tissues, the eQTL effect sizes are highly reproducible between studies. Although most QTLs were shared between most bulk tissues, we identified a greater diversity of cell-type-specific QTLs from purified cell types, a subset of which also manifested as new disease co-localizations. Our summary statistics are freely available to enable the systematic interpretation of human GWAS associations across many cell types and tissues.
Collapse
Affiliation(s)
- Nurlan Kerimov
- Institute of Computer Science, University of Tartu, Tartu, Estonia
- Open Targets, Wellcome Genome Campus, Cambridge, UK
| | - James D Hayhurst
- Open Targets, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Kateryna Peikova
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Jonathan R Manning
- Open Targets, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Peter Walter
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Liis Kolberg
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Marija Samoviča
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Manoj Pandian Sakthivel
- Open Targets, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Ivan Kuzmin
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Stephen J Trevanion
- Open Targets, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Tony Burdett
- Open Targets, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Simon Jupp
- Open Targets, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Helen Parkinson
- Open Targets, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Irene Papatheodorou
- Open Targets, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Andrew D Yates
- Open Targets, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Daniel R Zerbino
- Open Targets, Wellcome Genome Campus, Cambridge, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK.
| | - Kaur Alasoo
- Institute of Computer Science, University of Tartu, Tartu, Estonia.
- Open Targets, Wellcome Genome Campus, Cambridge, UK.
| |
Collapse
|
33
|
Dong C, Simonett SP, Shin S, Stapleton DS, Schueler KL, Churchill GA, Lu L, Liu X, Jin F, Li Y, Attie AD, Keller MP, Keleş S. INFIMA leverages multi-omics model organism data to identify effector genes of human GWAS variants. Genome Biol 2021; 22:241. [PMID: 34425882 PMCID: PMC8381555 DOI: 10.1186/s13059-021-02450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 08/02/2021] [Indexed: 11/24/2022] Open
Abstract
Genome-wide association studies reveal many non-coding variants associated with complex traits. However, model organism studies largely remain as an untapped resource for unveiling the effector genes of non-coding variants. We develop INFIMA, Integrative Fine-Mapping, to pinpoint causal SNPs for diversity outbred (DO) mice eQTL by integrating founder mice multi-omics data including ATAC-seq, RNA-seq, footprinting, and in silico mutation analysis. We demonstrate INFIMA's superior performance compared to alternatives with human and mouse chromatin conformation capture datasets. We apply INFIMA to identify novel effector genes for GWAS variants associated with diabetes. The results of the application are available at http://www.statlab.wisc.edu/shiny/INFIMA/ .
Collapse
Affiliation(s)
- Chenyang Dong
- Department of Statistics, University of Wisconsin-Madison, Madison, WI USA
| | - Shane P. Simonett
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Sunyoung Shin
- Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX USA
| | - Donnie S. Stapleton
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Kathryn L. Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA
| | | | - Leina Lu
- Case Western University, Cleveland, OH USA
| | | | - Fulai Jin
- Case Western University, Cleveland, OH USA
| | - Yan Li
- Case Western University, Cleveland, OH USA
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Sündüz Keleş
- Department of Statistics, University of Wisconsin-Madison, Madison, WI USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
34
|
Ustianowski P, Malinowski D, Kopytko P, Czerewaty M, Tarnowski M, Dziedziejko V, Safranow K, Pawlik A. ADCY5, CAPN10 and JAZF1 Gene Polymorphisms and Placental Expression in Women with Gestational Diabetes. Life (Basel) 2021; 11:life11080806. [PMID: 34440550 PMCID: PMC8399092 DOI: 10.3390/life11080806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is carbohydrate intolerance that occurs during pregnancy. This disease may lead to various maternal and neonatal complications; therefore, early diagnosis is very important. Because of the similarity in pathogenesis of type 2 diabetes and GDM, the genetic variants associated with type 2 diabetes are commonly investigated in GDM. The aim of the present study was to examine the associations between the polymorphisms in the ADCY5 (rs11708067, rs2877716), CAPN10 (rs2975760, rs3792267), and JAZF1 (rs864745) genes and GDM as well as to determine the expression of these genes in the placenta. This study included 272 pregnant women with GDM and 348 pregnant women with normal glucose tolerance. The diagnosis of GDM was based on a 75 g oral glucose tolerance test (OGTT) at 24–28 weeks gestation, according to International Association of Diabetes and Pregnancy Study Groups (IADPSG) criteria. There were no statistically significant differences in the distribution of the ADCY5 gene (rs11708067, rs2877716) and CAPN10 gene (rs2975760, rs3792267) polymorphisms between pregnant women with normal carbohydrate tolerance and pregnant women with GDM. We have shown a lower frequency of JAZF1 gene rs864745 C allele carriers among women with GDM CC + CT vs. TT (OR = 0.60, 95% CI = 0.41–0.87, p = 0.006), and C vs. T (OR = 0.75, 95% CI = 0.60–0.95, p = 0.014). In addition, ADCY5 and JAZF1 gene expression was statistically significantly increased in the placentas of women with GDM compared with that of healthy women. The expression of the CAPN10 gene did not differ significantly between women with and without GDM. Our results indicate increased expression of JAZF1 and ADCY5 genes in the placentas of women with GDM as well as a protective effect of the C allele of the JAZF1 rs864745 gene polymorphism on the development of GDM in pregnant women.
Collapse
Affiliation(s)
- Przemysław Ustianowski
- Department of Obstetrics and Gynecology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Damian Malinowski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Patrycja Kopytko
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.K.); (M.C.); (M.T.)
| | - Michał Czerewaty
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.K.); (M.C.); (M.T.)
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.K.); (M.C.); (M.T.)
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland; (V.D.); (K.S.)
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland; (V.D.); (K.S.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.K.); (M.C.); (M.T.)
- Correspondence:
| |
Collapse
|
35
|
Varshney A, Kyono Y, Elangovan VR, Wang C, Erdos MR, Narisu N, Albanus RD, Orchard P, Stitzel ML, Collins FS, Kitzman JO, Parker SCJ. A Transcription Start Site Map in Human Pancreatic Islets Reveals Functional Regulatory Signatures. Diabetes 2021; 70:1581-1591. [PMID: 33849996 PMCID: PMC8336006 DOI: 10.2337/db20-1087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/09/2021] [Indexed: 12/21/2022]
Abstract
Identifying the tissue-specific molecular signatures of active regulatory elements is critical to understand gene regulatory mechanisms. Here, we identify transcription start sites (TSS) using cap analysis of gene expression (CAGE) across 57 human pancreatic islet samples. We identify 9,954 reproducible CAGE tag clusters (TCs), ∼20% of which are islet specific and occur mostly distal to known gene TSS. We integrated islet CAGE data with histone modification and chromatin accessibility profiles to identify epigenomic signatures of transcription initiation. Using a massively parallel reporter assay, we validated the transcriptional enhancer activity for 2,279 of 3,378 (∼68%) tested islet CAGE elements (5% false discovery rate). TCs within accessible enhancers show higher enrichment to overlap type 2 diabetes genome-wide association study (GWAS) signals than existing islet annotations, which emphasizes the utility of mapping CAGE profiles in disease-relevant tissue. This work provides a high-resolution map of transcriptional initiation in human pancreatic islets with utility for dissecting active enhancers at GWAS loci.
Collapse
Affiliation(s)
- Arushi Varshney
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Yasuhiro Kyono
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI
| | | | - Collin Wang
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Michael R Erdos
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Narisu Narisu
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | | | - Peter Orchard
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI
| | | | - Francis S Collins
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Jacob O Kitzman
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Stephen C J Parker
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| |
Collapse
|
36
|
Livingstone KM, Tan MH, Abbott G, Duckham RL, Croft L, Ward J, McEvoy M, Keske MA, Austin C, Bowe SJ. Discovery Genome-Wide Association Study of Body Composition in 4,386 Adults From the UK Biobank's Pilot Imaging Enhancement Study. Front Endocrinol (Lausanne) 2021; 12:692677. [PMID: 34239500 PMCID: PMC8259458 DOI: 10.3389/fendo.2021.692677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/03/2021] [Indexed: 11/24/2022] Open
Abstract
Body composition (fat, skeletal muscle and bone mass) is an important determinant of overall health and risk of endocrine disorders such as type 2 diabetes and osteoporosis. Although diet and physical activity are strongly implicated, body composition is also heritable. We conducted a discovery genome-wide association study on 31 phenotypes from the three-compartment body composition model (fat, lean and bone mass) in a set of 4 386 individuals (n = 2 109 males, n = 2 294 females) from the UK Biobank pilot imaging enhancement program that underwent a dual energy X-ray absorptiometry (DXA) scan for assessment of body composition and genetic screening. From 6 137 607 imputed single nucleotide polymorphisms (SNPs) we identified 17 body composition loci (P<5.0 x 10-8). GWAS from the combined dataset identified four statistically significant SNPs (rs7592270, rs145972737, rs13212044, rs77772562). In sex-stratified GWAS, 10 male specific SNPs across all traits were identified and five female specific SNPs. Of the 17 SNPs, six were in or close to a gene where there was a plausible functional connection. Three SNPs (rs7592270, rs77772562 and rs7552312) were correlated with obesity phenotypes, one SNP (rs2236705) with lean phenotypes and two with bone mass phenotypes (rs112098641 and rs113380185). These results highlight candidate genes and biological pathways related to body composition, including glucose metabolism and estrogen regulation, that are of interest to replicate in future studies.
Collapse
Affiliation(s)
- Katherine M. Livingstone
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Mun Hua Tan
- Department of Microbiology and Immunology, Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Gavin Abbott
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Rachel L. Duckham
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, VIC, Australia
| | - Larry Croft
- School of Life and Environmental Sciences, Deakin Genomics Centre, Deakin University, Geelong, VIC, Australia
| | - Joey Ward
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Mark McEvoy
- La Trobe Rural Health School, College of Science, Health and Engineering, La Trobe University, Bendigo, VIC, Australia
| | - Michelle A. Keske
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Christopher Austin
- School of Life and Environmental Sciences, Deakin Genomics Centre, Deakin University, Geelong, VIC, Australia
| | - Steven J. Bowe
- Deakin Biostatistics Unit, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
37
|
Chen J, Spracklen CN, Marenne G, Varshney A, Corbin LJ, Luan J, Willems SM, Wu Y, Zhang X, Horikoshi M, Boutin TS, Mägi R, Waage J, Li-Gao R, Chan KHK, Yao J, Anasanti MD, Chu AY, Claringbould A, Heikkinen J, Hong J, Hottenga JJ, Huo S, Kaakinen MA, Louie T, März W, Moreno-Macias H, Ndungu A, Nelson SC, Nolte IM, North KE, Raulerson CK, Ray D, Rohde R, Rybin D, Schurmann C, Sim X, Southam L, Stewart ID, Wang CA, Wang Y, Wu P, Zhang W, Ahluwalia TS, Appel EVR, Bielak LF, Brody JA, Burtt NP, Cabrera CP, Cade BE, Chai JF, Chai X, Chang LC, Chen CH, Chen BH, Chitrala KN, Chiu YF, de Haan HG, Delgado GE, Demirkan A, Duan Q, Engmann J, Fatumo SA, Gayán J, Giulianini F, Gong JH, Gustafsson S, Hai Y, Hartwig FP, He J, Heianza Y, Huang T, Huerta-Chagoya A, Hwang MY, Jensen RA, Kawaguchi T, Kentistou KA, Kim YJ, Kleber ME, Kooner IK, Lai S, Lange LA, Langefeld CD, Lauzon M, Li M, Ligthart S, Liu J, Loh M, Long J, Lyssenko V, Mangino M, Marzi C, Montasser ME, Nag A, Nakatochi M, Noce D, Noordam R, Pistis G, Preuss M, Raffield L, Rasmussen-Torvik LJ, Rich SS, Robertson NR, Rueedi R, Ryan K, Sanna S, Saxena R, Schraut KE, Sennblad B, Setoh K, Smith AV, Sparsø T, Strawbridge RJ, Takeuchi F, Tan J, Trompet S, van den Akker E, van der Most PJ, Verweij N, Vogel M, Wang H, Wang C, Wang N, Warren HR, Wen W, Wilsgaard T, Wong A, Wood AR, Xie T, Zafarmand MH, Zhao JH, Zhao W, Amin N, Arzumanyan Z, Astrup A, Bakker SJL, Baldassarre D, Beekman M, Bergman RN, Bertoni A, Blüher M, Bonnycastle LL, Bornstein SR, Bowden DW, Cai Q, Campbell A, Campbell H, Chang YC, de Geus EJC, Dehghan A, Du S, Eiriksdottir G, Farmaki AE, Frånberg M, Fuchsberger C, Gao Y, Gjesing AP, Goel A, Han S, Hartman CA, Herder C, Hicks AA, Hsieh CH, Hsueh WA, Ichihara S, Igase M, Ikram MA, Johnson WC, Jørgensen ME, Joshi PK, Kalyani RR, Kandeel FR, Katsuya T, Khor CC, Kiess W, Kolcic I, Kuulasmaa T, Kuusisto J, Läll K, Lam K, Lawlor DA, Lee NR, Lemaitre RN, Li H, Lin SY, Lindström J, Linneberg A, Liu J, Lorenzo C, Matsubara T, Matsuda F, Mingrone G, Mooijaart S, Moon S, Nabika T, Nadkarni GN, Nadler JL, Nelis M, Neville MJ, Norris JM, Ohyagi Y, Peters A, Peyser PA, Polasek O, Qi Q, Raven D, Reilly DF, Reiner A, Rivideneira F, Roll K, Rudan I, Sabanayagam C, Sandow K, Sattar N, Schürmann A, Shi J, Stringham HM, Taylor KD, Teslovich TM, Thuesen B, Timmers PRHJ, Tremoli E, Tsai MY, Uitterlinden A, van Dam RM, van Heemst D, van Hylckama Vlieg A, van Vliet-Ostaptchouk JV, Vangipurapu J, Vestergaard H, Wang T, Willems van Dijk K, Zemunik T, Abecasis GR, Adair LS, Aguilar-Salinas CA, Alarcón-Riquelme ME, An P, Aviles-Santa L, Becker DM, Beilin LJ, Bergmann S, Bisgaard H, Black C, Boehnke M, Boerwinkle E, Böhm BO, Bønnelykke K, Boomsma DI, Bottinger EP, Buchanan TA, Canouil M, Caulfield MJ, Chambers JC, Chasman DI, Chen YDI, Cheng CY, Collins FS, Correa A, Cucca F, de Silva HJ, Dedoussis G, Elmståhl S, Evans MK, Ferrannini E, Ferrucci L, Florez JC, Franks PW, Frayling TM, Froguel P, Gigante B, Goodarzi MO, Gordon-Larsen P, Grallert H, Grarup N, Grimsgaard S, Groop L, Gudnason V, Guo X, Hamsten A, Hansen T, Hayward C, Heckbert SR, Horta BL, Huang W, Ingelsson E, James PS, Jarvelin MR, Jonas JB, Jukema JW, Kaleebu P, Kaplan R, Kardia SLR, Kato N, Keinanen-Kiukaanniemi SM, Kim BJ, Kivimaki M, Koistinen HA, Kooner JS, Körner A, Kovacs P, Kuh D, Kumari M, Kutalik Z, Laakso M, Lakka TA, Launer LJ, Leander K, Li H, Lin X, Lind L, Lindgren C, Liu S, Loos RJF, Magnusson PKE, Mahajan A, Metspalu A, Mook-Kanamori DO, Mori TA, Munroe PB, Njølstad I, O'Connell JR, Oldehinkel AJ, Ong KK, Padmanabhan S, Palmer CNA, Palmer ND, Pedersen O, Pennell CE, Porteous DJ, Pramstaller PP, Province MA, Psaty BM, Qi L, Raffel LJ, Rauramaa R, Redline S, Ridker PM, Rosendaal FR, Saaristo TE, Sandhu M, Saramies J, Schneiderman N, Schwarz P, Scott LJ, Selvin E, Sever P, Shu XO, Slagboom PE, Small KS, Smith BH, Snieder H, Sofer T, Sørensen TIA, Spector TD, Stanton A, Steves CJ, Stumvoll M, Sun L, Tabara Y, Tai ES, Timpson NJ, Tönjes A, Tuomilehto J, Tusie T, Uusitupa M, van der Harst P, van Duijn C, Vitart V, Vollenweider P, Vrijkotte TGM, Wagenknecht LE, Walker M, Wang YX, Wareham NJ, Watanabe RM, Watkins H, Wei WB, Wickremasinghe AR, Willemsen G, Wilson JF, Wong TY, Wu JY, Xiang AH, Yanek LR, Yengo L, Yokota M, Zeggini E, Zheng W, Zonderman AB, Rotter JI, Gloyn AL, McCarthy MI, Dupuis J, Meigs JB, Scott RA, Prokopenko I, Leong A, Liu CT, Parker SCJ, Mohlke KL, Langenberg C, Wheeler E, Morris AP, Barroso I. The trans-ancestral genomic architecture of glycemic traits. Nat Genet 2021; 53:840-860. [PMID: 34059833 PMCID: PMC7610958 DOI: 10.1038/s41588-021-00852-9] [Citation(s) in RCA: 343] [Impact Index Per Article: 114.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 03/22/2021] [Indexed: 02/02/2023]
Abstract
Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10-8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.
Collapse
Affiliation(s)
- Ji Chen
- Exeter Centre of Excellence for Diabetes Research (EXCEED), Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
- Department of Human Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - Cassandra N Spracklen
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, MA, USA
| | - Gaëlle Marenne
- Department of Human Genetics, Wellcome Sanger Institute, Cambridge, UK
- Inserm, Univ Brest, EFS, UMR 1078, GGB, Brest, France
| | - Arushi Varshney
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Laura J Corbin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jian'an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Sara M Willems
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Ying Wu
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Xiaoshuai Zhang
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, China
| | - Momoko Horikoshi
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
| | - Thibaud S Boutin
- Medical Research Council Human Genetics Unit, Institute for Genetics and Molecular Medicine, Edinburgh, UK
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Johannes Waage
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Kei Hang Katie Chan
- Department of Epidemiology, Brown University School of Public Health, Brown University, Providence, RI, USA
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Mila D Anasanti
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Audrey Y Chu
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Annique Claringbould
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jani Heikkinen
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jaeyoung Hong
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Faculty of Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Shaofeng Huo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Marika A Kaakinen
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Section of Statistical Multi-omics, Department of Clinical and Experimental Research, University of Surrey, Guildford, UK
| | - Tin Louie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Winfried März
- SYNLAB Academy, SYNLAB Holding Deutschland GmbH, Mannheim, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, Graz, Austria
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden-Württemberg, Germany
| | | | - Anne Ndungu
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sarah C Nelson
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Kari E North
- CVD Genetic Epidemiology Computational Laboratory, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | | | - Debashree Ray
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rebecca Rohde
- CVD Genetic Epidemiology Computational Laboratory, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Denis Rybin
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Claudia Schurmann
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- HPI Digital Health Center, Digital Health and Personalized Medicine, Hasso Plattner Institute, Potsdam, Germany
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National Univeristy of Singapore and National University Health System, Singapore, Singapore
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lorraine Southam
- Department of Human Genetics, Wellcome Sanger Institute, Cambridge, UK
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Isobel D Stewart
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Carol A Wang
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Yujie Wang
- CVD Genetic Epidemiology Computational Laboratory, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Peitao Wu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, London, UK
| | - Tarunveer S Ahluwalia
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Emil V R Appel
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A Brody
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Noël P Burtt
- Metabolism Program, Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Claudia P Cabrera
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Brian E Cade
- Department of Medicine, Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Jin Fang Chai
- Saw Swee Hock School of Public Health, National Univeristy of Singapore and National University Health System, Singapore, Singapore
| | - Xiaoran Chai
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, National University of Singapore and National University Health System, Singapore, Singapore
| | - Li-Ching Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Brian H Chen
- Department of Epidemiology, The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Kumaraswamy Naidu Chitrala
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yen-Feng Chiu
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Hugoline G de Haan
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Graciela E Delgado
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden-Württemberg, Germany
| | - Ayse Demirkan
- Section of Statistical Multi-omics, Department of Clinical and Experimental Research, University of Surrey, Guildford, UK
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Qing Duan
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Statistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jorgen Engmann
- Institute of Cardiovascular Science, University College London, London, UK
| | - Segun A Fatumo
- Uganda Medical Informatics Centre (UMIC), MRC/UVRI and London School of Hygiene & Tropical Medicine (Uganda Research Unit), Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, London, UK
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
| | | | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jung Ho Gong
- Department of Epidemiology, Brown University School of Public Health, Brown University, Providence, RI, USA
| | - Stefan Gustafsson
- Molecular Epidemiology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Yang Hai
- Department of Statistics, The University of Auckland, Science Center, Auckland, New Zealand
| | - Fernando P Hartwig
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
| | - Jing He
- Department of Medicine, Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yoriko Heianza
- Department of Epidemiology, Tulane University Obesity Research Center, Tulane University, New Orleans, LA, USA
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Alicia Huerta-Chagoya
- Molecular Biology and Genomic Medicine Unit, National Council for Science and Technology, Mexico City, Mexico
- Molecular Biology and Genomic Medicine Unit, National Institute of Medical Sciences and Nutrition, Mexico City, Mexico
| | - Mi Yeong Hwang
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju, South Korea
| | - Richard A Jensen
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Katherine A Kentistou
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Young Jin Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju, South Korea
| | - Marcus E Kleber
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden-Württemberg, Germany
| | - Ishminder K Kooner
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, London, UK
| | - Shuiqing Lai
- Department of Epidemiology, Brown University School of Public Health, Brown University, Providence, RI, USA
| | - Leslie A Lange
- Department of Medicine, Divison of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Marie Lauzon
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Man Li
- Department of Medicine, Division of Nephrology and Hypertension, University of Utah, Salt Lake City, UT, USA
| | - Symen Ligthart
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jun Liu
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Marie Loh
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Valeriya Lyssenko
- Department of Clinical Science, Center for Diabetes Research, University of Bergen, Bergen, Norway
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmo, Sweden
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
- NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Carola Marzi
- Institute of Epidemiology, Research Unit of Molecular Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - May E Montasser
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Abhishek Nag
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Damia Noce
- Institute for Biomedicine, Eurac Research, Bolzano, Italy
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Giorgio Pistis
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Michael Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Laura J Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Neil R Robertson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Rico Rueedi
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Kathleen Ryan
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Serena Sanna
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Richa Saxena
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Katharina E Schraut
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Bengt Sennblad
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Kazuya Setoh
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Icelandic Heart Association, Kopavogur, Iceland
| | - Thomas Sparsø
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rona J Strawbridge
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
- Department of Medicine Solna, Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Jingyi Tan
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Stella Trompet
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Erik van den Akker
- Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pattern Recognition and Bioinformatics, Delft University of Technology, Delft, the Netherlands
- Department of Biomedical Data Sciences, Leiden Computational Biology Center, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Niek Verweij
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Genomics PLC, Oxford, UK
| | - Mandy Vogel
- Center of Pediatric Research, University Children's Hospital Leipzig, University of Leipzig Medical Center, Leipzig, Germany
| | - Heming Wang
- Department of Medicine, Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Chaolong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Nan Wang
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
- University of Southern California Diabetes and Obesity Research Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Helen R Warren
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tom Wilsgaard
- Department of Community Medicine, Faculty of Health Sciences, UIT the Arctic University of Norway, Tromsø, Norway
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at University College London, London, UK
| | - Andrew R Wood
- Exeter Centre of Excellence for Diabetes Research (EXCEED), Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Tian Xie
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mohammad Hadi Zafarmand
- Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Jing-Hua Zhao
- Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Zorayr Arzumanyan
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Arne Astrup
- Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stephan J L Bakker
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Damiano Baldassarre
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Marian Beekman
- Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Richard N Bergman
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alain Bertoni
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Lori L Bonnycastle
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institues of Health, Bethesda, MD, USA
| | - Stefan R Bornstein
- Department for Prevention and Care of Diabetes, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Qiuyin Cai
- Department of Medicine, Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Yi Cheng Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Eco J C de Geus
- Department of Biological Psychology, Faculty of Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Shufa Du
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | | | - Aliki Eleni Farmaki
- Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, University College London, London, UK
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
| | - Mattias Frånberg
- Department of Medicine Solna, Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Yutang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Anette P Gjesing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anuj Goel
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sohee Han
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju, South Korea
| | - Catharina A Hartman
- Department of Psychiatry, Interdisciplinary Center Psychopathy and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Düsseldorf, Germany
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Bolzano, Italy
| | - Chang-Hsun Hsieh
- Internal Medicine, Endocrine and Metabolism, Tri-Service General Hospital, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Willa A Hsueh
- Internal Medicine, Endocrinology, Diabetes and Metabolism, Diabetes and Metabolism Research Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Michiya Igase
- Department of Anti-aging Medicine, Ehime University Graduate School of Medicine, Toon, Japan
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - W Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Marit E Jørgensen
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- National Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Rita R Kalyani
- Department of Medicine, Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fouad R Kandeel
- Clinical Diabetes, Endocrinology and Metabolism, Translational Research and Cellular Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Tomohiro Katsuya
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wieland Kiess
- Center of Pediatric Research, University Children's Hospital Leipzig, University of Leipzig Medical Center, Leipzig, Germany
| | - Ivana Kolcic
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - Teemu Kuulasmaa
- Institute of Biomedicine, Bioinformatics Center, Univeristy of Eastern Finland, Kuopio, Finland
| | - Johanna Kuusisto
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Kristi Läll
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kelvin Lam
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Nanette R Lee
- USC-Office of Population Studies Foundation, University of San Carlos, Cebu City, the Philippines
- Department of Anthropology, Sociology and History, University of San Carlos, Cebu City, the Philippines
| | - Rozenn N Lemaitre
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Honglan Li
- State Key Laboratory of Oncogene and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung, Taiwan
- National Defense Medical Center, National Yang-Ming University, Taipei, Taiwan
| | - Jaana Lindström
- Diabetes Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Carlos Lorenzo
- Department of Medicine, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Tatsuaki Matsubara
- Department of Internal Medicine, Aichi Gakuin University School of Dentistry, Nagoya, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Geltrude Mingrone
- Department of Diabetes, Diabetes, and Nutritional Sciences, James Black Centre, King's College London, London, UK
| | - Simon Mooijaart
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sanghoon Moon
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju, South Korea
| | - Toru Nabika
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan
| | - Girish N Nadkarni
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jerry L Nadler
- Department of Medicine and Pharmacology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Mari Nelis
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Matt J Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jill M Norris
- Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yasumasa Ohyagi
- Department of Geriatric Medicine and Neurology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Annette Peters
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ozren Polasek
- Department of Public Health, University of Split School of Medicine, Split, Croatia
- Gen-Info, Zagreb, Croatia
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, NY, USA
| | - Dennis Raven
- Department of Psychiatry, Interdisciplinary Center Psychopathy and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Dermot F Reilly
- Genetics and Pharmacogenomics, Merck Sharp & Dohme, Kenilworth, NJ, USA
| | - Alex Reiner
- Department of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Fernando Rivideneira
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Kathryn Roll
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Igor Rudan
- Centre for Global Health, The Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Charumathi Sabanayagam
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Kevin Sandow
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Naveed Sattar
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Jinxiu Shi
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Academy of Science & Technology (SAST), Shanghai, China
| | - Heather M Stringham
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Betina Thuesen
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Paul R H J Timmers
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- Medical Research Council Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Andre Uitterlinden
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National Univeristy of Singapore and National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Jana V van Vliet-Ostaptchouk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jagadish Vangipurapu
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Bornholms Hospital, Rønne, Denmark
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, NY, USA
| | - Ko Willems van Dijk
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Tatijana Zemunik
- Department of Human Biology, University of Split School of Medicine, Split, Croatia
| | - Gonçalo R Abecasis
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Linda S Adair
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA
| | - Carlos Alberto Aguilar-Salinas
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Medicas y Nutricion, Mexico City, Mexico
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición and Tec Salud, Mexico City, Mexico
- Instituto Tecnológico y de Estudios Superiores de Monterrey Tec Salud, Monterrey, Mexico
| | - Marta E Alarcón-Riquelme
- Department of Medical Genomics, Pfizer/University of Granada/Andalusian Government Center for Genomics and Oncological Research (GENYO), Granada, Spain
- Institute for Environmental Medicine, Chronic Inflammatory Diseases, Karolinska Institutet, Solna, Sweden
| | - Ping An
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St Louis, MO, USA
| | - Larissa Aviles-Santa
- Clinical and Health Services Research, National Institute on Minority Health and Health Disparities, Bethesda, MD, USA
| | - Diane M Becker
- Department of Medicine, General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lawrence J Beilin
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Corri Black
- Aberdeen Centre for Health Data Science, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Michael Boehnke
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Bernhard O Böhm
- Division of Endocrinology and Diabetes, Graduate School of Molecular Endocrinology and Diabetes, University of Ulm, Ulm, Germany
- LKC School of Medicine, Nanyang Technological University, Singapore and Imperial College London, UK, Singapore, Singapore
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - D I Boomsma
- Department of Biological Psychology, Faculty of Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Digital Health Center, Hasso Plattner Institut, University Potsdam, Potsdam, Germany
| | - Thomas A Buchanan
- University of Southern California Diabetes and Obesity Research Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
- Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Mickaël Canouil
- INSERM UMR 1283/CNRS UMR 8199, European Institute for Diabetes (EGID), Université de Lille, Lille, France
- INSERM UMR 1283/CNRS UMR 8199, European Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
| | - Mark J Caulfield
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - John C Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ching-Yu Cheng
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Francis S Collins
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institues of Health, Bethesda, MD, USA
| | - Adolfo Correa
- Department of Medicine, Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS, USA
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - H Janaka de Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Kallithea, Greece
| | - Sölve Elmståhl
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | | | - Luigi Ferrucci
- Intramural Research Program, National Institute of Aging, Baltimore, MD, USA
| | - Jose C Florez
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Paul W Franks
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmo, Sweden
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Timothy M Frayling
- Exeter Centre of Excellence for Diabetes Research (EXCEED), Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Philippe Froguel
- INSERM UMR 1283/CNRS UMR 8199, European Institute for Diabetes (EGID), Université de Lille, Lille, France
- INSERM UMR 1283/CNRS UMR 8199, European Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Department of Genomics of Common Disease, Imperial College London, London, UK
| | - Bruna Gigante
- Department of Medicine, Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mark O Goodarzi
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA
| | - Harald Grallert
- Institute of Epidemiology, Research Unit of Molecular Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sameline Grimsgaard
- Department of Community Medicine, Faculty of Health Sciences, UIT the Arctic University of Norway, Tromsø, Norway
| | - Leif Groop
- Diabetes Centre, Lund University, Lund, Sweden
- Finnish Institute of Molecular Medicine, Helsinki University, Helsinki, Finland
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Anders Hamsten
- Department of Medicine Solna, Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Susan R Heckbert
- Department of Epidemiology, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Bernardo L Horta
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
| | - Wei Huang
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Academy of Science & Technology (SAST), Shanghai, China
| | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Pankow S James
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Marjo-Ritta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Unit of Primary Health Care, Oulu Univerisity Hospital, OYS, Oulu, Finland
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Institute of Molecular and Clinical Ophthalmology Basel IOB, Basel, Switzerland
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | | | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, NY, USA
- Department of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Norihiro Kato
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Sirkka M Keinanen-Kiukaanniemi
- Faculty of Medicine, Institute of Health Sciences, University of Oulu, Oulu, Finland
- Unit of General Practice, Oulu University Hospital, Oulu, Finland
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju, South Korea
| | - Mika Kivimaki
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Heikki A Koistinen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, London, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Antje Körner
- Center of Pediatric Research, University Children's Hospital Leipzig, University of Leipzig Medical Center, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- IFB Adiposity Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Diana Kuh
- MRC Unit for Lifelong Health and Ageing at University College London, London, UK
| | - Meena Kumari
- Institute for Social and Economic Research, University of Essex, Colchester, UK
| | - Zoltan Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Institute of Primary Care and Public Health, Division of Biostatistics, University of Lausanne, Lausanne, Switzerland
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Timo A Lakka
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Karin Leander
- Institute of Environmental Medicine, Cardiovascular and Nutritional Epidemiology, Karolinska Institutet, Stockholm, Sweden
| | - Huaixing Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xu Lin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lars Lind
- Department of Medical Sciences, University of Uppsala, Uppsala, Sweden
| | - Cecilia Lindgren
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Simin Liu
- Department of Epidemiology, Brown University School of Public Health, Brown University, Providence, RI, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics and the Swedish Twin Registry, Karolinska Institutet, Stockholm, Sweden
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Trevor A Mori
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Patricia B Munroe
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Inger Njølstad
- Department of Community Medicine, Faculty of Health Sciences, UIT the Arctic University of Norway, Tromsø, Norway
| | - Jeffrey R O'Connell
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Albertine J Oldehinkel
- Department of Psychiatry, Interdisciplinary Center Psychopathy and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ken K Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Colin N A Palmer
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Craig E Pennell
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, New South Wales, Australia
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | | | - Michael A Province
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St Louis, MO, USA
| | - Bruce M Psaty
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Department of Epidemiology, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Department of Health Services, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Lu Qi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Leslie J Raffel
- Department of Pediatrics, Genetic and Genomic Medicine, University of California, Irvine, Irvine, CA, USA
| | - Rainer Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Susan Redline
- Department of Medicine, Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Havard Medical School, Boston, MA, USA
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Timo E Saaristo
- Tampere, Finnish Diabetes Association, Tampere, Finland
- Pirkanmaa Hospital District, Tampere, Finland
| | | | | | | | - Peter Schwarz
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department for Prevention and Care of Diabetes, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital and Faculty of Medicine, Dresden, Germany
| | - Laura J Scott
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Elizabeth Selvin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Peter Sever
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - P Eline Slagboom
- Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
| | - Blair H Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tamar Sofer
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Thorkild I A Sørensen
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Public Health, Section of Epidemiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
| | - Alice Stanton
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Claire J Steves
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
- Department of Ageing and Health, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Michael Stumvoll
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Liang Sun
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National Univeristy of Singapore and National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Cardiovascular and Metabolic Disease Signature Research Program, Duke-NUS Medical School, Singapore, Singapore
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Anke Tönjes
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Jaakko Tuomilehto
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Saudi Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Teresa Tusie
- Molecular Biology and Genomic Medicine Unit, National Institute of Medical Sciences and Nutrition, Mexico City, Mexico
- Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Matti Uusitupa
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Pim van der Harst
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Cornelia van Duijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Veronique Vitart
- Medical Research Council Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Tanja G M Vrijkotte
- Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Lynne E Wagenknecht
- Department of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mark Walker
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ya X Wang
- Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Nick J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Richard M Watanabe
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
- University of Southern California Diabetes and Obesity Research Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Hugh Watkins
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Wen B Wei
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | | | - Gonneke Willemsen
- Department of Biological Psychology, Faculty of Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- Medical Research Council Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Tien-Yin Wong
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Anny H Xiang
- Department of Research and Evaluation, Kaiser Permanente of Southern California, Pasadena, CA, USA
| | - Lisa R Yanek
- Department of Medicine, General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Loïc Yengo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | | | - Eleftheria Zeggini
- Department of Human Genetics, Wellcome Sanger Institute, Cambridge, UK
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA, USA
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - James B Meigs
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Robert A Scott
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Inga Prokopenko
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Section of Statistical Multi-omics, Department of Clinical and Experimental Research, University of Surrey, Guildford, UK
| | - Aaron Leong
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Diabetes Unit and Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Eleanor Wheeler
- Department of Human Genetics, Wellcome Sanger Institute, Cambridge, UK
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Andrew P Morris
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, UK
- Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, UK
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Inês Barroso
- Exeter Centre of Excellence for Diabetes Research (EXCEED), Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK.
- Department of Human Genetics, Wellcome Sanger Institute, Cambridge, UK.
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| |
Collapse
|
38
|
Bevacqua RJ, Dai X, Lam JY, Gu X, Friedlander MSH, Tellez K, Miguel-Escalada I, Bonàs-Guarch S, Atla G, Zhao W, Kim SH, Dominguez AA, Qi LS, Ferrer J, MacDonald PE, Kim SK. CRISPR-based genome editing in primary human pancreatic islet cells. Nat Commun 2021; 12:2397. [PMID: 33893274 PMCID: PMC8065166 DOI: 10.1038/s41467-021-22651-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/22/2021] [Indexed: 02/02/2023] Open
Abstract
Gene targeting studies in primary human islets could advance our understanding of mechanisms driving diabetes pathogenesis. Here, we demonstrate successful genome editing in primary human islets using clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9). CRISPR-based targeting efficiently mutated protein-coding exons, resulting in acute loss of islet β-cell regulators, like the transcription factor PDX1 and the KATP channel subunit KIR6.2, accompanied by impaired β-cell regulation and function. CRISPR targeting of non-coding DNA harboring type 2 diabetes (T2D) risk variants revealed changes in ABCC8, SIX2 and SIX3 expression, and impaired β-cell function, thereby linking regulatory elements in these target genes to T2D genetic susceptibility. Advances here establish a paradigm for genetic studies in human islet cells, and reveal regulatory and genetic mechanisms linking non-coding variants to human diabetes risk.
Collapse
Affiliation(s)
- Romina J Bevacqua
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiaoqing Dai
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Jonathan Y Lam
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Xueying Gu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mollie S H Friedlander
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Krissie Tellez
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Irene Miguel-Escalada
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Silvia Bonàs-Guarch
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Goutham Atla
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Weichen Zhao
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Seung Hyun Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Antonia A Dominguez
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
- Chem-H, Stanford University, Stanford, CA, USA
| | - Jorge Ferrer
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
- Section of Genetics and Genomics, Imperial College London, London, UK
| | - Patrick E MacDonald
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine (Endocrinology), Stanford University School of Medicine, Stanford, CA, USA.
- Northern California JDRF Center of Excellence, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
39
|
Spracklen CN, Sim X. Progress in Defining the Genetic Contribution to Type 2 Diabetes in Individuals of East Asian Ancestry. Curr Diab Rep 2021; 21:17. [PMID: 33846905 DOI: 10.1007/s11892-021-01388-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW Prevalence of type 2 diabetes (T2D) and progression of complications differ between worldwide populations. While obesity is a major contributing risk factor, variations in physiological manifestations, e.g., developing T2D at lower body mass index in some populations, suggest other contributing factors. Early T2D genetic associations were mostly discovered in European ancestry populations. This review describes the progression of genetic discoveries associated with T2D in individuals of East Asian ancestry in the last 10 years and highlights the shared genetic susceptibility between the population groups and additional insights into genetic contributions to T2D. RECENT FINDINGS Through increased sample size and power, new genetic associations with T2D were discovered in East Asian ancestry populations, often with higher allele frequencies than European ancestry populations. As we continue to generate maps of T2D-associated variants across diverse populations, there will be a critical need to expand and diversify other omics resources to enable integration for clinical translation.
Collapse
Affiliation(s)
- Cassandra N Spracklen
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, 715 North Pleasant Street, 429 Arnold House, Amherst, MA, 01002, USA.
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, #10-01, Tahir Foundation Building, Singapore, 117549, Singapore.
| |
Collapse
|
40
|
Global discovery of lupus genetic risk variant allelic enhancer activity. Nat Commun 2021; 12:1611. [PMID: 33712590 PMCID: PMC7955039 DOI: 10.1038/s41467-021-21854-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Genome-wide association studies of Systemic Lupus Erythematosus (SLE) nominate 3073 genetic variants at 91 risk loci. To systematically screen these variants for allelic transcriptional enhancer activity, we construct a massively parallel reporter assay (MPRA) library comprising 12,396 DNA oligonucleotides containing the genomic context around every allele of each SLE variant. Transfection into the Epstein-Barr virus-transformed B cell line GM12878 reveals 482 variants with enhancer activity, with 51 variants showing genotype-dependent (allelic) enhancer activity at 27 risk loci. Comparison of MPRA results in GM12878 and Jurkat T cell lines highlights shared and unique allelic transcriptional regulatory mechanisms at SLE risk loci. In-depth analysis of allelic transcription factor (TF) binding at and around allelic variants identifies one class of TFs whose DNA-binding motif tends to be directly altered by the risk variant and a second class of TFs that bind allelically without direct alteration of their motif by the variant. Collectively, our approach provides a blueprint for the discovery of allelic gene regulation at risk loci for any disease and offers insight into the transcriptional regulatory mechanisms underlying SLE. Thousands of genetic variants have been associated with lupus, but causal variants and mechanisms are unknown. Here, the authors combine a massively parallel reporter assay with genome-wide ChIP experiments to identify risk variants with allelic enhancer activity mediated through transcription factor binding.
Collapse
|
41
|
Kaur S, Mirza AH, Overgaard AJ, Pociot F, Størling J. A Dual Systems Genetics Approach Identifies Common Genes, Networks, and Pathways for Type 1 and 2 Diabetes in Human Islets. Front Genet 2021; 12:630109. [PMID: 33777101 PMCID: PMC7987941 DOI: 10.3389/fgene.2021.630109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Type 1 and 2 diabetes (T1/2D) are complex metabolic diseases caused by absolute or relative loss of functional β-cell mass, respectively. Both diseases are influenced by multiple genetic loci that alter disease risk. For many of the disease-associated loci, the causal candidate genes remain to be identified. Remarkably, despite the partially shared phenotype of the two diabetes forms, the associated loci for T1D and T2D are almost completely separated. We hypothesized that some of the genes located in risk loci for T1D and T2D interact in common pancreatic islet networks to mutually regulate important islet functions which are disturbed by disease-associated variants leading to β-cell dysfunction. To address this, we took a dual systems genetics approach. All genes located in 57 T1D and 243 T2D established genome-wide association studies (GWAS) loci were extracted and filtered for genes expressed in human islets using RNA sequencing data, and then integrated with; (1) human islet expression quantitative trait locus (eQTL) signals in linkage disequilibrium (LD) with T1D- and T2D-associated variants; or (2) with genes transcriptionally regulated in human islets by pro-inflammatory cytokines or palmitate as in vitro models of T1D and T2D, respectively. Our in silico systems genetics approaches created two interaction networks consisting of densely-connected T1D and T2D loci genes. The "T1D-T2D islet eQTL interaction network" identified 9 genes (GSDMB, CARD9, DNLZ, ERAP1, PPIP5K2, TMEM69, SDCCAG3, PLEKHA1, and HEMK1) in common T1D and T2D loci that harbor islet eQTLs in LD with disease-associated variants. The "cytokine and palmitate islet interaction network" identified 4 genes (ASCC2, HIBADH, RASGRP1, and SRGAP2) in common T1D and T2D loci whose expression is mutually regulated by cytokines and palmitate. Functional annotation analyses of the islet networks revealed a number of significantly enriched pathways and molecular functions including cell cycle regulation, inositol phosphate metabolism, lipid metabolism, and cell death and survival. In summary, our study has identified a number of new plausible common candidate genes and pathways for T1D and T2D.
Collapse
Affiliation(s)
- Simranjeet Kaur
- Department of Translational T1D Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Aashiq H Mirza
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Anne J Overgaard
- Department of Translational T1D Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Flemming Pociot
- Department of Translational T1D Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark.,Pediatric Department E, University Hospital, Herlev, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Størling
- Department of Translational T1D Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
42
|
Regué L, Zhao L, Ji F, Wang H, Avruch J, Dai N. RNA m6A reader IMP2/IGF2BP2 promotes pancreatic β-cell proliferation and insulin secretion by enhancing PDX1 expression. Mol Metab 2021; 48:101209. [PMID: 33705986 PMCID: PMC8076713 DOI: 10.1016/j.molmet.2021.101209] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is a common metabolic disease. Variants in human IGF2 mRNA binding protein 2 (IMP2/IGF2BP2) are associated with increased risk of T2D. IMP2 contributes to T2D susceptibility primarily through effects on insulin secretion. However, the underlying mechanism is not known. METHODS To understand the role of IMP2 in insulin secretion and T2D pathophysiology, we generated Imp2 pancreatic β-cell specific knockout mice (βIMP2KO) by recombining the Imp2flox allele with Cre recombinase driven by the rat insulin 2 promoter. We further characterized metabolic phenotypes of βIMP2KO mice and assessed their β-cell functions. RESULTS The deletion of IMP2 in pancreatic β-cells leads to reduced compensatory β-cell proliferation and function. Mechanically, IMP2 directly binds to Pdx1 mRNA and stimulates its translation in an m6A dependent manner. Moreover, IMP2 orchestrates IGF2-AKT-GSK3β-PDX1 signaling to stable PDX1 polypeptides. In human EndoC-βH1 cells, the over-expression of IMP2 is capable to enhance cell proliferation, PDX1 protein level and insulin secretion. CONCLUSION Our work therefore reveals IMP2 as a critical regulator of pancreatic β-cell proliferation and function; highlights the importance of posttranscriptional gene expression in T2D pathology.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Animals
- Cell Line
- Cell Proliferation/genetics
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Gene Knockout Techniques
- Homeodomain Proteins/metabolism
- Humans
- Insulin Secretion/genetics
- Insulin, Regular, Human/administration & dosage
- Insulin, Regular, Human/genetics
- Insulin, Regular, Human/metabolism
- Insulin-Secreting Cells/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Rats
- Signal Transduction/genetics
- Trans-Activators/metabolism
- Transfection
Collapse
Affiliation(s)
- Laura Regué
- Department of Molecular Biology and Diabetes Unit of the Medical Services, Massachusetts General Hospital, Boston, 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Liping Zhao
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Fei Ji
- Department of Molecular Biology and Diabetes Unit of the Medical Services, Massachusetts General Hospital, Boston, 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Hua Wang
- The Lundquist Institute, Harbor-UCLA, Torrance, CA, 90502, USA
| | - Joseph Avruch
- Department of Molecular Biology and Diabetes Unit of the Medical Services, Massachusetts General Hospital, Boston, 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Ning Dai
- Department of Molecular Biology and Diabetes Unit of the Medical Services, Massachusetts General Hospital, Boston, 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
43
|
Fan J, Wang X, Xiao R, Li M. Detecting cell-type-specific allelic expression imbalance by integrative analysis of bulk and single-cell RNA sequencing data. PLoS Genet 2021; 17:e1009080. [PMID: 33661921 PMCID: PMC7963069 DOI: 10.1371/journal.pgen.1009080] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 03/16/2021] [Accepted: 02/09/2021] [Indexed: 12/27/2022] Open
Abstract
Allelic expression imbalance (AEI), quantified by the relative expression of two alleles of a gene in a diploid organism, can help explain phenotypic variations among individuals. Traditional methods detect AEI using bulk RNA sequencing (RNA-seq) data, a data type that averages out cell-to-cell heterogeneity in gene expression across cell types. Since the patterns of AEI may vary across different cell types, it is desirable to study AEI in a cell-type-specific manner. Although this can be achieved by single-cell RNA sequencing (scRNA-seq), it requires full-length transcript to be sequenced in single cells of a large number of individuals, which are still cost prohibitive to generate. To overcome this limitation and utilize the vast amount of existing disease relevant bulk tissue RNA-seq data, we developed BSCET, which enables the characterization of cell-type-specific AEI in bulk RNA-seq data by integrating cell type composition information inferred from a small set of scRNA-seq samples, possibly obtained from an external dataset. By modeling covariate effect, BSCET can also detect genes whose cell-type-specific AEI are associated with clinical factors. Through extensive benchmark evaluations, we show that BSCET correctly detected genes with cell-type-specific AEI and differential AEI between healthy and diseased samples using bulk RNA-seq data. BSCET also uncovered cell-type-specific AEIs that were missed in bulk data analysis when the directions of AEI are opposite in different cell types. We further applied BSCET to two pancreatic islet bulk RNA-seq datasets, and detected genes showing cell-type-specific AEI that are related to the progression of type 2 diabetes. Since bulk RNA-seq data are easily accessible, BSCET provides a convenient tool to integrate information from scRNA-seq data to gain insight on AEI with cell type resolution. Results from such analysis will advance our understanding of cell type contributions in human diseases. Detection of allelic expression imbalance (AEI), a phenomenon where the two alleles of a gene differ in their expression magnitude, is a key step towards the understanding of phenotypic variations among individuals. Existing methods detect AEI using bulk RNA sequencing (RNA-seq) data and ignore AEI variations among different cell types. Although single-cell RNA sequencing (scRNA-seq) has enabled the characterization of cell-to-cell heterogeneity in gene expression, the high costs have limited its application in AEI analysis. To overcome this limitation, we developed BSCET to characterize cell-type-specific AEI using the widely available bulk RNA-seq data by integrating cell-type composition information inferred from scRNA-seq samples. Since the degree of AEI may vary with disease phenotypes, we further extended BSCET to detect genes whose cell-type-specific AEIs are associated with clinical factors. Through extensive benchmark evaluations and analyses of two pancreatic islet bulk RNA-seq datasets, we demonstrated BSCET’s ability to refine bulk-level AEI to cell-type resolution, and to identify genes whose cell-type-specific AEIs are associated with the progression of type 2 diabetes. With the vast amount of easily accessible bulk RNA-seq data, we believe BSCET will be a valuable tool for elucidating cell type contributions in human diseases.
Collapse
Affiliation(s)
- Jiaxin Fan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Xuran Wang
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (RX); (ML)
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (RX); (ML)
| |
Collapse
|
44
|
Sinnott-Armstrong N, Sousa IS, Laber S, Rendina-Ruedy E, Nitter Dankel SE, Ferreira T, Mellgren G, Karasik D, Rivas M, Pritchard J, Guntur AR, Cox RD, Lindgren CM, Hauner H, Sallari R, Rosen CJ, Hsu YH, Lander ES, Kiel DP, Claussnitzer M. A regulatory variant at 3q21.1 confers an increased pleiotropic risk for hyperglycemia and altered bone mineral density. Cell Metab 2021; 33:615-628.e13. [PMID: 33513366 PMCID: PMC7928941 DOI: 10.1016/j.cmet.2021.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 11/14/2019] [Accepted: 12/31/2020] [Indexed: 02/07/2023]
Abstract
Skeletal and glycemic traits have shared etiology, but the underlying genetic factors remain largely unknown. To identify genetic loci that may have pleiotropic effects, we studied Genome-wide association studies (GWASs) for bone mineral density and glycemic traits and identified a bivariate risk locus at 3q21. Using sequence and epigenetic modeling, we prioritized an adenylate cyclase 5 (ADCY5) intronic causal variant, rs56371916. This SNP changes the binding affinity of SREBP1 and leads to differential ADCY5 gene expression, altering the chromatin landscape from poised to repressed. These alterations result in bone- and type 2 diabetes-relevant cell-autonomous changes in lipid metabolism in osteoblasts and adipocytes. We validated our findings by directly manipulating the regulator SREBP1, the target gene ADCY5, and the variant rs56371916, which together imply a novel link between fatty acid oxidation and osteoblast differentiation. Our work, by systematic functional dissection of pleiotropic GWAS loci, represents a framework to uncover biological mechanisms affecting pleiotropic traits.
Collapse
Affiliation(s)
- Nasa Sinnott-Armstrong
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Cell Circuits and Epigenomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Stanford University, Stanford 94305 CA, USA
| | - Isabel S Sousa
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Samantha Laber
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Cell Circuits and Epigenomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Big Data Institute, University of Oxford, Oxford, UK
| | - Elizabeth Rendina-Ruedy
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | - Simon E Nitter Dankel
- University of Bergen, Bergen 5020, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway; Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway
| | | | - Gunnar Mellgren
- University of Bergen, Bergen 5020, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway; Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway
| | - David Karasik
- Institute for Aging Research, Hebrew SeniorLife and Harvard Medical School, Boston, MA 02131, USA; Faculty of Medicine of the Galilee, Bar-Ilan University, Safed, Israel
| | - Manuel Rivas
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Pritchard
- Department of Genetics, Stanford University, Stanford 94305 CA, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Anyonya R Guntur
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | - Roger D Cox
- Medical Research Council Harwell, Oxfordshire, UK
| | - Cecilia M Lindgren
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Big Data Institute, University of Oxford, Oxford, UK
| | - Hans Hauner
- Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising 85354, Germany; Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Freising 85354, Germany; Clinical Cooperation Group "Nutrigenomics and Type 2 Diabetes" of the German Center of Diabetes Research, Helmholtz Center Munich, Munich 85764, Germany
| | - Richard Sallari
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Clifford J Rosen
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | - Yi-Hsiang Hsu
- Institute for Aging Research, Hebrew SeniorLife and Harvard Medical School, Boston, MA 02131, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02131, USA
| | - Eric S Lander
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Cell Circuits and Epigenomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Douglas P Kiel
- Institute for Aging Research, Hebrew SeniorLife and Harvard Medical School, Boston, MA 02131, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02131, USA
| | - Melina Claussnitzer
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Cell Circuits and Epigenomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02131, USA; University of Hohenheim, Institute of Nutritional Science, Stuttgart 70599, Germany.
| |
Collapse
|
45
|
Schwartzentruber J, Cooper S, Liu JZ, Barrio-Hernandez I, Bello E, Kumasaka N, Young AMH, Franklin RJM, Johnson T, Estrada K, Gaffney DJ, Beltrao P, Bassett A. Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer's disease risk genes. Nat Genet 2021; 53:392-402. [PMID: 33589840 PMCID: PMC7610386 DOI: 10.1038/s41588-020-00776-w] [Citation(s) in RCA: 257] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 12/23/2020] [Indexed: 01/30/2023]
Abstract
Genome-wide association studies have discovered numerous genomic loci associated with Alzheimer's disease (AD); yet the causal genes and variants are incompletely identified. We performed an updated genome-wide AD meta-analysis, which identified 37 risk loci, including new associations near CCDC6, TSPAN14, NCK2 and SPRED2. Using three SNP-level fine-mapping methods, we identified 21 SNPs with >50% probability each of being causally involved in AD risk and others strongly suggested by functional annotation. We followed this with colocalization analyses across 109 gene expression quantitative trait loci datasets and prioritization of genes by using protein interaction networks and tissue-specific expression. Combining this information into a quantitative score, we found that evidence converged on likely causal genes, including the above four genes, and those at previously discovered AD loci, including BIN1, APH1B, PTK2B, PILRA and CASS4.
Collapse
Affiliation(s)
- Jeremy Schwartzentruber
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK.
- Open Targets, Wellcome Genome Campus, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
| | - Sarah Cooper
- Open Targets, Wellcome Genome Campus, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Inigo Barrio-Hernandez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Cambridge, UK
| | - Erica Bello
- Open Targets, Wellcome Genome Campus, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Adam M H Young
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Robin J M Franklin
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Toby Johnson
- Target Sciences-R&D, GSK Medicines Research Centre, Stevenage, UK
| | | | - Daniel J Gaffney
- Open Targets, Wellcome Genome Campus, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Genomics Plc, Oxford, UK
| | - Pedro Beltrao
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Cambridge, UK
| | - Andrew Bassett
- Open Targets, Wellcome Genome Campus, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
| |
Collapse
|
46
|
Fløyel T, Meyerovich K, Prause MC, Kaur S, Frørup C, Mortensen HB, Nielsen LB, Pociot F, Cardozo AK, Størling J. SKAP2, a Candidate Gene for Type 1 Diabetes, Regulates β-Cell Apoptosis and Glycemic Control in Newly Diagnosed Patients. Diabetes 2021; 70:464-476. [PMID: 33203694 PMCID: PMC7881866 DOI: 10.2337/db20-0092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 11/10/2020] [Indexed: 01/27/2023]
Abstract
The single nucleotide polymorphism rs7804356 located in the Src kinase-associated phosphoprotein 2 (SKAP2) gene is associated with type 1 diabetes (T1D), suggesting SKAP2 as a causal candidate gene. The objective of the study was to investigate if SKAP2 has a functional role in the β-cells in relation to T1D. In a cohort of children with newly diagnosed T1D, rs7804356 predicted glycemic control and residual β-cell function during the 1st year after diagnosis. In INS-1E cells and rat and human islets, proinflammatory cytokines reduced the content of SKAP2. Functional studies revealed that knockdown of SKAP2 aggravated cytokine-induced apoptosis in INS-1E cells and primary rat β-cells, suggesting an antiapoptotic function of SKAP2. In support of this, overexpression of SKAP2 afforded protection against cytokine-induced apoptosis, which correlated with reduced nuclear content of S536-phosphorylated nuclear factor-κB (NF-κB) subunit p65, lower nitric oxide production, and diminished CHOP expression indicative of decreased endoplasmic reticulum stress. Knockdown of CHOP partially counteracted the increase in cytokine-induced apoptosis caused by SKAP2 knockdown. In conclusion, our results suggest that SKAP2 controls β-cell sensitivity to cytokines possibly by affecting the NF-κB-inducible nitric oxide synthase-endoplasmic reticulum stress pathway.
Collapse
Affiliation(s)
- Tina Fløyel
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Kira Meyerovich
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Michala C Prause
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simranjeet Kaur
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Caroline Frørup
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Henrik B Mortensen
- Department of Pediatrics E, Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lotte B Nielsen
- Department of Pediatrics E, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Alessandra K Cardozo
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Joachim Størling
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
47
|
Liu M, Huang Y, Xu X, Li X, Alam M, Arunagiri A, Haataja L, Ding L, Wang S, Itkin-Ansari P, Kaufman RJ, Tsai B, Qi L, Arvan P. Normal and defective pathways in biogenesis and maintenance of the insulin storage pool. J Clin Invest 2021; 131:142240. [PMID: 33463547 PMCID: PMC7810482 DOI: 10.1172/jci142240] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Both basal and glucose-stimulated insulin release occur primarily by insulin secretory granule exocytosis from pancreatic β cells, and both are needed to maintain normoglycemia. Loss of insulin-secreting β cells, accompanied by abnormal glucose tolerance, may involve simple exhaustion of insulin reserves (which, by immunostaining, appears as a loss of β cell identity), or β cell dedifferentiation, or β cell death. While various sensing and signaling defects can result in diminished insulin secretion, somewhat less attention has been paid to diabetes risk caused by insufficiency in the biosynthetic generation and maintenance of the total insulin granule storage pool. This Review offers an overview of insulin biosynthesis, beginning with the preproinsulin mRNA (translation and translocation into the ER), proinsulin folding and export from the ER, and delivery via the Golgi complex to secretory granules for conversion to insulin and ultimate hormone storage. All of these steps are needed for generation and maintenance of the total insulin granule pool, and defects in any of these steps may, weakly or strongly, perturb glycemic control. The foregoing considerations have obvious potential relevance to the pathogenesis of type 2 diabetes and some forms of monogenic diabetes; conceivably, several of these concepts might also have implications for β cell failure in type 1 diabetes.
Collapse
Affiliation(s)
- Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Yumeng Huang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Xiaoxi Xu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Xin Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Maroof Alam
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Leena Haataja
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Li Ding
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Tianjin, China
| | | | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Billy Tsai
- Department of Cell and Developmental Biology, and
| | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
48
|
Torres JM, Abdalla M, Payne A, Fernandez-Tajes J, Thurner M, Nylander V, Gloyn AL, Mahajan A, McCarthy MI. A Multi-omic Integrative Scheme Characterizes Tissues of Action at Loci Associated with Type 2 Diabetes. Am J Hum Genet 2020; 107:1011-1028. [PMID: 33186544 PMCID: PMC7820628 DOI: 10.1016/j.ajhg.2020.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/20/2020] [Indexed: 12/30/2022] Open
Abstract
Resolving the molecular processes that mediate genetic risk remains a challenge because most disease-associated variants are non-coding and functional characterization of these signals requires knowledge of the specific tissues and cell-types in which they operate. To address this challenge, we developed a framework for integrating tissue-specific gene expression and epigenomic maps to obtain "tissue-of-action" (TOA) scores for each association signal by systematically partitioning posterior probabilities from Bayesian fine-mapping. We applied this scheme to credible set variants for 380 association signals from a recent GWAS meta-analysis of type 2 diabetes (T2D) in Europeans. The resulting tissue profiles underscored a predominant role for pancreatic islets and, to a lesser extent, adipose and liver, particularly among signals with greater fine-mapping resolution. We incorporated resulting TOA scores into a rule-based classifier and validated the tissue assignments through comparison with data from cis-eQTL enrichment, functional fine-mapping, RNA co-expression, and patterns of physiological association. In addition to implicating signals with a single TOA, we found evidence for signals with shared effects in multiple tissues as well as distinct tissue profiles between independent signals within heterogeneous loci. Lastly, we demonstrated that TOA scores can be directly coupled with eQTL colocalization to further resolve effector transcripts at T2D signals. This framework guides mechanistic inference by directing functional validation studies to the most relevant tissues and can gain power as fine-mapping resolution and cell-specific annotations become richer. This method is generalizable to all complex traits with relevant annotation data and is made available as an R package.
Collapse
Affiliation(s)
- Jason M. Torres
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Moustafa Abdalla
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Anthony Payne
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Juan Fernandez-Tajes
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Matthias Thurner
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK,Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
| | - Vibe Nylander
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
| | - Anna L. Gloyn
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK,Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK,Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Anubha Mahajan
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK,Corresponding author
| | - Mark I. McCarthy
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK,Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK,Corresponding author
| |
Collapse
|
49
|
El Bitar F, Al Sudairy N, Qadi N, Al Rajeh S, Alghamdi F, Al Amari H, Al Dawsari G, Alsubaie S, Al Sudairi M, Abdulaziz S, Al Tassan N. A Comprehensive Analysis of Unique and Recurrent Copy Number Variations in Alzheimer's Disease and its Related Disorders. Curr Alzheimer Res 2020; 17:926-938. [PMID: 33256577 DOI: 10.2174/1567205017666201130111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/20/2020] [Accepted: 10/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Copy number variations (CNVs) play an important role in the genetic etiology of various neurological disorders, including Alzheimer's disease (AD). Type 2 diabetes mellitus (T2DM) and major depressive disorder (MDD) were shown to have share mechanisms and signaling pathways with AD. OBJECTIVE We aimed to assess CNVs regions that may harbor genes contributing to AD, T2DM, and MDD in 67 Saudi familial and sporadic AD patients, with no alterations in the known genes of AD and genotyped previously for APOE. METHODS DNA was analyzed using the CytoScan-HD array. Two layers of filtering criteria were applied. All the identified CNVs were checked in the Database of Genomic Variants (DGV). RESULTS A total of 1086 CNVs (565 gains and 521 losses) were identified in our study. We found 73 CNVs harboring genes that may be associated with AD, T2DM or MDD. Nineteen CNVs were novel. Most importantly, 42 CNVs were unique in our studied cohort existing only in one patient. Two large gains on chromosomes 1 and 13 harbored genes implicated in the studied disorders. We identified CNVs in genes that encode proteins involved in the metabolism of amyloid-β peptide (AGRN, APBA2, CR1, CR2, IGF2R, KIAA0125, MBP, RER1, RTN4R, VDR and WISPI) or Tau proteins (CACNAIC, CELF2, DUSP22, HTRA1 and SLC2A14). CONCLUSION The present work provided information on the presence of CNVs related to AD, T2DM, and MDD in Saudi Alzheimer's patients.
Collapse
Affiliation(s)
- Fadia El Bitar
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nourah Al Sudairy
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Najeeb Qadi
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Fatimah Alghamdi
- Institute of Biology and Environmental Research, National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Hala Al Amari
- Institute of Biology and Environmental Research, National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Ghadeer Al Dawsari
- Institute of Biology and Environmental Research, National Center for Genomics Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Sahar Alsubaie
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mishael Al Sudairi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sara Abdulaziz
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nada Al Tassan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
50
|
Viñuela A, Varshney A, van de Bunt M, Prasad RB, Asplund O, Bennett A, Boehnke M, Brown AA, Erdos MR, Fadista J, Hansson O, Hatem G, Howald C, Iyengar AK, Johnson P, Krus U, MacDonald PE, Mahajan A, Manning Fox JE, Narisu N, Nylander V, Orchard P, Oskolkov N, Panousis NI, Payne A, Stitzel ML, Vadlamudi S, Welch R, Collins FS, Mohlke KL, Gloyn AL, Scott LJ, Dermitzakis ET, Groop L, Parker SCJ, McCarthy MI. Genetic variant effects on gene expression in human pancreatic islets and their implications for T2D. Nat Commun 2020; 11:4912. [PMID: 32999275 PMCID: PMC7528108 DOI: 10.1038/s41467-020-18581-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/12/2020] [Indexed: 02/08/2023] Open
Abstract
Most signals detected by genome-wide association studies map to non-coding sequence and their tissue-specific effects influence transcriptional regulation. However, key tissues and cell-types required for functional inference are absent from large-scale resources. Here we explore the relationship between genetic variants influencing predisposition to type 2 diabetes (T2D) and related glycemic traits, and human pancreatic islet transcription using data from 420 donors. We find: (a) 7741 cis-eQTLs in islets with a replication rate across 44 GTEx tissues between 40% and 73%; (b) marked overlap between islet cis-eQTL signals and active regulatory sequences in islets, with reduced eQTL effect size observed in the stretch enhancers most strongly implicated in GWAS signal location; (c) enrichment of islet cis-eQTL signals with T2D risk variants identified in genome-wide association studies; and (d) colocalization between 47 islet cis-eQTLs and variants influencing T2D or glycemic traits, including DGKB and TCF7L2. Our findings illustrate the advantages of performing functional and regulatory studies in disease relevant tissues.
Collapse
Affiliation(s)
- Ana Viñuela
- grid.8591.50000 0001 2322 4988Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland ,grid.8591.50000 0001 2322 4988Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland ,grid.419765.80000 0001 2223 3006Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland ,grid.1006.70000 0001 0462 7212Biosciences Institute, Faculty of Medical Sciences, Newcastle University, NE1 4EP Newcastle, UK
| | - Arushi Varshney
- grid.214458.e0000000086837370Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109 USA
| | - Martijn van de Bunt
- grid.4991.50000 0004 1936 8948Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN UK ,grid.4991.50000 0004 1936 8948Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE UK ,grid.410556.30000 0001 0440 1440Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, OX3 7LE UK
| | - Rashmi B. Prasad
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Olof Asplund
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Amanda Bennett
- grid.4991.50000 0004 1936 8948Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN UK
| | - Michael Boehnke
- grid.214458.e0000000086837370Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109 USA
| | - Andrew A. Brown
- grid.8591.50000 0001 2322 4988Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland ,grid.8591.50000 0001 2322 4988Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland ,grid.419765.80000 0001 2223 3006Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland ,grid.8241.f0000 0004 0397 2876Population Health and Genomics, University of Dundee, Dundee, Scotland, DD1 9SY UK
| | - Michael R. Erdos
- grid.280128.10000 0001 2233 9230Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - João Fadista
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden ,grid.6203.70000 0004 0417 4147Department of Epidemiology Research, Statens Serum Institut, Copenhagen, DK 2300 Denmark ,grid.7737.40000 0004 0410 2071Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Ola Hansson
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden ,grid.7737.40000 0004 0410 2071Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Gad Hatem
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Cédric Howald
- grid.8591.50000 0001 2322 4988Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland ,grid.8591.50000 0001 2322 4988Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland ,grid.419765.80000 0001 2223 3006Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland
| | - Apoorva K. Iyengar
- grid.410711.20000 0001 1034 1720Department of Genetics, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Paul Johnson
- grid.4991.50000 0004 1936 8948Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN UK
| | - Ulrika Krus
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Patrick E. MacDonald
- grid.17089.37Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta Canada
| | - Anubha Mahajan
- grid.4991.50000 0004 1936 8948Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN UK ,grid.418158.10000 0004 0534 4718Present Address: Human Genetics, Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - Jocelyn E. Manning Fox
- grid.17089.37Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta Canada
| | - Narisu Narisu
- grid.280128.10000 0001 2233 9230Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Vibe Nylander
- grid.4991.50000 0004 1936 8948Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE UK
| | - Peter Orchard
- grid.214458.e0000000086837370Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109 USA
| | - Nikolay Oskolkov
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Nikolaos I. Panousis
- grid.8591.50000 0001 2322 4988Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland ,grid.8591.50000 0001 2322 4988Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland ,grid.419765.80000 0001 2223 3006Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland
| | - Anthony Payne
- grid.4991.50000 0004 1936 8948Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN UK
| | - Michael L. Stitzel
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA ,grid.63054.340000 0001 0860 4915Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut, Farmington, CT 06032 USA
| | - Swarooparani Vadlamudi
- grid.410711.20000 0001 1034 1720Department of Genetics, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Ryan Welch
- grid.214458.e0000000086837370Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109 USA
| | - Francis S. Collins
- grid.280128.10000 0001 2233 9230Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Karen L. Mohlke
- grid.410711.20000 0001 1034 1720Department of Genetics, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Anna L. Gloyn
- grid.4991.50000 0004 1936 8948Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN UK ,grid.4991.50000 0004 1936 8948Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE UK ,grid.410556.30000 0001 0440 1440Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, OX3 7LE UK ,grid.168010.e0000000419368956Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford University, Stanford, CA USA
| | - Laura J. Scott
- grid.214458.e0000000086837370Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109 USA
| | - Emmanouil T. Dermitzakis
- grid.8591.50000 0001 2322 4988Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland ,grid.8591.50000 0001 2322 4988Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland ,grid.419765.80000 0001 2223 3006Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland
| | - Leif Groop
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden ,grid.7737.40000 0004 0410 2071Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Stephen C. J. Parker
- grid.214458.e0000000086837370Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109 USA
| | - Mark I. McCarthy
- grid.4991.50000 0004 1936 8948Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN UK ,grid.4991.50000 0004 1936 8948Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE UK ,grid.410556.30000 0001 0440 1440Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, OX3 7LE UK ,grid.418158.10000 0004 0534 4718Present Address: Human Genetics, Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| |
Collapse
|