1
|
Morales‐Palomo F, Moreno‐Cabañas A, Alvarez‐Jimenez L, Mora‐Gonzalez D, Ortega JF, Mora‐Rodriguez R. Efficacy of morning versus afternoon aerobic exercise training on reducing metabolic syndrome components: A randomized controlled trial. J Physiol 2024; 602:6463-6477. [PMID: 38015017 PMCID: PMC11607890 DOI: 10.1113/jp285366] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/16/2023] [Indexed: 11/29/2023] Open
Abstract
A supervised intense aerobic exercise program improves the health of individuals with metabolic syndrome (MetS). However, it is unclear whether the timing of training within the 24 h day would influence those health benefits. The present study aimed to determine the influence of morning vs. afternoon exercise on body composition, cardiometabolic health and components of MetS. One hundred thirty-nine individuals with MetS were block randomized into morning (AMEX; n = 42) or afternoon (PMEX; n = 59) exercise training groups, or a non-training control group (Control; n = 38). Exercise training was comprised of 48 supervised high-intensity interval sessions distributed over 16 weeks. Body composition, cardiorespiratory fitness (assessed byV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ ), maximal fat oxidation (FOmax), blood pressure and blood metabolites were assessed before and after the intervention. Compared with the non-training Control, both exercise groups improved similarly body composition (-0.7% fat loss; P = 0.002), waist circumference (-2.1 cm; P < 0.001), diastolic blood pressure (-3.8 mmHg; P = 0.004) andV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ (3.5 mL kg-1 min-1; P < 0.001) with no differences between training groups. AMEX, in comparison with PMEX, reduced systolic blood pressure (-4% vs. -1%; P = 0.019), plasma fasting insulin concentration (-12% vs. -5%; P = 0.001) and insulin resistance (-14% vs. -4%; P = 0.006). Furthermore, MetS Z score was further reduced in the AMEX compared to PMEX (-52% vs. -19%; P = 0.021) after training. In summary, high-intensity aerobic exercise training in the morning in comparison to training in the afternoon is somewhat more efficient at reducing cardiometabolic risk factors (i.e. systolic blood pressure and insulin sensitivity). KEY POINTS: The effect of exercise time of day on health promotion is an area that has gained interest in recent years; however, large-scale, randomized-control studies are scarce. People with metabolic syndrome (MetS) are at risk of developing cardiometabolic diseases and reductions in this risk with exercise training can be precisely gauged using a compound score sensitive to subtle evolution in each MetS component (i.e. Z score). Supervised aerobic exercise for 16 weeks (morning and afternoon), without dietary restriction, improved cardiorespiratory and metabolic fitness, body composition and mean arterial pressure compared to a non-exercise control group. However, training in the morning, without changes in exercise dose or intensity, reduced systolic blood pressure and insulin resistance further compared to when training in the afternoon. Thus, high-intensity aerobic exercise training in the morning is somewhat more efficient in improving the health of individuals with metabolic syndrome.
Collapse
Affiliation(s)
| | - Alfonso Moreno‐Cabañas
- Exercise Physiology Lab at ToledoUniversity of Castilla‐La ManchaToledoSpain
- Centre for Nutrition, Exercise, and MetabolismUniversity of BathBathUK
- Department for HealthUniversity of BathBathUK
| | | | - Diego Mora‐Gonzalez
- Department of Nursing, Physiotherapy and Occupational therapyUniversity of Castilla‐La ManchaToledoSpain
| | - Juan F. Ortega
- Exercise Physiology Lab at ToledoUniversity of Castilla‐La ManchaToledoSpain
| | | |
Collapse
|
2
|
Rodriguez-Muñoz A, Martínez-Montoro JI, Sojo-Rodriguez B, Benitez-Porres J, Carrillo-Albornoz-Gil M, Carrasco-Fernandez L, Subiri-Verdugo A, Molina-Ramos A, Cobos-Diaz A, Tinahones FJ, Ortega-Gomez A, Murri M. Glycaemic Response to Acute Aerobic and Anaerobic Exercise Performed in the Morning or Afternoon in Healthy Subjects: A Crossover Trial. J Int Soc Sports Nutr 2024; 21:2433740. [PMID: 39611609 PMCID: PMC11610264 DOI: 10.1080/15502783.2024.2433740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND The regular practice of physical activity is considered a health promoter and appears to be one of the main contributors to the prevention of chronic diseases. However, the potential effects of exercise on health depending on the time of day at which it is performed have not yet been fully elucidated. OBJECTIVES To evaluate the effect of physical exercise (aerobic or anaerobic) and chronobiology (morning or afternoon) on the glycemic metabolism of healthy subjects. METHODS Healthy subjects participated in aerobic or anaerobic physical exercise sessions, either in the morning or in the afternoon. Blood was drawn from the subjects before, at the end of the exercise and 2 hours after the end of the exercise. Glycemic parameters were analyzed at these time points. A general linear model test was performed after verifying the normal distribution of the raw data (as assessed by the Shapiro-Wilk test) or after a logarithmic/square root transformation, considering aerobic or anaerobic exercise and morning or afternoon exercise as independent variables. RESULTS Twenty-three subjects (14 women and 9 men) were included in the study. The rate of change in glucose levels was significantly higher at the end of anaerobic exercise compared to aerobic exercise (1.19 ± 0.04 vs. 0.98 ± 0.02, respectively), with a more pronounced decrease in insulin and C-peptide levels following aerobic exercise. In addition, the increase of glucose was higher after the exercise in the morning compared with the afternoon (1.14 ± 0.03 vs. 1.03 ± 0.03, respectively). CONCLUSIONS The type of exercise and chronobiology influence short-term glucose metabolism.
Collapse
Affiliation(s)
- Alba Rodriguez-Muñoz
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Faculty of Health Sciences, University of Malaga, Spain
| | - José Ignacio Martínez-Montoro
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
| | - Belen Sojo-Rodriguez
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
| | - Javier Benitez-Porres
- Department of Human Physiology, Physical Education and Sport, Faculty of Medicine, University of Malaga, Malaga, Spain
- Internal Medicine Department, Regional University Hospital of Málaga; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Malaga, Spain
| | | | - Laura Carrasco-Fernandez
- Department of Human Physiology, Physical Education and Sport, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Alba Subiri-Verdugo
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
| | - Ana Molina-Ramos
- Department of Cardiology and Cardiovascular Surgery, Virgen de la Victoria University Hospital; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Andrés Cobos-Diaz
- Clinical Analysis UGC, Virgen de la Victoria University Hospital, Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de la Victoria, Malaga, Spain
| | - Francisco J. Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Malaga, Spain
- Department of Dermatology and Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Almudena Ortega-Gomez
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Malaga, Spain
| | - Mora Murri
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Malaga, Spain
- Department of Cardiology and Cardiovascular Surgery, Virgen de la Victoria University Hospital; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
| |
Collapse
|
3
|
Harmsen J, Kotte M, Habets I, Bosschee F, Frenken K, Jorgensen JA, de Kam S, Moonen‐Kornips E, Cissen J, Doligkeit D, van de Weijer T, Erazo‐Tapia E, Buitinga M, Hoeks J, Schrauwen P. Exercise training modifies skeletal muscle clock gene expression but not 24-hour rhythmicity in substrate metabolism of men with insulin resistance. J Physiol 2024; 602:6417-6433. [PMID: 38051503 PMCID: PMC11607886 DOI: 10.1113/jp285523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023] Open
Abstract
Twenty-four hour rhythmicity in whole-body substrate metabolism, skeletal muscle clock gene expression and mitochondrial respiration is compromised upon insulin resistance. With exercise training known to ameliorate insulin resistance, our objective was to test if exercise training can reinforce diurnal variation in whole-body and skeletal muscle metabolism in men with insulin resistance. In a single-arm longitudinal design, 10 overweight and obese men with insulin resistance performed 12 weeks of high-intensity interval training recurrently in the afternoon (between 14.00 and 18.00 h) and were tested pre- and post-exercise training, while staying in a metabolic research unit for 2 days under free-living conditions with regular meals. On the second days, indirect calorimetry was performed at 08.00, 13.00, 18.00, 23.00 and 04.00 h, muscle biopsies were taken from the vastus lateralis at 08.30, 13.30 and 23.30 h, and blood was drawn at least bi-hourly over 24 h. Participants did not lose body weight over 12 weeks, but improved body composition and exercise capacity. Exercise training resulted in reduced 24-h plasma glucose levels, but did not modify free fatty acid and triacylglycerol levels. Diurnal variation of muscle clock gene expression was modified by exercise training with period genes showing an interaction (time × exercise) effect and reduced mRNA levels at 13.00 h. Exercise training increased mitochondrial respiration without inducing diurnal variation. Twenty-four-hour substrate metabolism and energy expenditure remained unchanged. Future studies should investigate alternative exercise strategies or types of interventions (e.g. diet or drugs aiming at improving insulin sensitivity) for their capacity to reinforce diurnal variation in substrate metabolism and mitochondrial respiration. KEY POINTS: Insulin resistance is associated with blunted 24-h flexibility in whole-body substrate metabolism and skeletal muscle mitochondrial respiration, and disruptions in the skeletal muscle molecular circadian clock. We hypothesized that exercise training modifies 24-h rhythmicity in whole-body substrate metabolism and diurnal variation in skeletal muscle molecular clock and mitochondrial respiration in men with insulin resistance. We found that metabolic inflexibility over 24 h persisted after exercise training, whereas mitochondrial respiration increased independent of time of day. Gene expression of Per1-3 and Rorα in skeletal muscle changed particularly close to the time of day at which exercise training was performed. These results provide the rationale to further investigate the differential metabolic impact of differently timed exercise to treat metabolic defects of insulin resistance that manifest at a particular time of day.
Collapse
Affiliation(s)
- Jan‐Frieder Harmsen
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Marit Kotte
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Ivo Habets
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Frederieke Bosschee
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Koen Frenken
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Johanna A. Jorgensen
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Soraya de Kam
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Esther Moonen‐Kornips
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Jochem Cissen
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Daniel Doligkeit
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Tineke van de Weijer
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Edmundo Erazo‐Tapia
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Mijke Buitinga
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Joris Hoeks
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| |
Collapse
|
4
|
Carrillo BJP, Cope E, Gurel S, Traslosheros A, Kenny A, Michot‐Duval O, Mody N, Delibegovic M, Philip S, Thies F, Blana D, Gabriel BM. Morning exercise and pre-breakfast metformin interact to reduce glycaemia in people with type 2 diabetes: a randomized crossover trial. J Physiol 2024; 602:6491-6506. [PMID: 38522033 PMCID: PMC11607888 DOI: 10.1113/jp285722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/29/2024] [Indexed: 03/25/2024] Open
Abstract
Exercise is recommended in the treatment of type 2 diabetes and can improve insulin sensitivity. However, previous evidence suggests that exercise at different times of the day in people with type 2 diabetes may have opposing outcomes on glycaemia. Metformin is the most commonly prescribed initial pharmacological intervention in type 2 diabetes, and may alter adaptions to exercise. It is unknown if there is an interaction between metformin and diurnal exercise outcomes. We aimed to investigate glycaemic outcomes of moderate intensity morning vs. evening exercise in people with type 2 diabetes being prescribed metformin monotherapy. In this study, nine males and nine females with type 2 diabetes undergoing metformin monotherapy (age 61 ± 8.2 years, mean ± SD) completed a 16-week crossover trial including 2-week baseline recording, 6 weeks randomly assigned to a morning exercise (07.00-10.00 h) or evening exercise (16.00-19.00 h) and a 2-week wash-out period. Exercise arms consisted of 30 min of walking at 70% of estimated max heart rate every other day. Glucose levels were measured with continuous glucose monitors and activity measured by wrist-worn monitors. Food-intake was recorded by 4-day food diaries during baseline, first and last 2 weeks of each exercise arm. There was no difference in exercise intensity, total caloric intake or total physical activity between morning and evening arms. As primary outcomes, acute (24 h) glucose area under the curve (AUC), was lower (P = 0.02) after acute morning exercise (180.6 ± 68.4 mmol/l) compared to baseline (210.3 ± 76.7 mmol/l); and there were no differences identified for glucose (mmol/l) between baseline, morning and evening exercise at any specific time point when data were analysed with two-way ANOVA. As secondary outcomes, acute glucose AUC was significantly lower (P = 0.01) in participants taking metformin before breakfast (152.5 ± 29.95 mmol/l) compared with participants taking metformin after breakfast (227.2 ± 61.51 mmol/l) only during the morning exercise arm; and during weeks 5-6 of the exercise protocol, glucose AUC was significantly lower (P = 0.04) for participants taking metformin before breakfast (168.8 ± 15.8 mmol/l), rather than after breakfast (224.5 ± 52.0 mmol/l), only during morning exercise. Our data reveal morning moderate exercise acutely lowers glucose levels in people with type 2 diabetes being prescribed metformin. This difference appears to be driven by individuals that consumed metformin prior to breakfast rather than after breakfast. This beneficial effect upon glucose levels of combined morning exercise and pre-breakfast metformin persisted through the final 2 weeks of the trial. Our findings suggest that morning moderate intensity exercise combined with pre-breakfast metformin intake may benefit the management of glycaemia in people with type 2 diabetes. KEY POINTS: Morning moderate exercise acutely lowers glucose levels in people with type 2 diabetes being prescribed metformin. This difference appears to be driven by individuals that consumed metformin prior to breakfast rather than after breakfast. Morning exercise combined with pre-breakfast metformin persistently reduced glucose compared to morning exercise combined with post-breakfast metformin through the final week (week 6) of the intervention. Our study suggests it may be possible to make simple changes to the time that people with type 2 diabetes take metformin and perform exercise to improve their blood glucose.
Collapse
Affiliation(s)
- Brenda J. Peña Carrillo
- Aberdeen Cardiovascular and Diabetes Centre, School of Medicine, Medical Sciences & NutritionUniversity of AberdeenAberdeenUK
- The Rowett Institute, School of Medicine, Medical Sciences & NutritionUniversity of AberdeenAberdeenUK
| | - Emily Cope
- Aberdeen Cardiovascular and Diabetes Centre, School of Medicine, Medical Sciences & NutritionUniversity of AberdeenAberdeenUK
- The Rowett Institute, School of Medicine, Medical Sciences & NutritionUniversity of AberdeenAberdeenUK
| | - Sati Gurel
- The Rowett Institute, School of Medicine, Medical Sciences & NutritionUniversity of AberdeenAberdeenUK
| | - Andres Traslosheros
- The Rowett Institute, School of Medicine, Medical Sciences & NutritionUniversity of AberdeenAberdeenUK
| | - Amber Kenny
- Aberdeen Cardiovascular and Diabetes Centre, School of Medicine, Medical Sciences & NutritionUniversity of AberdeenAberdeenUK
- The Rowett Institute, School of Medicine, Medical Sciences & NutritionUniversity of AberdeenAberdeenUK
| | - Oscar Michot‐Duval
- The Rowett Institute, School of Medicine, Medical Sciences & NutritionUniversity of AberdeenAberdeenUK
| | - Nimesh Mody
- Aberdeen Cardiovascular and Diabetes Centre, School of Medicine, Medical Sciences & NutritionUniversity of AberdeenAberdeenUK
| | - Mirela Delibegovic
- Aberdeen Cardiovascular and Diabetes Centre, School of Medicine, Medical Sciences & NutritionUniversity of AberdeenAberdeenUK
| | - Sam Philip
- NHS Grampian Diabetes Research Unit, Diabetes CentreAberdeen Royal InfirmaryAberdeenUK
| | - Frank Thies
- The Rowett Institute, School of Medicine, Medical Sciences & NutritionUniversity of AberdeenAberdeenUK
| | - Dimitra Blana
- Centre for Health Data Science, Institute of Applied Health SciencesUniversity of AberdeenAberdeenUK
| | - Brendan M. Gabriel
- Aberdeen Cardiovascular and Diabetes Centre, School of Medicine, Medical Sciences & NutritionUniversity of AberdeenAberdeenUK
- The Rowett Institute, School of Medicine, Medical Sciences & NutritionUniversity of AberdeenAberdeenUK
- Department of Physiology and Pharmacology, Integrative PhysiologyThe Karolinska InstituteStockholmSweden
| |
Collapse
|
5
|
Fitzgerald LS, Bremner SN, Ward SR, Cho Y, Schenk S. Intrinsic Skeletal Muscle Function and Contraction-Stimulated Glucose Uptake Do Not Vary by Time-of-Day in Mice. FUNCTION 2024; 5:zqae035. [PMID: 39134511 DOI: 10.1093/function/zqae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/13/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024] Open
Abstract
A growing body of data suggests that skeletal muscle contractile function and glucose metabolism vary by time-of-day, with chronobiological effects on intrinsic skeletal muscle properties being proposed as the underlying mediator. However, no studies have directly investigated intrinsic contractile function or glucose metabolism in skeletal muscle over a 24 h circadian cycle. To address this, we assessed intrinsic contractile function and endurance, as well as contraction-stimulated glucose uptake, in isolated extensor digitorum longus and soleus from mice at 4 times-of-day (zeitgeber times 1, 7, 13, 19). Significantly, though both muscles demonstrated circadian-related changes in gene expression, there were no differences between the 4 time points in intrinsic contractile function, endurance, and contraction-stimulated glucose uptake, regardless of sex. Overall, these results suggest that time-of-day variation in exercise performance and the glycemia-reducing benefits of exercise are not due to chronobiological effects on intrinsic muscle function or contraction-stimulated glucose uptake.
Collapse
Affiliation(s)
- Liam S Fitzgerald
- Department of Orthopaedic Surgery, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Medical Scientist Training Program, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Shannon N Bremner
- Department of Orthopaedic Surgery, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Samuel R Ward
- Department of Orthopaedic Surgery, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Radiology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Yoshitake Cho
- Division of Cardiovascular Medicine-Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Simon Schenk
- Department of Orthopaedic Surgery, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Zierath JR, Brady AJ, Macgregor KA, de Zevallos JO, Stocks B. Unlocking the secrets of exercise: A pathway to enhanced insulin sensitivity and skeletal muscle health in type 2 diabetes. JOURNAL OF SPORT AND HEALTH SCIENCE 2024:100980. [PMID: 39241865 DOI: 10.1016/j.jshs.2024.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Affiliation(s)
- Juleen R Zierath
- Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 65, Sweden; Section of Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 171 65, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark.
| | - Aidan J Brady
- Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Kirstin A Macgregor
- Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Joaquin Ortiz de Zevallos
- Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Ben Stocks
- Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 65, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
7
|
Magalhães JP, Oliveira EC, Hetherington-Rauth M, Jesus F, Rodrigues MC, Raposo JF, Ribeiro RT, Caetano C, Sardinha LB. The Ex-Timing trial: evaluating morning, afternoon, and evening exercise on the circadian clock in individuals with type 2 diabetes and overweight/obesity-a randomized crossover study protocol. Trials 2024; 25:526. [PMID: 39107793 PMCID: PMC11301977 DOI: 10.1186/s13063-024-08335-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Exercise is known to provide multiple metabolic benefits such as improved insulin sensitivity and glucose control in individuals with type 2 diabetes mellitus (T2DM) and those at risk. Beyond the traditional exercise dose, exercise timing is perceived as a contemporary hot topic, especially in the field of T2DM; however, the number of intervention studies assessing exercise timing and glucose metabolism is scarce. Our aim is to test the effect of exercise timing (i.e., morning, afternoon, or evening) on the inter-individual response variability in glycemic control and related metabolic health parameters in individuals with T2DM and those at risk during a 12-week intervention. METHODS A randomized crossover exercise intervention will be conducted involving two groups: group 1, individuals with T2DM; group 2, age-matched older adults with overweight/obesity. The intervention will consist of three 2-week blocks of supervised post-prandial exercise using high-intensity interval training (HIIT). Between each training block, a 2-week washout period, where participants avoid structured exercise, will take place. Assessments will be conducted in both groups before and after each exercise block. The primary outcomes include the 24-h area under the curve continuous glucose monitoring-based glucose. The secondary outcomes include body composition, resting energy expenditure, insulin response to a meal tolerance test, maximal aerobic capacity, peak power output, physical activity, sleep quality, and insulin and glucose levels. All primary and secondary outcomes will be measured at each assessment point. DISCUSSION Outcomes from this trial will provide us additional insight into the role of exercise timing on the inter-individual response variability in glycemic control and other related metabolic parameters in two distinct populations, thus contributing to the development of more effective exercise prescription guidelines for individuals with T2DM and those at risk. TRIAL REGISTRATION ClinicalTrials.gov NCT06136013. Registered on November 18, 2023.
Collapse
Affiliation(s)
- João P Magalhães
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade Lisboa, Estrada da Costa, Cruz-Quebrada, 1499-688, Portugal.
| | - Estela C Oliveira
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade Lisboa, Estrada da Costa, Cruz-Quebrada, 1499-688, Portugal
| | - Megan Hetherington-Rauth
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade Lisboa, Estrada da Costa, Cruz-Quebrada, 1499-688, Portugal
| | - Filipe Jesus
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade Lisboa, Estrada da Costa, Cruz-Quebrada, 1499-688, Portugal
| | - Maria Clarissa Rodrigues
- Hospital de Santa Cruz, Centro Hospitalar Lisboa Ocidental, Departamento de Reabilitação Cardíaca, Lisbon, Portugal
| | - João F Raposo
- Education and Research Centre, APDP-Diabetes Portugal (APDP-ERC), Rua Rodrigo da Fonseca 1, Lisbon, 1250-189, Portugal
| | - Rogério T Ribeiro
- Education and Research Centre, APDP-Diabetes Portugal (APDP-ERC), Rua Rodrigo da Fonseca 1, Lisbon, 1250-189, Portugal
| | | | - Luís B Sardinha
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade Lisboa, Estrada da Costa, Cruz-Quebrada, 1499-688, Portugal
| |
Collapse
|
8
|
Niu WC, Liu C, Liu K, Fang WJ, Liu XQ, Liang XL, Yuan HP, Jia HM, Peng HF, Jiang HW, Jia ZM. The effect of different times of day for exercise on blood glucose fluctuations. Prim Care Diabetes 2024; 18:427-434. [PMID: 38897914 DOI: 10.1016/j.pcd.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/10/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024]
Abstract
AIMS This study aims to explore blood glucose variations before and after short-term intensive exercise in the morning or afternoon of a day and the trend of blood glucose fluctuations during exercise in patients with T2DM (type 2 diabetes, T2DM). METHODS Blood glucose variations of Fouty during morning exercise 8:00-12:00 hours and twenty during afternoon exercise 14:30-18:30 hours). Patients with T2DM discharged from the hospital were analyzed retrospectively, with the baseline data checked through the medical record system before intervention. We were asked to perform seven times of treadmill aerobic exercise, which lasted for 30 minutes with incremental intensity for each time, for two weeks under the supervision of the Continuous Glucose Monitor (CGM) and the heart rate armband. The exercise intensity has been adjusted by the clinicians and specialist nurses from the Department of Diabetes Mellitus according to the blood glucose levels and heart rate curves during exercise; data including the height, weight, body mass index (BMI), waist-to-hip ratio, fasting blood glucose, glycosylated hemoglobin, in-exercise CGM-measured blood glucose value/min, and after-exercise fingertip blood glucose value of patients with T2DM were collected after the intensive exercise (2 weeks). SPSS 22.0 and GraphPad Prism 7 were adopted for statistical analysis using the T-test and ANOVA. RESULT No difference was observed in the baseline data between the morning and afternoon exercise groups before intervention; compared to the morning exercise group, the fasting C-peptide value (2.15±0.97 vs. 1.53±0.46) in the afternoon exercise group was higher than that in the morning exercise group, with a superior (p=0.029) effect after two weeks of intervention, exhibiting a significant difference in the results. According to the results of repeated variance ANOVA analysis, the time for the appearance of significant improvement in blood glucose in the afternoon exercise group was 5 minutes earlier (11th minute vs 1 minute)than that in the morning exercise group (15th minute vs 1 min); significant differences were observed in both time (p=0.048 vs p<0.01) between the two groups on exercise days, as revealed by the results of bivariate ANOVA; in comparison to the morning exercise group (7.42±1.68), there was a significant difference (p=0.049)in the mean blood glucose between the two groups 25 min after patients with T2DM in the afternoon exercise group (6.25±1.53) started to exercise; in addition, a significant statistical difference (p=0.021) was revealed in the CGM-measured hourly the mean blood glucose on exercise days between the morning(8.18±1.88) and afternoon exercise (6.75±1.40)groups at 4:00 pm in week one and two w. CONCLUSIONS Glycaemic improvement in the short-term intensive afternoon exercise group may be superior to that of the morning exercise group, which may be related to greater fasting C-peptide secretion and longer effective exercise duration. The time to exercise is a factor affecting blood glucose variations during exercise. However, significant variations in the level of blood glucose during exercise must be further observed through exercise intervention over a more extended period.
Collapse
Affiliation(s)
- Wen Chang Niu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China
| | - Chang Liu
- School of Nursing, Henan University of Science and Technology, Luoyang 471000, China
| | - Ke Liu
- School of Nursing, Henan University of Science and Technology, Luoyang 471000, China
| | - Wen Jing Fang
- Luoyang Maternal and Child Health Hospital, Luoyang 471000, China
| | - Xiao Qian Liu
- Luoyang Maternal and Child Health Hospital, Luoyang 471000, China
| | - Xiao Li Liang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China
| | - Hui Ping Yuan
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China
| | - Hui Min Jia
- School of Nursing, Henan University of Science and Technology, Luoyang 471000, China
| | - Hui Fang Peng
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China
| | - Hong Wei Jiang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China
| | - Zhu Min Jia
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China.
| |
Collapse
|
9
|
Malin SK. Exercise time of day and blood pressure: Considering chronotype for precision health. J Hum Hypertens 2024; 38:580-581. [PMID: 38937636 PMCID: PMC11239485 DOI: 10.1038/s41371-024-00929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Affiliation(s)
- Steven K Malin
- Department of Kinesiology & Health, Rutgers University, New Brunswick, NJ, USA.
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, New Brunswick, NJ, USA.
- New Jersey Institute for Food, Nutrition & Health, Rutgers University, New Brunswick, NJ, USA.
- Institute for Translational Science & Medicine, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
10
|
Mastrototaro L, Roden M. The effects of extracellular vesicles and their cargo on metabolism and its adaptation to physical exercise in insulin resistance and type 2 diabetes. Proteomics 2024; 24:e2300078. [PMID: 37525338 DOI: 10.1002/pmic.202300078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
Lifestyle modification represents the first-line strategy for the prevention and treatment of type 2 diabetes mellitus (T2DM), which is frequently associated with obesity and characterized by defective pancreatic insulin secretion and/or insulin resistance. Exercise training is an essential component of lifestyle modification and has been shown to ameliorate insulin resistance by reducing body fat mass and by enhancing skeletal muscle mitochondrial biogenesis and insulin-independent glucose uptake. Additionally, exercising stimulates the release of exerkines such as metabolites or cytokines, but also long non-coding RNA, microRNAs, cell-free DNA (cf-DNA), and extracellular vesicles (EVs), which contribute to inter-tissue communication. There is emerging evidence that EV number and content are altered in obesity and T2DM and may be involved in several metabolic processes, specifically either worsening or improving insulin resistance. This review summarizes the current knowledge on the metabolic effects of exercise training and on the potential role of humoral factors and EV as new biomarkers for early diagnosis and tailored treatment of T2DM.
Collapse
Affiliation(s)
- Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
11
|
Fitzgerald LS, Bremner SN, Ward SR, Cho Y, Schenk S. Intrinsic skeletal muscle function and contraction-stimulated glucose uptake do not vary by time-of-day in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594323. [PMID: 38798320 PMCID: PMC11118484 DOI: 10.1101/2024.05.15.594323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
A growing body of data suggests that skeletal muscle contractile function and glucose metabolism vary by time-of-day, with chronobiological effects on intrinsic skeletal muscle properties being proposed as the underlying mediator. However, no studies have directly investigated intrinsic contractile function or glucose metabolism in skeletal muscle over a 24 h circadian cycle. To address this, we assessed intrinsic contractile function and endurance, as well as contraction-stimulated glucose uptake, in isolated extensor digitorum longus and soleus from female mice at four times-of-day (Zeitgeber Times 1, 7, 13, 19). Significantly, while both muscles demonstrated circadian-related changes in gene expression, intrinsic contractile function, endurance, and contraction-stimulated glucose uptake were not different between the four time points. Overall, these results demonstrate that time-of-day variation in exercise performance and the glycemia-reducing benefits of exercise are not due to chronobiological effects on intrinsic muscle function or contraction-stimulated glucose uptake. Impact statement Ex vivo testing demonstrates that there is no time-of-day variation in the intrinsic contractile properties of skeletal muscle (including no effect on force production or endurance) or contraction-stimulated glucose uptake.
Collapse
|
12
|
Speksnijder EM, Bisschop PH, Siegelaar SE, Stenvers DJ, Kalsbeek A. Circadian desynchrony and glucose metabolism. J Pineal Res 2024; 76:e12956. [PMID: 38695262 DOI: 10.1111/jpi.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 05/09/2024]
Abstract
The circadian timing system controls glucose metabolism in a time-of-day dependent manner. In mammals, the circadian timing system consists of the main central clock in the bilateral suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks in peripheral tissues. The oscillations produced by these different clocks with a period of approximately 24-h are generated by the transcriptional-translational feedback loops of a set of core clock genes. Glucose homeostasis is one of the daily rhythms controlled by this circadian timing system. The central pacemaker in the SCN controls glucose homeostasis through its neural projections to hypothalamic hubs that are in control of feeding behavior and energy metabolism. Using hormones such as adrenal glucocorticoids and melatonin and the autonomic nervous system, the SCN modulates critical processes such as glucose production and insulin sensitivity. Peripheral clocks in tissues, such as the liver, muscle, and adipose tissue serve to enhance and sustain these SCN signals. In the optimal situation all these clocks are synchronized and aligned with behavior and the environmental light/dark cycle. A negative impact on glucose metabolism becomes apparent when the internal timing system becomes disturbed, also known as circadian desynchrony or circadian misalignment. Circadian desynchrony may occur at several levels, as the mistiming of light exposure or sleep will especially affect the central clock, whereas mistiming of food intake or physical activity will especially involve the peripheral clocks. In this review, we will summarize the literature investigating the impact of circadian desynchrony on glucose metabolism and how it may result in the development of insulin resistance. In addition, we will discuss potential strategies aimed at reinstating circadian synchrony to improve insulin sensitivity and contribute to the prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Esther M Speksnijder
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
| | - Peter H Bisschop
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
| | - Sarah E Siegelaar
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
| | - Dirk Jan Stenvers
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Brinkmann C. Road map for personalized exercise medicine in T2DM. Trends Endocrinol Metab 2023; 34:789-798. [PMID: 37730486 DOI: 10.1016/j.tem.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
The number of patients with type 2 diabetes mellitus (T2DM) is rising at an alarming rate. Regular physical activity and exercise are cornerstones in the therapy of T2DM. While a one-size-fits-all approach fails to account for many between-subject differences, the use of personalized exercise medicine has the potential of optimizing health outcomes. Here, a road map for personalized exercise therapy targeted at patients with T2DM is presented. It considers secondary complications, glucose management, response heterogeneity, and other relevant factors that might influence the effectiveness of exercise as medicine, taking exercise-medication-diet interactions, as well as feasibility and acceptance into account. Furthermore, the potential of artificial intelligence and machine learning-based applications in assisting sports therapists to find appropriate exercise programs is outlined.
Collapse
Affiliation(s)
- Christian Brinkmann
- Institute of Cardiovascular Research and Sport Medicine, Department of Preventive and Rehabilitative Sport Medicine, German Sport University Cologne, Cologne, Germany; Department of Fitness & Health, IST University of Applied Sciences, Düsseldorf, Germany.
| |
Collapse
|
14
|
Tian C, Bürki C, Westerman KE, Patel CJ. Association between timing and consistency of physical activity and type 2 diabetes: a cohort study on participants of the UK Biobank. Diabetologia 2023; 66:2275-2282. [PMID: 37728730 PMCID: PMC10628002 DOI: 10.1007/s00125-023-06001-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/13/2023] [Indexed: 09/21/2023]
Abstract
AIMS/HYPOTHESIS We sought to quantify the relationship between morning, afternoon or evening physical activity and consistency (e.g. routine) and risk of type 2 diabetes. METHODS A cohort of 93,095 UK Biobank participants (mean age 62 years) without a history of type 2 diabetes wore a wrist-worn accelerometer for 1 week. We converted accelerometer information to estimate metabolic equivalent of task (MET), summing MET h of total physical activity completed within three intra-day time segments (morning, afternoon and evening). We quantified physical activity consistency as the SD of participants' daily total physical activity. We ultimately associated each of the following with incident type 2 diabetes: (1) morning, afternoon or evening 'time-segmented' MET h per week; and (2) consistency. We also considered moderate-to-vigorous physical activity (MVPA) and vigorous physical activity (VPA) in association with type 2 diabetes incidence. RESULTS When considering MET as the physical activity measure, we observed protective associations of morning (HR 0.90 [95% CI 0.86, 0.93], p=7×10-8) and afternoon (HR 0.91 [95% CI 0.87, 0.95], p=1×10-5) but did not have evidence for evening physical activity (HR 0.95 [95% CI 0.90, 1.00], p=0.07) with type 2 diabetes. There was no difference between MET-measured morning and afternoon physical activity. Our substitution model highlighted the importance of adjusting for lifestyle factors (e.g. sleep time and diet); the effect of a substitution between afternoon and evening physical activity was attenuated after adjustment for lifestyle variables. Consistency of MET-measured physical activity was not associated with type 2 diabetes (p=0.07). MVPA and VPA were associated with decreased risk for type 2 diabetes at all times of the day. CONCLUSIONS/INTERPRETATION Total metabolic equivalents of physical activity in the morning and afternoon had a protective effect on diabetes risk and evening activity was not associated with diabetes. Consistency of physical activity did not play a role in decreasing risk for diabetes. Vigorous activity is associated with lower risk no matter the time of day of activity.
Collapse
Affiliation(s)
- Caiwei Tian
- Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Charlyne Bürki
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Kenneth E Westerman
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chirag J Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Fasipe B, Laher I. Nrf2 modulates the benefits of evening exercise in type 2 diabetes. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:251-258. [PMID: 38314046 PMCID: PMC10831386 DOI: 10.1016/j.smhs.2023.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 02/06/2024] Open
Abstract
Exercise has well-characterized therapeutic benefits in the management of type 2 diabetes mellitus (T2DM). Most of the beneficial effects of exercise arise from the impact of nuclear factor erythroid 2 related factor-2 (Nrf2) activation of glucose metabolism. Nrf2 is an essential controller of cellular anti-oxidative capacity and circadian rhythms. The circadian rhythm of Nrf2 is influenced by circadian genes on its expression, where the timing of exercise effects the activation of Nrf2 and the rhythmicity of Nrf2 and signaling, such that the timing of exercise has differential physiological effects. Exercise in the evening has beneficial effects on diabetes management, such as lowering of blood glucose and weight. The mechanisms responsible for these effects have not yet been associated with the influence of exercise on the circadian rhythm of Nrf2 activity. A better understanding of exercise-induced Nrf2 activation on Nrf2 rhythm and signaling can improve our appreciation of the distinct effects of morning and evening exercise. This review hypothesizes that activation of Nrf2 by exercise in the morning, when Nrf2 level is already at high levels, leads to hyperactivation and decrease in Nrf2 signaling, while activation of Nrf2 in the evening, when Nrf2 levels are at nadir levels, improves Nrf2 signaling and lowers blood glucose levels and increases fatty acid oxidation. Exploring the effects of Nrf2 activators on rhythmic signaling could also provide valuable insights into the optimal timing of their application, while also holding promise for timed treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Babatunde Fasipe
- Faculty of Basic Clinical Sciences, Department of Pharmacology and Therapeutics, Bowen University, Iwo, Nigeria
| | - Ismail Laher
- Faculty of Medicine, Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
16
|
Yeung CHC, Lu J, Soltero EG, Bauer C, Xiao Q. U.S. Adolescent Rest-Activity patterns: insights from functional principal component analysis (NHANES 2011-2014). Int J Behav Nutr Phys Act 2023; 20:125. [PMID: 37833691 PMCID: PMC10571346 DOI: 10.1186/s12966-023-01520-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Suboptimal rest-activity patterns in adolescence are associated with worse health outcomes in adulthood. Understanding sociodemographic factors associated with rest-activity rhythms may help identify subgroups who may benefit from interventions. This study aimed to investigate the association of rest-activity rhythm with demographic and socioeconomic characteristics in adolescents. METHODS Using cross-sectional data from the nationally representative National Health and Nutrition Examination Survey (NHANES) 2011-2014 adolescents (N = 1814), this study derived rest-activity profiles from 7-day 24-hour accelerometer data using functional principal component analysis. Multiple linear regression was used to assess the association between participant characteristics and rest-activity profiles. Weekday and weekend specific analyses were performed in addition to the overall analysis. RESULTS Four rest-activity rhythm profiles were identified, which explained a total of 82.7% of variance in the study sample, including (1) High amplitude profile; (2) Early activity window profile; (3) Early activity peak profile; and (4) Prolonged activity/reduced rest window profile. The rest-activity profiles were associated with subgroups of age, sex, race/ethnicity, and household income. On average, older age was associated with a lower value for the high amplitude and early activity window profiles, but a higher value for the early activity peak and prolonged activity/reduced rest window profiles. Compared to boys, girls had a higher value for the prolonged activity/reduced rest window profiles. When compared to Non-Hispanic White adolescents, Asian showed a lower value for the high amplitude profile, Mexican American group showed a higher value for the early activity window profile, and the Non-Hispanic Black group showed a higher value for the prolonged activity/reduced rest window profiles. Adolescents reported the lowest household income had the lowest average value for the early activity window profile. CONCLUSIONS This study characterized main rest-activity profiles among the US adolescents, and demonstrated that demographic and socioeconomic status factors may shape rest-activity behaviors in this population.
Collapse
Affiliation(s)
- Chris Ho Ching Yeung
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, 1200 Pressler St., Houston, TX, USA
| | - Jiachen Lu
- Department of Biostatistics and Data Science, School of Public Health, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Spatial‑Temporal Modeling for Applications in Population Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Erica G Soltero
- United States Department of Agriculture/Agricultural Research Services Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Cici Bauer
- Department of Biostatistics and Data Science, School of Public Health, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA.
- Center for Spatial‑Temporal Modeling for Applications in Population Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Qian Xiao
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, 1200 Pressler St., Houston, TX, USA.
- Center for Spatial‑Temporal Modeling for Applications in Population Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
17
|
Martínez-Montoro JI, Benítez-Porres J, Tinahones FJ, Ortega-Gómez A, Murri M. Effects of exercise timing on metabolic health. Obes Rev 2023; 24:e13599. [PMID: 37416977 DOI: 10.1111/obr.13599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/12/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
The increasing prevalence of metabolic syndrome is associated with major health and socioeconomic consequences. Currently, physical exercise, together with dietary interventions, is the mainstay of the treatment of obesity and related metabolic complications. Although exercise training includes different modalities, with variable intensity, duration, volume, or frequency, which may have a distinct impact on several characteristics related to metabolic syndrome, the potential effects of exercise timing on metabolic health are yet to be fully elucidated. Remarkably, promising results with regard to this topic have been reported in the last few years. Similar to other time-based interventions, including nutritional therapy or drug administration, time-of-day-based exercise may become a useful approach for the management of metabolic disorders. In this article, we review the role of exercise timing in metabolic health and discuss the potential mechanisms that could drive the metabolic-related benefits of physical exercise performed in a time-dependent manner.
Collapse
Affiliation(s)
- José Ignacio Martínez-Montoro
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
- Faculty of Medicine, University of Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Benítez-Porres
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
- Physical Education and Sport, Faculty of Medicine, University of Málaga, Málaga, Spain
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
- Faculty of Medicine, University of Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Almudena Ortega-Gómez
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Mora Murri
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Heart Area Clinical Management Unit, Virgen de la Victoria University Hospital, Málaga, Spain
| |
Collapse
|
18
|
Ma T, Bennett T, Lee CD, Wicklow M. The diurnal pattern of moderate-to-vigorous physical activity and obesity: a cross-sectional analysis. Obesity (Silver Spring) 2023; 31:2638-2647. [PMID: 37661938 DOI: 10.1002/oby.23851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 09/05/2023]
Abstract
OBJECTIVE Moderate-to-vigorous physical activity (MVPA) is obesity-protective. However, the optimal time of the day to engage in MVPA for weight management is controversial. This study is designed to investigate the influence of the diurnal pattern of MVPA on the association between MVPA and obesity. METHODS A total of 5285 participants in the 2003 to 2006 National Health and Nutrition Examination Survey (NHANES) were cross-sectionally analyzed. The diurnal pattern of objectively measured MVPA was classified into three clusters by K-means clustering analysis: morning (n = 642); midday (n = 2456); and evening (n = 2187). The associations of MVPA level and the diurnal pattern with obesity were tested. RESULTS A strong linear association between MVPA and obesity was found in the morning group, whereas a weaker curvilinear association between MVPA and obesity was observed in the midday and evening groups, respectively. Among those who met the physical activity guidelines, the adjusted means for BMI were 25.9 (95% CI: 25.2-26.6), 27.6 (95% CI: 27.1-28.1), and 27.2 (95% CI: 26.8-27.7) kg/m2 in the morning, midday, and evening groups, respectively, and for waist circumference were 91.5 (95% CI: 89.4-93.6), 95.8 (95% CI: 94.7-96.9), and 95.0 (95% CI: 93.9-96.1) cm, respectively. CONCLUSIONS The diurnal pattern of MVPA influences the association between MVPA and obesity. The promising role of morning MVPA for weight management warrants further investigation.
Collapse
Affiliation(s)
- Tongyu Ma
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong, China
- Health Sciences Department, Franklin Pierce University, Rindge, New Hampshire, USA
| | - Thomas Bennett
- Health Sciences Department, Franklin Pierce University, Rindge, New Hampshire, USA
| | - Chong-Do Lee
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| | - Mairead Wicklow
- Health Sciences Department, Franklin Pierce University, Rindge, New Hampshire, USA
| |
Collapse
|
19
|
Galan-Lopez P, Casuso RA. Metabolic Adaptations to Morning Versus Afternoon Training: A Systematic Review and Meta-analysis. Sports Med 2023; 53:1951-1961. [PMID: 37458979 DOI: 10.1007/s40279-023-01879-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Some physiological responses such as circulating glucose as well as muscle performance show a circadian rhythmicity. In the present study we aimed to quantitatively synthesize the data comparing the metabolic adaptations induced by morning and afternoon training. METHODS PubMed, SCOPUS, and Web of Science databases were systematically searched for studies comparing the metabolic adaptations (> 2 weeks) between morning and afternoon training. A meta-analysis was performed using random-effects models with DerSimonian-Laird methods for fasting blood glucose, hemoglobin A1c (HbAc1), homeostatic model assessment (HOMA), insulin, triglycerides, total cholesterol, low-density lipoprotein (LDL), and high-density lipoprotein (HDL). RESULTS We identified 9 studies with 11 different populations (n = 450 participants). We found that afternoon exercise was more effective at reducing circulating triglycerides [standardized mean difference (SMD) - 0.32; 95% confidence interval (CI) - 0.616 to - 0.025] than morning training. Moreover, afternoon tended to decrease fasting blood glucose (SMD - 0.24; 95% CI - 0.478 to 0.004) to a greater extent than morning training. CONCLUSION Metabolic adaptations to exercise may be dependent on the time of day. Morning training does not show superior effects to afternoon exercise in any of the analyzed outcomes. However, afternoon training is more effective at reducing circulating triglyceride levels and perhaps at reducing fasting blood glucose than morning training. The study was preregistered at PROSPERO (CRD42021287860).
Collapse
Affiliation(s)
- Pablo Galan-Lopez
- Department of Communication and Education, Universidad Loyola Andalucía, Seville, Spain
| | - Rafael A Casuso
- Faculty of Health Sciences, Universidad Loyola Andalucía, Córdoba, Spain.
| |
Collapse
|
20
|
Smith JAB, Murach KA, Dyar KA, Zierath JR. Exercise metabolism and adaptation in skeletal muscle. Nat Rev Mol Cell Biol 2023; 24:607-632. [PMID: 37225892 PMCID: PMC10527431 DOI: 10.1038/s41580-023-00606-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/26/2023]
Abstract
Viewing metabolism through the lens of exercise biology has proven an accessible and practical strategy to gain new insights into local and systemic metabolic regulation. Recent methodological developments have advanced understanding of the central role of skeletal muscle in many exercise-associated health benefits and have uncovered the molecular underpinnings driving adaptive responses to training regimens. In this Review, we provide a contemporary view of the metabolic flexibility and functional plasticity of skeletal muscle in response to exercise. First, we provide background on the macrostructure and ultrastructure of skeletal muscle fibres, highlighting the current understanding of sarcomeric networks and mitochondrial subpopulations. Next, we discuss acute exercise skeletal muscle metabolism and the signalling, transcriptional and epigenetic regulation of adaptations to exercise training. We address knowledge gaps throughout and propose future directions for the field. This Review contextualizes recent research of skeletal muscle exercise metabolism, framing further advances and translation into practice.
Collapse
Affiliation(s)
- Jonathon A B Smith
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kevin A Murach
- Molecular Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Kenneth A Dyar
- Metabolic Physiology, Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
21
|
Qian J, Xiao Q, Walkup MP, Coday M, Erickson ML, Unick J, Jakicic JM, Hu K, Scheer FA, Middelbeek RJ. Association of Timing of Moderate-to-Vigorous Physical Activity With Changes in Glycemic Control Over 4 Years in Adults With Type 2 Diabetes From the Look AHEAD Trial. Diabetes Care 2023; 46:1417-1424. [PMID: 37226675 PMCID: PMC10300518 DOI: 10.2337/dc22-2413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/22/2023] [Indexed: 05/26/2023]
Abstract
OBJECTIVE We aimed to determine the association of the time-of-day of bout-related moderate-to-vigorous physical activity (bMVPA) with changes in glycemic control across 4 years in adults with overweight/obesity and type 2 diabetes. RESEARCH DESIGN AND METHODS Among 2,416 participants (57% women; mean age, 59 years) with 7-day waist-worn accelerometry recording at year 1 or 4, we assigned bMVPA timing groups based on the participants' temporal distribution of bMVPA at year 1 and recategorized them at year 4. The time-varying exposure of bMVPA (≥10-min bout) timing was defined as ≥50% of bMVPA occurring during the same time period (morning, midday, afternoon, or evening), <50% of bMVPA in any time period (mixed), and ≤1 day with bMVPA per week (inactive). RESULTS HbA1c reduction at year 1 varied among bMVPA timing groups (P = 0.02), independent of weekly bMVPA volume and intensity. The afternoon group had the greatest HbA1c reduction versus inactive (-0.22% [95%CI -0.39%, -0.06%]), the magnitude of which was 30-50% larger than the other groups. The odds of discontinuation versus maintaining or initiating glucose-lowering medications at year 1 differed by bMVPA timing (P = 0.04). The afternoon group had the highest odds (odds ratio 2.13 [95% CI 1.29, 3.52]). For all the year-4 bMVPA timing groups, there were no significant changes in HbA1c between year 1 and 4. CONCLUSIONS bMVPA performed in the afternoon is associated with improvements in glycemic control in adults with diabetes, especially within the initial 12 months of an intervention. Experimental studies are needed to examine causality.
Collapse
Affiliation(s)
- Jingyi Qian
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Qian Xiao
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | | | - Mace Coday
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN
| | | | - Jessica Unick
- Weight Control and Diabetes Research Center, Miriam Hospital, Providence, RI
| | - John M. Jakicic
- Division of Physical Activity and Weight Management, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Kun Hu
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Frank A.J.L. Scheer
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | | | | |
Collapse
|
22
|
Bruggisser F, Knaier R, Roth R, Wang W, Qian J, Scheer FAJL. Best Time of Day for Strength and Endurance Training to Improve Health and Performance? A Systematic Review with Meta-analysis. SPORTS MEDICINE - OPEN 2023; 9:34. [PMID: 37208462 PMCID: PMC10198889 DOI: 10.1186/s40798-023-00577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/30/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Current recommendations for physical exercise include information about the frequency, intensity, type, and duration of exercise. However, to date, there are no recommendations on what time of day one should exercise. The aim was to perform a systematic review with meta-analysis to investigate if the time of day of exercise training in intervention studies influences the degree of improvements in physical performance or health-related outcomes. METHODS The databases EMBASE, PubMed, Cochrane Library, and SPORTDiscus were searched from inception to January 2023. Eligibility criteria were that the studies conducted structured endurance and/or strength training with a minimum of two exercise sessions per week for at least 2 weeks and compared exercise training between at least two different times of the day using a randomized crossover or parallel group design. RESULTS From 14,125 screened articles, 26 articles were included in the systematic review of which seven were also included in the meta-analyses. Both the qualitative synthesis and the quantitative synthesis (i.e., meta-analysis) provide little evidence for or against the hypothesis that training at a specific time of day leads to more improvements in performance-related or health-related outcomes compared to other times. There was some evidence that there is a benefit when training and testing occur at the same time of day, mainly for performance-related outcomes. Overall, the risk of bias in most studies was high. CONCLUSIONS The current state of research provides evidence neither for nor against a specific time of the day being more beneficial, but provides evidence for larger effects when there is congruency between training and testing times. This review provides recommendations to improve the design and execution of future studies on this topic. REGISTRATION PROSPERO (CRD42021246468).
Collapse
Affiliation(s)
- Fabienne Bruggisser
- Department of Sport, Exercise and Health, Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Raphael Knaier
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Department of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA.
| | - Ralf Roth
- Department of Sport, Exercise and Health, Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Wei Wang
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Department of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jingyi Qian
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Department of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Frank A J L Scheer
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Department of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
23
|
Riddell MC, Turner LV, Patton SR. Is There an Optimal Time of Day for Exercise? A Commentary on When to Exercise for People Living With Type 1 or Type 2 Diabetes. Diabetes Spectr 2023; 36:146-150. [PMID: 37193212 PMCID: PMC10182965 DOI: 10.2337/dsi22-0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Exercise is a cornerstone of diabetes self-care because of its association with many health benefits. Several studies that have explored the best time of day to exercise to inform clinical recommendations have yielded mixed results. For example, for people with prediabetes or type 2 diabetes, there may be benefits to timing exercise to occur after meals, whereas people with type 1 diabetes may benefit from performing exercise earlier in the day. One common thread is the health benefits of consistent exercise, suggesting that the issue of exercise timing may be secondary to the goal of helping people with diabetes establish an exercise routine that best fits their life.
Collapse
Affiliation(s)
- Michael C. Riddell
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
- Corresponding author: Michael C. Riddell,
| | - Lauren V. Turner
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Susana R. Patton
- Center for Healthcare Delivery Science, Nemours Children’s Specialty Clinic, Jacksonville, FL
| |
Collapse
|
24
|
van der Velde JHPM, Boone SC, Winters-van Eekelen E, Hesselink MKC, Schrauwen-Hinderling VB, Schrauwen P, Lamb HJ, Rosendaal FR, de Mutsert R. Timing of physical activity in relation to liver fat content and insulin resistance. Diabetologia 2023; 66:461-471. [PMID: 36316401 PMCID: PMC9892088 DOI: 10.1007/s00125-022-05813-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 02/05/2023]
Abstract
AIMS/HYPOTHESIS We hypothesised that the insulin-sensitising effect of physical activity depends on the timing of the activity. Here, we examined cross-sectional associations of breaks in sedentary time and timing of physical activity with liver fat content and insulin resistance in a Dutch cohort. METHODS In 775 participants of the Netherlands Epidemiology of Obesity (NEO) study, we assessed sedentary time, breaks in sedentary time and different intensities of physical activity using activity sensors, and liver fat content by magnetic resonance spectroscopy (n=256). Participants were categorised as being most active in the morning (06:00-12:00 hours), afternoon (12:00-18:00 hours) or evening (18:00-00:00 hours) or as engaging in moderate-to-vigorous-physical activity (MVPA) evenly distributed throughout the day. Most active in a certain time block was defined as spending the majority (%) of total daily MVPA in that block. We examined associations between sedentary time, breaks and timing of MVPA with liver fat content and HOMA-IR using linear regression analyses, adjusted for demographic and lifestyle factors including total body fat. Associations of timing of MVPA were additionally adjusted for total MVPA. RESULTS The participants (42% men) had a mean (SD) age of 56 (4) years and a mean (SD) BMI of 26.2 (4.1) kg/m2. Total sedentary time was not associated with liver fat content or insulin resistance, whereas the amount of breaks in sedentary time was associated with higher liver fat content. Total MVPA (-5%/h [95% CI -10%/h, 0%/h]) and timing of MVPA were associated with reduced insulin resistance but not with liver fat content. Compared with participants who had an even distribution of MVPA throughout the day, insulin resistance was similar (-3% [95% CI -25%, 16%]) in those most active in morning, whereas it was reduced in participants who were most active in the afternoon (-18% [95% CI -33%, -2%]) or evening (-25% [95% CI -49%, -4%]). CONCLUSIONS/INTERPRETATION The number of daily breaks in sedentary time was not associated with lower liver fat content or reduced insulin resistance. Moderate-to-vigorous activity in the afternoon or evening was associated with a reduction of up to 25% in insulin resistance. Further studies should assess whether timing of physical activity is also important for the occurrence of type 2 diabetes.
Collapse
Affiliation(s)
| | - Sebastiaan C Boone
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Matthijs K C Hesselink
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Vera B Schrauwen-Hinderling
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
25
|
Mode WJA, Slater T, Pinkney MG, Hough J, James RM, Varley I, James LJ, Clayton DJ. Effects of Morning Vs. Evening exercise on appetite, energy intake, performance and metabolism, in lean males and females. Appetite 2023; 182:106422. [PMID: 36539157 DOI: 10.1016/j.appet.2022.106422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Exercise is an important component of a weight management strategy. However, little is known about whether circadian variations in physiological and behavioural processes can influence the appetite and energy balance responses to exercise performed at different times of the day. This study compared the effects of morning and evening exercise on appetite, post-exercise energy intake, and voluntary performance. In randomised, counterbalanced order, 16 healthy males and females (n = 8 each) completed two trials, performing morning exercise at 10:30 (AMEx) or evening exercise at 18:30 (PMEx). Exercise consisted of 30 min steady-state cycling (60% V˙ O2peak), and a 15-min performance test. A standardised meal (543 ± 86 kcal) was consumed 2-h before exercise and ad-libitum energy intake was assessed 15 min after exercise, with subjective appetite measured throughout. Absolute ad-libitum energy intake was 152 ± 126 kcal greater during PMEx (P < 0.001), but there was no differences in subjective appetite between trials immediately pre-exercise, or immediately before the post-exercise meal (P ≥ 0.060). Resting energy expenditure (P < 0.01) and carbohydrate oxidation (P < 0.05) were greater during AMEx, but there were no differences in substrate oxidation or energy expenditure during exercise (P ≥ 0.155). Exercise performance was not different between trials (P = 0.628). In conclusion, acute morning and evening exercise prompt similar appetite responses, but post-exercise ad-libitum energy intake is greater following evening exercise. These findings demonstrate discordant responses between subjective appetite and ad-libitum energy intake but suggest that exercise might offset circadian variations in appetite. Longer-term studies are required to determine how exercise timing affects adherence and weight management outcomes to exercise interventions. TRIAL REGISTRATION: NCT04742530, February 8, 2021.
Collapse
Affiliation(s)
- William J A Mode
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Tommy Slater
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Mollie G Pinkney
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - John Hough
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Ruth M James
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Ian Varley
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Lewis J James
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - David J Clayton
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK.
| |
Collapse
|
26
|
Martin RA, Viggars MR, Esser KA. Metabolism and exercise: the skeletal muscle clock takes centre stage. Nat Rev Endocrinol 2023; 19:272-284. [PMID: 36726017 DOI: 10.1038/s41574-023-00805-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Circadian rhythms that influence mammalian homeostasis and overall health have received increasing interest over the past two decades. The molecular clock, which is present in almost every cell, drives circadian rhythms while being a cornerstone of physiological outcomes. The skeletal muscle clock has emerged as a primary contributor to metabolic health, as the coordinated expression of the core clock factors BMAL1 and CLOCK with the muscle-specific transcription factor MYOD1 facilitates the circadian and metabolic programme that supports skeletal muscle physiology. The phase of the skeletal muscle clock is sensitive to the time of exercise, which provides a rationale for exploring the interactions between the skeletal muscle clock, exercise and metabolic health. Here, we review the underlying mechanisms of the skeletal muscle clock that drive muscle physiology, with a particular focus on metabolic health. Additionally, we highlight the interaction between exercise and the skeletal muscle clock as a means of reinforcing metabolic health and discuss the possible implications of the time of exercise as a chronotherapeutic approach.
Collapse
Affiliation(s)
- Ryan A Martin
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
| | - Mark R Viggars
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA.
- Myology Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
27
|
Yang L, Friedenreich CM. From evidence to implementation of lifestyle behaviour in cancer prevention and control: A Preventive Medicine Golden Jubilee Commentary. Prev Med 2023; 166:107342. [PMID: 36368342 DOI: 10.1016/j.ypmed.2022.107342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
Abstract
Preventive interventions targeting tobacco, alcohol, healthy diets and physical activity are key strategies to tackle the most pressing health challenges in modern society. A major gap remains in how to translate research evidence into population-level behaviour change to reduce the disease burden. We use the case for the role of physical activity-related behaviour and cancer to illustrate the iterative, multidirectional, and transdisciplinary nature of translational research. The issues we address in this context are generalizable and applicable to other behavioral risk factors and non-communicable diseases. There is now solid evidence that physical activity reduces cancer risk and improves outcomes after cancer diagnosis. Here we provide a framework for how to implement this knowledge into real-world settings. We provide the rationale for combining systems, causal and design thinking to develop interventions that can be implemented for this type of behaviour change. The proposed model is iterative, multidirectional and transdisciplinary. We identify major knowledge gaps in epidemiology and science of behaviour change on physical activity and cancer control and propose approaches to suggest priorities for future research.
Collapse
Affiliation(s)
- Lin Yang
- Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, Canada; Departments of Oncology and Community Health Sciences, University of Calgary, Calgary, Canada.
| | - Christine M Friedenreich
- Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, Canada; Departments of Oncology and Community Health Sciences, University of Calgary, Calgary, Canada
| |
Collapse
|
28
|
Manfredi JM, Jacob SI, Boger BL, Norton EM. A one-health approach to identifying and mitigating the impact of endocrine disorders on human and equine athletes. Am J Vet Res 2022; 84:ajvr.22.11.0194. [PMID: 36563063 DOI: 10.2460/ajvr.22.11.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Endocrinopathies affect multiple species in ever-increasing percentages of their populations, creating an opportunity to apply one-health approaches to determining creative preventative measures and therapies in athletes. Obesity and alterations in insulin and glucose dynamics are medical concerns that play a role in whole-body health and homeostasis in both horses and humans. The role and impact of endocrine disorders on the musculoskeletal, cardiovascular, and reproductive systems are of particular interest to the athlete. Elucidation of both physiologic and pathophysiologic mechanisms involved in disease processes, starting in utero, is important for development of prevention and treatment strategies for the health and well-being of all species. This review focuses on the unrecognized effects of endocrine disorders associated with the origins of metabolic disease; inflammation at the intersection of endocrine disease and related diseases in the musculoskeletal, cardiovascular, and reproductive systems; novel interventions; and diagnostics that are informed via multiomic and one-health approaches. Readers interested in further details on specific equine performance conditions associated with endocrine disease are invited to read the companion Currents in One Health by Manfredi et al, JAVMA, February 2023.
Collapse
Affiliation(s)
- Jane M Manfredi
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| | - Sarah I Jacob
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| | - Brooke L Boger
- Comparative Medicine and Integrative Biology, Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| | - Elaine M Norton
- Department of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ
| |
Collapse
|
29
|
Harmsen JF, van Weeghel M, Parsons R, Janssens GE, Wefers J, van Moorsel D, Hansen J, Hoeks J, Hesselink MKC, Houtkooper RH, Schrauwen P. Divergent remodeling of the skeletal muscle metabolome over 24 h between young, healthy men and older, metabolically compromised men. Cell Rep 2022; 41:111786. [PMID: 36516749 DOI: 10.1016/j.celrep.2022.111786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/28/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
24 h whole-body substrate metabolism and the circadian clock within skeletal muscle are both compromised upon metabolic disease in humans. Here, we assessed the 24 h muscle metabolome by serial muscle sampling performed under 24 h real-life conditions in young, healthy (YH) men versus older, metabolically compromised (OMC) men. We find that metabolites associated with the initial steps of glycolysis and hexosamine biosynthesis are higher in OMC men around the clock, whereas metabolites associated with glutamine-alpha-ketoglutarate, ketone, and redox metabolism are lower in OMC men. The night period shows the largest number of differently expressed metabolites. Both groups demonstrate 24 h rhythmicity in half of the metabolome, but rhythmic metabolites only partially overlap. Specific metabolites are only rhythmic in YH men (adenosine), phase shifted in OMC men (cis-aconitate, flavin adenine dinucleotide [FAD], and uridine diphosphate [UDP]), or have a reduced 24 h amplitude in OMC men (hydroxybutyrate and hippuric acid). Our data highlight the plasticity of the skeletal muscle metabolome over 24 h and large divergence across the metabolic health spectrum.
Collapse
Affiliation(s)
- Jan-Frieder Harmsen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rex Parsons
- Australian Centre for Health Services Innovation and Centre for Healthcare Transformation, School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Jakob Wefers
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Dirk van Moorsel
- Division of Endocrinology, Department of Internal Medicine, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Jan Hansen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Joris Hoeks
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Matthijs K C Hesselink
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands.
| |
Collapse
|
30
|
Abstract
Circadian rhythms drive our daily behaviors to coincide with the earth's rotation on an approximate 24-h cycle. The circadian clock mechanism present in nearly every cell is responsible for our circadian rhythms and is comprised of a transcriptional-translational feedback loop in mammals. The central clock resides in the hypothalamus responding to external light cues, whereas peripheral clocks receive signals from the central clock and are also sensitive to cues from feeding and activity. Of the peripheral clocks, the skeletal muscle clock is particularly sensitive to exercise which has shown to be an important time-cue with the ability to influence and adjust the muscle clock phase in response to exercise timing. Since the skeletal muscle clock is also involved in the expression of tissue-specific gene expression-including glucoregulatory genes-this might suggest a role for exercise timing as a therapeutic strategy in metabolic diseases, like type 2 diabetes. Notably, those with type 2 diabetes have accompanied disruptions in their skeletal muscle clock mechanism which may also be related to the increased risk of type 2 diabetes seen among shift workers. Therefore, the direct influence of exercise on the skeletal muscle clock might support the use of exercise timing to provide disease-mitigating effects. Here, we highlight the potential use of time-of-day exercise as a chronotherapeutic tool within circadian medicine to improve the metabolic profile of type 2 diabetes and support long-term glycemic control, potentially working through the skeletal muscle clock and circadian physiology.
Collapse
Affiliation(s)
- Ryan A. Martin
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Myology Institute, University of Florida, Gainesville, Florida, USA
| | - Karyn A. Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Myology Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
31
|
Chacko E. Minimizing Negative Effects on Glycemia of Pre- and Post-Meal Exercise for People With Diabetes: A Personal Case Report and Review of the Literature. Clin Diabetes 2022; 41:311-321. [PMID: 37092166 PMCID: PMC10115764 DOI: 10.2337/cd22-0076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
32
|
Erickson ML, Allen JM, Beavers DP, Collins LM, Davidson KW, Erickson KI, Esser KA, Hesselink MKC, Moreau KL, Laber EB, Peterson CA, Peterson CM, Reusch JE, Thyfault JP, Youngstedt SD, Zierath JR, Goodpaster BH, LeBrasseur NK, Buford TW, Sparks LM. Understanding heterogeneity of responses to, and optimizing clinical efficacy of, exercise training in older adults: NIH NIA Workshop summary. GeroScience 2022; 45:569-589. [PMID: 36242693 PMCID: PMC9886780 DOI: 10.1007/s11357-022-00668-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 02/03/2023] Open
Abstract
Exercise is a cornerstone of preventive medicine and a promising strategy to intervene on the biology of aging. Variation in the response to exercise is a widely accepted concept that dates back to the 1980s with classic genetic studies identifying sequence variations as modifiers of the VO2max response to training. Since that time, the literature of exercise response variance has been populated with retrospective analyses of existing datasets that are limited by a lack of statistical power from technical error of the measurements and small sample sizes, as well as diffuse outcomes, very few of which have included older adults. Prospective studies that are appropriately designed to interrogate exercise response variation in key outcomes identified a priori and inclusive of individuals over the age of 70 are long overdue. Understanding the underlying intrinsic (e.g., genetics and epigenetics) and extrinsic (e.g., medication use, diet, chronic disease) factors that determine robust versus poor responses to various exercise factors will be used to improve exercise prescription to target the pillars of aging and optimize the clinical efficacy of exercise training in older adults. This review summarizes the proceedings of the NIA-sponsored workshop entitled, "Understanding Heterogeneity of Responses to, and Optimizing Clinical Efficacy of, Exercise Training in Older Adults" and highlights the importance and current state of exercise response variation research, particularly in older adults, prevailing challenges, and future directions.
Collapse
Affiliation(s)
- Melissa L Erickson
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL, 32804, USA
| | - Jacob M Allen
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Daniel P Beavers
- Department of Statistical Sciences, Wake Forest University, Winston-Salem, NC, USA
| | - Linda M Collins
- Department of Social and Behavioral Sciences, New York University, New York, NY, USA
| | - Karina W Davidson
- Institute of Health System Science, Feinstein Institutes for Medical Research, Northwell Health, New York, NY, USA
| | - Kirk I Erickson
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL, 32804, USA
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Matthijs K C Hesselink
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Kerrie L Moreau
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric B Laber
- Department of Statistical Sciences, Duke University, Durham, NC, USA
| | - Charlotte A Peterson
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Courtney M Peterson
- Department of Nutritional Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jane E Reusch
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John P Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KN, USA
| | - Shawn D Youngstedt
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, USA
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Bret H Goodpaster
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL, 32804, USA
| | - Nathan K LeBrasseur
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Thomas W Buford
- Department of Medicine, University of Alabama at Birmingham, 1313 13th St. S., Birmingham, AL, 35244, USA.
- Birmingham/Atlanta VA GRECC, Birmingham VA Medical Center, Birmingham, AL, USA.
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL, 32804, USA.
| |
Collapse
|
33
|
Savikj M, Stocks B, Sato S, Caidahl K, Krook A, Deshmukh AS, Zierath JR, Wallberg-Henriksson H. Exercise timing influences multi-tissue metabolome and skeletal muscle proteome profiles in type 2 diabetic patients - A randomized crossover trial. Metabolism 2022; 135:155268. [PMID: 35908579 DOI: 10.1016/j.metabol.2022.155268] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/10/2022] [Accepted: 07/22/2022] [Indexed: 01/06/2023]
Abstract
AIMS/HYPOTHESIS Metabolic effects of exercise may partly depend on the time-of-day when exercise is performed. We tested the hypothesis that exercise timing affects the adaptations in multi-tissue metabolome and skeletal muscle proteome profiles in men with type 2 diabetes. METHODS Men fitting the inclusion (type 2 diabetes, age 45-68 years and body mass index 23-33 kg/m2) and exclusion criteria (insulin treatment, smoking, concurrent systemic disease, and regular exercise training) were included in a randomized crossover trial (n = 15). Participants included in this metabolomics and proteomics analysis fully completed all exercise sessions (n = 8). The trial consisted of two weeks of high-intensity interval training (HIT) (three sessions/week) either in the morning (08:00, n = 5) or afternoon (16:45, n = 3), a two-week wash-out period, and an additional two weeks of HIT at the opposing time. Participants and researchers were not blinded to group allocation. Blood, skeletal muscle and subcutaneous adipose tissue were obtained before the first, and after each training period. Broad-spectrum, untargeted proteomic analysis was performed on skeletal muscle, and metabolomic analysis was performed on all biosamples. Differential content was assessed by linear regression and pathway set enrichment analyses were performed. Coordinated metabolic changes across tissues were identified by Spearman correlation analysis. RESULTS Metabolic and proteomic profiles remained stable after two weeks of HIT, and individual metabolites and proteins were not altered, irrespective of the time of day at which the training was performed. However, coordinated changes in relevant metabolic pathways and protein categories were identified. Morning and afternoon HIT similarly increased plasma diacylglycerols, skeletal muscle acyl-carnitines, and subcutaneous adipose tissue sphingomyelins and lysophospholipids. Acyl-carnitines were central to training-induced metabolic cross-talk across tissues. Plasma carbohydrates, via the penthose phosphate pathway, were increased and skeletal muscle lipids were decreased after morning compared to afternoon HIT. Skeletal muscle lipoproteins were higher, and mitochondrial complex III abundance was lower after morning compared to afternoon HIT. CONCLUSIONS/INTERPRETATION We provide a comprehensive analysis of a multi-tissue metabolomic and skeletal muscle proteomic responses to training at different times of the day in men with type 2 diabetes. Increased circulating lipids and changes in adipose tissue lipid composition were common between morning and afternoon HIT. However, afternoon HIT increased skeletal muscle lipids and mitochondrial content to a greater degree than morning training. Thus, there is a diurnal component in the metabolomic and proteomic response to exercise in men with type 2 diabetes. The clinical relevance of this response warrants further investigation.
Collapse
Affiliation(s)
- Mladen Savikj
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shogo Sato
- Center for Epigenetics and Metabolism, INSERM U1233, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Kenneth Caidahl
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
34
|
Pillon NJ, Smith JAB, Alm PS, Chibalin AV, Alhusen J, Arner E, Carninci P, Fritz T, Otten J, Olsson T, van Doorslaer de ten Ryen S, Deldicque L, Caidahl K, Wallberg-Henriksson H, Krook A, Zierath JR. Distinctive exercise-induced inflammatory response and exerkine induction in skeletal muscle of people with type 2 diabetes. SCIENCE ADVANCES 2022; 8:eabo3192. [PMID: 36070371 PMCID: PMC9451165 DOI: 10.1126/sciadv.abo3192] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/22/2022] [Indexed: 05/31/2023]
Abstract
Mechanistic insights into the molecular events by which exercise enhances the skeletal muscle phenotype are lacking, particularly in the context of type 2 diabetes. Here, we unravel a fundamental role for exercise-responsive cytokines (exerkines) on skeletal muscle development and growth in individuals with normal glucose tolerance or type 2 diabetes. Acute exercise triggered an inflammatory response in skeletal muscle, concomitant with an infiltration of immune cells. These exercise effects were potentiated in type 2 diabetes. In response to contraction or hypoxia, cytokines were mainly produced by endothelial cells and macrophages. The chemokine CXCL12 was induced by hypoxia in endothelial cells, as well as by conditioned medium from contracted myotubes in macrophages. We found that CXCL12 was associated with skeletal muscle remodeling after exercise and differentiation of cultured muscle. Collectively, acute aerobic exercise mounts a noncanonical inflammatory response, with an atypical production of exerkines, which is potentiated in type 2 diabetes.
Collapse
Affiliation(s)
- Nicolas J. Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jonathon A. B. Smith
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Petter S. Alm
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Alexander V. Chibalin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Julia Alhusen
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Erik Arner
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Tomas Fritz
- Centre for Family and Community Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Julia Otten
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Tommy Olsson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | | | | | - Kenneth Caidahl
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
| | | | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Juleen R. Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
| |
Collapse
|
35
|
Brito LC, Marin TC, Azevêdo L, Rosa-Silva JM, Shea SA, Thosar SS. Chronobiology of Exercise: Evaluating the Best Time to Exercise for Greater Cardiovascular and Metabolic Benefits. Compr Physiol 2022; 12:3621-3639. [PMID: 35766829 DOI: 10.1002/cphy.c210036] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Physiological function fluctuates across 24 h due to ongoing daily patterns of behaviors and environmental changes, including the sleep/wake, rest/activity, light/dark, and daily temperature cycles. The internal circadian system prepares the body for these anticipated behavioral and environmental changes, helping to orchestrate optimal cardiovascular and metabolic responses to these daily changes. In addition, circadian disruption, caused principally by exposure to artificial light at night (e.g., as occurs with night-shift work), increases the risk for both cardiovascular and metabolic morbidity and mortality. Regular exercise is a countermeasure against cardiovascular and metabolic risk, and recent findings suggest that the cardiovascular benefits on blood pressure and autonomic control are greater with evening exercise compared to morning exercise. Moreover, exercise can also reset the timing of the circadian system, which raises the possibility that appropriate timing of exercise could be used to counteract circadian disruption. This article introduces the overall functional relevance of the human circadian system and presents the evidence surrounding the concepts that the time of day that exercise is performed can modulate the cardiovascular and metabolic benefits. Further work is needed to establish exercise as a tool to appropriately reset the circadian system following circadian misalignment to preserve cardiovascular and metabolic health. © 2022 American Physiological Society. Compr Physiol 12:3621-3639, 2022.
Collapse
Affiliation(s)
- Leandro C Brito
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, Brazil.,Chronobiology Applied & Exercise Physiology Research Group, School of Arts, Science and Humanities, University of São Paulo, São Paulo, São Paulo, Brazil.,Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA
| | - Thais C Marin
- Chronobiology Applied & Exercise Physiology Research Group, School of Arts, Science and Humanities, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Luan Azevêdo
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Julia M Rosa-Silva
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Steven A Shea
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA.,OHSU-PSU School of Public Health Oregon Health & Science University, Portland, Oregon, USA
| | - Saurabh S Thosar
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA.,OHSU-PSU School of Public Health Oregon Health & Science University, Portland, Oregon, USA.,School of Nursing, Oregon Health & Science University, Portland, Oregon, USA.,Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
36
|
Hetherington-Rauth M, Magalhães JP, Rosa GB, Correia IR, Carneiro T, Oliveira EC, Sardinha LB. Morning versus afternoon physical activity and health-related outcomes in individuals with type 2 diabetes. Diabetes Obes Metab 2022; 24:1172-1175. [PMID: 35212107 DOI: 10.1111/dom.14676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/10/2022] [Accepted: 02/20/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Megan Hetherington-Rauth
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - João P Magalhães
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Gil B Rosa
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Inês R Correia
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Tomás Carneiro
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Estela C Oliveira
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Luís B Sardinha
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
37
|
Mansingh S, Handschin C. Time to Train: The Involvement of the Molecular Clock in Exercise Adaptation of Skeletal Muscle. Front Physiol 2022; 13:902031. [PMID: 35547572 PMCID: PMC9081842 DOI: 10.3389/fphys.2022.902031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 11/23/2022] Open
Abstract
Circadian rhythms regulate a host of physiological processes in a time-dependent manner to maintain homeostasis in response to various environmental stimuli like day and night cycles, food intake, and physical activity. Disruptions in circadian rhythms due to genetic mutations, shift work, exposure to artificial light sources, aberrant eating habits, and abnormal sleep cycles can have dire consequences for health. Importantly, exercise training efficiently ameliorates many of these adverse effects and the role of skeletal muscle in mediating the benefits of exercise is a topic of great interest. However, the molecular and physiological interactions between the clock, skeletal muscle function and exercise are poorly understood, and are most likely a combination of molecular clock components directly acting in muscle as well as in concordance with other peripheral metabolic organ systems like the liver. This review aims to consolidate existing experimental evidence on the involvement of molecular clock factors in exercise adaptation of skeletal muscle and to highlight the existing gaps in knowledge that need to be investigated to develop therapeutic avenues for diseases that are associated with these systems.
Collapse
|
38
|
Augsburger GR, Soloveva A, Carr JC. Sex and limb comparisons of neuromuscular function in the morning versus the evening. Physiol Rep 2022; 10:e15260. [PMID: 35581749 PMCID: PMC9114651 DOI: 10.14814/phy2.15260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 06/04/2023] Open
Abstract
The time-of-day influence on neuromuscular function is well-documented, but important details remain elusive. It is currently unknown whether males and females differ in their diurnal variation for optimal neuromuscular performance. The purpose of this study is to identify the time-of-day influence on neuromuscular function between sexes and determine whether these responses differ for the upper versus lower limbs. A group of males (n = 12) and females (n = 15) completed neuromuscular performance testing in the morning (07:00-09:00) and evening (17:00-19:00) on separate days in a randomized order. Maximal force, the normalized rate of force development, EMG, normalized EMG rise, and submaximal force steadiness were compared between morning and evening hours. The main findings show that maximal force was greater in the evening for the knee extensors (d = 0.570, p < 0.01) but not the elbow flexors (d = 0.212, p = 0.281), whereas maximal muscle excitation was greater in the evening for the biceps brachii (d = 0.348, p < 0.01) but not the vastus lateralis (d = 0.075, p = 0.526) with no influence of sex. However, force steadiness during knee extension was superior in the evening versus the morning for males (d = 0.734, p = 0.025) and compared to evening values for females (g = 1.19, p = 0.032). Overall, these findings show that time-of-day affects the knee extensors more than the elbow flexors and that diurnal variability between sexes appears to be task-dependent.
Collapse
Affiliation(s)
| | - Alisa Soloveva
- Kinesiology DepartmentTexas Christian UniversityFort WorthTexasUSA
| | - Joshua C. Carr
- Kinesiology DepartmentTexas Christian UniversityFort WorthTexasUSA
- Department of Medical EducationTexas Christian University School of MedicineFort WorthTexasUSA
| |
Collapse
|
39
|
Creasy SA, Wayland L, Panter SL, Purcell SA, Rosenberg R, Willis EA, Shiferaw B, Grau L, Breit MJ, Bessesen DH, Melanson EL, Catenacci VA. Effect of Morning and Evening Exercise on Energy Balance: A Pilot Study. Nutrients 2022; 14:816. [PMID: 35215466 PMCID: PMC8877501 DOI: 10.3390/nu14040816] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study was to evaluate the feasibility and acceptability of randomizing adults with overweight and obesity (BMI 25-40 kg/m2) to morning (06:00-10:00) or evening (15:00-19:00) aerobic exercise. Participants completed four exercise sessions per week in the morning (AM, n = 18) or evening (PM, n = 15). The exercise program was 15 weeks and progressed from 70 to 80% heart rate maximum and 750-2000 kcal/week. Bodyweight, body composition, total daily energy expenditure (TDEE), energy intake (EI), sleep, sedentary behavior (SB), non-exercise physical activity (NEPA), and maximal aerobic capacity were assessed at baseline and week 15. Study retention was 94% and adherence to the supervised exercise program was ≥90% in both groups. Weight change was -0.9 ± 2.8 kg and -1.4 ± 2.3 kg in AM and PM, respectively. AM and PM increased TDEE (AM: 222 ± 399 kcal/day, PM: 90 ± 150 kcal/day). EI increased in AM (99 ± 198 kcal/day) and decreased in PM (-21 ± 156 kcal/day) across the intervention. It is feasible to randomize adults with overweight and obesity to morning or evening aerobic exercise with high levels of adherence. Future trials are needed to understand how the timing of exercise affects energy balance and body weight regulation.
Collapse
Affiliation(s)
- Seth A. Creasy
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.L.P.); (S.A.P.); (R.R.); (M.J.B.); (D.H.B.); (E.L.M.); (V.A.C.)
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Liza Wayland
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Shelby L. Panter
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.L.P.); (S.A.P.); (R.R.); (M.J.B.); (D.H.B.); (E.L.M.); (V.A.C.)
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Sarah A. Purcell
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.L.P.); (S.A.P.); (R.R.); (M.J.B.); (D.H.B.); (E.L.M.); (V.A.C.)
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Rebecca Rosenberg
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.L.P.); (S.A.P.); (R.R.); (M.J.B.); (D.H.B.); (E.L.M.); (V.A.C.)
| | - Erik A. Willis
- Center for Health Promotion Disease Prevention, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bethelhem Shiferaw
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (B.S.); (L.G.)
| | - Laura Grau
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (B.S.); (L.G.)
| | - Matthew J. Breit
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.L.P.); (S.A.P.); (R.R.); (M.J.B.); (D.H.B.); (E.L.M.); (V.A.C.)
| | - Daniel H. Bessesen
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.L.P.); (S.A.P.); (R.R.); (M.J.B.); (D.H.B.); (E.L.M.); (V.A.C.)
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
- Division of Endocrinology, Denver Health Medical Center, Denver, CO 80204, USA
| | - Edward L. Melanson
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.L.P.); (S.A.P.); (R.R.); (M.J.B.); (D.H.B.); (E.L.M.); (V.A.C.)
- Eastern Colorado VA Geriatric Research, Education, and Clinical Center, Aurora, CO 80045, USA
- Division of Geriatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Victoria A. Catenacci
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.L.P.); (S.A.P.); (R.R.); (M.J.B.); (D.H.B.); (E.L.M.); (V.A.C.)
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| |
Collapse
|
40
|
Petersen MH, de Almeida ME, Wentorf EK, Jensen K, Ørtenblad N, Højlund K. High-intensity interval training combining rowing and cycling efficiently improves insulin sensitivity, body composition and VO 2max in men with obesity and type 2 diabetes. Front Endocrinol (Lausanne) 2022; 13:1032235. [PMID: 36387850 PMCID: PMC9664080 DOI: 10.3389/fendo.2022.1032235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
AIMS Non-weight-bearing high-intensity interval training (HIIT) involving several muscle groups may efficiently improve metabolic health without compromising adherence in obesity and type 2 diabetes. In a non-randomized intervention study, we examined the effect of a novel HIIT-protocol, recruiting both lower and upper body muscles, on insulin sensitivity, measures of metabolic health and adherence in obesity and type 2 diabetes. METHODS In 15 obese men with type 2 diabetes and age-matched obese (n=15) and lean (n=18) glucose-tolerant men, the effects of 8-weeks supervised HIIT combining rowing and cycling on ergometers (3 sessions/week) were examined by DXA-scan, incremental exercise test and hyperinsulinemic-euglycemic clamp combined with indirect calorimetry. RESULTS At baseline, insulin-stimulated glucose disposal rate (GDR) was ~40% reduced in the diabetic vs the non-diabetic groups (all p<0.01). In response to HIIT, insulin-stimulated GDR increased ~30-40% in all groups (all p<0.01) entirely explained by increased glucose storage. These changes were accompanied by ~8-15% increases in VO2max, (all p<0.01), decreased total fat mass and increased lean body mass in all groups (all p<0.05). There were no correlations between these training adaptations and no group-differences in these responses. HbA1c showed a clinically relevant decrease in men with type 2 diabetes (4±2 mmol/mol; p<0.05). Importantly, adherence was high (>95%) in all groups and no injuries were reported. CONCLUSIONS A novel HIIT-protocol recruiting lower and upper body muscles efficiently improves insulin sensitivity, VO2max and body composition with intact responses in obesity and type 2 diabetes. The high adherence and lack of injuries show that non-weight-bearing HIIT involving several muscle groups is a promising mode of exercise training in obesity and type 2 diabetes.
Collapse
Affiliation(s)
| | - Martin Eisemann de Almeida
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Emil Kleis Wentorf
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Kurt Jensen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- *Correspondence: Kurt Højlund,
| |
Collapse
|
41
|
Zakharova AN, Kironenko TA, Milovanova KG, Orlova AA, Dyakova EY, Kalinnikova Yu G, Kabachkova AV, Chibalin AV, Kapilevich LV. Treadmill Training Effect on the Myokines Content in Skeletal Muscles of Mice With a Metabolic Disorder Model. Front Physiol 2021; 12:709039. [PMID: 34858197 PMCID: PMC8631430 DOI: 10.3389/fphys.2021.709039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/12/2021] [Indexed: 02/02/2023] Open
Abstract
The effect of treadmill training loads on the content of cytokines in mice skeletal muscles with metabolic disorders induced by a 16 week high fat diet (HFD) was studied. The study included accounting the age and biorhythmological aspects. In the experiment, mice were used at the age of 4 and 32 weeks, by the end of the experiment—respectively 20 and 48 weeks. HFD feeding lasted 16 weeks. Treadmill training were carried out for last 4 weeks six times a week, the duration 60 min and the speed from 15 to 18 m/min. Three modes of loading were applied. The first subgroup was subjected to stress in the morning hours (light phase); the second subgroup was subjected to stress in the evening hours (dark phase); the third subgroup was subjected to loads in the shift mode (the first- and third-weeks treadmill training was used in the morning hours, the second and fourth treadmill training was used in the evening hours). In 20-week-old animals, the exercise effect does not depend on the training regime, however, in 48-week-old animals, the decrease in body weight in mice with the shift training regime was more profound. HFD affected muscle myokine levels. The content of all myokines, except for LIF, decreased, while the concentration of CLCX1 decreased only in young animals in response to HFD. The treadmill training caused multidirectional changes in the concentration of myokines in muscle tissue. The IL-6 content changed most profoundly. These changes were observed in all groups of animals. The changes depended to the greatest extent on the training time scheme. The effect of physical activity on the content of IL-15 in the skeletal muscle tissue was observed mostly in 48-week-old mice. In 20-week-old animals, physical activity led to an increase in the concentration of LIF in muscle tissue when applied under the training during the dark phase or shift training scheme. In the HFD group, this effect was significantly more pronounced. The content of CXCL1 did not change with the use of treadmill training in almost all groups of animals. Physical activity, introduced considering circadian rhythms, is a promising way of influencing metabolic processes both at the cellular and systemic levels, which is important for the search for new ways of correcting metabolic disorders.
Collapse
Affiliation(s)
- Anna Nikolaevna Zakharova
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
| | | | - Kseniia G Milovanova
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
| | - A A Orlova
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
| | - E Yu Dyakova
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
| | - G Kalinnikova Yu
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
| | - Anastasia V Kabachkova
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
| | - Alexander V Chibalin
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia.,Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Leonid V Kapilevich
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia.,Central Research Laboratory, Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
42
|
Abstract
Circadian clocks are biological timing mechanisms that generate 24-h rhythms of physiology and behavior, exemplified by cycles of sleep/wake, hormone release, and metabolism. The adaptive value of clocks is evident when internal body clocks and daily environmental cycles are mismatched, such as in the case of shift work and jet lag or even mistimed eating, all of which are associated with physiological disruption and disease. Studies with animal and human models have also unraveled an important role of functional circadian clocks in modulating cellular and organismal responses to physiological cues (ex., food intake, exercise), pathological insults (e.g. virus and parasite infections), and medical interventions (e.g. medication). With growing knowledge of the molecular and cellular mechanisms underlying circadian physiology and pathophysiology, it is becoming possible to target circadian rhythms for disease prevention and treatment. In this review, we discuss recent advances in circadian research and the potential for therapeutic applications that take patient circadian rhythms into account in treating disease.
Collapse
Affiliation(s)
- Yool Lee
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington
| | - Jeffrey M. Field
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amita Sehgal
- Howard Hughes Medical Institute, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
43
|
Blankenship JM, Rosenberg RC, Rynders CA, Melanson EL, Catenacci VA, Creasy SA. Examining the Role of Exercise Timing in Weight Management: A Review. Int J Sports Med 2021; 42:967-978. [PMID: 34034354 PMCID: PMC8591839 DOI: 10.1055/a-1485-1293] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many adults cite exercise as a primary strategy for losing weight, yet exercise alone is modestly effective for weight loss and results in variable weight loss responses. It is possible that some of the variability in weight loss may be explained by the time of day that exercise is performed. Few studies have directly compared the effects of exercise performed at different times of the day (i. e., morning versus evening exercise). Results from these existing studies are mixed with some studies demonstrating superior weight and fat mass loss from morning exercise, while other studies have found that evening exercise may be better for weight management. Exercise timing may alter modifiable lifestyle behaviors involved in weight management, such as non-exercise physical activity, energy intake, and sleep. The purpose of this review is to summarize evidence for and against time-of-day dependent effects of exercise on weight management. Although limited, we also review studies that have examined the effect of exercise timing on other lifestyle behaviors linked to body weight regulation. While exercise at any time of day is beneficial for health, understanding whether there is an optimal time of day to exercise may advance personalized treatment paradigms for weight management.
Collapse
Affiliation(s)
- Jennifer M. Blankenship
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Corey A. Rynders
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Edward L. Melanson
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Geriatrics, VA Eastern Colorado Health Care System, Aurora, CO
| | - Victoria A. Catenacci
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Seth A. Creasy
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
44
|
Moholdt T, Parr EB, Devlin BL, Debik J, Giskeødegård G, Hawley JA. The effect of morning vs evening exercise training on glycaemic control and serum metabolites in overweight/obese men: a randomised trial. Diabetologia 2021; 64:2061-2076. [PMID: 34009435 PMCID: PMC8382617 DOI: 10.1007/s00125-021-05477-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/09/2021] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS We determined whether the time of day of exercise training (morning vs evening) would modulate the effects of consumption of a high-fat diet (HFD) on glycaemic control, whole-body health markers and serum metabolomics. METHODS In this three-armed parallel-group randomised trial undertaken at a university in Melbourne, Australia, overweight/obese men consumed an HFD (65% of energy from fat) for 11 consecutive days. Participants were recruited via social media and community advertisements. Eligibility criteria for participation were male sex, age 30-45 years, BMI 27.0-35.0 kg/m2 and sedentary lifestyle. The main exclusion criteria were known CVD or type 2 diabetes, taking prescription medications, and shift-work. After 5 days, participants were allocated using a computer random generator to either exercise in the morning (06:30 hours), exercise in the evening (18:30 hours) or no exercise for the subsequent 5 days. Participants and researchers were not blinded to group assignment. Changes in serum metabolites, circulating lipids, cardiorespiratory fitness, BP, and glycaemic control (from continuous glucose monitoring) were compared between groups. RESULTS Twenty-five participants were randomised (morning exercise n = 9; evening exercise n = 8; no exercise n = 8) and 24 participants completed the study and were included in analyses (n = 8 per group). Five days of HFD induced marked perturbations in serum metabolites related to lipid and amino acid metabolism. Exercise training had a smaller impact than the HFD on changes in circulating metabolites, and only exercise undertaken in the evening was able to partly reverse some of the HFD-induced changes in metabolomic profiles. Twenty-four-hour glucose concentrations were lower after 5 days of HFD compared with the participants' habitual diet (5.3 ± 0.4 vs 5.6 ± 0.4 mmol/l, p = 0.001). There were no significant changes in 24 h glucose concentrations for either exercise group but lower nocturnal glucose levels were observed in participants who trained in the evening, compared with when they consumed the HFD alone (4.9 ± 0.4 vs 5.3 ± 0.3 mmol/l, p = 0.04). Compared with the no-exercise group, peak oxygen uptake improved after both morning (estimated effect 1.3 ml min-1 kg-1 [95% CI 0.5, 2.0], p = 0.003) and evening exercise (estimated effect 1.4 ml min-1 kg-1 [95% CI 0.6, 2.2], p = 0.001). Fasting blood glucose, insulin, cholesterol, triacylglycerol and LDL-cholesterol concentrations decreased only in participants allocated to evening exercise training. There were no unintended or adverse effects. CONCLUSIONS/INTERPRETATION A short-term HFD in overweight/obese men induced substantial alterations in lipid- and amino acid-related serum metabolites. Improvements in cardiorespiratory fitness were similar regardless of the time of day of exercise training. However, improvements in glycaemic control and partial reversal of HFD-induced changes in metabolic profiles were only observed when participants exercise trained in the evening. TRIAL REGISTRATION anzctr.org.au registration no. ACTRN12617000304336. FUNDING This study was funded by the Novo Nordisk Foundation (NNF14OC0011493).
Collapse
Affiliation(s)
- Trine Moholdt
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
- Women's Clinic, St Olavs Hospital, Trondheim, Norway.
| | - Evelyn B Parr
- Exercise & Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, VIC, Australia
| | - Brooke L Devlin
- Exercise & Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, VIC, Australia
- Department of Dietetics, Nutrition and Sport, La Trobe University, Melbourne, VIC, Australia
| | - Julia Debik
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Guro Giskeødegård
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - John A Hawley
- Exercise & Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, VIC, Australia.
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW This review will discuss the recent studies that implicate disturbed diurnal rhythms with the development of obesity. The second part of the review will discuss studies that use feeding time to restore diurnal rhythms and rescue obesity. RECENT FINDINGS Studies in patients with obesity and diabetes reveal attenuated circadian and metabolic rhythms in adipose tissue. The use of animal models furthers our mechanistic insight on how environmental disturbances such as high-fat diet and shift work disturb circadian and metabolic rhythms. Studies in both animals and humans describe how disturbance of diurnal rhythms can lead to increased adiposity and obesity. The effects of time-restricted feeding in animals and the time of feeding in humans provide new evidence on how restoring diurnal rhythms can reverse adiposity and obesity. SUMMARY Many more studies in humans were performed in recent years to confirm a number of findings from animal studies. It is becoming apparent that the time of feeding and maintaining a healthy daily schedule is important for metabolic health. Ongoing studies may soon improve current recommendations regarding the time of eating and time of day behavior.
Collapse
Affiliation(s)
- Georgios K Paschos
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
46
|
Abstract
Since ancient times, the health benefits of regular physical activity/exercise have been recognized and the classic studies of Morris and Paffenbarger provided the epidemiological evidence in support of such an association. Cardiorespiratory fitness, often measured by maximal oxygen uptake, and habitual physical activity levels are inversely related to mortality. Thus, studies exploring the biological bases of the health benefits of exercise have largely focused on the cardiovascular system and skeletal muscle (mass and metabolism), although there is increasing evidence that multiple tissues and organ systems are influenced by regular exercise. Communication between contracting skeletal muscle and multiple organs has been implicated in exercise benefits, as indeed has other interorgan "cross-talk." The application of molecular biology techniques and "omics" approaches to questions in exercise biology has opened new lines of investigation to better understand the beneficial effects of exercise and, in so doing, inform the optimization of exercise regimens and the identification of novel therapeutic strategies to enhance health and well-being.
Collapse
Affiliation(s)
- Mark Hargreaves
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
47
|
Gillen JB, Estafanos S, Govette A. Exercise-nutrient interactions for improved postprandial glycemic control and insulin sensitivity. Appl Physiol Nutr Metab 2021; 46:856-865. [PMID: 34081875 DOI: 10.1139/apnm-2021-0168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Type 2 diabetes (T2D) is a rapidly growing yet largely preventable chronic disease. Exaggerated increases in blood glucose concentration following meals is a primary contributor to many long-term complications of the disease that decrease quality of life and reduce lifespan. Adverse health consequences also manifest years prior to the development of T2D due to underlying insulin resistance and exaggerated postprandial concentrations of the glucose-lowering hormone insulin. Postprandial hyperglycemic and hyperinsulinemic excursions can be improved by exercise, which contributes to the well-established benefits of physical activity for the prevention and treatment of T2D. The aim of this review is to describe the postprandial dysmetabolism that occurs in individuals at risk for and with T2D, and highlight how acute and chronic exercise can lower postprandial glucose and insulin excursions. In addition to describing the effects of traditional moderate-intensity continuous exercise on glycemic control, we highlight other forms of activity including low-intensity walking, high-intensity interval exercise, and resistance training. In an effort to improve knowledge translation and implementation of exercise for maximal glycemic benefits, we also describe how timing of exercise around meals and post-exercise nutrition can modify acute and chronic effects of exercise on glycemic control and insulin sensitivity. Novelty: Exaggerated postprandial blood glucose and insulin excursions are associated with disease risk. Both a single session and repeated sessions of exercise improve postprandial glycemic control in individuals with and without T2D. The glycemic benefits of exercise can be enhanced by considering the timing and macronutrient composition of meals around exercise.
Collapse
Affiliation(s)
- Jenna B Gillen
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada
| | - Stephanie Estafanos
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada
| | - Alexa Govette
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada
| |
Collapse
|
48
|
Remchak MME, Piersol KL, Bhatti S, Spaeth AM, Buckman JF, Malin SK. Considerations for Maximizing the Exercise "Drug" to Combat Insulin Resistance: Role of Nutrition, Sleep, and Alcohol. Nutrients 2021; 13:1708. [PMID: 34069950 PMCID: PMC8157556 DOI: 10.3390/nu13051708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/24/2021] [Accepted: 05/13/2021] [Indexed: 01/12/2023] Open
Abstract
Insulin resistance is a key etiological factor in promoting not only type 2 diabetes mellitus but also cardiovascular disease (CVD). Exercise is a first-line therapy for combating chronic disease by improving insulin action through, in part, reducing hepatic glucose production and lipolysis as well as increasing skeletal muscle glucose uptake and vasodilation. Just like a pharmaceutical agent, exercise can be viewed as a "drug" such that identifying an optimal prescription requires a determination of mode, intensity, and timing as well as consideration of how much exercise is done relative to sitting for prolonged periods (e.g., desk job at work). Furthermore, proximal nutrition (nutrient timing, carbohydrate intake, etc.), sleep (or lack thereof), as well as alcohol consumption are likely important considerations for enhancing adaptations to exercise. Thus, identifying the maximal exercise "drug" for reducing insulin resistance will require a multi-health behavior approach to optimize type 2 diabetes and CVD care.
Collapse
Affiliation(s)
- Mary-Margaret E. Remchak
- Department of Kinesiology & Health, Rutgers University, New Brunswick, NJ 08901, USA; (M.-M.E.R.); (K.L.P.); (A.M.S.); (J.F.B.)
| | - Kelsey L. Piersol
- Department of Kinesiology & Health, Rutgers University, New Brunswick, NJ 08901, USA; (M.-M.E.R.); (K.L.P.); (A.M.S.); (J.F.B.)
| | - Sabha Bhatti
- Division of Cardiovascular Medicine, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Andrea M. Spaeth
- Department of Kinesiology & Health, Rutgers University, New Brunswick, NJ 08901, USA; (M.-M.E.R.); (K.L.P.); (A.M.S.); (J.F.B.)
| | - Jennifer F. Buckman
- Department of Kinesiology & Health, Rutgers University, New Brunswick, NJ 08901, USA; (M.-M.E.R.); (K.L.P.); (A.M.S.); (J.F.B.)
- Center of Alcohol Studies, Rutgers University, Piscataway, NJ 08854, USA
| | - Steven K. Malin
- Department of Kinesiology & Health, Rutgers University, New Brunswick, NJ 08901, USA; (M.-M.E.R.); (K.L.P.); (A.M.S.); (J.F.B.)
- Division of Endocrinology, Metabolism & Nutrition, Rutgers University, New Brunswick, NJ 08901, USA
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA
- Institute of Translational Medicine and Science, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
49
|
Gabriel BM, Zierath JR. Zeitgebers of skeletal muscle and implications for metabolic health. J Physiol 2021; 600:1027-1036. [PMID: 33963554 DOI: 10.1113/jp280884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022] Open
Abstract
Metabolic health is a crucial area of current research, and is an outcome of innate physiology, and interactions with the environment. Environmental cues, such as the Earth's day-night rhythm, partly regulate diurnal hormones and metabolites. Circadian physiology consists of highly conserved biological processes over ∼24-h cycles, which are influenced by external cues (Zeitgebers - 'time-keepers'). Skeletal muscle has diurnal variations of a large magnitude, owing in part to the strong nature of physical activity throughout the day and other external Zeitgebers. The orchestration of whole-body and skeletal muscle metabolism is a complex, finely tuned process, and molecular diurnal variations are regulated by a transcription-translation feedback loop controlled by the molecular clock, as well as non-transcriptional metabolic processes. The mitochondrion may play an important role in regulating diurnal metabolites within skeletal muscle, given its central role in the regulation of NAD+ /NADH, O2 , reactive oxygen species and redox metabolism. These molecular pathways display diurnal variation and illustrate the complex orchestration of circadian metabolism in skeletal muscle. Probably the most robust Zeitgeber of skeletal muscle is exercise, which alters glucose metabolism and flux, in addition to a range of other diurnal metabolic pathways. Indeed, performing exercise at different times of the day may alter metabolism and health outcomes in some cohorts. The objective of this Symposium Review is to briefly cover the current literature, and to speculate regarding future areas of research. Thus, we postulate that metabolic health may be optimized by altering the timing of external cues such as diet and exercise.
Collapse
Affiliation(s)
- Brendan M Gabriel
- Aberdeen Cardiovascular & Diabetes Centre, The Rowett Institute, University of Aberdeen, Aberdeen, UK.,Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
50
|
Bruhn L, Kjøbsted R, Quist JS, Gram AS, Rosenkilde M, Færch K, Wojtaszewski JF, Stallknecht B, Blond MB. Effect of exercise training on skeletal muscle protein expression in relation to insulin sensitivity: Per-protocol analysis of a randomized controlled trial (GO-ACTIWE). Physiol Rep 2021; 9:e14850. [PMID: 34042297 PMCID: PMC8157763 DOI: 10.14814/phy2.14850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022] Open
Abstract
Exercise training improves peripheral insulin sensitivity and leads to molecular adaptations in the skeletal muscle. We investigated changes in the expression of key muscle proteins in the glucose metabolic pathway following active commuting by bike or leisure-time exercise at two different intensities. In addition, potential associations between insulin sensitivity and muscle protein expression were examined. This per-protocol analysis included 72 out of 130 physically inactive, healthy women and men (20-45 years) with overweight/obesity (BMI: 25-35 kg/m2 ) who completed 6 months of no intervention (CON, n = 12), active commuting by bike (BIKE, n = 14), or leisure-time exercise of moderate (MOD, n = 28) or vigorous (VIG, n = 18) intensity. Exercise was prescribed 5 days/week with a weekly exercise energy expenditure of 1,600 kcal for women and 2,100 kcal for men. Insulin sensitivity was determined by a hyperinsulinemic euglycemic clamp and skeletal muscle biopsies were obtained from m. vastus lateralis and analyzed for protein expression at baseline and after 3 and 6 months of intervention. We found an increased expression of pyruvate dehydrogenase (PDH) in the exercise groups compared with the control group following 6 months of training. No differential effects were observed on the protein expression following moderate versus vigorous intensity exercise. In addition, we found a positive association between insulin sensitivity and the expression of glucose transporter type 4 as well as PDH. The positive association and the increase in expression of PDH after exercise training points toward a role for PDH in the training-induced enhancement of insulin sensitivity.
Collapse
Affiliation(s)
- Lea Bruhn
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Steno Diabetes Center CopenhagenGentofteDenmark
| | - Rasmus Kjøbsted
- Section of Molecular PhysiologyAugust Krogh ClubDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Jonas Salling Quist
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Steno Diabetes Center CopenhagenGentofteDenmark
| | - Anne Sofie Gram
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Mads Rosenkilde
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Kristine Færch
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Steno Diabetes Center CopenhagenGentofteDenmark
| | - Jørgen F.P. Wojtaszewski
- Section of Molecular PhysiologyAugust Krogh ClubDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Bente Stallknecht
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Martin Bæk Blond
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Steno Diabetes Center CopenhagenGentofteDenmark
| |
Collapse
|