1
|
Arora R. Glucosinolate Hydrolytic Products-A Multi-Arm Warrior. J AOAC Int 2024; 107:876-883. [PMID: 38964347 DOI: 10.1093/jaoacint/qsae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/08/2023] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Glucosinolates (GSLs) are the most controversial yet ignored class of phytochemicals. These are the middleman phytochemicals that have low bioactivity. But once there is any injury in the plant-manmade, insect caused, or natural-magic happens. The compound is broken down into smaller phytochemicals referred to as glucosinolate hydrolytic products (GHPs; nitriles, isothiocyanates [ITCs], and thiocyanates). These hydrolytic products are like a showstopper of the fashion industry. These compounds have some of the highest bioactivity in nature. They have been associated with a varied range of bioactivities (anticancer, antioxidant, insecticidal, weedicide, etc.) by researchers across the globe. OBJECTIVE The objective of the current article is to provide a critical review to highlight some of the important bioactivities of these ignored compounds and for promoting researchers to at least give these compounds a chance-to glow in the dark. METHODS This review has been written from analysis of accessible literature, mostly from the last 5 years (2018-2023), with some critically essential exceptions. RESULTS The review highlighted a brief background of GSLs and its hydrolysis. Efforts were made to include most of the biological properties of the compound. Special emphasis has been given to the anticancer activities of the compound with details of the involved mechanism. CONCLUSIONS Considering the wide array of bioactivities of GHPs, it is essential to consider it as a prospective medicinal compound. More GHPs-in a similar manner as sulforaphane-can be proceeded to phase trials. HIGHLIGHTS The mechanistic pathway for production of GHPs and related biological activities have been discussed in detail. The bioactivities have been further explained using the involved mechanism.
Collapse
Affiliation(s)
- Rohit Arora
- Department of Women and Baby, Sunnybrook Research Institute, 2075 Bayview Ave, North York, Ontario, M4N 3M5, Canada
| |
Collapse
|
2
|
Fan L, Wang J, Wang C, Zhang X, Li Q, Wang H, Liu Y, Zhao YH, Zang S. Photolysis of dinotefuran and nitenpyram in water and ice phase: Influence mechanism of temperature over photolysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116895. [PMID: 39151370 DOI: 10.1016/j.ecoenv.2024.116895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Neonicotinoids are widely used pesticides around the world, but the photolysis of neonicotinoids in cold agricultural region are still in blank. This paper aimed to study the influence of cold temperature over photolysis of neonicotinoids. To this end, the photolysis rates and photoproducts of dinotefuran and nitenpyram in water, ice and freeze-thawing condition were determined. Coupled with quantum chemistry calculation, the influence mechanisms of temperature and medium were investigated. The results showed the photolysis rates of neonicotinoids in water condition slightly declined with the lowered temperature due to the photolysis reactions were endothermic reactions. However, the photolysis rates increased by 89.8 %, 59.2 %, 49.4 % and 9.5 % for dinotefuran and nitenpyram in ice and thawing condition, respectively. This phenomenon was posed by the concentration-enhancing effect and change of photo-chemical properties of neonicotinoids in ice condition, which included lowered bond cleavage energy, lowered first excited singlet state energy and expanded light absorption range. The photolysis pathways of the two neonicotinoids did not change in different medium, but the concentration of carboxyl products was relatively higher than that of water condition due to the more amounts of reactive oxygen species in ice medium, which might increase the secondary pollution risk after ice-off in spring due to the higher ecotoxicity to nontarget organism of these photoproducts. The influence of cold temperature and medium change should be considered for the environmental fate and risk assessment of neonicotinoids in cold agricultural region.
Collapse
Affiliation(s)
- Lingyun Fan
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin 150025, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Jia Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Chen Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Xujia Zhang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin 150025, China.
| | - Qi Li
- School of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Hanxi Wang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin 150025, China.
| | - Yi Liu
- State Grid Jilin Electric Power Research Institute, Changchun 130021, China.
| | - Yuan Hui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Shuying Zang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
3
|
Ke Y, Zheng W, Tian D, Ke S, Fu S, Zhang Z, Xie Y, Zhu J, Ren B, Zhang C, Yi X, Huang M. Occurrence and fate of five representative neonicotinoid insecticides across different wastewater treatment plants and the impact on receiving water bodies. ENVIRONMENTAL RESEARCH 2024; 263:120025. [PMID: 39293756 DOI: 10.1016/j.envres.2024.120025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Neonicotinoids (NEOs), despite their widespread use as insecticides, exhibit a notable knowledge deficit in regards to their presence in wastewater treatment plants (WWTPs) and their surrounding environments. This study delves into the presence and disposition of 5 NEOs: Thiamethoxam (THM), Clothianidin (CLO), Imidacloprid (IMD), Acetamiprid (ACE), and Thiacloprid (THA) across 3 domestic WWTPs and their receiving waters. Notably, THM, CLO, and ACE were consistently detected in all water and sludge samples, with THM emerging as the most abundant compound in both influent and effluent. Among the 3 WWTPs, WWTP 2, employing a fine bubble oxidation process, achieved the highest removal efficiency, surpassing 68%, in contrast to WWTP 1 (CAST) at 37% and WWTP 3 (A/A/O) at 7%. Biodegradation played a pivotal role in NEO removal, accounting for 36.7% and 68.2% of the total removal in WWTP 1 and WWTP 2, respectively. Surprisingly, in WWTP 3, biotransformation process inadvertently increased ACE and CLO concentrations by approximately 4.1% and 4.5%, respectively. The total NEO concentration in the receiving surface waters ranged from 72.7 to 155.5 ng/L, while sediment concentrations were significantly lower, spanning between 0.10 and 1.53 ng/g. WWTPs serve as both a removal and concentration point for NEOs, thereby significantly influencing their transportation. Additionally, the concentration of most NEOs in the receiving waters progressively increased from upstream to downstream, highlighting the substantial impact of WWTP discharges on natural water environments. This research offers valuable insights into NEO pollution surrounding WWTPs in the Pearl River Delta, ultimately aiding in pollution control and environmental protection decisions.
Collapse
Affiliation(s)
- Yuhan Ke
- School of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, PR China
| | - Wanbing Zheng
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center & Nan'an SCNU Institute of Green and Low-carbon Research, South China Normal University, Quanzhou, 362300, PR China
| | - Di Tian
- School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Siyu Ke
- SCNU (NAN'AN) Green and Low-carbon Innovation Center & Nan'an SCNU Institute of Green and Low-carbon Research, South China Normal University, Quanzhou, 362300, PR China
| | - Shuna Fu
- Agilent Technologies (China) Co. Ltd., Guangzhou, 510005, PR China
| | - Zhe Zhang
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| | - Yue Xie
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center & Nan'an SCNU Institute of Green and Low-carbon Research, South China Normal University, Quanzhou, 362300, PR China
| | - Junyu Zhu
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center & Nan'an SCNU Institute of Green and Low-carbon Research, South China Normal University, Quanzhou, 362300, PR China
| | - Bangxing Ren
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| | - Chao Zhang
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center & Nan'an SCNU Institute of Green and Low-carbon Research, South China Normal University, Quanzhou, 362300, PR China
| | - Xiaohui Yi
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center & Nan'an SCNU Institute of Green and Low-carbon Research, South China Normal University, Quanzhou, 362300, PR China
| | - Mingzhi Huang
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center & Nan'an SCNU Institute of Green and Low-carbon Research, South China Normal University, Quanzhou, 362300, PR China.
| |
Collapse
|
4
|
Humann-Guilleminot S, Binkowski LJ, Helfenstein F. Sex-specific effects of low-dose of acetamiprid on corticosterone levels but not on oxidative stress in House sparrows. ENVIRONMENTAL RESEARCH 2024; 262:119894. [PMID: 39218340 DOI: 10.1016/j.envres.2024.119894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Neonicotinoid insecticides are widely used in agriculture and have been linked to various detrimental physiological effects on wild birds. Despite this, the impact of acetamiprid - a less studied member of the neonicotinoid family - on the hypothalamic-pituitary-adrenal axis responsible for the hormonal regulation of the response to stress has rarely been examined in birds. In our study, we explored the effects of acetamiprid on feather levels of corticosterone, the major end product of the HPA, and blood oxidative status of House sparrows (Passer domesticus), following the ingestion of a low, field-realistic dose during two consecutive experiments in 2015 and 2016. We involved 112 birds in each experiment - 56 males and 56 females - that were administered a placebo or a dose of acetamiprid equivalent to 0.5% of the LD50 of the Zebra finch over the entire duration of the experiments, which lasted approximately three weeks. We measured corticosterone concentrations in feathers grown during an acclimation phase before ingestion and in newly grown feather after the experiment and assessed three oxidative stress markers in the blood. We found no impact of acetamiprid on oxidative stress markers. However, in 2015, male sparrows that ingested acetamiprid exhibited higher corticosterone levels in their feathers compared to those that received a placebo. No such difference was found in females. Interestingly, this effect was not observed in year 2016, which was characterised by less stressful conditions for the birds. These findings offer the first evidence of a potential effect of acetamiprid on corticosterone levels in a songbird, suggesting that ingesting this compound at very low dose may alter the endocrine physiology of the response to stress.
Collapse
Affiliation(s)
- Ségoléne Humann-Guilleminot
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland; Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Faculty of Science, Radboud University, Nijmegen, The Netherlands.
| | - Lukasz J Binkowski
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland; Institute of Biology and Earth Sciences, University of the National Education Commission, Krakow, Poland
| | - Fabrice Helfenstein
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Liao L, Feng S, Zhao D, Yang X, Lin J, Guo C, Xu J, Gao Z. Neonicotinoid insecticides in well-developed agricultural cultivation areas: Seawater occurrence, spatial-seasonal variability and ecological risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134621. [PMID: 38795494 DOI: 10.1016/j.jhazmat.2024.134621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
Neonicotinoids (NEOs) are widely used insecticides and have been detected in aquatic environments globally. However, little is known about NEOs contamination in the coastal environments under the terrestrial pressure of multiple planting types simultaneously. This study investigated the occurrence, spatial-seasonal variability, and ecological risks of NEOs along the coast of the Shandong Peninsula during the dry and wet seasons, where located many largest fruit, vegetable, and grain production bases in China. The concentrations of ∑NEOs in seawater were higher in wet seasons (surface: 195.46 ng/L; bottom: 14.56 ng/L) than in dry seasons (surface: 10.07 ng/L; bottom: 8.45 ng/L). During the wet seasons, NEOs peaked in the northern and eastern areas of the Shandong Peninsula, where the inland fruit planting area is located. While dry seasons had higher concentrations in Laizhou Bay, influenced by rivers from vegetable-growing areas. Grain crops, fruit, and cotton planting were major NEOs sources during wet seasons, while wheat and vegetables dominated in dry seasons. Moderate or above ecological risks appeared at 53.8% of the monitoring sites. Generally, NEOs caused high risks in the wet seasons mainly caused by Imidacloprid, and medium risk in the dry seasons caused by Clothianidin, which should be prevented and controlled in advance.
Collapse
Affiliation(s)
- Lingzhi Liao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Song Feng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Decun Zhao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China; Shandong Yellow River Delta National Nature Reserve Administration Committee, Dongying 257091, PR China
| | - Xiaoxian Yang
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Jianing Lin
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| | - Changsheng Guo
- Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Jian Xu
- Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Zhenhui Gao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
6
|
Lykos C, Bairamis F, Efthymiou C, Konstantinou I. Synthesis and Characterization of Composite WO 3 Fibers/g-C 3N 4 Photocatalysts for the Removal of the Insecticide Clothianidin in Aquatic Media. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1045. [PMID: 38921921 PMCID: PMC11206630 DOI: 10.3390/nano14121045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Photocatalysis is a prominent alternative wastewater treatment technique that has the potential to completely degrade pesticides as well as other persistent organic pollutants, leading to detoxification of wastewater and thus paving the way for its efficient reuse. In addition to the more conventional photocatalysts (e.g., TiO2, ZnO, etc.) that utilize only UV light for activation, the interest of the scientific community has recently focused on the development and application of visible light-activated photocatalysts like g-C3N4. However, some disadvantages of g-C3N4, such as the high recombination rate of photogenerated charges, limit its utility. In this light, the present study focuses on the synthesis of WO3 fibers/g-C3N4 Z-scheme heterojunctions to improve the efficiency of g-C3N4 towards the photocatalytic removal of the widely used insecticide clothianidin. The effect of two different g-C3N4 precursors (urea and thiourea) and of WO3 fiber content on the properties of the synthesized composite materials was also investigated. All aforementioned materials were characterized by a number of techniques (XRD, SEM-EDS, ATR-FTIR, Raman spectroscopy, DRS, etc.). According to the results, mixing 6.5% W/W WO3 fibers with either urea or thiourea derived g-C3N4 significantly increased the photocatalytic activity of the resulting composites compared to the precursor materials. In order to further elucidate the effect of the most efficient composite photocatalyst in the degradation of clothianidin, the generated transformation products were tentatively identified through UHPLC tandem high-resolution mass spectroscopy. Finally, the detoxification effect of the most efficient process was also assessed by combining the results of an in-vitro methodology and the predictions of two in-silico tools.
Collapse
Affiliation(s)
- Christos Lykos
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.L.); (F.B.); (C.E.)
| | - Feidias Bairamis
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.L.); (F.B.); (C.E.)
| | - Christina Efthymiou
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.L.); (F.B.); (C.E.)
| | - Ioannis Konstantinou
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.L.); (F.B.); (C.E.)
- Institute of Environment and Sustainable Development, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
7
|
Wickramasingha PD, Morrissey CA, Phillips ID, Crane AL, Chivers DP, Ferrari MCO. Sub-lethal effects of the insecticide, imidacloprid, on the responses of damselfly larvae to chemosensory cues indicating predation risk. CHEMOSPHERE 2024; 356:141926. [PMID: 38588895 DOI: 10.1016/j.chemosphere.2024.141926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Insecticides, including the widely used neonicotinoids, can affect both pest and non-target species. In addition to lethal effects, these insecticides at sub-lethal levels may cause disruption to sensory perception and processing leading to behavioural impairments. In this laboratory experiment, we investigated the effects of a 10-day exposure to the neonicotinoid insecticide, imidacloprid, on the behaviour of larvae of the damselfly, Lestes congener. In tests of baseline activity, imidacloprid concentrations of 1.0 and 10.0 μg/L caused significant reductions in foraging behaviour. Moreover, in response to chemical cues that indicate a potential risk to the larvae, imidacloprid caused the loss of an appropriate antipredator response (reduced foraging) depending on the concentration and duration of exposure. Imidacloprid at 0.1 μg/L caused the loss of responses toward the odour of a beetle (Dytiscus spp.) predator after 10 days of exposure, whereas 1.0 μg/L caused lost responses toward both the predator odour and injured conspecific cues (i.e., alarm cues) and after only 2 days of exposure. However, at 10.0 μg/L, larvae responded appropriately to both cues throughout the duration of the study, suggesting compensatory responses to imidacloprid at higher concentrations. Hence, the lack of appropriate responses at 1.0 μg/L likely resulted from a cognitive impairment rather than chemical alteration of these important chemosensory cues. In the natural environment, such effects will likely cause decreased survivorship in predator encounters. Hence, imidacloprid exposure, even at low concentrations, could have adverse consequences for chemosensory ecology of this damselfly species.
Collapse
Affiliation(s)
| | - Christy A Morrissey
- Department of Biology, University of Saskatchewan, 112 Science Pl., Saskatoon, SK, S7N 5E2, Canada
| | - Iain D Phillips
- Water Security Agency, 10 - 3904 Miller Ave., Saskatoon, SK, S7P 0B1, Canada
| | - Adam L Crane
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, 52 Campus Dr., Saskatoon, SK, S7N 5B4, Canada.
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Pl., Saskatoon, SK, S7N 5E2, Canada
| | - Maud C O Ferrari
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, 52 Campus Dr., Saskatoon, SK, S7N 5B4, Canada
| |
Collapse
|
8
|
Rymuszka A, Sieroslawska A. Comparative evaluation of neonicotinoids and their metabolites-induced oxidative stress in carp primary leukocytes and CLC cells. Sci Rep 2024; 14:8291. [PMID: 38594566 PMCID: PMC11004018 DOI: 10.1038/s41598-024-59067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024] Open
Abstract
Neonicotinoids (NEOs) have been designed to act selectively on insect nicotinic acetylcholine receptors (nAChRs). However, nAChRs are also expressed in vertebrate immune cells, so NEOs may interfere with the immune system in exposed non-target animals. The present study shows that NEOs: imidacloprid and thiacloprid, and their main metabolites: desnitro-imidacloprid and thiacloprid amide, at sub-micromolar concentrations ranging from 2.25 to 20 μM, affect the immune cells of fish. This was found both in primary cultures of leukocytes isolated from the carp head kidney and in the continuous adherent carp monocyte/macrophage cell line. Moreover, the results revealed that the studied pesticides and metabolites generate oxidative stress in carp immune cells and that this is one of the most important mechanisms of neonicotinoid immunotoxicity. Significant increases were observed in the formation of ROS and malondialdehyde (MDA). The antioxidant status alteration was linked with decrease in antioxidant enzyme activity: superoxide dismutase (SOD), catalase (CAT), and non-enzymatic antioxidant glutathione (GSH). Importantly, the metabolites: desnitro-imidacloprid and thiacloprid amide showed significantly higher cytotoxicity towards fish leukocytes than their parent compounds, imidacloprid and thiacloprid, which emphasizes the importance of including intermediate metabolites in toxicology studies.
Collapse
Affiliation(s)
- Anna Rymuszka
- Department of Animal Physiology and Toxicology, Faculty of Medicine, The John Paul II Catholic University of Lublin, 1I Konstantynów Str., 20-708, Lublin, Poland.
| | - Anna Sieroslawska
- Department of Animal Physiology and Toxicology, Faculty of Medicine, The John Paul II Catholic University of Lublin, 1I Konstantynów Str., 20-708, Lublin, Poland
| |
Collapse
|
9
|
Xiang X, Xie Y, Tian D, Chen Z, Yi X, Chen Z, Huang M. Microbial degradation mechanism and pathway of the insecticide thiamethoxam by isolated Bacillus Cereus from activated sludge. ENVIRONMENTAL RESEARCH 2024; 246:117929. [PMID: 38157972 DOI: 10.1016/j.envres.2023.117929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 01/03/2024]
Abstract
The high water solubility and ecotoxicity of thiamethoxam (TMX) is a potential hazard to ecosystems and human health. Here, a strain of Bacillus cereus with high TMX degradation activity was isolated from the sediment of the A2O process in the wastewater treatment plant and was able to utilize TMX as its sole carbon source. Under different environmental conditions, the degradation efficiency of TMX by Bacillus cereus-S1 (strain S1) ranged from 41.0% to 68.9% after 216 h. The optimum degradation conditions were DO = 3.5 mg/L and pH 9.0. The addition of an appropriate carbon-to-nitrogen ratio could accelerate the degradation of TMX. A plausible biodegradation pathway has been proposed based on the identified metabolites and their corresponding degradation pathways. TMX can be directly converted into Clothianidin (CLO), TMX-dm-hydroxyl and TMX-Urea by a series of reactions such as demethylation, oxadiazine ring cleavage and C=N substitution by hydroxy group. The main products were TMX-dm-hydroxyl and TMX-Urea, the amount of CLO production is relatively small. This study aims to provide a new approach for efficient degradation of TMX; furthermore, strain S1 is a promising biological source for in situ remediation of TMX contamination.
Collapse
Affiliation(s)
- Xuezhu Xiang
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China; Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou 362300, China
| | - Yue Xie
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China; Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou 362300, China
| | - Di Tian
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zhenguo Chen
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China; Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou 362300, China
| | - Xiaohui Yi
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China; Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou 362300, China
| | - Ziyan Chen
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China; Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou 362300, China
| | - Minzhi Huang
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China; Huashi(Fujian) Environment Technology Co.,Ltd, Quanzhou, 362001, China; Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou 362300, China.
| |
Collapse
|
10
|
Cao M, Sy ND, Yu CP, Gan J. Removal of neonicotinoid insecticides in a large-scale constructed wetland system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123303. [PMID: 38199486 DOI: 10.1016/j.envpol.2024.123303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Neonicotinoid insecticides are among the most used insecticides and their residues are frequently found in surface water due to their persistence and mobility. Neonicotinoid insecticides exhibit toxicity to a wide range of aquatic invertebrates at environmentally relevant levels, and therefore their contamination in surface water is of significant concern. In this study, we investigated the spatiotemporal distribution of six neonicotinoids in a large wetland system, the Prado Wetlands, in Southern California, and further evaluated the wetlands' efficiency at removing these insecticides. Total neonicotinoid concentrations in water ranged from 3.17 to 46.9 ng L-1 at different locations within the wetlands, with imidacloprid and dinotefuran among the most detected. Removal was calculated based on concentrations as well as mass flux. The concentration-based removal values for a shallow pond (vegetation-free), moderately vegetated cells, densely vegetated cells, and the entire wetland train were 16.9%, 34.2%, 90.2%, and 61.3%, respectively. Principal component analysis revealed that pH and temperature were the primary factors affecting neonicotinoids removal. Results from this study demonstrated the ubiquitous presence of neonicotinoids in surface water impacted by urban runoff and wastewater effluent and highlighted the efficiency of wetlands in removing these trace contaminants due to concerted effects of uptake by wetland plants, photolysis, and microbial degradation.
Collapse
Affiliation(s)
- Meixian Cao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA; University of Chinese Academy of Sciences, Beijing, 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Nathan D Sy
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
11
|
Wickramasingha PD, Morrissey CA, Phillips ID, Crane AL, Ferrari MCO, Chivers DP. Exposure to the insecticide, imidacloprid, impairs predator-recognition learning in damselfly larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123085. [PMID: 38072015 DOI: 10.1016/j.envpol.2023.123085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/07/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024]
Abstract
Many aquatic organisms use chemosensory information to learn about local predation threats, but contaminants in their environment may impair such cognitive processes. Neonicotinoids are a class of water-soluble systemic insecticides that have become a major concern in aquatic systems. In this study, we explored how a 10-day exposure to various concentrations (0, 0.1, 1.0, or 10.0 μg/L) of the neonicotinoid imidacloprid affects the learned recognition of predator odour by non-target damselfly larvae (Lestes spp). Unexposed larvae and those exposed to the low concentration (0.1 μg/L) demonstrated an appropriate learned response to a novel predator odour following a conditioning with the odour paired with chemical alarm cues. However, such learning failed to occur for larvae that were exposed to imidacloprid concentrations of 1.0 and 10.0 μg/L. Thus, either the cognitive processing of the chemical information was impaired or the chemistry of one or both of the conditioning cues was altered, making them ineffective for learning. In a second experiment, we found evidence for this latter hypothesis. In the absence of background imidacloprid exposure, larvae did not show significant learned responses to the predator odour when the conditioning cues were mixed with imidacloprid (initial pulse solution of 3.0 μg/L) at the start of conditioning (reaching a final concentration of 0.01 μg/L). These findings indicate that even low levels of imidacloprid can have important implications for chemosensory cognition of non-target species in aquatic environments.
Collapse
Affiliation(s)
| | - Christy A Morrissey
- Department of Biology, University of Saskatchewan, 112 Science Pl., Saskatoon, SK, S7N 5E2, Canada
| | - Iain D Phillips
- Water Security Agency, 10 - 3904 Miller Ave., Saskatoon, SK, S7P 0B1, Canada
| | - Adam L Crane
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, 52 Campus Dr., Saskatoon, SK, S7N 5B4, Canada.
| | - Maud C O Ferrari
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, 52 Campus Dr., Saskatoon, SK, S7N 5B4, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Pl., Saskatoon, SK, S7N 5E2, Canada
| |
Collapse
|
12
|
Batista NR, Farder-Gomes CF, Nocelli RCF, Antonialli-Junior WF. Effects of chronic exposure to sublethal doses of neonicotinoids in the social wasp Polybia paulista: Survival, mobility, and histopathology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166823. [PMID: 37683853 DOI: 10.1016/j.scitotenv.2023.166823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
Several studies have investigated the consequences of exposure to neonicotinoids in honeybees. Given the lack of studies concerning the consequences of exposure of social wasps to neonicotinoids, as well as the ecological importance of these insects, the objective of this study was to test the hypothesis that chronic exposure to sublethal concentrations of thiamethoxam decreases survival and mobility by causing damage to the brain and midgut of the social wasp Polybia paulista. The wasps were exposed to different concentrations of thiamethoxam, in order to obtain the mean lethal concentration (LC50), which was used as a reference for calculation of two sublethal concentrations (LC50/100 and LC50/10) employed in subsequent experiments. To calculate survival, groups of exposed (EW) and unexposed (UW) wasps were monitored until death, allowing calculation of the average lethal time. The EW and UW groups were evaluated after 12, 24, 48, and 72 h of exposure, considering their mobility and histopathological parameters of the midgut and brain. A lesion index based on semiquantitative analyses was used for comparison of histopathological damage. The results demonstrated that exposure to the LC50/10 led to a significantly shorter survival time of the P. paulista workers, compared to unexposed wasps. In addition, both sublethal concentrations decreased mobility and caused damage to the intestine (loss of brush border, presence of spherocrystals, loss of cytoplasmic material, and pyknosis) and the brain (loss of cell contact and pyknosis), regardless of the exposure time. The findings showed that, like bees, social wasps are nontarget insects susceptible to the detrimental consequences of neonicotinoid use, with exposure leading to impaired survival, locomotion, and physiology.
Collapse
Affiliation(s)
- Nathan Rodrigues Batista
- Centro de Estudos em Recursos Naturais, Laboratório de Ecologia Comportamental, Universidade Estadual de Mato Grosso Do Sul, Dourados, MS, Brazil; Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados, Dourados, MS, Brazil.
| | - Cliver Fernandes Farder-Gomes
- Universidade Federal de São Carlos Campus Araras, Centro de Ciências Agrárias, Departamento de Ciências da Natureza, Matemática e Educação, Rodovia Anhanguera (SP-330), Km 174, Araras, SP, 13600-970, Brazil
| | - Roberta Cornélio Ferreira Nocelli
- Universidade Federal de São Carlos Campus Araras, Centro de Ciências Agrárias, Departamento de Ciências da Natureza, Matemática e Educação, Rodovia Anhanguera (SP-330), Km 174, Araras, SP, 13600-970, Brazil
| | - William Fernando Antonialli-Junior
- Centro de Estudos em Recursos Naturais, Laboratório de Ecologia Comportamental, Universidade Estadual de Mato Grosso Do Sul, Dourados, MS, Brazil; Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| |
Collapse
|
13
|
Wang Y, Shen J, Li X, Lang H, Zhang L, Fang H, Yu Y. Higher temperature and daily fluctuations aggravate clothianidin toxicity towards Limnodrilus hoffmeisteri. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166655. [PMID: 37647951 DOI: 10.1016/j.scitotenv.2023.166655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
In nature, aquatic organisms may suffer from chemical pollution, together with thermal stress resulted from global warming. However, limited information is available on the combined effects of pesticide with climate change on aquatic organisms. In this study, the acute toxicity of clothianidin to Limnodrilus hoffmeisteri as well as its effect on the induction of oxidative stress under both constant temperature and daily temperature fluctuation (DTF) regimes was investigated. Results showed that clothianidin exhibited the minimal toxicity to L. hoffmeisteri at 25 °C, which was magnified by both increased or decreased temperatures and 10 °C DTF. At different temperatures (15 °C, 25 °C and 35 °C), clothianidin exposure led to the elevated reactive oxygen species (ROS) levels and activated the antioxidant enzymes to resist against the oxidative stress. However, the antioxidant response induced by clothianidin was overwhelmed at high temperature as evidenced by decreased glutathione (GSH) content. Significant elevation of catalase (CAT) and peroxidase (POD) activities but depletion of GSH was also observed in worms treated with clothianidin under DTF after 24 h. The results indicated that high temperature and DTF could aggravate the clothianidin-induced oxidative stress. Moreover, the critical thermal maximum (CTmax) of the worms decreased with the increasing clothianidin concentrations, suggesting that exposure to clothianidin could reduce the heat tolerance of L. hoffmeisteri. Our work highlights the crucial importance to integrate temperature changes into risk assessment of pesticides under global warming.
Collapse
Affiliation(s)
- Yingnan Wang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiatao Shen
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xin Li
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hongbin Lang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Luqing Zhang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Kowall CA, Batabyal A, Lukowiak K, Phillips ID. Agricultural Use of Insecticides Alters Homeostatic Behaviors and Cognitive Ability in Lymnaea stagnalis. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2466-2477. [PMID: 37539943 DOI: 10.1002/etc.5728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
Lymnaea stagnalis is an ecologically important, stress-sensitive, freshwater mollusk that is at risk for exposure to insecticides via agricultural practices. We provide insight into the impact insecticides have on L. stagnalis by comparing specific behaviors including feeding, locomotion, shell regeneration, and cognition between snails collected at two different sites: one contaminated by insecticides and one not. We hypothesized that each of the behaviors would be altered in the insecticide-exposed snails and that similar alterations would be induced when control snails were exposed to the contaminated environment. We found no significant differences in locomotion, feeding, and shell regeneration of insecticide-exposed L. stagnalis compared with nonexposed individuals. Significant changes in feeding and shell repair were observed in nonexposed snails inhabiting insecticide-contaminated pond water. Most importantly, snails maintained and trained in insecticide-contaminated pond water did not form configural learning, but this cognitive deficit was reversed when these snails were maintained in insecticide-free pond water. Our findings conclude that insecticides have a primarily negative impact on this higher form of cognition in L. stagnalis. Environ Toxicol Chem 2023;42:2466-2477. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Cassidy A Kowall
- Department of Biology, College of Arts and Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Troutreach Saskatchewan, Saskatchewan Wildlife Federation, Moose Jaw, Saskatchewan, Canada
| | - Anuradha Batabyal
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Physical and Natural Sciences, FLAME University, Pune, Maharashtra, India
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Iain D Phillips
- Department of Biology, College of Arts and Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Troutreach Saskatchewan, Saskatchewan Wildlife Federation, Moose Jaw, Saskatchewan, Canada
- Water Quality and Habitat Assessment Services, Water Security Agency, Saskatoon, Saskatchewan, Canada
- Leibniz-Institute for Global Biodiversity, Berlin, Germany
| |
Collapse
|
15
|
Duchet C, Hou F, Sinclair CA, Tian Z, Kraft A, Kolar V, Kolodziej EP, McIntyre JK, Stark JD. Neonicotinoid mixture alters trophic interactions in a freshwater aquatic invertebrate community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165419. [PMID: 37429477 DOI: 10.1016/j.scitotenv.2023.165419] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/17/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Neonicotinoids are increasingly and widely used systemic insecticides in agriculture, residential applications, and elsewhere. These pesticides can sometimes occur in small water bodies in exceptionally high concentrations, leading to downstream non-target aquatic toxicity. Although insects appear to be the most sensitive group to neonicotinoids, other aquatic invertebrates may also be affected. Most existing studies focus on single-insecticide exposure and very little is known concerning the impact of neonicotinoid mixtures on aquatic invertebrates at the community level. To address this data gap and explore community-level effects, we performed an outdoor mesocosm experiment that tested the effect of a mixture of three common neonicotinoids (formulated imidacloprid, clothianidin and thiamethoxam) on an aquatic invertebrate community. Exposure to the neonicotinoid mixture induced a top-down cascading effect on insect predators and zooplankton, ultimately increasing phytoplankton. Our results highlight complexities of mixture toxicity occurring in the environment that may be underestimated with traditional mono-specific toxicological approaches.
Collapse
Affiliation(s)
- Claire Duchet
- Puyallup Research & Extension Center, Washington State University, Puyallup, WA 98371, USA; Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, CZ-37005 České Budějovice, Czech Republic; Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic.
| | - Fan Hou
- Center for Urban Waters, Tacoma, WA 98421, USA; Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Cailin A Sinclair
- Puyallup Research & Extension Center, Washington State University, Puyallup, WA 98371, USA
| | - Zhenyu Tian
- Center for Urban Waters, Tacoma, WA 98421, USA; Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Alyssa Kraft
- Puyallup Research & Extension Center, Washington State University, Puyallup, WA 98371, USA
| | - Vojtech Kolar
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, CZ-37005 České Budějovice, Czech Republic; Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Edward P Kolodziej
- Center for Urban Waters, Tacoma, WA 98421, USA; Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA; Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Jenifer K McIntyre
- Puyallup Research & Extension Center, Washington State University, Puyallup, WA 98371, USA
| | - John D Stark
- Puyallup Research & Extension Center, Washington State University, Puyallup, WA 98371, USA
| |
Collapse
|
16
|
Barbosa RS, Ribeiro F, Rotili EA, de Sousa Venega R, Dornelas ASP, Soares AMVM, Gravato C, Sarmento RA. Is Actara® a less toxic neonicotinoid formulation? A multigenerational study using the non-target organism Chironomus xanthus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93779-93785. [PMID: 37516699 DOI: 10.1007/s11356-023-28956-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023]
Abstract
Neonicotinoids are highly consumed systemic insecticides that mimic acetylcholine (ACh) with a specific mode of action at the nicotinic acetylcholine receptors (nAChRs). The insecticide Actara® (active ingredient thiamethoxam- TMX) is a commercial formulation widely used for the control of various agricultural pest species. However, negative effects of TMX have been observed in non-target organisms. This work aimed to evaluate the biological effects of the commercial formulation Actara® on the aquatic non-target and non-biting larvae of Chironomus xanthus (Diptera). The lethal (LC50) and sublethal (body length, head capsule width, cumulative emergence, and mean time to emergence-EmT50) effects were determined in two subsequent generations (P and F1). The estimated 48 h LC50 for C. xanthus larvae exposed to Actara® was 73.02 µg TMX/L. By looking at the sublethal effects of Actara on the life cycle parameters of C. xanthus, we determined that none of the concentrations used induced a significantly different response in the organisms, compared to the control treatment (NOEC > 2 µg TMX/L). However, the head capsule width in the parental (P) generation exposed to Actara (≥ 0.9 µg TMX/L) was significantly bigger than the head capsule width of control animals. Overall, our results highlight that, at environmentally relevant concentrations, the commercial formulation Actara® is non-toxic to C. xanthus.
Collapse
Affiliation(s)
- Rone S Barbosa
- Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
- Universidade Federal Do Tocantins, Campus de Gurupi, Gurupi, TO, 77402-970, Brasil.
| | - Fabianne Ribeiro
- Universidade Federal Do Tocantins, Campus de Gurupi, Gurupi, TO, 77402-970, Brasil
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | | | | | | | - Amadeu M V M Soares
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Carlos Gravato
- Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | | |
Collapse
|
17
|
Strouhova A, Velisek J, Stara A. Selected neonicotinoids and associated risk for aquatic organisms. VET MED-CZECH 2023; 68:313-336. [PMID: 37982123 PMCID: PMC10646545 DOI: 10.17221/78/2023-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/16/2023] [Indexed: 11/21/2023] Open
Abstract
Neonicotinoids are one of the newest groups of systemic pesticides, effective on a wide range of invertebrate pests. The success of neonicotinoids can be assessed according to the amount used, for example, in the Czech Republic, which now accounts for 1/3 of the insecticide market. The European Union (EU) has a relatively interesting attitude towards neonicotinoids. Three neonicotinoid substances (imidacloprid, clothianidin and thiamethoxam) were severely restricted in 2013. In 2019, imidacloprid and clothianidin were banned, while thiamethoxam and thiacloprid were banned in 2020. In 2022, another substance, sulfoxaflor, was banned. Therefore, only two neonicotinoid substances (acetamiprid and flupyradifurone) are approved for outdoor use in the EU. Neonicotinoids enter aquatic ecosystems in many ways. In European rivers, neonicotinoids usually occur in nanograms per litre. Due to the low toxicity of neonicotinoids to standard test species, they were not expected to significantly impact the aquatic ecosystem until later studies showed that aquatic invertebrates, especially insects, are much more sensitive to neonicotinoids. In addition to the lethal effects, many studies point to sublethal impacts - reduced reproductive capacity, initiation of downstream drift of organisms, reduced ability to eat, or a change in feeding strategies. Neonicotinoids can affect individuals, populations, and entire ecosystems.
Collapse
Affiliation(s)
- Alzbeta Strouhova
- Laboratory of Aquatic Toxicology and Ichtyopathology, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Josef Velisek
- Laboratory of Aquatic Toxicology and Ichtyopathology, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Alzbeta Stara
- Laboratory of Aquatic Toxicology and Ichtyopathology, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| |
Collapse
|
18
|
Anderson MJ, Valdiviezo A, Conway MH, Farrell C, Andringa RK, Janik A, Chiu WA, Rusyn I, Hamer SA. Imidacloprid exposure is detectable in over one third of wild bird samples from diverse Texas ecoregions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162723. [PMID: 36907393 PMCID: PMC10744339 DOI: 10.1016/j.scitotenv.2023.162723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Avian decline is occurring globally with neonicotinoid insecticides posed as a potentially contributing factor. Birds can be exposed to neonicotinoids through coated seeds, soil, water, and insects, and experimentally exposed birds show varied adverse effects including mortality and disruption of immune, reproductive, and migration physiology. However, few studies have characterized exposure in wild bird communities over time. We hypothesized that neonicotinoid exposure would vary temporally and based on avian ecological traits. Birds were banded and blood sampled at eight non-agricultural sites across four Texas counties. Plasma from 55 species across 17 avian families was analyzed for the presence of 7 neonicotinoids using high performance liquid chromatography-tandem mass spectrometry. Imidacloprid was detected in 36 % of samples (n = 294); this included quantifiable concentrations (12 %; 10.8-36,131 pg/mL) and concentrations that were below the limit of quantification (25 %). Additionally, two birds were exposed to imidacloprid, acetamiprid (18,971.3 and 6844 pg/mL) and thiacloprid (7022.2 and 17,367 pg/mL), whereas no bird tested positive for clothianidin, dinotefuran, nitenpyram, or thiamethoxam, likely reflecting higher limits of detection for all compounds compared to imidacloprid. Birds sampled in spring and fall had higher incidences of exposure than those sampled in summer or winter. Subadult birds had higher incidences of exposure than adult birds. Among the species for which we tested more than five samples, American robin (Turdus migratorius) and red-winged blackbird (Agelaius phoeniceus) had significantly higher incidences of exposure. We found no relationships between exposure and foraging guild or avian family, suggesting birds with diverse life histories and taxonomies are at risk. Of seven birds resampled over time, six showed neonicotinoid exposure at least once with three showing exposures at multiple time points, indicating continued exposure. This study provides exposure data to inform ecological risk assessment of neonicotinoids and avian conservation efforts.
Collapse
Affiliation(s)
- Meredith J Anderson
- Ecology and Evolutionary Biology Interdisciplinary Program, Texas A&M University, United States of America; Schubot Center for Avian Health, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States of America
| | - Alan Valdiviezo
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States of America
| | - Mark H Conway
- Master Bird Bander, Lower Rio Grande Valley, TX, United States of America
| | | | - R Keith Andringa
- Ecology and Evolutionary Biology Interdisciplinary Program, Texas A&M University, United States of America
| | - Amy Janik
- Schubot Center for Avian Health, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States of America
| | - Weihsueh A Chiu
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States of America
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States of America
| | - Sarah A Hamer
- Schubot Center for Avian Health, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States of America.
| |
Collapse
|
19
|
Stehle S, Ovcharova V, Wolfram J, Bub S, Herrmann LZ, Petschick LL, Schulz R. Neonicotinoid insecticides in global agricultural surface waters - Exposure, risks and regulatory challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161383. [PMID: 36621497 DOI: 10.1016/j.scitotenv.2022.161383] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/31/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Neonicotinoids are the most widely used insecticides worldwide. However, the widespread usage of neonicotinoids has sparked concerns over their effects on non-target ecosystems including surface waters. We present here a comprehensive meta-analysis of 173 peer-reviewed studies (1998-2022) reporting measured insecticide concentrations (MICs; n = 3983) for neonicotinoids in global surface waters resulting from agricultural nonpoint source pollution. We used compound-specific regulatory threshold levels for water (RTLSW) and sediment (RTLSED) defined for pesticide authorization in Canada, the EU and the US, and multispecies endpoints (MSESW) to assess acute and chronic risks of global neonicotinoid water-phase (MICSW; n = 3790) and sediment (MICSED; n = 193) concentrations. Results show a complete lack of exposure information for surface waters in >90 % of agricultural areas globally. However, available data indicates for MICSW overall acute risks to be low (6.7 % RTLSW_acute exceedances), but chronic risks to be of concern (20.7 % RTLSW_chronic exceedances); exceedance frequencies were particularly high for chronic MSESW (63.3 %). We found RTLSW exceedances to be highest for imidacloprid and in less regulated countries. Linear model analysis revealed risks for global agricultural surface waters to decrease significantly over time, potentially biased by the lack of sensitive analytical methods in early years of neonicotinoid monitoring. The Canadian, EU and US RTLSW differ considerably (up to factors of 223 for RTLSW_acute and 13,889 for RTLSW_chronic) for individual neonicotinoids, indicating large uncertainties and regulatory challenges in defining robust and protective RTLs. We conclude that protective threshold levels, in concert with increasing monitoring efforts targeting agricultural surface waters worldwide, are essential to further assess the ecological consequences from anticipated increases of agricultural neonicotinoid uses.
Collapse
Affiliation(s)
- Sebastian Stehle
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany.
| | - Viktoriia Ovcharova
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany
| | - Jakob Wolfram
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany
| | - Sascha Bub
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany
| | - Larissa Zoë Herrmann
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany
| | - Lara Luisa Petschick
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany
| | - Ralf Schulz
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany; Eusserthal Ecosystem Research Station, University Koblenz-Landau, 76857 Eusserthal, Germany
| |
Collapse
|
20
|
Campbell KS, Keller P, Golovko SA, Seeger D, Golovko MY, Kerby JL. Connecting the Pipes: Agricultural Tile Drains and Elevated Imidacloprid Brain Concentrations in Juvenile Northern Leopard Frogs ( Rana pipiens). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2758-2767. [PMID: 36753680 DOI: 10.1021/acs.est.2c06527] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Neonicotinoids are neurotoxic insecticides and are often released into nearby wetlands via subsurface tile drains and can negatively impact nontarget organisms, such as amphibians. Previous studies have indicated that imidacloprid, a commonly used neonicotinoid, can cross the amphibian blood-brain barrier under laboratory conditions; however, little is known about the impact of low concentrations in a field-based setting. Here, we report aqueous pesticide concentrations at wetland production areas that were either connected or not connected to agricultural tile drains, quantified imidacloprid and its break down products in juvenile amphibian brains and livers, and investigated the relationship between imidacloprid brain concentration and brain size. Imidacloprid concentrations in brain and water samples were nearly 2.5 and 5 times higher at tile wetlands (brain = 4.12 ± 1.92 pg/mg protein; water = 0.032 ± 0.045 μg/L) compared to reference wetlands, respectively. Tile wetland amphibians also had shorter cerebellums (0.013 ± 0.001 mm), depicting a negative relationship between imidacloprid brain concentration and cerebellum length. The metabolite, desnitro-imidacloprid, had liver concentrations that were 2 times higher at tile wetlands (2 ± 0.3 μg/g). Our results demonstrate that imidacloprid can cross the amphibian blood-brain barrier under ecological conditions and may alter brain dimensions and provide insight into the metabolism of imidacloprid in amphibians.
Collapse
Affiliation(s)
- Kaitlyn S Campbell
- Department of Biology, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Peyton Keller
- Department of Biology, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Svetlana A Golovko
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203, United States
| | - Drew Seeger
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203, United States
| | - Mikhail Y Golovko
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203, United States
| | - Jacob L Kerby
- Department of Biology, University of South Dakota, Vermillion, South Dakota 57069, United States
| |
Collapse
|
21
|
Zhang X, Huang Y, Chen WJ, Wu S, Lei Q, Zhou Z, Zhang W, Mishra S, Bhatt P, Chen S. Environmental occurrence, toxicity concerns, and biodegradation of neonicotinoid insecticides. ENVIRONMENTAL RESEARCH 2023; 218:114953. [PMID: 36504008 DOI: 10.1016/j.envres.2022.114953] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/06/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Neonicotinoids (NEOs) are fourth generation pesticides, which emerged after organophosphates, pyrethroids, and carbamates and they are widely used in vegetables, fruits, cotton, rice, and other industrial crops to control insect pests. NEOs are considered ideal substitutes for highly toxic pesticides. Multiple studies have reported NEOs have harmful impacts on non-target biological targets, such as bees, aquatic animals, birds, and mammals. Thus, the remediation of neonicotinoid-sullied environments has gradually become a concern. Microbial degradation is a key natural method for eliminating neonicotinoid insecticides, as biodegradation is an effective, practical, and environmentally friendly strategy for the removal of pesticide residues. To date, several neonicotinoid-degrading strains have been isolated from the environment, including Stenotrophomonas maltophilia, Bacillus thuringiensis, Ensifer meliloti, Pseudomonas stutzeri, Variovorax boronicumulans, and Fusarium sp., and their degradation properties have been investigated. Furthermore, the metabolism and degradation pathways of neonicotinoids have been broadly detailed. Imidacloprid can form 6-chloronicotinic acid via the oxidative cleavage of guanidine residues, and it is then finally converted to non-toxic carbon dioxide. Acetamiprid can also be demethylated to remove cyanoimine (=N-CN) to form a less toxic intermediate metabolite. A few studies have discussed the neonicotinoid toxicity and microbial degradation in contaminated environments. This review is focused on providing an in-depth understanding of neonicotinoid toxicity, microbial degradation, catabolic pathways, and information related to the remediation process of NEOs. Future research directions are also proposed to provide a scientific basis for the risk assessment and removal of these pesticides.
Collapse
Affiliation(s)
- Xidong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Siyi Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Qiqi Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Zhe Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, 47906, USA.
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
22
|
Yang J, Guo C, Luo Y, Fan J, Wang W, Yin X, Xu J. Effect of thiamethoxam on the behavioral profile alteration and toxicity of adult zebrafish at environmentally relevant concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159883. [PMID: 36356732 DOI: 10.1016/j.scitotenv.2022.159883] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Thiamethoxam (THM) is a commercial neonicotinoid insecticide with broad-spectrum insecticidal activity. It has been widely detected in the aquatic environment, but its behavioral toxicity on aquatic organisms received limited attention. In this study, adult zebrafish were exposed to THM at three levels (0.1, 10, and 1000 μg/L) for 45 days to investigate its effect on their ecological behavior, histopathology, bioaccumulation, and stress response. The bioconcentration factor in zebrafish brain was significantly higher (p < 0.05) at low concentration of THM (0.1 μg/L) than in other treatment groups. In terms of individual behavior, the locomotor activity, aggregation, and social activity of fish were enhanced after THM exposure, but the memory of the food zone was disturbed and abnormal swimming behavior was observed. THM exposure caused brain tissue necrosis, erythrocyte infiltration, cloudy swelling, and other pathological changes in brain tissue and affected the concentrations of acetylcholinesterase and cortisol related to neurotoxicity. The condition factor and organ coefficients (brain, heart, and intestine) of zebrafish were markedly impacted by THM treatment at 0.1 and 1000 μg/L, respectively. This finding showed that THM was more harmful to fish behavior than lethality, reproduction, and growth, and a behavioral study can be a useful tool for ecological risk assessment.
Collapse
Affiliation(s)
- Jiangtao Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jingpu Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weimin Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xingxing Yin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
23
|
Yang Y, Yu Q, Zhang C, Wang X, He L, Huang Y, Li E, Qin J, Chen L. Acute thiamethoxam exposure induces hepatotoxicity and neurotoxicity in juvenile Chinese mitten crab (Eriocheir sinensis). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114399. [PMID: 36508784 DOI: 10.1016/j.ecoenv.2022.114399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The similar nervous system structure between crustaceans and insects and the high-water solubility of thiamethoxam can lead to the more severe toxicity of thiamethoxam to crustaceans. However, the effects of thiamethoxam on crustaceans are unclear. Therefore, a 96-h acute toxicity test was performed to explore the hepatotoxicity and neurotoxicity effects of thiamethoxam on Chinese mitten crab (Eriocheir sinensis) at concentrations 0 µg/L, 150 µg/L and 300 µg/L. The antioxidant and detoxification systems (including phases I and II) were significantly activated after exposure of juvenile crabs to thiamethoxam for 24 h in 300 µg/L group, whereas the toxic activation effect in 150 μg/L group was delayed. Moreover, a similar pattern was observed for the transcription levels of immune-related genes. Further analysis of inflammatory signaling pathway-related genes showed that thiamethoxam exposure with 300 µg/L for 24 h may induce a pro-inflammatory response through the NF-κB pathway. In contrast, the gene expression levels in 150 µg/L group were significantly upregulated compared with 0 µg/L group after 96 h. In addition, although the acute exposure of 150 μg/L thiamethoxam did not seem to induce significant neurotoxicity, the acetylcholinesterase activity was significantly decreased in 300 μg/L group after thiamethoxam exposure for 96 h. Correspondingly, thiamethoxam exposure with 300 µg/L for 24 h resulted in significantly downregulated transcriptional levels of synaptic transmission-related genes (e.g. dopamine-, gamma-aminobutyric acid- and serotonin-related receptors). Therefore, thiamethoxam may be harmful and cause potential toxic threats such as neurotoxicity and metabolic damage to crustaceans.
Collapse
Affiliation(s)
- Yiwen Yang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Qiuran Yu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Cong Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Long He
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Yuxing Huang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| |
Collapse
|
24
|
Prajapati S, Challis JK, Jardine TD, Brinkmann M. Levels of pesticides and trace metals in water, sediment, and fish of a large, agriculturally-dominated river. CHEMOSPHERE 2022; 308:136236. [PMID: 36057354 DOI: 10.1016/j.chemosphere.2022.136236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Basin land-use interacts with hydrology to deliver chemical contaminants to riverine environments. These chemicals are eventually taken up by aquatic organisms, where they can cause harmful effects. However, knowledge gaps related to the connections between hydrological, chemical, and biological processes currently limit our ability to forecast potential future changes in contaminant concentrations accurately. In this study, concentrations of three pesticide classes (organochlorines, organophosphates, and herbicides) and a standard suite of trace metals were analyzed in the South Saskatchewan River, Canada in 2020 and 2021 in water, sediments, and fishes. Organochlorine pesticides have been banned in Canada since the 1970s, yet there were some detections for methoxychlor and lindane, predominantly in sediment and fish samples, which could be attributed to legacy contamination. Except for malathion and parathion, organophosphate pesticides were scarcely detected in both sampling years in all matrices, and neonicotinoids were below detection in all samples. Conversely, the herbicides 2,4-D and dicamba were detected consistently throughout all locations in water samples for both sampling years. Overall, concentrations were 3 times higher in 2020 when river discharge was ∼2 times higher, suggesting run-off from the surrounding catchment or disturbance of contaminated sediments. Analysis for trace metals revealed that Cu and Zn exceeded sediment quality guidelines in some locations. Mercury concentrations exceeded the guidelines for about 18% of the samples (water and sediment) analyzed. These findings fill gaps in monitoring datasets and highlight key links between hydrology and chemistry that can be further explored in computational models to predict future contaminant trends in freshwater systems.
Collapse
Affiliation(s)
- Saurabh Prajapati
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada
| | | | - Timothy D Jardine
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
| | - Markus Brinkmann
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Canada; Centre for Hydrology, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
25
|
Bouffard J, Careau V, Robinson SA, Bergeron P. Effects of a Neonicotinoid Insecticide and Population Density on Behavior and Development of Wood Frogs (Rana sylvatica). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2968-2980. [PMID: 36089896 DOI: 10.1002/etc.5477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/11/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Amphibians have been facing global declines over the last decades from direct and indirect effects of anthropogenic activities. A contributor to declines is waterway contamination from agricultural runoffs of pesticides such as neonicotinoids. Beyond direct and indirect effects of the pesticide, few studies have investigated the possible interactions between neonicotinoids and natural environmental stressors across larval development, which could alter the strength and direction of observed neonicotinoid effects. The present study used a fully crossed design to investigate how a concentration of imidacloprid (a neonicotinoid; 10 µg/L) measured in surface waters interacted with low and high population densities (0.33 and 1 tadpole/L, respectively), an important environmental stressor, to influence behavior and development across metamorphosis in wood frogs (Rana sylvatica), known to breed in agricultural landscapes. Behaviors were measured in the absence and presence of predation cues using open-field tests at three distinct developmental stages, up to the metamorph stage. We found that imidacloprid did not interact with population density or independently affect behaviors in the absence of predation cues. However, individuals raised at high density compared with low density were more active at an early developmental stage but less active at metamorphic climax. Furthermore, both density and imidacloprid independently decreased the natural freezing response of tadpoles to predation cues. Finally, we found that distance traveled in the open-field test was weakly repeatable between aquatic stages but not repeatable across metamorphosis, a pattern that was not affected by treatments. The present study provides novel insights on the ecotoxicology of imidacloprid in the presence of a natural stressor, highlighting the importance of including behavioral assays and natural stressors in studies of amphibian ecotoxicology. Environ Toxicol Chem 2022;41:2968-2980. © 2022 SETAC.
Collapse
Affiliation(s)
- J Bouffard
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biological Sciences, Bishop's University, Sherbrooke, Quebec, Canada
| | - V Careau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - S A Robinson
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - P Bergeron
- Department of Biological Sciences, Bishop's University, Sherbrooke, Quebec, Canada
| |
Collapse
|
26
|
Gupta Vakil S, Biswas S, Snow D, Wu-Smart J. Targeted Method for Quantifying Air-Borne Pesticide Residues from Conventional Seed Coat Treatments to Better Assess Exposure Risk During Maize Planting. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:1051-1058. [PMID: 36318302 DOI: 10.1007/s00128-022-03627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Agricultural seed-coat treatments are prone to drift as seed coatings may scuff off and become incorporated into field particles during planting. Vacuum planters release exhaust and kick up field dust, laden with systemic pesticides that blow across the landscape, is taken up, and later expressed in the nectar and pollen of surrounding plants. Offsite movements and nontarget exposure to systemic pesticides need attention and determining how and at what exposure levels pollinators are exposed is of critical importance. Unfortunately, this requires extensive and costly instrumental analyses. Here, we describe dust sampling and a modified, rapid method based on liquid chromatography in tandem with mass spectrometry-based method for quantification of a broad array of agrochemicals in captured dust particles. This method increases ability to detect potential exposure to multiple agrochemicals and allows researchers to better address critical knowledge gaps in the environmental fate, off-target movement, and persistence of conventional seed treatments.
Collapse
Affiliation(s)
- Surabhi Gupta Vakil
- Department of Entomology, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, USA
| | - Saptashati Biswas
- Energy & Environmental Research Centre, University of North Dakota, Grand Forks, ND, USA
| | - Daniel Snow
- Water Science Laboratory, Nebraska Water Center, University of Nebraska-Lincoln, Lincoln, USA
| | - Judy Wu-Smart
- Department of Entomology, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, USA.
| |
Collapse
|
27
|
Ying Z, Guo B, Zhang G, Sun L, Yang X, Zhang Q. The Characteristics and Potential Risks of Neonicotinoid Residues in Soils of Different Types of Land Use in Hangzhou. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114091. [PMID: 36155336 DOI: 10.1016/j.ecoenv.2022.114091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/04/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Due to the wide existence of neonicotinoid insecticides (neonics) and their potential impact on ecosystems and human health, they have received special attention in recent years. Soil is not only a sink of neonics but also a source of neonics, so it plays a key role in the ubiquity of neonics in the environment. The purpose of this research was to compare neonics residues in soils of different types of land use and estimate their exposure to different populations via ingestion. A total of 130 soil samples from six different types were collected. The concentrations of seven neonics in soil were simultaneous determined using isotope-dilution ultra-performance liquid chromatography-tandem mass spectrometry. The results showed that at least one neonic was analyzed in all samples. The highest average concentration was 3.42 ng/g (clothianidin), followed by 3.39 ng/g (thiamethoxam), 3.06 ng/g (acetamiprid), 2.84 ng/g (imidacloprid), 2.66 ng/g (nitenpyram), 2.43 ng/g (thiacloprid), and 1.89 ng/g (dinotefuran). IMI and ACE were the most commonly found neonics in soil. The neonic levels in different soils varied significantly. The integrated neonic residue in cropland was much higher than that in other types of land. The risk assessment revealed that the average daily dose (ADD) through ingestion contact with soil was acceptable to children and adults. With the increasing evidence that neonics could cause a variety of toxic effects on mammals and humans, ingestion exposure caused by neonics in soil should also receive continuous attention in future studies.
Collapse
Affiliation(s)
- Zeteng Ying
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Bin Guo
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Guomei Zhang
- College of food science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Lihua Sun
- College of food science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Xifan Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China.
| |
Collapse
|
28
|
Ma X, Xiong J, Li H, Brooks BW, You J. Long-Term Exposure to Neonicotinoid Insecticide Acetamiprid at Environmentally Relevant Concentrations Impairs Endocrine Functions in Zebrafish: Bioaccumulation, Feminization, and Transgenerational Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12494-12505. [PMID: 36006007 DOI: 10.1021/acs.est.2c04014] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neonicotinoid insecticides have attracted worldwide attention due to their ubiquitous occurrence and detrimental effects on aquatic organisms, yet their impacts on fish reproduction during long-term exposure remain unknown. Here, zebrafish (F0) were exposed to a neonicotinoid, acetamiprid, at 0.19-1637 μg/L for 154 d. Accumulation and biotransformation of acetamiprid were observed in adult fish, and the parent compound and its metabolite (acetamiprid-N-desmethyl) were transferred to their offspring. Acetamiprid caused slight survival reduction and significant feminization in F0 fish even at the lowest concentration. Hormone levels in F0 fish were remarkedly altered, that is, gonad 17β-estradiol (E2) significantly increased, while androstenedione decreased. The corresponding transcription of steroidogenic genes (ar, cyp19b, fshβ, gnrh2, gnrh3, and lhβ) were significantly upregulated in the brain and gonad of the females but downregulated in the males. The vtg1 gene expression in the liver of male fish was also upregulated. In addition to F0 fish, parental exposure to acetamiprid decreased hatchability and enhanced malformation of F1 embryos. Chronic exposure to acetamiprid at environmentally relevant concentrations altered hormone production and the related gene expression of the hypothalamic-pituitary-gonad (HPG) axis in a sex-dependent way, caused feminization and reproductive dysfunction in zebrafish, and impaired production and development of their offspring.
Collapse
Affiliation(s)
- Xue Ma
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Jingjing Xiong
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Huizhen Li
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Bryan W Brooks
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
- Department of Environmental Science, Institute of Biomedical Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas 76798, United States
| | - Jing You
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
29
|
Yang Y, Chen T, Liu X, Wang S, Wang K, Xiao R, Chen X, Zhang T. Ecological risk assessment and environment carrying capacity of soil pesticide residues in vegetable ecosystem in the Three Gorges Reservoir Area. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128987. [PMID: 35487003 DOI: 10.1016/j.jhazmat.2022.128987] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Soil contamination by pesticide residues has become an increasing concern of ecological protection. However, the soil environmental carrying capacity (SECC) of pesticide residues in agricultural ecosystems was limited studied. Based on the concept of ecological risk assessment, a modified system on the environment carrying capacity was proposed for estimate SECC of pesticide residues in agricultural soils. Subsequently, the assessment on ecological risk and SECC of soil pesticide residues in vegetable ecosystem were performed in the Three Gorges Reservoir Area (TGRA). In 201 topsoil samples, 62.1% of the pesticide compounds were detected over limit of quantitation, and exhibit a high proportion of multiple pesticide contamination. Pyrethroid insecticides and herbicide glyphosate showed most frequent occurrence and high levels. The SECC of the TGRA varies with the limit standard, annual cumulative amount and risk quotient of each pesticide contaminant in soils. Except that fenpropathrin has exceeded SECC, chlorfenapyr, β-cyfluthrin and glyphosate posed the greatest threat to SECC in the next 50 years. Additionally, ecological risks by pesticide residues in vegetable ecosystem can be affected by various planting activities. These results will contribute to guide the rational application of pesticides and control soil environmental risks, thereby achieving the agricultural green development in the TGRA.
Collapse
Affiliation(s)
- Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing 400716, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China
| | - Tongtong Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China; College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xuchen Liu
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China; College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Shuai Wang
- Chongqing Agro-Tech Extension Station, Chongqing 400121, China
| | - Kai Wang
- College of Resources and Environment, China Agricultural University, Beijing 100193, China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China; College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China; College of Resources and Environment, Southwest University, Chongqing 400716, China.
| | - Tong Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China; College of Resources and Environment, Southwest University, Chongqing 400716, China.
| |
Collapse
|
30
|
Neonicotinoid contamination in tropical estuarine waters of Indonesia. Heliyon 2022; 8:e10330. [PMID: 36090204 PMCID: PMC9449554 DOI: 10.1016/j.heliyon.2022.e10330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/10/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Previous studies conducted in other countries showed that neonicotinoid insecticides contaminated environmental waters and reduced aquatic invertebrate abundance. This study analysed neonicotinoid concentrations in estuarine waters of Indramayu Regency, Indonesia, and their potential toxicity to the aquatic environment. Data collection included water sampling and analysis, watershed and paddy field analyses, and literature review. The results showed that the detection frequency of neonicotinoids was 75%, with imidacloprid and thiamethoxam having the highest mean concentrations compared to other compounds. The sample collected in August 2021 from an estuary in the Patrol sub-district contained the highest total neonicotinoid concentration (140.26 ng/L). Five samples (31.25%) contained imidacloprid concentrations that exceeded the chronic benchmark regulated by the Netherlands, thus related regulation and policies are encouraged to be established in Indonesia to prevent potential harmful effect of neonicotinoids to the aquatic environment. There was no significant correlation between the neonicotinoid concentrations and the paddy field and watershed sizes as well as the land use proportion for paddy fields within the watershed. This study is the first to report neonicotinoid contamination in Indonesian estuarine waters.
Collapse
|
31
|
Jiang Q, Peng M, Yin M, Shen J, Yan S. Nanocarrier-Loaded Imidaclothiz Promotes Plant Uptake and Decreases Pesticide Residue. Int J Mol Sci 2022; 23:ijms23126651. [PMID: 35743094 PMCID: PMC9224201 DOI: 10.3390/ijms23126651] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 12/14/2022] Open
Abstract
There is a great demand for improving the effective utilization of pesticides and reducing their application for sustainable agriculture, and polymeric nanoparticles have provided strong technical support for the efficient delivery of pesticides. To this context, we tried to construct a relatively safe imidaclothiz nano-delivery system for enhanced plant uptake, reduced pesticide residue and improved bioactivity toward green peach aphids. The imidaclothiz could be assembled with the hydrophobic core of SPc through hydrophobic association, which led to the self-assembly of nanoscale imidaclothiz/SPc complex consisting of nearly spherical particles. The SPc decreased the contact angle of imidaclothiz drops and remarkably increased the plant uptake. Furthermore, the bioactivity and control efficacy of imidaclothiz were significantly improved with the help of SPc in both laboratory and field. Excitingly, the residue of imidaclothiz decreased with the help of SPc 7 d after the treatment due to the faster degradation of nanoscale imidaclothiz/SPc complex, which exhibited no negative effects on agronomic traits of tobacco plants. The current study successfully constructed a nano-delivery system for imidaclothiz, which can not only increase the effective utilization of pesticides, but also decrease the pesticide residue.
Collapse
Affiliation(s)
- Qinhong Jiang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Min Peng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shuo Yan
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
32
|
Warne MSJ, Turner RDR, Davis AM, Smith R, Huang A. Temporal variation of imidacloprid concentration and risk in waterways discharging to the Great Barrier Reef and potential causes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153556. [PMID: 35104522 DOI: 10.1016/j.scitotenv.2022.153556] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The widely used neonicotinoid insecticide imidacloprid has emerged as a significant risk to surface waters and the diverse aquatic and terrestrial fauna these ecosystems support. While herbicides have been the focus of research on pesticides in Australia's Great Barrier Reef catchment area, imidacloprid has been monitored in catchments across the region since 2009. This study assessed the spatial and temporal dynamics of imidacloprid in 14 waterways in Queensland, Australia over seven years in relation to land use and concentration trends. Imidacloprid could be quantified (i.e., concentrations were greater than the limit of reporting) in approximately 54% of all samples, but within individual waterways imidacloprid was quantified in 0 to 99.7% of samples. The percent of each catchment used to grow bananas, sugar cane and urban explained approximately 45% of the variation in imidacloprid concentrations and waterway discharge accounted for another 18%. In six waterways there were significant increases in imidacloprid concentrations and the frequency and magnitude of exceedances of aquatic ecosystem protection guidelines over time. Overall, the risk posed by imidacloprid was low with 74% of samples protecting at least 99% of species but it was estimated that upto 42% of aquatic species would experience harmful chronic effects. Potential explanations of the changes in imidacloprid were examined. Not surprisingly, the only plausible explanation of the increases was increased use of imidacloprid. While field-based measurement of the effects of imidacloprid are limited in the Great Barrier Reef Catchment Area (GBRCA) the risk assessment indicates that biological harm to aquatic organisms is highly likely. Action to reduce imidacloprid concentrations in the GBRCA waterways is urgently required to reverse the current trends and mitigate environmental impacts.
Collapse
Affiliation(s)
- Michael St J Warne
- Reef Catchments Science Partnership, School of Earth and Environmental Sciences, University of Queensland, Brisbane, Queensland 4108, Australia; Water Quality and Investigations, Environmental Monitoring and Assessment Science, Science Delivery, Department of Environment and Science, Brisbane, Queensland 4102, Australia; Centre for Agroecology, Water and Resilience, Coventry University, Coventry, United Kingdom.
| | - Ryan D R Turner
- Reef Catchments Science Partnership, School of Earth and Environmental Sciences, University of Queensland, Brisbane, Queensland 4108, Australia; Water Quality and Investigations, Environmental Monitoring and Assessment Science, Science Delivery, Department of Environment and Science, Brisbane, Queensland 4102, Australia; Managing for Resilient Landscapes, Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| | - Aaron M Davis
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), School of Marine and Tropical Biology, James Cook University, Townsville, Queensland 4811, Australia.
| | - Rachael Smith
- Office of the Great Barrier Reef, Department of Environment and Science, Brisbane, Queensland 4102, Australia.
| | - A Huang
- School of Mathematics and Physics, University of Queensland, Brisbane, Queensland 4108, Australia.
| |
Collapse
|
33
|
Kuechle KJ, Webb EB, Mengel D, Main AR. Seed treatments containing neonicotinoids and fungicides reduce aquatic insect richness and abundance in midwestern USA-managed floodplain wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45261-45275. [PMID: 35143002 DOI: 10.1007/s11356-022-18991-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Agrochemicals including neonicotinoid insecticides and fungicides are frequently applied as seed treatments on corn, soybeans, and other common row crops. Crops grown from pesticide-treated seed are often directly planted in managed floodplain wetlands and used as a soil disturbance or food resource for wildlife. We quantified invertebrate communities within mid-latitude floodplain wetlands and assessed their response to use of pesticide-treated seeds within the floodplain. We collected and tested aqueous and sediment samples for pesticides in addition to sampling aquatic invertebrates from 22 paired wetlands. Samples were collected twice in 2016 (spring [pre-water level drawdown] and autumn [post-water level flood-up]) followed by a third sampling period (spring 2017). Meanwhile, during the summer of 2016, a portion of study wetlands were planted with either pesticide-treated or untreated corn seed. Neonicotinoid toxic equivalencies (NI-EQs) for sediment (X̅ = 0.58 μg/kg), water (X̅ = 0.02 μg/L), and sediment fungicide concentrations (X̅ = 0.10 μg/kg) were used to assess potential effects on wetland invertebrates. An overall decrease in aquatic insect richness and abundance was associated with greater NI-EQs in wetland water and sediments, as well as with sediment fungicide concentration. Post-treatment, treated wetlands displayed a decrease in insect taxa-richness and abundance before recovering by the spring of 2017. Information on timing and magnitude of aquatic insect declines will be useful when considering the use of seed treatments for wildlife management. More broadly, this study brings attention to how agriculture is used in wetland management and conservation planning.
Collapse
Affiliation(s)
- Kyle J Kuechle
- Missouri Cooperative Fish and Wildlife Research Unit, School of Natural Resources, University of Missouri, Columbia, MO, 65211, USA.
- Great Plains Regional Office, Ducks Unlimited, Inc, 2525 River Road, Bismarck, ND, 58503, USA.
| | - Elisabeth B Webb
- Missouri Cooperative Fish and Wildlife Research Unit, School of Natural Resources, University of Missouri, Columbia, MO, 65211, USA
- U.S. Geological Survey, Missouri Cooperative Fish and Wildlife Research Unit, Columbia, MO, 65211, USA
| | - Doreen Mengel
- Missouri Department of Conservation, Science Branch, Columbia, MO, 65201, USA
| | - Anson R Main
- Missouri Cooperative Fish and Wildlife Research Unit, School of Natural Resources, University of Missouri, Columbia, MO, 65211, USA
- Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, CA, 95812, USA
| |
Collapse
|
34
|
Scholl LE, Sultana T, Metcalfe C, Dew WA. Clothianidin interferes with recognition of a previous encounter in rusty crayfish (Faxonius rusticus) due to a chemosensory impairment. CHEMOSPHERE 2022; 296:133960. [PMID: 35167832 DOI: 10.1016/j.chemosphere.2022.133960] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Clothianidin, a neonicotinoid insecticide that binds to arthropod nicotinic acetylcholine receptors, is widely used to protect plants against a wide variety of agricultural pests. Little is known about how this insecticide affects non-target invertebrate species in aquatic environments. In this study, we explored the effects of aqueous exposures of clothianidin on locomotion, chemosensory-based responses, and agonistic encounters of rusty crayfish (Faxonius rusticus). Clothianidin exposures at a concentration of 1.0 μg/L (i.e., 1.0 ppb) did not alter initiations and retreats, but did increase the amount of time the crayfish interacted per interaction. In a subsequent food cue experiment with crayfish exposed to clothianidin concentrations of 0.4 μg/L and 1.0 μg/L, the test organisms demonstrated chemosensory dysfunction, but no decrease in locomotory movement. As chemosensation is essential for recognizing previous rivals in crayfish, the loss of this sense likely resulted in the exposed crayfish being unable to detect cues used to recognize a previous competitor. An inability to recognize a previous competitor (and who won or lost the previous interaction) could result in crayfish spending more time fighting and less time on foraging and reproduction. This study demonstrates that exposures of crayfish to clothianidin at concentrations found in the environment affects the behavioural ecology of these aquatic invertebrates.
Collapse
Affiliation(s)
- Lee E Scholl
- Department of Biology, Trent University, Peterborough, Ontario, K9J 0G2, Canada
| | - Tamanna Sultana
- Water Quality Centre, Trent University, Peterborough, ON, K9J 0G2, Canada
| | - Chris Metcalfe
- Water Quality Centre, Trent University, Peterborough, ON, K9J 0G2, Canada
| | - William A Dew
- Department of Biology, Trent University, Peterborough, Ontario, K9J 0G2, Canada; Department of Biology, Algoma University, Sault Ste. Marie, ON, P6A 2G4, Canada.
| |
Collapse
|
35
|
Silvanima J, Sunderman-Barnes S, Copeland R, Woeber A, Miller E. Regional extent, environmental relevance, and spatiotemporal variability of neonicotinoid insecticides detected in Florida's ambient flowing waters. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:416. [PMID: 35536370 PMCID: PMC9086659 DOI: 10.1007/s10661-022-10000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The use of imidacloprid and, to a lesser degree, other neonicotinoid insecticides is widespread in FL (and globally). The moderate to high water solubility and environmental persistence of neonicotinoids allows these compounds to readily enter, and be retained in, water resources where they may harm nontarget organisms and impact biological communities and associated trophic structures negatively. To better understand imidacloprid's chronic long-term exposure potential to aquatic invertebrate communities in FL, grab water samples were collected monthly in 2015 at 77 monitoring stations statewide. Fifty-eight stations (75%), representing 24 of the 25 drainage basins sampled, had detectable concentrations of imidacloprid, with concentrations ranging from 2 to 660 nanograms per liter [ng/L]. Imidacloprid basin medians were found to be correlated with two of six land use categories (urban, transportation, agriculture, and three crop classes) examined; urban (rho = 0.43, p-value = 0.03), and orchards and vineyards (rho 0.49, p-value = 0.01). The resampling of 12 select stations, representing eight basins, between August 2019 and July 2020, for the neonicotinoids acetamiprid, clothianidin, dinotefuran, imidacloprid, and thiamethoxam, showed that (1) median values of imidacloprid continued to exceed the US EPA chronic freshwater Invertebrate Aquatic Life Benchmark (IALB) (10 ng/L), (2) imidacloprid concentration was directly correlated with flow measurements, and (3) while median imidacloprid concentration decreased between the two sampling events (48.5 vs. 34.5 ng/L, p-value = 0.01) differences in event 1 and 2 streamflow regimes and disruptions due to the COVID-19 pandemic likely affected this outcome. Clothianidin was the only other neonicotinoid found to have values greater than a US EPA IALB, with detections at three stations exceeding the chronic IALB (50 ng/L). This study highlights the challenges associated with limiting neonicotinoids from entering water resources and identifies means to reduce their entry into and persistence within FL water resources.
Collapse
Affiliation(s)
- James Silvanima
- Florida Department of Environmental Protection, Division of Environmental Assessment and Restoration, 2600 Blair Stone Rd, Tallahassee, FL, 32399-2400, USA.
| | - Stephanie Sunderman-Barnes
- Florida Department of Environmental Protection, Division of Environmental Assessment and Restoration, 2600 Blair Stone Rd, Tallahassee, FL, 32399-2400, USA
| | - Rick Copeland
- Florida Department of Environmental Protection, Division of Environmental Assessment and Restoration, 2600 Blair Stone Rd, Tallahassee, FL, 32399-2400, USA
| | - Andy Woeber
- Florida Department of Environmental Protection, Division of Environmental Assessment and Restoration, 2600 Blair Stone Rd, Tallahassee, FL, 32399-2400, USA
| | - Elizabeth Miller
- Florida Department of Environmental Protection, Division of Environmental Assessment and Restoration, 2600 Blair Stone Rd, Tallahassee, FL, 32399-2400, USA
| |
Collapse
|
36
|
Malaj E, Morrissey CA. Increased reliance on insecticide applications in Canada linked to simplified agricultural landscapes. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2533. [PMID: 35044027 DOI: 10.1002/eap.2533] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/15/2021] [Accepted: 09/14/2021] [Indexed: 06/14/2023]
Abstract
Intensification of agriculture and increased insecticide use have been implicated in global losses of farmland biodiversity and ecosystem services. We hypothesized that increased insecticide applications (proportion of area treated with insecticides) in Canada's expansive agricultural landscapes are due, in part, to shifts toward more simplified landscapes. To assess this relationship, we analyzed data from the Canadian Census of Agriculture spanning 20 years including five census periods (1996-2016) and across 225 census units within the four major agricultural regions of Pacific, Prairie, Central, and Atlantic Canada. Generalized mixed effects models were used to evaluate if changes in landscape simplification - defined as the proportion of farmland in crops (cereals, oilseeds, pulses and fruit/vegetables) - alongside other farming and climatic variables, influenced insecticide applications over time. Bayesian spatial-temporal models were further used to estimate the strength of the relationship with landscape simplification over time. We found that landscape simplification increased in 89% and insecticide applications increased in 70% of the Census Division spatial units during the 1996-2016 period. Nationally, significant increases in landscape simplification were observed in the two most agriculturally intensive regions of Prairie (from 55% to 63%) and Central (from 51% to 60%) Canada. For both regions, landscape simplification was a strong and significant predictor of higher insecticide applications, even after accounting for other factors such as climate, farm economics, farm size and land use practices (e.g., area in cash crops and tillage). If current trends continue, we estimated that insecticide applications will increase another 10%-20% by 2036 as a result of landscape simplification alone. To avoid increased reliance on toxic insecticides, agri-environmental policies need to consider that losing diverse natural habitat can increase insect pest pressure and resistance with negative environmental consequences extending beyond the field.
Collapse
Affiliation(s)
- Egina Malaj
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Christy A Morrissey
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
37
|
Araujo GDF, Soares LOS, Junior SFS, Barreto de Carvalho LV, Rocha RCC, Saint'Pierre T, Hauser-Davis RA, Correia FV, Saggioro EM. Oxidative stress and metal homeostasis alterations in Danio rerio (zebrafish) under single and combined carbamazepine, acetamiprid and cadmium exposures. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106122. [PMID: 35180455 DOI: 10.1016/j.aquatox.2022.106122] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Contaminants of emerging concern (CEC) are routinely detected in aquatic environments, especially pharmaceuticals, such as carbamazepine (CBZ), and neonicotinoid pesticides, like acetamiprid (ACT). CECs can interact with each other and with other legislated contaminants like Cd, resulting in unknown effects. Most studies evaluate only the effects of single contaminant exposures on aquatic biota. Therefore, the aim of the present study was to assess the effects of both single and combined CBZ, ACT and Cd exposures on zebrafish brain and liver oxidative stress parameters and metal homeostasis. The biomarkers catalase (CAT), glutathione-S-transferase (GST), total thiols (TOT), metallothionein (MT) and malondialdehyde (MDA) and the essential elements Ca, Cu, K, Na, Mg, Mn and Zn were evaluated after 96-hour static exposures. CBZ, ACT and Cd single (brain and liver) and combined (liver) treatments resulted in oxidative effects in both fish organs, also leading to metal (Ca, Mg, K, Mn, Zn and Cu) homeostasis alterations. ACT exposure resulted in the greatest adverse effects in the brain, while CBZ was the cause of major element homeostasis and oxidative stress alterations in the liver. Lower LPO levels were observed in the combined treatments compared to single treatments, suggesting interactions and contaminant effect attenuation. This study is the first to evaluate the initial effects of combined CBZ, ACT and Cd exposures in zebrafish, paving the way for further investigations concerning other biomarkers during longer exposure times.
Collapse
Affiliation(s)
- Gabriel de Farias Araujo
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210 Rio de Janeiro, RJ, Brazil
| | | | - Sidney Fernandes Sales Junior
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210 Rio de Janeiro, RJ, Brazil
| | - Leandro Vargas Barreto de Carvalho
- Center of Studies on Worker's Health and Human Ecology, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210 Rio de Janeiro, RJ, Brazil
| | - Rafael Christian Chávez Rocha
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departamento de Química, Gávea, Rio de Janeiro, RJ, Brasil
| | - Tatiana Saint'Pierre
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departamento de Química, Gávea, Rio de Janeiro, RJ, Brasil
| | - Rachel Ann Hauser-Davis
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210 Rio de Janeiro, RJ, Brazil; Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz. Av. Brasil, 4.365, Manguinhos. 21040-360, Rio de Janeiro, Brasil
| | - Fábio Veríssimo Correia
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210 Rio de Janeiro, RJ, Brazil; UNIRIO, Departamento de Ciências Naturais, Av. Pasteur, 458, Urca, 22290-20, Rio de Janeiro, Brazil
| | - Enrico Mendes Saggioro
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210 Rio de Janeiro, RJ, Brazil; Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz. Av. Brasil, 4.365, Manguinhos. 21040-360, Rio de Janeiro, Brasil.
| |
Collapse
|
38
|
Campbell KS, Keller PG, Heinzel LM, Golovko SA, Seeger DR, Golovko MY, Kerby JL. Detection of imidacloprid and metabolites in Northern Leopard frog (Rana pipiens) brains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152424. [PMID: 34942261 DOI: 10.1016/j.scitotenv.2021.152424] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/23/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Neonicotinoids are a new type of highly water-soluble insecticide used in agricultural practices to eliminate pests. Neonicotinoids bind almost irreversibly to postsynaptic nicotinic acetylcholine receptors in the central nervous system of invertebrates, resulting in overstimulation, paralysis, and death. Imidacloprid, the most commonly used neonicotinoid, is often transported to nearby wetlands through subsurface tile drains and has been identified as a neurotoxin in several aquatic non-target organisms. The aim of the present study was to determine if imidacloprid could cross the blood-brain barrier in adult Northern Leopard frogs (Rana pipiens) following exposure to 0, 0.1, 1, 5, or 10 μg/L for 21 days. Additionally, we quantified the breakdown product of imidacloprid, imidacloprid-olefin, and conducted feeding trials to better understand how imidacloprid affects foraging behavior over time. Exposure groups had 12 to 313 times more imidacloprid in the brain relative to the control and breakdown products showed a dose-response relationship. Moreover, imidacloprid brain concentrations were approximately 14 times higher in the 10 μg/L treatment compared to the water exposure concentration, indicating imidacloprid can bioaccumulate in the amphibian brain. Reaction times to a food stimulus were 1.5 to 3.2 times slower among treatment groups compared to the control. Furthermore, there was a positive relationship between mean response time and log-transformed imidacloprid brain concentration. These results indicate imidacloprid can successfully cross the blood-brain barrier and bioaccumulate in adult amphibians. Our results also provide insights into the relationship between imidacloprid brain concentration and subsequent altered foraging behavior.
Collapse
Affiliation(s)
- K S Campbell
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA.
| | - P G Keller
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - L M Heinzel
- Department of Biology, Cornell College, Mount Vernon, IA 52314, USA
| | - S A Golovko
- Department of Biomedical Sciences, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - D R Seeger
- Department of Biomedical Sciences, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - M Y Golovko
- Department of Biomedical Sciences, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - J L Kerby
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
39
|
Vanderpont AK, Lobson C, Lu Z, Luong K, Arentsen M, Vera T, Moore D, White MS, Prosser RS, Wong CS, Hanson ML. Fate of thiamethoxam from treated seeds in mesocosms and response of aquatic invertebrate communities. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:341-356. [PMID: 35000026 DOI: 10.1007/s10646-021-02500-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/23/2021] [Indexed: 06/14/2023]
Abstract
Thiamethoxam is a neonicotinoid insecticide widely applied in the Canadian Prairies. It has been detected in surface waters of agro-ecosystems, including wetlands, but the potential effects on non-target invertebrate communities in these wetlands have not been well characterized. In an effort to understand better the fate of thiamethoxam in wetlands and the response of invertebrates (zooplankton and emergent insects), model systems were used to mimic wetland flooding into planted fields. Outdoor mesocosms were treated with a single application of thiamethoxam-treated canola seeds at three treatment levels based on a recommended seeding rate (i.e., 6 kg/ha; 1×, 10×, and 100× seeding rate) and monitored over ten weeks. The mean half-life of thiamethoxam in the water column was 6.2 d. There was no ecologically meaningful impact on zooplankton abundances or community structure among treatments. Statistically significant differences were observed in aquatic insect abundance between control mesocosms and the two greatest thiamethoxam treatments (10× and 100× seeding rate). The observed results indicate exposure to thiamethoxam at environmentally relevant concentrations likely does not represent a significant ecological risk to abundance and community structure of wetland zooplankton and emergent insects.
Collapse
Affiliation(s)
- A K Vanderpont
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - C Lobson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Z Lu
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec, G5L 3A1, Canada
| | - K Luong
- Richardson College for the Environment, University of Winnipeg, Winnipeg, MB, Canada
| | - M Arentsen
- Richardson College for the Environment, University of Winnipeg, Winnipeg, MB, Canada
| | - T Vera
- Richardson College for the Environment, University of Winnipeg, Winnipeg, MB, Canada
| | - D Moore
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - M S White
- EcoMetrix Inc, Mississauga, ON, L5N 2L8, Canada
| | - R S Prosser
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - C S Wong
- Richardson College for the Environment, University of Winnipeg, Winnipeg, MB, Canada
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, 92626, USA
| | - M L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
40
|
Jenkins JA, Hartop KR, Bukhari G, Howton DE, Smalling KL, Mize SV, Hladik ML, Johnson D, Draugelis-Dale RO, Brown BL. Juvenile African Clawed Frogs ( Xenopus laevis) Express Growth, Metamorphosis, Mortality, Gene Expression, and Metabolic Changes When Exposed to Thiamethoxam and Clothianidin. Int J Mol Sci 2021; 22:13291. [PMID: 34948092 PMCID: PMC8706403 DOI: 10.3390/ijms222413291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/13/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022] Open
Abstract
Neonicotinoids (NEO) represent the main class of insecticides currently in use, with thiamethoxam (THX) and clothianidin (CLO) primarily applied agriculturally. With few comprehensive studies having been performed with non-target amphibians, the aim was to investigate potential biomarker responses along an adverse outcome pathway of NEO exposure, whereby data were collected on multiple biological hierarchies. Juvenile African clawed frogs, Xenopus laevis, were exposed to commercial formulations of THX and CLO at high (100 ppm) and low (20 ppm) concentrations of the active ingredient. Mortality, growth, development, liver metabolic enzyme activity, and gene expression endpoints were quantified. Tadpoles (n > 1000) from NF 47 through tail resorption stage (NF 66) were exposed to NEO or to NEO-free media treatments. Liver cell reductase activity and cytotoxicity were quantified by flow cytometry. Compared to control reference gene expressions, levels of expression for NEO receptor subunits, cell structure, function, and decontamination processes were measured by RT-qPCR by using liver and brain. Mortality in THX high was 21.5% compared to the control (9.1%); the metabolic conversion of THX to CLO may explain these results. The NF 57 control tadpoles were heavier, longer, and more developed than the others. The progression of development from NF 57-66 was reduced by THX low, and weight gain was impaired. Liver reductases were highest in the control (84.1%), with low NEO exhibiting the greatest reductions; the greatest cytotoxicity was seen with THX high. More transcriptional activity was noted in brains than in livers. Results affirm the utility of a study approach that considers multiple complexities in ecotoxicological studies with non-target amphibians, underscoring the need for simultaneously considering NEO concentration-response relationships with both whole-organism and biomarker endpoints.
Collapse
Affiliation(s)
- Jill A. Jenkins
- U.S. Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome Boulevard, Lafayette, LA 70506, USA; (D.J.); (R.O.D.-D.)
| | - Katherine R. Hartop
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA; (K.R.H.); (G.B.); (D.E.H.); (B.L.B.)
| | - Ghadeer Bukhari
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA; (K.R.H.); (G.B.); (D.E.H.); (B.L.B.)
| | - Debra E. Howton
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA; (K.R.H.); (G.B.); (D.E.H.); (B.L.B.)
| | - Kelly L. Smalling
- U.S. Geological Survey, New Jersey Water Science Center, Lawrenceville, NJ 08648, USA;
| | - Scott V. Mize
- U.S. Geological Survey, Lower Mississippi-Gulf Water Science Center, Baton Rouge, LA 70816, USA;
| | - Michelle L. Hladik
- U.S. Geological Survey, California Water Science Center, 6000 J Street, Placer Hall, Sacramento, CA 95819, USA;
| | - Darren Johnson
- U.S. Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome Boulevard, Lafayette, LA 70506, USA; (D.J.); (R.O.D.-D.)
| | - Rassa O. Draugelis-Dale
- U.S. Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome Boulevard, Lafayette, LA 70506, USA; (D.J.); (R.O.D.-D.)
| | - Bonnie L. Brown
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA; (K.R.H.); (G.B.); (D.E.H.); (B.L.B.)
| |
Collapse
|
41
|
IPM reduces insecticide applications by 95% while maintaining or enhancing crop yields through wild pollinator conservation. Proc Natl Acad Sci U S A 2021; 118:2108429118. [PMID: 34697238 PMCID: PMC8612243 DOI: 10.1073/pnas.2108429118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 11/19/2022] Open
Abstract
Environmental damage from insecticide overuse is a major concern, particularly for conservation of “good” insects such as pollinators that ensure stable production of food crops like fruits and vegetables. However, insecticides are also necessary for farmers to manage “bad” insects (i.e., pests), and thus, a more holistic view of crop management needs to account for the proper balance between the beneficial and detrimental aspects of pesticides. Here, we used multiyear field experiments with a paired corn–watermelon cropping system to show that insecticide use can be dramatically reduced (by ∼95%) while maintaining or even increasing yields through the conservation of wild bees as crop pollinators. These data demonstrate that food production and ecosystem sustainability are not necessarily conflicting goals. Pest management practices in modern industrial agriculture have increasingly relied on insurance-based insecticides such as seed treatments that are poorly correlated with pest density or crop damage. This approach, combined with high invertebrate toxicity for newer products like neonicotinoids, makes it challenging to conserve beneficial insects and the services that they provide. We used a 4-y experiment using commercial-scale fields replicated across multiple sites in the midwestern United States to evaluate the consequences of adopting integrated pest management (IPM) using pest thresholds compared with standard conventional management (CM). To do so, we employed a systems approach that integrated coproduction of a regionally dominant row crop (corn) with a pollinator-dependent specialty crop (watermelon). Pest populations, pollination rates, crop yields, and system profitability were measured. Despite higher pest densities and/or damage in both crops, IPM-managed pests rarely reached economic thresholds, resulting in 95% lower insecticide use (97 versus 4 treatments in CM and IPM, respectively, across all sites, crops, and years). In IPM corn, the absence of a neonicotinoid seed treatment had no impact on yields, whereas IPM watermelon experienced a 129% increase in flower visitation rate by pollinators, resulting in 26% higher yields. The pollinator-enhancement effect under IPM management was mediated entirely by wild bees; foraging by managed honey bees was unaffected by treatments and, overall, did not correlate with crop yield. This proof-of-concept experiment mimicking on-farm practices illustrates that cropping systems in major agricultural commodities can be redesigned via IPM to exploit ecosystem services without compromising, and in some cases increasing, yields.
Collapse
|
42
|
Macaulay SJ, Hageman KJ, Piggott JJ, Juvigny-Khenafou NPD, Matthaei CD. Warming and imidacloprid pulses determine macroinvertebrate community dynamics in experimental streams. GLOBAL CHANGE BIOLOGY 2021; 27:5469-5490. [PMID: 34418243 DOI: 10.1111/gcb.15856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/16/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Sustainable management of freshwater and pesticide use is essential for mitigating the impacts of intensive agriculture in the context of a changing climate. To better understand how climate change will affect the vulnerability of freshwater ecosystems to chemical pollutants, more empirical evidence is needed on the combined effects of climatic and chemical stressors in environmentally realistic conditions. Our experiment provides the first empirical evaluation of stream macroinvertebrate community dynamics in response to one of the world's most widely used insecticides, imidacloprid, and increased water temperature. In a 7-week streamside experiment using 128 flow-through circular mesocosms, we investigated the effects of pulsed imidacloprid exposure (four environmentally relevant levels between 0 and 4.6 µg/L) and raised water temperature (ambient, 3°C above) on invertebrate communities representative of fast- and slow-flowing microhabitats. Invertebrate drift and insect emergence were monitored during three pesticide pulses (10 days apart), and benthic invertebrate communities were sampled after 24 days of heating and pesticide manipulations. All three manipulated factors strongly affected drift community composition. The first imidacloprid pulse and increased temperature had a greater impact on communities in fast-flowing mesocosms, which contained more pollution-sensitive EPT taxa (mayflies, stoneflies and caddisflies). Heating and imidacloprid caused increased emigration by drift, weak reductions in emergence, and negatively affected the benthic community. The combined effect of stressor manipulations and a 10-day natural heatwave drastically reduced relative abundances of EPT and insects overall and caused a shift to oligochaete-, crustacean- and gastropod-dominated communities. Contrary to our hypothesis, the very high yet realistic water temperatures reached in our experiment meant the negative effects of imidacloprid were clearest at ambient temperatures and fast flow. These findings demonstrate the potential combined impacts of imidacloprid contamination and heatwaves on freshwater invertebrate communities under future climate scenarios and highlight the need for more countries to take regulatory action to control neonicotinoid use.
Collapse
Affiliation(s)
- Samuel J Macaulay
- Department of Zoology, University of Otago, Dunedin, Otago, New Zealand
| | - Kimberly J Hageman
- Department of Chemistry and Biochemistry, Utah State University, Logan, USA
| | - Jeremy J Piggott
- Department of Zoology, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | | | | |
Collapse
|
43
|
Lu Y, Rao Q, Zhang Q, Liu X, Song W, Guan S, Chen S, Song W. Study on the Dynamic Difference between Single and Mixed Residues of Three Neonicotinoids in Brassica chinensis L. Molecules 2021; 26:molecules26216495. [PMID: 34770902 PMCID: PMC8588522 DOI: 10.3390/molecules26216495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
Multiple insecticides’ residues after the mixed application of several neonicotinoids cause combined pollution and bring new challenges to food safety and pest control during agricultural production. In this study, three neonicotinoid insecticides, namely imidacloprid (IMI), acetamiprid (ACE), and thiamethoxam (TMX), were mixed and evenly sprayed on Brassica chinensis L. in the field. Then, the insecticides’ residues were dynamically monitored to determine the differences in their rates of dissipation and final residues after 10 days. The results showed that the dissipation kinetics of neonicotinoids still conformed to the first-order kinetic model for binary or ternary application of neonicotinoid mixtures, with all determination coefficients (R2) being above 0.9 and the dissipation half-life (DT50) being 2.87–6.74 d. For treatment groups with five times the recommended dosages (IMI 300 g·hm−2, ACE 900 g·hm−2, and TMX 600 g·hm−2), mixed insecticides had a slower dissipation rate, and the DT50 values of mixtures were longer than those of single insecticides. Moreover, the final insecticide residues with mixed application were higher than those of single compounds at 10 d after spraying. Thus, mixed applications of neonicotinoids may increase food safety risks as they increase the final insecticide residues in Brassica chinensis L., and care should therefore be taken when considering the combined use of such compounds.
Collapse
Affiliation(s)
- Yangyang Lu
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.L.); (Q.R.); (Q.Z.); (X.L.); (W.S.); (S.G.); (S.C.)
- Shanghai Service Platform of Agro-Products Quality and Safety Evaluation Technology, Shanghai 201403, China
| | - Qinxiong Rao
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.L.); (Q.R.); (Q.Z.); (X.L.); (W.S.); (S.G.); (S.C.)
- Shanghai Service Platform of Agro-Products Quality and Safety Evaluation Technology, Shanghai 201403, China
| | - Qicai Zhang
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.L.); (Q.R.); (Q.Z.); (X.L.); (W.S.); (S.G.); (S.C.)
- Shanghai Service Platform of Agro-Products Quality and Safety Evaluation Technology, Shanghai 201403, China
| | - Xing Liu
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.L.); (Q.R.); (Q.Z.); (X.L.); (W.S.); (S.G.); (S.C.)
- Shanghai Service Platform of Agro-Products Quality and Safety Evaluation Technology, Shanghai 201403, China
| | - Wei Song
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.L.); (Q.R.); (Q.Z.); (X.L.); (W.S.); (S.G.); (S.C.)
- Shanghai Service Platform of Agro-Products Quality and Safety Evaluation Technology, Shanghai 201403, China
| | - Shuhui Guan
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.L.); (Q.R.); (Q.Z.); (X.L.); (W.S.); (S.G.); (S.C.)
- Shanghai Service Platform of Agro-Products Quality and Safety Evaluation Technology, Shanghai 201403, China
| | - Shanshan Chen
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.L.); (Q.R.); (Q.Z.); (X.L.); (W.S.); (S.G.); (S.C.)
- Shanghai Service Platform of Agro-Products Quality and Safety Evaluation Technology, Shanghai 201403, China
| | - Weiguo Song
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.L.); (Q.R.); (Q.Z.); (X.L.); (W.S.); (S.G.); (S.C.)
- Shanghai Service Platform of Agro-Products Quality and Safety Evaluation Technology, Shanghai 201403, China
- Correspondence:
| |
Collapse
|
44
|
Liu Z, Cui S, Zhang L, Zhang Z, Hough R, Fu Q, Li YF, An L, Huang M, Li K, Ke Y, Zhang F. Occurrence, variations, and risk assessment of neonicotinoid insecticides in Harbin section of the Songhua River, northeast China. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2021; 8:100128. [PMID: 36156999 PMCID: PMC9488002 DOI: 10.1016/j.ese.2021.100128] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 05/04/2023]
Abstract
Neonicotinoid insecticides (NNIs) have been intensively used and exploited, resulting in their presence and accumulation in multiple environmental media. We herein investigated the current levels of eight major NNIs in the Harbin section of the Songhua River in northeast China, providing the first systematic report on NNIs in this region. At least four NNIs in water and three in sediment were detected, with total concentrations ranging from 30.8 to 135 ng L-1 and from 0.61 to 14.7 ng g-1 dw, respectively. Larger spatial variations in surface water NNIs concentrations were observed in tributary than mainstream (p < 0.05) due to the intensive human activities (e.g., horticulture, urban landscaping, and household pet flea control) and the discharge of wastewater from many treatment plants. There was a significant positive correlation (p < 0.05) between the concentrations of residual imidacloprid (IMI), clothianidin (CLO), and Σ4NNIs in the sediment and total organic carbon (TOC). Due to its high solubility and low octanol-water partition coefficient (K ow), the sediment-water exchange behavior shows that NNIs in sediments can re-enter into the water body. Human exposure risk was assessed using the relative potency factor (RPF), which showed that infants have the highest exposure risk (estimated daily intake (ΣIMIeq EDI): 31.9 ng kg-1 bw·d-1). The concentration thresholds of NNIs for aquatic organisms in the Harbin section of the Songhua River were determined using the species sensitivity distribution (SSD) approach, resulting in a value of 355 ng L-1 for acute hazardous concentration for 5% of species (HC5) and 165 ng L-1 for chronic HC5. Aquatic organisms at low trophic levels were more vulnerable to potential harm from NNIs.
Collapse
Affiliation(s)
- Zhikun Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Qiang Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lihui An
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Mingzhi Huang
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Kunyang Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuxin Ke
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fuxiang Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
45
|
Donald DB. Water quality limitations for tadpoles of the Wood Frog in the northern Great Plains, Canada. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:636. [PMID: 34498140 DOI: 10.1007/s10661-021-09385-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Some wetlands in the northern Great Plains support hundreds to thousands of late-stage tadpoles providing important sources of recruitment to the Wood Frog (Lithobates sylvaticus) population while many other wetlands produce none. Relationships between water quality and late-stage tadpole abundance were determined to identify the water quality parameters associated with tadpole abundance. Water samples were collected, and late-stage tadpole abundances were assessed once each year in late June for 12 years in 26 wetlands. Catch or abundance was the number of tadpoles captured in 30 min with a dip-net. The catch of tadpoles was variable both among wetlands and over the long-term for individual wetlands, and ranged from 0 to several hundred individuals. Wood Frog tadpoles were especially sensitive to sodium and chloride concentrations. At Cl concentrations less than 5 mg/L, occupancy for late-stage tadpoles was 84%, and declined by about 8% for each 5 mg/L increase in Cl to 40.1 mg/L Cl, the maximum concentration associated with the detection of tadpoles. Optimal water quality for late-stage Wood Frog tadpoles included low concentrations of Na [Formula: see text] = 8.1 mg/L), and Cl [Formula: see text] = 4.2 mg/L) relative to total dissolved solids and other ions, and high concentrations of phosphorus. In a landscape where ion concentrations in wetlands can range over 3 orders of magnitude, water quality analyses suggest that abundant Wood Frog tadpole populations occur in wetlands dominated by snow-melt runoff with its characteristic low ion concentrations. The present study highlights the importance to amphibian conservation of the water quality environment of tadpole habitat.
Collapse
Affiliation(s)
- David B Donald
- Environment and Climate Change Canada, Alvin Hamilton Building, 1783 Hamilton Street, Regina, SK, S4P 2B4, Canada.
| |
Collapse
|
46
|
Robinson SA, Chlebak RJ, Young SD, Dalton RL, Gavel MJ, Prosser RS, Bartlett AJ, de Solla SR. Clothianidin alters leukocyte profiles and elevates measures of oxidative stress in tadpoles of the amphibian, Rana pipiens. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117149. [PMID: 33894534 DOI: 10.1016/j.envpol.2021.117149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Neonicotinoid pesticide use is widespread and highly debated, as evidenced by recent attention received from the public, academics and pesticide regulatory agencies. However, relatively little is known about the physiological effects of neonicotinoid insecticides on aquatic vertebrates. Amphibians (larval stages in particular) are excellent vertebrate bioindicators in aquatic systems due to their risk of exposure and sensitivity to environmental stressors. Previous work with wood frog (Rana sylvatica) tadpoles exposed to formulated products containing thiamethoxam or clothianidin in outdoor mesocosms found significant shifts in leukocyte profiles, suggesting the tadpoles were physiologically stressed. The main objective of the present study was to characterize this stress response further using complementary measures of stress after exposure to clothianidin on northern leopard frogs (Rana pipiens) during their aquatic larval stages. Laboratory static-renewal exposures were conducted over eight weeks with the technical product clothianidin at 0, 0.23, 1, 10 and 100 μg/L, and diquat dibromide at 532 μg/L was used as a positive control. We assessed tadpole leukocyte profiles and measures of oxidative stress as these sub-lethal alterations could affect amphibian fitness. We found changes in several types of leukocytes at 1 and 10 μg/L, suggesting that these tadpoles exhibited signs of mild physiological stress. Clothianidin also induced an oxidative stress response at 0.23, 1 and 100 μg/L. However, we found no differences in survival, growth, development time or hepatosomatic index in frogs exposed to clothianidin. Our study indicates that tadpoles chronically exposed to clothianidin have increased stress responses, but in the absence of concentration-response relationships and effects on whole-organism endpoints, the implications on the overall health and fitness of these changes are unclear.
Collapse
Affiliation(s)
- Stacey A Robinson
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, Ottawa, Ontario, Canada.
| | - Ryan J Chlebak
- Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Sarah D Young
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, Ottawa, Ontario, Canada.
| | - Rebecca L Dalton
- Department of Biology, Carleton University, Ottawa, Ontario, Canada; Environment and Climate Change Canada, Ecological Assessment Division, Gatineau, Quebec, Canada.
| | - Melody J Gavel
- Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Ryan S Prosser
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada.
| | - Adrienne J Bartlett
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada.
| | - Shane R de Solla
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, Burlington, Ontario, Canada.
| |
Collapse
|
47
|
Kozii IV, Barnsley S, Silva MCBD, Wood SC, Klein CD, de Mattos IM, Zabrodski MW, Silva RDCM, Fabela CIO, Guillemin L, Dvylyuk I, Ferrari MCO, Simko E. Reproductive fitness of honey bee queens exposed to thiamethoxam during development. Vet Pathol 2021; 58:1107-1118. [PMID: 34269115 PMCID: PMC8581721 DOI: 10.1177/03009858211031845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The productivity and survival of honey bee (Apis mellifera) colonies depend on queen bee health. Colony-level neonicotinoid exposure has negative effects on reproductive fitness of honey bee queens. However, it is unclear if the observed effects are a direct outcome of neonicotinoid toxicity or result from suboptimal care of developing queens by exposed workers. The aim of this study was to evaluate larval survival, reproductive fitness, and histopathology of honey bee queens exposed to incremental doses (0, 5, 50 ng) of the neonicotinoid thiamethoxam (THI) applied directly to individual late larvae (7 days post-oviposition) of queens. The 5 ng dose represents a calculated high environmental level of exposure for honey bee queen larvae. Morphometric evaluation revealed that the total area of mandibular gland epithelium in queens exposed to 5 and 50 ng THI was reduced by 14% (P = .12) and 25% (P = .001), respectively. Decreased mandibular gland size may alter pheromone production, which could in part explain previously observed negative effects of THI on the reproductive fitness of queens. We also found that late larval exposure to THI reduced larval and pupal survival and decreased sperm viability in mated queens. These changes may interfere with queen development and reproductive longevity.
Collapse
Affiliation(s)
- Ivanna V Kozii
- University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sarah Barnsley
- University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Sarah C Wood
- University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Colby D Klein
- University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | | | | - Ihor Dvylyuk
- University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Elemir Simko
- University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
48
|
Pro-oxidant potency of clothianidin in rainbow trout. ACTA ACUST UNITED AC 2021; 72:164-172. [PMID: 34187107 PMCID: PMC8265201 DOI: 10.2478/aiht-2021-72-3522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 05/01/2021] [Indexed: 11/28/2022]
Abstract
Clothianidin is a systemic neonicotinoid insecticide interfering with the central nervous system by acting as a nicotinic acetylcholine receptor agonist. Although previous studies on fish report low toxicity, its proven toxic potential for aquatic invertebrates and lack of data on its effect on juvenile fish have prompted us to investigate its adverse effects in environmentally relevant concentrations of 3, 15 and 30 μg/L for 7, 14 and 21 days on heart and spleen tissues of 10-month-old rainbow trout (Oncorhynchus mykiss). We detected a conspicuous increase in protein carbonyl and malondialdehyde (MDA) levels, which triggered antioxidant response of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), resulting in increased levels of glutathione (GSH). Clothianidin inhibited the activity of acetylcholinesterase (AChE) and lowered tissue protein levels. Heart tissue weight increased, while that of spleen decreased significantly. The effects were time- and concentration-dependent. What raises particular concern is the inhibition of AChE in the trout, even though clothianidin is claimed to be selective for insect receptors. Increased antioxidant activity in response to oxidative stress was clearly insufficient to keep MDA and protein carbonyl at normal levels, which evidences the pro-oxidant potency of the insecticide. All this calls for further investigation into potential adverse effects on biological pathways in different fish species.
Collapse
|
49
|
Perine J, Anderson JC, Kruger GR, Abi-Akar F, Overmyer J. Effect of nozzle selection on deposition of thiamethoxam in Actara® spray drift and implications for off-field risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144808. [PMID: 33770886 DOI: 10.1016/j.scitotenv.2020.144808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Off-target drift during pesticide spray applications represents a potential pathway for the introduction of active ingredient into field-adjacent water, soils, and/or vegetation. This study investigated the extent of downwind spray drift deposition of thiamethoxam (as a model insecticide) from an application of Actara® 25WG using standard nozzles (TeeJet XR11003, DG11004, and AIXR11002) onto a fallow field test site in the Midwestern USA. Single broadcast applications at a target rate of 96 g a.i./ha were made uniformly via tractor boom to a mowed stubble plot at a spray volume of 93.5 L/ha. Sampling devices (stainless steel disks, filter paper, and stainless steel rods) were located upwind of the spray swath (as negative control samples), within the spray swath (filter paper only), and downwind (all samplers), perpendicular to the spray swath from 12.5 to 400 ft. (3.8 to 122 m) from the edge of the treated field. Comparison of measured residues from the three types of samplers indicated that filter paper generally had greater variability in results than metal disks. When nozzles were compared, the AIXR11002 air induction nozzle produced less off-field deposition than other nozzles tested. Measured downwind concentrations of thiamethoxam from disk samplers were used to predict distances for mitigating potential effects to honey bees. Based on field-derived models, downwind distances from the spray swath required to reduce exposure levels below levels of concern for honey bees varied from <1 ft. to 148 ft. (0.3 to 45 m) depending on the hazard endpoint and nozzle used. These distances were considerably lower than those predicted using the AgDRIFT model, particularly for distances further downwind. At 400 ft. (122 m), AgDRIFT over-predicted the calculated concentrations by up to a factor of 4.8, 7.2, and 10 for DG11004, XR11003, and AIXR11002, respectively. These data suggest that the AgDRIFT model is less reliable for predicting spray deposition at further downwind distances, with implications for risk assessment.
Collapse
Affiliation(s)
- J Perine
- Syngenta Crop Protection, LLC, Greensboro, NC 27409, United States of America.
| | - J C Anderson
- Environmental Consultant, Winnipeg, MB R3N0T8, Canada
| | - G R Kruger
- University of Nebraska-Lincoln, North Platte, NE 69101, United States of America
| | - F Abi-Akar
- Waterborne Environmental, Inc., Leesburg, VA 20175, United States of America
| | - J Overmyer
- Syngenta Crop Protection, LLC, Greensboro, NC 27409, United States of America
| |
Collapse
|
50
|
Dogan D, Deveci HA, Nur G. Manifestations of oxidative stress and liver injury in clothianidin exposed Oncorhynchus mykiss. Toxicol Res (Camb) 2021; 10:501-510. [PMID: 34141164 DOI: 10.1093/toxres/tfab027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/15/2021] [Accepted: 02/19/2021] [Indexed: 12/25/2022] Open
Abstract
This investigation was conducted to evaluate the effects of clothianidin, a neonicotinoid insecticide, on hepatic oxidative stress biomarkers, biochemical indices of blood serum and liver integrity in juvenile Oncorhynchus mykiss following 7, 14 and 21 days of application to environmentally relevant concentrations of 3, 15 and 30 μg/l. The observed hypertrophy caused elevation in hepatosomatic index, a significant increase in serum glucose and a decrease in tissue protein level with extended period of exposure were determined. The treatment resulted in a marked induction in the activities of antioxidant enzymes which were accompanied with simultaneous elevation in MDA and protein carbonyl level reflecting loss of membrane integrity and protein function. Histopathological examination showed liver injury manifested as hepatocellular degeneration, fibrosis, vacuolation, congestion, necrosis, steatosis and pyknosis proceding with the concentration. The stressful condition triggered hyperglycemic and hypoproteinemic conditions which might be proposed as general adaptive response. Moreover, altered liver histology reveals the hepatotoxic potential of clothianidin via oxidative stress as a common pathological mechanism leading to liver injury.
Collapse
Affiliation(s)
- Demet Dogan
- Department of Veterinary Medicine, Vocational School of Araban, University of Gaziantep, Araban-Gaziantep 27650, Turkey
| | - Haci Ahmet Deveci
- Faculty of Health and Sciences, Department of Nutrition and Dietetics, University of Gaziantep, Gaziantep 27310, Turkey
| | - Gokhan Nur
- Faculty of Medicine, Department of Histology and Embryology, University of Gaziantep, Gaziantep 27310, Turkey
| |
Collapse
|