1
|
Craze AM, Bartle C, Roper C. Impact of PM 2.5 filter extraction solvent on oxidative potential and chemical analysis. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024:1-20. [PMID: 39436942 DOI: 10.1080/10962247.2024.2417736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/20/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Fine particulate matter (PM2.5) is hypothesized to induce oxidative stress, and has been linked to acute and chronic adverse health effects. To better understand the risks and underlying mechanisms following exposure, PM2.5 is collected onto filters but prior to toxicological analysis, particles must be removed from filters. There is no standard method for filter extraction, which creates the possibility that the methods of extraction selected can alter the chemical composition and ultimately the biological implications. In this study, comparisons were made between extraction solvents (methanol (MeOH), dichloromethane (DCM), 0.9% saline, and Milli-Q water) and the results of oxidative potential and elemental concentration analysis of PM2.5 collected across sites in Arkansas, USA. Significant differences were observed between solvents, with DCM having significantly different results compared to all other extraction solvents (p ≤ 0.001). Significant correlations between element, black carbon, and PM2.5 concentrations and oxidative potential were observed. The observed correlations were extraction solvent dependent. For example, in saline extracted samples, oxidative potential had significant negative correlations with: Ba, Cd, Ce, Co, Ga, Mn and significant positive correlations with: Cr, Ni, Th, U. While in MeOH extracted samples, significant positive correlations were only between oxidative potential and Ga, U and significant negative correlations with V. This indicates that PM2.5 samples extracted with different solvents will yield different conclusions about the causal components. This study highlights the importance of filter extraction methods in interpretation of oxidative potential results and comparisons between studies.Implications: While there is no standard method for PM2.5 filter extraction, variation of extraction methods impact analytical results. This project identifies that extraction method variation, particularly extraction solvent selection, leads to discrepancies in chemical and toxicological analysis for PM2.5 collected on the same filter. This work highlights the need for methods standardization to support accurate comparisons between PM2.5 research studies, thus providing better understanding of PM2.5 across the globe.
Collapse
Affiliation(s)
- Amelia M Craze
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
| | - Christopher Bartle
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
| | - Courtney Roper
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
| |
Collapse
|
2
|
Yu H, Wang Y, Puthussery JV, Verma V. Sources of acellular oxidative potential of water-soluble fine ambient particulate matter in the midwestern United States. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134763. [PMID: 38843639 DOI: 10.1016/j.jhazmat.2024.134763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024]
Abstract
Ambient fine particulate matter (PM2.5) is associated with numerous health complications, yet the specific PM2.5 chemical components and their emission sources contributing to these health outcomes are understudied. Our study analyzes the chemical composition of PM2.5 collected from five distinct locations at urban, roadside and rural environments in midwestern region of the United States, and associates them with five acellular oxidative potential (OP) endpoints of water-soluble PM2.5. Redox-active metals (i.e., Cu, Fe, and Mn) and carbonaceous species were correlated with most OP endpoints, suggesting their significant role in OP. We conducted a source apportionment analysis using positive matrix factorization (PMF) and found a strong disparity in the contribution of various emission sources to PM2.5 mass vs. OP. Regional secondary sources and combustion-related aerosols contributed significantly (> 75 % in total) to PM2.5 mass, but showed weaker contribution (43-69 %) to OP. Local sources such as parking emissions, industrial emissions, and agricultural activities, though accounting marginally to PM2.5 mass (< 10 % for each), significantly contributed to various OP endpoints (10-50 %). Our results demonstrate that the sources contributing to PM2.5 mass and health effects are not necessarily same, emphasizing the need for an improved air quality management strategy utilizing more health-relevant PM2.5 indicators.
Collapse
Affiliation(s)
- Haoran Yu
- Department of Civil and Environmental Engineering, University of Alberta, 9211 116th St, Edmonton, AB T6G 1H9, Canada; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801, United States
| | - Yixiang Wang
- College of Health, Lehigh University, 124 E Morton St, Bethlehem, PA 18015, United States; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801, United States
| | - Joseph V Puthussery
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130-4899, United States; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801, United States
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801, United States.
| |
Collapse
|
3
|
Avramescu ML, Casey K, Levesque C, Chen J, Wiseman C, Beauchemin S. Identification and quantification of trace metal(loid)s in water-extractable road dust nanoparticles using SP-ICP-MS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171720. [PMID: 38490431 DOI: 10.1016/j.scitotenv.2024.171720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Resuspension of road dust is a major source of airborne particulate matter (PM) in urban environments. Inhalation of ultrafine particles (UFP; < 0.1 μm) represents a health concern due to their ability to reach the alveoli and be translocated into the blood stream. It is therefore important to characterize chemical properties of UFPs associated with vehicle emissions. We investigated the capability of Single-Particle ICP-MS (SP-ICP-MS) to quantify key metal(loid)s in nanoparticles (NPs; < 0.1 μm) isolated from road dust collected in Toronto, Canada. Water extraction was performed to separate the <1-μm fraction from two different road dust samples (local road vs. arterial road) and a multi-element SP-ICP-MS analysis was then conducted on the samples' supernatants. Based on the particle number concentrations obtained for both supernatants, the metal(loid)-containing NPs could be grouped in the following categories: high (Cu and Zn, > 1.3 × 1011 particles/L), medium (V, Cr, Ba, Pb, Sb, Ce, La), low (As, Co, Ni, < 4.6 × 109 particles/L). The limit of detection for particle number concentration was below 5.5 × 106 particles/L for most elements, except for Cu, Co, Ni, Cr, and V (between 0.9 and 7.7 × 107 particles/L). The results demonstrate that road dust contains a wide range of readily mobilizable metal(loid)-bearing NPs and that NP numbers may vary as a function of road type. These findings have important implications for human health risk assessments in urban areas. Further research is needed, however, to comprehensively assess the NP content of road dust as influenced by various factors, including traffic volume and speed, fleet composition, and street sweeping frequency. The described method can quickly characterize multiple isotopes per sample in complex matrices, and offers the advantage of rapid sample scanning for the identification of NPs containing potentially toxic transition metal(loid)s at a low detection limit.
Collapse
Affiliation(s)
- Mary-Luyza Avramescu
- Environmental Health Science and Research Bureau, HECS Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada..
| | - Katherine Casey
- Environmental Health Science and Research Bureau, HECS Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
| | - Christine Levesque
- Environmental Health Science and Research Bureau, HECS Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
| | - Jian Chen
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
| | - Clare Wiseman
- School of the Environment, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Suzanne Beauchemin
- Environmental Health Science and Research Bureau, HECS Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
| |
Collapse
|
4
|
Raparthi N, Yadav S, Khare A, Dubey S, Phuleria HC. Chemical and oxidative properties of fine particulate matter from near-road traffic sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122514. [PMID: 37678733 DOI: 10.1016/j.envpol.2023.122514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
The toxicity associated with the fine particulate matter (PM2.5) has not been well studied, particularly in relation to the emissions from on-road vehicles and other sources in low- and middle-income countries such as India. Thus, a study was conducted to examine the oxidative potential (OP) of PM2.5 at a roadside (RS) site with heavy vehicular traffic and an urban background (BG) site in Mumbai using the dithiothreitol (DTT) assay. Simultaneous gravimetric PM2.5 was measured at both sites and characterized for carbonaceous constituents and water-soluble trace elements and metals. Results depicted higher PM2.5, elemental carbon (EC), and organic carbon (OC) concentrations on the RS than BG (by a factor of 1.7, 4.6, and 1.2, respectively), while BG had higher water-soluble organic carbon (WSOC) levels (by a factor of 1.4) and a higher WSOC to OC ratio (86%), likely due to the dominance of secondary aerosol formation. In contrast, the measured OPDTTv at RS (8.9 ± 5.5 nmol/min/m3) and BG (8.1 ± 6.4 nmol/min/m3) sites were similar. However, OPDTTv at BG was higher during the afternoon, suggesting the influence of photochemical transformation on measured OPDTTv at BG. At RS, OC and redox-active metals (Cu, Zn, Mn, and Fe) were significantly associated with measured OP (p < 0.05), while at BG, WSOC was most strongly associated (p < 0.05). The coefficient of divergence (COD) for PM2.5, its chemical species, and OPDTTv was >0.2, indicating spatial heterogeneity between the sites, and differences in emission sources and toxicity. The estimated hazard index (HI) was not associated with OPDTTv, indicating that current PM2.5 mass regulations may not adequately capture the health effects of PM2.5. The study highlights the need for further studies examining PM2.5 toxicity and developing toxicity-based air quality regulations.
Collapse
Affiliation(s)
- Nagendra Raparthi
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, India; Air Quality Research Center, University of California Davis, Davis, CA, USA
| | - Suman Yadav
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, India
| | - Ashi Khare
- Centre for Technology Alternatives for Rural Areas, Indian Institute of Technology Bombay, Mumbai, India
| | - Shreya Dubey
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, India
| | - Harish C Phuleria
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, India; IDP in Climate Studies, Indian Institute of Technology Bombay, Mumbai, India; Koita Centre for Digital Health, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
5
|
Schiavo B, Meza-Figueroa D, Vizuete-Jaramillo E, Robles-Morua A, Angulo-Molina A, Reyes-Castro PA, Inguaggiato C, Gonzalez-Grijalva B, Pedroza-Montero M. Oxidative potential of metal-polluted urban dust as a potential environmental stressor for chronic diseases. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3229-3250. [PMID: 36197533 DOI: 10.1007/s10653-022-01403-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/21/2022] [Indexed: 06/01/2023]
Abstract
Oxidative stress (OS) associated with metals in urban dust has become a public health concern. Chronic diseases linked to general inflammation are particularly affected by OS. This research analyzes the spatial distribution of metals associated with OS, the urban dust´s oxidative potential (OP), and the occurrence of diseases whose treatments are affected by OS. We collected 70 urban dust samples during pre- and post-monsoon seasons to achieve this. We analyzed particle size distribution and morphology by scanning electron microscopy, as well as metal(loid)s by portable X-ray fluorescence, and OP of dust in artificial lysosomal fluid by using an ascorbic acid depletion assay. Our results show that the mean concentration of Fe, Pb, As, Cr, Cu, and V in pre-monsoon was 83,984.6, 98.4, 23.5, 165.8, 301.3, and 141.9 mg kg-1, while during post-monsoon was 50,638.8, 73.9, 16.7, 124.3, 178.9, and 133.5 mg kg-1, respectively. Impoverished areas with the highest presence of cardiovascular, cancer, diabetes, and respiratory diseases coincide with contaminated areas where young adults live. We identified significant differences in the OP between seasons. OP increases during the pre-monsoon (from 7.8 to 237.5 nmol AA min-1) compared to the post-monsoon season (from 1.6 to 163.2 nmol AA min-1). OP values are much higher than measured standards corresponding to contaminated soil and urban particulate matter, which means that additional sources beside metals cause the elevated OP. The results show no risk from chronic exposure to metals; however, our results highlight the importance of studying dust as an environmental factor that may potentially increase oxidative stress.
Collapse
Affiliation(s)
- Benedetto Schiavo
- Instituto de Geofísica, Universidad Nacional Autónoma de México, 04150, Mexico City, Mexico.
| | - Diana Meza-Figueroa
- Departamento de Geología, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, Mexico.
| | - Efrain Vizuete-Jaramillo
- Departamento de Ciencias del Agua y del Medio Ambiente, Instituto Tecnológico de Sonora, Ciudad Obregón, Mexico
| | - Agustin Robles-Morua
- Departamento de Ciencias del Agua y del Medio Ambiente, Instituto Tecnológico de Sonora, Ciudad Obregón, Mexico
| | - Aracely Angulo-Molina
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, Mexico
| | - Pablo A Reyes-Castro
- Centro de Estudios en Salud y Sociedad, El Colegio de Sonora, Hermosillo, Mexico
| | - Claudio Inguaggiato
- Departamento de Geología, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Ensenada, Mexico
| | - Belem Gonzalez-Grijalva
- Departamento de Geología, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, Mexico
| | - Martin Pedroza-Montero
- Departamento de Investigación en Física, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, Mexico
| |
Collapse
|
6
|
Yu YQ, Zhu T. Effects of endogenous and exogenous reductants in lung fluid on the bioaccessible metal concentration and oxidative potential of ultrafine particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163652. [PMID: 37094683 DOI: 10.1016/j.scitotenv.2023.163652] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/14/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Health risk posed by ultrafine particles (UFPs) is potentially increased by reducing substances present in lung fluid, although knowledge of the underlying mechanisms is insufficient. Here, UFPs mainly consisting of metals and quinones were prepared. The reducing substances examined included lung endogenous and exogenous reductants. UFPs were extracted in simulated lung fluid containing reductants. Extracts were used to analyze metrics relevant to health effects, including the bioaccessible metal concentration (MeBA) and oxidative potential (OPDTT). The MeBA of Mn (974.5-9896.9 μg L-1) was higher than those of Cu (155.0-599.6 μg L-1) and Fe (79.9-500.9 μg L-1). Correspondingly, UFPs containing Mn had higher OPDTT (2.07-12.0 pmol min-1 μg-1) than those containing Cu (2.03-7.11 pmol min-1 μg-1) and Fe (1.63-5.34 pmol min-1 μg-1). Endogenous and exogenous reductants can increase MeBA and OPDTT, and the increments were generally higher for composite than pure UFPs. Positive correlations between OPDTT and MeBA of UFPs in the presence of most reductants emphasized the importance of the bioaccessible metal fraction in UFPs for inducing oxidative stress by reactive oxygen species (ROS)-generating reactions between quinones, metals, and lung reductants. Present findings provide novel insight into the toxicity and health risks of UFPs.
Collapse
Affiliation(s)
- Ya-Qi Yu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P.R. China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
7
|
Xing C, Wang Y, Yang X, Zeng Y, Zhai J, Cai B, Zhang A, Fu TM, Zhu L, Li Y, Wang X, Zhang Y. Seasonal variation of driving factors of ambient PM 2.5 oxidative potential in Shenzhen, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160771. [PMID: 36513240 DOI: 10.1016/j.scitotenv.2022.160771] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Reactive oxygen species (ROS) play a central role in health effects of ambient fine particulate matter (PM2.5). In this work, we screened for efficient and complementary oxidative potential (OP) measurements by comparing the response values of multiple chemical probes (OPDTT, OPOH, OPGSH) to ambient PM2.5 in Shenzhen, China. Combined with meteorological condition and PM2.5 chemical composition analysis, we explored the effects of different chemical components and emission sources on the ambient PM2.5 OP and analyzed their seasonal variations. The results show that OPmDTT(mass-normalized) and OPmGSH-SLF were highly correlated (r = 0.77). OPDTT was mainly influenced by organic carbon, while OPOH was highly dominated by heavy metals. The combination of OPDTT and OPOH provides an efficient and comprehensive measurement of OP. Temporally, the OPs were substantially higher in winter than in summer (1.4 and 4 times higher for OPmDTT and OPmOH, respectively). The long-distance transported biomass burning sources from the north dominated the OPDTT in winter, while the ship emissions mainly influenced the summer OP. The OPmDTT increased sharply with the decrease of PM2.5 mass concentration, especially when the PM2.5 concentration was lower than 30 μg/m3. The huge differences in wind fields between the winter and summer cause considerable variations in PM2.5 concentrations, components, and OP. Our work emphasizes the necessity of long-term, multi-method, multi-component assessment of the OP of PM2.5.
Collapse
Affiliation(s)
- Chunbo Xing
- School of Environment, Harbin Institute of Technology, Harbin 150001, China; Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yixiang Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen, Guangdong 518055, China.
| | - Yaling Zeng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jinghao Zhai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Baohua Cai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Antai Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lei Zhu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ying Li
- Department of Ocean Sciences and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yanli Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
8
|
Pietrogrande MC, Colombi C, Cuccia E, Dal Santo U, Romanato L. Seasonal and Spatial Variations of the Oxidative Properties of Ambient PM 2.5 in the Po Valley, Italy, before and during COVID-19 Lockdown Restrictions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1797. [PMID: 36767162 PMCID: PMC9914037 DOI: 10.3390/ijerph20031797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
This study describes the chemical and toxicological characteristics of fine particulate matter (PM2.5) in the Po Valley, one of the largest and most polluted areas in Europe. The investigated samples were collected in the metropolitan area of Milan during the epidemic lockdown and their toxicity was evaluated by the oxidative potential (OP), measured using ascorbic acid (OPAA) and dithiothreitol (OPDTT) acellular assays. The study was also extended to PM2.5 samples collected at different sites in the Po Valley in 2019, to represent the baseline conditions in the area. Univariate correlations were applied to the whole dataset to link the OP responses with the concentrations of the major chemical markers of vehicular and biomass burning emissions. Of the two assays, OPAA was found mainly sensitive towards transition metals released from vehicular traffic, while OPDTT towards the PM carbonaceous components. The impact of the controlling lockdown restrictions on PM2.5 oxidative properties was estimated by comparing the OP values in corresponding time spans in 2020 and 2019. We found that during the full lockdown the OPAA values decreased to 80-86% with respect to the OP data in other urban sites in the area, while the OPDTT values remained nearly constant.
Collapse
Affiliation(s)
- Maria Chiara Pietrogrande
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Cristina Colombi
- Environmental Monitoring Sector, Arpa Lombardia, Via Rosellini 17, 20124 Milano, Italy
| | - Eleonora Cuccia
- Environmental Monitoring Sector, Arpa Lombardia, Via Rosellini 17, 20124 Milano, Italy
| | - Umberto Dal Santo
- Environmental Monitoring Sector, Arpa Lombardia, Via Rosellini 17, 20124 Milano, Italy
| | - Luisa Romanato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| |
Collapse
|
9
|
Copper (II)-Catalyzed Oxidation of Ascorbic Acid: Ionic Strength Effect and Analytical Use in Aqueous Solution. INORGANICS 2022. [DOI: 10.3390/inorganics10070102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Copper is an important metal both in living organisms and in the industrial activity of humans, it is also a distributed water pollutant and a toxic agent capable of inducing acute and chronic health disorders. There are several fluorescent chemosensors for copper (II) determination in solutions; however, they are often difficult to synthesize and solvent-sensitive, requiring a non-aqueous medium. The present paper improves the known analytical technique for copper (II) ions, where the linear dependence between the ascorbic acid oxidation rate constant and copper (II) concentration is used. The limits of detection and quantification of the copper (II) analysis kinetic method are determined to be 82 nM and 275 nM, respectively. In addition, the selectivity of the chosen indicator reaction is shown: Cu2+ cations can be quantified in the presence of the 5–20 fold excess of Co2+, Ni2+, and Zn2+ ions. The La3+, Ce3+, and UO22+ ions also do not catalyze the ascorbic acid oxidation reaction. The effect of the concentration of the common background electrolytes is studied, the anomalous influence for chloride-containing salts is observed and discussed.
Collapse
|
10
|
Martin de Lagarde V, Rogez-Florent T, Cazier F, Dewaele D, Cazier-Dennin F, Ollivier A, Janona M, Achard S, André V, Monteil C, Corbière C. Oxidative potential and in vitro toxicity of particles generated by pyrotechnic smokes in human small airway epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113637. [PMID: 35605322 DOI: 10.1016/j.ecoenv.2022.113637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/20/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Pyrotechnic smokes are widely used in civilian and military applications. The major issue arise from the release of particles after smoke combustion but the health risks related to their exposure are poorly documented whereas toxicity of airborne particles on the respiratory target are very well known. Therefore, this study aimed to explore the in vitro toxicity of the particle fraction of different pyrotechnic smokes. Particles from a red signalling smoke (RSS), an hexachloroethane-based obscuring smoke (HC-OS) and an anti-intrusion smoke (AIS) were collected from the cloud. RSS particles displayed the highest organic fraction (quinones and polycyclic aromatic hydrocarbons) of the three samples characterized. AIS particles contained K and cholesterol derivatives. HC-OS particles were mainly metallic with very high concentrations of Al, Fe and Ca. Intrinsic oxidative potential of smoke particles was measured with two assays. Depletions of DTT by RSS particles was greater than depletion obtained with AIS and HC-OS particles but depletion of acid ascorbic (AA) was only observed with HC-OS particles. In vitro toxicity was assessed by exposing human small airway epithelial cells (SAEC) to various concentrations of particles. After 24 h of exposure, cell viability was not affected but significant modifications of mRNA expression of antioxidant (SOD-1 and -2, catalase, HO-1, NQO-1) and inflammatory markers (IL-6, IL-8, TNF-α) were observed and were dependent on smoke type. Particles rich in metal, such as HC-OS, induced a greatest depletion of AA and a greatest inflammatory response, whereas particles rich in organic compounds, such as RSS, induced a greatest DTT depletion and a greatest antioxidant response. In conclusion, the three smoke particles have an intrinsic oxidative potential and triggered a cell adaptive response. Our study improved the knowledge of particle toxicity of pyrotechnic smokes and scientific approach developed here could be used to study other type of particles.
Collapse
Affiliation(s)
| | | | - Fabrice Cazier
- Univ. Littoral Côte d'Opale, CCM - Centre Commun de Mesures, Dunkerque, France
| | - Dorothée Dewaele
- Univ. Littoral Côte d'Opale, CCM - Centre Commun de Mesures, Dunkerque, France
| | - Francine Cazier-Dennin
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 417, Dunkerque, France
| | - Alexane Ollivier
- Normandie Univ UNIROUEN, UNICAEN, ABTE, 14000 Caen, 76000 Rouen, France
| | - Marion Janona
- Normandie Univ UNIROUEN, UNICAEN, ABTE, 14000 Caen, 76000 Rouen, France
| | - Sophie Achard
- Univ. de Paris, Faculté de Pharmacie, Inserm UMR1153 - CRESS, HERA " Health Environmental Risk Assessment ", Paris, France
| | - Véronique André
- Normandie Univ UNIROUEN, UNICAEN, ABTE, 14000 Caen, 76000 Rouen, France
| | | | - Cécile Corbière
- Normandie Univ UNIROUEN, UNICAEN, ABTE, 14000 Caen, 76000 Rouen, France.
| |
Collapse
|
11
|
Pietrogrande MC, Demaria G, Colombi C, Cuccia E, Dal Santo U. Seasonal and Spatial Variations of PM 10 and PM 2.5 Oxidative Potential in Five Urban and Rural Sites across Lombardia Region, Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7778. [PMID: 35805434 PMCID: PMC9265313 DOI: 10.3390/ijerph19137778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023]
Abstract
Oxidative potential (OP) of particulate matter (PM) is gaining strong interest as a promising health exposure metric. This study investigated OP of a large set of PM10 and PM2.5 samples collected at five urban and background sites near Milan (Italy), one of the largest and most polluted urban areas in Europe, afflicted with high particle levels. OP responses from two acellular assays, based on ascorbic acid (AA) and dithiothreitol (DTT), were combined with atmospheric detailed composition to examine any possible feature in OP with PM size fraction, spatial and seasonal variations. A general association of volume-normalized OP with PM mass was found; this association may be related to the clear seasonality observed, whereby there was higher OP activity in wintertime at all investigated sites. Univariate correlations were used to link OP with the concentrations of the major chemical markers of vehicular and biomass burning emissions. Of the two assays, AA was particularly sensitive towards transition metals in coarse particles released from vehicular traffic. The results obtained confirm that the responses from the two assays and their relationship with atmospheric pollutants are assay- and location-dependent, and that their combination is therefore helpful to singling out the PM redox-active compounds driving its oxidative properties.
Collapse
Affiliation(s)
- Maria Chiara Pietrogrande
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy;
| | - Giorgia Demaria
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy;
| | - Cristina Colombi
- Environmental Monitoring Sector, Arpa Lombardia, Via Rosellini 17, 20124 Milano, Italy; (C.C.); (E.C.); (U.D.S.)
| | - Eleonora Cuccia
- Environmental Monitoring Sector, Arpa Lombardia, Via Rosellini 17, 20124 Milano, Italy; (C.C.); (E.C.); (U.D.S.)
| | - Umberto Dal Santo
- Environmental Monitoring Sector, Arpa Lombardia, Via Rosellini 17, 20124 Milano, Italy; (C.C.); (E.C.); (U.D.S.)
| |
Collapse
|
12
|
Liu Y, Chan CK. The oxidative potential of fresh and aged elemental carbon-containing airborne particles: a review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:525-546. [PMID: 35333266 DOI: 10.1039/d1em00497b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Elemental carbon is often found in ambient particulate matter (PM), and it contributes to the PM's oxidative potential (OP) and thus poses great health concerns. Previous review articles mainly focused on the methodologies in evaluating OP in PM and its relationship with selected chemical constituents, including metal ions, PAHs, and inorganic species. In recent years, growing attention has been paid to the effect of atmospheric aging processes on the OP of EC-containing airborne particles (ECCAPs). This review investigates more than 150 studies concerning the OP measurements and physico-chemical properties of both fresh and aged ECCAPs such as laboratory-generated elemental carbon (LGEC), carbon black (CB), soot (black carbon), and engineered carbon-containing nanomaterials (ECCBNs). Specifically, we summarize the characteristics of water-soluble and insoluble organic species, PAHs, quinone, and oxygen-containing functional groups (OFGs), and EC crystallinity. Both water-soluble organic carbon (WSOC) and water-insoluble organic carbon (WIOC) contribute to the OP. Low molecular weight (MW) PAHs show a higher correlation with OP than high MW PAHs. Furthermore, oxidative aging processes introduce OFGs, where quinone (CO) and epoxide (O-C-O) increase the OP of ECCAPs. In contrast, carboxyl (-COOH) and hydroxyl (-OH) slightly change the OP. The low crystallinity of EC favors the oxygen addition and forms active OFG quinone, thus increasing the OP. More detailed analyses for the EC microstructures and the organic coatings are needed to predict the OP of ECCAPs.
Collapse
Affiliation(s)
- Yangyang Liu
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Chak K Chan
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
13
|
Synergistic and Antagonistic Effects of Aerosol Components on Its Oxidative Potential as Predictor of Particle Toxicity. TOXICS 2022; 10:toxics10040196. [PMID: 35448457 PMCID: PMC9032230 DOI: 10.3390/toxics10040196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 12/02/2022]
Abstract
Quantifying the component-specific contribution to the oxidative potential (OP) of ambient particle matter (PM) is the key information to properly representing its acute health hazards. In this study, we investigated the interactions between the major contributors to OP, i.e., transition metals and quinones, to highlight the relative effects of these species to the total OP. Several synergistic and antagonistic interactions were found that significantly change the redox properties of their binary mixtures, increasing or decreasing the values computed by a simple additive model. Such results from the standard solutions were confirmed by extending the study to atmospheric PM2.5 samples collected in winter in the Lombardia region, a hot spot for air pollution in northern Italy. This work highlights that a solid estimation of oxidative properties of ambient PM requires an interaction-based approach accounting for the interaction effects between metals and quinones.
Collapse
|
14
|
Trechera P, Moreno T, Córdoba P, Moreno N, Amato F, Cortés J, Zhuang X, Li B, Li J, Shangguan Y, Dominguez AO, Kelly F, Mhadhbi T, Jaffrezo JL, Uzu G, Querol X. Geochemistry and oxidative potential of the respirable fraction of powdered mined Chinese coals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149486. [PMID: 34391157 DOI: 10.1016/j.scitotenv.2021.149486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
This study evaluates geochemical and oxidative potential (OP) properties of the respirable (finer than 4 μm) fractions of 22 powdered coal samples from channel profiles (CP4) in Chinese mined coals. The CP4 fractions extracted from milled samples of 22 different coals were mineralogically and geochemically analysed and the relationships with the OP evaluated. The evaluation between CP4/CP demonstrated that CP4 increased concentrations of anatase, Cs, W, Zn and Zr, whereas sulphates, Fe, S, Mo, Mn, Hf and Ge decreased their CP4 concentrations. OP results from ascorbic acid (AA), glutathione (GSH) and dithiothreitol (DTT) tests evidenced a clear link between specific inorganic components of CP4 with OPAA and the organic fraction of OPGSH and OPDTT. Correlation analyses were performed for OP indicators and the geochemical patterns of CP4. These were compared with respirable dust samples from prior studies. They indicate that Fe (r = 0.83), pyrite (r = 0.66) and sulphate minerals (r = 0.42) (tracing acidic species from pyrite oxidation), followed by S (r = 0.50) and ash yield (r = 0.46), and, to a much lesser extent, Ti, anatase, U, Mo, V and Pb, are clearly linked with OPAA. Moreover, OPGSH correlation was identified by organic matter, as moisture (r = 0.73), Na (r = 0.56) and B (r = 0.51), and to a lesser extent by the coarse particle size, Ca and carbonate minerals. In addition, Mg (r = 0.70), B (r = 0.47), Na (r = 0.59), Mn, Ba, quartz, particle size and Sr regulate OPDTT correlations. These became more noticeable when the analysis was done for samples of the same type of coal rank, in this case, bituminous.
Collapse
Affiliation(s)
- Pedro Trechera
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), 08034 Barcelona, Spain; Department of Natural Resources and Environment, Industrial and TIC Engineering (EMIT-UPC), 08242 Manresa, Spain.
| | - Teresa Moreno
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), 08034 Barcelona, Spain
| | - Patricia Córdoba
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), 08034 Barcelona, Spain
| | - Natalia Moreno
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), 08034 Barcelona, Spain
| | - Fulvio Amato
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), 08034 Barcelona, Spain
| | - Joaquim Cortés
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), 08034 Barcelona, Spain
| | - Xinguo Zhuang
- Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan 430074, China
| | - Baoqing Li
- Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan 430074, China
| | - Jing Li
- Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan 430074, China
| | - Yunfei Shangguan
- Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan 430074, China
| | - Ana Oliete Dominguez
- MRC-PHE Centre for Environment and Health, King's College London, London SE1 9NH, UK
| | - Frank Kelly
- MRC-PHE Centre for Environment and Health, King's College London, London SE1 9NH, UK
| | - Takoua Mhadhbi
- Univ. Grenoble Alpes, IRD, CNRS, Grenoble INP, IGE (UMR 5001), 38000 Grenoble, France
| | - Jean Luc Jaffrezo
- Univ. Grenoble Alpes, IRD, CNRS, Grenoble INP, IGE (UMR 5001), 38000 Grenoble, France
| | - Gaelle Uzu
- Univ. Grenoble Alpes, IRD, CNRS, Grenoble INP, IGE (UMR 5001), 38000 Grenoble, France
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), 08034 Barcelona, Spain; Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan 430074, China.
| |
Collapse
|
15
|
Quantification and Characterization of Metals in Ultrafine Road Dust Particles. ATMOSPHERE 2021. [DOI: 10.3390/atmos12121564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Road dust is an important source of resuspended particulate matter (PM) but information is lacking on the chemical composition of the ultrafine particle fraction (UFP; <0.1 µm). This study investigated metal concentrations in UFP isolated from the “dust box” of sweepings collected by the City of Toronto, Canada, using regenerative-air-street sweepers. Dust box samples from expressway, arterial and local roads were aerosolized in the laboratory and were separated into thirteen particle size fractions ranging from 10 nm to 10 µm (PM10). The UFP fraction accounted for about 2% of the total mass of resuspended PM10 (range 0.23–8.36%). Elemental analysis using ICP-MS and ICP-OES revealed a marked enrichment in Cd, Cr, Zn and V concentration in UFP compared to the dust box material (nano to dust box ratio ≥ 2). UFP from arterial roads contained two times more Cd, Zn and V and nine times more Cr than UFP from local roads. The highest median concentration of Zn was observed for the municipal expressway, attributed to greater volumes of traffic, including light to heavy duty vehicles, and higher speeds. The observed elevated concentrations of transition metals in UFP are a human health concern, given their potential to cause oxidative stress in lung cells.
Collapse
|
16
|
Fleck ADS, Debia M, Ryan PE, Couture C, Traub A, Evans GJ, Suarthana E, Smargiassi A. Assessment of the Oxidative Potential and Oxidative Burden from Occupational Exposures to Particulate Matter. Ann Work Expo Health 2021; 66:379-391. [PMID: 34595509 DOI: 10.1093/annweh/wxab086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/03/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Oxidative potential (OP) is a toxicologically relevant metric that integrates features like mass concentration and chemical composition of particulate matter (PM). Although it has been extensively explored as a metric for the characterization of environmental particles, this is still an underexplored application in the occupational field. This study aimed to estimate the OP of particles in two occupational settings from a construction trades school. This characterization also includes the comparison between activities, sampling strategies, and size fractions. Particulate mass concentrations (PM4-Personal, PM4-Area, and PM2.5-Area) and number concentrations were measured during three weeks of welding and construction/bricklaying activities. The OP was assessed by the ascorbate assay (OPAA) using a synthetic respiratory tract lining fluid (RTLF), while the oxidative burden (OBAA) was determined by multiplying the OPAA values with PM concentrations. Median (25th-75th percentiles) of PM mass and number concentrations were 900 (672-1730) µg m-3 and 128 000 (78 000-169 000) particles cm-3 for welding, and 432 (345-530) µg m-3 and 2800 (1700-4400) particles cm-3 for construction. Welding particles, especially from the first week of activities, were also associated with higher redox activity (OPAA: 3.3 (2.3-4.6) ρmol min-1 µg-1; OBAA: 1750 (893-4560) ρmol min-1 m-3) compared to the construction site (OPAA: 1.4 (1.0-1.8) ρmol min-1 µg-1; OBAA: 486 (341-695) ρmol min-1 m-3). The OPAA was independent of the sampling strategy or size fraction. However, driven by the higher PM concentrations, the OBAA from personal samples was higher compared to area samples in the welding shop, suggesting an influence of the sampling strategy on PM concentrations and OBAA. These results demonstrate that important levels of OPAA can be found in occupational settings, especially during welding activities. Furthermore, the OBAA found in both workplaces largely exceeded the levels found in environmental studies. Therefore, measures of OP and OB could be further explored as metrics for exposure assessment to occupational PM, as well as for associations with cardiorespiratory outcomes in future occupational epidemiological studies.
Collapse
Affiliation(s)
- Alan da Silveira Fleck
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, Quebec, Canada.,Centre de Recherche en Santé Publique (CReSP), Montreal, Quebec, Canada
| | - Maximilien Debia
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, Quebec, Canada.,Centre de Recherche en Santé Publique (CReSP), Montreal, Quebec, Canada
| | - Patrick Eddy Ryan
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, Quebec, Canada.,Centre de Recherche en Santé Publique (CReSP), Montreal, Quebec, Canada
| | - Caroline Couture
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, Quebec, Canada.,Centre de Recherche en Santé Publique (CReSP), Montreal, Quebec, Canada
| | - Alison Traub
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto Engineering, Toronto, Ontario, Canada
| | - Greg J Evans
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto Engineering, Toronto, Ontario, Canada
| | - Eva Suarthana
- Research Institute of McGill University Health Center, Montreal, Quebec, Canada.,Centre de Recherche de l'Hôpital du Sacré-Cœur de Montréal (CRHSCM), 5400 Boul Gouin O, Montreal, Quebec, Canada
| | - Audrey Smargiassi
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, Quebec, Canada.,Centre de Recherche en Santé Publique (CReSP), Montreal, Quebec, Canada.,Institut National de Sante Publique du Québec (INSPQ), 190 Boul Crémazie E, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Xu JW, Martin RV, Evans GJ, Umbrio D, Traub A, Meng J, van Donkelaar A, You H, Kulka R, Burnett RT, Godri Pollitt KJ, Weichenthal S. Predicting Spatial Variations in Multiple Measures of Oxidative Burden for Outdoor Fine Particulate Air Pollution across Canada. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9750-9760. [PMID: 34241996 DOI: 10.1021/acs.est.1c01210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fine particulate air pollution (PM2.5) is a leading contributor to the overall global burden of disease. Traditionally, outdoor PM2.5 has been characterized using mass concentrations which treat all particles as equally harmful. Oxidative potential (OP) (per μg) and oxidative burden (OB) (per m3) are complementary metrics that estimate the ability of PM2.5 to cause oxidative stress, which is an important mechanism in air pollution health effects. Here, we provide the first national estimates of spatial variations in multiple measures (glutathione, ascorbate, and dithiothreitol depletion) of annual median outdoor PM2.5 OB across Canada. To do this, we combined a large database of ground-level OB measurements collected monthly prospectively across Canada for 2 years (2016-2018) with PM2.5 components estimated using a chemical transport model (GEOS-Chem) and satellite aerosol observations. Our predicted ground-level OB values of all three methods were consistent with ground-level observations (cross-validation R2 = 0.63-0.74). We found that forested regions and urban areas had the highest OB, predicted primarily by black carbon and organic carbon from wildfires and transportation sources. Importantly, the dominant components associated with OB were different than those contributing to PM2.5 mass concentrations (secondary inorganic aerosol); thus, OB metrics may better indicate harmful components and sources on health than the bulk PM2.5 mass, reinforcing that OB estimates can complement the existing PM2.5 data in future national-level epidemiological studies.
Collapse
Affiliation(s)
- Jun-Wei Xu
- Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Randall V Martin
- Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, United States
- Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, United States
| | - Greg J Evans
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Dalla Lana School of Public Health, University of Toronto, 480 University Avenue, Toronto, Ontario M5G 1V2, Canada
| | - Dana Umbrio
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Alison Traub
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Jun Meng
- Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Aaron van Donkelaar
- Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Hongyu You
- Air Health Science Division, Health Canada, 269 Laurier Avenue West, Ottawa, Ontario K1A 0K0, Canada
| | - Ryan Kulka
- Air Health Science Division, Health Canada, 269 Laurier Avenue West, Ottawa, Ontario K1A 0K0, Canada
| | - Richard T Burnett
- Population Studies Division, Health Canada, 101 Tunney's Pasture Dr., Ottawa, Ontario K1A 0K9, Canada
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, Connecticut 06520, United States
| | - Scott Weichenthal
- Air Health Science Division, Health Canada, 269 Laurier Avenue West, Ottawa, Ontario K1A 0K0, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 1020 Pine Avenue West, Montreal, Quebec H3A 1A2, Canada
| |
Collapse
|
18
|
Unosson J, Kabéle M, Boman C, Nyström R, Sadiktsis I, Westerholm R, Mudway IS, Purdie E, Raftis J, Miller MR, Mills NL, Newby DE, Blomberg A, Sandström T, Bosson JA. Acute cardiovascular effects of controlled exposure to dilute Petrodiesel and biodiesel exhaust in healthy volunteers: a crossover study. Part Fibre Toxicol 2021; 18:22. [PMID: 34127003 PMCID: PMC8204543 DOI: 10.1186/s12989-021-00412-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 05/04/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Air pollution derived from combustion is associated with considerable cardiorespiratory morbidity and mortality in addition to environmental effects. Replacing petrodiesel with biodiesel may have ecological benefits, but impacts on human health remain unquantified. The objective was to compare acute cardiovascular effects of blended and pure biodiesel exhaust exposure against known adverse effects of petrodiesel exhaust (PDE) exposure in human subjects. In two randomized controlled double-blind crossover studies, healthy volunteers were exposed to PDE or biodiesel exhaust for one hour. In study one, 16 subjects were exposed, on separate occasions, to PDE and 30% rapeseed methyl ester biodiesel blend (RME30) exhaust, aiming at PM10 300 μg/m3. In study two, 19 male subjects were separately exposed to PDE and exhaust from a 100% RME fuel (RME100) using similar engine load and exhaust dilution. Generated exhaust was analyzed for physicochemical composition and oxidative potential. Following exposure, vascular endothelial function was assessed using forearm venous occlusion plethysmography and ex vivo thrombus formation was assessed using a Badimon chamber model of acute arterial injury. Biomarkers of inflammation, platelet activation and fibrinolysis were measured in the blood. RESULTS In study 1, PDE and RME30 exposures were at comparable PM levels (314 ± 27 μg/m3; (PM10 ± SD) and 309 ± 30 μg/m3 respectively), whereas in study 2, the PDE exposure concentrations remained similar (310 ± 34 μg/m3), but RME100 levels were lower in PM (165 ± 16 μg/m3) and PAHs, but higher in particle number concentration. Compared to PDE, PM from RME had less oxidative potential. Forearm infusion of the vasodilators acetylcholine, bradykinin, sodium nitroprusside and verapamil resulted in dose-dependent increases in blood flow after all exposures. Vasodilatation and ex vivo thrombus formation were similar following exposure to exhaust from petrodiesel and the two biodiesel formulations (RME30 and RME100). There were no significant differences in blood biomarkers or exhaled nitric oxide levels between exposures. CONCLUSIONS Despite differences in PM composition and particle reactivity, controlled exposure to biodiesel exhaust was associated with similar cardiovascular effects to PDE. We suggest that the potential adverse health effects of biodiesel fuel emissions should be taken into account when evaluating future fuel policies. TRIAL REGISTRATION ClinicalTrials.gov, NCT01337882 /NCT01883466. Date of first enrollment March 11, 2011, registered April 19, 2011, i.e. retrospectively registered.
Collapse
Affiliation(s)
- Jon Unosson
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, Umeå, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Mikael Kabéle
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, Umeå, Sweden
| | - Christoffer Boman
- Thermochemical Energy Conversion Laboratory, Umeå University, Umeå, Sweden
| | - Robin Nyström
- Thermochemical Energy Conversion Laboratory, Umeå University, Umeå, Sweden
| | - Ioannis Sadiktsis
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Roger Westerholm
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Ian S. Mudway
- MRC-PHE Centre for Environment and Health, NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, UK
| | - Esme Purdie
- MRC-PHE Centre for Environment and Health, NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, UK
| | - Jennifer Raftis
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Mark R. Miller
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Nicholas L. Mills
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - David E. Newby
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, Umeå, Sweden
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, Umeå, Sweden
- Dept. of Medicine, Division of Respiratory Med, University Hospital, 90185 Umeå, Sweden
| | - Jenny A. Bosson
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
19
|
Osborne S, Uche O, Mitsakou C, Exley K, Dimitroulopoulou S. Air quality around schools: Part I - A comprehensive literature review across high-income countries. ENVIRONMENTAL RESEARCH 2021; 196:110817. [PMID: 33524334 DOI: 10.1016/j.envres.2021.110817] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/03/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Children are particularly vulnerable to the detrimental health impacts of poor air quality. In the UK, recent initiatives at local council level have focussed on mitigating children's air pollution exposure at school. However, an overview of the available evidence on concentration and exposure in school environments - and a summary of key knowledge gaps - has so far been lacking. To address this, we conducted a review bringing together recent academic and grey literature, relating to air quality in outdoor school environments - including playgrounds, drop-off zones, and the school commute - across high-income countries. We aimed to critically assess, synthesise, and categorise the available literature, to produce recommendations on future research and mitigating actions. Our searches initially identified 883 articles of interest, which were filtered down in screening and appraisal to a final total of 100 for inclusion. Many of the included studies focussed on nitrogen dioxide (NO2), and particulate matter (PM) in both the coarse and fine fractions, around schools across a range of countries. Some studies also observed ozone (O3) and volatile organic compounds (VOCs) outside schools. Our review identified evidence that children can encounter pollution peaks on the school journey, at school gates, and in school playgrounds; that nearby traffic is a key determinant of concentrations outside schools; and that factors relating to planning and urban design - such as the type of playground paving, and amount of surrounding green space - can influence school site concentrations. The review also outlines evidence gaps that can be targeted in future research. These include the need for more personal monitoring studies that distinguish between the exposure that takes place indoors and outdoors at school, and a need for a greater number of studies that conduct before-after evaluation of local interventions designed to mitigate children's exposure, such as green barriers and road closures. Finally, our review also proposes some tangible recommendations for policymakers and local leaders. The creation of clean air zones around schools; greening of school grounds; careful selection of new school sites; promotion of active travel to and from school; avoidance of major roads on the school commute; and scheduling of outdoor learning and play away from peak traffic hours, are all advocated by the evidence collated in this review.
Collapse
Affiliation(s)
- Stephanie Osborne
- Air Quality & Public Health Group, Environmental Hazards and Emergencies Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Science and Innovation Campus, Chilton, Oxon, OX11 0RQ, UK
| | - Onyekachi Uche
- Air Quality & Public Health Group, Environmental Hazards and Emergencies Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Science and Innovation Campus, Chilton, Oxon, OX11 0RQ, UK
| | - Christina Mitsakou
- Air Quality & Public Health Group, Environmental Hazards and Emergencies Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Science and Innovation Campus, Chilton, Oxon, OX11 0RQ, UK
| | - Karen Exley
- Air Quality & Public Health Group, Environmental Hazards and Emergencies Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Science and Innovation Campus, Chilton, Oxon, OX11 0RQ, UK
| | - Sani Dimitroulopoulou
- Air Quality & Public Health Group, Environmental Hazards and Emergencies Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Science and Innovation Campus, Chilton, Oxon, OX11 0RQ, UK.
| |
Collapse
|
20
|
Piscitello A, Bianco C, Casasso A, Sethi R. Non-exhaust traffic emissions: Sources, characterization, and mitigation measures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144440. [PMID: 33421784 DOI: 10.1016/j.scitotenv.2020.144440] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/24/2020] [Accepted: 12/07/2020] [Indexed: 05/12/2023]
Abstract
Non-exhaust emissions (NEE) of particulate matter (PM) from brake, tyre, road pavement and railway wear, as well as resuspension of already deposited road dust, account for up to 90% by mass of total traffic-related PM emitted. This review aims at analysing the current knowledge on road traffic NEE regarding sources, particle generation processes, chemical and physical characterization, and mitigation strategies. The literature on this matter often presents highly variable and hardly comparable results due to the heterogeneity of NEE sources and the absence of standardized sampling and measurement protocols. As evidence, emission factors (EFs) were found to range from 1 mg km-1 veh-1 to 18.5 mg km-1 veh-1 for brake wear, and from 0.3 mg km-1 veh-1 to 7.4 mg km-1 veh-1 for tyre wear. Resuspended dust, which varies in even wider ranges (from 5.4 mg km-1 veh-1 to 330 mg km-1 veh-1 for cars), is considered the prevailing NEE source. The lack of standardized monitoring approaches resulted in the impossibility of setting international regulations to limit NEE. Therefore, up until now the abatement of NEE has only been achieved by mitigation and prevention strategies. However, the effectiveness of these measures still needs to be improved and further investigated. As an example, mitigation strategies, such as street washing or sweeping, proved effective in reducing PM levels, but only in the short term. The replacement of internal combustion engines vehicles with electric ones was instead proposed as a prevention strategy, but there are still concerns regarding the increase of NEE deriving from the extra weight of the batteries. The data reported in this review highlighted the need for future studies to broaden their research area, and to focus not only on the standardization of methods and the introduction of regulations, but also on improving already existing technologies and mitigating strategies.
Collapse
Affiliation(s)
- Amelia Piscitello
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Carlo Bianco
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Alessandro Casasso
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Rajandrea Sethi
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
21
|
Campbell SJ, Wolfer K, Utinger B, Westwood J, Zhang ZH, Bukowiecki N, Steimer SS, Vu TV, Xu J, Straw N, Thomson S, Elzein A, Sun Y, Liu D, Li L, Fu P, Lewis AC, Harrison RM, Bloss WJ, Loh M, Miller MR, Shi Z, Kalberer M. Atmospheric conditions and composition that influence PM 2.5 oxidative potential in Beijing, China. ATMOSPHERIC CHEMISTRY AND PHYSICS 2021; 21:5549-5573. [PMID: 34462630 PMCID: PMC7611584 DOI: 10.5194/acp-21-5549-2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Epidemiological studies have consistently linked exposure to PM2.5 with adverse health effects. The oxidative potential (OP) of aerosol particles has been widely suggested as a measure of their potential toxicity. Several acellular chemical assays are now readily employed to measure OP; however, uncertainty remains regarding the atmospheric conditions and specific chemical components of PM2.5 that drive OP. A limited number of studies have simultaneously utilised multiple OP assays with a wide range of concurrent measurements and investigated the seasonality of PM2.5 OP. In this work, filter samples were collected in winter 2016 and summer 2017 during the atmospheric pollution and human health in a Chinese megacity campaign (APHH-Beijing), and PM2.5 OP was analysed using four acellular methods: ascorbic acid (AA), dithiothreitol (DTT), 2,7-dichlorofluorescin/hydrogen peroxidase (DCFH) and electron paramagnetic resonance spectroscopy (EPR). Each assay reflects different oxidising properties of PM2.5, including particle-bound reactive oxygen species (DCFH), superoxide radical production (EPR) and catalytic redox chemistry (DTT/AA), and a combination of these four assays provided a detailed overall picture of the oxidising properties of PM2.5 at a central site in Beijing. Positive correlations of OP (normalised per volume of air) of all four assays with overall PM2.5 mass were observed, with stronger correlations in winter compared to summer. In contrast, when OP assay values were normalised for particle mass, days with higher PM2.5 mass concentrations (μgm-3) were found to have lower mass-normalised OP values as measured by AA and DTT. This finding supports that total PM2.5 mass concentrations alone may not always be the best indicator for particle toxicity. Univariate analysis of OP values and an extensive range of additional measurements, 107 in total, including PM2.5 composition, gas-phase composition and meteorological data, provided detailed insight into the chemical components and atmospheric processes that determine PM2.5 OP variability. Multivariate statistical analyses highlighted associations of OP assay responses with varying chemical components in PM2.5 for both mass- and volume-normalised data. AA and DTT assays were well predicted by a small set of measurements in multiple linear regression (MLR) models and indicated fossil fuel combustion, vehicle emissions and biogenic secondary organic aerosol (SOA) as influential particle sources in the assay response. Mass MLR models of OP associated with compositional source profiles predicted OP almost as well as volume MLR models, illustrating the influence of mass composition on both particle-level OP and total volume OP. Univariate and multivariate analysis showed that different assays cover different chemical spaces, and through comparison of mass- and volume-normalised data we demonstrate that mass-normalised OP provides a more nuanced picture of compositional drivers and sources of OP compared to volume-normalised analysis. This study constitutes one of the most extensive and comprehensive composition datasets currently available and provides a unique opportunity to explore chemical variations in PM2.5 and how they affect both PM2.5 OP and the concentrations of particle-bound reactive oxygen species.
Collapse
Affiliation(s)
- Steven J. Campbell
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Kate Wolfer
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Battist Utinger
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Joe Westwood
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Zhi-Hui Zhang
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Nicolas Bukowiecki
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | | | - Tuan V. Vu
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Jingsha Xu
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Nicholas Straw
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Steven Thomson
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Atallah Elzein
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UK
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Di Liu
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Linjie Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Pingqing Fu
- Institute of Surface Earth System Science, Tianjin University, Tianjin, China
| | - Alastair C. Lewis
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UK
- National Centre for Atmospheric Science, University of York, York, UK
| | - Roy M. Harrison
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - William J. Bloss
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Miranda Loh
- Institute of Occupational Medicine, Edinburgh, UK
| | - Mark R. Miller
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Zongbo Shi
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Markus Kalberer
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Department of Chemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
22
|
Shen J, Griffiths PT, Campbell SJ, Utinger B, Kalberer M, Paulson SE. Ascorbate oxidation by iron, copper and reactive oxygen species: review, model development, and derivation of key rate constants. Sci Rep 2021; 11:7417. [PMID: 33795736 PMCID: PMC8016884 DOI: 10.1038/s41598-021-86477-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/02/2021] [Indexed: 02/01/2023] Open
Abstract
Ascorbic acid is among the most abundant antioxidants in the lung, where it likely plays a key role in the mechanism by which particulate air pollution initiates a biological response. Because ascorbic acid is a highly redox active species, it engages in a far more complex web of reactions than a typical organic molecule, reacting with oxidants such as the hydroxyl radical as well as redox-active transition metals such as iron and copper. The literature provides a solid outline for this chemistry, but there are large disagreements about mechanisms, stoichiometries and reaction rates, particularly for the transition metal reactions. Here we synthesize the literature, develop a chemical kinetics model, and use seven sets of laboratory measurements to constrain mechanisms for the iron and copper reactions and derive key rate constants. We find that micromolar concentrations of iron(III) and copper(II) are more important sinks for ascorbic acid (both AH2 and AH-) than reactive oxygen species. The iron and copper reactions are catalytic rather than redox reactions, and have unit stoichiometries: Fe(III)/Cu(II) + AH2/AH- + O2 → Fe(III)/Cu(II) + H2O2 + products. Rate constants are 5.7 × 104 and 4.7 × 104 M-2 s-1 for Fe(III) + AH2/AH- and 7.7 × 104 and 2.8 × 106 M-2 s-1 for Cu(II) + AH2/AH-, respectively.
Collapse
Affiliation(s)
- Jiaqi Shen
- Department of Atmospheric and Oceanic Sciences, University of California At Los Angeles, Los Angeles, CA, 90095-1565, USA
| | - Paul T Griffiths
- Department of Chemistry, Cambridge University, Lensfield Rd, Cambridge, CB2 1EW, UK
| | - Steven J Campbell
- Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, 4056, Basel, Switzerland
| | - Battist Utinger
- Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, 4056, Basel, Switzerland
| | - Markus Kalberer
- Department of Chemistry, Cambridge University, Lensfield Rd, Cambridge, CB2 1EW, UK
- Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, 4056, Basel, Switzerland
| | - Suzanne E Paulson
- Department of Atmospheric and Oceanic Sciences, University of California At Los Angeles, Los Angeles, CA, 90095-1565, USA.
| |
Collapse
|
23
|
Altuwayjiri A, Soleimanian E, Moroni S, Palomba P, Borgini A, De Marco C, Ruprecht AA, Sioutas C. The impact of stay-home policies during Coronavirus-19 pandemic on the chemical and toxicological characteristics of ambient PM 2.5 in the metropolitan area of Milan, Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143582. [PMID: 33213922 PMCID: PMC7833074 DOI: 10.1016/j.scitotenv.2020.143582] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/10/2020] [Accepted: 11/02/2020] [Indexed: 05/03/2023]
Abstract
The goal of this study was to characterize changes in components and toxicological properties of PM2.5 during the nationwide 2019-Coronavirus (COVID-19) lockdown restrictions in Milan, Italy. Time-integrated PM2.5 filters were collected at a residential site in Milan metropolitan area from April 11th to June 3rd at 2020, encompassing full-lockdown (FL), the followed partial-lockdown (PL2), and full-relaxation (FR) periods of COVID-19 restrictions. The collected filters were analyzed for elemental and organic carbon (EC/OC), water-soluble organic carbon (WSOC), individual organic species (e.g., polycyclic aromatic hydrocarbons (PAHs), and levoglucosan), and metals. According to online data, nitrogen dioxide (NO2) and benzene (C6H6) levels significantly decreased during the entire COVID-19 period compared to the same time span in 2019, mainly due to the government-backed shutdowns and curtailed road traffic. Similarly, with a few exceptions, surrogates of tailpipe emissions (e.g., traffic-associated PAHs) as well as re-suspended road dust (e.g., Fe, Mn, Cu, Cr, and Ti) were relatively lower during FL and PL2 periods in comparison with year 2019, whereas an increasing trend in mass concentration of mentioned species was observed from FL to PL2 and FR phases due to the gradual lifting of lockdown restrictions. In contrast, comparable concentrations of ambient PM2.5 and black carbon (BC) between lockdown period and the same time span in 2019 were attributed to the interplay between decreased road traffic and elevated domestic biomass burning as a result of adopted stay-home strategies. Finally, the curtailed road traffic during FL and PL2 periods led to ~25% drop in the PM2.5 oxidative potential (measured via 2',7'-dichlorodihydrofluorescein (DCFH) and dithiothreitol (DTT) assays) with respect to the FR period as well as the same time span in 2019. The results of this study provide insights into the changes in components and oxidative potential of PM2.5 in the absence of road traffic during COVID-19 restrictions.
Collapse
Affiliation(s)
- Abdulmalik Altuwayjiri
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Ehsan Soleimanian
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Silvia Moroni
- Agenzia Mobilità Ambiente e Territorio - AMAT srl, Mobility, Environment and Territory Agency, Milan, Italy
| | - Paolo Palomba
- Agenzia Mobilità Ambiente e Territorio - AMAT srl, Mobility, Environment and Territory Agency, Milan, Italy
| | - Alessandro Borgini
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Associazione Medici per l'Ambiente ISDE Italia, International Society of Doctors for the Environment (ISDE), Italy
| | - Cinzia De Marco
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Associazione Medici per l'Ambiente ISDE Italia, International Society of Doctors for the Environment (ISDE), Italy
| | - Ario A Ruprecht
- Associazione Medici per l'Ambiente ISDE Italia, International Society of Doctors for the Environment (ISDE), Italy
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Wang JM, Jeong CH, Hilker N, Healy RM, Sofowote U, Debosz J, Su Y, Munoz A, Evans GJ. Quantifying metal emissions from vehicular traffic using real world emission factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115805. [PMID: 33129130 DOI: 10.1016/j.envpol.2020.115805] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/21/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Road traffic emissions are an increasingly important source of particulate matter in urban and non-road environments, where non-tailpipe emissions can contribute substantially to elevated levels of metals associated with adverse health effects. Thus, better characterization and quantification of traffic-emitted metals is warranted. In this study, real-world emission factors for fine particulate metals were determined from hourly x-ray fluorescence measurements over a three-year period (2015-2018) at an urban roadway and busy highway. Inter-site differences and temporal trends in real-world emission factors for metals were explored. The emission factors at both sites were within the range of past studies, and it was found that Ti, Fe, Cu, and Ba emissions were 2.2-3.0 times higher at the highway site, consistent with the higher proportion of heavy-duty vehicles. Weekday emission factors for some metals were also higher by 2.0-3.5 times relative to Sundays for Mn, Zn, Ca, and Fe, illustrating a dependence on fleet composition and roadway activity. Metal emission factors were also inversely related to relative humidity and precipitation, due to reduced road dust resuspension under wetter conditions. Correlation analysis revealed groups of metals that were co-emitted by different traffic activities and sources. Determining emission factors enabled the isolation of traffic-related metal emissions and also revealed that human exposure to metals in ambient air can vary substantially both temporally and spatially depending on fleet composition and traffic volume.
Collapse
Affiliation(s)
- Jonathan M Wang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S3E5, Canada; Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, Etobicoke, Ontario, M9P3V6, Canada.
| | - Cheol-Heon Jeong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S3E5, Canada
| | - Nathan Hilker
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S3E5, Canada
| | - Robert M Healy
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, Etobicoke, Ontario, M9P3V6, Canada
| | - Uwayemi Sofowote
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, Etobicoke, Ontario, M9P3V6, Canada
| | - Jerzy Debosz
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, Etobicoke, Ontario, M9P3V6, Canada
| | - Yushan Su
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, Etobicoke, Ontario, M9P3V6, Canada
| | - Anthony Munoz
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, Etobicoke, Ontario, M9P3V6, Canada
| | - Greg J Evans
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S3E5, Canada
| |
Collapse
|
25
|
Ebi KL, Harris F, Sioen GB, Wannous C, Anyamba A, Bi P, Boeckmann M, Bowen K, Cissé G, Dasgupta P, Dida GO, Gasparatos A, Gatzweiler F, Javadi F, Kanbara S, Kone B, Maycock B, Morse A, Murakami T, Mustapha A, Pongsiri M, Suzán G, Watanabe C, Capon A. Transdisciplinary Research Priorities for Human and Planetary Health in the Context of the 2030 Agenda for Sustainable Development. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8890. [PMID: 33265908 PMCID: PMC7729495 DOI: 10.3390/ijerph17238890] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022]
Abstract
Human health and wellbeing and the health of the biosphere are inextricably linked. The state of Earth's life-support systems, including freshwater, oceans, land, biodiversity, atmosphere, and climate, affect human health. At the same time, human activities are adversely affecting natural systems. This review paper is the outcome of an interdisciplinary workshop under the auspices of the Future Earth Health Knowledge Action Network (Health KAN). It outlines a research agenda to address cross-cutting knowledge gaps to further understanding and management of the health risks of these global environmental changes through an expert consultation and review process. The research agenda has four main themes: (1) risk identification and management (including related to water, hygiene, sanitation, and waste management); food production and consumption; oceans; and extreme weather events and climate change. (2) Strengthening climate-resilient health systems; (3) Monitoring, surveillance, and evaluation; and (4) risk communication. Research approaches need to be transdisciplinary, multi-scalar, inclusive, equitable, and broadly communicated. Promoting resilient and sustainable development are critical for achieving human and planetary health.
Collapse
Affiliation(s)
- Kristie L. Ebi
- Center for Health and the Global Environment (CHanGE), University of Washington, Seattle, WA 98195, USA
| | | | - Giles B. Sioen
- Future Earth, Global Hub Japan, Tsukuba 305-0053, Japan;
- National Institute for Environmental Studies, Tsukuba 305-0053, Japan;
| | - Chadia Wannous
- Towards A Safer World Network (TASW), 16561 Stockholm, Sweden;
| | - Assaf Anyamba
- Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Universities Space Research Association, Greenbelt, MD 20771, USA;
| | - Peng Bi
- School of Public Health, The University of Adelaide, Adelaide 5005, Australia;
| | - Melanie Boeckmann
- Department of Environment and Health, School of Public Health, Bielefeld University, 33615 Bielefeld, Germany;
| | - Kathryn Bowen
- Institute for Advanced Sustainability Studies, 14467 Potsdam, Germany;
- School of Population and Global Health, University of Melbourne, Melbourne 3052, Australia
- Fenner School of Environment and Society, Australian National University, Canberra 0200, Australia
| | - Guéladio Cissé
- Swiss Tropical and Public Health Institute, University of Basel, CH-4002 Basel, Switzerland;
- University of Basel, CH-4001 Basel, Switzerland
| | | | - Gabriel O. Dida
- Department of Health Systems Management and Public Health, The Technical University of Kenya, Nairobi, Kenya;
- School of Public Health and Community Development, Maseno University, Private Bag 40100, Kisumu, Kenya
| | | | - Franz Gatzweiler
- Global Interdisciplinary Science Programme on Urban Health and Wellbeing: A Systems Approach, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
| | - Firouzeh Javadi
- Institute of Decision Science for a Sustainable Society, Kyushu University, Fukuoka 819-0395, Japan; (F.J.); (T.M.)
| | - Sakiko Kanbara
- Disaster Nursing Global Leadership Program, University of Kochi, Kochi 781-8515, Japan;
| | - Brama Kone
- Lecturer-Researcher of Public Health, University Peleforo Gon Coulibaly of Korhogo, Korhogo, Cote D′Ivoire;
- Centre Suisse de Recherches Scientifiques in Côte d’Ivoire, Abidjan, Cote D′Ivoire
| | - Bruce Maycock
- College of Medicine & Health, University of Exeter, Cornwall TR1 3HD, UK;
| | - Andy Morse
- School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP, UK;
| | - Takahiro Murakami
- Institute of Decision Science for a Sustainable Society, Kyushu University, Fukuoka 819-0395, Japan; (F.J.); (T.M.)
| | - Adetoun Mustapha
- Nigerian Institute for Medical Research, 6 Edmund Crescent, Yaba, Lagos, Nigeria;
| | - Montira Pongsiri
- Stockholm Environment Institute, Asia Centre, Bangkok 10330, Thailand;
| | - Gerardo Suzán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico;
| | - Chiho Watanabe
- National Institute for Environmental Studies, Tsukuba 305-0053, Japan;
| | - Anthony Capon
- Monash Sustainable Development Institute, Monash University, Melbourne 3800, Australia;
| |
Collapse
|
26
|
Guo H, Jin L, Huang S. Effect of PM characterization on PM oxidative potential by acellular assays: a review. REVIEWS ON ENVIRONMENTAL HEALTH 2020; 35:461-470. [PMID: 32589608 DOI: 10.1515/reveh-2020-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
The health risks brought by particles cannot be present via a sole parameter. Instead, the particulate matter oxidative potential (PM OP), which expresses combined redox properties of particles, is used as an integrated metric to assess associated hazards and particle-induced health effects. OP definition provides the capacity of PM toward target oxidation. The latest technologies of a cellular OP measurement has been growing in relevant studies. In this review, OP measurement techniques are focused on discussing along with PM characterization because of many related studies via OP measurements investigating relationship with human health. Many OP measurement methods, such as dithiothreitol (DTT), ascorbic acid (AA), glutathione (GSH) assay and other a cellular assays, are used to study the association between PM toxicity and PM characterization that make different responses, including PM components, size and sources. Briefly, AA and DTT assays are sensitive to metals (such as copper, manganese and iron etc.) and organics (quinones, VOCs and PAH). Measured OP have significant association with certain PM-related end points, for example, lung cancer, COPD and asthma. Literature has found that exposure to measured OP has higher risk ratios than sole PM mass, which may be containing the PM health-relevant fraction. PM characterization effect on health via OP measurement display a promising method.
Collapse
Affiliation(s)
- Huibin Guo
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen, Fujian, China
| | - Lei Jin
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen, Fujian, China
| | - Sijing Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
27
|
Trechera P, Moreno T, Córdoba P, Moreno N, Zhuang X, Li B, Li J, Shangguan Y, Kandler K, Dominguez AO, Kelly F, Querol X. Mineralogy, geochemistry and toxicity of size-segregated respirable deposited dust in underground coal mines. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122935. [PMID: 32540702 DOI: 10.1016/j.jhazmat.2020.122935] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/14/2020] [Accepted: 05/11/2020] [Indexed: 05/24/2023]
Abstract
We focus on a comparison of the geochemistry and mineralogy patterns found in coal, deposited dust (DD), respirable deposited dust (RDD) and inhalable suspended dust (PM10) from a number of underground mines located in China, with an emphasis on potential occupational health relevance. After obtaining the RDD from DD, a toxicological analysis (oxidative potential, OP) was carried out and compared with their geochemical patterns. The results demonstrate: i) a dependence of RDD/DD on the moisture content for high rank coals that does not exist for low rank coals; ii) RDD enrichment in a number of minerals and/or elements related to the parent coal, the wear on mining machinery, lime gunited walls and acid mine drainage; and iii) the geochemical patterns of RDD obtained from DD can be compared with PM10 with relatively good agreement, demonstrating that the characterization of DD and RDD can be used as a proxy to help evaluate the geochemical patterns of suspended PM10. With regards to the toxicological properties of RDD, the Fe content and other by-products of pyrite oxidation, as well as that of anatase, along with Si, Mn and Ba, and particle size (among others), were highly correlated with Ascorbic Acid and/or Glutathione OP.
Collapse
Affiliation(s)
- Pedro Trechera
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; Department of Natural Resources and Environment, Industrial and TIC Engineering (EMIT-UPC), 08242, Manresa, Spain.
| | - Teresa Moreno
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Patricia Córdoba
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Natalia Moreno
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Xinguo Zhuang
- Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan, 430074, China
| | - Baoqing Li
- Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan, 430074, China
| | - Jing Li
- Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan, 430074, China
| | - Yunfei Shangguan
- Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan, 430074, China
| | - Konrad Kandler
- Institute of Applied Geosciences, Technical University Darmstadt, 64287, Darmstadt, Germany
| | - Ana Oliete Dominguez
- MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, UK
| | - Frank Kelly
- MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, UK
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan, 430074, China
| |
Collapse
|
28
|
Oxidative Potential Induced by Ambient Particulate Matters with Acellular Assays: A Review. Processes (Basel) 2020. [DOI: 10.3390/pr8111410] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Acellular assays of oxidative potential (OP) induced by ambient particulate matters (PMs) are of great significance in screening for toxicity in PMs. In this review, several typical OP measurement techniques, including the respiratory tract lining fluid assay (RTLF), ascorbate depletion assay (AA), dithiothreitol assay (DTT), chemiluminescent reductive acridinium triggering (CRAT), dichlorofluorescin assay (DCFH) and electron paramagnetic/spin resonance assay (EPR/ESR) are discussed and their sensitivity to different PMs species composition, PMs size distribution and seasonality is compared. By comparison, the DTT assay tends to be the preferred method providing a more comprehensive measurement with transition metals and quinones accumulated in the fine PMs fraction. Specific transition metals (i.e., Mn, Cu, Fe) and quinones are found to contribute OPDTT directly whereas the redox properties of PMs species may be changed by the interactions between themselves. The selection of the appropriate OP measurement methods and the accurate analysis of the relationship between the methods and PM components is conducive to epidemiological researches which are related with oxidative stress induced by PMs exposure.
Collapse
|
29
|
Massimi L, Ristorini M, Simonetti G, Frezzini MA, Astolfi ML, Canepari S. Spatial mapping and size distribution of oxidative potential of particulate matter released by spatially disaggregated sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115271. [PMID: 32814272 DOI: 10.1016/j.envpol.2020.115271] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
The ability of particulate matter (PM) to induce oxidative stress is frequently estimated by acellular oxidative potential (OP) assays, such as ascorbic acid (AA) and 1,4-dithiothreitol (DTT), used as proxy of reactive oxygen species (ROS) generation in biological systems, and particle-bound ROS measurement, such as 2',7'-dichlorodihydrofluorescein (DCFH) assay. In this study, we evaluated the spatial and size distribution of OP results obtained by three OP assays (OPAA, OPDCFH and OPDTT), to qualitative identify the relative relevance of single source contributions in building up OP values and to map the PM potential to induce oxidative stress in living organisms. To this aim, AA, DCFH and DTT assays were applied to size-segregated PM samples, collected by low-pressure cascade impactors, and to PM10 samples collected at 23 different sampling sites (about 1 km between each other) in Terni, an urban and industrial hot-spot of Central Italy, by using recently developed high spatial resolution samplers of PM, which worked in parallel during three monitoring periods (February, April and December 2017). The sampling sites were chosen for representing the main spatially disaggregated sources of PM (vehicular traffic, rail network, domestic heating, power plant for waste treatment, steel plant) present in the study area. The obtained results clearly showed a very different sensitivity of the three assays toward each local PM source. OPAA was particularly sensitive toward coarse particles released from the railway, OPDCFH was sensible to fine particles released from the steel plant and domestic biomass heating, and OPDTT was quite selectively sensitive toward the fine fraction of PM released by industrial and biomass burning sources.
Collapse
Affiliation(s)
- Lorenzo Massimi
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro, 5, Rome, 00185, Italy.
| | - Martina Ristorini
- Department of Bioscience and Territory, University of Molise, Pesche, IS, 86090, Italy
| | - Giulia Simonetti
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro, 5, Rome, 00185, Italy
| | - Maria Agostina Frezzini
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro, 5, Rome, 00185, Italy
| | - Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro, 5, Rome, 00185, Italy
| | - Silvia Canepari
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro, 5, Rome, 00185, Italy
| |
Collapse
|
30
|
Andraos C, Gulumian M. The toxicity of respirable South African mine tailings dust in relation to their physicochemical properties. Inhal Toxicol 2020; 32:431-445. [PMID: 33095071 DOI: 10.1080/08958378.2020.1836092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Decades of mining in South Africa has given rise to hundreds of tailings storage facilities (TSFs) and several tonnes of waste. These TSFs have contributed to air pollution due to the lack of proper rehabilitation measures. Currently, it is not known whether tailings emissions could be the cause of respiratory-related ill effects. In addition, the physicochemical properties that may govern their toxicity have not yet been identified. AIM The aim of this research was to determine the toxicity of tailings dust and identify the physicochemical properties likely to govern toxicity. METHODS Dust samples were collected from five TSFs in the Gauteng and North West Provinces of South Africa and sieved to enrich the airborne particle fraction more likely to be inhaled. Thereafter, their physicochemical characteristics were assessed i.e. size distribution, specific surface area, shape, surface elemental composition, mineral composition, total elemental composition and surface activity. In addition, the toxicity and cellular internalization of the particles were assessed using the BEAS-2B epithelial and U937 monocytic-macrophage cell lines. Results: The results showed that all tailings dusts showed toxicity, particularly in the BEAS-2B cell line. This toxicity could have been governed by either their elemental composition, e.g. high transition elements e.g. Fe, Cu, Cr and V in the dusts from TSF 4, or a combination of other physicochemical properties, e.g. higher quartz content, lower size and higher surface area in the dusts from TSF 1. CONCLUSION These results provide mechanistic evidence to support future epidemiological studies attempting to link tailings dust exposure to adverse health effects.
Collapse
Affiliation(s)
- Charlene Andraos
- Toxicology Department, National Institute for Occupational Health, Johannesburg, South Africa
| | - Mary Gulumian
- Toxicology Department, National Institute for Occupational Health, Johannesburg, South Africa.,Haematology and Molecular Medicine Department, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
31
|
Xu X, Lu X, Li X, Liu Y, Wang X, Chen H, Chen J, Yang X, Fu TM, Zhao Q, Fu Q. ROS-generation potential of Humic-like substances (HULIS) in ambient PM 2.5 in urban Shanghai: Association with HULIS concentration and light absorbance. CHEMOSPHERE 2020; 256:127050. [PMID: 32446002 DOI: 10.1016/j.chemosphere.2020.127050] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Ambient fine particulate matter (PM2.5) can cause adverse health effects through the generation of reactive oxygen species (ROS) after inhalation. Humic-like substances (HULIS) are major constituents contributing to the ROS-generation potential in organic aerosols. In this study, PM2.5 samples in urban Shanghai during autumn and winter (2018-2019) were collected. Mass-normalized ·OH generation rate in surrogate lung fluid (SLF) was used to denote the intrinsic ROS-generation potential of PM2.5 or of the HULIS isolated from PM2.5. In this study, ROS-generation potential of PM2.5 decreased with increasing ambient PM2.5 concentration due to higher percentage of inorganic components in high PM2.5 event. Same trend was observed for the ROS-generation potential of unit mass of HULIS, which was higher when HULIS and PM2.5 concentrations were both relatively lower. The HULIS with high ROS-generation potential but low concentration (High-ROS/Low-Conc HULIS) were likely produced by the atmospheric aqueous-phase reactions during nighttime or under high relative humidity conditions, not from biomass burning emissions or the photochemical pollution products. The association between ROS-generation potential and light absorption properties of HULIS was studied as well. The High-ROS/Low-Conc HULIS also showed stronger light absorbance than the other HULIS. Our results implied the potentially important roles that HULIS species might play in atmospheric environment and human health even when the PM2.5 pollution is low.
Collapse
Affiliation(s)
- Xiaoya Xu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xiaohui Lu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| | - Xiang Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Yaxi Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xiaofei Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Hong Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xin Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Tzung-May Fu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Qianbiao Zhao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shanghai Environmental Monitoring Center, Shanghai, 200235, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai, 200235, China
| |
Collapse
|
32
|
Airborne Aerosols and Human Health: Leapfrogging from Mass Concentration to Oxidative Potential. ATMOSPHERE 2020. [DOI: 10.3390/atmos11090917] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mass concentration of atmospheric particulate matter (PM) has been systematically used in epidemiological studies as an indicator of exposure to air pollutants, connecting PM concentrations with a wide variety of human health effects. However, these effects can be hardly explained by using one single parameter, especially because PM is formed by a complex mixture of chemicals. Current research has shown that many of these adverse health effects can be derived from the oxidative stress caused by the deposition of PM in the lungs. The oxidative potential (OP) of the PM, related to the presence of transition metals and organic compounds that can induce the production of reactive oxygen and nitrogen species (ROS/RNS), could be a parameter to evaluate these effects. Therefore, estimating the OP of atmospheric PM would allow us to evaluate and integrate the toxic potential of PM into a unique parameter, which is related to emission sources, size distribution and/or chemical composition. However, the association between PM and particle-induced toxicity is still largely unknown. In this commentary article, we analyze how this new paradigm could help to deal with some unanswered questions related to the impact of atmospheric PM over human health.
Collapse
|
33
|
Camiña N, Ho TR, Hawrylowicz CM, Mudway IS. WITHDRAWN: Allergic mechanisms of asthma are enhanced during the summer with oxidant PM 10 components. Free Radic Biol Med 2020:S0891-5849(20)31198-9. [PMID: 32827640 DOI: 10.1016/j.freeradbiomed.2020.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/10/2020] [Indexed: 11/23/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Nuria Camiña
- MRC Centre for Environment and Health, Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Tzer-Ren Ho
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Catherine M Hawrylowicz
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Ian S Mudway
- MRC Centre for Environment and Health, Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| |
Collapse
|
34
|
Gao D, Ripley S, Weichenthal S, Godri Pollitt KJ. Ambient particulate matter oxidative potential: Chemical determinants, associated health effects, and strategies for risk management. Free Radic Biol Med 2020; 151:7-25. [PMID: 32430137 DOI: 10.1016/j.freeradbiomed.2020.04.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Exposure to ambient air pollution has an adverse influence on human health. There is increasing evidence that oxidative potential (OP), the capacity of airborne pollutants to oxidize target molecules by generating redox oxidizing species, is a plausible metric for particulate matter (PM) toxicity. Here we describe the commonly used acellular techniques for measuring OP (respiratory tract lining fluid, dithiothreitol, ascorbic acid, and electron paramagnetic resonance assays) and review the PM chemical constituents that have been identified to drive the OP response. We further perform a review of the epidemiologic literature to identify studies that reported an association between exposure to ambient PM and a health outcome in a human population, and in which exposure was measured by both PM mass concentration and OP. Laboratory studies have shown that specific redox-active metals and quinones are able to contribute OP directly. However, interactions among PM species may alter the redox properties of PM components. In ambient PM measurements, all OP assays were found to be correlated with metals (Fe, Cu) and organic species (photochemically aged organics). Across the epidemiological studies reviewed, associations between fine PM (PM2.5) mass and cardio-respiratory outcomes were found to be stronger at elevated OP levels but findings varied across the different OP measurement techniques. Future work should aim to identify specific situations in which PM OP can improve air pollution exposure assessment and/or risk management. This may be particularly useful in countries with low PM2.5 mass concentrations over broad spatial scales where such information may greatly improve the efficiency of risk management activities.
Collapse
Affiliation(s)
- Dong Gao
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, United States
| | - Susannah Ripley
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada; Air Health Science Division, Health Canada, Ottawa, Ontario, Canada
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, United States; Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, United States.
| |
Collapse
|
35
|
Oxidative Potential Associated with Urban Aerosol Deposited into the Respiratory System and Relevant Elemental and Ionic Fraction Contributions. ATMOSPHERE 2019. [DOI: 10.3390/atmos11010006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Size-segregated aerosol measurements were carried out at an urban and at an industrial site. Soluble and insoluble fractions of elements and inorganic ions were determined. Oxidative potential (OP) was assessed on the soluble fraction of Particulate Matter (PM) by ascorbic acid (AA), dichlorofluorescein (DCFH) and dithiothreitol (DTT) assays. Size resolved elemental, ion and OP doses in the head (H), tracheobronchial (TB) and alveolar (Al) regions were estimated using the Multiple-Path Particle Dosimetry (MPPD) model. The total aerosol respiratory doses due to brake and soil resuspension emissions were higher at the urban than at the industrial site. On the contrary, the doses of anthropic combustion tracers were generally higher at the industrial site. In general, the insoluble fraction was more abundantly distributed in the coarse than in the fine mode and vice versa for the soluble fraction. Consequently, for the latter, the percent of the total respiratory dose deposited in TB and Al regions increased. Oxidative potential assay (OPAA) doses were distributed in the coarse region; therefore, their major contribution was in the H region. The contribution in the TB and Al regions increased for OPDTT and OPDCFH.
Collapse
|
36
|
Jeong CH, Salehi S, Wu J, North ML, Kim JS, Chow CW, Evans GJ. Indoor measurements of air pollutants in residential houses in urban and suburban areas: Indoor versus ambient concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133446. [PMID: 31374501 DOI: 10.1016/j.scitotenv.2019.07.252] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/17/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Indoor exposure to air pollutants was assessed through 99 visits to 51 homes located in downtown high-rise buildings and detached houses in suburban and rural areas. The ambient concentrations of ultrafine particles (UFP), black carbon (BC), particulate matter smaller than 2.5 μm in diameter (PM2.5), and trace elements were concurrently measured at a central monitoring site in downtown Toronto. Median hourly indoor concentrations for all measurements were 4700 particles/cm3 for UFP, 270 ng/m3 for BC, and 4 μg/m3 for PM2.5, which were lower than ambient outdoor levels by a factor of 2-3. Much higher variability was observed for indoor UFP and BC across the homes compared to ambient levels, mostly due to the influence of indoor cooking emissions. Traffic emissions appeared to have a strong influence on the indoor background (i.e., outdoor-originated) concentrations of BC, UFP, and some trace elements. Specifically, 85% and 34% of the indoor concentrations of BC and UFP were predominantly from outdoor sources, respectively. Moreover, a positive correlation was observed between indoor concentrations of BC and UFP and total road length within a 300 m buffer zone. There was no significant decrease in indoor air pollution with increasing floor level among high-rise residences. In addition to the influence of outdoor sources on indoor air quality, indoor sources contributed to elevated concentrations of K, Ca, Cr, and Cu. A factor analysis was performed on trace elements, UFP, and BC in homes to further resolve possible sources. Local traffic emissions, soil dust, biomass burning, and regional coal combustion were identified as outdoor-originated sources, while cooking emissions was a dominant indoor source. This study highlights how outdoor sources can contribute to chronic exposure in indoor environments and how indoor activities can be associated with acute exposure to temporally varying indoor-originated air pollutants.
Collapse
Affiliation(s)
- Cheol-Heon Jeong
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, Toronto, Ontario, Canada.
| | - Sepehr Salehi
- Division of Respirology and Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Joyce Wu
- Division of Respirology and Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Michelle L North
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, Toronto, Ontario, Canada
| | - Jong Sung Kim
- Department of Community Health and Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Chung-Wai Chow
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, Toronto, Ontario, Canada; Division of Respirology and Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Greg J Evans
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, Toronto, Ontario, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Campbell SJ, Utinger B, Lienhard DM, Paulson SE, Shen J, Griffiths PT, Stell AC, Kalberer M. Development of a Physiologically Relevant Online Chemical Assay To Quantify Aerosol Oxidative Potential. Anal Chem 2019; 91:13088-13095. [DOI: 10.1021/acs.analchem.9b03282] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Steven J. Campbell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, 4056 Basel, Switzerland
| | - Battist Utinger
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, 4056 Basel, Switzerland
| | - Daniel M. Lienhard
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Suzanne E. Paulson
- Department of Atmospheric and Oceanic Sciences, University of California at Los Angeles, Los Angeles, California 90095-1565, United States
| | - Jiaqi Shen
- Department of Atmospheric and Oceanic Sciences, University of California at Los Angeles, Los Angeles, California 90095-1565, United States
| | - Paul T. Griffiths
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Angharad C. Stell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Markus Kalberer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, 4056 Basel, Switzerland
| |
Collapse
|
38
|
Lin M, Yu JZ. Dithiothreitol (DTT) concentration effect and its implications on the applicability of DTT assay to evaluate the oxidative potential of atmospheric aerosol samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:938-944. [PMID: 31234260 DOI: 10.1016/j.envpol.2019.05.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
The cell-free dithiothreitol (DTT) assay is widely used and the DTT consumption rate is interpreted to assess the oxidative potential (OP). Most researchers use an experimental procedure developed by Cho et al. (2005) while some adopt a procedure by Li et al. (2009). The key difference between the two procedures is the initial DTT concentration, 100 μM used in the former and 20 μM in the latter, raising an unaddressed issue of comparability. We examine in this work this issue using metal-free humic-like substance (HULIS) samples isolated from ambient aerosol and two metals (i.e. copper and manganese). We found that higher initial DTT concentrations led to higher DTT consumption rates for both HULIS and metals. For HULIS, the increase in DTT consumption rate was proportional to the initial DTT concentration (i.e., roughly by 5-fold), allowing correction of the concentration effect and direct comparison of results from the two protocols. However, the proportionality did not hold for the metals or metal-organic mixtures. The increase was much lower than the proportionality of 5 and metal concentration-dependent, specifically, 1.2-1.3 for Cu and from negligible to 2.0 for Mn. For six water extracts of ambient aerosol samples, in which HULIS and metals co-exist, the proportionality ranged from 1.3 to 2.2. This deviation from a linear dependence on initial DTT concentration, plausibly due to metal-DTT binding, impedes assessing and comparing OP of metals and metal-organic mixtures using different implementations of the DTT assay. Considering the different antioxidants concentrations in real human lung fluid, this work raises caution about using the DTT assay to assess metal-containing mixtures, such as ambient aerosol samples.
Collapse
Affiliation(s)
- Manfei Lin
- Department of Chemistry, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jian Zhen Yu
- Department of Chemistry, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China; Division of Environment, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
39
|
Bates JT, Fang T, Verma V, Zeng L, Weber RJ, Tolbert PE, Abrams JY, Sarnat SE, Klein M, Mulholland JA, Russell AG. Review of Acellular Assays of Ambient Particulate Matter Oxidative Potential: Methods and Relationships with Composition, Sources, and Health Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4003-4019. [PMID: 30830764 DOI: 10.1021/acs.est.8b03430] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Oxidative stress is a potential mechanism of action for particulate matter (PM) toxicity and can occur when the body's antioxidant capacity cannot counteract or detoxify harmful effects of reactive oxygen species (ROS) due to an excess presence of ROS. ROS are introduced to the body via inhalation of PM with these species present on and/or within the particles (particle-bound ROS) and/or through catalytic generation of ROS in vivo after inhaling redox-active PM species (oxidative potential, OP). The recent development of acellular OP measurement techniques has led to a surge in research across the globe. In this review, particle-bound ROS techniques are discussed briefly while OP measurements are the focus due to an increasing number of epidemiologic studies using OP measurements showing associations with adverse health effects in some studies. The most common OP measurement techniques, including the dithiothreitol assay, glutathione assay, and ascorbic acid assay, are discussed along with evidence for utility of OP measurements in epidemiologic studies and PM characteristics that drive different responses between assay types (such as species composition, emission source, and photochemistry). Overall, most OP assays respond to metals like copper than can be found in emission sources like vehicles. Some OP assays respond to organics, especially photochemically aged organics, from sources like biomass burning. Select OP measurements have significant associations with certain cardiorespiratory end points, such as asthma, congestive heart disease, and lung cancer. In fact, multiple studies have found that exposure to OP measured using the dithiothreitol and glutathione assays drives higher risk ratios for certain cardiorespiratory outcomes than PM mass, suggesting OP measurements may be integrating the health-relevant fraction of PM and will be useful tools for future health analyses. The compositional impacts, including species and emission sources, on OP could have serious implications for health-relevant PM exposure. Though more work is needed, OP assays show promise for health studies as they integrate the impacts of PM species and properties on catalytic redox reactions into one measurement, and current work highlights the importance of metals, organic carbon, vehicles, and biomass burning emissions to PM exposures that could impact health.
Collapse
Affiliation(s)
- Josephine T Bates
- Civil and Environmental Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Ting Fang
- Department of Chemistry , University of California Irvine , Irvine , California 92697 , United States
| | - Vishal Verma
- Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , Champaign , Illinois 61820 , United States
| | - Linghan Zeng
- Earth and Atmospheric Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Rodney J Weber
- Earth and Atmospheric Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Paige E Tolbert
- Rollins School of Public Health , Emory University , Atlanta , Georgia 30322 , United States
| | - Joseph Y Abrams
- Center for Disease Control and Prevention, Atlanta , Georgia 30329 , United States
| | - Stefanie E Sarnat
- Rollins School of Public Health , Emory University , Atlanta , Georgia 30322 , United States
| | - Mitchel Klein
- Rollins School of Public Health , Emory University , Atlanta , Georgia 30322 , United States
| | - James A Mulholland
- Civil and Environmental Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Armistead G Russell
- Civil and Environmental Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
40
|
Berg KE, Turner LR, Benka-Coker ML, Rajkumar S, Young BN, Peel JL, Clark ML, Volckens J, Henry CS. Electrochemical Dithiothreitol Assay for Large-Scale Particulate Matter Studies. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2019; 53:268-275. [PMID: 31588161 PMCID: PMC6777574 DOI: 10.1080/02786826.2018.1560391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/11/2018] [Accepted: 11/25/2018] [Indexed: 06/10/2023]
Abstract
Particulate matter (PM) air pollution is associated with human morbidity and mortality. Measuring PM oxidative potential has been shown to provide a predictive measurement between PM exposure and adverse health impacts. The dithiothreitol (DTT) assay is commonly used to measure the oxidative potential of PM2.5 (PM less than 2.5 μm aerodynamic diameter). In the common, kinetic form of this assay, the decay of DTT is quantified over time (indirectly) using 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB, Ellman's reagent) via UV/vis absorbance spectroscopy. The loss of DTT can also be quantified directly using electrochemical detection. The objectives of this work were (1) to evaluate the electrochemical assay, using commercially available equipment, relative to the UV/vis absorbance assay, and (2) to apply the electrochemical method to a large (>100) number of PM2.5 aerosol filter samples. Also presented here is the comparison an end-point assay to the kinetic assay, in an attempt to reduce the time, labor, and materials neccssary to quantify PM oxidative potential. The end-point, electrochemical assay gave comparable results to the UV/vis absorbance assay for PM filter sample analysis. Finally, high filter mass loadings (higher than about 0.5 μg PM per mm2 filter) lead to sub-optimal DTT assay performance, which suggests future studies should limit particle mass loadings on filters.
Collapse
Affiliation(s)
| | | | - Megan L. Benka-Coker
- Dept of Environmental and Radiological Health Sciences, Colorado State University
| | - Sarah Rajkumar
- Dept of Environmental and Radiological Health Sciences, Colorado State University
| | - Bonnie N. Young
- Dept of Environmental and Radiological Health Sciences, Colorado State University
| | - Jennifer L. Peel
- Dept of Environmental and Radiological Health Sciences, Colorado State University
| | - Maggie L. Clark
- Dept of Environmental and Radiological Health Sciences, Colorado State University
| | - John Volckens
- Dept of Environmental and Radiological Health Sciences, Colorado State University
- Dept of Mechanical Engineering, Colorado State University
| | - Charles S. Henry
- Dept of Chemistry, Colorado State University
- Dept of Chemical & Biological Engineering, Colorado State University
| |
Collapse
|
41
|
Roper C, Delgado LS, Barrett D, Massey Simonich SL, Tanguay RL. PM 2.5 Filter Extraction Methods: Implications for Chemical and Toxicological Analyses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:434-442. [PMID: 30507171 PMCID: PMC6652177 DOI: 10.1021/acs.est.8b04308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Toxicology research into the global public health burden of fine particulate matter (PM2.5) exposures frequently requires extraction of PM2.5 from filters. A standardized method for these extractions does not exist, leading to inaccurate interlaboratory comparisons. It is largely unknown how different filter extraction methods might impact the composition and bioactivity of the resulting samples. We characterized the variation in these metrics by using equal portions of a single PM2.5 filter, with each portion undergoing a different extraction method. Significant differences were observed between extraction methods for concentrations of elements and polycyclic aromatic hydrocarbons (PAHs) for the PM2.5 tested following its preparation for biological response studies. Importantly, the chemical profiles differed from those observed when we used standard protocols for chemical characterization of the ambient sample, demonstrating that extraction can alter both chemical component amounts and species profiles of the extracts. The impact of these chemical differences on sensitive end points of zebrafish development was investigated. Significant differences in the percent incidence and timing of mortality were associated with the PM2.5 extraction method. This research highlights the importance of and rationale for considering the extraction method when interlaboratory comparisons of PM2.5 toxicology research are made.
Collapse
Affiliation(s)
- Courtney Roper
- Department of Environmental and Molecular Toxicology , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Lisandra Santiago Delgado
- Department of Environmental and Molecular Toxicology , Oregon State University , Corvallis , Oregon 97331 , United States
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Damien Barrett
- Department of Microbiology , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Staci L Massey Simonich
- Department of Environmental and Molecular Toxicology , Oregon State University , Corvallis , Oregon 97331 , United States
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology , Oregon State University , Corvallis , Oregon 97331 , United States
| |
Collapse
|
42
|
Abbasi S, Keshavarzi B, Moore F, Turner A, Kelly FJ, Dominguez AO, Jaafarzadeh N. Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:153-164. [PMID: 30326387 DOI: 10.1016/j.envpol.2018.10.039] [Citation(s) in RCA: 291] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/03/2018] [Accepted: 10/06/2018] [Indexed: 05/21/2023]
Abstract
While the distribution and effects of microplastics (MPs) have been extensively studied in aquatic systems, there exits little information on their occurrence in the terrestrial environment and their potential impacts on human health. In the present study, street dust and suspended dust were collected from the city and county of Asaluyeh, Iran. Samples were characterized by various microscopic techniques (fluorescence, polarized light, SEM) in order to quantify and classify MPs and microrubbers (MRs) in the urban and industrial environments that are potentially ingestible or inhalable by humans. In < 5-mm street dust retrieved from 15 sites, there were an average of 900 MPs and 250 MRs per 15 g of sample, with MPs exhibiting a range of colours and sizes (<100 to >1000 μm). Most street dust samples were dominated by spherical and film-like particles and MRs largely made up of different sizes of black fragments and fibrous particulates. Airborne dust collected daily over an eight-day period at two locations revealed the ubiquity of fibrous MPs of sizes ranging from about 2 μm to 100 μm and an abundance of about 1 per m-3. These samples contained small MR fragments whose precise characteristics were more difficult to define. Based on the median concentrations in street dust, estimates of acute exposure through ingestion are about 5 and 15 MP d-1 and 2 and 7 MR d-1 for construction workers and young children, respectively. Quantities of inhalable particulates were more difficult to define but the potential toxicity of MPs and MRs taken in by this route was evaluated from assays performed using particulates isolated from street dusts in the presence of an artificial lung fluid. Both types of particle exhibited oxidative potential, with MPs displaying consumptions of different antioxidants that were comparable with corresponding values for a reference urban particulate dust but lower than those for London ambient particulate matter. Thus, MPs and MRs contribute towards the health impacts of urban and industrial dusts but their precise roles remain unclear and warrant further study.
Collapse
Affiliation(s)
- Sajjad Abbasi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz, 71454, Iran
| | - Behnam Keshavarzi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz, 71454, Iran.
| | - Farid Moore
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz, 71454, Iran
| | - Andrew Turner
- School of Geography, Earth and Environmental Sciences, Plymouth University, PL4 8AA, UK
| | - Frank J Kelly
- MRC-PHE Centre for Environment and Health, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Ana Oliete Dominguez
- MRC-PHE Centre for Environment and Health, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Neemat Jaafarzadeh
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
43
|
|
44
|
Soltani N, Keshavarzi B, Sorooshian A, Moore F, Dunster C, Dominguez AO, Kelly FJ, Dhakal P, Ahmadi MR, Asadi S. Oxidative potential (OP) and mineralogy of iron ore particulate matter at the Gol-E-Gohar Mining and Industrial Facility (Iran). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:1785-1802. [PMID: 28281141 PMCID: PMC5610107 DOI: 10.1007/s10653-017-9926-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 02/23/2017] [Indexed: 05/05/2023]
Abstract
Concentrations of total suspended particulate matter, particulate matter with aerodynamic diameter <2.5 μm (PM2.5), particulate matter <10 μm (PM10), and fallout dust were measured at the Iranian Gol-E-Gohar Mining and Industrial Facility. Samples were characterized in terms of mineralogy, morphology, and oxidative potential. Results show that indoor samples exceeded the 24-h PM2.5 and PM10 mass concentration limits (35 and 150 µg m-3, respectively) set by the US National Ambient Air Quality Standards. Calcite, magnetite, tremolite, pyrite, talc, and clay minerals such as kaolinite, vermiculite, and illite are the major phases of the iron ore PM. Accessory minerals are quartz, dolomite, hematite, actinolite, biotite, albite, nimite, laumontite, diopside, and muscovite. The scanning electron microscope structure of fibrous-elongated minerals revealed individual fibers in the range of 1.5 nm to 71.65 µm in length and 0.2 nm to 3.7 µm in diameter. The presence of minerals related to respiratory diseases, such as talc, crystalline silica, and needle-shaped minerals like amphibole asbestos (tremolite and actinolite), strongly suggests the need for detailed health-based studies in the region. The particulate samples show low to medium oxidative potential per unit of mass, in relation to an urban road side control, being more reactive with ascorbate than with glutathione or urate. However, the PM oxidative potential per volume of air is exceptionally high, confirming that the workers are exposed to a considerable oxidative environment. PM released by iron ore mining and processing activities should be considered a potential health risk to the mine workers and nearby employees, and strategies to combat the issue are suggested.
Collapse
Affiliation(s)
- Naghmeh Soltani
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz, 71454, Iran.
| | - Behnam Keshavarzi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz, 71454, Iran
| | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, 85721, USA
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Farid Moore
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz, 71454, Iran
| | - Christina Dunster
- MRC-PHE Centre for Environment and Health, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Ana Oliete Dominguez
- MRC-PHE Centre for Environment and Health, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Frank J Kelly
- MRC-PHE Centre for Environment and Health, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Prakash Dhakal
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Mohamad Reza Ahmadi
- Gol-E-Gohar Iron Ore and Steel Research Institute, Gol-E-Gohar Mining and Industrial Co., Sirjan, Iran
| | - Sina Asadi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz, 71454, Iran
| |
Collapse
|
45
|
Lavigne É, Burnett RT, Stieb DM, Evans GJ, Godri Pollitt KJ, Chen H, van Rijswijk D, Weichenthal S. Fine Particulate Air Pollution and Adverse Birth Outcomes: Effect Modification by Regional Nonvolatile Oxidative Potential. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:077012. [PMID: 30073952 PMCID: PMC6108848 DOI: 10.1289/ehp2535] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Prenatal exposure to fine particulate matter air pollution with aerodynamic diameter ≤2.5 μm (PM2.5) has been associated with preterm delivery and low birth weight (LBW), but few studies have examined possible effect modification by oxidative potential. OBJECTIVES The aim of this study was to evaluate if regional differences in the oxidative potential of PM2.5 modify the relationship between PM2.5 and adverse birth outcomes. METHODS A retrospective cohort study was conducted using 196,171 singleton births that occurred in 31 cities in the province of Ontario, Canada, from 2006 to 2012. Daily air pollution data were collected from ground monitors, and city-level PM2.5 oxidative potential was measured. We used random-effects meta-analysis to combine the estimates of effect from regression models across cities on preterm birth, term LBW, and term birth weight and used meta-regression to evaluate the modifying effect of PM2.5 oxidative potential. RESULTS An interquartile increase (2.6 μg/m3) in first-trimester PM2.5 was positively associated with term LBW among women in the highest quartile of glutathione (GSH)-related oxidative potential [odds ratio (OR)=1.28; 95% confidence interval (CI): 1.10, 1.48], but not the lowest quartile (OR=0.99; 95% CI: 0.87, 1.14; p-interaction=0.03). PM2.5 on the day of delivery also was associated with preterm birth among women in the highest quartile of GSH-related oxidative potential [hazard ratio (HR)=1.02; 95% CI: 1.01, 1.04], but not the lowest quartile [HR=0.97; 95% CI: 0.95, 1.00; p-interaction=0.04]. Between-city differences in ascorbate (AA)-related oxidative potential did not significantly modify associations with PM2.5. CONCLUSIONS Between-city differences in GSH-related oxidative potential may modify the impact of PM2.5 on the risk of term LBW and preterm birth. https://doi.org/10.1289/EHP2535.
Collapse
Affiliation(s)
- Éric Lavigne
- Health Canada, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Richard T Burnett
- Health Canada, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - David M Stieb
- Health Canada, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | - Hong Chen
- Public Health Ontario, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
| | | | - Scott Weichenthal
- Health Canada, Ottawa, Ontario, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
46
|
Griffiths SD, Chappell P, Entwistle JA, Kelly FJ, Deary ME. A study of particulate emissions during 23 major industrial fires: Implications for human health. ENVIRONMENT INTERNATIONAL 2018; 112:310-323. [PMID: 29554638 DOI: 10.1016/j.envint.2017.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 06/08/2023]
Abstract
Public exposure to significantly elevated levels of particulate matter (PM) as a result of major fires at industrial sites is a worldwide problem. Our paper describes how the United Kingdom developed its Air Quality in Major Incidents (AQinMI) service to provide fire emission plume concentration data for use by managers at the time of the incident and to allow an informed public health response. It is one of the first civilian services of its type anywhere in the world. Based on the involvement of several of the authors in the AQinMI service, we describe the service's function, detail the nature of fires covered by the service, and report for the first time on the concentration ranges of PM to which populations may be exposed in major incident fires. We also consider the human health impacts of short-term exposure to significantly elevated PM concentrations and reflect on the appropriateness of current short-term guideline values in providing public health advice. We have analysed monitoring data for airborne PM (≤10μm, PM10;≤2.5μm, PM2.5 and ≤1.0μm, PM1) collected by AQinMI teams using an Osiris laser light scattering monitor, the UK Environment Agency's 'indicative standard' equipment, during deployment to 23 major incident industrial fires. In this context, 'indicative' is applied to monitoring equipment that provides confirmation of the presence of particulates and indicates a measured mass concentration value. Incident-averaged concentrations ranged from 38 to 1450μgm-3 for PM10 and 7 to 258μgm-3 for PM2.5. Of concern was that, for several incidents, 15-min averaged concentrations reached >6500μgm-3 for PM10 and 650μgm-3 for PM2.5, though such excursions tended to be of relatively short duration. In the absence of accepted very short-term (15-min to 1-h) guideline values for PM10 and PM2.5, we have analysed the relationship between the 1-h and 24-h threshold values and whether the former can be used as a predictor of longer-term exposure. Based on this analysis, for PM10, our tentative 1-h threshold value for use in deciding whether to close public buildings or to evacuate areas is 510μgm-3. For PM2.5, 1-h concentrations exceeding 350μgm-3 might indicate longer-term exposure problems. We conclude that whilst services such as AQinMI are a positive development, there is a need to consider further the accuracy of the data provided and for the development of very short-term guideline values (i.e. minutes to hours) that responders can use to determine the appropriate public health response.
Collapse
Affiliation(s)
- Simon D Griffiths
- Faculty of Engineering and Environment, Department of Geography and Environmental Sciences, University of Northumbria, Ellison Building, Newcastle upon Tyne NE1 8ST, UK
| | - Philip Chappell
- National Incident Management, Incident Management and Resilience Services, Environment Agency, Lateral, 8 City Walk, Leeds LS11 9AT, UK
| | - Jane A Entwistle
- Faculty of Engineering and Environment, Department of Geography and Environmental Sciences, University of Northumbria, Ellison Building, Newcastle upon Tyne NE1 8ST, UK
| | - Frank J Kelly
- NIHR Health Impact of Environmental Hazards Health Protection Research Unit, Facility of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Michael E Deary
- Faculty of Engineering and Environment, Department of Geography and Environmental Sciences, University of Northumbria, Ellison Building, Newcastle upon Tyne NE1 8ST, UK.
| |
Collapse
|
47
|
Abrams JY, Weber RJ, Klein M, Sarnat SE, Chang HH, Strickland MJ, Verma V, Fang T, Bates JT, Mulholland JA, Russell AG, Tolbert PE. Associations between Ambient Fine Particulate Oxidative Potential and Cardiorespiratory Emergency Department Visits. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:107008. [PMID: 29084634 PMCID: PMC5933307 DOI: 10.1289/ehp1545] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 08/04/2017] [Accepted: 08/12/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Oxidative potential (OP) has been proposed as a measure of toxicity of ambient particulate matter (PM). OBJECTIVES Our goal was to address an important research gap by using daily OP measurements to conduct population-level analysis of the health effects of measured ambient OP. METHODS A semi-automated dithiothreitol (DTT) analytical system was used to measure daily average OP (OPDTT) in water-soluble fine PM at a central monitor site in Atlanta, Georgia, over eight sampling periods (a total of 196 d) during June 2012-April 2013. Data on emergency department (ED) visits for selected cardiorespiratory outcomes were obtained for the five-county Atlanta metropolitan area. Poisson log-linear regression models controlling for temporal confounders were used to conduct time-series analyses of the relationship between daily counts of ED visits and either the 3-d moving average (lag 0-2) of OPDTT or same-day OPDTT. Bipollutant regression models were run to estimate the health associations of OPDTT while controlling for other pollutants. RESULTS OPDTT was measured for 196 d (mean=0.32 nmol/min/m3, interquartile range=0.21). Lag 0-2 OPDTT was associated with ED visits for respiratory disease (RR=1.03, 95% confidence interval (CI): 1.00, 1.05 per interquartile range increase in OPDTT), asthma (RR=1.12, 95% CI: 1.03, 1.22), and ischemic heart disease (RR=1.19, 95% CI: 1.03, 1.38). Same-day OPDTT was not associated with ED visits for any outcome. Lag 0-2 OPDTT remained a significant predictor of asthma and ischemic heart disease in most bipollutant models. CONCLUSIONS Lag 0-2 OPDTT was associated with ED visits for multiple cardiorespiratory outcomes, providing support for the utility of OPDTT as a measure of fine particle toxicity. https://doi.org/10.1289/EHP1545.
Collapse
Affiliation(s)
- Joseph Y Abrams
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Rodney J Weber
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Mitchel Klein
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Stefanie E Sarnat
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Howard H Chang
- Department of Biostatistics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | | | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Ting Fang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Josephine T Bates
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - James A Mulholland
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Paige E Tolbert
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
48
|
Gonzalez DH, Cala CK, Peng Q, Paulson SE. HULIS Enhancement of Hydroxyl Radical Formation from Fe(II): Kinetics of Fulvic Acid-Fe(II) Complexes in the Presence of Lung Antioxidants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7676-7685. [PMID: 28581715 DOI: 10.1021/acs.est.7b01299] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Oxidative stress mediated by reactive oxygen species (ROS) is a hypothesized mechanism for particulate-matter related health effects. Fe(II) is a key player in ROS formation in surrogate lung fluid (SLF) containing antioxidants. Humic-like substances (HULIS) in particulate matter such as biomass burning aerosol chelate Fe(II), but the effect on ROS formation in the presence of lung antioxidants is not known. We use Suwanee River Fulvic Acid (SRFA) as a surrogate for HULIS and investigate its effect on OH formation from Fe(II). For the first time, a chemical kinetics model was developed to explain behavior of Fe(II) and SRFA in SLF. Model and experimental results are used to find best-fit rate coefficients for key reactions. Modeling results indicate SRFA enhances Fe-mediated reduction of O2 to O2- and destruction of H2O2 to OH to 5.1 ± 1.5 and (4.3 ± 1.4) × 103 M-1 s-1 respectively. Best-fit rates for Citrate-Fe(II) mediated O2 to O2- and H2O2 to OH were 3.0 ± 0.7 and (4.2 ± 1.7) × 103 M-1 s-1 respectively. The kinetics model agrees with both the experimental results and thermodynamic model calculations of chemical speciation for 0 and 5 μg/mL SRFA, but both models are less successful at predicting further enhancements to OH formation at higher SRFA Concentrations.
Collapse
Affiliation(s)
- David H Gonzalez
- University of California at Los Angeles , Department of Atmospheric and Oceanic Sciences, 405 Hilgard Ave., Los Angeles, California 90405, United States
| | - Christopher K Cala
- University of California at Los Angeles , Department of Atmospheric and Oceanic Sciences, 405 Hilgard Ave., Los Angeles, California 90405, United States
| | - Qiaoyun Peng
- University of California at Los Angeles , Department of Atmospheric and Oceanic Sciences, 405 Hilgard Ave., Los Angeles, California 90405, United States
| | - Suzanne E Paulson
- University of California at Los Angeles , Department of Atmospheric and Oceanic Sciences, 405 Hilgard Ave., Los Angeles, California 90405, United States
| |
Collapse
|
49
|
Xiong Q, Yu H, Wang R, Wei J, Verma V. Rethinking Dithiothreitol-Based Particulate Matter Oxidative Potential: Measuring Dithiothreitol Consumption versus Reactive Oxygen Species Generation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6507-6514. [PMID: 28489384 DOI: 10.1021/acs.est.7b01272] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We measured the rate of generation of reactive oxygen species (ROS) [hydroxyl radicals (•OH) and hydrogen peroxide (H2O2)] catalyzed by ambient particulate matter (PM) in the dithiothreitol (DTT) assay. To understand the mechanism of ROS generation, we tested several redox-active substances, such as 9,10-phenanthrenequinone (PQ), 5-hydroxy-1,4-naphthoquinone (5H-1,4NQ), 1,2-naphthoquinone (1,2-NQ), 1,4-naphthoquinone (1,4-NQ), copper(II), manganese(II), and iron (II and III). Both pure compounds and their mixtures show different patterns in DTT oxidation versus ROS generation. The quinones, known to oxidize DTT in the efficiency order of PQ > 5H-1,4NQ > 1,2-NQ > 1,4-NQ, show a different efficiency order (5H-1,4NQ > 1,2-NQ ≈ PQ > 1,4-NQ) in the ROS generation. Cu(II), a dominant metal in DTT oxidation, contributes almost negligibly to the ROS generation. Fe is mostly inactive in DTT oxidation, but shows synergistic effect in •OH formation in the presence of other quinones (mixture/sum > 1.5). Ten ambient PM samples collected from an urban site were analyzed, and although DTT oxidation was significantly correlated with H2O2 generation (Pearson's r = 0.91), no correlation was observed between DTT oxidation and •OH formation. Our results show that measuring both DTT consumption and ROS generation in the DTT assay is important to incorporate the synergistic contribution from different aerosol components and to provide a more inclusive picture of the ROS activity of ambient PM.
Collapse
Affiliation(s)
- Qianshan Xiong
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , 205 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Haoran Yu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , 205 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Runran Wang
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , 205 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jinlai Wei
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , 205 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , 205 North Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
50
|
Szigeti T, Dunster C, Cattaneo A, Spinazzè A, Mandin C, Le Ponner E, de Oliveira Fernandes E, Ventura G, Saraga DE, Sakellaris IA, de Kluizenaar Y, Cornelissen E, Bartzis JG, Kelly FJ. Spatial and temporal variation of particulate matter characteristics within office buildings - The OFFICAIR study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 587-588:59-67. [PMID: 28228238 DOI: 10.1016/j.scitotenv.2017.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/17/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
In the frame of the OFFICAIR project, office buildings were investigated across Europe to assess how the office workers are exposed to different particulate matter (PM) characteristics (i.e. PM2.5 mass concentration, particulate oxidative potential (OP) based on ascorbate and reduced glutathione depletion, trace element concentration and total particle number concentration (PNC)) within the buildings. Two offices per building were investigated during the working hours (5 consecutive days; 8h per day) in two campaigns. Differences were observed for all parameters across the office buildings. Our results indicate that the monitoring of the PM2.5 mass concentration in different offices within a building might not reflect the spatial variation of the health relevant PM characteristics such as particulate OP or the concentration of certain trace elements (e.g., Cu, Fe), since larger differences were apparent within a building for these parameters compared to that obtained for the PM2.5 mass concentration in many cases. The temporal variation was larger for almost all PM characteristics (except for the concentration of Mn) than the spatial differences within the office buildings. These findings indicate that repeated or long-term monitoring campaigns are necessary to have information about the temporal variation of the PM characteristics. However, spatial variation in exposure levels within an office building may cause substantial differences in total exposure in the long term. We did not find strong associations between the investigated indoor activities such as printing or windows opening and the PNC values. This might be caused by the large number of factors affecting PNC indoors and outdoors.
Collapse
Affiliation(s)
- Tamás Szigeti
- Cooperative Research Centre for Environmental Sciences, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary.
| | - Christina Dunster
- MRC-PHE Centre for Environment and Health, National Institute for Health Research Health Protection Research Unit in Health Impact of Environmental Hazards, King's College London, 150 Stamford Street, SE1 9NH London, United Kingdom
| | - Andrea Cattaneo
- Department of Science and High Technology, University of Insubria, via Valleggio 11, 22100 Como, Italy
| | - Andrea Spinazzè
- Department of Science and High Technology, University of Insubria, via Valleggio 11, 22100 Como, Italy
| | - Corinne Mandin
- Centre Scientifique et Technique du Bâtiment (CSTB), Université Paris Est, 84 avenue Jean Jaurés, Champs-sur-Marne, F-77447 Marne-la-Vallée Cedex 2, France
| | - Eline Le Ponner
- Centre Scientifique et Technique du Bâtiment (CSTB), Université Paris Est, 84 avenue Jean Jaurés, Champs-sur-Marne, F-77447 Marne-la-Vallée Cedex 2, France
| | - Eduardo de Oliveira Fernandes
- Institute of Science and Innovation in Mechanical Engineering and Industrial Management, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Gabriela Ventura
- Institute of Science and Innovation in Mechanical Engineering and Industrial Management, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Dikaia E Saraga
- Department of Mechanical Engineering, University of Western Macedonia, Sialvera & Bakola Street, 50100 Kozani, Greece
| | - Ioannis A Sakellaris
- Department of Mechanical Engineering, University of Western Macedonia, Sialvera & Bakola Street, 50100 Kozani, Greece
| | - Yvonne de Kluizenaar
- The Netherlands Organization for Applied Scientific Research (TNO), P.O. Box 49, 2600 AA Delft, The Netherlands
| | - Eric Cornelissen
- The Netherlands Organization for Applied Scientific Research (TNO), P.O. Box 49, 2600 AA Delft, The Netherlands
| | - John G Bartzis
- Department of Mechanical Engineering, University of Western Macedonia, Sialvera & Bakola Street, 50100 Kozani, Greece
| | - Frank J Kelly
- MRC-PHE Centre for Environment and Health, National Institute for Health Research Health Protection Research Unit in Health Impact of Environmental Hazards, King's College London, 150 Stamford Street, SE1 9NH London, United Kingdom.
| |
Collapse
|