1
|
Saltafossi M, Heck D, Kluger DS, Varga S. Common threads: Altered interoceptive processes across affective and anxiety disorders. J Affect Disord 2025; 369:244-254. [PMID: 39321982 DOI: 10.1016/j.jad.2024.09.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
There is growing attention towards atypical brain-body interactions and interoceptive processes and their potential role in psychiatric conditions, including affective and anxiety disorders. This paper aims to synthesize recent developments in this field. We present emerging explanatory models and focus on brain-body coupling and modulations of the underlying neurocircuitry that support the concept of a continuum of affective disorders. Grounded in theoretical frameworks like peripheral theories of emotion and predictive processing, we propose that altered interoceptive processes might represent transdiagnostic mechanisms that confer common vulnerability traits across multiple disorders. A deeper understanding of the interplay between bodily states and neural processing is essential for a holistic conceptualization of mental disorders.
Collapse
Affiliation(s)
- Martina Saltafossi
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Detlef Heck
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA; Center for Cerebellar Network Structure and Function in Health and Disease, University of Minnesota, Duluth, MN, USA
| | - Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Somogy Varga
- Department of Philosophy, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
2
|
Panpan Z, Yang L, Tao M, Chong T, Fan C, Hao S, Xuwu X. Effect of comorbid allergic diseases on attention-deficit hyperactivity disorder symptoms and sleep: A cross-sectional study. RESEARCH IN DEVELOPMENTAL DISABILITIES 2025; 157:104907. [PMID: 39793214 DOI: 10.1016/j.ridd.2024.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 12/09/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
INTRODUCTION Recent studies have shown a close relationship between attention-deficit hyperactivity disorder (ADHD) and allergic diseases in children. Regrettably, few studies have investigated the effect of comorbid allergies on ADHD symptoms and sleep, in particular, it is unclear whether comorbid allergic conditions further exacerbate sleep problems in children with ADHD. OBJECTIVE To investigate the effect of comorbid allergic on symptoms and sleep in children with ADHD. METHODS This was a cross-sectional study, 222 ADHD children (aged 6-14 years) were enrolled in, of whom 93 had allergic diseases and 129 without allergic diseases. Collected all ADHD symptom severity and functional impairment scales, including: Swanson, Nolan and Pelham (SNAP) scale, Integrated Visual and Auditory Continuous Performance Test (IVA-CPT), Conners Parents Symptom questionnaire (PSQ) and Weiss Functional Impairment Rating Scale-Parent Form (WFIRS-P). Every guardian of children diagnosed with ADHD is required to complete the Children's Sleep Habits Questionnaire (CSHQ). RESULTS Compared to ADHD children without allergic diseases, we observed significantly higher hyperactivity and impulsivity scores on the SNAP-IV, higher hyperactivity index and impulsivity index on the PSQ, and higher risky activities on the WFIRS-P in ADHD children with comorbid allergic diseases (all p < 0.05). CSHQ total score and sleep disordered breathing were particularly prominent in ADHD children with comorbid allergic diseases (all p < 0.05), and changes in CSHQ correlate with ADHD symptoms and functional impairment. Further analyses revealed that ADHD symptoms and sleep did not worsen with increasing number of comorbid allergic diseases (all p > 0.05). The primary influence on ADHD symptoms and sleep was the type of allergic diseases, where food allergies predominantly influence ADHD symptoms, including attention deficit disorder and hyperactivity disorder (all p < 0.05); allergic rhinitis notably impacts parasomnias, sleep disordered breathing (all p < 0.05); and allergic asthma significantly affects sleep anxiety, daytime sleepiness, and sleep disordered breathing in children with ADHD (all p < 0.05). CONCLUSION The presence of comorbid allergic diseases affects both the hyperactivity and impulsivity symptoms of ADHD and sleep disordered breathing, predominantly influenced by the type of the allergic diseases.
Collapse
Affiliation(s)
- Zhang Panpan
- Dalian Medical University, Dalian, Liaoning, China; Department of Child Health, Dalian Municipal Women and Children's Medical Center (Group), Dalian, Liaoning, China
| | - Liu Yang
- Dalian Medical University, Dalian, Liaoning, China; Department of Child Health, Dalian Municipal Women and Children's Medical Center (Group), Dalian, Liaoning, China
| | - Ma Tao
- Department of Intensive Care Unit, The First Hospital of Yulin, Yulin, Shannxi, China
| | - Tian Chong
- Dalian Medical University, Dalian, Liaoning, China; Department of Child Health, Dalian Municipal Women and Children's Medical Center (Group), Dalian, Liaoning, China
| | - Cao Fan
- Dalian Medical University, Dalian, Liaoning, China; Department of Child Health, Dalian Municipal Women and Children's Medical Center (Group), Dalian, Liaoning, China
| | - Sun Hao
- Dalian Medical University, Dalian, Liaoning, China; Department of Child Health, Dalian Municipal Women and Children's Medical Center (Group), Dalian, Liaoning, China
| | - Xiao Xuwu
- Dalian Medical University, Dalian, Liaoning, China; Department of Child Health, Dalian Municipal Women and Children's Medical Center (Group), Dalian, Liaoning, China.
| |
Collapse
|
3
|
Dias ALA, Drieskens D, Belo JA, Duarte EH, Laplagne DA, Tort ABL. Breathing Modulates Network Activity in Frontal Brain Regions during Anxiety. J Neurosci 2025; 45:e1191242024. [PMID: 39528274 PMCID: PMC11714350 DOI: 10.1523/jneurosci.1191-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/05/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
Anxiety elicits various physiological responses, including changes in the respiratory rate and neuronal activity within specific brain regions such as the medial prefrontal cortex (mPFC). Previous research suggests that the olfactory bulb (OB) modulates the mPFC through respiration-coupled oscillations (RCOs), which have been linked to fear-related freezing behavior. Nevertheless, the impact of breathing on frontal brain networks during other negative emotional responses, such as anxiety-related states characterized by higher breathing rates, remains unclear. To address this, we subjected rats to the elevated plus maze (EPM) paradigm while simultaneously recording respiration and local field potentials in the OB and mPFC. Our findings demonstrate distinct respiratory patterns during EPM exploration: slower breathing frequencies prevailed in the closed arms, whereas faster frequencies were observed in the open arms, independent of locomotor activity, indicating that anxiety-like states are associated with increased respiratory rates. Additionally, we identified RCOs at different frequencies, mirroring the bimodal distribution of respiratory frequencies. RCOs exhibited higher power during open-arm exploration, when they showed greater coherence with breathing at faster frequencies. Furthermore, we confirmed that nasal respiration drives RCOs in frontal brain regions and found a stronger effect during faster breathing. Interestingly, we observed that the frequency of prefrontal gamma oscillations modulated by respiration increased with breathing frequency. Overall, our study provides evidence for a significant influence of breathing on prefrontal cortex networks during anxious states, shedding light on the complex interplay between respiratory physiology and emotional processing.
Collapse
Affiliation(s)
- Ana L A Dias
- Brain Institute, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
| | - Davi Drieskens
- Brain Institute, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
| | - Joseph A Belo
- Brain Institute, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
| | - Elis H Duarte
- Brain Institute, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
| | - Diego A Laplagne
- Brain Institute, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
| | - Adriano B L Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
| |
Collapse
|
4
|
A S A, G PK, Ramakrishnan AG. Brain-scale theta band functional connectome as signature of slow breathing and breath-hold phases. Comput Biol Med 2025; 184:109435. [PMID: 39616883 DOI: 10.1016/j.compbiomed.2024.109435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 12/22/2024]
Abstract
The study reported herein attempts to understand the neural mechanisms engaged in the conscious control of breathing and breath-hold. The variations in the electroencephalogram (EEG) based functional connectivity (FC) of the human brain have been investigated during attentive breathing at 2 cycles per minute (cpm). The study presents its novelty through three main aspects. First, it explores the complex breathing circuitry beyond the brain stem, specifically examining how higher brain regions interact with respiratory cycles. Second, unlike previous studies that treated respiratory phases as a singular phenomenon, this research analyses inhalation, exhalation, and breath-holds separately, providing a deeper understanding of their individual dynamics and FC in the brain. Finally, the breathing protocol is designed to include inhale-hold and exhale-hold sessions alongside symmetric breathing, allowing for testing on healthy subjects rather than specialized cohorts, which were used in earlier studies. An experimental protocol involving equal durations of inhale, inhale-hold, exhale, and exhale-hold conditions, synchronized to a visual metronome, was designed and administered to 20 healthy subjects (9 females and 11 males, age: 32.0 ± 9.5 years (mean ± SD)). EEG data were collected during these sessions using the 64-channel eego™ mylab system from ANT Neuro. Further, FC was estimated for all possible pairs of EEG time series data, for 7 EEG bands. Feature selection using a genetic algorithm (GA) was performed to identify a subset of functional connections that would best distinguish the inhale, inhale-hold, exhale, and exhale-hold phases using a random committee classifier. The best accuracy of 95.056% was obtained when 403 theta-band functional connections were fed as input to the classifier, highlighting the efficacy of the theta-band functional connectome in distinguishing these phases of the respiratory cycle. This functional network was further characterized using graph measures, and observations illustrated a statistically significant difference in the efficiency of information exchange through the network during different respiratory phases.
Collapse
Affiliation(s)
- Anusha A S
- Department of Electrical Engineering, Indian Institute of Science, Bengaluru, India.
| | - Pradeep Kumar G
- Department of Electrical Engineering, Indian Institute of Science, Bengaluru, India.
| | - A G Ramakrishnan
- Department of Electrical Engineering, Indian Institute of Science, Bengaluru, India; Centre for Neuroscience, Indian Institute of Science, Bengaluru, India; Heritage Science and Technology, Indian Institute of Technology Hyderabad, Hyderabad, India.
| |
Collapse
|
5
|
Corcoran AW, Perrykkad K, Feuerriegel D, Robinson JE. Body as First Teacher: The Role of Rhythmic Visceral Dynamics in Early Cognitive Development. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2025; 20:45-75. [PMID: 37694720 PMCID: PMC11720274 DOI: 10.1177/17456916231185343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Embodied cognition-the idea that mental states and processes should be understood in relation to one's bodily constitution and interactions with the world-remains a controversial topic within cognitive science. Recently, however, increasing interest in predictive processing theories among proponents and critics of embodiment alike has raised hopes of a reconciliation. This article sets out to appraise the unificatory potential of predictive processing, focusing in particular on embodied formulations of active inference. Our analysis suggests that most active-inference accounts invoke weak, potentially trivial conceptions of embodiment; those making stronger claims do so independently of the theoretical commitments of the active-inference framework. We argue that a more compelling version of embodied active inference can be motivated by adopting a diachronic perspective on the way rhythmic physiological activity shapes neural development in utero. According to this visceral afferent training hypothesis, early-emerging physiological processes are essential not only for supporting the biophysical development of neural structures but also for configuring the cognitive architecture those structures entail. Focusing in particular on the cardiovascular system, we propose three candidate mechanisms through which visceral afferent training might operate: (a) activity-dependent neuronal development, (b) periodic signal modeling, and (c) oscillatory network coordination.
Collapse
Affiliation(s)
- Andrew W. Corcoran
- Monash Centre for Consciousness and Contemplative Studies, Monash University
- Cognition and Philosophy Laboratory, School of Philosophical, Historical, and International Studies, Monash University
| | - Kelsey Perrykkad
- Cognition and Philosophy Laboratory, School of Philosophical, Historical, and International Studies, Monash University
| | | | - Jonathan E. Robinson
- Cognition and Philosophy Laboratory, School of Philosophical, Historical, and International Studies, Monash University
| |
Collapse
|
6
|
Greenwood BM, Garfinkel SN. Interoceptive Mechanisms and Emotional Processing. Annu Rev Psychol 2025; 76:59-86. [PMID: 39423429 DOI: 10.1146/annurev-psych-020924-125202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Interoception, the sensing of internal bodily signals, is intricately linked with the experience of emotions. Various theoretical models of emotion incorporate aspects of interoception as a fundamental component alongside higher-order processes such as the appraisal of internal signals guided by external context. Interoception can be delineated into different dimensions, which include the nature of afferent signals, the accuracy with which they can be sensed, their neural processing, and the higher-order interpretation of these signals. This review methodically evaluates these interoceptive dimensions through empirical research to illustrate their role in shaping emotions. Clinical and neurodevelopmental conditions characterized by altered emotional profiles, such as anxiety, depression, schizophrenia, posttraumatic stress disorder, emotionally unstable personality disorder, and autism, exhibit distinct changes in interoception. Various therapeutic approaches, including behavioral, pharmacological, and psychological strategies, may be efficacious for treating conditions associated with emotional alterations by targeting interoceptive mechanisms.
Collapse
Affiliation(s)
- Benedict M Greenwood
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom;
| | - Sarah N Garfinkel
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom;
| |
Collapse
|
7
|
Sheriff A, Zhou G, Sagar V, Morgenthaler JB, Cyr C, Hauner KK, Omidbeigi M, Rosenow JM, Schuele SU, Lane G, Zelano C. Breathing orchestrates synchronization of sleep oscillations in the human hippocampus. Proc Natl Acad Sci U S A 2024; 121:e2405395121. [PMID: 39680758 DOI: 10.1073/pnas.2405395121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/07/2024] [Indexed: 12/18/2024] Open
Abstract
Nested sleep oscillations, emerging from asynchronous states in coordinated bursts, are critical for memory consolidation. Whether these bursts emerge intrinsically or from an underlying rhythm is unknown. Here, we show a previously undescribed respiratory-driven oscillation in the human hippocampus that couples with cardinal sleep oscillations. Further, breathing promotes nesting of ripples in slow oscillations, together suggesting that respiration acts as an intrinsic rhythm to coordinate synchronization of sleep oscillations, providing a unique framework to characterize sleep-related respiratory and memory processes.
Collapse
Affiliation(s)
- Andrew Sheriff
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Guangyu Zhou
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Vivek Sagar
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Justin B Morgenthaler
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Christopher Cyr
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Katherina K Hauner
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Mahmoud Omidbeigi
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Joshua M Rosenow
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Stephan U Schuele
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Gregory Lane
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Christina Zelano
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
8
|
Granget J, Niérat MC, Lehongre K, Lambrecq V, Frazzini V, Navarro V, Buonviso N, Similowski T. Corticolimbic structures activation during preparation and execution of respiratory manoeuvres in voluntary olfactory sampling: An intracranial EEG study. J Physiol 2024. [PMID: 39704560 DOI: 10.1113/jp287045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/05/2024] [Indexed: 12/21/2024] Open
Abstract
Volitional respiratory manoeuvres such as sniffing and apnoea play a key role in the active olfactory exploration of the environment. Their impairment by neurodegenerative processes could thus impair olfactory abilities with the ensuing impact on quality of life. Functional brain imaging studies have identified brain networks engaged in sniffing and voluntary apnoea, comprising the primary motor and somatosensory cortices, the insula, the anterior cingulate cortex and the amygdala. The temporal organization and the oscillatory activities of these networks are not known. To elucidate these aspects, we recorded intracranial electroencephalograms in six patients during voluntary sniffs and short apnoeas (12 s). The preparation phase of both manoeuvres involved increased alpha and theta activity in the posterior insula, amygdala and temporal regions, with a specific preparatory activity in the parahippocampus for the short apnoeas and the hippocampus for sniff. Subsequently, it narrowed to the superior and median temporal areas, immediately after the manoeuvres. During short apnoeas, a particular dynamic was observed, consisting of a rapid decline in alpha and theta activity followed by a slow recovery and increase. Volitional respiratory manoeuvres involved in olfactory control involve corticolimbic structures in both a preparatory and executive manner. Further studies are needed to determine whether diseases altering deep brain structures can disrupt these mechanisms and if such disruption contributes to the corresponding olfactory deficits. KEY POINTS: Both sniff manoeuvres and short apnoeas are associated with oscillatory activity predominantly in low-frequency bands (alpha and theta). Preparation of sniff manoeuvres and short apnoeas involve activities in low-frequency bands in the posterior insula and temporal regions that extend to amygdala during the execution of both manoeuvres. During short apnoeas, activities in low-frequency bands initially decline before continuously increasing until the apnoeas end.
Collapse
Affiliation(s)
- Jules Granget
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Hôpital Pitié-Salpêtrière, Département R3S, Paris, France
| | - Marie Cécile Niérat
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Katia Lehongre
- Paris Brain Institute, ICM, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Virginie Lambrecq
- Paris Brain Institute, ICM, INSERM, CNRS, Sorbonne Université, Paris, France
- AP-HP, Groupe Hospitalier APAH-Sorbonne Université, Hôpital Pitié-Salpêtrière, Unité d'Épilepsie, Centre de Référence des épilepsies rares, ERN-EpiCare, Département de Neurologie, Paris, France
| | - Valerio Frazzini
- Paris Brain Institute, ICM, INSERM, CNRS, Sorbonne Université, Paris, France
- AP-HP, Groupe Hospitalier APAH-Sorbonne Université, Hôpital Pitié-Salpêtrière, Unité d'Épilepsie, Centre de Référence des épilepsies rares, ERN-EpiCare, Département de Neurologie, Paris, France
| | - Vincent Navarro
- Paris Brain Institute, ICM, INSERM, CNRS, Sorbonne Université, Paris, France
- AP-HP, Groupe Hospitalier APAH-Sorbonne Université, Hôpital Pitié-Salpêtrière, Unité d'Épilepsie, Centre de Référence des épilepsies rares, ERN-EpiCare, Département de Neurologie, Paris, France
| | - Nathalie Buonviso
- Université Lyon 1, CNRS UMR5292 INSERM U1028, Codage Mémoire Olfaction, Centre de Recherche en Neurosciences de Lyon, Lyon, France
| | - Thomas Similowski
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Hôpital Pitié-Salpêtrière, Département R3S, Paris, France
| |
Collapse
|
9
|
Gonzalez J, Torterolo P, Bolding KA, Tort AB. Communication subspace dynamics of the canonical olfactory pathway. iScience 2024; 27:111275. [PMID: 39628563 PMCID: PMC11613203 DOI: 10.1016/j.isci.2024.111275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/08/2024] [Accepted: 10/25/2024] [Indexed: 12/06/2024] Open
Abstract
Understanding how different brain areas communicate is crucial for elucidating the mechanisms underlying cognition. A possible way for neural populations to interact is through a communication subspace, a specific region in the state-space enabling the transmission of behaviorally relevant spiking patterns. In the olfactory system, it remains unclear if different populations employ such a mechanism. Our study reveals that neuronal ensembles in the main olfactory pathway (olfactory bulb to olfactory cortex) interact through a communication subspace, which is driven by nasal respiration and allows feedforward and feedback transmission to occur segregated along the sniffing cycle. Moreover, our results demonstrate that subspace communication depends causally on the activity of both areas, is hindered during anesthesia, and transmits a low-dimensional representation of odor.
Collapse
Affiliation(s)
- Joaquín Gonzalez
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo 11200, Uruguay
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN 59078, Brazil
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo 11200, Uruguay
| | | | - Adriano B.L. Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN 59078, Brazil
| |
Collapse
|
10
|
Chiarpenello C, Brodmann K. What can the psychoneuroimmunology of yoga teach us about depression's psychopathology? Brain Behav Immun Health 2024; 42:100877. [PMID: 39430877 PMCID: PMC11489066 DOI: 10.1016/j.bbih.2024.100877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/11/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024] Open
Abstract
Depression, the most prevailing mental health condition, remains untreated in over 30% of patients. This cluster presents with sub-clinical inflammation. Investigations trialling anti-inflammatory medications had mixed results. The lack of results may result from inflammation's complexity and targeting only a few of depression's abnormal pathways. Mind-body therapies' biological and neuro-imaging studies offer valuable insights into depression psychopathology. Interestingly, mind-body therapies, like yoga, reverse the aberrant pathways in depression. These aberrant pathways include decreased cognitive function, interoception, neuroplasticity, salience and default mode networks connectivity, parasympathetic tone, increased hypothalamic-pituitary-adrenal (HPA) axis activity, and metabolic hyper/hypofunction. Abundant evidence found yogic techniques improving self-reported depressive symptoms across various populations. Yoga may be more effective in treating depression in conjunction with pharmacological and cognitive therapies. Yoga's psychoneuroimmunology teaches us that reducing allostatic load is crucial in improving depressive symptoms. Mind-body therapies promote parasympathetic tone, downregulate the HPA axis, reduce inflammation and boost immunity. The reduced inflammation promotes neuroplasticity and, subsequently, neurogenesis. Improving interoception resolves the metabolic needs prediction error and restores homeostasis. Additionally, by improving functional connectivity within the salience network, they restore the dynamic switching between the default mode and central executive networks, reducing rumination and mind-wandering. Future investigations should engineer therapies targeting the mechanisms mentioned above. The creation of multi-disciplinary health teams offering a combination of pharmacological, gene, neurofeedback, behavioural, mind-body and psychological therapies may treat treatment-resistant depression.
Collapse
Affiliation(s)
- Carola Chiarpenello
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, London, United Kingdom
| | - Katja Brodmann
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, London, United Kingdom
| |
Collapse
|
11
|
Mizuhara K, Li L, Nittono H. Auditory mismatch negativity is larger during exhalation than inhalation. Medicine (Baltimore) 2024; 103:e40683. [PMID: 39612395 DOI: 10.1097/md.0000000000040683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Previous research has shown that internal signals from the body can modulate the processing of external stimuli. This study investigated whether respiratory phases influence auditory deviance detection by recording mismatch negativity (MMN) responses of event-related brain potentials. METHODS By reanalyzing the data from a previous study examining the effect of cardiac phases on MMN (Li et al, 2024), we calculated the amplitude of MMN elicited by intensity-deviant stimuli separately for inhalation and exhalation phases in the participants (N = 37). RESULTS Results showed that the MMN amplitude was significantly larger during exhalation than inhalation. One possible explanation for this amplitude difference is a greater focus on internal bodily processes during exhalation than inhalation. CONCLUSION This study provides further evidence that respiratory phases influence the auditory processing of external events.
Collapse
Affiliation(s)
- Keita Mizuhara
- Graduate School of Psychology, Kansai University, Osaka, Japan
- Graduate School of Human Sciences, Osaka University, Osaka, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Lingjun Li
- Graduate School of Human Sciences, Osaka University, Osaka, Japan
| | - Hiroshi Nittono
- Graduate School of Human Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
12
|
Bassi T, Rohrs E E, Parfait M, Hannigan BC, Reynolds S, Mayaux J, Decavèle M, Herrero J, Demoule A, Similowski T, Dres M. Restoring brain connectivity by phrenic nerve stimulation in sedated and mechanically ventilated patients. COMMUNICATIONS MEDICINE 2024; 4:235. [PMID: 39558091 PMCID: PMC11574298 DOI: 10.1038/s43856-024-00662-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND In critically ill patients, deep sedation and mechanical ventilation suppress the brain-diaphragm-lung axis and are associated with cognitive issues in survivors. METHODS This exploratory crossover design study investigates whether phrenic nerve stimulation can enhance brain activity and connectivity in six deeply sedated, mechanically ventilated patients with acute respiratory distress syndrome. RESULTS Our findings indicate that adding phrenic stimulation on top of invasive mechanical ventilation in deeply sedated, critically ill, moderate acute respiratory distress syndrome patients increases cortical activity, connectivity, and synchronization in the frontal-temporal-parietal cortices. CONCLUSIONS Adding phrenic stimulation on top of invasive mechanical ventilation in deeply sedated, critically ill, moderate acute respiratory distress syndrome patients increases cortical activity, connectivity, and synchronization. The observed changes resemble those during diaphragmatic breathing in awake humans. These results suggest that phrenic nerve stimulation has the potential to restore the brain-diaphragm-lung crosstalk when it has been shut down or impaired by mechanical ventilation and sedation. Further research should evaluate the clinical significance of these results.
Collapse
Affiliation(s)
- Thiago Bassi
- Lungpacer Medical Inc., Vancouver, BC, Canada.
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.
| | - Elizabeth Rohrs E
- Advancing Innovation in Medicine Institute, New Westminster, BC, Canada
| | - Melodie Parfait
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie respiratoire expérimentale et clinique, AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière- Service de Médecine Intensive et Réanimation, Paris, France
| | - Brett C Hannigan
- ETH Zurich, Department of Health Sciences and Technology, Zurich, Switzerland
| | - Steven Reynolds
- Advancing Innovation in Medicine Institute, New Westminster, BC, Canada
| | - Julien Mayaux
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie respiratoire expérimentale et clinique, AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière- Service de Médecine Intensive et Réanimation, Paris, France
| | - Maxens Decavèle
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie respiratoire expérimentale et clinique, AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière- Service de Médecine Intensive et Réanimation, Paris, France
| | - Jose Herrero
- The Feinstein Institutes for Medical Research, Northwell Health, New York, NY, 11030, USA
- Hofstra Northwell School of Medicine, New York, NY, 11549, USA
| | - Alexandre Demoule
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie respiratoire expérimentale et clinique, AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière- Service de Médecine Intensive et Réanimation, Paris, France
| | - Thomas Similowski
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie respiratoire expérimentale et clinique, AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière- (Département "R3S"), F-75013, Paris, France
| | - Martin Dres
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie respiratoire expérimentale et clinique, AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière- Service de Médecine Intensive et Réanimation, Paris, France.
| |
Collapse
|
13
|
Andelman-Gur M, Snitz K, Honigstein D, Weissbrod A, Soroka T, Ravia A, Gorodisky L, Pinchover L, Ezra A, Hezi N, Gurevich T, Sobel N. Discriminating Parkinson's disease patients from healthy controls using nasal respiratory airflow. COMMUNICATIONS MEDICINE 2024; 4:233. [PMID: 39543393 PMCID: PMC11564766 DOI: 10.1038/s43856-024-00660-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Breathing patterns may inform on health. We note that the sites of earliest brain damage in Parkinson's disease (PD) house the neural pace-makers of respiration. We therefore hypothesized that ongoing long-term temporal dynamics of respiration may be altered in PD. METHODS We applied a wearable device that precisely logs nasal airflow over time in 28 PD patients (mostly H&Y stage-II) and 33 matched healthy controls. Each participant wore the device for 24 h of otherwise routine daily living. RESULTS We observe significantly altered temporal patterns of nasal airflow in PD, where inhalations are longer and less variable than in matched controls (mean PD = -1.22 ± 1.9 (combined respiratory features score), Control = 1.04 ± 2.16, Wilcoxon rank-sum test, z = -4.1, effect size Cliff's δ = -0.61, 95% confidence interval = -0.79 - (-0.34), P = 4.3 × 10-5). The extent of alteration is such that using only 30 min of recording we detect PD at 87% accuracy (AUC = 0.85, 79% sensitivity (22 of 28), 94% specificity (31 of 33), z = 5.7, p = 3.5 × 10-9), and also predict disease severity (correlation with UPDRS-Total score: r = 0.49; P = 0.008). CONCLUSIONS We conclude that breathing patterns are altered by H&Y stage-II in the disease cascade, and our methods may be further refined in the future to provide an indication with diagnostic and prognostic value.
Collapse
Affiliation(s)
- Michal Andelman-Gur
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Kobi Snitz
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Danielle Honigstein
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Aharon Weissbrod
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Timna Soroka
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Aharon Ravia
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lior Gorodisky
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Liron Pinchover
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Ezra
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Sourasky Medical Center (TASMC), Tel-Aviv, Israel
| | - Neomi Hezi
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Sourasky Medical Center (TASMC), Tel-Aviv, Israel
| | - Tanya Gurevich
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Sourasky Medical Center (TASMC), Tel-Aviv, Israel
- Faculty of Medical & Health Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Noam Sobel
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
14
|
Shoji D, Honma M, Masaoka Y, Nakayama M, Kosuge M, Kosuge S, Uchida Y, Sakakura S, Matsui M, Ito N, Nohara T, Watanabe D, Kanemoto M, Kasai H, Kuroda T, Yano S, Murakami H, Izumizaki M. Aging, not Parkinson's disease, decreases a recalibration of body ownership caused by vision-respiratory interaction. Front Physiol 2024; 15:1419473. [PMID: 39544179 PMCID: PMC11560758 DOI: 10.3389/fphys.2024.1419473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
Introduction Recalibration of body ownership perception occurs through an integration among multiple modalities. A recent study has shown that respiratory rhythm also causes the recalibration of ownership perception. However, the risk factors influencing the recalibration of ownership perception caused by vision-respiratory interaction remain unclear. In this study, focusing on aging and Parkinson's disease (PD), we examined the effects of those risk factors on the recalibration. Methods By applying the rubber hand illusion (RHI), which temporarily alters ownership perception, and using a device that synchronizes the respiratory rhythm with the movement of a mannequin hand, we measured a change in ownership perception in RHI training by vision-respiratory interaction. The changed ownership was compared among the elderly healthy, PD, and young healthy groups. Results The results showed no difference in the changed ownership between the elderly healthy and PD groups, while the two groups decreased the change in the ownership perception compared to the young healthy group. Discussion The finding suggests that aging, not PD, related to the recalibration of ownership perception by vision-respiratory interaction. An anomaly in body perception due to aging may be associated with a mechanism in which respiratory rhythm affects the adaptation of body representations.
Collapse
Affiliation(s)
- Daiki Shoji
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Motoyasu Honma
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Yuri Masaoka
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | | | - Miku Kosuge
- Department of Respiratory Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Shota Kosuge
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Yuki Uchida
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Shunsuke Sakakura
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Misako Matsui
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Naohito Ito
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Tetsuhito Nohara
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Daishi Watanabe
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Mizuki Kanemoto
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Hideyo Kasai
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Takeshi Kuroda
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Satoshi Yano
- Department of Neurology, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Hidetomo Murakami
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Masahiko Izumizaki
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Chen YN, Kostka JK. Beyond anosmia: olfactory dysfunction as a common denominator in neurodegenerative and neurodevelopmental disorders. Front Neurosci 2024; 18:1502779. [PMID: 39539496 PMCID: PMC11557544 DOI: 10.3389/fnins.2024.1502779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Olfactory dysfunction has emerged as a hallmark feature shared among several neurological conditions, including both neurodevelopmental and neurodegenerative disorders. While diseases of both categories have been extensively studied for decades, their association with olfaction has only recently gained attention. Olfactory deficits often manifest already during prodromal stages of these diseases, yet it remains unclear whether common pathophysiological changes along olfactory pathways cause such impairments. Here we probe into the intricate relationship between olfactory dysfunction and neurodegenerative and neurodevelopmental disorders, shedding light on their commonalities and underlying mechanisms. We begin by providing a brief overview of the olfactory circuit and its connections to higher-associated brain areas. Additionally, we discuss olfactory deficits in these disorders, focusing on potential common mechanisms that may contribute to olfactory dysfunction across both types of disorders. We further debate whether olfactory deficits contribute to the disease propagation or are simply an epiphenomenon. We conclude by emphasizing the significance of olfactory function as a potential pre-clinical diagnostic tool to identify individuals with neurological disorders that offers the opportunity for preventive intervention before other symptoms manifest.
Collapse
Affiliation(s)
- Yu-Nan Chen
- Institute of Developmental Neuroscience, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna Katharina Kostka
- Institute of Developmental Neuroscience, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
Wu M, Xue P, Yan J, Benedict C. Threshold-dependent association between non-rapid eye movement obstructive sleep apnea and interictal epileptiform discharges: A hospital study. J Sleep Res 2024:e14385. [PMID: 39444115 DOI: 10.1111/jsr.14385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/16/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Obstructive sleep apnea frequently coexists with epilepsy, potentially influencing its pathophysiology. However, the effect of obstructive sleep apnea severity on interictal epileptiform discharges is not well understood. To explore this, we studied 108 Asian patients with epilepsy who underwent single-night polysomnography. We utilized generalized linear models, adjusting for age, sex, epilepsy type (focal versus generalized), antiepileptic medication use and disease duration, to analyse the relationship between obstructive sleep apnea severity, as measured by the apnea-hypopnea index, and interictal epileptiform discharge frequency during non-rapid eye movement and rapid eye movement sleep. Our analysis revealed that severe obstructive sleep apnea (apnea-hypopnea index ≥ 30) was associated with a higher frequency of interictal epileptiform discharges during non-rapid eye movement sleep (p = 0.04), but no such association was observed during rapid eye movement sleep. Additionally, the frequency of interictal epileptiform discharges in non-rapid eye movement sleep was positively correlated with the wake time between sleep onset and offset (p = 0.03). Further studies are warranted to validate our findings across diverse ethnicities, and over multiple nights of sleep and interictal epileptiform discharge recordings.
Collapse
Affiliation(s)
- Meina Wu
- Department of Neurology and Sleep Medical Center, Fujian Provincial Governmental Hospital, Fuzhou, China
| | - Pei Xue
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Jinzhu Yan
- Department of Neurology and Sleep Medical Center, Fujian Provincial Governmental Hospital, Fuzhou, China
| | - Christian Benedict
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Tanigawa M, Liu M, Sekiguchi M, Goda K, Kato C, Ono T, Uesaka N. Nasal obstruction during development leads to defective synapse elimination, hypersynchrony, and impaired cerebellar function. Commun Biol 2024; 7:1381. [PMID: 39443666 PMCID: PMC11500345 DOI: 10.1038/s42003-024-07095-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
Nasal respiratory disorders are linked to craniofacial anomalies and systemic dysfunctions. However, the implications of nasal respiratory disorders on brain development and their subsequent impact on brain functionalization remain largely unknown. Here, we describe that nasal obstruction from postnatal developmental stages in mice precipitates deficits in cerebellum-associated behaviors and compromised refinement and maturation of neural circuits in the cerebellum. We show that mice with nasal obstruction during developmental phases exhibit marked impairments in motor function and exhibit increased immobility time in forced swimming test. Additionally, we identified critical periods during which nasal respiration is essential for optimizing motor function and preserving mental health. Our study also reveals that nasal obstruction in mice disrupts the typical developmental process of synapse elimination in the cerebellum and hinders the normal transition of activity patterns in cerebellar Purkinje cell populations during development. Through comparing activity patterns in mouse models subjected to nasal obstruction at various stages, we suggest that the maturation of specific activity pattern among Purkinje cell populations is fundamental to the functional integrity of the cerebellum. Our findings highlight the indispensable role of adequate nasal respiration during development for the establishment and functional integrity of neural circuits, thereby significantly affecting brain function.
Collapse
Affiliation(s)
- Moe Tanigawa
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Mengke Liu
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Mariko Sekiguchi
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Kyosuke Goda
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Chiho Kato
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Naofumi Uesaka
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan.
| |
Collapse
|
18
|
Gorodisky L, Honigstein D, Weissbrod A, Weissgross R, Soroka T, Shushan S, Sobel N. Humans without a sense of smell breathe differently. Nat Commun 2024; 15:8809. [PMID: 39438441 PMCID: PMC11496694 DOI: 10.1038/s41467-024-52650-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Olfaction may play a restricted role in human behavior, yet paradoxically, its absence in anosmia is associated with diverse deleterious outcomes, culminating in reduced life expectancy. The mammalian nose serves two purposes: olfaction and breathing. Because respiratory patterns are impacted by odors, we hypothesized that nasal respiratory airflow may be altered in anosmia. We apply a wearable device that precisely logs nasal airflow for 24-hour-long sessions in participants with isolated congenital anosmia and controls. We observe significantly altered patterns of respiratory nasal airflow in anosmia in wake and in sleep. These differences allow classification of anosmia at 83% accuracy using the respiratory trace alone. Patterns of respiratory airflow have pronounced impact on health, emotion and cognition. We therefore suggest that a portion of the deleterious outcomes associated with anosmia may be attributed to altered patterns of respiratory nasal airflow rather than a direct result of lost odor perception per se.
Collapse
Affiliation(s)
- Lior Gorodisky
- The Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel.
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Danielle Honigstein
- The Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Aharon Weissbrod
- The Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Reut Weissgross
- The Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Timna Soroka
- The Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sagit Shushan
- The Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- The Institute of Nose and Sinus Therapy and Clinical Investigations, The Edith Wolfson Medical Center, Holon, Israel
- Department of Otolaryngology-Head & Neck Surgery, The Edith Wolfson Medical Center, Holon, Israel
- Faculty of Medical & Health Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Noam Sobel
- The Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel.
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
19
|
Ghibaudo V, Juventin M, Buonviso N, Peter-Derex L. The timing of sleep spindles is modulated by the respiratory cycle in humans. Clin Neurophysiol 2024; 166:252-261. [PMID: 39030100 DOI: 10.1016/j.clinph.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/29/2024] [Accepted: 06/28/2024] [Indexed: 07/21/2024]
Abstract
OBJECTIVE Coupling of sleep spindles with cortical slow waves and hippocampus sharp-waves ripples is crucial for sleep-related memory consolidation. Recent literature evidenced that nasal respiration modulates neural activity in large-scale brain networks. In rodents, this respiratory drive strongly varies according to vigilance states. Whether sleep oscillations are also respiration-modulated in humans remains open. In this work, we investigated the influence of breathing on sleep spindles during non-rapid-eye-movement sleep in humans. METHODS Full night polysomnography of twenty healthy participants were analysed. Spindles and slow waves were automatically detected during N2 and N3 stages. Spindle-related sigma power as well as spindle and slow wave events were analysed according to the respiratory phase. RESULTS We found a significant coupling between both slow and fast spindles and the respiration cycle, with enhanced sigma activity and occurrence probability of spindles during the middle part of the expiration phase. A different coupling was observed for slow waves negative peaks which were rather distributed around the two respiration phase transitions. CONCLUSION Our findings suggest that breathing cycle influences the dynamics of brain activity during non-rapid-eye-movement sleep. SIGNIFICANCE This coupling may enable sleep spindles to synchronize with other sleep oscillations and facilitate information transfer between distributed brain networks.
Collapse
Affiliation(s)
- Valentin Ghibaudo
- Lyon Neuroscience Research Centre, INSERM U 1028/CNRS UMR5292, Bron, France
| | - Maxime Juventin
- Lyon Neuroscience Research Centre, INSERM U 1028/CNRS UMR5292, Bron, France
| | - Nathalie Buonviso
- Lyon Neuroscience Research Centre, INSERM U 1028/CNRS UMR5292, Bron, France
| | - Laure Peter-Derex
- Lyon Neuroscience Research Centre, INSERM U 1028/CNRS UMR5292, Bron, France; Centre for Sleep Medicine and Respiratory Diseases, Hospices Civils de Lyon, Lyon 1 University, Lyon, France.
| |
Collapse
|
20
|
Kehl MS, Mackay S, Ohla K, Schneider M, Borger V, Surges R, Spehr M, Mormann F. Single-neuron representations of odours in the human brain. Nature 2024; 634:626-634. [PMID: 39385026 PMCID: PMC11485236 DOI: 10.1038/s41586-024-08016-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
Olfaction is a fundamental sensory modality that guides animal and human behaviour1,2. However, the underlying neural processes of human olfaction are still poorly understood at the fundamental-that is, the single-neuron-level. Here we report recordings of single-neuron activity in the piriform cortex and medial temporal lobe in awake humans performing an odour rating and identification task. We identified odour-modulated neurons within the piriform cortex, amygdala, entorhinal cortex and hippocampus. In each of these regions, neuronal firing accurately encodes odour identity. Notably, repeated odour presentations reduce response firing rates, demonstrating central repetition suppression and habituation. Different medial temporal lobe regions have distinct roles in odour processing, with amygdala neurons encoding subjective odour valence, and hippocampal neurons predicting behavioural odour identification performance. Whereas piriform neurons preferably encode chemical odour identity, hippocampal activity reflects subjective odour perception. Critically, we identify that piriform cortex neurons reliably encode odour-related images, supporting a multimodal role of the human piriform cortex. We also observe marked cross-modal coding of both odours and images, especially in the amygdala and piriform cortex. Moreover, we identify neurons that respond to semantically coherent odour and image information, demonstrating conceptual coding schemes in olfaction. Our results bridge the long-standing gap between animal models and non-invasive human studies and advance our understanding of odour processing in the human brain by identifying neuronal odour-coding principles, regional functional differences and cross-modal integration.
Collapse
Affiliation(s)
- Marcel S Kehl
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Sina Mackay
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Kathrin Ohla
- Science & Research, dsm-firmenich, Satigny, Switzerland
| | | | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany.
| | - Florian Mormann
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
21
|
Mingxuan W, Ting H, Chenqi Z, Ningning Z, Hao C, Hongtao Z, Shuo L, Yang G. Using a Biofeedback-Based Mindfulness Practice System to Enhance Mindfulness and Alleviate Anxiety in College Students: A Randomized Controlled Trial. Games Health J 2024; 13:379-388. [PMID: 38808471 DOI: 10.1089/g4h.2024.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Objective: College students experience intense anxiety, for which biofeedback mindfulness techniques show effectiveness in relief. However, typical biofeedback products often lead to user fatigue and boredom because of a single or fixed feedback and lack of focus on mindfulness enhancement. Materials and Methods: In this research, we developed Mindjourney, a VR-based respiratory feedback mindfulness system, designed to enhance mindfulness and alleviate anxiety through continuous/noncontinuous feedback and nonjudgmental reward/punishment for self-perception and attention management. A randomized controlled trial involved 72 college students, split equally into short-term (n = 34, age: 23.11 ± 1.729) and 4-week long-term (n = 38, age: 24.12 ± 1.408) groups, with equal randomization for intervention and control groups. Pre/postintervention tests were measured by using Trait Anxiety Inventory (TAI) and Five Facet Mindfulness Questionnaire (FFMQ) for long-term groups and Galvanic Skin Response and State Anxiety Inventory (SAI) for short-term groups. Results: Results showed that the long-term intervention group showed a significant increase in mindfulness (P = 0.001 for FFMQ total score). Furthermore, observe and act with awareness subscales showed significant increase after intervention (P = 0.034 for observe, P < 0.001 for act with awareness) compared with the control group. Both intervention groups demonstrated a significant decrease in anxiety levels compared with the control groups (P = 0.049 for SAI, P = 0.01 for TAI). Moreover, participants expressed high interest in this biofeedback mindfulness system and willingness for long-term usage. Conclusion: The proposed biofeedback mindfulness practice system could potentially facilitate mindfulness practice and serve as a convenient tool for anxiety relief in campus college students.
Collapse
Affiliation(s)
- Wang Mingxuan
- School of Design, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Han Ting
- School of Design, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhang Chenqi
- School of Design, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhao Ningning
- School of Design, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Chen Hao
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zheng Hongtao
- School of Design, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Li Shuo
- School of Design, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ge Yang
- School of Design, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
22
|
Salimi M, Nazari M, Shahsavar P, Dehghan S, Javan M, Mirnajafi‐Zadeh J, Raoufy MR. Olfactory bulb stimulation mitigates Alzheimer's-like disease progression. CNS Neurosci Ther 2024; 30:e70056. [PMID: 39404073 PMCID: PMC11474698 DOI: 10.1111/cns.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) has demonstrated potential in mitigating Alzheimer's disease (AD). However, the invasive nature of DBS presents challenges for its application. The olfactory bulb (OB), showing early AD-related changes and extensive connections with memory regions, offers an attractive entry point for intervention, potentially restoring normal activity in deteriorating memory circuits. AIMS Our study examined the impact of electrically stimulating the OB on working memory as well as pathological and electrophysiological alterations in the OB, medial prefrontal cortex, hippocampus, and entorhinal cortex in amyloid beta (Aβ) AD model rats. METHODS Male Wistar rats underwent surgery for electrode implantation in brain regions, inducing Alzheimer's-like disease. Bilateral olfactory bulb (OB) electrical stimulation was performed for 1 hour daily to the OB of stimulation group animals for 18 consecutive days, followed by the evaluations of histological, behavioral, and local field potential signal processing. RESULTS OB stimulation counteracted Aβ plaque accumulation and prevented AD-induced working memory impairments. Furthermore, it prompted an increase in power across diverse frequency bands and enhanced functional connectivity, particularly in the gamma band, within the investigated regions during a working memory task. CONCLUSION This preclinical investigation highlights the potential of olfactory pathway-based brain stimulation to modulate the activity of deep-seated memory networks for AD treatment. Importantly, the accessibility of this pathway via the nasal cavity lays the groundwork for the development of minimally invasive approaches targeting the olfactory pathway for brain modulation.
Collapse
Affiliation(s)
- Morteza Salimi
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Milad Nazari
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- The Danish Research Institute of Translational Neuroscience, DANDRITEAarhus UniversityAarhusDenmark
| | - Payam Shahsavar
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Samaneh Dehghan
- Stem Cell and Regenerative Medicine Research CenterIran University of Medical SciencesTehranIran
- The Five Senses Institute, Eye Research CenterRassoul Akram Hospital, Iran University of Medical SciencesTehranIran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
- Institute for Brain Sciences and CognitionTarbiat Modares UniversityTehranIran
| | - Javad Mirnajafi‐Zadeh
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
- Institute for Brain Sciences and CognitionTarbiat Modares UniversityTehranIran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
- Institute for Brain Sciences and CognitionTarbiat Modares UniversityTehranIran
| |
Collapse
|
23
|
Maqsood R, Schofield S, Bennett AN, Khattab A, Bull AMJ, Fear NT, Boos CJ. Exploratory analysis of spontaneous versus paced breathing on heart rate variability in veterans with combat-related traumatic injury. PM R 2024; 16:1079-1087. [PMID: 38634349 DOI: 10.1002/pmrj.13164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/02/2024] [Accepted: 02/06/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Respiration is a crucial determinant of autonomic balance and heart rate variability (HRV). The comparative effect of spontaneous versus paced breathing on HRV has been almost exclusively explored in healthy adults and never been investigated in an injured military cohort. OBJECTIVE To examine the effect of spontaneous versus paced breathing on HRV in veterans with combat-related traumatic injury (CRTI). DESIGN Observational cohort study. SETTING ArmeD serVices trAuma rehabilitatioN outComE (ADVANCE) study, Stanford Hall, UK. PARTICIPANTS The sample consisted of 100 randomly selected participants who sustained CRTI (eg, amputation) during their deployment (Afghanistan 2003-2014) and were recruited into the ongoing ADVANCE prospective cohort study. INTERVENTION Not applicable. MAIN OUTCOME MEASURE HRV was recorded using a single-lead ECG. HRV data were acquired during a sequential protocol of 5-minute spontaneous breathing followed immediately by 5 minutes of paced breathing (six cycles/minute) among fully rested and supine participants. HRV was reported using time domain (root mean square of successive differences), frequency domain (low frequency and high frequency) and nonlinear (sample entropy) measures. The agreement between HRV during spontaneous versus paced breathing was examined using the Bland-Altman analysis. RESULTS The mean age of participants was 36.5 ± 4.6 years. Resting respiratory rate was significantly higher with spontaneous versus paced breathing (13.4 ± 3.4 vs. 7.6 ± 2.0 breaths/minute; p < .001), respectively. Resting mean heart rate and root mean square of successive differences were significantly higher with paced breathing than spontaneous breathing (p < .001). Paced breathing significantly increased median low frequency power than spontaneous breathing (p < .001). No significant difference was found in the absolute power of high frequency between the two breathing protocols. The Bland-Altman analysis revealed poor agreement between HRV values during spontaneous and paced breathing conditions with wide limits of agreement. CONCLUSION Slow-paced breathing leads to higher HRV than spontaneous breathing and could overestimate resting "natural-state" HRV.
Collapse
Affiliation(s)
- Rabeea Maqsood
- Department of Medical Sciences and Public Health, Faculty of Health & Social Sciences, Bournemouth University, Bournemouth, UK
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Susie Schofield
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Alexander N Bennett
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, Stanford Hall Estate, Loughborough, UK
| | - Ahmed Khattab
- Department of Medical Sciences and Public Health, Faculty of Health & Social Sciences, Bournemouth University, Bournemouth, UK
| | - Anthony M J Bull
- Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, London, UK
| | - Nicola T Fear
- The Academic Department of Military Mental Health, King's College London, London, UK
| | - Christopher J Boos
- Department of Medical Sciences and Public Health, Faculty of Health & Social Sciences, Bournemouth University, Bournemouth, UK
- Department of Cardiology, University Hospitals Dorset, Poole Hospital, Poole, UK
| |
Collapse
|
24
|
Leupin V, Britz J. Interoceptive signals shape the earliest markers and neural pathway to awareness at the visual threshold. Proc Natl Acad Sci U S A 2024; 121:e2311953121. [PMID: 39226342 PMCID: PMC11406234 DOI: 10.1073/pnas.2311953121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/28/2024] [Indexed: 09/05/2024] Open
Abstract
Variations in interoceptive signals from the baroreceptors (BRs) across the cardiac and respiratory cycle can modulate cortical excitability and so affect awareness. It remains debated at what stages of processing they affect awareness-related event-related potentials (ERPs) in different sensory modalities. We investigated the influence of the cardiac (systole/diastole) and the respiratory (inhalation/exhalation) phase on awareness-related ERPs. Subjects discriminated visual threshold stimuli while their electroencephalogram, electrocardiogram, and respiration were simultaneously recorded. We compared ERPs and their intracranial generators for stimuli classified correctly with and without awareness as a function of the cardiac and respiratory phase. Cyclic variations of interoceptive signals from the BRs modulated both the earliest electrophysiological markers and the trajectory of brain activity when subjects became aware of the stimuli: an early sensory component (P1) was the earliest marker of awareness for low (diastole/inhalation) and a perceptual component (visual awareness negativity) for high (systole/exhalation) BR activity, indicating that BR signals interfere with the sensory processing of the visual input. Likewise, activity spread from the primary visceral cortex (posterior insula) to posterior parietal cortices during high and from associative interoceptive centers (anterior insula) to the prefrontal cortex during low BR activity. Consciousness is thereby resolved in cognitive/associative regions when BR is low and in perceptual centers when it is high. Our results suggest that cyclic fluctuations of BR signaling affect both the earliest markers of awareness and the brain processes underlying conscious awareness.
Collapse
Affiliation(s)
- Viviana Leupin
- Department of Psychology, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Juliane Britz
- Department of Psychology, University of Fribourg, Fribourg CH-1700, Switzerland
| |
Collapse
|
25
|
Andersen JP, Arpaia J, Gustafsberg H, Poplawski S, Di Nota PM. The International Performance, Resilience and Efficiency Program Protocol for the Application of HRV Biofeedback in Applied Law Enforcement Settings. Appl Psychophysiol Biofeedback 2024; 49:483-502. [PMID: 38656642 PMCID: PMC11310253 DOI: 10.1007/s10484-024-09644-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Law enforcement officers are routinely exposed to high-threat encounters that elicit physiological stress responses that impact health, performance, and safety. Therefore, self-regulation using evidence-based approaches is a priority in police research and practice. This paper describes a five-module heart rate variability biofeedback (HRVB) protocol that is part of a larger resilience program (the International Performance Resilience and Efficiency Program - iPREP) established in 2014. Supported by 10 years of user-informed research and development, our methods are tailored to address occupational stressors and the practical realities of training and resource availability in operational settings. Building on existing clinical methods that comprise five to six weekly sessions and up to 40-min of daily practice, our iPREP HRVB protocol is typically delivered in a condensed format across 2-3 days and is seamlessly integrated with reality-based training scenarios commonly employed in policing. By combining best practices in clinical HRVB with police-specific pedagogical frameworks, officers receive accelerated and job-relevant training to adaptively modulate autonomic responses to acute and chronic stress. Efficacy of the iPREP HRVB protocol is supported by several research studies of various methodological designs (i.e., randomized control trial, longitudinal cohort) that demonstrate immediate and sustained improvements in police performance and physiological health outcomes. We conclude with a critical appraisal of the available empirical evidence contrasting common and emerging breathing techniques proposed for use in operational policing contexts. The critical appraisal guide is intended to serve as a resource for law enforcement agencies, governing bodies, and operators when choosing appropriate and effective self-regulation training approaches.
Collapse
Affiliation(s)
- Judith P Andersen
- Department of Psychology, University of Toronto Mississauga, Toronto, Mississauga, ON, Canada.
- Affiliated Faculty, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | | | | | | | - Paula M Di Nota
- Department of Psychology, University of Toronto Mississauga, Toronto, Mississauga, ON, Canada
| |
Collapse
|
26
|
Shahsavar P, Ghazvineh S, Raoufy MR. From nasal respiration to brain dynamic. Rev Neurosci 2024; 35:639-650. [PMID: 38579456 DOI: 10.1515/revneuro-2023-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
While breathing is a vital, involuntary physiological function, the mode of respiration, particularly nasal breathing, exerts a profound influence on brain activity and cognitive processes. This review synthesizes existing research on the interactions between nasal respiration and the entrainment of oscillations across brain regions involved in cognition. The rhythmic activation of olfactory sensory neurons during nasal respiration is linked to oscillations in widespread brain regions, including the prefrontal cortex, entorhinal cortex, hippocampus, amygdala, and parietal cortex, as well as the piriform cortex. The phase-locking of neural oscillations to the respiratory cycle, through nasal breathing, enhances brain inter-regional communication and is associated with cognitive abilities like memory. Understanding the nasal breathing impact on brain networks offers opportunities to explore novel methods for targeting the olfactory pathway as a means to enhance emotional and cognitive functions.
Collapse
Affiliation(s)
- Payam Shahsavar
- Department of Physiology, Faculty of Medical Sciences, 41616 Tarbiat Modares University , Jalal AleAhmad, Nasr, P.O. Box: 14115-111, Tehran, Iran
| | - Sepideh Ghazvineh
- Department of Physiology, Faculty of Medical Sciences, 41616 Tarbiat Modares University , Jalal AleAhmad, Nasr, P.O. Box: 14115-111, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, 41616 Tarbiat Modares University , Jalal AleAhmad, Nasr, P.O. Box: 14115-111, Tehran, Iran
- Faculty of Medical Sciences, 41616 Institute for Brain Sciences and Cognition, Tarbiat Modares University , Jalal AleAhmad, Nasr, P.O. Box: 14115-111, Tehran, Iran
| |
Collapse
|
27
|
Goheen J, Wolman A, Angeletti LL, Wolff A, Anderson JAE, Northoff G. Dynamic mechanisms that couple the brain and breathing to the external environment. Commun Biol 2024; 7:938. [PMID: 39097670 PMCID: PMC11297933 DOI: 10.1038/s42003-024-06642-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/26/2024] [Indexed: 08/05/2024] Open
Abstract
Brain and breathing activities are closely related. However, the exact neurophysiological mechanisms that couple the brain and breathing to stimuli in the external environment are not yet agreed upon. Our data support that synchronization and dynamic attunement are two key mechanisms that couple local brain activity and breathing to external periodic stimuli. First, we review the existing literature, which provides strong evidence for the synchronization of brain and breathing in terms of coherence, cross-frequency coupling and phase-based entrainment. Second, using EEG and breathing data, we show that both the lungs and localized brain activity at the Cz channel attune the temporal structure of their power spectra to the periodic structure of external auditory inputs. We highlight the role of dynamic attunement in playing a key role in coordinating the tripartite temporal alignment of localized brain activity, breathing and input dynamics across longer timescales like minutes. Overall, this perspective sheds light on potential mechanisms of brain-breathing coupling and its alignment to stimuli in the external environment.
Collapse
Affiliation(s)
- Josh Goheen
- Carleton University, Ottawa, Canada.
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research associated with The University of Ottawa, Ottawa, Canada.
| | - Angelika Wolman
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research associated with The University of Ottawa, Ottawa, Canada
| | - Lorenzo Lucherini Angeletti
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research associated with The University of Ottawa, Ottawa, Canada
- University of Florence, Florence, Italy
| | | | | | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research associated with The University of Ottawa, Ottawa, Canada
| |
Collapse
|
28
|
Lewis-Healey E, Tagliazucchi E, Canales-Johnson A, Bekinschtein TA. Breathwork-induced psychedelic experiences modulate neural dynamics. Cereb Cortex 2024; 34:bhae347. [PMID: 39191666 DOI: 10.1093/cercor/bhae347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Breathwork is an understudied school of practices involving intentional respiratory modulation to induce an altered state of consciousness (ASC). We simultaneously investigate the phenomenological and neural dynamics of breathwork by combining Temporal Experience Tracing, a quantitative methodology that preserves the temporal dynamics of subjective experience, with low-density portable EEG devices. Fourteen novice participants completed a course of up to 28 breathwork sessions-of 20, 40, or 60 min-in 28 days, yielding a neurophenomenological dataset of 301 breathwork sessions. Using hypothesis-driven and data-driven approaches, we found that "psychedelic-like" subjective experiences were associated with increased neural Lempel-Ziv complexity during breathwork. Exploratory analyses showed that the aperiodic exponent of the power spectral density-but not oscillatory alpha power-yielded similar neurophenomenological associations. Non-linear neural features, like complexity and the aperiodic exponent, neurally map both a multidimensional data-driven composite of positive experiences, and hypothesis-driven aspects of psychedelic-like experience states such as high bliss.
Collapse
Affiliation(s)
- Evan Lewis-Healey
- Cambridge Consciousness and Cognition Lab, Department of Psychology, Downing Place, University of Cambridge, Cambridge, CB2 3EB, United Kingdom
| | - Enzo Tagliazucchi
- Consciousness, Culture and Complexity Lab, Department of Physics, Pabellón I, University of Buenos Aires, 1428, Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibanez, Santiago, 7910000, Chile
- Cognitive Neuroscience Center, Universidad de San Andrés, Vito Dumas 284, B1644BID Victoria, Provincia de Buenos Aires, Argentina
| | - Andres Canales-Johnson
- Cambridge Consciousness and Cognition Lab, Department of Psychology, Downing Place, University of Cambridge, Cambridge, CB2 3EB, United Kingdom
- The Neuropsychology and Cognitive Neurosciences Research Center, Faculty of Health Sciences, Universidad Católica del Maule, 3460000, Talca, Chile
| | - Tristan A Bekinschtein
- Cambridge Consciousness and Cognition Lab, Department of Psychology, Downing Place, University of Cambridge, Cambridge, CB2 3EB, United Kingdom
| |
Collapse
|
29
|
Dasgupta D, Schneider-Luftman D, Schaefer AT, Harris JJ. Wireless monitoring of respiration with EEG reveals relationships between respiration, behavior, and brain activity in freely moving mice. J Neurophysiol 2024; 132:290-307. [PMID: 38810259 PMCID: PMC11383384 DOI: 10.1152/jn.00330.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
Active sampling in the olfactory domain is a fundamental aspect of mouse behavior, and there is increasing evidence that respiration-entrained neural activity outside of the olfactory system sets an important global brain rhythm. It is therefore crucial to accurately measure breathing during natural behaviors. We develop a new approach to do this in freely moving animals, by implanting a telemetry-based pressure sensor into the right jugular vein, which allows for wireless monitoring of thoracic pressure. After verifying this technique against standard head-fixed respiration measurements, we combined it with EEG and EMG recording and used evolving partial coherence analysis to investigate the relationship between respiration and brain activity across a range of experiments in which the mice could move freely. During voluntary exploration of odors and objects, we found that the association between respiration and cortical activity in the delta and theta frequency range decreased, whereas the association between respiration and cortical activity in the alpha range increased. During sleep, however, the presentation of an odor was able to cause a transient increase in sniffing without changing dominant sleep rhythms (delta and theta) in the cortex. Our data align with the emerging idea that the respiration rhythm could act as a synchronizing scaffold for specific brain rhythms during wakefulness and exploration, but suggest that respiratory changes are less able to impact brain activity during sleep. Combining wireless respiration monitoring with different types of brain recording across a variety of behaviors will further increase our understanding of the important links between active sampling, passive respiration, and neural activity.NEW & NOTEWORTHY Animals can alter their respiration rate to actively sample their environment, and increasing evidence suggests that neurons across the brain align their firing to this changing rhythm. We developed a new approach to measure sniffing in freely moving mice while simultaneously recording brain activity, and uncovered how specific cortical rhythms changed their coherence with respiration rhythm during natural behaviors and across arousal states.
Collapse
Affiliation(s)
- Debanjan Dasgupta
- Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
- UK Dementia Research Institute, University College London, London, United Kingdom
- Neural Circuit Dynamics Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Deborah Schneider-Luftman
- Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andreas T Schaefer
- Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Julia J Harris
- Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, London, United Kingdom
| |
Collapse
|
30
|
Ghouse A, Pfurtscheller G, Schwarz G, Valenza G. Uncovering Hemispheric Asymmetry and Directed Oscillatory Brain-Heart Interplay in Anxiety Processing: An fMRI Study. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1984-1993. [PMID: 38748531 DOI: 10.1109/tnsre.2024.3401577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Brain-heart interactions (BHI) are critical for generating and processing emotions, including anxiety. Understanding specific neural correlates would be instrumental for greater comprehension and potential therapeutic interventions of anxiety disorders. While prior work has implicated the pontine structure as a central processor in cardiac regulation in anxiety, the distributed nature of anxiety processing across the cortex remains elusive. To address this, we performed a whole-brain-heart analysis using the full frequency directed transfer function to study resting-state spectral differences in BHI between high and low anxiety groups undergoing fMRI scans. Our findings revealed a hemispheric asymmetry in low-frequency interplay (0.05 Hz - 0.15 Hz) characterized by ascending BHI to the left insula and descending BHI from the right insula. Furthermore, we provide evidence supporting the "pacemaker hypothesis", highlighting the pons' function in regulating cardiac activity. Higher frequency interplay (0.2 Hz - 0.4Hz) demonstrate a preference for ascending interactions, particularly towards ventral prefrontal cortical activity in high anxiety groups, suggesting the heart's role in triggering a cognitive response to regulate anxiety. These findings highlight the impact of anxiety on BHI, contributing to a better understanding of its effect on the resting-state fMRI signal, with further implications for potential therapeutic interventions in treating anxiety disorders.
Collapse
|
31
|
Woelk SP, Garfinkel SN. Dissociative Symptoms and Interoceptive Integration. Curr Top Behav Neurosci 2024. [PMID: 38755513 DOI: 10.1007/7854_2024_480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Dissociative symptoms and disorders of dissociation are characterised by disturbances in the experience of the self and the surrounding world, manifesting as a breakdown in the normal integration of consciousness, memory, identity, emotion, and perception. This paper aims to provide insights into dissociative symptoms from the perspective of interoception, the sense of the body's internal physiological state, adopting a transdiagnostic framework.Dissociative symptoms are associated with a blunting of autonomic reactivity and a reduction in interoceptive precision. In addition to the central function of interoception in homeostasis, afferent visceral signals and their neural and mental representation have been shown to shape emotional feeling states, support memory encoding, and contribute to self-representation. Changes in interoceptive processing and disrupted integration of interoceptive signals into wider cognition may contribute to detachment from the body and the world, blunted emotional experience, and altered subjective recall, as experienced by individuals who suffer from dissociation.A better understanding of the role of altered interoceptive integration across the symptom areas of dissociation could thus provide insights into the neurophysiological mechanisms underlying dissociative disorders. As new therapeutic approaches targeting interoceptive processing emerge, recognising the significance of interoceptive mechanisms in dissociation holds potential implications for future treatment targets.
Collapse
Affiliation(s)
- Sascha P Woelk
- Institute of Cognitive Neuroscience, University College London, London, UK.
| | - Sarah N Garfinkel
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
32
|
Santhana Gopalan PR, Xu W, Waselius T, Wikgren J, Penttonen M, Nokia MS. Cardiorespiratory rhythm-contingent trace eyeblink conditioning in elderly adults. J Neurophysiol 2024; 131:797-806. [PMID: 38533969 DOI: 10.1152/jn.00356.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
Learning outcome is modified by the degree to which the subject responds and pays attention to specific stimuli. Our recent research suggests that presenting stimuli in contingency with a specific phase of the cardiorespiratory rhythm might expedite learning. Specifically, expiration-diastole (EXP-DIA) is beneficial for learning trace eyeblink conditioning (TEBC) compared with inspiration-systole (INS-SYS) in healthy young adults. The aim of this study was to investigate whether the same holds true in healthy elderly adults (n = 50, aged >70 yr). Participants were instructed to watch a silent nature film while TEBC trials were presented at either INS-SYS or EXP-DIA (separate groups). Learned responses were determined as eyeblinks occurring after the tone conditioned stimulus (CS), immediately preceding the air puff unconditioned stimulus (US). Participants were classified as learners if they made at least five conditioned responses (CRs). Brain responses to the stimuli were measured by electroencephalogram (EEG). Memory for the film and awareness of the CS-US contingency were evaluated with a questionnaire. As a result, participants showed robust brain responses to the CS, acquired CRs, and reported awareness of the CS-US relationship to a variable degree. There was no difference between the INS-SYS and EXP-DIA groups in any of the above. However, when only participants who learned were considered, those trained at EXP-DIA (n = 11) made more CRs than those trained at INS-SYS (n = 13). Thus, learned performance could be facilitated in those elderly who learned. However, training at a specific phase of cardiorespiratory rhythm did not increase the proportion of participants who learned.NEW & NOTEWORTHY We trained healthy elderly individuals in trace eyeblink conditioning, either at inspiration-systole or at expiration-diastole. Those who learned exhibited more conditioned responses when trained at expiration-diastole rather than inspiration-systole. However, there was no difference between the experimental groups in the proportion of individuals who learned or did not learn.
Collapse
Affiliation(s)
| | - Weiyong Xu
- Department of Psychology and Centre for Interdisciplinary Brain ResearchUniversity of JyväskyläJyväskyläFinland
| | - Tomi Waselius
- Department of Psychology and Centre for Interdisciplinary Brain ResearchUniversity of JyväskyläJyväskyläFinland
| | - Jan Wikgren
- Department of Psychology and Centre for Interdisciplinary Brain ResearchUniversity of JyväskyläJyväskyläFinland
| | - Markku Penttonen
- Department of Psychology and Centre for Interdisciplinary Brain ResearchUniversity of JyväskyläJyväskyläFinland
| | - Miriam S Nokia
- Department of Psychology and Centre for Interdisciplinary Brain ResearchUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
33
|
Walker JJ, Meunier E, Garcia S, Messaoudi B, Mouly AM, Veyrac A, Buonviso N, Courtiol E. State-dependent alteration of respiration in a rat model of Parkinson's disease. Exp Neurol 2024; 375:114740. [PMID: 38395215 DOI: 10.1016/j.expneurol.2024.114740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disorder. Besides major deficits in motor coordination, patients may also display sensory and cognitive impairments, which are often overlooked despite being inherently part of the PD symptomatology. Amongst those symptoms, respiration, a key mechanism involved in the regulation of multiple physiological and neuronal processes, appears to be altered. Importantly, breathing patterns are highly correlated with the animal's behavioral states. This raises the question of the potential impact of behavioral state on respiration deficits in PD. To answer this question, we first characterized the respiratory parameters in a neurotoxin-induced rat model of PD (6-OHDA) across three different vigilance states: sleep, quiet waking and exploration. We noted a significantly higher respiratory frequency in 6-OHDA rats during quiet waking compared to Sham rats. A higher respiratory amplitude was also observed in 6-OHDA rats during both quiet waking and exploration. No effect of the treatment was noted during sleep. Given the relation between respiration and olfaction and the presence of olfactory deficits in PD patients, we then investigated the odor-evoked sniffing response in PD rats, using an odor habituation/cross-habituation paradigm. No substantial differences were observed in olfactory abilities between the two groups, as assessed through sniffing frequency. These results corroborate the hypothesis that respiratory impairments in 6-OHDA rats are vigilance-dependent. Our results also shed light on the importance of considering the behavioral state as an impacting factor when analyzing respiration.
Collapse
Affiliation(s)
- Jean Jacques Walker
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Estelle Meunier
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France
| | - Samuel Garcia
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Belkacem Messaoudi
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Anne-Marie Mouly
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Alexandra Veyrac
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Nathalie Buonviso
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Emmanuelle Courtiol
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| |
Collapse
|
34
|
Lacuey N, Talavera B, Magana-Tellez O, Mancera-Páez O, Hupp N, Luo X, Hampson JP, Hampson J, Rani RS, Ochoa-Urrea M, Alamoudi OA, Melius S, Pati S, Gavvala J, Tandon N, Mosher JC, Lhatoo SD. Ictal Central Apnea Is Predictive of Mesial Temporal Seizure Onset: An Intracranial Investigation. Ann Neurol 2024; 95:998-1008. [PMID: 38400804 PMCID: PMC11061876 DOI: 10.1002/ana.26888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/27/2023] [Accepted: 01/23/2024] [Indexed: 02/26/2024]
Abstract
OBJECTIVE Ictal central apnea (ICA) is a semiological sign of focal epilepsy, associated with temporal and frontal lobe seizures. In this study, using qualitative and quantitative approaches, we aimed to assess the localizational value of ICA. We also aimed to compare ICA clinical utility in relation to other seizure semiological features of focal epilepsy. METHODS We analyzed seizures in patients with medically refractory focal epilepsy undergoing intracranial stereotactic electroencephalographic (SEEG) evaluations with simultaneous multimodal cardiorespiratory monitoring. A total of 179 seizures in 72 patients with reliable artifact-free respiratory signal were analyzed. RESULTS ICA was seen in 55 of 179 (30.7%) seizures. Presence of ICA predicted a mesial temporal seizure onset compared to those without ICA (odds ratio = 3.8, 95% confidence interval = 1.3-11.6, p = 0.01). ICA specificity was 0.82. ICA onset was correlated with increased high-frequency broadband gamma (60-150Hz) activity in specific mesial or basal temporal regions, including amygdala, hippocampus, and fusiform and lingual gyri. Based on our results, ICA has an almost 4-fold greater association with mesial temporal seizure onset zones compared to those without ICA and is highly specific for mesial temporal seizure onset zones. As evidence of symptomatogenic areas, onset-synchronous increase in high gamma activity in mesial or basal temporal structures was seen in early onset ICA, likely representing anatomical substrates for ICA generation. INTERPRETATION ICA recognition may help anatomoelectroclinical localization of clinical seizure onset to specific mesial and basal temporal brain regions, and the inclusion of these regions in SEEG evaluations may help accurately pinpoint seizure onset zones for resection. ANN NEUROL 2024;95:998-1008.
Collapse
Affiliation(s)
- Nuria Lacuey
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
| | - Blanca Talavera
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
| | - Oman Magana-Tellez
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
| | - Oscar Mancera-Páez
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
| | - Norma Hupp
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
| | - Xi Luo
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
- Department of Biostatistics and Data Science, University of Texas Health Science Center (UTHealth), School of Public Health, Houston, Texas, USA
| | - Johnson P. Hampson
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
| | - Jaison Hampson
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
| | - R. Sandhya Rani
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
| | - Manuela Ochoa-Urrea
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
- Memorial Hermann, Texas Medical Center, Houston, TX, USA
| | - Omar A. Alamoudi
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
- Biomedical Engineering Program, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Stephen Melius
- Memorial Hermann, Texas Medical Center, Houston, TX, USA
| | - Sandipan Pati
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
| | - Jay Gavvala
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
| | - Nitin Tandon
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
| | - John C. Mosher
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
| | - Samden D. Lhatoo
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, Texas, USA
| |
Collapse
|
35
|
Budhi RB, Singh D, Goswami J, Manjunath NK, Vinchurkar S. Influence of High-frequency Yoga Breathing (Kapalabhati) on States Changes in Gamma Oscillation. Int J Yoga 2024; 17:106-115. [PMID: 39444665 PMCID: PMC11495304 DOI: 10.4103/ijoy.ijoy_5_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 10/25/2024] Open
Abstract
Background Yoga breathing has been shown to enhance neurocognitive function and positive emotions by increasing electrical power in several frequency bands and synchronizing interhemispheric brain waves. The current study examined the immediate impact of practicing Kapalabhati (KBH) on the electrical activity of the brain. Methods Thirty-six individuals who met the inclusion and exclusion criteria and ranged in age from 18 to 25 were randomly assigned, 1:1, to the KBH (n = 18) and breath awareness (BAW) (n = 18) groups. Before data collection, both groups received their respective practices for 10 min each day for a total of 15 days. The brain's electrical activities were assessed using 128-channel EEG recording. The electrodes were placed on their scalps according to the international 10-10 system, ensuring optimal coverage of different brain regions. The EEG signals were amplified, digitized, and stored for offline analysis. Results The EEG data showed that the practice of KBH significantly increased alpha waves in the frontal and temporal regions. Moreover, gamma waves increased significantly in the frontal, temporal, and occipital regions after the practice of KBH when compared with BAW. Conclusion The results suggest the involvement of frontal and temporal regions, which highlights the importance of KBH in enhancing higher-order cognitive processes. These results provide valuable insights and support for the use of KBH as a potential intervention for individuals seeking to enhance their cognitive abilities.
Collapse
Affiliation(s)
- Rana Bal Budhi
- Division of Yoga and Life Sciences, Swami Vivekananda Yoga Anusandhana Samsthana (Deemed to be University), Bengaluru, Karnataka, India
| | - Deepeshwar Singh
- Department of Yoga, School of Yoga Naturopathy and Cognitive Studies, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Jeetu Goswami
- Division of Yoga and Life Sciences, Swami Vivekananda Yoga Anusandhana Samsthana (Deemed to be University), Bengaluru, Karnataka, India
| | - N. K. Manjunath
- Division of Yoga and Life Sciences, Swami Vivekananda Yoga Anusandhana Samsthana (Deemed to be University), Bengaluru, Karnataka, India
| | - Suhas Vinchurkar
- Director of Technical Sales, Magstim, Electrical Geodesics, Inc., USA
| |
Collapse
|
36
|
Budhi RB, Singh D. The Influence of Kapalabhati on Working Memory and Phasic Heart Rate Variability. Cureus 2024; 16:e61027. [PMID: 38915978 PMCID: PMC11194464 DOI: 10.7759/cureus.61027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Cognitive communication abilities, such as working memory (WM), are vital for accomplishing daily activities and are also important for higher-order processes such as planning and problem-solving. The current study investigates the simultaneous effect of kapalabhati (KBH) on WM and phasic heart rate variability (HRV). METHODS Twenty participants who fulfilled the inclusion and exclusion criteria, with an average age of 23.65±3.07 years (mean±SD), were recruited for the study. Prior to data collection, the participants underwent a seven-day orientation to maintain uniformity in KBH practice. EKGs were assessed using a 16-channel polygraph system arranged in a standard limb lead II configuration. WM was assessed using E-Prime version 2.0 (Psychology Software Tools, Sharpsburg, PA, USA). RESULTS There was a significant increase in accuracy after the immediate KBH practice in all three conditions of the WM task (i.e., n-back task: 0-back, 1-back, and 2-back). However, there was also an increase in reaction time. Repeated measures ANOVA of HRV measures showed statistically significant changes in mean rhythm-to-rhythm (RR) intervals, heart rate (HR), number of adjacent N-N intervals over 50 milliseconds (NN50), percentage of successive normal sinus RR intervals greater than 50 milliseconds (pNN50 RR), low frequency (LF), and high frequency (HF), with HR, NN50, pNN50, LF, and HF all significant at p<0.001 and the LF/HF ratio significant at the p<0.01 level. CONCLUSION The results of the current study suggest that KBH practice can modulate vagal tone or parasympathetic activity and improve WM performance. Furthermore, the parasympathetic shift found in the present study may promote better cardioprotective health and longevity.
Collapse
Affiliation(s)
- Rana B Budhi
- Division of Yoga and Life Sciences, Swami Vivekananda Yoga Anusandhana Samsthana, Bengaluru, IND
| | - Deepeshwar Singh
- Department of Yoga, Babasaheb Bhimrao Ambedkar University, Lucknow, IND
| |
Collapse
|
37
|
Catrambone V, Candia‐Rivera D, Valenza G. Intracortical brain-heart interplay: An EEG model source study of sympathovagal changes. Hum Brain Mapp 2024; 45:e26677. [PMID: 38656080 PMCID: PMC11041380 DOI: 10.1002/hbm.26677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/18/2024] [Accepted: 03/23/2024] [Indexed: 04/26/2024] Open
Abstract
The interplay between cerebral and cardiovascular activity, known as the functional brain-heart interplay (BHI), and its temporal dynamics, have been linked to a plethora of physiological and pathological processes. Various computational models of the brain-heart axis have been proposed to estimate BHI non-invasively by taking advantage of the time resolution offered by electroencephalograph (EEG) signals. However, investigations into the specific intracortical sources responsible for this interplay have been limited, which significantly hampers existing BHI studies. This study proposes an analytical modeling framework for estimating the BHI at the source-brain level. This analysis relies on the low-resolution electromagnetic tomography sources localization from scalp electrophysiological recordings. BHI is then quantified as the functional correlation between the intracortical sources and cardiovascular dynamics. Using this approach, we aimed to evaluate the reliability of BHI estimates derived from source-localized EEG signals as compared with prior findings from neuroimaging methods. The proposed approach is validated using an experimental dataset gathered from 32 healthy individuals who underwent standard sympathovagal elicitation using a cold pressor test. Additional resting state data from 34 healthy individuals has been analysed to assess robustness and reproducibility of the methodology. Experimental results not only confirmed previous findings on activation of brain structures affecting cardiac dynamics (e.g., insula, amygdala, hippocampus, and anterior and mid-cingulate cortices) but also provided insights into the anatomical bases of brain-heart axis. In particular, we show that the bidirectional activity of electrophysiological pathways of functional brain-heart communication increases during cold pressure with respect to resting state, mainly targeting neural oscillations in theδ $$ \delta $$ ,β $$ \beta $$ , andγ $$ \gamma $$ bands. The proposed approach offers new perspectives for the investigation of functional BHI that could also shed light on various pathophysiological conditions.
Collapse
Affiliation(s)
- Vincenzo Catrambone
- Neurocardiovascular Intelligence Laboratory & Department of Information Engineering & Bioengineering and Robotics Research Center, E. Piaggio, School of EngineeringUniversity of PisaPisaItaly
| | - Diego Candia‐Rivera
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP‐HP, Hôpital Pitié‐SalpêtriŕeParisFrance
| | - Gaetano Valenza
- Neurocardiovascular Intelligence Laboratory & Department of Information Engineering & Bioengineering and Robotics Research Center, E. Piaggio, School of EngineeringUniversity of PisaPisaItaly
| |
Collapse
|
38
|
Riazi H, Nazari M, Raoufy MR, Mirnajafi-Zadeh J, Shojaei A. Olfactory Epithelium Stimulation Using Rhythmic Nasal Air-Puffs Improves the Cognitive Performance of Individuals with Acute Sleep Deprivation. Brain Sci 2024; 14:378. [PMID: 38672027 PMCID: PMC11048381 DOI: 10.3390/brainsci14040378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to investigate the effects of intranasal air-puffing on cognitive impairments and brain cortical activity following one night of partial sleep deprivation (PSD) in adults. A total of 26 healthy adults underwent the numerical Stroop test (NST) and electroencephalography (EEG) before and after one night of PSD. Following PSD, subjects in the treatment group (n = 13) received nasal air-puffs (5 Hz, 3 min) before beginning the NST and EEG recording. Administration of nasal air-puffs in the treatment group restored the PSD-induced increase in error rate and decrease in reaction time and missing rate in the NST. Intranasal air-puffs recovered the PSD-induced augmentation of delta and theta power and the reduction of beta and gamma power in the EEG, particularly in the frontal lobes. Intranasal air-puffing also almost reversed the PSD-induced decrease in EEG signal complexity. Furthermore, it had a restorative effect on PSD-induced alteration in intra-default mode network functional connectivity in the beta and gamma frequency bands. Rhythmic nasal air-puffing can mitigate acute PSD-induced impairments in cognitive functions. It exerts part of its ameliorating effect by restoring neuronal activity in cortical brain areas involved in cognitive processing.
Collapse
Affiliation(s)
- Hanieh Riazi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (H.R.); (M.R.R.); (J.M.-Z.)
| | - Milad Nazari
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark;
- Center for Proteins in Memory—PROMEMO, Danish National Research Foundation, 1057 København, Denmark
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (H.R.); (M.R.R.); (J.M.-Z.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (H.R.); (M.R.R.); (J.M.-Z.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (H.R.); (M.R.R.); (J.M.-Z.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| |
Collapse
|
39
|
Pfurtscheller G, Rassler B, Schwarz G, Klimesch W. Scan-associated anxiety (scanxiety): the enigma of emotional breathing oscillations at 0.32 Hz (19 bpm). Front Neurosci 2024; 18:1384993. [PMID: 38638691 PMCID: PMC11025454 DOI: 10.3389/fnins.2024.1384993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
MRI-related anxiety in healthy participants is often characterized by a dominant breathing frequency at around 0.32 Hz (19 breaths per minute, bpm) at the beginning but in a few cases also at the end of scanning. Breathing waves at 19 bpm are also observed in patients with anxiety independently of the scanned body part. In patients with medically intractable epilepsy and intracranial electroencephalography (iEEG), spontaneous breathing through the nose varied between 0.24 and 0.37 Hz (~19 bpm). Remarkable is the similarity of the observed breathing rates at around 0.32 Hz during different types of anxiety states (e.g., epilepsy, cancer, claustrophobia) with the preferred breathing frequency of 0.32 Hz (19 bpm), which is predicted by the binary hierarchy model of Klimesch. This elevated breathing frequency most likely reflects an emotional processing state, in which energy demands are minimized due to a harmonic coupling ratio with other brain-body oscillations.
Collapse
Affiliation(s)
- Gert Pfurtscheller
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | - Beate Rassler
- Carl-Ludwig-Institute of Physiology, University of Leipzig, Leipzig, Germany
| | - Gerhard Schwarz
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Wolfgang Klimesch
- Centre of Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| |
Collapse
|
40
|
Sargent KS, Martinez EL, Reed AC, Guha A, Bartholomew ME, Diehl CK, Chang CS, Salama S, Popov T, Thayer JF, Miller GA, Yee CM. Oscillatory Coupling Between Neural and Cardiac Rhythms. Psychol Sci 2024:9567976241235932. [PMID: 38568870 DOI: 10.1177/09567976241235932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Oscillations serve a critical role in organizing biological systems. In the brain, oscillatory coupling is a fundamental mechanism of communication. The possibility that neural oscillations interact directly with slower physiological rhythms (e.g., heart rate, respiration) is largely unexplored and may have important implications for psychological functioning. Oscillations in heart rate, an aspect of heart rate variability (HRV), show remarkably robust associations with psychological health. Mather and Thayer proposed coupling between high-frequency HRV (HF-HRV) and neural oscillations as a mechanism that partially accounts for such relationships. We tested this hypothesis by measuring phase-amplitude coupling between HF-HRV and neural oscillations in 37 healthy adults at rest. Robust coupling was detected in all frequency bands. Granger causality analyses indicated stronger heart-to-brain than brain-to-heart effects in all frequency bands except gamma. These findings suggest that cardiac rhythms play a causal role in modulating neural oscillations, which may have important implications for mental health.
Collapse
Affiliation(s)
- Kaia S Sargent
- Department of Psychology, University of California, Los Angeles
| | | | | | - Anika Guha
- Department of Psychology, University of California, Los Angeles
| | | | | | | | - Sarah Salama
- Department of Psychology, University of California, Los Angeles
| | - Tzvetan Popov
- Department of Psychology, University of Konstanz
- Department of Psychology, University of Zurich
| | - Julian F Thayer
- Department of Psychological Science, University of California, Irvine
| | - Gregory A Miller
- Department of Psychology, University of California, Los Angeles
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Cindy M Yee
- Department of Psychology, University of California, Los Angeles
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| |
Collapse
|
41
|
Schaefer M, Hrysanidis C, Lundström JN, Arshamian A. Phase-locked breathing does not affect episodic visual recognition memory but does shape its corresponding ERPs. Psychophysiology 2024; 61:e14493. [PMID: 38053412 DOI: 10.1111/psyp.14493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023]
Abstract
Recent studies have indicated that breathing shapes the underlying oscillatory brain activity critical for episodic memory, potentially impacting memory performance. However, the literature has presented conflicting results, with some studies suggesting that nasal inhalation enhances visual memory performance, while others have failed to observe any significant effects. Furthermore, the specific influence of breathing route (nasal vs. mouth) and the precise phase of the respiratory cycle during which stimuli are presented have remained elusive. To address this, we employed a visual recognition memory (VRM) and electroencephalography paradigm in which stimuli presentation was phase-locked to either inhalation or exhalation onset, using a within-subject design where participants performed the memory task while engaging in separate sessions of nose and mouth breathing. We show that neither breathing route nor breathing phase has a significant impact on VRM performance as measured by d-prime, with the data supporting the null hypothesis. However, we did find an effect of breathing phase on response bias, with participants adopting a more conservative decision criterion during exhalation. Moreover, we found that breathing phase during memory encoding shaped the late parietal effect (LPE) amplitude, while the Frontal Negative Component (FN400) and LPE during recognition were less impacted. While our study demonstrates that breathing does not shape VRM performance, it shows that it influences brain activity, reinforcing the importance of further research to elucidate the extent of respiratory influence on perception, cognition, and behavior.
Collapse
Affiliation(s)
- Martin Schaefer
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Caitlin Hrysanidis
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Johan N Lundström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Artin Arshamian
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
42
|
Mignot C, Weise S, Podlesek D, Leonhardt G, Bensafi M, Hummel T. What do brain oscillations tell about the human sense of smell? J Neurosci Res 2024; 102:e25335. [PMID: 38634155 DOI: 10.1002/jnr.25335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024]
Abstract
Brain activity may manifest itself as oscillations which are repetitive rhythms of neuronal firing. These local field potentials can be measured via intracranial electroencephalography (iEEG). This review focuses on iEEG used to map human brain structures involved in olfaction. After presenting the methodology of the review, a summary of the brain structures involved in olfaction is given, followed by a review of the literature on human olfactory oscillations in different contexts. A single case is provided as an illustration of the olfactory oscillations. Overall, the timing and sequence of oscillations found in the different structures of the olfactory system seem to play an important role for olfactory perception.
Collapse
Affiliation(s)
- Coralie Mignot
- Smell & Taste Clinic, Department of Otorhinolaryngology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Susanne Weise
- Smell & Taste Clinic, Department of Otorhinolaryngology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Dino Podlesek
- Department of Neurosurgery, Technische Universität Dresden, Dresden, Germany
| | - Georg Leonhardt
- Department of Neurosurgery, Technische Universität Dresden, Dresden, Germany
| | - Moustafa Bensafi
- Lyon Neuroscience Research Center, CNRS-INSERM-University Claude Bernard of Lyon, CH Le Vinatier, Lyon, France
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
43
|
Catrambone V, Zallocco L, Ramoretti E, Mazzoni MR, Sebastiani L, Valenza G. Integrative neuro-cardiovascular dynamics in response to test anxiety: A brain-heart axis study. Physiol Behav 2024; 276:114460. [PMID: 38215864 DOI: 10.1016/j.physbeh.2024.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Test anxiety (TA), a recognized form of social anxiety, is the most prominent cause of anxiety among students and, if left unmanaged, can escalate to psychiatric disorders. TA profoundly impacts both central and autonomic nervous systems, presenting as a dual manifestation of cognitive and autonomic components. While limited studies have explored the physiological underpinnings of TA, none have directly investigated the intricate interplay between the CNS and ANS in this context. In this study, we introduce a non-invasive, integrated neuro-cardiovascular approach to comprehensively characterize the physiological responses of 27 healthy subjects subjected to test anxiety induced via a simulated exam scenario. Our experimental findings highlight that an isolated analysis of electroencephalographic and heart rate variability data fails to capture the intricate information provided by a brain-heart axis assessment, which incorporates an analysis of the dynamic interaction between the brain and heart. With respect to resting state, the simulated examination induced a decrease in the neural control onto heartbeat dynamics at all frequencies, while the studying condition induced a decrease in the ascending heart-to-brain interplay at EEG oscillations up to 12Hz. This underscores the significance of adopting a multisystem perspective in understanding the complex and especially functional directional mechanisms underlying test anxiety.
Collapse
Affiliation(s)
- Vincenzo Catrambone
- Neurocardiovascular Intelligence Laboratory, Department of Information Engineering & Bioengineering and Robotics Research Center E. Piaggio, School of Engineering, University of Pisa, Pisa, Italy.
| | - Lorenzo Zallocco
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Eleonora Ramoretti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Maria Rosa Mazzoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Laura Sebastiani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; Institute of Information Science and Technologies A. Faedo, ISTI-CNR, Pisa, Italy
| | - Gaetano Valenza
- Neurocardiovascular Intelligence Laboratory, Department of Information Engineering & Bioengineering and Robotics Research Center E. Piaggio, School of Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
44
|
De Falco E, Solcà M, Bernasconi F, Babo-Rebelo M, Young N, Sammartino F, Tallon-Baudry C, Navarro V, Rezai AR, Krishna V, Blanke O. Single neurons in the thalamus and subthalamic nucleus process cardiac and respiratory signals in humans. Proc Natl Acad Sci U S A 2024; 121:e2316365121. [PMID: 38451949 PMCID: PMC10945861 DOI: 10.1073/pnas.2316365121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/16/2024] [Indexed: 03/09/2024] Open
Abstract
Visceral signals are constantly processed by our central nervous system, enable homeostatic regulation, and influence perception, emotion, and cognition. While visceral processes at the cortical level have been extensively studied using non-invasive imaging techniques, very few studies have investigated how this information is processed at the single neuron level, both in humans and animals. Subcortical regions, relaying signals from peripheral interoceptors to cortical structures, are particularly understudied and how visceral information is processed in thalamic and subthalamic structures remains largely unknown. Here, we took advantage of intraoperative microelectrode recordings in patients undergoing surgery for deep brain stimulation (DBS) to investigate the activity of single neurons related to cardiac and respiratory functions in three subcortical regions: ventral intermedius nucleus (Vim) and ventral caudalis nucleus (Vc) of the thalamus, and subthalamic nucleus (STN). We report that the activity of a large portion of the recorded neurons (about 70%) was modulated by either the heartbeat, the cardiac inter-beat interval, or the respiration. These cardiac and respiratory response patterns varied largely across neurons both in terms of timing and their kind of modulation. A substantial proportion of these visceral neurons (30%) was responsive to more than one of the tested signals, underlining specialization and integration of cardiac and respiratory signals in STN and thalamic neurons. By extensively describing single unit activity related to cardiorespiratory function in thalamic and subthalamic neurons, our results highlight the major role of these subcortical regions in the processing of visceral signals.
Collapse
Affiliation(s)
- Emanuela De Falco
- Laboratory of Cognitive Neuroscience, School of Life Sciences, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
- Department of Neuroscience, Rockefeller Neuroscience Institute–West Virginia University, Morgantown, WV26505
| | - Marco Solcà
- Laboratory of Cognitive Neuroscience, School of Life Sciences, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
- Department of Psychiatry, University Hospital Geneva, Geneva1205, Switzerland
| | - Fosco Bernasconi
- Laboratory of Cognitive Neuroscience, School of Life Sciences, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
| | - Mariana Babo-Rebelo
- Laboratory of Cognitive Neuroscience, School of Life Sciences, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
| | - Nicole Young
- Medical Department, SpecialtyCare, Brentwood, TN37027
| | - Francesco Sammartino
- Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, OH43210
| | - Catherine Tallon-Baudry
- Laboratoire de Neurosciences Cognitives et Computationnelles, Département d’Etudes Cognitives, École normale supérieure-Paris Sciences et Lettres University, Inserm, Paris75005, France
| | - Vincent Navarro
- Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm, CNRS, Assistance Publique - Hôpitaux de Paris, Epilepsy Unit, Hôpital de la Pitié-Salpêtrière, Paris75013, France
| | - Ali R. Rezai
- Department of Neurosurgery, Rockefeller Neuroscience Institute—West Virginia University, Morgantown, WV26505
| | - Vibhor Krishna
- Department of Neurosurgery, University of North Carolina at Chapel Hill, Durham, NC27516
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, School of Life Sciences, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
- Department of Clinical Neurosciences, University Hospital Geneva, Geneva1205, Switzerland
| |
Collapse
|
45
|
Bordoni B, Escher AR. Motor Dysfunctions in Fibromyalgia Patients: The Importance of Breathing. Open Access Rheumatol 2024; 16:55-66. [PMID: 38476512 PMCID: PMC10929242 DOI: 10.2147/oarrr.s442327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/03/2024] [Indexed: 03/14/2024] Open
Abstract
The classification of fibromyalgia (FM) is not always immediate and simple, with the time from the first diagnosis, compared to the onset of symptoms, of a few years. Currently, we do not have instrumental or biochemical tests considered as gold standards; the clinician will make a diagnosis of FM based on the patient's medical history and subjective assessment. The symptoms can involve physical, cognitive and psychological disorders, with the presence of pain of different origins and classifications: nociplastic, nociceptive and neuropathic pain. Among the symptoms highlighted, postural disorders and neuromotor uncoordination emerge, whose functional dysfunctions can increase the mortality and morbidity rate. An alteration of the diaphragm muscle could generate such functional motor problems. Considering that the current literature underestimates the importance of breathing in FM, the article aims to highlight the relationship between motor and diaphragmatic difficulties in the patient, soliciting new points of view for the clinical and therapeutic framework.
Collapse
Affiliation(s)
- Bruno Bordoni
- Dipartimento di Cardiologia, Fondazione Don Carlo Gnocchi IRCCS, Istituto di Ricovero e Cura, S Maria Nascente, Milano, 20100, Italia
| | - Allan R Escher
- Anesthesiology/Pain Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| |
Collapse
|
46
|
Dada T, Gwal RS, Mahalingam K, Chandran DS, Angmo D, Gupta S, Velpandian T, Deepak KK. Effect of "365 Breathing Technique" on Intraocular Pressure and Autonomic Functions in Patients With Glaucoma: A Randomized Controlled Trial. J Glaucoma 2024; 33:149-154. [PMID: 38194285 DOI: 10.1097/ijg.0000000000002356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/25/2023] [Indexed: 01/10/2024]
Abstract
PRCIS Patients with primary open angle glaucoma were advised to follow the "365 breathing technique" for 6 weeks in addition to their pharmacological glaucoma treatment. It helped to reduce intraocular pressure (IOP), stress biomarker-cortisol, and improve autonomic dysfunction. OBJECTIVE To study the effect of the "365 breathing technique" on IOP, autonomic functions, and stress biomarkers in patients with primary open angle glaucoma. METHODS In this randomized, controlled, interventional trial, after randomization, 40 patients in the intervention group followed "365 breathing" (three times a day, breathing rate: 6 cycles/min for 5 min) in addition to their pharmacological glaucoma treatment and 40 patients in the control group continued only with their pharmacological glaucoma treatment. IOP, serum cortisol, heart rate variability (HRV), and heart rate response to deep breathing test (DBT) were recorded at preintervention and 6 weeks postintervention. RESULTS The mean IOP, serum cortisol, parameters of the HRV test, and DBT were comparable between the two groups at baseline. At the 6-week follow-up, in the intervention group, mean IOP was significantly lower (16.09 ± 2.24 vs 18.38 ± 1.58 mm Hg, P = 0.03) and serum cortisol were significantly lower (13.20 ± 3.11 vs 14.95 ± 2.60 mcg/dL, P = 0.038) compared with the control group. In the HRV test, time domain analysis showed a significant difference in the root mean square of the successive difference between RR interval values between both groups at 6 weeks ( P = 0.015) pointing towards higher postintervention parasympathetic activation in the intervention group. In frequency domain analysis (HRV test), the ratio of the low-frequency component to the high-frequency component was significantly lower in the intervention group at 6 weeks (1.65 vs 1.79, P = 0.019) indicating a shift in sympathovagal balance towards greater vagal modulation.There was a significant increase in delta heart rate ( P = 0.019) and expiratory:inspiratory ratio ( P = 0.011) in the intervention group at 6 weeks when compared with baseline values, indicating improved parasympathetic reactivity to DBT. CONCLUSION "365 breathing" technique can reduce IOP and serum cortisol, and improve autonomic dysfunction in patients with glaucoma.
Collapse
Affiliation(s)
| | | | | | - Dinu Santha Chandran
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | - Kishore K Deepak
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
47
|
Ivanov I, Miraglia B, Prodanova D, Newcorn JH. Sleep Disordered Breathing and Risk for ADHD: Review of Supportive Evidence and Proposed Underlying Mechanisms. J Atten Disord 2024; 28:686-698. [PMID: 38353411 DOI: 10.1177/10870547241232313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
BACKGROUND Accumulating evidence suggests that sleep disordered breathing (SDB) is under-recognized in youth and adults with ADHD. SDB may contribute to exacerbating pre-existing ADHD symptoms and may play a role in the development of cognitive deficits that may mimic ADHD symptoms. METHOD We conducted a focused review of publications on cross-prevalence, overlapping clinical and neurobiological characteristics and possible mechanisms linking SDB and ADHD. RESULTS Exiting studies suggest that co-occurrence of SDB and ADHD is as high as 50%, with frequent overlap of clinical symptoms such as distractibility and inattention. Mechanisms linking these conditions may include hypoxia during sleep, sleep fragmentation and activation of inflammation, all of which may affect brain structure and physiology to produce disturbances in attention. CONCLUSIONS The relationship between SDB and ADHD symptoms appear well-supported and suggests that more research is needed to better optimize procedures for SDB assessment in youth being evaluated and/or treated for ADHD.
Collapse
|
48
|
Drozdovszky O, Petzke T, Köteles F. Sensory and affective aspects of the perception of respiratory resistance. Biol Futur 2024; 75:51-59. [PMID: 37481740 DOI: 10.1007/s42977-023-00173-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
Perception of airway resistance has a sensory and an affective aspect, i.e., perceived resistance and unpleasantness, respectively. The current study aimed to shed more light on the relationship of these aspects, as well as their malleability to trait-like aspects of body awareness. In a laboratory study, 71 young participants completed two respiratory resistive load discrimination tasks relying on sensory and affective evaluation, respectively, and filled out questionnaires assessing somatosensory amplification, anxiety sensitivity, somatic symptoms distress, and breath awareness. Frequentist and Bayesian statistical analysis revealed no differences in discrimination accuracy with respect to the sensory and affective aspect of perceived resistance. Psychological traits were not associated with accuracy scores. In conclusion, affective evaluation of respiratory load is as accurate as sensory evaluation. Neither sensory not affective accuracy is influenced by various aspects of body awareness.
Collapse
Affiliation(s)
- Orsolya Drozdovszky
- Institute of Health Promotion and Sport Sciences, ELTE Eötvös Loránd University, Budapest, Hungary
- Ádám György Psychophysiology Research Group, Budapest, Hungary
| | - Tara Petzke
- Psychological Institute, Johannes Gutenberg University, Wallstraße 3, 55122, Mainz, Germany.
| | - Ferenc Köteles
- Ádám György Psychophysiology Research Group, Budapest, Hungary
- Károli Gáspár University of the Reformed Church in Hungary, Budapest, Hungary
| |
Collapse
|
49
|
Ribeiro LDJA, Bastos VHDV, Coertjens M. Breath-holding as model for the evaluation of EEG signal during respiratory distress. Eur J Appl Physiol 2024; 124:753-760. [PMID: 38105311 DOI: 10.1007/s00421-023-05379-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
PURPOSE Research describes the existence of a relationship between cortical activity and the regulation of bulbar respiratory centers through the evaluation of the electroencephalographic (EEG) signal during respiratory challenges. For example, we found evidences of a reduction in the frequency of the EEG (alpha band) in both divers and non-divers during apnea tests. For instance, this reduction was more prominent in divers due to the greater physiological disturbance resulting from longer apnea time. However, little is known about EEG adaptations during tests of maximal apnea, a test that voluntarily stops breathing and induces dyspnea. RESULTS Through this mini-review, we verified that a protocol of successive apneas triggers a significant increase in the maximum apnea time and we hypothesized that successive maximal apnea test could be a powerful model for the study of cortical activity during respiratory distress. CONCLUSION Dyspnea is a multifactorial symptom and we believe that performing a successive maximal apnea protocol is possible to understand some factors that determine the sensation of dyspnea through the EEG signal, especially in people not trained in apnea.
Collapse
Affiliation(s)
- Lucas de Jesus Alves Ribeiro
- Physiotherapy Department, Universidade Federal do Delta do Parnaíba, Av. São Sebastião, CEP: 64.202-020, Parnaíba, PI, 2819, Brazil
- Brain Mapping and Functionality Laboratory, Universidade Federal do Delta do Parnaíba, Piauí, Brazil
| | - Victor Hugo do Vale Bastos
- Physiotherapy Department, Universidade Federal do Delta do Parnaíba, Av. São Sebastião, CEP: 64.202-020, Parnaíba, PI, 2819, Brazil
- Postgraduate Program in Biomedical Sciences, Universidade Federal do Delta do Parnaíba, Piauí, Brazil
- Brain Mapping and Functionality Laboratory, Universidade Federal do Delta do Parnaíba, Piauí, Brazil
| | - Marcelo Coertjens
- Physiotherapy Department, Universidade Federal do Delta do Parnaíba, Av. São Sebastião, CEP: 64.202-020, Parnaíba, PI, 2819, Brazil.
- Postgraduate Program in Biomedical Sciences, Universidade Federal do Delta do Parnaíba, Piauí, Brazil.
| |
Collapse
|
50
|
You M, Laborde S, Ackermann S, Borges U, Dosseville F, Mosley E. Influence of Respiratory Frequency of Slow-Paced Breathing on Vagally-Mediated Heart Rate Variability. Appl Psychophysiol Biofeedback 2024; 49:133-143. [PMID: 38063977 DOI: 10.1007/s10484-023-09605-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2023] [Indexed: 02/16/2024]
Abstract
Breathing techniques, particularly slow-paced breathing (SPB), have gained popularity among athletes due to their potential to enhance performance by increasing cardiac vagal activity (CVA), which in turn can help manage stress and regulate emotions. However, it is still unclear whether the frequency of SPB affects its effectiveness in increasing CVA. Therefore, this study aimed to investigate the effects of a brief SPB intervention (i.e., 5 min) on CVA using heart rate variability (HRV) measurement as an index. A total of 75 athletes (22 female; Mage = 22.32; age range = 19-31) participated in the study, attending one lab session where they performed six breathing exercises, including SPB at different frequencies (5 cycles per minute (cpm), 5.5 cpm, 6 cpm, 6.5 cpm, 7 cpm), and a control condition of spontaneous breathing. The study found that CVA was significantly higher in all SPB conditions compared to the control condition, as indexed by both root mean square of the successive differences (RMSSD) and low-frequency HRV (LF-HRVms2). Interestingly, LF-HRVms2 was more sensitive in differentiating the respiratory frequencies than RMSSD. These results suggest that SPB at a range of 5 cpm to 7 cpm can be an effective method to increase CVA and potentially improve stress management and emotion regulation in athletes. This short SPB exercise can be a simple yet useful tool for athletes to use during competitive scenarios and short breaks in competitions. Overall, these findings highlight the potential benefits of incorporating SPB into athletes' training and competition routines.
Collapse
Affiliation(s)
- Min You
- School of Teacher Education, University of Weifang, Weifang, China.
- UFR Psychologie, UR 3918 CERREV, Université de Caen Normandie, Caen, 14032, France.
| | - Sylvain Laborde
- Department of Performance Psychology, Institute of Psychology, German Sport University, Cologne, Germany
- UFR STAPS, UR 7480 VERTEX, Université de Caen Normandie, Caen, 14032, France
| | - Stefan Ackermann
- Department of Performance Psychology, Institute of Psychology, German Sport University, Cologne, Germany
| | - Uirassu Borges
- Department of Health & Social Psychology, Institute of Psychology, German Sport University, Cologne, Germany
| | - Fabrice Dosseville
- UFR STAPS, UR 7480 VERTEX, Université de Caen Normandie, Caen, 14032, France
- CNDAPS, Colombelles, F-14460, France
| | - Emma Mosley
- Department of Rehabilitation and Sport Sciences, School of Sport, Bournemouth University, Fern Barrow, Poole, Dorset, BH12 5BB, UK
| |
Collapse
|