1
|
Piro A, Luo Y, Zhang Z, Ye W, Kang F, Xie L, Wang Y, Dai FF, Gaisano HY, Rocheleau JV, Prentice KJ, Wheeler MB. Beta cell specific ZnT8 gene deficiency and resulting loss in zinc content significantly improve insulin secretion. Mol Cell Endocrinol 2024; 594:112376. [PMID: 39321953 DOI: 10.1016/j.mce.2024.112376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/06/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Zinc transporter 8 (ZnT8) is highly expressed in pancreatic beta cells, localizes to insulin secretory granules (ISG), and regulates zinc content. ZnT8 gene polymorphisms have revealed a relationship between ZnT8 activity and type 2 diabetes (T2D) risk, however, the role of beta-cell ZnT8 is not well understood. A beta cell specific ZnT8 knockout (ZnT8 BKO) mouse model was investigated. ZnT8 BKO islets showed significantly reduced ZnT8 gene expression and reduced zinc content. Compared to controls, ZnT8 BKO mice displayed significantly elevated plasma insulin levels and improved glucose tolerance following acute insulin resistance induced via S961. Glucose stimulated insulin secretion from isolated ZnT8 BKO pancreatic islets revealed enhanced insulin secretion capacity. The difference in insulin secretion between ZnT8 BKO and control islets was negated upon zinc supplementation, and the inhibitory effect of zinc on insulin secretion was confirmed in human islets. These results indicate that the loss of ZnT8 activity and accompanying reduced cellular zinc are associated with increased insulin secretion capacity. The reduction in secreted insulin content upon zinc supplementation in ZnT8 BKO islets suggests that ISG-released zinc normally tempers insulin secretion.
Collapse
Affiliation(s)
- Anthony Piro
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yihan Luo
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ziyi Zhang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenyue Ye
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Fei Kang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Li Xie
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yufeng Wang
- Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto, ON M5G 1L7, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Feihan F Dai
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Herbert Y Gaisano
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan V Rocheleau
- Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto, ON M5G 1L7, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Kacey J Prentice
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michael B Wheeler
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Dean B, Hopper S, Scarr E. Changes in levels of the zinc transporter SLC39A12 in Brodmann's area 44: Effects of sex, suicide, CNS pH and schizophrenia. J Psychiatr Res 2024; 177:177-184. [PMID: 39024742 DOI: 10.1016/j.jpsychires.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Disturbed CNS zinc homeostasis is suggested as part of the pathophysiology of schizophrenia. Our data, from multiple studies, suggests levels of cortical RNA for the solute carrier family 39 member 12 (SLC39A12), a putative zinc transporter, is higher in people with schizophrenia and is more perturbed in a sub-group of people with the disorder that can be separated because they have very low levels of muscarinic M1 receptors (MRDS). In this study qPCR was used to measure levels of two RNA splice variants of SLC39A12 (a and b) in Brodmann's area (BA) 44 from new cohorts of controls and people with schizophrenia. For the first time, in our study cohort as a whole, we report levels of both splice variants of SLC39A12 are lower in females compared to males and there are correlations between levels of SLC39A12 a and b and CNS pH. Levels of both splice variants were also lower in people with schizophrenia who were suicide completers compared to those who were not. Accounting for these factors, we showed levels of SLC39A12 a and b were higher in BA 44 in schizophrenia compared to controls. In further analyses, with and without our previous data on SLC39A12 a and b, we confirmed changes in levels of SLC39A12 RNAs were more profound in MRDS. In conclusion, our study argues there are higher levels of SLC39A12 a and b in BA 44 in schizophrenia which could be contributing to the breakdown in CNS zinc homeostasis suggested as part of the pathophysiology of schizophrenia, particularly in those with MRDS.
Collapse
Affiliation(s)
- Brian Dean
- The Molecular Psychiatry Laboratory, The Florey, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| | - Shaun Hopper
- The Molecular Psychiatry Laboratory, The Florey, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth Scarr
- The Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Le Collen L, Froguel P, Bonnefond A. Towards the recognition of oligogenic forms of type 2 diabetes. Trends Endocrinol Metab 2024:S1043-2760(24)00166-8. [PMID: 38955653 DOI: 10.1016/j.tem.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
The demarcation between monogenic and polygenic type 2 diabetes (T2D) is less distinct than previously believed. Notably, recent research has highlighted a new entity, that we suggest calling oligogenic forms of T2D, serving as a genetic link between these two forms. In this opinion article, we have reviewed scientific advances that suggest categorizing genes involved in oligogenic T2D. Research focused on polygenic T2D has faced challenges in deepening our comprehension of the pathophysiology of T2D due to the inability to directly establish causal links between a signal and the molecular mechanisms underlying the disease. However, the study of oligogenic forms of T2D has illuminated distinct causal connections between genes and disease risk, thereby indicating potential new drug targets.
Collapse
Affiliation(s)
- Lauriane Le Collen
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille University Hospital, Lille, France; University of Lille, Lille, France; Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Nancy, France
| | - Philippe Froguel
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille University Hospital, Lille, France; University of Lille, Lille, France; Department of Metabolism, Imperial College London, Hammersmith Hospital, London, UK
| | - Amélie Bonnefond
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille University Hospital, Lille, France; University of Lille, Lille, France; Department of Metabolism, Imperial College London, Hammersmith Hospital, London, UK.
| |
Collapse
|
4
|
Davis JC, Ryaboshapkina M, Kenty JH, Eser PÖ, Menon S, Tyrberg B, Melton DA. IAPP Marks Mono-hormonal Stem-cell Derived β Cells that Maintain Stable Insulin Production in vitro and in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.587726. [PMID: 38645166 PMCID: PMC11030367 DOI: 10.1101/2024.04.10.587726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Islet transplantation for treatment of diabetes is limited by availability of donor islets and requirements for immunosuppression. Stem cell-derived islets might circumvent these issues. SC-islets effectively control glucose metabolism post transplantation, but do not yet achieve full function in vitro with current published differentiation protocols. We aimed to identify markers of mature subpopulations of SC-β cells by studying transcriptional changes associated with in vivo maturation of SC-β cells using RNA-seq and co-expression network analysis. The β cell-specific hormone islet amyloid polypeptide (IAPP) emerged as the top candidate to be such a marker. IAPP+ cells had more mature β cell gene expression and higher cellular insulin content than IAPP- cells in vitro. IAPP+ INS+ cells were more stable in long-term culture than IAPP- INS+ cells and retained insulin expression after transplantation into mice. Finally, we conducted a small molecule screen to identify compounds that enhance IAPP expression. Aconitine up-regulated IAPP and could help to optimize differentiation protocols.
Collapse
Affiliation(s)
- Jeffrey C. Davis
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Boston MA 02138, United States of America
| | - Maria Ryaboshapkina
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jennifer H. Kenty
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Boston MA 02138, United States of America
| | | | - Suraj Menon
- RDI Operations, Granta Park, AstraZeneca, Cambridge CB21 6GP, UK
| | - Björn Tyrberg
- Global Insights, Analytics & Commercial Excellence, BioPharmaceuticals Business Unit, AstraZeneca, Gothenburg, Sweden
| | - Douglas A. Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Boston MA 02138, United States of America
| |
Collapse
|
5
|
Sui L, Du Q, Romer A, Su Q, Chabosseau PL, Xin Y, Kim J, Kleiner S, Rutter GA, Egli D. ZnT8 Loss of Function Mutation Increases Resistance of Human Embryonic Stem Cell-Derived Beta Cells to Apoptosis in Low Zinc Condition. Cells 2023; 12:903. [PMID: 36980244 PMCID: PMC10047077 DOI: 10.3390/cells12060903] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
The rare SLC30A8 mutation encoding a truncating p.Arg138* variant (R138X) in zinc transporter 8 (ZnT8) is associated with a 65% reduced risk for type 2 diabetes. To determine whether ZnT8 is required for beta cell development and function, we derived human pluripotent stem cells carrying the R138X mutation and differentiated them into insulin-producing cells. We found that human pluripotent stem cells with homozygous or heterozygous R138X mutation and the null (KO) mutation have normal efficiency of differentiation towards insulin-producing cells, but these cells show diffuse granules that lack crystalline zinc-containing insulin granules. Insulin secretion is not compromised in vitro by KO or R138X mutations in human embryonic stem cell-derived beta cells (sc-beta cells). Likewise, the ability of sc-beta cells to secrete insulin and maintain glucose homeostasis after transplantation into mice was comparable across different genotypes. Interestingly, sc-beta cells with the SLC30A8 KO mutation showed increased cytoplasmic zinc, and cells with either KO or R138X mutation were resistant to apoptosis when extracellular zinc was limiting. These findings are consistent with a protective role of zinc in cell death and with the protective role of zinc in T2D.
Collapse
Affiliation(s)
- Lina Sui
- Departments of Pediatrics, Naomi Berrie Diabetes Center, Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (Q.D.)
| | - Qian Du
- Departments of Pediatrics, Naomi Berrie Diabetes Center, Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (Q.D.)
| | - Anthony Romer
- Departments of Pediatrics, Naomi Berrie Diabetes Center, Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (Q.D.)
| | - Qi Su
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Yurong Xin
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Jinrang Kim
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Sandra Kleiner
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Guy A. Rutter
- CR-CHUM, Faculté de Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Section of Cell Biology, Hammersmith Hospital, Imperial College, London WI2 ONN, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Dieter Egli
- Departments of Pediatrics, Naomi Berrie Diabetes Center, Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (Q.D.)
| |
Collapse
|
6
|
Kim YK, Walters JA, Moss ND, Wells KL, Sheridan R, Miranda JG, Benninger RKP, Pyle LL, O'Brien RM, Sussel L, Davidson HW. Zinc transporter 8 haploinsufficiency protects against beta cell dysfunction in type 1 diabetes by increasing mitochondrial respiration. Mol Metab 2022; 66:101632. [PMID: 36347424 PMCID: PMC9672421 DOI: 10.1016/j.molmet.2022.101632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Zinc transporter 8 (ZnT8) is a major humoral target in human type 1 diabetes (T1D). Polymorphic variants of Slc30A8, which encodes ZnT8, are also associated with protection from type 2 diabetes (T2D). The current study examined whether ZnT8 might play a role beyond simply being a target of autoimmunity in the pathophysiology of T1D. METHODS The phenotypes of NOD mice with complete or partial global loss of ZnT8 were determined using a combination of disease incidence, histological, transcriptomic, and metabolic analyses. RESULTS Unexpectedly, while complete loss of ZnT8 accelerated spontaneous T1D, heterozygosity was partially protective. In vivo and in vitro studies of ZnT8 deficient NOD.SCID mice suggested that the accelerated disease was due to more rampant autoimmunity. Conversely, beta cells in heterozygous animals uniquely displayed increased mitochondrial fitness under mild proinflammatory conditions. CONCLUSIONS In pancreatic beta cells and immune cell populations, Zn2+ plays a key role as a regulator of redox signaling and as an independent secondary messenger. Importantly, Zn2+ also plays a major role in maintaining mitochondrial homeostasis. Our results suggest that regulating mitochondrial fitness by altering intra-islet zinc homeostasis may provide a novel mechanism to modulate T1D pathophysiology.
Collapse
Affiliation(s)
- Yong Kyung Kim
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jay A Walters
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nicole D Moss
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristen L Wells
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; RNA Biology Initiative, Biochemistry and Molecular Genetics Department, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ryan Sheridan
- RNA Biology Initiative, Biochemistry and Molecular Genetics Department, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jose G Miranda
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard K P Benninger
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Laura L Pyle
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; Director Child Health Research Biostatistics Core, Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard M O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Howard W Davidson
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Immunology and Microbiology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
7
|
ZnT8 loss-of-function accelerates functional maturation of hESC-derived β cells and resists metabolic stress in diabetes. Nat Commun 2022; 13:4142. [PMID: 35842441 PMCID: PMC9288460 DOI: 10.1038/s41467-022-31829-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/04/2022] [Indexed: 12/21/2022] Open
Abstract
Human embryonic stem cell-derived β cells (SC-β cells) hold great promise for treatment of diabetes, yet how to achieve functional maturation and protect them against metabolic stresses such as glucotoxicity and lipotoxicity remains elusive. Our single-cell RNA-seq analysis reveals that ZnT8 loss of function (LOF) accelerates the functional maturation of SC-β cells. As a result, ZnT8 LOF improves glucose-stimulated insulin secretion (GSIS) by releasing the negative feedback of zinc inhibition on insulin secretion. Furthermore, we demonstrate that ZnT8 LOF mutations endow SC-β cells with resistance to lipotoxicity/glucotoxicity-triggered cell death by alleviating endoplasmic reticulum (ER) stress through modulation of zinc levels. Importantly, transplantation of SC-β cells with ZnT8 LOF into mice with preexisting diabetes significantly improves glycemia restoration and glucose tolerance. These findings highlight the beneficial effect of ZnT8 LOF on the functional maturation and survival of SC-β cells that are useful as a potential source for cell replacement therapies. Immature function and fragility hinder application of hESC-derived β cells (SC-β cell) for diabetes cell therapy. Here, the authors identify ZnT8 as a gene editing target to enhance the insulin secretion and cell survival under metabolic stress by abolishing zinc transport in SC-β cells.
Collapse
|
8
|
Willekens J, Runnels LW. Impact of Zinc Transport Mechanisms on Embryonic and Brain Development. Nutrients 2022; 14:2526. [PMID: 35745255 PMCID: PMC9231024 DOI: 10.3390/nu14122526] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/04/2022] Open
Abstract
The trace element zinc (Zn) binds to over ten percent of proteins in eukaryotic cells. Zn flexible chemistry allows it to regulate the activity of hundreds of enzymes and influence scores of metabolic processes in cells throughout the body. Deficiency of Zn in humans has a profound effect on development and in adults later in life, particularly in the brain, where Zn deficiency is linked to several neurological disorders. In this review, we will summarize the importance of Zn during development through a description of the outcomes of both genetic and early dietary Zn deficiency, focusing on the pathological consequences on the whole body and brain. The epidemiology and the symptomology of Zn deficiency in humans will be described, including the most studied inherited Zn deficiency disease, Acrodermatitis enteropathica. In addition, we will give an overview of the different forms and animal models of Zn deficiency, as well as the 24 Zn transporters, distributed into two families: the ZIPs and the ZnTs, which control the balance of Zn throughout the body. Lastly, we will describe the TRPM7 ion channel, which was recently shown to contribute to intestinal Zn absorption and has its own significant impact on early embryonic development.
Collapse
Affiliation(s)
| | - Loren W. Runnels
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| |
Collapse
|
9
|
Blumer M, Brown T, Freitas MB, Destro AL, Oliveira JA, Morales AE, Schell T, Greve C, Pippel M, Jebb D, Hecker N, Ahmed AW, Kirilenko BM, Foote M, Janke A, Lim BK, Hiller M. Gene losses in the common vampire bat illuminate molecular adaptations to blood feeding. SCIENCE ADVANCES 2022; 8:eabm6494. [PMID: 35333583 PMCID: PMC8956264 DOI: 10.1126/sciadv.abm6494] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/03/2022] [Indexed: 05/06/2023]
Abstract
Vampire bats are the only mammals that feed exclusively on blood. To uncover genomic changes associated with this dietary adaptation, we generated a haplotype-resolved genome of the common vampire bat and screened 27 bat species for genes that were specifically lost in the vampire bat lineage. We found previously unknown gene losses that relate to reduced insulin secretion (FFAR1 and SLC30A8), limited glycogen stores (PPP1R3E), and a unique gastric physiology (CTSE). Other gene losses likely reflect the biased nutrient composition (ERN2 and CTRL) and distinct pathogen diversity of blood (RNASE7) and predict the complete lack of cone-based vision in these strictly nocturnal bats (PDE6H and PDE6C). Notably, REP15 loss likely helped vampire bats adapt to high dietary iron levels by enhancing iron excretion, and the loss of CYP39A1 could have contributed to their exceptional cognitive abilities. These findings enhance our understanding of vampire bat biology and the genomic underpinnings of adaptations to blood feeding.
Collapse
Affiliation(s)
- Moritz Blumer
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Tom Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | - Ana Luiza Destro
- Department of Animal Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Juraci A. Oliveira
- Department of General Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Ariadna E. Morales
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Tilman Schell
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - David Jebb
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Nikolai Hecker
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Alexis-Walid Ahmed
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Bogdan M. Kirilenko
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Maddy Foote
- Native Bat Conservation Program, Toronto Zoo, 361A Old Finch Avenue, Toronto, Ontario M1B 5K7, Canada
| | - Axel Janke
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Burton K. Lim
- Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario M5S 2C6, Canada
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| |
Collapse
|
10
|
Glucose-6-phosphatase catalytic subunit 2 negatively regulates glucose oxidation and insulin secretion in pancreatic β-cells. J Biol Chem 2022; 298:101729. [PMID: 35176280 PMCID: PMC8941207 DOI: 10.1016/j.jbc.2022.101729] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 12/11/2022] Open
Abstract
Elevated fasting blood glucose (FBG) is associated with increased risks of developing type 2 diabetes (T2D) and cardiovascular-associated mortality. G6PC2 is predominantly expressed in islets, encodes a glucose-6-phosphatase catalytic subunit that converts glucose-6-phosphate (G6P) to glucose, and has been linked with variations in FBG in genome-wide association studies. Deletion of G6pc2 in mice has been shown to lower FBG without affecting fasting plasma insulin levels in vivo. At 5 mM glucose, pancreatic islets from G6pc2 knockout (KO) mice exhibit no glucose cycling, increased glycolytic flux, and enhanced glucose-stimulated insulin secretion (GSIS). However, the broader effects of G6pc2 KO on β-cell metabolism and redox regulation are unknown. Here we used CRISPR/Cas9 gene editing and metabolic flux analysis in βTC3 cells, a murine pancreatic β-cell line, to examine the role of G6pc2 in regulating glycolytic and mitochondrial fluxes. We found that deletion of G6pc2 led to ∼60% increases in glycolytic and citric acid cycle (CAC) fluxes at both 5 and 11 mM glucose concentrations. Furthermore, intracellular insulin content and GSIS were enhanced by approximately two-fold, along with increased cytosolic redox potential and reductive carboxylation flux. Normalization of fluxes relative to net glucose uptake revealed upregulation in two NADPH-producing pathways in the CAC. These results demonstrate that G6pc2 regulates GSIS by modulating not only glycolysis but also, independently, citric acid cycle activity in β-cells. Overall, our findings implicate G6PC2 as a potential therapeutic target for enhancing insulin secretion and lowering FBG, which could benefit individuals with prediabetes, T2D, and obesity.
Collapse
|
11
|
Barragán-Álvarez CP, Padilla-Camberos E, Díaz NF, Cota-Coronado A, Hernández-Jiménez C, Bravo-Reyna CC, Díaz-Martínez NE. Loss of Znt8 function in diabetes mellitus: risk or benefit? Mol Cell Biochem 2021; 476:2703-2718. [PMID: 33666829 DOI: 10.1007/s11010-021-04114-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
The zinc transporter 8 (ZnT8) plays an essential role in zinc homeostasis inside pancreatic β cells, its function is related to the stabilization of insulin hexameric form. Genome-wide association studies (GWAS) have established a positive and negative relationship of ZnT8 variants with type 2 diabetes mellitus (T2DM), exposing a dual and controversial role. The first hypotheses about its role in T2DM indicated a higher risk of developing T2DM for loss of function; nevertheless, recent GWAS of ZnT8 loss-of-function mutations in humans have shown protection against T2DM. With regard to the ZnT8 role in T2DM, most studies have focused on rodent models and common high-risk variants; however, considerable differences between human and rodent models have been found and the new approaches have included lower-frequency variants as a tool to clarify gene functions, allowing a better understanding of the disease and offering possible therapeutic targets. Therefore, this review will discuss the physiological effects of the ZnT8 variants associated with a major and lower risk of T2DM, emphasizing the low- and rare-frequency variants.
Collapse
Affiliation(s)
- Carla P Barragán-Álvarez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Eduardo Padilla-Camberos
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Nestor F Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Agustín Cota-Coronado
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Claudia Hernández-Jiménez
- Departamento de Cirugía Experimental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Carlos C Bravo-Reyna
- Departamento de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Nestor E Díaz-Martínez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico.
| |
Collapse
|
12
|
Kambe T, Taylor KM, Fu D. Zinc transporters and their functional integration in mammalian cells. J Biol Chem 2021; 296:100320. [PMID: 33485965 PMCID: PMC7949119 DOI: 10.1016/j.jbc.2021.100320] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Zinc is a ubiquitous biological metal in all living organisms. The spatiotemporal zinc dynamics in cells provide crucial cellular signaling opportunities, but also challenges for intracellular zinc homeostasis with broad disease implications. Zinc transporters play a central role in regulating cellular zinc balance and subcellular zinc distributions. The discoveries of two complementary families of mammalian zinc transporters (ZnTs and ZIPs) in the mid-1990s spurred much speculation on their metal selectivity and cellular functions. After two decades of research, we have arrived at a biochemical description of zinc transport. However, in vitro functions are fundamentally different from those in living cells, where mammalian zinc transporters are directed to specific subcellular locations, engaged in dedicated macromolecular machineries, and connected with diverse cellular processes. Hence, the molecular functions of individual zinc transporters are reshaped and deeply integrated in cells to promote the utilization of zinc chemistry to perform enzymatic reactions, tune cellular responsiveness to pathophysiologic signals, and safeguard cellular homeostasis. At present, the underlying mechanisms driving the functional integration of mammalian zinc transporters are largely unknown. This knowledge gap has motivated a shift of the research focus from in vitro studies of purified zinc transporters to in cell studies of mammalian zinc transporters in the context of their subcellular locations and protein interactions. In this review, we will outline how knowledge of zinc transporters has been accumulated from in-test-tube to in-cell studies, highlighting new insights and paradigm shifts in our understanding of the molecular and cellular basis of mammalian zinc transporter functions.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kathryn M Taylor
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Dax Fu
- Department of Physiology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
13
|
The role of labile Zn 2+ and Zn 2+-transporters in the pathophysiology of mitochondria dysfunction in cardiomyocytes. Mol Cell Biochem 2020; 476:971-989. [PMID: 33225416 DOI: 10.1007/s11010-020-03964-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
An important energy supplier of cardiomyocytes is mitochondria, similar to other mammalian cells. Studies have demonstrated that any defect in the normal processes controlled by mitochondria can lead to abnormal ROS production, thereby high oxidative stress as well as lack of ATP. Taken into consideration, the relationship between mitochondrial dysfunction and overproduction of ROS as well as the relation between increased ROS and high-level release of intracellular labile Zn2+, those bring into consideration the importance of the events related with those stimuli in cardiomyocytes responsible from cellular Zn2+-homeostasis and responsible Zn2+-transporters associated with the Zn2+-homeostasis and Zn2+-signaling. Zn2+-signaling, controlled by cellular Zn2+-homeostatic mechanisms, is regulated with intracellular labile Zn2+ levels, which are controlled, especially, with the two Zn2+-transporter families; ZIPs and ZnTs. Our experimental studies in mammalian cardiomyocytes and human heart tissue showed that Zn2+-transporters localizes to mitochondria besides sarco(endo)plasmic reticulum and Golgi under physiological condition. The protein levels as well as functions of those transporters can re-distribute under pathological conditions, therefore, they can interplay among organelles in cardiomyocytes to adjust a proper intracellular labile Zn2+ level. In the present review, we aimed to summarize the already known Zn2+-transporters localize to mitochondria and function to stabilize not only the cellular Zn2+ level but also cellular oxidative stress status. In conclusion, one can propose that a detailed understanding of cellular Zn2+-homeostasis and Zn2+-signaling through mitochondria may emphasize the importance of new mitochondria-targeting agents for prevention and/or therapy of cardiovascular dysfunction in humans.
Collapse
|
14
|
Schumann T, König J, Henke C, Willmes DM, Bornstein SR, Jordan J, Fromm MF, Birkenfeld AL. Solute Carrier Transporters as Potential Targets for the Treatment of Metabolic Disease. Pharmacol Rev 2020; 72:343-379. [PMID: 31882442 DOI: 10.1124/pr.118.015735] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The solute carrier (SLC) superfamily comprises more than 400 transport proteins mediating the influx and efflux of substances such as ions, nucleotides, and sugars across biological membranes. Over 80 SLC transporters have been linked to human diseases, including obesity and type 2 diabetes (T2D). This observation highlights the importance of SLCs for human (patho)physiology. Yet, only a small number of SLC proteins are validated drug targets. The most recent drug class approved for the treatment of T2D targets sodium-glucose cotransporter 2, product of the SLC5A2 gene. There is great interest in identifying other SLC transporters as potential targets for the treatment of metabolic diseases. Finding better treatments will prove essential in future years, given the enormous personal and socioeconomic burden posed by more than 500 million patients with T2D by 2040 worldwide. In this review, we summarize the evidence for SLC transporters as target structures in metabolic disease. To this end, we identified SLC13A5/sodium-coupled citrate transporter, and recent proof-of-concept studies confirm its therapeutic potential in T2D and nonalcoholic fatty liver disease. Further SLC transporters were linked in multiple genome-wide association studies to T2D or related metabolic disorders. In addition to presenting better-characterized potential therapeutic targets, we discuss the likely unnoticed link between other SLC transporters and metabolic disease. Recognition of their potential may promote research on these proteins for future medical management of human metabolic diseases such as obesity, fatty liver disease, and T2D. SIGNIFICANCE STATEMENT: Given the fact that the prevalence of human metabolic diseases such as obesity and type 2 diabetes has dramatically risen, pharmacological intervention will be a key future approach to managing their burden and reducing mortality. In this review, we present the evidence for solute carrier (SLC) genes associated with human metabolic diseases and discuss the potential of SLC transporters as therapeutic target structures.
Collapse
Affiliation(s)
- Tina Schumann
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Jörg König
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Christine Henke
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Diana M Willmes
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Stefan R Bornstein
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Jens Jordan
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Martin F Fromm
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Andreas L Birkenfeld
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| |
Collapse
|
15
|
Syring KE, Bosma KJ, Goleva SB, Singh K, Oeser JK, Lopez CA, Skaar EP, McGuinness OP, Davis LK, Powell DR, O’Brien RM. Potential positive and negative consequences of ZnT8 inhibition. J Endocrinol 2020; 246:189-205. [PMID: 32485672 PMCID: PMC7351606 DOI: 10.1530/joe-20-0138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/02/2020] [Indexed: 12/31/2022]
Abstract
SLC30A8 encodes the zinc transporter ZnT8. SLC30A8 haploinsufficiency protects against type 2 diabetes (T2D), suggesting that ZnT8 inhibitors may prevent T2D. We show here that, while adult chow fed Slc30a8 haploinsufficient and knockout (KO) mice have normal glucose tolerance, they are protected against diet-induced obesity (DIO), resulting in improved glucose tolerance. We hypothesize that this protection against DIO may represent one mechanism whereby SLC30A8 haploinsufficiency protects against T2D in humans and that, while SLC30A8 is predominantly expressed in pancreatic islet beta cells, this may involve a role for ZnT8 in extra-pancreatic tissues. Consistent with this latter concept we show in humans, using electronic health record-derived phenotype analyses, that the 'C' allele of the non-synonymous rs13266634 SNP, which confers a gain of ZnT8 function, is associated not only with increased T2D risk and blood glucose, but also with increased risk for hemolytic anemia and decreased mean corpuscular hemoglobin (MCH). In Slc30a8 KO mice, MCH was unchanged but reticulocytes, platelets and lymphocytes were elevated. Both young and adult Slc30a8 KO mice exhibit a delayed rise in insulin after glucose injection, but only the former exhibit increased basal insulin clearance and impaired glucose tolerance. Young Slc30a8 KO mice also exhibit elevated pancreatic G6pc2 gene expression, potentially mediated by decreased islet zinc levels. These data indicate that the absence of ZnT8 results in a transient impairment in some aspects of metabolism during development. These observations in humans and mice suggest the potential for negative effects associated with T2D prevention using ZnT8 inhibitors.
Collapse
Affiliation(s)
- Kristen E. Syring
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine
| | - Karin J. Bosma
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine
| | - Slavina B. Goleva
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Kritika Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - James K. Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine
| | - Christopher A. Lopez
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Eric P. Skaar
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Owen P. McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine
| | - Lea K. Davis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - David R. Powell
- Lexicon Pharmaceuticals Incorporated, 8800 Technology Forest Place, The Woodlands, Texas 77381
| | - Richard M. O’Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine
| |
Collapse
|
16
|
Bosma KJ, Rahim M, Oeser JK, McGuinness OP, Young JD, O'Brien RM. G6PC2 confers protection against hypoglycemia upon ketogenic diet feeding and prolonged fasting. Mol Metab 2020; 41:101043. [PMID: 32569842 PMCID: PMC7369601 DOI: 10.1016/j.molmet.2020.101043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/26/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Objective G6PC2 is predominantly expressed in pancreatic islet beta cells. G6PC2 hydrolyzes glucose-6-phosphate to glucose and inorganic phosphate, thereby creating a futile substrate cycle that opposes the action of glucokinase. This substrate cycle determines the sensitivity of glucose-stimulated insulin secretion to glucose and hence regulates fasting blood glucose (FBG) but not fasting plasma insulin (FPI) levels. Our objective was to explore the physiological benefit this cycle confers. Methods We investigated the response of wild type (WT) and G6pc2 knockout (KO) mice to changes in nutrition. Results Pancreatic G6pc2 expression was little changed by ketogenic diet feeding but was inhibited by 24 hr fasting and strongly induced by high fat feeding. When challenged with either a ketogenic diet or 24 hr fasting, blood glucose fell to 70 mg/dl or less in G6pc2 KO but not WT mice, suggesting that G6PC2 may have evolved, in part, to prevent hypoglycemia. Prolonged ketogenic diet feeding reduced the effect of G6pc2 deletion on FBG. The hyperglycemia associated with high fat feeding was partially blunted in G6pc2 KO mice, suggesting that under these conditions the presence of G6PC2 is detrimental. As expected, FPI changed but did not differ between WT and KO mice in response to fasting, ketogenic and high fat feeding. Conclusions Since elevated FBG levels are associated with increased risk for cardiovascular-associated mortality (CAM), these studies suggest that, while G6PC2 inhibitors would be useful for lowering FBG and the risk of CAM, partial inhibition will be important to avoid the risk of hypoglycemia. G6pc2 deletion lowers fasting blood glucose (FBG) in chow and high fat fed mice. Elevated FBG increases the risk of cardiovascular-associated mortality (CAM). G6pc2 deletion results in hypoglycemia in mice on a ketogenic diet. G6pc2 deletion results in hypoglycemia in mice following prolonged fasting. G6PC2 inhibitors may prevent CAM but increase risk of hypoglycemia.
Collapse
Affiliation(s)
- Karin J Bosma
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Mohsin Rahim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - James K Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Owen P McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jamey D Young
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemical and Biomolecular Engineering, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Richard M O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
17
|
Mattis KK, Gloyn AL. From Genetic Association to Molecular Mechanisms for Islet-cell Dysfunction in Type 2 Diabetes. J Mol Biol 2020; 432:1551-1578. [PMID: 31945378 DOI: 10.1016/j.jmb.2019.12.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/30/2022]
Abstract
Genome-wide association studies (GWAS) have identified over 400 signals robustly associated with risk for type 2 diabetes (T2D). At the vast majority of these loci, the lead single nucleotide polymorphisms (SNPs) reside in noncoding regions of the genome, which hampers biological inference and translation of genetic discoveries into disease mechanisms. The study of these T2D risk variants in normoglycemic individuals has revealed that a significant proportion are exerting their disease risk through islet-cell dysfunction. The central role of the islet is also demonstrated by numerous studies, which have shown an enrichment of these signals in islet-specific epigenomic annotations. In recent years the emergence of authentic human beta-cell lines, and advances in genome-editing technologies coupled with improved protocols differentiating human pluripotent stem cells into beta-like cells has opened up new opportunities for T2D disease modeling. Here we review the current understanding on the genetic basis of T2D focusing on approaches, which have facilitated the identification of causal variants and their effector transcripts in human islets. We will present examples of functional studies based on animal and conventional cellular systems and highlight the potential of novel stem cell-based T2D disease models.
Collapse
Affiliation(s)
- Katia K Mattis
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, UK
| | - Anna L Gloyn
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, UK; Wellcome Trust Centre for Human Genetics, University of Oxford, UK; National Institute of Health Research, Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK.
| |
Collapse
|
18
|
Lawson R, Maret W, Hogstrand C. ZnT8 Haploinsufficiency Impacts MIN6 Cell Zinc Content and β-Cell Phenotype via ZIP-ZnT8 Coregulation. Int J Mol Sci 2019; 20:E5485. [PMID: 31690008 PMCID: PMC6861948 DOI: 10.3390/ijms20215485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 01/17/2023] Open
Abstract
The zinc transporter ZnT8 (SLC30A8) localises to insulin secretory granules of β-cells where it facilitates zinc uptake for insulin crystallisation. ZnT8 abundance has been linked to β-cell survival and functional phenotype. However, the consequences of ZnT8 haploinsufficiency for β-cell zinc trafficking and function remain unclear. Since investigations in human populations have shown SLC30A8 truncating polymorphisms to decrease the risk of developing Type 2 Diabetes, we hypothesised that ZnT8 haploinsufficiency would improve β-cell function and maintain the endocrine phenotype. We used CRISPR/Cas9 technology to generate ZnT8 haploinsufficient mouse MIN6 β-cells and showed that ZnT8 haploinsufficiency is associated with downregulation of mRNAs for Slc39a8 and Slc39a14, which encode for the zinc importers, Znt- and Irt-related proteins 8 (ZIP8) and 14 (ZIP14), and with lowered total cellular zinc content. ZnT8 haploinsufficiency disrupts expression of a distinct array of important β-cell markers, decreases cellular proliferation via mitogen-activated protein (MAP) kinase cascades and downregulates insulin gene expression. Thus, ZnT8 cooperates with zinc importers of the ZIP family to maintain β-cell zinc homeostasis. In contrast to the hypothesis, lowered ZnT8 expression reduces MIN6 cell survival by affecting zinc-dependent transcription factors that control the β-cell phenotype.
Collapse
Affiliation(s)
- Rebecca Lawson
- Metal Metabolism Group, Department of Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford St, London SE1 9NH, UK.
| | - Wolfgang Maret
- Metal Metabolism Group, Department of Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford St, London SE1 9NH, UK.
| | - Christer Hogstrand
- Metal Metabolism Group, Department of Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford St, London SE1 9NH, UK.
| |
Collapse
|
19
|
Merriman C, Fu D. Down-regulation of the islet-specific zinc transporter-8 (ZnT8) protects human insulinoma cells against inflammatory stress. J Biol Chem 2019; 294:16992-17006. [PMID: 31591269 DOI: 10.1074/jbc.ra119.010937] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/04/2019] [Indexed: 12/31/2022] Open
Abstract
Zinc transporter-8 (ZnT8) primarily functions as a zinc-sequestrating transporter in the insulin-secretory granules (ISGs) of pancreatic β-cells. Loss-of-function mutations in ZnT8 are associated with protection against type-2 diabetes (T2D), but the protective mechanism is unclear. Here, we developed an in-cell ZnT8 assay to track endogenous ZnT8 responses to metabolic and inflammatory stresses applied to human insulinoma EndoC-βH1 cells. Unexpectedly, high glucose and free fatty acids did not alter cellular ZnT8 levels, but proinflammatory cytokines acutely, reversibly, and gradually down-regulated ZnT8. Approximately 50% of the cellular ZnT8 was localized to the endoplasmic reticulum (ER), which was the primary target of the cytokine-mediated ZnT8 down-regulation. Transcriptome profiling of cytokine-exposed β-cells revealed an adaptive unfolded protein response (UPR) including a marked immunoproteasome activation that coordinately degraded ZnT8 and insulin over a 1,000-fold cytokine concentration range. RNAi-mediated ZnT8 knockdown protected cells against cytokine cytotoxicity, whereas inhibiting immunoproteasomes blocked cytokine-induced ZnT8 degradation and triggered a transition of the adaptive UPR to cell apoptosis. Hence, cytokine-induced down-regulation of the ER ZnT8 level promotes adaptive UPR, acting as a protective mechanism that decongests the ER burden of ZnT8 to protect β-cells from proapoptotic UPR during chronic low-grade inflammation.
Collapse
Affiliation(s)
- Chengfeng Merriman
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Dax Fu
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
20
|
Target discovery using biobanks and human genetics. Drug Discov Today 2019; 25:438-445. [PMID: 31562982 DOI: 10.1016/j.drudis.2019.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 08/18/2019] [Accepted: 09/18/2019] [Indexed: 11/22/2022]
Abstract
Large-scale biobanks can yield unprecedented insights into our health and provide discoveries of new and potentially targetable biomarkers. Several protective loss-of-function alleles have been identified, including variants that protect against cardiovascular disease, obesity, type 2 diabetes, and asthma and allergic diseases. These alleles serve as indicators of efficacy, mimicking the effects of drugs and suggesting that inhibiting these genes could provide therapeutic benefit, as has been observed for PCSK9. We provide a context for these findings through a multifaceted review covering the use of genetics in drug discovery efforts through genome-wide and phenome-wide association studies, linking deep mutation scanning data to molecular function and highlighting some additional tools that might help in the interpretation of newly discovered variants.
Collapse
|
21
|
Mao Z, Lin H, Su W, Li J, Zhou M, Li Z, Zhou B, Yang Q, Zhou M, Pan K, He J, Zhang W. Deficiency of ZnT8 Promotes Adiposity and Metabolic Dysfunction by Increasing Peripheral Serotonin Production. Diabetes 2019; 68:1197-1209. [PMID: 30936149 DOI: 10.2337/db18-1321] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/04/2019] [Indexed: 02/05/2023]
Abstract
ZnT8 is a zinc transporter enriched in pancreatic β-cells, and its polymorphism is associated with increased susceptibility to type 2 diabetes. However, the exact role of ZnT8 in systemic energy metabolism remains elusive. In this study, we found that ZnT8 knockout mice displayed increased adiposity without obvious weight gain. We also observed that the intestinal tract morphology, motility, and gut microbiota were changed in ZnT8 knockout mice. Further study demonstrated that ZnT8 was expressed in enteroendocrine cells, especially in 5-hydroxytryptamine (5-HT)-positive enterochromaffin cells. Lack of ZnT8 resulted in an elevated circulating 5-HT level owing to enhanced expression of tryptophan hydroxylase 1. Blocking 5-HT synthesis in ZnT8-deficient mice restored adiposity, high-fat diet-induced obesity, and glucose intolerance. Moreover, overexpression of human ZnT8 diabetes high-risk allele R325W increased 5-HT levels relative to the low-risk allele in RIN14B cells. Our study revealed an unexpected role of ZnT8 in regulating peripheral 5-HT biogenesis and intestinal microenvironment, which might contribute to the increased risk of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Zhuo Mao
- Center for Diabetes, Obesity and Metabolism, Department of Physiology, Shenzhen University Health Science Center, Shenzhen, Guangdong Province, China
| | - Hui Lin
- Center for Diabetes, Obesity and Metabolism, Department of Physiology, Shenzhen University Health Science Center, Shenzhen, Guangdong Province, China
| | - Wen Su
- Center for Diabetes, Obesity and Metabolism, Department of Physiology, Shenzhen University Health Science Center, Shenzhen, Guangdong Province, China
| | - Jinghui Li
- Center for Diabetes, Obesity and Metabolism, Department of Physiology, Shenzhen University Health Science Center, Shenzhen, Guangdong Province, China
| | - Minsi Zhou
- Center for Diabetes, Obesity and Metabolism, Department of Physiology, Shenzhen University Health Science Center, Shenzhen, Guangdong Province, China
| | - Zhuoran Li
- Center for Diabetes, Obesity and Metabolism, Department of Physiology, Shenzhen University Health Science Center, Shenzhen, Guangdong Province, China
| | - Beibei Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Qing Yang
- Center for Diabetes, Obesity and Metabolism, Department of Physiology, Shenzhen University Health Science Center, Shenzhen, Guangdong Province, China
| | - Mingyan Zhou
- Center for Diabetes, Obesity and Metabolism, Department of Physiology, Shenzhen University Health Science Center, Shenzhen, Guangdong Province, China
| | - Ke Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Jinhan He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Weizhen Zhang
- Center for Diabetes, Obesity and Metabolism, Department of Physiology, Shenzhen University Health Science Center, Shenzhen, Guangdong Province, China
- Department of Physiology and Pathophysiology, School of Basic Science, Peking University Health Science Center, Beijing, China
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Soon after the first genome-wide association study (GWAS) for type 2 diabetes (T2D) was published, it was hypothesized that rare and low-frequency variants might explain a substantial proportion of disease risk. Rare coding variants in particular were emphasized given their large expected role in disease. This review summarizes the extent to which recent T2D genetic studies provide evidence for or against this hypothesis. RECENT FINDINGS Following a comprehensive study of T2D genetic architecture using three sequencing and genotyping technologies, four even larger studies have provided a yet higher resolution view of the role of rare and low-frequency coding variation in T2D susceptibility. Empirical evidence strongly suggests that common regulatory variants are the dominant contributor to T2D heritability. However, rare coding variants may nonetheless be pervasive across T2D-relevant genes. A strategy using common variants to map disease genes, and rare coding variants to link molecular gene perturbations to cellular and phenotypic effects, may be an effective means to investigate T2D pathogenesis and potential new therapies.
Collapse
Affiliation(s)
- Jason Flannick
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
- Programs in Medical and Population Genetics and Metabolism, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| |
Collapse
|
23
|
Zhao T, Huang Q, Su Y, Sun W, Huang Q, Wei W. Zinc and its regulators in pancreas. Inflammopharmacology 2019; 27:453-464. [PMID: 30756223 DOI: 10.1007/s10787-019-00573-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/02/2019] [Indexed: 12/12/2022]
Abstract
Studies have demonstrated that susceptibility to type 2 diabetes (T2D) is influenced by common polymorphism in the zinc transporter 8 gene SLC30A8, providing novel insight into the role of zinc in diabetes. Intriguingly, zinc participates in every step of the process, including insulin synthesis, crystallization, storage, secretion and signaling. Zinc deficiency or overload is associated with various disorders, such as diabetes, cardiovascular disease and obesity. Zinc supplementation is considered as an effective means of treating or preventing T2D in people with certain SLC30A8 genotypes. Three important protein families-zinc transporters (ZnTs), zinc importers (ZiPs) and metallothionein (MT)-participate in maintaining zinc homeostasis. Here, we review research on the physiological characteristics of zinc and its role in the pancreas and homeostasis regulation mechanisms, along with the latest research on the structure and function of ZnT/ZiP and MT. In addition, we summarize the advancements in research on SLC30A8 gene polymorphism in search of a mechanism to explain the relationship between the R risk allele and zinc transporter activity.
Collapse
Affiliation(s)
- Tianjiao Zhao
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Qiongfang Huang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Yangni Su
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Wuyi Sun
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Qiong Huang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China.
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
24
|
Huang Q, Du J, Merriman C, Gong Z. Genetic, Functional, and Immunological Study of ZnT8 in Diabetes. Int J Endocrinol 2019; 2019:1524905. [PMID: 30936916 PMCID: PMC6413397 DOI: 10.1155/2019/1524905] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/14/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022] Open
Abstract
Zinc level in the body is finely regulated to maintain cellular function. Dysregulation of zinc metabolism may induce a variety of diseases, e.g., diabetes. Zinc participates in insulin synthesis, storage, and secretion by functioning as a "cellular second messenger" in the insulin signaling pathway and glucose homeostasis. The highest zinc concentration is in the pancreas islets. Zinc accumulation in cell granules is manipulated by ZnT8, a zinc transporter expressed predominately in pancreatic α and β cells. A common ZnT8 gene (SLC30A8) polymorphism increases the risk of type 2 diabetes mellitus (T2DM), and rare mutations may present protective effects. In type 1 diabetes mellitus (T1DM), autoantibodies show specificity for binding two variants of ZnT8 (R or W at amino acid 325) dictated by a polymorphism in SLC30A8. In this review, we summarize the structure, feature, functions, and polymorphisms of ZnT8 along with its association with diabetes and explore future study directions.
Collapse
Affiliation(s)
- Qiong Huang
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jie Du
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Chengfeng Merriman
- Department of Physiology, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Zhicheng Gong
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
25
|
Merriman C, Li H, Li H, Fu D. Highly specific monoclonal antibodies for allosteric inhibition and immunodetection of the human pancreatic zinc transporter ZnT8. J Biol Chem 2018; 293:16206-16216. [PMID: 30181214 DOI: 10.1074/jbc.ra118.005136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/27/2018] [Indexed: 11/06/2022] Open
Abstract
Solute carrier family 30 member 8 (SLC30A8), encoding the pancreatic zinc transporter ZnT8, is a susceptibility gene for type 2 diabetes (T2D). Reducing ZnT8 transport activity or down-regulating its cellular expression is hypothesized to be an antidiabetogenic strategy mimicking the protective effect of SLC30A8 haploinsufficiency in humans. However, research tools to inhibit ZnT8 activity and measure cellular ZnT8 levels are not available. Here, we report the identification of two anti-ZnT8 mAbs applicable to addressing these unmet needs. Both mAbs exhibited subnanomolar affinities for human ZnT8 and were selective against homologous zinc transporters with distinct cross-species reactivities and epitope recognition. We showed that antigen-binding fragments (Fabs) protected ZnT8 from unfolding and inhibited ZnT8-mediated zinc transport in proteoliposomes. Negative-stain EM revealed a ternary binding complex of a ZnT8 monomer and two different Fabs at a 1:1:1 stoichiometry. Moreover, dual bindings of two different mAbs to a single ZnT8 protein multiplied the individual anti-ZnT8 specificities, enabling quantification of cellular ZnT8 levels by homogeneous time-resolved fluorescence (HTRF). Our results demonstrate the utilities of the two generated mAbs as allosteric inhibitors and highly specific biosensors of human ZnT8.
Collapse
Affiliation(s)
- Chengfeng Merriman
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| | - Hua Li
- the Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Huilin Li
- the Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Dax Fu
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| |
Collapse
|
26
|
Hughes JW, Ustione A, Lavagnino Z, Piston DW. Regulation of islet glucagon secretion: Beyond calcium. Diabetes Obes Metab 2018; 20 Suppl 2:127-136. [PMID: 30230183 PMCID: PMC6148361 DOI: 10.1111/dom.13381] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/03/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022]
Abstract
The islet of Langerhans plays a key role in glucose homeostasis through regulated secretion of the hormones insulin and glucagon. Islet research has focused on the insulin-secreting β-cells, even though aberrant glucagon secretion from α-cells also contributes to the aetiology of diabetes. Despite its importance, the mechanisms controlling glucagon secretion remain controversial. Proper α-cell function requires the islet milieu, where β- and δ-cells drive and constrain α-cell dynamics. The response of glucagon to glucose is similar between isolated islets and that measured in vivo, so it appears that the glucose dependence requires only islet-intrinsic factors and not input from blood flow or the nervous system. Elevated intracellular free Ca2+ is needed for α-cell exocytosis, but interpreting Ca2+ data is tricky since it is heterogeneous among α-cells at all physiological glucose levels. Total Ca2+ activity in α-cells increases slightly with glucose, so Ca2+ may serve a permissive, rather than regulatory, role in glucagon secretion. On the other hand, cAMP is a more promising candidate for controlling glucagon secretion and is itself driven by paracrine signalling from β- and δ-cells. Another pathway, juxtacrine signalling through the α-cell EphA receptors, stimulated by β-cell ephrin ligands, leads to a tonic inhibition of glucagon secretion. We discuss potential combinations of Ca2+ , cAMP, paracrine and juxtacrine factors in the regulation of glucagon secretion, focusing on recent data in the literature that might unify the field towards a quantitative understanding of α-cell function.
Collapse
Affiliation(s)
- Jing W. Hughes
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Alessandro Ustione
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Zeno Lavagnino
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - David W. Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
27
|
How cellular Zn 2+ signaling drives physiological functions. Cell Calcium 2018; 75:53-63. [PMID: 30145429 DOI: 10.1016/j.ceca.2018.08.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/10/2023]
Abstract
Zinc is an essential micronutrient affecting many aspects of human health. Cellular Zn2+ homeostasis is critical for cell function and survival. Zn2+, acting as a first or second messenger, triggers signaling pathways that mediate the physiological roles of Zn2+. Transient changes in Zn2+ concentrations within the cell or in the extracellular region occur following its release from Zn2+ binding metallothioneins, its transport across membranes by the ZnT or ZIP transporters, or release of vesicular Zn2+. These transients activate a distinct Zn2+ sensing receptor, ZnR/GPR39, or modulate numerous proteins and signaling pathways. Importantly, Zn2+ signaling regulates cellular physiological functions such as: proliferation, differentiation, ion transport and secretion. Indeed, novel therapeutic approaches aimed to maintain Zn2+ homeostasis and signaling are evolving. This review focuses on recent findings describing roles of Zn2+ and its transporters in regulating physiological or pathological processes.
Collapse
|
28
|
Mice harboring the human SLC30A8 R138X loss-of-function mutation have increased insulin secretory capacity. Proc Natl Acad Sci U S A 2018; 115:E7642-E7649. [PMID: 30038024 PMCID: PMC6094147 DOI: 10.1073/pnas.1721418115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
SLC30A8 encodes a zinc transporter that is primarily expressed in the pancreatic islets of Langerhans. In β-cells it transports zinc into insulin-containing secretory granules. Loss-of-function (LOF) mutations in SLC30A8 protect against type 2 diabetes in humans. In this study, we generated a knockin mouse model carrying one of the most common human LOF mutations for SLC30A8, R138X. The R138X mice had normal body weight, glucose tolerance, and pancreatic β-cell mass. Interestingly, in hyperglycemic conditions induced by the insulin receptor antagonist S961, the R138X mice showed a 50% increase in insulin secretion. This effect was not associated with enhanced β-cell proliferation or mass. Our data suggest that the SLC30A8 R138X LOF mutation may exert beneficial effects on glucose metabolism by increasing the capacity of β-cells to secrete insulin under hyperglycemic conditions.
Collapse
|
29
|
Role of Zinc Homeostasis in the Pathogenesis of Diabetes and Obesity. Int J Mol Sci 2018; 19:ijms19020476. [PMID: 29415457 PMCID: PMC5855698 DOI: 10.3390/ijms19020476] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 12/11/2022] Open
Abstract
Zinc deficiency is a risk factor for obesity and diabetes. However, until recently, the underlying molecular mechanisms remained unclear. The breakthrough discovery that the common polymorphism in zinc transporter SLC30A8/ZnT8 may increase susceptibility to type 2 diabetes provided novel insights into the role of zinc in diabetes. Our group and others showed that altered ZnT8 function may be involved in the pathogenesis of type 2 diabetes, indicating that the precise control of zinc homeostasis is crucial for maintaining health and preventing various diseases, including lifestyle-associated diseases. Recently, the role of the zinc transporter ZIP13 in the regulation of beige adipocyte biogenesis was clarified, which indicated zinc homeostasis regulation as a possible therapeutic target for obesity and metabolic syndrome. Here we review advances in the role of zinc homeostasis in the pathophysiology of diabetes, and propose that inadequate zinc distribution may affect the onset of diabetes and metabolic diseases by regulating various critical biological events.
Collapse
|
30
|
A common variant within the HNF1B gene is associated with overall survival of multiple myeloma patients: results from the IMMEnSE consortium and meta-analysis. Oncotarget 2018; 7:59029-59048. [PMID: 27437873 PMCID: PMC5312293 DOI: 10.18632/oncotarget.10665] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/19/2016] [Indexed: 01/01/2023] Open
Abstract
Diabetogenic single nucleotide polymorphisms (SNPs) have recently been associated with multiple myeloma (MM) risk but their impact on overall survival (OS) of MM patients has not been analysed yet. In order to investigate the impact of 58 GWAS-identified variants for type 2 diabetes (T2D) on OS of patients with MM, we analysed genotyping data of 936 MM patients collected by the International Multiple Myeloma rESEarch (IMMENSE) consortium and an independent set of 700 MM patients recruited by the University Clinic of Heidelberg. A meta-analysis of the cox regression results of the two sets showed that rs7501939 located in the HNF1B gene negatively impacted OS (HRRec= 1.44, 95% CI = 1.18-1.76, P = 0.0001). The meta-analysis also showed a noteworthy gender-specific association of the SLC30A8rs13266634 SNP with OS. The presence of each additional copy of the minor allele at rs13266634 was associated with poor OS in men whereas no association was seen in women (HRMen-Add = 1.32, 95% CI 1.13-1.54, P = 0.0003). In conclusion, these data suggest that the HNF1Brs7501939 SNP confers poor OS in patients with MM and that a SNP in SLC30A8 affect OS in men.
Collapse
|
31
|
Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J Physiol Sci 2017; 68:19-31. [PMID: 28965330 PMCID: PMC5754376 DOI: 10.1007/s12576-017-0571-7] [Citation(s) in RCA: 312] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022]
Abstract
A number of studies have reported that zinc plays a substantial role in the development of metabolic syndrome, taking part in the regulation of cytokine expression, suppressing inflammation, and is also required to activate antioxidant enzymes that scavenge reactive oxygen species, reducing oxidative stress. Zinc also plays a role in the correct functioning of lipid and glucose metabolism, regulating and forming the expression of insulin. In numerous studies, zinc supplementation has been found to improve blood pressure, glucose, and LDL cholesterol serum level. Deeper knowledge of zinc’s properties may help in treating metabolic syndrome, thus protecting against stroke and angina pectoris, and ultimately against death.
Collapse
|
32
|
Boortz KA, Syring KE, Pound LD, Mo H, Bastarache L, Oeser JK, McGuinness OP, Denny JC, O’Brien RM. Effects of G6pc2 deletion on body weight and cholesterol in mice. J Mol Endocrinol 2017; 58:127-139. [PMID: 28122818 PMCID: PMC5380368 DOI: 10.1530/jme-16-0202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/24/2017] [Indexed: 11/08/2022]
Abstract
Genome-wide association study (GWAS) data have linked the G6PC2 gene to variations in fasting blood glucose (FBG). G6PC2 encodes an islet-specific glucose-6-phosphatase catalytic subunit that forms a substrate cycle with the beta cell glucose sensor glucokinase. This cycle modulates the glucose sensitivity of insulin secretion and hence FBG. GWAS data have not linked G6PC2 to variations in body weight but we previously reported that female C57BL/6J G6pc2-knockout (KO) mice were lighter than wild-type littermates on both a chow and high-fat diet. The purpose of this study was to compare the effects of G6pc2 deletion on FBG and body weight in both chow-fed and high-fat-fed mice on two other genetic backgrounds. FBG was reduced in G6pc2 KO mice largely independent of gender, genetic background or diet. In contrast, the effect of G6pc2 deletion on body weight was markedly influenced by these variables. Deletion of G6pc2 conferred a marked protection against diet-induced obesity in male mixed genetic background mice, whereas in 129SvEv mice deletion of G6pc2 had no effect on body weight. G6pc2 deletion also reduced plasma cholesterol levels in a manner dependent on gender, genetic background and diet. An association between G6PC2 and plasma cholesterol was also observed in humans through electronic health record-derived phenotype analyses. These observations suggest that the action of G6PC2 on FBG is largely independent of the influences of environment, modifier genes or epigenetic events, whereas the action of G6PC2 on body weight and cholesterol are influenced by unknown variables.
Collapse
Affiliation(s)
- Kayla A. Boortz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Kristen E. Syring
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Lynley D. Pound
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Huan Mo
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - James K. Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Owen P. McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Joshua C. Denny
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Richard M. O’Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
33
|
Nunemaker CS, Benninger RKP. Zinc Transport Gets Its Zing Back: Double-Knockout of ZnT7 and ZnT8 Reveals the Importance of Zinc Transporters to Insulin Secretion. Endocrinology 2016; 157:4542-4544. [PMID: 27911147 PMCID: PMC5133344 DOI: 10.1210/en.2016-1797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Craig S Nunemaker
- Diabetes Institute and Department of Biomedical Sciences (C.S.N.), Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701; and Barbara Davis Center for Diabetes and Department of Bioengineering (R.K.P.B.), University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Richard K P Benninger
- Diabetes Institute and Department of Biomedical Sciences (C.S.N.), Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701; and Barbara Davis Center for Diabetes and Department of Bioengineering (R.K.P.B.), University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
34
|
Syring KE, Boortz KA, Oeser JK, Ustione A, Platt KA, Shadoan MK, McGuinness OP, Piston DW, Powell DR, O'Brien RM. Combined Deletion of Slc30a7 and Slc30a8 Unmasks a Critical Role for ZnT8 in Glucose-Stimulated Insulin Secretion. Endocrinology 2016; 157:4534-4541. [PMID: 27754787 PMCID: PMC5133349 DOI: 10.1210/en.2016-1573] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polymorphisms in the SLC30A8 gene, which encodes the ZnT8 zinc transporter, are associated with altered susceptibility to type 2 diabetes (T2D), and SLC30A8 haploinsufficiency is protective against the development of T2D in obese humans. SLC30A8 is predominantly expressed in pancreatic islet β-cells, but surprisingly, multiple knockout mouse studies have shown little effect of Slc30a8 deletion on glucose tolerance or glucose-stimulated insulin secretion (GSIS). Multiple other Slc30a isoforms are expressed at low levels in pancreatic islets. We hypothesized that functional compensation by the Slc30a7 isoform, which encodes ZnT7, limits the impact of Slc30a8 deletion on islet function. We therefore analyzed the effect of Slc30a7 deletion alone or in combination with Slc30a8 on in vivo glucose metabolism and GSIS in isolated islets. Deletion of Slc30a7 alone had complex effects in vivo, impairing glucose tolerance and reducing the glucose-stimulated increase in plasma insulin levels, hepatic glycogen levels, and pancreatic insulin content. Slc30a7 deletion also affected islet morphology and increased the ratio of islet α- to β-cells. However, deletion of Slc30a7 alone had no effect on GSIS in isolated islets, whereas combined deletion of Slc30a7 and Slc30a8 abolished GSIS. These data demonstrate that the function of ZnT8 in islets can be unmasked by removal of ZnT7 and imply that ZnT8 may affect T2D susceptibility through actions in other tissues where it is expressed at low levels rather than through effects on pancreatic islet function.
Collapse
Affiliation(s)
- Kristen E Syring
- Department of Molecular Physiology and Biophysics (K.E.S., K.A.B., J.K.O., O.P.M., R.M.O.), Vanderbilt University Medical School, Nashville, Tennessee 37232; Department of Cell Biology and Physiology (A.U., D.W.P.), Washington University School of Medicine, St. Louis, Missouri 63110; and Lexicon Pharmaceuticals Incorporated (K.A.P., M.K.S., D.R.P.), The Woodlands, Texas 77381
| | - Kayla A Boortz
- Department of Molecular Physiology and Biophysics (K.E.S., K.A.B., J.K.O., O.P.M., R.M.O.), Vanderbilt University Medical School, Nashville, Tennessee 37232; Department of Cell Biology and Physiology (A.U., D.W.P.), Washington University School of Medicine, St. Louis, Missouri 63110; and Lexicon Pharmaceuticals Incorporated (K.A.P., M.K.S., D.R.P.), The Woodlands, Texas 77381
| | - James K Oeser
- Department of Molecular Physiology and Biophysics (K.E.S., K.A.B., J.K.O., O.P.M., R.M.O.), Vanderbilt University Medical School, Nashville, Tennessee 37232; Department of Cell Biology and Physiology (A.U., D.W.P.), Washington University School of Medicine, St. Louis, Missouri 63110; and Lexicon Pharmaceuticals Incorporated (K.A.P., M.K.S., D.R.P.), The Woodlands, Texas 77381
| | - Alessandro Ustione
- Department of Molecular Physiology and Biophysics (K.E.S., K.A.B., J.K.O., O.P.M., R.M.O.), Vanderbilt University Medical School, Nashville, Tennessee 37232; Department of Cell Biology and Physiology (A.U., D.W.P.), Washington University School of Medicine, St. Louis, Missouri 63110; and Lexicon Pharmaceuticals Incorporated (K.A.P., M.K.S., D.R.P.), The Woodlands, Texas 77381
| | - Kenneth A Platt
- Department of Molecular Physiology and Biophysics (K.E.S., K.A.B., J.K.O., O.P.M., R.M.O.), Vanderbilt University Medical School, Nashville, Tennessee 37232; Department of Cell Biology and Physiology (A.U., D.W.P.), Washington University School of Medicine, St. Louis, Missouri 63110; and Lexicon Pharmaceuticals Incorporated (K.A.P., M.K.S., D.R.P.), The Woodlands, Texas 77381
| | - Melanie K Shadoan
- Department of Molecular Physiology and Biophysics (K.E.S., K.A.B., J.K.O., O.P.M., R.M.O.), Vanderbilt University Medical School, Nashville, Tennessee 37232; Department of Cell Biology and Physiology (A.U., D.W.P.), Washington University School of Medicine, St. Louis, Missouri 63110; and Lexicon Pharmaceuticals Incorporated (K.A.P., M.K.S., D.R.P.), The Woodlands, Texas 77381
| | - Owen P McGuinness
- Department of Molecular Physiology and Biophysics (K.E.S., K.A.B., J.K.O., O.P.M., R.M.O.), Vanderbilt University Medical School, Nashville, Tennessee 37232; Department of Cell Biology and Physiology (A.U., D.W.P.), Washington University School of Medicine, St. Louis, Missouri 63110; and Lexicon Pharmaceuticals Incorporated (K.A.P., M.K.S., D.R.P.), The Woodlands, Texas 77381
| | - David W Piston
- Department of Molecular Physiology and Biophysics (K.E.S., K.A.B., J.K.O., O.P.M., R.M.O.), Vanderbilt University Medical School, Nashville, Tennessee 37232; Department of Cell Biology and Physiology (A.U., D.W.P.), Washington University School of Medicine, St. Louis, Missouri 63110; and Lexicon Pharmaceuticals Incorporated (K.A.P., M.K.S., D.R.P.), The Woodlands, Texas 77381
| | - David R Powell
- Department of Molecular Physiology and Biophysics (K.E.S., K.A.B., J.K.O., O.P.M., R.M.O.), Vanderbilt University Medical School, Nashville, Tennessee 37232; Department of Cell Biology and Physiology (A.U., D.W.P.), Washington University School of Medicine, St. Louis, Missouri 63110; and Lexicon Pharmaceuticals Incorporated (K.A.P., M.K.S., D.R.P.), The Woodlands, Texas 77381
| | - Richard M O'Brien
- Department of Molecular Physiology and Biophysics (K.E.S., K.A.B., J.K.O., O.P.M., R.M.O.), Vanderbilt University Medical School, Nashville, Tennessee 37232; Department of Cell Biology and Physiology (A.U., D.W.P.), Washington University School of Medicine, St. Louis, Missouri 63110; and Lexicon Pharmaceuticals Incorporated (K.A.P., M.K.S., D.R.P.), The Woodlands, Texas 77381
| |
Collapse
|
35
|
Boortz KA, Syring KE, Lee RA, Dai C, Oeser JK, McGuinness OP, Wang JC, O'Brien RM. G6PC2 Modulates the Effects of Dexamethasone on Fasting Blood Glucose and Glucose Tolerance. Endocrinology 2016; 157:4133-4145. [PMID: 27653037 PMCID: PMC5086534 DOI: 10.1210/en.2016-1678] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The glucose-6-phosphatase catalytic subunit 2 (G6PC2) gene encodes an islet-specific glucose-6-phosphatase catalytic subunit. G6PC2 forms a substrate cycle with glucokinase that determines the glucose sensitivity of insulin secretion. Consequently, deletion of G6pc2 lowers fasting blood glucose (FBG) without affecting fasting plasma insulin. Although chronic elevation of FBG is detrimental to health, glucocorticoids induce G6PC2 expression, suggesting that G6PC2 evolved to transiently modulate FBG under conditions of glucocorticoid-related stress. We show, using competition and mutagenesis experiments, that the synthetic glucocorticoid dexamethasone (Dex) induces G6PC2 promoter activity through a mechanism involving displacement of the islet-enriched transcription factor MafA by the glucocorticoid receptor. The induction of G6PC2 promoter activity by Dex is modulated by a single nucleotide polymorphism, previously linked to altered FBG in humans, that affects FOXA2 binding. A 5-day repeated injection paradigm was used to examine the chronic effect of Dex on FBG and glucose tolerance in wild-type (WT) and G6pc2 knockout mice. Acute Dex treatment only induces G6pc2 expression in 129SvEv but not C57BL/6J mice, but this chronic treatment induced G6pc2 expression in both. In 6-hour fasted C57BL/6J WT mice, Dex treatment lowered FBG and improved glucose tolerance, with G6pc2 deletion exacerbating the decrease in FBG and enhancing the improvement in glucose tolerance. In contrast, in 24-hour fasted C57BL/6J WT mice, Dex treatment raised FBG but still improved glucose tolerance, with G6pc2 deletion limiting the increase in FBG and enhancing the improvement in glucose tolerance. These observations demonstrate that G6pc2 modulates the complex effects of Dex on both FBG and glucose tolerance.
Collapse
Affiliation(s)
- Kayla A Boortz
- Departments of Molecular Physiology and Biophysics (K.A.B., K.E.S., J.K.O., O.P.M., R.M.O.) and Medicine (C.D.), Vanderbilt University School of Medicine, Nashville, Tennessee 37232; and Department of Nutritional Sciences and Toxicology (R.A.L., J.-C.W.), University of California at Berkeley, Berkeley, California 94720
| | - Kristen E Syring
- Departments of Molecular Physiology and Biophysics (K.A.B., K.E.S., J.K.O., O.P.M., R.M.O.) and Medicine (C.D.), Vanderbilt University School of Medicine, Nashville, Tennessee 37232; and Department of Nutritional Sciences and Toxicology (R.A.L., J.-C.W.), University of California at Berkeley, Berkeley, California 94720
| | - Rebecca A Lee
- Departments of Molecular Physiology and Biophysics (K.A.B., K.E.S., J.K.O., O.P.M., R.M.O.) and Medicine (C.D.), Vanderbilt University School of Medicine, Nashville, Tennessee 37232; and Department of Nutritional Sciences and Toxicology (R.A.L., J.-C.W.), University of California at Berkeley, Berkeley, California 94720
| | - Chunhua Dai
- Departments of Molecular Physiology and Biophysics (K.A.B., K.E.S., J.K.O., O.P.M., R.M.O.) and Medicine (C.D.), Vanderbilt University School of Medicine, Nashville, Tennessee 37232; and Department of Nutritional Sciences and Toxicology (R.A.L., J.-C.W.), University of California at Berkeley, Berkeley, California 94720
| | - James K Oeser
- Departments of Molecular Physiology and Biophysics (K.A.B., K.E.S., J.K.O., O.P.M., R.M.O.) and Medicine (C.D.), Vanderbilt University School of Medicine, Nashville, Tennessee 37232; and Department of Nutritional Sciences and Toxicology (R.A.L., J.-C.W.), University of California at Berkeley, Berkeley, California 94720
| | - Owen P McGuinness
- Departments of Molecular Physiology and Biophysics (K.A.B., K.E.S., J.K.O., O.P.M., R.M.O.) and Medicine (C.D.), Vanderbilt University School of Medicine, Nashville, Tennessee 37232; and Department of Nutritional Sciences and Toxicology (R.A.L., J.-C.W.), University of California at Berkeley, Berkeley, California 94720
| | - Jen-Chywan Wang
- Departments of Molecular Physiology and Biophysics (K.A.B., K.E.S., J.K.O., O.P.M., R.M.O.) and Medicine (C.D.), Vanderbilt University School of Medicine, Nashville, Tennessee 37232; and Department of Nutritional Sciences and Toxicology (R.A.L., J.-C.W.), University of California at Berkeley, Berkeley, California 94720
| | - Richard M O'Brien
- Departments of Molecular Physiology and Biophysics (K.A.B., K.E.S., J.K.O., O.P.M., R.M.O.) and Medicine (C.D.), Vanderbilt University School of Medicine, Nashville, Tennessee 37232; and Department of Nutritional Sciences and Toxicology (R.A.L., J.-C.W.), University of California at Berkeley, Berkeley, California 94720
| |
Collapse
|
36
|
Yi B, Huang G, Zhou Z. Different role of zinc transporter 8 between type 1 diabetes mellitus and type 2 diabetes mellitus. J Diabetes Investig 2016; 7:459-65. [PMID: 27181765 PMCID: PMC4931192 DOI: 10.1111/jdi.12441] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 09/22/2015] [Accepted: 10/19/2015] [Indexed: 01/09/2023] Open
Abstract
Diabetes can be simply classified into type 1 diabetes mellitus and type 2 diabetes mellitus. Zinc transporter 8 (ZnT8), a novel islet autoantigen, is specifically expressed in insulin‐containing secretory granules of β‐cells. Genetic studies show that the genotypes of SLC30A8 can determine either protective or diabetogenic response depending on environmental and lifestyle factors. The ZnT8 protein expression, as well as zinc content in β‐cells, was decreased in diabetic mice. Thus, ZnT8 might participate in insulin biosynthesis and release, and subsequently involved deteriorated β‐cell function through direct or indirect mechanisms in type 1 diabetes mellitus and type 2 diabetes mellitus. From a clinical feature standpoint, the prevalence of ZnT8A is gradiently increased in type 2 diabetes mellitus, latent autoimmune diabetes in adults and type 1 diabetes mellitus. The frequency and epitopes of ZnT8‐specific T cells and cytokine release by ZnT8‐specific T cells are also different in diabetic patients and healthy controls. Additionally, the response to ZnT8 administration is also different in type 1 diabetes mellitus and type 2 diabetes mellitus. In the present review, we summarize the literature about clinical aspects of ZnT8 in the pathogenesis of diabetes, and suggest that ZnT8 might play a different role between type 1 diabetes mellitus and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Bo Yi
- Institute of Metabolism and Endocrinology, 2nd Xiangya Hospital, Central South University, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Gan Huang
- Institute of Metabolism and Endocrinology, 2nd Xiangya Hospital, Central South University, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Zhiguang Zhou
- Institute of Metabolism and Endocrinology, 2nd Xiangya Hospital, Central South University, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| |
Collapse
|
37
|
Kulkarni H, Mamtani M, Peralta JM, Diego V, Dyer TD, Goring H, Almasy L, Mahaney MC, Williams-Blangero S, Duggirala R, Curran JE, Blangero J. Lack of Association between SLC30A8 Variants and Type 2 Diabetes in Mexican American Families. J Diabetes Res 2016; 2016:6463214. [PMID: 27896278 PMCID: PMC5118530 DOI: 10.1155/2016/6463214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/11/2016] [Indexed: 12/15/2022] Open
Abstract
SLC30A8 encodes zinc transporter 8 which is involved in packaging and release of insulin. Evidence for the association of SLC30A8 variants with type 2 diabetes (T2D) is inconclusive. We interrogated single nucleotide polymorphisms (SNPs) around SLC30A8 for association with T2D in high-risk, pedigreed individuals from extended Mexican American families. This study of 118 SNPs within 50 kb of the SLC30A8 locus tested the association with eight T2D-related traits at four levels: (i) each SNP using measured genotype approach (MGA); (ii) interaction of SNPs with age and sex; (iii) combinations of SNPs using Bayesian Quantitative Trait Nucleotide (BQTN) analyses; and (iv) entire gene locus using the gene burden test. Only one SNP (rs7817754) was significantly associated with incident T2D but a summary statistic based on all T2D-related traits identified 11 novel SNPs. Three SNPs and one SNP were weakly but interactively associated with age and sex, respectively. BQTN analyses could not demonstrate any informative combination of SNPs over MGA. Lastly, gene burden test results showed that at best the SLC30A8 locus could account for only 1-2% of the variability in T2D-related traits. Our results indicate a lack of association of the SLC30A8 SNPs with T2D in Mexican American families.
Collapse
Affiliation(s)
- Hemant Kulkarni
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
- *Hemant Kulkarni:
| | - Manju Mamtani
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Juan Manuel Peralta
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Vincent Diego
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Thomas D. Dyer
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Harald Goring
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Laura Almasy
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Michael C. Mahaney
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Sarah Williams-Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Ravindranath Duggirala
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Joanne E. Curran
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| |
Collapse
|
38
|
Mitchell RK, Hu M, Chabosseau PL, Cane MC, Meur G, Bellomo EA, Carzaniga R, Collinson LM, Li WH, Hodson DJ, Rutter GA. Molecular Genetic Regulation of Slc30a8/ZnT8 Reveals a Positive Association With Glucose Tolerance. Mol Endocrinol 2015; 30:77-91. [PMID: 26584158 PMCID: PMC4995240 DOI: 10.1210/me.2015-1227] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Zinc transporter 8 (ZnT8), encoded by SLC30A8, is chiefly expressed within pancreatic islet cells, where it mediates zinc (Zn2+) uptake into secretory granules. Although a common nonsynonymous polymorphism (R325W), which lowers activity, is associated with increased type 2 diabetes (T2D) risk, rare inactivating mutations in SLC30A8 have been reported to protect against T2D. Here, we generate and characterize new mouse models to explore the impact on glucose homeostasis of graded changes in ZnT8 activity in the β-cell. Firstly, Slc30a8 was deleted highly selectively in these cells using the novel deleter strain, Ins1Cre. The resultant Ins1CreZnT8KO mice displayed significant (P < .05) impairments in glucose tolerance at 10 weeks of age vs littermate controls, and glucose-induced increases in circulating insulin were inhibited in vivo. Although insulin release from Ins1CreZnT8KO islets was normal, Zn2+ release was severely impaired. Conversely, transgenic ZnT8Tg mice, overexpressing the transporter inducibly in the adult β-cell using an insulin promoter-dependent Tet-On system, showed significant (P < .01) improvements in glucose tolerance compared with control animals. Glucose-induced insulin secretion from ZnT8Tg islets was severely impaired, whereas Zn2+ release was significantly enhanced. Our findings demonstrate that glucose homeostasis in the mouse improves as β-cell ZnT8 activity increases, and remarkably, these changes track Zn2+ rather than insulin release in vitro. Activation of ZnT8 in β-cells might therefore provide the basis of a novel approach to treating T2D.
Collapse
Affiliation(s)
- Ryan K Mitchell
- Section of Cell Biology and Functional Genomics (R.K.M., M.H., P.L.C., M.C.C., G.M., E.A.B., D.J.H., G.A.R.), Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, United Kingdom; Electron Microscopy Unit (R.C., L.M.C.), Francis Crick Institute, Lincoln's Inn Fields, London WC2A 3LY, United Kingdom; and Department of Cell Biology and Biochemistry (W.-H.L.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Ming Hu
- Section of Cell Biology and Functional Genomics (R.K.M., M.H., P.L.C., M.C.C., G.M., E.A.B., D.J.H., G.A.R.), Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, United Kingdom; Electron Microscopy Unit (R.C., L.M.C.), Francis Crick Institute, Lincoln's Inn Fields, London WC2A 3LY, United Kingdom; and Department of Cell Biology and Biochemistry (W.-H.L.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Pauline L Chabosseau
- Section of Cell Biology and Functional Genomics (R.K.M., M.H., P.L.C., M.C.C., G.M., E.A.B., D.J.H., G.A.R.), Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, United Kingdom; Electron Microscopy Unit (R.C., L.M.C.), Francis Crick Institute, Lincoln's Inn Fields, London WC2A 3LY, United Kingdom; and Department of Cell Biology and Biochemistry (W.-H.L.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Matthew C Cane
- Section of Cell Biology and Functional Genomics (R.K.M., M.H., P.L.C., M.C.C., G.M., E.A.B., D.J.H., G.A.R.), Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, United Kingdom; Electron Microscopy Unit (R.C., L.M.C.), Francis Crick Institute, Lincoln's Inn Fields, London WC2A 3LY, United Kingdom; and Department of Cell Biology and Biochemistry (W.-H.L.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Gargi Meur
- Section of Cell Biology and Functional Genomics (R.K.M., M.H., P.L.C., M.C.C., G.M., E.A.B., D.J.H., G.A.R.), Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, United Kingdom; Electron Microscopy Unit (R.C., L.M.C.), Francis Crick Institute, Lincoln's Inn Fields, London WC2A 3LY, United Kingdom; and Department of Cell Biology and Biochemistry (W.-H.L.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Elisa A Bellomo
- Section of Cell Biology and Functional Genomics (R.K.M., M.H., P.L.C., M.C.C., G.M., E.A.B., D.J.H., G.A.R.), Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, United Kingdom; Electron Microscopy Unit (R.C., L.M.C.), Francis Crick Institute, Lincoln's Inn Fields, London WC2A 3LY, United Kingdom; and Department of Cell Biology and Biochemistry (W.-H.L.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Raffaella Carzaniga
- Section of Cell Biology and Functional Genomics (R.K.M., M.H., P.L.C., M.C.C., G.M., E.A.B., D.J.H., G.A.R.), Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, United Kingdom; Electron Microscopy Unit (R.C., L.M.C.), Francis Crick Institute, Lincoln's Inn Fields, London WC2A 3LY, United Kingdom; and Department of Cell Biology and Biochemistry (W.-H.L.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Lucy M Collinson
- Section of Cell Biology and Functional Genomics (R.K.M., M.H., P.L.C., M.C.C., G.M., E.A.B., D.J.H., G.A.R.), Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, United Kingdom; Electron Microscopy Unit (R.C., L.M.C.), Francis Crick Institute, Lincoln's Inn Fields, London WC2A 3LY, United Kingdom; and Department of Cell Biology and Biochemistry (W.-H.L.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Wen-Hong Li
- Section of Cell Biology and Functional Genomics (R.K.M., M.H., P.L.C., M.C.C., G.M., E.A.B., D.J.H., G.A.R.), Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, United Kingdom; Electron Microscopy Unit (R.C., L.M.C.), Francis Crick Institute, Lincoln's Inn Fields, London WC2A 3LY, United Kingdom; and Department of Cell Biology and Biochemistry (W.-H.L.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - David J Hodson
- Section of Cell Biology and Functional Genomics (R.K.M., M.H., P.L.C., M.C.C., G.M., E.A.B., D.J.H., G.A.R.), Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, United Kingdom; Electron Microscopy Unit (R.C., L.M.C.), Francis Crick Institute, Lincoln's Inn Fields, London WC2A 3LY, United Kingdom; and Department of Cell Biology and Biochemistry (W.-H.L.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics (R.K.M., M.H., P.L.C., M.C.C., G.M., E.A.B., D.J.H., G.A.R.), Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, United Kingdom; Electron Microscopy Unit (R.C., L.M.C.), Francis Crick Institute, Lincoln's Inn Fields, London WC2A 3LY, United Kingdom; and Department of Cell Biology and Biochemistry (W.-H.L.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
39
|
Hara K, Kadowaki T, Odawara M. Genes associated with diabetes: potential for novel therapeutic targets? Expert Opin Ther Targets 2015; 20:255-67. [DOI: 10.1517/14728222.2016.1098618] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Kazuo Hara
- Division of Diabetes, Endocrinology and Metabolism, Tokyo Medical University, 6-7-1Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Masato Odawara
- Division of Diabetes, Endocrinology and Metabolism, Tokyo Medical University, 6-7-1Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
40
|
Ranasinghe P, Pigera S, Galappatthy P, Katulanda P, Constantine GR. Zinc and diabetes mellitus: understanding molecular mechanisms and clinical implications. ACTA ACUST UNITED AC 2015; 23:44. [PMID: 26381880 PMCID: PMC4573932 DOI: 10.1186/s40199-015-0127-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/20/2015] [Indexed: 01/08/2023]
Abstract
Background Diabetes mellitus is a leading cause of morbidity and mortality worldwide. Studies have shown that Zinc has numerous beneficial effects in both type-1 and type-2 diabetes. We aim to evaluate the literature on the mechanisms and molecular level effects of Zinc on glycaemic control, β-cell function, pathogenesis of diabetes and its complications. Methods A review of published studies reporting mechanisms of action of Zinc in diabetes was undertaken in PubMed and SciVerse Scopus medical databases using the following search terms in article title, abstract or keywords; (“Zinc” or “Zn”) and (“mechanism” or “mechanism of action” or “action” or “effect” or “pathogenesis” or “pathology” or “physiology” or “metabolism”) and (“diabetes” or “prediabetes” or “sugar” or “glucose” or “insulin”). Results The literature search identified the following number of articles in the two databases; PubMed (n = 1799) and SciVerse Scopus (n = 1879). After removing duplicates the total number of articles included in the present review is 111. Our results show that Zinc plays an important role in β-cell function, insulin action, glucose homeostasis and the pathogenesis of diabetes and its complications. Conclusion Numerous in-vitro and in-vivo studies have shown that Zinc has beneficial effects in both type-1 and type-2 diabetes. However further randomized double-blinded placebo-controlled clinical trials conducted for an adequate duration, are required to establish therapeutic safety in humans. Electronic supplementary material The online version of this article (doi:10.1186/s40199-015-0127-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Priyanga Ranasinghe
- Department of Pharmacology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| | - Shehani Pigera
- Department of Pharmacology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | | - Prasad Katulanda
- Diabetes Research Unit, Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Godwin R Constantine
- Diabetes Research Unit, Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
41
|
Abstract
Zinc is an important micronutrient, essential in the diet to avoid a variety of conditions associated with malnutrition such as diarrhoea and alopecia. Lowered circulating levels of zinc are also found in diabetes mellitus, a condition which affects one in twelve of the adult population and whose treatments consume approximately 10 % of healthcare budgets. Zn2+ ions are essential for a huge range of cellular functions and, in the specialised pancreatic β-cell, for the storage of insulin within the secretory granule. Correspondingly, genetic variants in the SLC30A8 gene, which encodes the diabetes-associated granule-resident Zn2+ transporter ZnT8, are associated with an altered risk of type 2 diabetes. Here, we focus on (i) recent advances in measuring free zinc concentrations dynamically in subcellular compartments, and (ii) studies dissecting the role of intracellular zinc in the control of glucose homeostasis in vitro and in vivo. We discuss the effects on insulin secretion and action of deleting or over-expressing Slc30a8 highly selectively in the pancreatic β-cell, and the role of zinc in insulin signalling. While modulated by genetic variability, healthy levels of dietary zinc, and hence normal cellular zinc homeostasis, are likely to play an important role in the proper release and action of insulin to maintain glucose homeostasis and lower diabetes risk.
Collapse
|
42
|
Kambe T, Tsuji T, Hashimoto A, Itsumura N. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol Rev 2015; 95:749-84. [DOI: 10.1152/physrev.00035.2014] [Citation(s) in RCA: 556] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Zinc is involved in a variety of biological processes, as a structural, catalytic, and intracellular and intercellular signaling component. Thus zinc homeostasis is tightly controlled at the whole body, tissue, cellular, and subcellular levels by a number of proteins, with zinc transporters being particularly important. In metazoan, two zinc transporter families, Zn transporters (ZnT) and Zrt-, Irt-related proteins (ZIP) function in zinc mobilization of influx, efflux, and compartmentalization/sequestration across biological membranes. During the last two decades, significant progress has been made in understanding the molecular properties, expression, regulation, and cellular and physiological roles of ZnT and ZIP transporters, which underpin the multifarious functions of zinc. Moreover, growing evidence indicates that malfunctioning zinc homeostasis due to zinc transporter dysfunction results in the onset and progression of a variety of diseases. This review summarizes current progress in our understanding of each ZnT and ZIP transporter from the perspective of zinc physiology and pathogenesis, discussing challenging issues in their structure and zinc transport mechanisms.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tokuji Tsuji
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ayako Hashimoto
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Naoya Itsumura
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
43
|
Abstract
SLC30A8 encodes the secretory granule-resident and largely endocrine pancreas-restricted zinc transporter ZnT8. Interest in this gene product was sparked amongst diabetologists in 2007 when the first genome-wide association study for type 2 diabetes identified polymorphisms in SLC30A8 as affecting disease risk. Thus, the common polymorphism rs13266634 was associated with lowered beta cell function and a 14% increase in diabetes abundance per risk (C) allele. This non-synonymous variant encodes a tryptophan-to-arginine switch at position 325 in the protein's intracellular carboxy-terminal domain, resulting in reduced zinc transport activity and, consequently, decreased intragranular zinc levels. Whereas insulin secretion from isolated islets is most often increased in mice inactivated for Slc30a8, null animals usually show impaired glucose tolerance and lowered circulating insulin. Since Slc30a8 null animals display little, if any, zinc secretion from islets, the lower plasma insulin levels could be explained by increased hepatic clearance as a result of lowered local zinc levels, or less efficient insulin action on target tissues. Despite the emerging consensus on the role of ZnT8 in glucose homeostasis, a recent genetic study in humans has unexpectedly identified loss-of-function SLC30A8 mutants that are associated with protection from diabetes. Here, we attempt to reconcile these apparently contradictory findings, implicating (1) differing degrees of inhibition of ZnT8 activity in carriers of common variants vs rare loss-of-function forms, (2) effects dependent on age or hypoxic beta cell stress. We propose that these variables conspire to affect both the size and the direction of the effect of SLC30A8 risk alleles in man.
Collapse
Affiliation(s)
- Guy A Rutter
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, Imperial College London, Du Cane Road, London, W12 ONN, UK,
| | | |
Collapse
|
44
|
Rutter GA. Dorothy Hodgkin Lecture 2014. Understanding genes identified by genome-wide association studies for type 2 diabetes. Diabet Med 2014; 31:1480-7. [PMID: 25186316 DOI: 10.1111/dme.12579] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/22/2014] [Indexed: 01/09/2023]
Abstract
Whilst the heritable nature of Type 2 diabetes has been recognized for many years, only in the past two decades have linkage analyses in families and genome-wide association studies in large populations begun to reveal the genetic landscape of the disease in detail. Whilst the former have provided a powerful means of identifying the genes responsible for monogenic forms of the disease, the latter highlight relatively large genomic regions. These often harbour multiple genes, whose relative contribution to exaggerated disease risk is uncertain. In the present study, the approaches that have been used to dissect the role of just a few (TCF7L2, SLC30A8, ADCY5, MTNR1B and CDKAL1) of the ~ 500 genes identified at dozens of implicated loci are described. These are usually selected based on the strength of their effect on disease risk, and predictions as to their likely biological role. Direct determination of the effects of identified polymorphisms on gene expression in disease-relevant tissues, notably the pancreatic islet, are then performed to identify genes whose expression is affected by a particular polymorphism. Subsequent functional analyses then involve perturbing gene expression in vitro in β-cell lines or isolated islets and in vivo in animal models. Although the majority of polymorphisms affect insulin production rather than action, and mainly affect the β cell, effects via other tissues may also contribute, requiring careful consideration in the design and interpretation of experiments in model systems. These considerations illustrate the scale of the task needed to exploit genome-wide association study data for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- G A Rutter
- Department of Medicine, Section of Cell Biology, Imperial College London, London, UK
| |
Collapse
|
45
|
Lai M, Chandrasekera PC, Barnard ND. You are what you eat, or are you? The challenges of translating high-fat-fed rodents to human obesity and diabetes. Nutr Diabetes 2014; 4:e135. [PMID: 25198237 PMCID: PMC4183971 DOI: 10.1038/nutd.2014.30] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/18/2014] [Accepted: 06/25/2014] [Indexed: 12/16/2022] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are rapidly growing worldwide epidemics with major health consequences. Various human-based studies have confirmed that both genetic and environmental factors (particularly high-caloric diets and sedentary lifestyle) greatly contribute to human T2DM. Interactions between obesity, insulin resistance and β-cell dysfunction result in human T2DM, but the mechanisms regulating the interplay among these impairments remain unclear. Rodent models of high-fat diet (HFD)-induced obesity have been used widely to study human obesity and T2DM. With >9000 publications on PubMed over the past decade alone, many aspects of rodent T2DM have been elucidated; however, correlation to human obesity/diabetes remains poor. This review investigates the reasons for this translational discrepancy by critically evaluating rodent HFD models. Dietary modification in rodents appears to have limited translatable benefit for understanding and treating human obesity and diabetes due—at least in part—to divergent dietary compositions, species/strain and gender variability, inconsistent disease penetrance, severity and duration and lack of resemblance to human obesogenic pathophysiology. Therefore future research efforts dedicated to acquiring translationally relevant data—specifically human data, rather than findings based on rodent studies—would accelerate our understanding of disease mechanisms and development of therapeutics for human obesity/T2DM.
Collapse
Affiliation(s)
- M Lai
- Physicians Committee for Responsible Medicine, Washington, DC, USA
| | | | - N D Barnard
- 1] Physicians Committee for Responsible Medicine, Washington, DC, USA [2] Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
46
|
Kambe T, Hashimoto A, Fujimoto S. Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell Mol Life Sci 2014; 71:3281-95. [PMID: 24710731 PMCID: PMC11113243 DOI: 10.1007/s00018-014-1617-0] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/13/2014] [Accepted: 03/20/2014] [Indexed: 12/14/2022]
Abstract
Zinc transporters, the Zrt-, Irt-like protein (ZIP) family and the Zn transporter (ZnT) family transporters, are found in all aspects of life. Increasing evidence has clarified the molecular mechanism, in which both transporters play critical roles in cellular and physiological functions via mobilizing zinc across the cellular membrane. In the last decade, mutations in ZIP and ZnT transporter genes have been shown to be implicated in a number of inherited human diseases. Moreover, dysregulation of expression and activity of both transporters has been suggested to be involved in the pathogenesis and progression of chronic diseases including cancer, immunological impairment, and neurodegenerative diseases, although comprehensive understanding is far from complete. The diverse phenotypes of diseases related to ZIP and ZnT transporters reflect the multifarious biological functions of both transporters. The present review summarizes the current understanding of ZIP and ZnT transporter functions from the standpoint of human health and diseases. The study of zinc transporters is currently of great clinical interest.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan,
| | | | | |
Collapse
|
47
|
Thomsen SK, Gloyn AL. The pancreatic β cell: recent insights from human genetics. Trends Endocrinol Metab 2014; 25:425-34. [PMID: 24986330 PMCID: PMC4229643 DOI: 10.1016/j.tem.2014.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus is a metabolic disease characterised by relative or absolute pancreatic β cell dysfunction. Genetic variants implicated in disease risk can be identified by studying affected individuals. To understand the mechanisms driving genetic associations, variants must be translated through causative transcripts to biological insights. Studies into the genetic basis of Mendelian forms of diabetes have successfully identified genes involved in both β cell function and pancreatic development. For type 2 diabetes (T2D), genome-wide association studies (GWASs) are uncovering an ever-increasing number of susceptibility variants that exert their effect through β cell dysfunction, but translation to mechanistic understanding has in most cases been slow. Improved annotations of the islet genome and advances in whole-genome and -exome sequencing (WHS and WES) have facilitated recent progress.
Collapse
Affiliation(s)
- Soren K Thomsen
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Headington, OX3 7LE, UK
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Headington, OX3 7LE, UK; Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Churchill Hospital, Headington, OX3 7LE, UK.
| |
Collapse
|
48
|
Gerber PA, Bellomo EA, Hodson DJ, Meur G, Solomou A, Mitchell RK, Hollinshead M, Chimienti F, Bosco D, Hughes SJ, Johnson PRV, Rutter GA. Hypoxia lowers SLC30A8/ZnT8 expression and free cytosolic Zn2+ in pancreatic beta cells. Diabetologia 2014; 57:1635-44. [PMID: 24865615 PMCID: PMC4079946 DOI: 10.1007/s00125-014-3266-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/23/2014] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS Hypoxic damage complicates islet isolation for transplantation and may contribute to beta cell failure in type 2 diabetes. Polymorphisms in the SLC30A8 gene, encoding the secretory granule zinc transporter 8 (ZnT8), influence type 2 diabetes risk, conceivably by modulating cytosolic Zn(2+) levels. We have therefore explored the role of ZnT8 and cytosolic Zn(2+) in the response to hypoxia of pancreatic islet cells. METHODS Human, mouse or rat islets were isolated and exposed to varying O2 tensions. Cytosolic free zinc was measured using the adenovirally expressed recombinant targeted zinc probe eCALWY4. Gene expression was measured using quantitative (q)RT-PCR, western (immuno-) blotting or immunocytochemistry. Beta cells were identified by insulin immunoreactivity. RESULTS Deprivation of O2 (1% vs 5% or 21%) for 24 h lowered free cytosolic Zn(2+) concentrations by ~40% (p < 0.05) and ~30% (p < 0.05) in mouse and human islet cells, respectively. Hypoxia similarly decreased SLC30A8 mRNA expression in islets, and immunoreactivity in beta cells. Implicating lowered ZnT8 levels in the hypoxia-induced fall in cytosolic Zn(2+), genetic ablation of Slc30a8 from mouse islets lowered cytosolic Zn(2+) by ~40% (p < 0.05) and decreased the induction of metallothionein (Mt1, Mt2) genes. Cell survival in the face of hypoxia was enhanced in small islets of older (>12 weeks) Slc30a8 null mice vs controls, but not younger animals. CONCLUSIONS/INTERPRETATION The response of pancreatic beta cells to hypoxia is characterised by decreased SLC30A8 expression and lowered cytosolic Zn(2+) concentrations. The dependence on ZnT8 of hypoxia-induced changes in cell survival may contribute to the actions of SLC30A8 variants on diabetes risk in humans.
Collapse
Affiliation(s)
- Philipp A. Gerber
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 ONN UK
- Division of Endocrinology, Diabetes and Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland
| | - Elisa A. Bellomo
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 ONN UK
| | - David J. Hodson
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 ONN UK
| | - Gargi Meur
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 ONN UK
| | - Antonia Solomou
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 ONN UK
| | - Ryan K. Mitchell
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 ONN UK
| | - Michael Hollinshead
- Section of Microscopy, Department of Medicine, Imperial College London, London, UK
| | | | - Domenico Bosco
- Cell Isolation and Transplantation Centre, Department of Surgery, Geneva University Hospital, Geneva, Switzerland
| | - Stephen J. Hughes
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- DRWF Human Islet Isolation Facility, Oxford Centre for Diabetes, Endocrinology and Metabolism, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Paul R. V. Johnson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- DRWF Human Islet Isolation Facility, Oxford Centre for Diabetes, Endocrinology and Metabolism, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Guy A. Rutter
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 ONN UK
| |
Collapse
|
49
|
Davidson HW, Wenzlau JM, O'Brien RM. Zinc transporter 8 (ZnT8) and β cell function. Trends Endocrinol Metab 2014; 25:415-24. [PMID: 24751356 PMCID: PMC4112161 DOI: 10.1016/j.tem.2014.03.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 02/07/2023]
Abstract
Human pancreatic β cells have exceptionally high zinc content. In β cells the highest zinc concentration is in insulin secretory granules, from which it is cosecreted with the hormone. Uptake of zinc into secretory granules is mainly mediated by zinc transporter 8 (ZnT8), the product of the SLC30A8 [solute carrier family 30 (zinc transporter), member 8] gene. The minor alleles of several single-nucleotide polymorphisms (SNPs) in SLC30A8 are associated with decreased risk of type 2 diabetes (T2D), but the precise mechanisms underlying the protective effects remain uncertain. In this article we review current knowledge of the role of ZnT8 in maintaining zinc homeostasis in β cells, its role in glucose metabolism based on knockout mouse studies, and current theories regarding the link between ZnT8 function and T2D.
Collapse
Affiliation(s)
- Howard W Davidson
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; Integrated Department of Immunology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Janet M Wenzlau
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard M O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
50
|
Flannick J, Thorleifsson G, Beer NL, Jacobs SBR, Grarup N, Burtt NP, Mahajan A, Fuchsberger C, Atzmon G, Benediktsson R, Blangero J, Bowden DW, Brandslund I, Brosnan J, Burslem F, Chambers J, Cho YS, Christensen C, Douglas DA, Duggirala R, Dymek Z, Farjoun Y, Fennell T, Fontanillas P, Forsén T, Gabriel S, Glaser B, Gudbjartsson DF, Hanis C, Hansen T, Hreidarsson AB, Hveem K, Ingelsson E, Isomaa B, Johansson S, Jørgensen T, Jørgensen ME, Kathiresan S, Kong A, Kooner J, Kravic J, Laakso M, Lee JY, Lind L, Lindgren CM, Linneberg A, Masson G, Meitinger T, Mohlke KL, Molven A, Morris AP, Potluri S, Rauramaa R, Ribel-Madsen R, Richard AM, Rolph T, Salomaa V, Segrè AV, Skärstrand H, Steinthorsdottir V, Stringham HM, Sulem P, Tai ES, Teo YY, Teslovich T, Thorsteinsdottir U, Trimmer JK, Tuomi T, Tuomilehto J, Vaziri-Sani F, Voight BF, Wilson JG, Boehnke M, McCarthy MI, Njølstad PR, Pedersen O, Groop L, Cox DR, Stefansson K, Altshuler D. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet 2014; 46:357-63. [PMID: 24584071 DOI: 10.1038/ng.2915] [Citation(s) in RCA: 361] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 02/10/2014] [Indexed: 02/07/2023]
Abstract
Loss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets, but none have yet been described for type 2 diabetes (T2D). Through sequencing or genotyping of ~150,000 individuals across 5 ancestry groups, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8) and harbors a common variant (p.Trp325Arg) associated with T2D risk and glucose and proinsulin levels. Collectively, carriers of protein-truncating variants had 65% reduced T2D risk (P = 1.7 × 10(-6)), and non-diabetic Icelandic carriers of a frameshift variant (p.Lys34Serfs*50) demonstrated reduced glucose levels (-0.17 s.d., P = 4.6 × 10(-4)). The two most common protein-truncating variants (p.Arg138* and p.Lys34Serfs*50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested that reduced zinc transport increases T2D risk, and phenotypic heterogeneity was observed in mouse Slc30a8 knockouts. In contrast, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, suggesting ZnT8 inhibition as a therapeutic strategy in T2D prevention.
Collapse
Affiliation(s)
- Jason Flannick
- 1] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [2] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA. [3] Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Nicola L Beer
- 1] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [2] Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Suzanne B R Jacobs
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Noël P Burtt
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Christian Fuchsberger
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Gil Atzmon
- 1] Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA. [2] Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Rafn Benediktsson
- Department of Endocrinology and Metabolism, Landspitali University Hospital, Reykjavik, Iceland
| | - John Blangero
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Don W Bowden
- 1] Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA. [2] Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA. [3] Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA. [4] Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Ivan Brandslund
- 1] Department of Clinical Biochemistry, Vejle Hospital, Vejle, Denmark. [2] Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Julia Brosnan
- Cardiovascular & Metabolic Diseases Research Unit, Pfizer, Inc., Cambridge, Massachusetts, USA
| | - Frank Burslem
- Cardiovascular and Metabolic Diseases Practice, Prescient Life Sciences, London, UK
| | - John Chambers
- 1] Department of Epidemiology and Biostatistics, Imperial College London, London, UK. [2] Imperial College Healthcare National Health Service (NHS) Trust, London, UK. [3] Ealing Hospital NHS Trust, Middlesex, UK
| | - Yoon Shin Cho
- Department of Biomedical Science, Hallym University, Chuncheon, Korea
| | - Cramer Christensen
- Department of Internal Medicine and Endocrinology, Vejle Hospital, Vejle, Denmark
| | - Desirée A Douglas
- Unit of Diabetes and Celiac Diseases, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | - Zachary Dymek
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Yossi Farjoun
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Timothy Fennell
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Pierre Fontanillas
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Tom Forsén
- 1] Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland. [2] Diabetes Care Unit, Vaasa Health Care Centre, Vaasa, Finland
| | - Stacey Gabriel
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Benjamin Glaser
- 1] Endocrinology and Metabolism Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel. [2] Israel Diabetes Research Group (IDRG), Holon, Israel
| | | | - Craig Hanis
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Torben Hansen
- 1] Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. [2] Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Astradur B Hreidarsson
- Department of Endocrinology and Metabolism, Landspitali University Hospital, Reykjavik, Iceland
| | - Kristian Hveem
- Department of Public Health, Faculty of Medicine, Norwegian University of Science and Technology, Levanger, Norway
| | - Erik Ingelsson
- 1] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. [2] Molecular Epidemiology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Bo Isomaa
- 1] Folkhalsan Research Centre, Helsinki, Finland. [2] Department of Social Services and Health Care, Jakobstad, Finland
| | - Stefan Johansson
- 1] KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway. [2] Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway. [3] Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Torben Jørgensen
- 1] Research Centre for Prevention and Health, Glostrup University Hospital, Glostrup, Denmark. [2] Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. [3] Faculty of Medicine, University of Aalborg, Aalborg, Denmark
| | | | - Sekar Kathiresan
- 1] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [2] Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA. [3] Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA. [4] Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Jaspal Kooner
- 1] Imperial College Healthcare National Health Service (NHS) Trust, London, UK. [2] Ealing Hospital NHS Trust, Middlesex, UK. [3] National Heart and Lung Institute (NHLI), Imperial College London, Hammersmith Hospital, London, UK
| | - Jasmina Kravic
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland, Kuopio Campus and Kuopio University Hospital, Kuopio, Finland
| | - Jong-Young Lee
- Center for Genome Science, Korea National Institute of Health, Osong Health Technology, Chungcheongbuk-do, Korea
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Cecilia M Lindgren
- 1] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [2] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Allan Linneberg
- 1] Research Centre for Prevention and Health, Glostrup University Hospital, Glostrup, Denmark. [2] Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. [3] Department of Clinical Experimental Research, Glostrup University Hospital, Glostrup, Denmark
| | | | - Thomas Meitinger
- Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Anders Molven
- 1] KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway. [2] Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway. [3] Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Andrew P Morris
- 1] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. [2] Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Shobha Potluri
- Applied Quantitative Genotherapeutics, Pfizer, Inc., South San Francisco, California, USA
| | - Rainer Rauramaa
- 1] Kuopio Research Institute of Exercise Medicine, Kuopio, Finland. [2] Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Rasmus Ribel-Madsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Marie Richard
- Cardiovascular & Metabolic Diseases Research Unit, Pfizer, Inc., Cambridge, Massachusetts, USA
| | - Tim Rolph
- Cardiovascular & Metabolic Diseases Research Unit, Pfizer, Inc., Cambridge, Massachusetts, USA
| | - Veikko Salomaa
- National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Ayellet V Segrè
- 1] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [2] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hanna Skärstrand
- Unit of Diabetes and Celiac Diseases, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | - Heather M Stringham
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | | | - E Shyong Tai
- 1] Saw Swee Hock School of Public Health, National University of Singapore, National University Health System, Singapore. [2] Department of Medicine, National University of Singapore, National University Health System, Singapore. [3] Duke-National University of Singapore Graduate Medical School, Singapore
| | - Yik Ying Teo
- 1] Saw Swee Hock School of Public Health, National University of Singapore, National University Health System, Singapore. [2] Centre for Molecular Epidemiology, National University of Singapore, Singapore. [3] Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore. [4] Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore. [5] Department of Statistics and Applied Probability, National University of Singapore, Singapore
| | - Tanya Teslovich
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Unnur Thorsteinsdottir
- 1] deCODE Genetics/Amgen, Inc., Reykjavik, Iceland. [2] Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Jeff K Trimmer
- Cardiovascular & Metabolic Diseases Research Unit, Pfizer, Inc., Cambridge, Massachusetts, USA
| | - Tiinamaija Tuomi
- 1] Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland. [2] Folkhalsan Research Centre, Helsinki, Finland
| | - Jaakko Tuomilehto
- 1] Centre for Vascular Prevention, Danube-University Krems, Krems, Austria. [2] Diabetes Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland. [3] Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fariba Vaziri-Sani
- Unit of Diabetes and Celiac Diseases, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Benjamin F Voight
- 1] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [2] Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA. [3] Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael Boehnke
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Mark I McCarthy
- 1] Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK. [2] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. [3] Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Pål R Njølstad
- 1] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [2] KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway. [3] Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Leif Groop
- 1] Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden. [2] Finnish Institute for Molecular Medicine (FIMM), Helsinki University, Helsinki, Finland
| | - David R Cox
- Applied Quantitative Genotherapeutics, Pfizer, Inc., South San Francisco, California, USA
| | - Kari Stefansson
- 1] deCODE Genetics/Amgen, Inc., Reykjavik, Iceland. [2] Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - David Altshuler
- 1] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [2] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA. [3] Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA. [4] Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA. [5] Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA. [6] Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA. [7] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|