1
|
Tchodo FG, Dakpogan HB, Adjei-Mensah B, N'nanle O, Karou S, Pitala W, Tona K, Bakoma B. In ovo toxico-pathological effects of medicinal plants used against coccidiosis on chicken embryos development and hatchability. Poult Sci 2024; 103:104435. [PMID: 39515114 PMCID: PMC11584571 DOI: 10.1016/j.psj.2024.104435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/14/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
TOXICO-pathological effects of herbal plants have always been a major concern, but little information is provided on the toxico-pathological effects of medicinal plants used against coccidiosis. This study aimed to assess the histopathological effects of Carica papaya seeds (CPS), Azadirachta indica leaves (AIL), and Sarcocephalus latifolius root (SLR) used as coccidiostat in traditional poultry farms with various doses using the chick embryo model. A total of 420 Sasso breeder eggs at ED4 of incubation were inoculated with the extract of these plants following a 3×4 factorial design with 3 plant extracts (CPS, AIL and SLR) and 4 inoculation doses (0, 25, 50 and 100 mg/kg egg-weight). From ED6 to ED19, the weights of the albumen and embryo were recorded, and the weights of ED19 embryo organs such as liver, heart, kidney, and lungs were measured. Additionally, histopathological lesions were examined. The results indicated that the presence of various phytoconstituents such as alkaloids, phenolics, flavonoids, tannins, saponins, coumarins, steroids, and triterpenes with statistically significant free-radical-scavenging ability differed among the plant extracts (p < 0.0001). Toxico-pathological examination revealed a dose-dependent slight toxicity (p < 0.0001) of the Azadirachta indica leaves extract compared to the other plants. Additionally, the relative organ weight showed kidney hypertrophy (p = 0.001) and liver hypertrophy (p = 0.0001), as well as dilation of hepatic and cardiac vessels. The conclusion drawn was that chicken embryos are more susceptible to in ovo inoculation with Azadirachta indica leaves compared to Carica papaya seeds and Sarcocephalus latifolius root.
Collapse
Affiliation(s)
- Ferdinand G Tchodo
- Regional Center of Excellence in Poultry Science, University of Lome, BSP 1515 Lome, Togo.
| | - Hervé B Dakpogan
- School of Animal Production System Management P.O.BOX 43 Ketou, National Agricultural University, 01 P.O.BOX 55 Porto-Novo, Benin
| | - Benjamin Adjei-Mensah
- Regional Center of Excellence in Poultry Science, University of Lome, BSP 1515 Lome, Togo
| | - Ombortime N'nanle
- Regional Center of Excellence in Poultry Science, University of Lome, BSP 1515 Lome, Togo
| | - Simplice Karou
- Regional Center of Excellence in Poultry Science, University of Lome, BSP 1515 Lome, Togo
| | - Wéré Pitala
- Regional Center of Excellence in Poultry Science, University of Lome, BSP 1515 Lome, Togo
| | - Kokou Tona
- Regional Center of Excellence in Poultry Science, University of Lome, BSP 1515 Lome, Togo
| | - Batomayena Bakoma
- Pharmaceutical Sciences Research Laboratory, University of Lome, BSP 1515 Lome, Togo
| |
Collapse
|
2
|
Murshed M, Mares M, Aljawdah HMA, Mohammed OB, Al-Quraishy S. Morphological and molecular characterization of Eimeria magna infecting local rabbit (Oryctolagus cuniculus) in Alkarg City, Saudi Arabia. J Eukaryot Microbiol 2024; 71:e13044. [PMID: 38962865 DOI: 10.1111/jeu.13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Coccidiosis is one of the most prevalent diseases found in local rabbits (Oryctolagus cuniculus), which is caused by the Eimeria. The study aimed to more reliably identify Eimeria species (Eimeria magna) infecting Local Rabbits in Alkarg City, Saudi Arabia, based the method on the molecular properties and morphological and molecular biological techniques. Sub-spheroidal oocysts measuring 21-27 × 12-16 (24 × 14.4) μm (20 n) and with a length/width (L/W) ratio of 0.9-1.1 (1.0) were identified by microscopic analysis of a fecal sample. Oocysts feature a bi-layered wall that is 1.0-1.2 (1.1) μm thick. About two-thirds of the wall's thickness is made up of a smooth outer layer. A polar granule is present, but neither a micropyle nor an oocyst residuum is present. The ovoidal sporozoites measure 15-18 × 8-11 (16.5 × 9.5) μm, have an L/W ratio of 1.6-1.8 (1.7), and take up around 21% of the oocyst's total surface. The mean size of the sub-Stieda body is 1.4 × 2.3 μm, while the average size of the Stieda body is 0.9 × 1.8 μm. The para-Stieda body is lacking. Sporocyst residuum appears membrane-bound and has an uneven form made up of several granules. With two refractile bodies below the striations and pronounced striations at the more pointed end, sporozoites are vermiform, measuring an average of 11.6 × 4.0 μm. The results of the sequencing for the 18S rDNA gene confirmed the species of Eimeria parasites found in the host (rabbits). The current parasite species is closely related to the previously described and deposited E. magna and deeply embedded in the genus Eimeria (family Eimeriidae). According to the findings, single oocyst molecular identification of Eimeria may be accomplished through consistent use of the morphological and molecular results. It is possible to draw the conclusion that the current research supplies relevant facts that help assess the potential infection and future control measures against rabbit coccidiosis to reduce the financial losses that can be incurred by the rabbit industry in Saudi Arabia.
Collapse
Affiliation(s)
- Mutee Murshed
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Mares
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hossam M A Aljawdah
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Osama B Mohammed
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
El-Sawah AA, Aboelhadid SM, El-Nahass ESN, Helal HE. Efficacy and safety of diclazuril nanoemulsion in control of Eimeria tenella in broilers. BMC Vet Res 2024; 20:495. [PMID: 39472852 PMCID: PMC11520506 DOI: 10.1186/s12917-024-04325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Nanotechnology has the potential to reduce drug dosage while increasing efficacy; thus, the current work intends to synthesize diclazuril nanoemulsion and assess its performance against experimental coccidiosis in broilers. METHODS Diclazuril nanoemulsion (DZN) was formulated and characterized by zeta seizer and zeta potential. The formulated DZN was evaluated in vivo against Eimeria tenella infected chicks. DZN and DZ were used in 2 programs; therapeutic and prophylactic. A total of 210 one-day-old broiler chicks were distributed equally into six groups. The controls were negative uninfected untreated and positive infected untreated (G1 & G2). Therapeutic groups (G3 & G4) treated by DZ and DZN after appearance of the clinical signs of coccidiosis and continued for 5 days. Prophylaxis groups (G5 & G6) received DZ and DZN at 3 days before challenge and continued for 5 days after infection. The treatments dosages were 10 mg/mL for DZ of commercial origin and 2.5 mg/mL for the prepared DZN. All groups (except negative control) orally infected then followed up for clinical signs of coccidiosis, mortality rate, oocysts count, performance, hematological and biochemical parameters in addition to histopathological lesions. RESULTS The therapeutic groups showed that both treated groups (DZ and DZN) revealed similar results including good body weight gain, a low lesion caecal score, a low daily and total oocyst shedding count, and a low mortality rate. Regarding the biochemical parameters, all parameters were affected during infection then restored after the 12th day post infection. However, in the prophylactic groups, showed mild clinical signs and the blood pictures and biochemical parameters were nearly like the control negative without infection. CONCLUSION DZN at a quarter dose of standard DZ produced the same outcomes as DZ at 10 mg/mL. Furthermore, DZN does not impair the typical safety of diclazuril in treated chicks.
Collapse
Affiliation(s)
- Azza A El-Sawah
- Department of Poultry and Rabbit Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Shawky M Aboelhadid
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt.
| | - El-Shymaa N El-Nahass
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Hassan E Helal
- Veterinary Medicine Department, Elhelal Veterinary Clinic, Fayoum, Egypt
| |
Collapse
|
4
|
Razavi SM, Soltan MS, Abbasian K, Karami A, Nazifi S. Acute phase response and oxidative stress in coccidiosis: A review in domestic animals. Vet Parasitol 2024; 331:110286. [PMID: 39128326 DOI: 10.1016/j.vetpar.2024.110286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Coccidiosis is a highly significant disease in domestic animals due to its global distribution and economic impact. The occurrence of oxidative stress (OS) and the acute phase response (APR) play crucial roles in the development of coccidiosis, thereby contributing to the pathogenicity of coccidia. A range of triggers including parasitic infection, can induce the APR. This response encompasses a set of hormonal and metabolic changes to restore body stability and improve the body's healing capabilities. Ovine coccidiosis has the potential to cause OS, which can be prevented and treated through the use of dietary additives. By including Curcuma longa in the diets of infected sheep, it is possible to reduce lipid peroxidation (LPO) and nitric oxide (NO) production, while simultaneously improving serum antioxidant capacity and interleukin-10 (IL-10) levels. Caprine coccidiosis can activate the APR. Research indicated that goats suffering from coccidiosis exhibited elevated concentrations of malondialdehyde (MDA) and total homocysteine, along with reduced levels of some enzymes such as superoxide dismutase (SOD) and glutathione reductase (GR), as well as decreased levels of zinc (Zn), manganese (Mn), selenium (Se), vitamin C, and total antioxidant capacity (TAC). Bovine coccidiosis is linked to elevated MDA concentrations and reduced serum glutathione (GSH) and TAC levels. Eimeria can induce OS and inflammatory damage in infected birds by releasing pro-inflammatory mediators from cells, resulting in a significant increase in CAT and SOD activity, lipid peroxidation and damage to the intestinal epithelium. To promote the antioxidant system of infected birds, some herbal food additives such as grape seed proanthocyanidine extract, Curcuma longa and Rumex nervosus leaf extract, can be used. Research on the APR in birds is not as extensive as in ruminants. Currently, there is a lack of studies on the occurrence of OS and APR in camels, horses, dogs, and cats with coccidiosis.
Collapse
Affiliation(s)
- Seyed Mostafa Razavi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mohammad Sajjad Soltan
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Kiarash Abbasian
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ali Karami
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saeed Nazifi
- Department of Clinical Studies, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| |
Collapse
|
5
|
Rahmani A, Ahmed Laloui H, Kara R, Dems MA, Cherb N, Klikha A, Blake DP. The financial cost of coccidiosis in Algerian chicken production: a major challenge for the poultry sector. Avian Pathol 2024; 53:368-379. [PMID: 38529824 DOI: 10.1080/03079457.2024.2336091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/22/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Coccidiosis, caused by parasites of the genus Eimeria, is a significant economic burden to the poultry industry. In this study, we conducted a comprehensive analysis to evaluate the financial losses associated with Eimeria infection in chickens in Algeria, relying on data provided by key stakeholders in the Algerian poultry industry to assess sub-clinical as well as clinical impact. We employed the updated 2020 version of a model established to estimate the cost of coccidiosis in chickens, taking into consideration specific cultural and technical aspects of poultry farming in Algeria. The findings predict economic losses due to coccidiosis in chickens of approximately £86.7 million in Algeria for the year 2022, representing £0.30 per chicken raised. The majority of the cost was attributed to morbidity (74.9%), emphasizing the substantial economic impact of reduced productivity including decreased bodyweight gain and increased feed conversion ratio. Costs associated with control measures made up 20.5% of the total calculated cost, with 4.6% of the cost related to mortality. These figures provide a clear indication of the scope and economic impact of Eimeria infection of chickens in Algeria, illustrating the impact of practices common across North Africa. They underscore the ongoing requirement for effective preventive and control measures to reduce these financial losses while improving productivity and welfare, ensuring the economic sustainability of the Algerian poultry industry.
Collapse
Affiliation(s)
- Abderrahmen Rahmani
- Animal Production Team, Biotechnology and Agriculture Division; Biotechnology Research Center; Ali Mendjli, Constantine, Algeria
| | - Hamza Ahmed Laloui
- Animal Production Team, Biotechnology and Agriculture Division; Biotechnology Research Center; Ali Mendjli, Constantine, Algeria
| | | | - Mohamed Abdesselem Dems
- Bio-informatics and Bio-statistics Unit (BIBS-U); Biotechnology Research Center; Ali Mendjli, Constantine, Algeria
| | - Nora Cherb
- Environment Biotechnology Division; Biotechnology Research Center; Ali Mendjli, Constantine, Algeria
| | | | | |
Collapse
|
6
|
Chen H, Dai Y, Liu J, Duan L, Hu J, Sun S, Zhu G, Ma X, Wan J, Ma N, Zhang X, Wang C, Zhao N. Anti-Eimeria tenella activity of Ethanamizuril in vitro and in vivo. J Vet Med Sci 2024; 86:1008-1015. [PMID: 39069485 PMCID: PMC11422700 DOI: 10.1292/jvms.24-0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
The prevalence of chicken coccidiosis in the poultry industry is a significant concern, further exacerbated by the emergence of drug-resistant coccidia resulting from the indiscriminate use of medications. Ethanamizuril, a novel triazine anti-coccidial compound, has been used to combat drug resistance. Currently, it is known that Ethanamizuril acts on the second-generation merozoites and early gametogenesis stages of Eimeria. Limited information exists regarding its impact on the early merozoites and exogenous stage of Eimeria. In the present study, the anti-coccidial properties of Ethanamizuril were evaluated both in vitro and in vivo. The in vitro experiments demonstrated that Ethanamizuril effectively inhibits the sporulation of E. tenella oocysts in a dose-dependent manner and significantly reduces the sporozoite excystation rate. Furthermore, in vivo tests revealed that treatment with 10 mg/L Ethanamizuril in drinking water significantly decreased the copy number of first-generation and secondary-generation merozoites in the chicken cecum, indicating that it can inhibit the development of whole schizonts development. Moreover, treatment with Ethanamizuril demonstrated excellent protective efficacy with an anti-coccidial index (ACI) of 180.2, which was manifested through higher body weight gains, lighter cecal lesion, lower fecal oocyst shedding score and reduced liver index. Collectively, this study suggests that Ethanamizuril effectively treats E. tenella infection by inhibiting both endogenous and exogenous stages development.
Collapse
Affiliation(s)
- Hongbo Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Yindi Dai
- China Animal Nanjing Veterinary Drugs Co., Ltd., Nanjing, China
| | - Jiyu Liu
- College of Veterinary Medicine, Hebei Agricultural University, Hebei, China
| | - Lianmao Duan
- Riverstone Farm (Shandong) Co., Ltd., Shandong, China
| | - Juan Hu
- China Animal Nanjing Veterinary Drugs Co., Ltd., Nanjing, China
| | - Shaohui Sun
- China Animal Husbandry Industry Co., Ltd., Beijing, China
| | - Guangshan Zhu
- China Animal Husbandry Industry Co., Ltd., Beijing, China
| | - Xiaoping Ma
- China Animal Nanjing Veterinary Drugs Co., Ltd., Nanjing, China
| | - Jin Wan
- China Animal Husbandry Industry Co., Ltd., Beijing, China
| | - Nini Ma
- China Animal Husbandry Industry Co., Ltd., Beijing, China
| | - Xiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Cong Wang
- China Animal Husbandry Industry Co., Ltd., Beijing, China
| | - Ningning Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
7
|
Aziz‐Aliabadi F, Noruzi H, Imari ZK. Garlic (Allium sativum) and mushroom (Agaricus bisporus) powder: Investigation of performance, meat quality, serum profile lipid, and intestinal morphology in broilers. Vet Med Sci 2024; 10:e70031. [PMID: 39285748 PMCID: PMC11405929 DOI: 10.1002/vms3.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND With the ban on the use of antibiotics in poultry nutrition, the opinion of nutritionists turned to their alternatives. Garlic and mushroom are the two important phytobiotic compounds in poultry nutrition. OBJECTIVES This experiment was done to investigate the effect of garlic powder (GP) and mushroom powder (MP) on the growth performance, meat quality, serum lipid profile, and intestinal morphology of broilers. METHODS Five hundred and seventy-six one-day-old male Ross 308 broiler chicks were assigned to eight treatments with six replications based on a completely randomized design in a factorial arrangement of 4*2 with four levels of GP (0.00, 0.50, 1.00, 1.50%) and two levels of MP (0.00, 1.00%). RESULTS No significant effects of GP and MP on the performance were observed. With increasing levels of GP in the diets, the lightness and redness of breast meat decreased and increased, respectively (p < 0.05). The effect of increasing the amount of GP on the reduction of total cholesterol level was similar in the absence or presence of MP. With increasing levels of GP in the diets, the villus height (VH) and VH to crypt depth ratio (VH: CD) increased. The use of MP in the diets significantly increased VH and VH: CD (p < 0.05). CONCLUSION The addition of GP and MP to the broilers' diets did not have any negative effect on the performance. These pharmaceutic herbs improved intestinal morphology. In addition, increasing the level of GP amended the meat color and reduced the level of serum cholesterol.
Collapse
Affiliation(s)
- Fatemeh Aziz‐Aliabadi
- Department of Animal ScienceFaculty of AgricultureFerdowsi University of MashhadMashhadIran
| | - Hadi Noruzi
- Department of Animal ScienceFaculty of AgricultureFerdowsi University of MashhadMashhadIran
| | - Zeyad Kamal Imari
- Department of Animal Production TechniquesTechnical College of Al‐MusaibAl‐Furat Al‐Awsat Technical UniversityAL‐KufaIraq
| |
Collapse
|
8
|
Gómez-Osorio LM, Vasiljevic M, Raj J, Chaparro-Gutierréz JJ, López-Osorio S. Mycotoxins and coccidiosis in poultry - co-occurrence, interaction, and effects. Front Vet Sci 2024; 11:1387856. [PMID: 39149147 PMCID: PMC11326241 DOI: 10.3389/fvets.2024.1387856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
Avian coccidiosis, a common disease caused by Eimeria species, results in significant losses in global poultry production. Mycotoxins are low-molecular-weight natural products (i.e., small molecules) produced as secondary metabolites by filamentous fungi and they have the potential to economically and significantly affect global poultry production. Little is known about the relationship between mycotoxins and avian coccidiosis, although they often co-occur in the field. This comprehensive review examines the intricate relationship between mycotoxins and avian coccidiosis, in particular how mycotoxins, including aflatoxins, ochratoxins, trichothecenes as well as Fusarium mycotoxins, compromise the health of the poultry flock and open the door to Eimeria parasites in the gut. In addition, this review sheds light on the immunosuppressive effects of mycotoxins, their disruption of cellular signaling pathways, and the consequent exacerbation of coccidiosis infections. The mechanisms of mycotoxin toxicity are also reviewed, emphasizing direct damage to intestinal epithelial cells, impaired nutrient absorption, inflammation, oxidative stress, and changes in the gut microbiota. Finally, the consequences for the prevention and treatment of coccidiosis when mycotoxins are present in the feed are discussed. This review emphasizes the need for effective management strategies to mitigate the combined risks of mycotoxins and coccidiosis and highlights the complexity of diagnosing and controlling these interrelated problems in poultry. The review advocates a holistic approach that includes strict feed management, disease prevention measures and regular monitoring to maintain the health and productivity of poultry against these significant challenges.
Collapse
Affiliation(s)
- Luis-Miguel Gómez-Osorio
- CIBAV Research Group, Facultad de Ciencias Agrarias, Universidad de Antioquia, UdeA, Medellín, Colombia
- Patent Co., DOO., Mišićevo, Serbia
| | | | - Jog Raj
- Patent Co., DOO., Mišićevo, Serbia
| | | | - Sara López-Osorio
- CIBAV Research Group, Facultad de Ciencias Agrarias, Universidad de Antioquia, UdeA, Medellín, Colombia
| |
Collapse
|
9
|
Zhao Y, Zhang S. Comparative Analysis of Codon Usage Bias in Six Eimeria Genomes. Int J Mol Sci 2024; 25:8398. [PMID: 39125967 PMCID: PMC11313453 DOI: 10.3390/ijms25158398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The codon usage bias (CUB) of genes encoded by different species' genomes varies greatly. The analysis of codon usage patterns enriches our comprehension of genetic and evolutionary characteristics across diverse species. In this study, we performed a genome-wide analysis of CUB and its influencing factors in six sequenced Eimeria species that cause coccidiosis in poultry: Eimeria acervulina, Eimeria necatrix, Eimeria brunetti, Eimeria tenella, Eimeria praecox, and Eimeria maxima. The GC content of protein-coding genes varies between 52.67% and 58.24% among the six Eimeria species. The distribution trend of GC content at different codon positions follows GC1 > GC3 > GC2. Most high-frequency codons tend to end with C/G, except in E. maxima. Additionally, there is a positive correlation between GC3 content and GC3s/C3s, but a significantly negative correlation with A3s. Analysis of the ENC-Plot, neutrality plot, and PR2-bias plot suggests that selection pressure has a stronger influence than mutational pressure on CUB in the six Eimeria genomes. Finally, we identified from 11 to 15 optimal codons, with GCA, CAG, and AGC being the most commonly used optimal codons across these species. This study offers a thorough exploration of the relationships between CUB and selection pressures within the protein-coding genes of Eimeria species. Genetic evolution in these species appears to be influenced by mutations and selection pressures. Additionally, the findings shed light on unique characteristics and evolutionary traits specific to the six Eimeria species.
Collapse
Affiliation(s)
- Yu Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | | |
Collapse
|
10
|
Xiang Q, Wan Y, Pu X, Lu M, Xu L, Yan R, Li X, Song X. Protective efficacy of Eimeria maxima EmLPL and EmTregIM-1 against homologous challenge in chickens. Poult Sci 2024; 103:103865. [PMID: 38810564 PMCID: PMC11166879 DOI: 10.1016/j.psj.2024.103865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
Chicken coccidiosis has inflicted significant economic losses upon the poultry industry. The primary strategies for preventing and controlling chicken coccidiosis include anticoccidial drugs and vaccination. However, these approaches face limitations, such as drug residues and resistance associated with anticoccidial drugs, and safety concerns related to live vaccines. Consequently, the urgent development of innovative vaccines, such as subunit vaccines, is imperative. In previous study, we screened 2 candidate antigens: Eimeria maxima lysophospholipase (EmLPL) and E. maxima regulatory T cell inducing molecule 1 (EmTregIM-1). To investigate the immune protective effect of the 2 candidate antigens against Eimeria maxima (E. maxima) infection, we constructed recombinant plasmids, namely pET-28a-EmLPL and pET-28a-EmTregIM-1, proceeded to induce the expression of recombinant proteins of EmLPL (rEmLPL) and EmTregIM-1 (rEmTregIM-1). The immunogenic properties of these proteins were confirmed through western blot analysis. Targeting EmLPL and EmTregIM-1, we developed subunit vaccines and encapsulated them in PLGA nanoparticles, resulting in nano-vaccines: PLGA-rEmLPL and PLGA-rEmTregIM-1. The efficacy of these vaccines was assessed through animal protection experiments. The results demonstrated that rEmLPL and rEmTregIM-1 were successfully recognized by anti-E. maxima chicken sera and His-conjugated mouse monoclonal antibodies. Immunization with both subunit and nano-vaccines containing EmLPL and EmTregIM-1 markedly mitigated weight loss and reduced oocyst shedding in chickens infected with E. maxima. Furthermore, the anticoccidial indexes (ACI) for both rEmLPL and PLGA-rEmLPL exceeded 160, whereas those for rEmTregIM-1 and PLGA-rEmTregIM-1 were above 120 but did not reach 160, indicating superior protective efficacy of the rEmLPL and PLGA-rEmLPL formulations. By contrast, the protection afforded by rEmTregIM-1 and PLGA-rEmTregIM-1 was comparatively lower. Thus, EmLPL is identified as a promising candidate antigen for vaccine development against E. maxima infection.
Collapse
Affiliation(s)
- Quanjia Xiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yun Wan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xianglin Pu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
11
|
Tompkins YH, Choppa VSR, Kim WK. n-3 enriched Fish oil diet enhanced intestinal barrier integrity in broilers after Eimeria infection. Poult Sci 2024; 103:103660. [PMID: 38552568 PMCID: PMC11000185 DOI: 10.1016/j.psj.2024.103660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Coccidiosis caused by Eimeria spp. results in substantial economic losses in the poultry industry. The objective of this study was to investigate the effects of dietary supplementation with n-3 polyunsaturated fatty acids-enriched fish oil on growth performance, intestinal barrier integrity, and intestinal immune response of broilers challenged with Eimeria spp. A total of 576 fourteen-day-old broilers were randomly assigned in a completely randomized design with a 3 × 2 factorial arrangement, comprising 2 diets supplemented with either 5% fish oil or 5% soybean oil, and 3 Eimeria spp. infection levels: a nonchallenge control, a low dose of Eimeria challenge, and a high challenge dose. The results of the study revealed significant interactions between diet and Eimeria challenge to parameters of gut barrier integrity and feed intake. A significant interaction was observed in feed intake between 5 and 8 d postinfection (DPI), where the fish oil groups exhibited a higher amount of feed intake compared to the soybean oil diet groups after coccidiosis infection. The effects of the fish oil diet resulted in enhanced gut barrier integrity, as evidenced by a trend of decreased gastrointestinal leakage and a lower mean of small intestine lesion scores after Eimeria challenge. Additionally, significant interactions were noted between Eimeria spp. challenge and diet regarding jejunal crypt depth. The positive impact of the fish oil diet was particularly noticeable with the high Eimeria challenge dose. Overall, these findings underscore the relationship between the fish oil diet and Eimeria challenge on broiler chicken intestinal health. Dietary supplementation of fish oil has the potential to maintain small intestine barrier integrity with severe Eimeria infection conditions.
Collapse
Affiliation(s)
- Yuguo Hou Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | | | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
12
|
Guo H, Zhao Q, Wang H, Zhu S, Dong H, Xie X, Wang L, Chen L, Han H. Molecular characterization and functional analysis of Eimeria tenella ankyrin repeat-containing protein. Eur J Protistol 2024; 94:126089. [PMID: 38749182 DOI: 10.1016/j.ejop.2024.126089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Chicken coccidiosis causes disastrous losses to the poultry industry all over the world. Eimeria tenella is the most prevalent of these disease-causing species. Our former RNA-seq indicated that E. tenella ankyrin repeat-containing protein (EtANK) was expressed differently between drug-sensitive (DS) and drug-resistant strains. In this study, we cloned EtANK and analyzed its translational and transcriptional levels using quantitative real-time PCR (qPCR) and western blotting. The data showed that EtANK was significantly upregulated in diclazuril-resistant (DZR) strain and maduramicin-resistant (MRR) strain compared with the drug-sensitive (DS) strain. In addition, the transcription levels in the DZR strains isolated from the field were higher than in the DS strain. The translation levels of EtANK were higher in unsporulated oocysts (UO) than in sporozoites (SZ), sporulated oocysts (SO), or second-generation merozoites (SM), and the protein levels in SM were significantly higher than in UO, SO, and SZ. The results of the indirect immunofluorescence localization showed that the protein was distributed mainly at the anterior region of SZ and on the surface and in the cytoplasm of SM. The fluorescence intensity increased further with its development in vitro. An anti-rEtANK polyclonal antibody inhibited the invasive ability of E. tenella in DF-1 cells. These results showed that EtANK may be related to host cell invasion, required for the parasite's growth in the host, and may be involved in the development of E. tenella resistance to some drugs.
Collapse
Affiliation(s)
- Huilin Guo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Qiping Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Haixia Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Shunhai Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Hui Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Xinrui Xie
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Lihui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Lang Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Hongyu Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China.
| |
Collapse
|
13
|
Fu Y, Wang Q, Guo Y, Koci M, Lu Z, Zeng X, Wang Y, Tang Y, Ma Q, Ji C, Zhao L. Pleurotus eryngii polysaccharides alleviate aflatoxin B 1-induced liver inflammation in ducks involving in remodeling gut microbiota and regulating SCFAs transport via the gut-liver axis. Int J Biol Macromol 2024; 271:132371. [PMID: 38750861 DOI: 10.1016/j.ijbiomac.2024.132371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Aflatoxin B1 (AFB1) is one of the most widespread contaminants in agricultural commodities. Pleurotus eryngii (PE) is widely used as a feed additive for its anti-inflammatory properties, and its major active substance is believed to be polysaccharides. This study aims to explore the underlying mechanism of dietary PE polysaccharides alleviating AFB1-induced toxicity in ducks. The major monosaccharide components of PE polysaccharides were identified as glucose, mannose, galactose, glucuronic acid, and fucose. The results showed that dietary PE polysaccharides could alleviate liver inflammation, alleviate intestinal barrier dysfunction, and change the imbalanced gut microbiota induced by AFB1 in ducks. However, PE polysaccharides failed to exert protective roles on the liver and intestine injury induced by AFB1 in antibiotic-treated ducks. The PE + AFB1-originated microbiota showed a positive effect on intestinal barrier and inflammation, the SCFAs transport via the gut-liver axis, and liver inflammation compared with the AFB1-originated microbiota in ducks. These findings provided a possible mechanism that PE polysaccharides alleviated AFB1-induced liver inflammation in ducks by remodeling gut microbiota, regulating microbiota-derived SCFAs transport via the gut-liver axis, and inhibiting inflammatory gene expressions in the liver, which may provide new insight for therapeutic methods against AFB1 exposure in animals.
Collapse
Affiliation(s)
- Yutong Fu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming yuan, Beijing 100193, PR China
| | - Qianqian Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming yuan, Beijing 100193, PR China
| | - Yongpeng Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Matthew Koci
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Zhengda Lu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming yuan, Beijing 100193, PR China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming yuan, Beijing 100193, PR China
| | - Yanan Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming yuan, Beijing 100193, PR China
| | - Yu Tang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming yuan, Beijing 100193, PR China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming yuan, Beijing 100193, PR China
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming yuan, Beijing 100193, PR China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming yuan, Beijing 100193, PR China.
| |
Collapse
|
14
|
Jin H, Cai H, Liao S, Qi N, Li J, Lv M, Lin X, Hu J, Song Y, Zhu Y, Chen X, Yin L, Zhang X, Zhang J, Zhang X, Sun M. Development of a TaqMan polymerase chain reaction detection method for the precise identification and quantification of an attenuated Eimeria maxima vaccine strain in poultry. Front Vet Sci 2024; 11:1397166. [PMID: 38840634 PMCID: PMC11151167 DOI: 10.3389/fvets.2024.1397166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
Avian coccidiosis, a parasitic disease prevalent in poultry, is caused by Eimeria species and leads to significant economic losses. The use of attenuated live oocyst vaccines has been adopted as an alternative to the use of anticoccidial drugs. However, the accurate detection and differentiation of vaccine strains from virulent ones remain challenging. Therefore, this study presents a novel TaqMan polymerase chain reaction (PCR) detection method that offers enhanced sensitivity, specificity, and reproducibility compared with traditional PCR techniques. Through whole-genome resequencing and bioinformatics analysis, we identified a molecular marker gene, Em_marker6, with a unique 21-base pair deletion specific to the Eimeria maxima attenuated vaccine strain. Optimized primers and probes targeting this marker enabled rapid quantification cycle value achievement and high fluorescence intensity. The standard curve's slope of -3.540 and correlation coefficient of 0.9971 confirmed precise quantification capabilities. The TaqMan PCR method detected as few as 30 plasmid DNA copies and 50 oocysts per reaction, outperforming traditional PCR techniques by an order of magnitude. No cross-reactivity was observed with other E. maxima wide-type strains or common intestinal pathogens, ensuring the exclusive detection of the E. maxima EMPY vaccine strain. Weekly testing over 3 weeks demonstrated minimal variability, indicating robust consistency in the method's application. Testing on 61 clinical samples revealed a 57.38% positivity rate for E. maxima species and 13.11% for the vaccine strain. The Em_marker6 gene exhibited genetic stability across multiple generations, confirming the detection method's robust stability for the attenuated E. maxima vaccine strain. This study significantly advances the field of avian coccidiosis research and control by providing a valuable tool for monitoring vaccine purity and preventing inadvertent infections in vaccinated flocks, aligning with global efforts to curb antibiotic use in animal feed.
Collapse
Affiliation(s)
- Haozhan Jin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Haiming Cai
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shenquan Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Nanshan Qi
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Juan Li
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Minna Lv
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xuhui Lin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Junjing Hu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yongle Song
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yibin Zhu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiangjie Chen
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lijun Yin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaohui Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jianfei Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xu Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Mingfei Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
15
|
Abdel-Gaber R, Alamari G, Dkhil MA, Meryk A, Al-Shaebi EM, Al-Quraishy S. Krameria lappacea root extract's anticoccidial properties and coordinated control of CD4 T cells for IL-10 production and antioxidant monitoring. Front Immunol 2024; 15:1404297. [PMID: 38751432 PMCID: PMC11094240 DOI: 10.3389/fimmu.2024.1404297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Recently, the use of botanicals as an alternative to coccidiostats has been an appealing approach for controlling coccidiosis. Therefore, this study was conducted to evaluate the potential role of aqueous methanolic extract (200 mg/kg) of Krameria lappacea (roots) (KLRE) against infection induced by Eimeria papillata. Methods A total of 25 male C57BL/6 mice were divided into five groups (I, II, III, IV, and V). On 1st day of the experiment, all groups except groups I (control) and II (non-infected-treated group with KLRE), were inoculated orally with 103 sporulated E. papillata oocysts. On the day of infection, group IV was treated with KLRE. Group V served as an infected-treated group and was treated with amprolium (coccidiostat). Results Treatment with extract and coccidiostat was continued for five consecutive days. While not reaching the efficacy level of the reference drug (amprolium), KLRE exhibited notable anticoccidial activity as assessed by key criteria, including oocyst suppression rate, total parasitic stages, and maintenance of nutrient homeostasis. The presence of phenolic and flavonoid compounds in KLRE is thought to be responsible for its positive effects. The Eimeria infection increased the oxidative damage in the jejunum. KLRE treatment significantly increased the activity of catalase and superoxide dismutase. On the contrary, KLRE decreased the level of malondialdehyde and nitric oxide. Moreover, KLRE treatment decreased macrophage infiltration in the mice jejunal tissue, as well as the extent of CD4 T cells and NFkB. E. papillata caused a state of systemic inflammatory response as revealed by the upregulation of inducible nitric oxide synthase (iNOs)-mRNA. Upon treatment with KLRE, the activity of iNOs was reduced from 3.63 to 1.46 fold. Moreover, KLRE was able to downregulate the expression of pro-inflammatory cytokines interferon-γ, nuclear factor kappa B, and interleukin-10 -mRNA by 1.63, 1.64, and 1.38 fold, respectively. Moreover, KLRE showed a significant reduction in the expression of IL-10 protein level from 104.27 ± 8.41 pg/ml to 62.18 ± 3.63 pg/ml. Conclusion Collectively, K. lappacea is a promising herbal medicine that could ameliorate the oxidative stress and inflammation of jejunum, induced by E. papillata infection in mice.
Collapse
Affiliation(s)
- Rewaida Abdel-Gaber
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ghada Alamari
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A. Dkhil
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Andreas Meryk
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Esam M. Al-Shaebi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Liu G, Sharma MK, Tompkins YH, Teng PY, Kim WK. Different methionine to cysteine supplementation ratios altered bone quality of broilers with or without Eimeria challenge assessed by dual energy X-ray absorptiometry and microtomography. Poult Sci 2024; 103:103580. [PMID: 38428354 PMCID: PMC10912940 DOI: 10.1016/j.psj.2024.103580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 03/03/2024] Open
Abstract
Despite the acknowledged significance of nutrition in bone development, effects of methionine (Met) and cysteine (Cys) on bone quality remain under-researched, particularly during Eimeria challenge. We investigated the effects of different supplemental Met to Cys ratios (MCR) on bone quality of broilers under Eimeria challenge. A total of 720 fourteen-day old Cobb500 broilers were allocated into a 5 × 2 factorial arrangement. Five diets with Met and Cys supplemented at MCR of 100:0, 75:25, 50:50, 25:75, and 0:100 were fed to the birds with or without Eimeria challenge. Body composition was measured by dual energy x-ray absorptiometry, and the femur bone characteristics were assessed by microtomography. Data were analyzed by two-way ANOVA and orthogonal polynomial contrast. The results reaffirmed the detrimental effects of Eimeria challenge on bone quality. On 9 d post inoculation (DPI), significant interaction effects were found for whole body bone mineral content (BMC), lean tissue weight, and body weight (P < 0.05); in the nonchallenged group (NCG), these parameters linearly decreased as MCR decreased (P < 0.05). In the challenged group (CG), body weight and lean tissue weight were unaffected by MCR, and BMC linearly increased as MCR decreased (P < 0.05). For the cortical bone of femoral metaphysis on 6 DPI, bone mineral density (BMD) linearly increased as MCR decreased (P < 0.05). Bone volume to tissue volume ratio (BV/TV) in the CG linearly increased as MCR decreased (P < 0.05). On 9 DPI, BMC and TV linearly increased as MCR decreased (P < 0.05) in the NCG. BMD and BV/TV changed quadratically as MCR decreased (P < 0.05). For the trabecular bone of femoral metaphysis on 9 DPI, BV/TV, and trabecular number linearly increased as MCR decreased (P < 0.05) in the NCG. For the femoral diaphysis, BV, TV, BMC on 6 DPI, and BMD on 9 DPI linearly increased as MCR decreased (P < 0.05). In conclusion, this study showed that both Eimeria challenge and varying supplemental MCR could influence bone quality of broilers.
Collapse
Affiliation(s)
- Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Milan K Sharma
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Yuguo H Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Po-Yun Teng
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Woo K Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
17
|
Fries-Craft K, Bobeck EA. Coccidiosis and necrotic enteritis model may have a greater impact than dietary anti-interleukin-10 on broiler chicken systemic immunometabolic responses. Poult Sci 2024; 103:103551. [PMID: 38417332 PMCID: PMC10909892 DOI: 10.1016/j.psj.2024.103551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024] Open
Abstract
Dietary egg yolk-derived anti-interleukin (IL)-10 may preserve broiler chicken performance during coccidiosis due to Eimeria spp. infection while effects on secondary Clostridium perfringens (necrotic enteritis) are unknown. Some necrotic enteritis models implement Salmonella Typhimurium to improve repeatability; however, Salmonella upregulation of IL-10 may be a confounder when evaluating anti-IL-10. The study objective was to investigate anti-IL-10 effects on systemic cytokine concentrations and immunometabolism during E. maxima ± C. perfringens challenge in models ± S. Typhimurium. Three 25 d replicate studies using Ross 308 chicks were conducted in wire-floor cages (32 cages/ replicate) with chicks assigned to diets ± 0.03% anti-IL-10. 640 chicks (20/ cage; replicates 1 and 2) were inoculated with sterile saline ± 1×108 colony forming units (CFU) S. Typhimurium while 480 chicks (15/ cage) were placed in replicate 3. In all replicates, blood samples were collected on d 14 (6 chicks/treatment) before administering 15,000 sporulated E. maxima M6 oocysts to S. Typhimurium-inoculated (replicates 1 and 2) or challenge-designated chicks (replicate 3). Half the E. maxima-challenged chicks received 1×108 CFU C. perfringens on d 18 and 19. Blood samples were collected at 1, 3, 7, and 11 d post-inoculation (dpi) with E. maxima and 1, 3, and 7 dpi with secondary C. perfringens. Plasma cytokines were determined by ELISA while immunometabolic assays evaluated peripheral blood mononuclear cell ATP production and glycolytic rate responses. Data were analyzed with diet and challenge fixed effects plus associated interactions (SAS 9.4; P ≤ 0.05). Replicates 1 and 2 showed few immunometabolic responses within 3 dpi with E. maxima, but 25 to 31% increased ATP production and 32% increased compensatory glycolysis at 1 dpi with C. perfringens in challenged vs. unchallenged chicks (P ≤ 0.04). In replicate 3, total ATP production and compensatory glycolysis were increased 25 and 40%, respectively, by the E. maxima main effect at 1dpi (P ≤ 0.05) with unobserved responsiveness to C. perfringens. These outcomes indicate that model type had greater impacts on systemic immunity than anti-IL-10.
Collapse
Affiliation(s)
- K Fries-Craft
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - E A Bobeck
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
18
|
Qu Z, Gong Z, Olajide JS, Wang J, Cai J. CRISPR-Cas9-based method for isolating microgametes of Eimeria tenella. Vet Parasitol 2024; 327:110131. [PMID: 38301346 DOI: 10.1016/j.vetpar.2024.110131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
Eimeria tenella infections are known to cause severe caecal damage and death of the infected chicken. Gamogony is an essential stage in E. tenella life cycle and in the establishment of coccidiosis. Prior research had extensively explored isolation and separation of the parasite gametes - microgamete (male) and macrogamete (female). However, there is little information on the efficient, highly purified and distinctly separated male and female gametes. In this study, we generated a genome editing line expressing mCherry fluorescent protein fused with GCS1 protein in E. tenella by using Toxoplasma gondii CRISPR-Cas9 system, flow cytometry and fluorescence microscopy. This allowed precise separation of E. tenella male and female gametes in the transgenic parasite population. The separation of male and female gametes would not only build on our understanding of E. tenella transmission, but it would also facilitate development of gametocidal compounds as drug targets for E. tenella infection.
Collapse
Affiliation(s)
- Zigang Qu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, People's Republic of China.
| | - Zhenxing Gong
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia Province 750021, People's Republic of China
| | - Joshua Seun Olajide
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Centre for Distance Learning, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jing Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China
| | - Jianping Cai
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, People's Republic of China.
| |
Collapse
|
19
|
Sharma MK, Kim WK. Coccidiosis in Egg-Laying Hens and Potential Nutritional Strategies to Modulate Performance, Gut Health, and Immune Response. Animals (Basel) 2024; 14:1015. [PMID: 38612254 PMCID: PMC11010854 DOI: 10.3390/ani14071015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Avian coccidiosis, despite advancements in management, nutrition, genetics, and immunology, still remains the most impactful disease, imposing substantial economic losses to the poultry industry. Coccidiosis may strike any avian species, and it may be mild to severe, depending on the pathogenicity of Eimeria spp. and the number of oocysts ingested by the bird. Unlike broilers, low emphasis has been given to laying hens. Coccidiosis in laying hens damages the gastrointestinal tract and causes physiological changes, including oxidative stress, immunosuppression, and inflammatory changes, leading to reduced feed intake and a drastic drop in egg production. Several countries around the world have large numbers of hens raised in cage-free/free-range facilities, and coccidiosis has already become one of the many problems that producers have to face in the future. However, limited research has been conducted on egg-laying hens, and our understanding of the physiological changes following coccidiosis in hens relies heavily on studies conducted on broilers. The aim of this review is to summarize the effect of coccidiosis in laying hens to an extent and correlate it with the physiological changes that occur in broilers following coccidiosis. Additionally, this review tries to explore the nutritional strategies successfully used in broilers to mitigate the negative effects of coccidiosis in improving the gut health and performance of broilers and if they can be used in laying hens.
Collapse
Affiliation(s)
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
20
|
Noruzi H, Aziz‐Aliabadi F. Garlic (Allium sativum) and mushroom (Agaricus bisporus) powder: Investigation of performance, immune organs and humoural and cellular immune response in broilers. Vet Med Sci 2024; 10:e31367. [PMID: 38356455 PMCID: PMC10867595 DOI: 10.1002/vms3.1367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/02/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Alternatives to antibiotics have been suggested by banning their use in the poultry industry. Garlic and mushroom are two important phytobiotic compounds in poultry nutrition. OBJECTIVES This study was conducted to evaluate the effects of supplementing diets with garlic and mushroom powder (MP) on growth performance, humoural and cellular immunity, and white blood cell counts of broiler chickens. METHODS Five hundred and seventy-six 1-day-old male broiler chickens (Ross 308) were assigned to 8 treatments with 6 replications (12 birds per replication) based on a completely randomized design in a factorial arrangement of 4 × 2 with 4 levels of garlic powder (GP; 0.00%, 0.50%, 1.00%, and 1.50%) and two levels of MP (0.00% and 1.00%). RESULTS No significant effects of GP and MP on the growth performance and cutaneous basophil hypersensitivity were observed (p > 0.05). According to the regression equation, with increasing levels of GP in the diets, the relative weight of the bursa of Fabricius and thymus increased (p < 0.05). The effect of increasing levels of GP on the Newcastle disease virus (NDV) titre was greater in the absence of MP (p < 0.05). With increasing levels of GP in the diets, the percentages of lymphocytes and heterophils to lymphocytes ratio increased and reduced, respectively (p < 0.05). CONCLUSIONS This experiment has revealed that increasing the level of GP improved the immune response of broilers without affecting performance. The effect of increasing the level of GP on the NDV titre was more significant in the absence of MP.
Collapse
Affiliation(s)
- Hadi Noruzi
- Department of Animal Science, Faculty of AgricultureFerdowsi University of MashhadMashhadIran
| | - Fatemeh Aziz‐Aliabadi
- Department of Animal Science, Faculty of AgricultureFerdowsi University of MashhadMashhadIran
| |
Collapse
|
21
|
Liu G, Sharma MK, Tompkins YH, Teng PY, Kim WK. Impacts of varying methionine to cysteine supplementation ratios on growth performance, oxidative status, intestinal health, and gene expression of immune response and methionine metabolism in broilers under Eimeria spp. challenge. Poult Sci 2024; 103:103300. [PMID: 38100947 PMCID: PMC10762478 DOI: 10.1016/j.psj.2023.103300] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
A study was conducted to investigate effects of different methionine (Met) to cysteine (Cys) supplementation ratios (MCR) on growth performance, oxidative status, intestinal health, immune responses, and methionine metabolism in broilers under Eimeria challenge. A total of 720 male Cobb500 broilers (14-day-old) were allocated in a 2 × 5 factorial arrangement (5 diets, with or without challenge) with 6 replicates per treatment. The total sulfur amino acid concentrations were consistent across treatments meeting the breeder's recommendation, only MCR varied. The diets were labeled as MET100; MET75; MET50; MET25; and MET0, representing MCR of 100:0; 75:25; 50:50; 25:75; and 0:100, respectively. Data were analyzed by 2-way ANOVA and orthogonal polynomial contrast. Growth performance declined linearly or quadratically as MCR decreased (P < 0.01). On 6-day postinoculation (DPI), interaction effects (P < 0.01) were found; BW and body weight gain were lower in MET0 compared to the other treatments in the nonchallenged groups, whereas not in the challenged groups. On 6 and 9 DPI, serum total antioxidant capacity linearly decreased as MCR decreased (P < 0.05). Hepatic activities of glutathione peroxidase on 6 DPI and superoxide dismutase on 9 DPI changed quadratically as MCR decreased (P < 0.05). The digestibility of Met linearly decreased whereas the digestibility of Cys linearly increased as MCR decreased. The ileal crypt depth linearly decreased as MCR decreased (P < 0.01) on 6 DPI. The expression of transforming growth factor beta on 6 and 9 DPI, tumor necrotic factor alpha and interleukin 10 on 9 DPI changed quadratically as MCR decreased (P < 0.05). Eimeria challenge increased expression of Met adenosyltransferase and cystathionine gamma-lyase, whereas decreasing the expression of other Met metabolism genes (P < 0.01) on 6 DPI. Expression of Met metabolism genes linearly increased as MCR decreased (P < 0.05). In conclusion, different Met to Cys supplementation ratios exerted linearly or quadratically effects on the growth performance, oxidative status, intestinal health, and metabolism of Met in broiler chickens under Eimeria infection.
Collapse
Affiliation(s)
- Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Milan K Sharma
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Yuguo H Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Po-Yun Teng
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Woo K Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
22
|
Cevallos-Gordon A, Molina CA, Radman N, Ron L, Gamboa MI. Prevalence and Risk Factors of Eimeria spp. in Broiler Chickens from Pichincha and Santo Domingo de los Tsáchilas, Ecuador. Pathogens 2024; 13:48. [PMID: 38251355 PMCID: PMC10820216 DOI: 10.3390/pathogens13010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
Coccidiosis in chickens is a parasitic disease of economic importance for the poultry industry. In Ecuador, there is limited information regarding the prevalence of Eimeria spp. on commercial broiler farms. Therefore, a total of 155 poultry farms in the provinces of Pichincha and Santo Domingo de los Tsáchilas were surveyed. The analysis of fresh fecal samples was conducted to determine the parasitic load of six of the seven chicken Eimeria species (excluding E. mitis) through multiplex PCR. Additionally, an epidemiological survey was performed to assess the risk factors associated with the infection using a multivariable logistic regression model. All samples tested positive for the presence of Eimeria spp., despite the farmers having implemented prophylactic measures, and no clinical coccidiosis cases were recorded. The parasitic load varied between 25 and 69,900 oocyst per gram. The species prevalence was as follows: Eimeria spp. 100%, E. maxima 80.4%, E. acervulina 70.6%, E. praecox 55.4%, E. tenella 53.6%, E. necatrix 52.2%, and E. brunetti 30.8%. The main species combination was E. cervuline, E. maxima, E. necatrix, and E. praecox (23.90%), followed by E. tenella, as a unique species (10.69%), and then E. acervulina, E. maxima, and E. praecox (8.81%). It was observed that farms operated by independent producers had a higher amount of Eimeria spp. and higher probability of the presence of E. brunetti, E. necatrix, E. praecox, and E. tenella. Poultry houses located below 1300 m above sea level were associated with a higher parasitic load and the presence of E. brunetti. Birds younger than 35 days of age and from open-sided poultry houses (with rudimentary environmental control) had a higher probability of presenting E. maxima. Drinking water from wells increased the risk of E. praecox presence. Research aimed at designing control strategies to improve health management on poultry farms in the region would help minimize the impact of coccidiosis.
Collapse
Affiliation(s)
- Ana Cevallos-Gordon
- Faculty of Veterinary Medicine, Central University of Ecuador, Quito 170521, Ecuador; (C.A.M.); (L.R.)
- Faculty of Veterinary Sciences, The National University of La Plata, La Plata B1900AFW, Argentina;
| | - C. Alfonso Molina
- Faculty of Veterinary Medicine, Central University of Ecuador, Quito 170521, Ecuador; (C.A.M.); (L.R.)
- Institute of Public Health and Zoonotic Research, Central University of Ecuador, Quito 170521, Ecuador
| | - Nilda Radman
- Faculty of Veterinary Sciences, The National University of La Plata, La Plata B1900AFW, Argentina;
| | - Lenin Ron
- Faculty of Veterinary Medicine, Central University of Ecuador, Quito 170521, Ecuador; (C.A.M.); (L.R.)
- Institute of Public Health and Zoonotic Research, Central University of Ecuador, Quito 170521, Ecuador
- Faculty of Agronomy, Central University of Ecuador, Quito 170521, Ecuador
| | - María Ines Gamboa
- Faculty of Veterinary Sciences, The National University of La Plata, La Plata B1900AFW, Argentina;
| |
Collapse
|
23
|
Alagbe EO, Schulze H, Adeola O. Dietary Spirulina effects in Eimeria-challenged broiler chickens: growth performance, nutrient digestibility, intestinal morphology, serum biomarkers, and gene expression. J Anim Sci 2024; 102:skae186. [PMID: 38995102 PMCID: PMC11306789 DOI: 10.1093/jas/skae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/11/2024] [Indexed: 07/13/2024] Open
Abstract
This study investigated the growth performance, nutrient utilization, and intestinal health responses of Eimeria-challenged broiler chickens to dietary Spirulina (Arthrospira platensis). On day 1, birds were assigned to 2 diets supplemented with Spirulina (0 or 5 g/kg) in a randomized complete block design. The birds within each diet were divided into 2 Eimeria-challenge groups (challenge or no-challenge) and that resulted in a 2 × 2 factorial arrangement with 2 levels each of Spirulina and challenge on day 14. On day 15, the birds in the challenge or no-challenge groups were orally gavaged with a solution containing Eimeria oocysts or 1% PBS, respectively. Samples were collected on days 21 and 26 (6- and 11-d post-infection; dpi). Data collected from days 1 to 26 were analyzed using the MIXED procedure of SAS. Birds that were fed Spirulina-supplemented diets had increased (P < 0.05) BW gain, gain-to-feed ratio, and total tract retention nitrogen from days 14 to 21. The ileal villus perimeter and area, serum catalase, HMOX1 and SOD1 jejunal abundance were all increased (P < 0.05) in birds fed Spirulina-supplemented diets on day 21 (6 dpi). However, there was no effect on bone ash or oocyst count. From days 21 to 26, there was a tendency (P = 0.059) for a Spirulina × Challenge interaction on the BW gain of birds. Moreover, dietary Spirulina addition increased (P < 0.05) serum catalase, total antioxidant capacity, ileal villus perimeter, tibia bone ash, and the relative mRNA expression of HMOX1, SOD1, claudin 1, and TNFα in the jejunal mucosa of birds on day 26 (11 dpi). On both 6 and 11 dpi, the Eimeria challenge negatively (P < 0.05) impacted growth performance, gut morphology, and the relative mRNA expression of genes. Overall, assessing the impact of Spirulina in broilers revealed its positive antioxidant, immune-modulating, and health benefits. However, its dietary addition did not completely reverse the Eimeria-induced effects in these birds. Ultimately, this study outlines the positive properties of dietary Spirulina beyond its use in the diet of healthy broiler chickens.
Collapse
Affiliation(s)
| | - Hagen Schulze
- Livalta, an AB Agri Company, Peterborough, United Kingdom
| | - Olayiwola Adeola
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
24
|
Fries-Craft K, Bobeck EA. Early Salmonella Typhimurium inoculation may obscure anti-interleukin-10 protective effects on broiler performance during coccidiosis and necrotic enteritis challenge. Poult Sci 2024; 103:103187. [PMID: 37980755 PMCID: PMC10665935 DOI: 10.1016/j.psj.2023.103187] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/20/2023] [Accepted: 10/09/2023] [Indexed: 11/21/2023] Open
Abstract
Anti-interleukin (IL)-10 may preserve broiler performance during coccidiosis by diminishing Eimeria spp. host-evasion but has not been evaluated during secondary Clostridium perfringens challenge (necrotic enteritis). Early Salmonella Typhimurium inoculation is implemented in some models to improve repeatability-a potential confounder due to Salmonella using similar IL-10 host evasion pathways. The objective was to evaluate performance and disease outcomes in broilers fed anti-IL-10 during necrotic enteritis challenge ± S. Typhimurium. Three 42 d replicate studies in wire-floor cages (32 cages/replicate) were conducted with Ross 308 chicks assigned to diets ± 0.03% anti-IL-10 for 25 d before moving to floor pens for the study remainder. In replicates 1 and 2, 640 chicks were placed at hatch (20/cage) and inoculated with sterile saline ± 1 × 108 colony forming units (CFU) S. Typhimurium. Replicate 3 placed 480 chicks (15/cage) at hatch. On d 14, S. Typhimurium-inoculated chicks (replicates 1 and 2) or those designated for challenge (replicate 3) were inoculated with 15,000 sporulated Eimeria maxima M6 oocysts. On d 18 and 19, half the E. maxima-challenged chicks were gavaged with 1 × 108 CFU C. perfringens. Body weight (BW) and feed intake were measured throughout, while 6 chicks/ treatment were scored for jejunal lesions at 7 and 3 d postinoculation (pi) with E. maxima and C. perfringens, respectively. Oocyst shedding was measured at 8 and 4 dpi with E. maxima and C. perfringens, respectively. Performance and oocyst shedding were analyzed with diet and challenge fixed effects (SAS 9.4), whereas lesion scores and mortalities were analyzed by ordinal logistic regression (R 4.2.2; P ≤ 0.05). In replicate 3, no wk 3 feed conversion ratio (FCR) differences were observed between chicks fed anti-IL-10 challenged with E. maxima ± C. perfringens, whereas control-fed chicks had a 50 point less efficient FCR during E. maxima + C. perfringens challenge vs. E. maxima only (P = 0.04). Outcomes suggest anti-IL-10 may preserve bird feed efficiency during necrotic enteritis challenge in models without S. Typhimurium.
Collapse
Affiliation(s)
- K Fries-Craft
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - E A Bobeck
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
25
|
Pan X, Kong R, Liu Q, Jia Z, Bai B, Chen H, Zhi W, Wang B, Ma C, Ma D. Probiotic Enterococcus faecalis surface-delivering key domain of EtMIC3 proteins: immunoprotective efficacies against Eimeria tenella infection in chickens. Microbiol Spectr 2023; 11:e0245523. [PMID: 37855592 PMCID: PMC10715111 DOI: 10.1128/spectrum.02455-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Avian coccidiosis caused by Eimeria brings huge economic losses to the poultry industry. Although live vaccines and anti-coccidial drugs were used for a long time, Eimeria infection in chicken farms all over the world commonly occurred. The exploration of novel, effective vaccines has become a research hotspot. Eimeria parasites have complex life cycles, and effective antigens are particularly critical to developing anti-coccidial vaccines. Microneme proteins (MICs), secreted from microneme organelles located at the parasite apex, are considered immunodominant antigens. Eimeria tenella microneme 3 (EtMIC3) contains four conserved repeats (MARc1, MARc2, MARc3, and MARc4) and three divergent repeats (MARa, MARb, and MARd), which play a vital role during the Eimeria invasion. Enterococcus faecalis is a native probiotic in animal intestines and can regulate intestinal flora. In this study, BC1 and C4D domains of EtMIC3, BC1 or C4D fusing to dendritic cells targeting peptides, were surface-displyed by E. faecalis, respectively. Oral immunizations were performed to investigate immune protective effects against Eimeria infection.
Collapse
Affiliation(s)
- Xinghui Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Rui Kong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qiuju Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhipeng Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Bingrong Bai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hang Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenjing Zhi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Biao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chunli Ma
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Dexing Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
26
|
Shi TY, Zhou SH, Kong YR, Fu Y, Liu Y, Yan WC, Zhou YX, Zhang L, Hao LL, Sun HC. A rhoptry protein, localizing in the bulb region of rhoptries, could induce protective immunity against Eimeria tenella infection. Front Immunol 2023; 14:1277955. [PMID: 38111572 PMCID: PMC10725939 DOI: 10.3389/fimmu.2023.1277955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Background Rhoptry organelle proteins (ROPs) secreted by apicomplexan parasites play important roles during parasites invasion and survival in host cells, and are potential vaccine candidates against apicomplexan diseases. Eimeria tenella (E. tenella) is one of the most noteworthy apicomplexan species, which causes hemorrhagic pathologies. Although dozens of putative E. tenella ROP sequences are annotated, most ROP proteins are not well studied. Methods In this study, an E. tenella ROP21 gene was identified and the recombinant EtROP21 protein (rEtROP21) was expressed in Escherichia coli. The developmental expression levels, localization, and protective efficacy against E. tenella infection in chickens were studied. Results An EtROP21 gene fragment with an open reading frame (ORF) of 981 bp was obtained from the Beijing strain of E. tenella. The rEtROP21 has a molecular weight of approximately 50 kDa and was recognized by rEtROP21-immunized mouse serum. Two specific protein bands, about 43 KDa and 95 KDa in size, were detected in the whole sporozoite proteins using the rEtROP21-immunized chicken serum. RT-qPCR analysis of the E. tenella ROP21 gene (EtROP21) revealed that its mRNA levels were higher in merozoites and sporozoites than in sporulated and unsporulated oocysts. Immunofluorescence and immunoelectron analyses showed that the EtROP21 protein predominantly localizes in the bulb region of rhoptries distributed at anterior, posterior, and perinuclear regions of E. tenella sporozoites. Immunization and challenge experiments revealed that immunizing chickens with rEtROP21 significantly increased their average body weight gain while decreasing mean lesion score and oocyst output (P <0.05). When compared with the challenged control group, the rEtROP21-immunized group was associated with a significantly higher relative weight gain (90.2%) and a greater reduction in oocyst output (67%) (P <0.05). The anticoccidial index of the rEtROP21-immunized group was 163.2. Chicken serum ELISA revealed that the levels of the specific anti- rEtROP21 antibody, IFN-γ, and IL-4 were significantly higher in the rEtROP21-immunized group than in the challenged control group (P <0.05). Conclusion These results indicate that rEtROP21 can induce a high level of specific immune response and it is a potential candidate for the development of vaccines against E. tenella infection in chickens.
Collapse
Affiliation(s)
- Tuan-yuan Shi
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Si-han Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ya-ru Kong
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- Department of Epidemic Surveillance, Lingcheng Center for Disease Control and Prevention, Dezhou, Shandong, China
| | - Yuan Fu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Wen-chao Yan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yong-xue Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Liang Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Li-li Hao
- Department of Animal Parasitology, College of Animal and Veterinaty Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| | - Hong-chao Sun
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Jia L, Zhao Q, Zhu S, Han H, Zhao H, Yu Y, Yang J, Dong H. Proteomic Analysis of Fractionated Eimeria tenella Sporulated Oocysts Reveals Involvement in Oocyst Wall Formation. Int J Mol Sci 2023; 24:17051. [PMID: 38069374 PMCID: PMC10707475 DOI: 10.3390/ijms242317051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Eimeria tenella is the most pathogenic intracellular protozoan parasite of the Eimeria species. Eimeria oocyst wall biogenesis appears to play a central role in oocyst transmission. Proteome profiling offers insights into the mechanisms governing the molecular basis of oocyst wall formation and identifies targets for blocking parasite transmission. Tandem mass tags (TMT)-labeled quantitative proteomics was used to analyze the oocyst wall and sporocysts of E. tenella. A combined total of 2865 E. tenella proteins were identified in the oocyst wall and sporocyst fractions; among these, 401 DEPs were identified, of which 211 were upregulated and 190 were downregulated. The 211 up-regulated DEPs were involved in various biological processes, including DNA replication, fatty acid metabolism and biosynthesis, glutathione metabolism, and propanoate metabolism. Among these proteins, several are of interest for their likely role in oocyst wall formation, including two tyrosine-rich gametocyte proteins (EtGAM56, EtSWP1) and two cysteine-rich proteins (EtOWP2, EtOWP6). Concurrently, 96 uncharacterized proteins may also participate in oocyst wall formation. The present study significantly expands our knowledge of the proteome of the oocyst wall of E. tenella, thereby providing a theoretical basis for further understanding of the biosynthesis and resilience of the E. tenella oocyst wall.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China; (L.J.); (Q.Z.); (S.Z.); (H.H.); (H.Z.); (Y.Y.); (J.Y.)
| |
Collapse
|
28
|
Liu Q, Liu X, Zhao X, Zhu XQ, Suo X. Live attenuated anticoccidial vaccines for chickens. Trends Parasitol 2023; 39:1087-1099. [PMID: 37770352 DOI: 10.1016/j.pt.2023.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/30/2023]
Abstract
Chicken coccidiosis, caused by infection with single or multiple Eimeria species, results in significant economic losses to the global poultry industry. Over the past decades, considerable efforts have been made to generate attenuated Eimeria strains, and the use of live attenuated anticoccidial vaccines for disease prevention has achieved tremendous success. In this review, we evaluate the advantages and limitations of the methods of attenuation as well as attenuated Eimeria strains in a historical perspective. Also, we summarize the recent exciting research advances in transient/stable transfection systems and clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing developed for Eimeria parasites, and discuss trends and challenges of developing live attenuated anticoccidial vaccines based on transgenesis and genome editing.
Collapse
Affiliation(s)
- Qing Liu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture and Rural Affairs, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100093, PR China
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province 271018, PR China
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China.
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture and Rural Affairs, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100093, PR China.
| |
Collapse
|
29
|
Pu X, Pan Y, Xiang Q, Lu M, Xu L, Yan R, Li X, Song X. Inhibitory effect of Eimeria maxima IFN-γ inhibitory molecules on the immune function of T cell subsets in chickens. Poult Sci 2023; 102:103098. [PMID: 37797491 PMCID: PMC10622878 DOI: 10.1016/j.psj.2023.103098] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023] Open
Abstract
It has been reported that infection of chicken coccidian could inhibit the production of Th1 cytokine IFN-γ, thereby evading clearance by the host immune system. The present study aimed to have a further investigation into the effects of Eimeria maxima IFN-γ inhibitory molecules (EmHPSP-2 and EmHPSP-3) on the immune function of chicken peripheral blood mononuclear cells (PBMC) and various T cell subsets. First, separated PBMC or sorted T cell subsets were used for incubation with recombinant proteins of EmHPSP-2 (rEmHPSP-2) and EmHPSP-3 (rEmHPSP-3). Subsequently, the effects of rEmHPSP-2 and rEmHPSP-3 on proliferative capacity, nitric oxide (NO) release and mRNA levels of cytokines of the above cells were detected. The sorting purity of CD8+, CD4+ CD25-, CD4+, and CD4+ CD25+ T cells was 93.01, 88.88, 87.04, and 81.26%, respectively. The NO release of PBMC was significantly inhibited by rEmHPSP-2 and rEmHPSP-3. The proliferation of PBMC and CD4+ T cells was significantly inhibited by rEmHPSP-2 and rEmHPSP-3, whereas CD8+, CD4+ CD25-, and CD4+ CD25+ T cells was significantly promoted by the 2 proteins. The 2 proteins significantly downregulated interferon-gamma (IFN-γ) mRNA level, upregulated the transcriptional levels of interleukin-10 (IL-10) and transforming growth factor-beta1 (TGF-β1) in PBMC. IFN-γ and IL-2 transcriptional levels were markedly inhibited in CD8+ T cells. IFN-γ transcriptional level was significantly inhibited, but IL-4 was promoted by rEmHPSP-2 and rEmHPSP-3 in CD4+ CD25- T cells. Meanwhile, the inhibitory effects of rEmHPSP-2 and rEmHPSP-3 on the transcriptional levels of IFN-γ and IL-2 were more obvious in CD4+ T cells containing CD25+ cells compared with the CD25+ cells depletion group. It was found that IL-10, TGF-β1, and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) mRNA levels were significantly upregulated upon stimulation of chicken CD4+ CD25+ T cells by proteins. This study is not only of great significance to clarify the immune evasion mechanism of chicken coccidia, but also provides candidate antigen molecules for development of a novel vaccine against chicken coccidiosis.
Collapse
Affiliation(s)
- Xianglin Pu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yangdong Pan
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Quanjia Xiang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingmin Lu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lixin Xu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ruofeng Yan
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiangrui Li
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaokai Song
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
30
|
Lin Y, Lourenco JM, Olukosi OA. Effects of xylanase, protease, and xylo-oligosaccharides on growth performance, nutrient utilization, short chain fatty acids, and microbiota in Eimeria-challenged broiler chickens fed high fiber diet. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:430-442. [PMID: 38033611 PMCID: PMC10686808 DOI: 10.1016/j.aninu.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 12/02/2023]
Abstract
A 21-d experiment was conducted to study the effect of xylanase, protease, and xylo-oligosaccharides on growth performance, nutrient utilization, gene expression of nutrient transporters, cecal short-chain fatty acids (SCFA), and cecal microbiota profile of broilers challenged with mixed Eimeria spp. The study utilized 392 zero-d-old male broiler chicks allocated to 8 treatments in a 4 × 2 factorial arrangement, as follows: corn-soybean meal diet with no enzyme (Con); Con plus xylanase alone (XYL); Con plus xylanase combined with protease (XYL + PRO); or Con plus xylo-oligosaccharides (XOS); with or without Eimeria challenge. Diets were based on a high-fiber (100 g/kg soluble fibers and 14 g/kg insoluble fibers) basal diet. At d 15, birds in challenged treatment were gavaged with a solution containing Eimeria maxima, Eimeria acervulina, and Eimeria tenella oocysts. At d 21, birds were sampled. Eimeria depressed (P < 0.01) growth performance and nutrient utilization, whereas supplementation had no effect. There were significant Eimeria × supplementation interactions for the sugar transporters GLUT5 (P = 0.02), SGLT1 (P = 0.01), SGLT4 (P < 0.01), and peptide transporter PepT1 (P < 0.01) in jejunal mucosa. Eimeria challenge increased the expression of GM-CSF2 (P < 0.01) and IL-17 (P = 0.04) but decreased (P = 0.03) IL-1β expression in the cecal tonsil. Eimeria × supplementation interactions for cecal acetate, butyrate, and total SCFA showed that concentrations increased or tended to be greater in the supplemented treatments, but only in non-challenged birds. Birds challenged with Eimeria spp. had higher concentrations of isobutyrate (P < 0.01), isovalerate (P < 0.01), and valerate (P = 0.02) in cecal content. Eimeria challenge significantly (P < 0.01) decreased the microbial richness and diversity, and increased (P < 0.01) the proportion of Anaerostipes butyraticus, Bifidobacterium pseudolongum, and Lactobacillus pontis. In conclusion, Eimeria infection depressed growth performance, nutrient utilization with regulating nutrient transporters. Furthermore, Eimeria challenge shifted the microbial profile and reduced microbial richness and diversity. On the other hand, enzyme supplementation showed limited benefits, which included increased concentrations of SCFA.
Collapse
Affiliation(s)
- Yang Lin
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Jeferson M. Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
31
|
Yu C, Huang J, Tian W, Huai Y, Zheng S, Wang H, Chen J, Chen H, Bo R, Li J, Liu M. Therapeutic effect of a self-made herbal formula on a multi-drug resistant Eimeria tenella isolate infection in broiler chickens. Vet Parasitol 2023; 324:110057. [PMID: 37918037 DOI: 10.1016/j.vetpar.2023.110057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
In-feed prophylactic chemotherapy is widely considered the mainstay of avian coccidiosis control, while serious drug resistance strictly restricts its application. Confronted with the urgent need for an alternative strategy, a traditional Chinese medicine formula (TCMF) was developed. Meanwhile, its potential to iron out complicated clinical coccidiosis was scrutinized in vivo with a field-isolated multi-drug resistant Eimeria tenella (E. tenella) isolate. Birds were inoculated with 5 × 104 sporulated oocysts and administrated with TCMF supplementation in water from 72 h post-infection to the end of the experiment, diclazuril (DIC) was set as a positive control. As a result, TCMF intervention reduced oocyst shedding, cecal lesion and mortality, and enhanced body weight gain. According to the above, anticoccidial index (ACI) was calculated and TCMF exerted a moderate anticoccidial activity. Besides, macroscopic, histopathological, and ultrastructural observations revealed the safeguarding effects of TCMF on E. tenella-induced cecal injury. Following, TCMF treatment presented an obvious inhibition effect on E. tenella caused oxidative stress and inflammatory response. Moreover, TCMF supplementation restored the cecal flora abundance and diversity, reduced the colonization of harmful bacteria, and increased the probiotics abundance. In conclusion, TCMF exhibited a moderate anticoccidial effect along with alleviating E. tenella-induced cecal injury, redox imbalance, and inflammatory response which may be associated with the microflora modulatory effect.
Collapse
Affiliation(s)
- Chenglong Yu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Junjie Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Wei Tian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Yuying Huai
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Shumei Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Huiwen Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Jianhui Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Huimin Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Ruonan Bo
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Jingui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Mingjiang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| |
Collapse
|
32
|
Fries-Craft K, Schmitz-Esser S, Bobeck EA. Dietary peptide-specific antibodies against interleukin-4 differentially alter systemic immune cell responses during Eimeria challenge with minimal impacts on the cecal microbiota. Poult Sci 2023; 102:103134. [PMID: 37844527 PMCID: PMC10585638 DOI: 10.1016/j.psj.2023.103134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023] Open
Abstract
Eimeria spp. induce host interleukin (IL)-4 production, a potent immune regulator, during coccidiosis to evade immune responses. Dietary anti-IL-4 may preserve bird performance during challenge; however, specific mechanisms have not been investigated. Study objectives were to develop peptide-specific anti-IL-4 antibodies and evaluate immune cell profiles and the cecal microbiota during Eimeria challenge. Four candidate IL-4 peptides were selected based on antigenicity and location. Hens were injected with conjugated peptide or carrier-only control (3/injection), eggs were collected post-vaccination and yolks were pooled by peptide before freeze-drying. On d 0, 300 Ross 708 broilers were placed in floor pens (10/pen) and assigned to 5 diets consisting of basal diet + 2% egg yolk powder containing antibodies against 1 of 4 target peptides or carrier-only control for 14-d starter and grower periods (28 d total). Baseline blood and cecal contents were collected on d 14 (6 birds/diet) before half the remainder were inoculated with 10X Coccivac-B52 (Merck Animal Health, Kenilworth, NJ). Body weight (BW) and feed intake (FI) were recorded weekly and blood and cecal samples were collected at 3, 7, and 14 d post-inoculation (pi; 3/treatment). Immune cell profiles in peripheral blood mononuclear cells (PBMC) were evaluated flow cytometrically and cecal microbial communities determined by 16S/18S rRNA gene amplicon sequencing. Data were log-transformed when necessary and analyzed with diet, Eimeria, and timepoint fixed effects plus associated interactions (SAS 9.4; P ≤ 0.05). Anti-IL-4 did not alter baseline performance but generally increased PBMC Bu-1+ B cells 38.0 to 55.4% (P < 0.0001). Eimeria challenge reduced FI and BWG 16.1 and 30.3%, respectively, regardless of diet (P < 0.0001) with only birds fed peptide 4 antibodies not recovering feed conversion by d 28. Minimal diet-associated cecal microbiota changes were observed, indicating that anti-IL-4 effects were likely host-specific. Eimeria-challenged birds fed peptide 3 antibodies displayed minimal immune cell fluctuations compared to unchallenged counterparts, suggesting these antibodies potentially modulated intestinal immune responses to minimize systemic requirements, making them good candidates for further research.
Collapse
Affiliation(s)
- K Fries-Craft
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - S Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - E A Bobeck
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
33
|
Alajmi F, Al-Otaibi T, Al-Quraishy S, Al-Shaebi EM, Al-Hoshani N, Dkhil MA, Abdel-Gaber R. Persea americana extract protects intestinal tissue from Eimeria papillata-induced murine Infection. BMC Vet Res 2023; 19:248. [PMID: 38017513 PMCID: PMC10683183 DOI: 10.1186/s12917-023-03810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023] Open
Abstract
Coccidiosis is the most prevalent disease-causing widespread economic loss among farm and domestic animals. Currently, several drugs are available for the control of this disease but resistance has been confirmed for all of them. There is an urgent need, therefore, for the identification of new sources as alternative treatments to control coccidiosis. The present work aimed to study the effect of the Persea americana extract (PAE) as an anti-coccidial, anti-oxidant, and anti-apoptotic modulator during murine intestinal Eimeria papillata infection. A total of 25 male mice were divided into five groups, as follows: Group1: Non-infected-non-treated (negative control), Group2: Non-infected-treated group with PAE (500 mg/kg b.w). Group3: Infected-non-treated (positive control), Group4: Infected-treated group with PAE (500 mg/kg b.w.), and Group5: Infected-treated group with Amprolium (120 mg/kg b.w.). Groups (3-5) were orally inoculated with 1 × 103 sporulated E. papillata oocysts. After 60 min of infection, groups (4 and 5) were treated for 5 consecutive days with the recommended doses of PAE and amprolium. The fact that PAE has an anti-coccidial efficacy against intestinal E. papillata infection in mice has been clarified by the reduction of fecal oocyst output on the 5th day post-infection by about 85.41%. Moreover, there is a significant reduction in the size of each parasite stage in the jejunal tissues of the infected-treated group with PAE. PAE counteracted the E. papillata-induced loss of glutathione peroxidase (GPx), superoxide dismutase (SOD), and total antioxidant capacity (TCA). E. papillata infection also induced an increase in the apoptotic cells expressed by caspase-3 which modulated after PAE treatment. Moreover, the mRNA expression of the goblet cell response gene, mucin (MUC2), was upregulated from 0.50 to 1.20-fold after treatment with PAE. Based on our results, PAE is a promising medicinal plant with anti-coccidial, anti-oxidant, and anti-apoptotic activities and could be used as a food additive.
Collapse
Affiliation(s)
- Fatemah Alajmi
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin, P.O. 39524, Saudi Arabia
| | - Tahani Al-Otaibi
- Department of Science and Technology, Al-Nairiyah University College, University of Hafr Al-Batin, Hafr Al- Batin, 31991, Saudi Arabia
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Esam M Al-Shaebi
- Department of Zoology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Nawal Al-Hoshani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Mohamed A Dkhil
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rewaida Abdel-Gaber
- Department of Zoology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
34
|
Xu X, Rothrock MJ, Mishra A, Kumar GD, Mishra A. Relationship of the Poultry Microbiome to Pathogen Colonization, Farm Management, Poultry Production, and Foodborne Illness Risk Assessment. J Food Prot 2023; 86:100169. [PMID: 37774838 DOI: 10.1016/j.jfp.2023.100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Despite the continuous progress in food science and technology, the global burden of foodborne illnesses remains substantial, with pathogens in food causing millions of infections each year. Traditional microbiological culture methods are inadequate in detecting the full spectrum of these microorganisms, highlighting the need for more comprehensive detection strategies. This review paper aims to elucidate the relationship between foodborne pathogen colonization and the composition of the poultry microbiome, and how this knowledge can be used for improved food safety. Our review highlights that the relationship between pathogen colonization varies across different sections of the poultry microbiome. Further, our review suggests that the microbiome profile of poultry litter, farm soil, and farm dust may serve as potential indicators of the farm environment's food safety issues. We also agree that the microbiome of processed chicken samples may reveal potential pathogen contamination and food quality issues. In addition, utilizing predictive modeling techniques on the collected microbiome data, we suggest establishing correlations between particular taxonomic groups and the colonization of pathogens, thus providing insights into food safety, and offering a comprehensive overview of the microbial community. In conclusion, this review underscores the potential of microbiome analysis as a powerful tool in food safety, pathogen detection, and risk assessment.
Collapse
Affiliation(s)
- Xinran Xu
- Department of Food Science and Technology, University of Georgia, Athens, GA, USA
| | - Michael J Rothrock
- Egg Safety and Quality Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, USA
| | - Aditya Mishra
- Department of Statistics, University of Georgia, Athens, GA, USA
| | | | - Abhinav Mishra
- Department of Food Science and Technology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
35
|
de Couvreur LA, Cobo MJ, Kennedy PJ, Ellis JT. Bibliometric analysis of parasite vaccine research from 1990 to 2019. Vaccine 2023; 41:6468-6477. [PMID: 37777454 DOI: 10.1016/j.vaccine.2023.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023]
Abstract
Bibliometric and bibliographic analyses are popular tools for investigating publication metrics and thematic transitions in an expanding codex of biomedical literature. Bibliometric techniques have been employed in parasitology and vaccinology, with only a few malaria-specific literature analyses being reported specifically on parasite vaccines. The pursuit of parasite prophylactics is an important, global endeavour both medically and economically. As such, a comprehensive understanding of the research topics would be a valuable tool in assessing the current status and future directions of parasite vaccine development. Consequently, this study investigated parasite vaccinology from 1990 to 2019 by analysing literature exported from the Web of Science and Dimensions databases using two, commonly used, bibliometric programs: SciMAT and VOSviewer. The results of this study show the common, emerging, and transient themes within the discipline, and where the future lies as vaccine development moves further into the age of omics and informatics.
Collapse
Affiliation(s)
- L A de Couvreur
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW, Australia.
| | - M J Cobo
- Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - P J Kennedy
- School of Software, Faculty of Engineering and Information Technology and the Australian Artificial Intelligence Institute, University of Technology Sydney, PO Box 123, Broadway, NSW, Australia
| | - J T Ellis
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW, Australia
| |
Collapse
|
36
|
Gong Z, Qu Z, Yu Z, Li J, Liu B, Ma X, Cai J. Label-free quantitative detection and comparative analysis of lysine acetylation during the different life stages of Eimeria tenella. J Proteome Res 2023; 22:2785-2802. [PMID: 37562054 DOI: 10.1021/acs.jproteome.2c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Proteome-wide lysine acetylation has been documented in apicomplexan parasite Toxoplasma gondii and Plasmodium falciparum. Here, we conducted the first lysine acetylome in unsporulated oocysts (USO), sporulated 7 h oocysts (SO 7h), sporulated oocysts (SO), sporozoites (S), and the second generation merozoites (SMG) of Eimeria tenella through a 4D label-free quantitative technique. Altogether, 8532 lysine acetylation sites on 2325 proteins were identified in E. tenella, among which 5445 sites on 1493 proteins were quantified. In addition, 557, 339, 478, 248, 241, and 424 differentially expressed proteins were identified in the comparisons SO7h vs USO, SO vs SO7h, SO vs USO, S vs SO, SMG vs S, and USO vs SMG, respectively. The bioinformatics analysis of the acetylome showed that the lysine acetylation is widespread on proteins of diverse functions. Moreover, the dynamic changes of lysine acetylome among E. tenella different life stages revealed significant regulation during the whole process of E. tenella growth and stage conversion. This study provides a beginning for the investigation of the regulate role of lysine acetylation in E. tenella and may provide new strategies for anticoccidiosis drug and vaccine development. Raw data are publicly available at iProX with the data set identifier PXD040368.
Collapse
Affiliation(s)
| | - Zigang Qu
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Innovation of Research Program of Gastrointestinal Infection and Mucosal Immunity of Poultry and Pig; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, People's Republic of China
| | - Zhengqing Yu
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia Province 750021, People's Republic of China
| | - Jidong Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia Province 750021, People's Republic of China
| | - Baohong Liu
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Innovation of Research Program of Gastrointestinal Infection and Mucosal Immunity of Poultry and Pig; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, People's Republic of China
| | - Xueting Ma
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Innovation of Research Program of Gastrointestinal Infection and Mucosal Immunity of Poultry and Pig; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, People's Republic of China
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Innovation of Research Program of Gastrointestinal Infection and Mucosal Immunity of Poultry and Pig; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, People's Republic of China
| |
Collapse
|
37
|
Juárez-Estrada MA, Tellez-Isaias G, Graham DM, Laverty L, Gayosso-Vázquez A, Alonso-Morales RA. Identification of Eimeria tenella sporozoite immunodominant mimotopes by random phage-display peptide libraries-a proof of concept study. Front Vet Sci 2023; 10:1223436. [PMID: 37554540 PMCID: PMC10405736 DOI: 10.3389/fvets.2023.1223436] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
INTRODUCTION Coccidiosis, caused by parasites of numerous Eimeria species, has long been recognized as an economically significant disease in the chicken industry worldwide. The rise of anti-coccidian resistance has driven a search for other parasite management techniques. Recombinant antigen vaccination presents a highly feasible alternative. Properly identifying antigens that might trigger a potent immune response is one of the major obstacles to creating a viable genetically modified vaccine. METHODS This study evaluated a reverse immunology approach for the identification of B-cell epitopes. Antisera from rabbits and hens inoculated with whole-sporozoites of E. tenella were used to identify Western blot antigens. The rabbit IgG fraction from the anti-sporozoite serum exhibited the highest reactogenicity; consequently, it was purified and utilized to screen two random Phage-display peptide libraries (12 mer and c7c mer). After three panning rounds, 20 clones from each library were randomly selected, their nucleotide sequences acquired, and their reactivity to anti-sporozoite E. tenella serum assessed. The selected peptide clones inferred amino acid sequences matched numerous E. tenella proteins. RESULTS AND CONCLUSIONS The extracellular domain of the epidermal growth factor-like (EGF-like) repeats, and the thrombospondin type-I (TSP-1) repeats of E. tenella micronemal protein 4 (EtMIC4) matched with the c7c mer selected clones CNTGSPYEC (2/20) and CMSTGLSSC (1/20) respectively. The clone CSISSLTHC that matched with a conserved hypothetical protein of E. tenella was widely selected (3/20). Selected clones from the 12-mer phage display library AGHTTQFNSKTT (7/20), GPNSAFWAGSER (2/20) and HFAYWWNGVRGP (8/20) showed similarities with a cullin homolog, elongation factor-2 and beta-dynein chain a putative E. tenella protein, respectively. Four immunodominant clones were previously selected and used to immunize rabbits. By ELISA and Western blot, all rabbit anti-clone serums detected E. tenella native antigens. DISCUSSION Thus, selected phagotopes contained recombinant E. tenella antigen peptides. Using antibodies against E. tenella sporozoites, this study demonstrated the feasibility of screening Phage-display random peptide libraries for true immunotopes. In addition, this study looked at an approach for finding novel candidates that could be used as an E. tenella recombinant epitope-based vaccine.
Collapse
Affiliation(s)
- Marco A. Juárez-Estrada
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Danielle M. Graham
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Lauren Laverty
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Amanda Gayosso-Vázquez
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rogelio A. Alonso-Morales
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
38
|
Rodríguez-Mesa XM, Contreras Bolaños LA, Mejía A, Pombo LM, Modesti Costa G, Santander González SP. Immunomodulatory Properties of Natural Extracts and Compounds Derived from Bidens pilosa L.: Literature Review. Pharmaceutics 2023; 15:pharmaceutics15051491. [PMID: 37242733 DOI: 10.3390/pharmaceutics15051491] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Bidens pilosa L. has been used in different parts of the world mainly to treat diseases associated with immune response disorders, such as autoimmunity, cancer, allergies, and infectious diseases. The medicinal properties of this plant are attributed to its chemical components. Nevertheless, there is little conclusive evidence that describes the immunomodulatory activity of this plant. In this review, a systematic search was carried out in the PubMed-NLM, EBSCO Host and BVS databases focused on the pre-clinical scientific evidence of the immunomodulatory properties of B. pilosa. A total of 314 articles were found and only 23 were selected. The results show that the compounds or extracts of Bidens modulate the immune cells. This activity was associated with the presence of phenolic compounds and flavonoids that control proliferation, oxidative stress, phagocytosis, and the production of cytokines of different cells. Most of the scientific information analyzed in this paper supports the potential use of B. pilosa mainly as an anti-inflammatory, antioxidant, antitumoral, antidiabetic, and antimicrobial immune response modulator. It is necessary that this biological activity be corroborated through the design of specialized clinical trials that demonstrate the effectiveness in the treatment of autoimmune diseases, chronic inflammation, and infectious diseases. Until now there has only been one clinical trial in phase I and II associated with the anti-inflammatory activity of Bidens in mucositis.
Collapse
Affiliation(s)
- Xandy Melissa Rodríguez-Mesa
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá Carrera 111 #159A-61, Bogota 111321, Colombia
| | | | - Antonio Mejía
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá Carrera 111 #159A-61, Bogota 111321, Colombia
- Plant Pharmacology and Alternative Therapeutics, Juan N. Corpas University Foundation, Bogotá Carrera 111 #159A-61, Bogota 111321, Colombia
| | - Luis Miguel Pombo
- Plant Pharmacology and Alternative Therapeutics, Juan N. Corpas University Foundation, Bogotá Carrera 111 #159A-61, Bogota 111321, Colombia
| | - Geison Modesti Costa
- Phytochemistry Research Group (GIFUJ), Pontificia Universidad Javeriana, Bogotá Carrera 7 #40-62, Bogota 110231, Colombia
| | - Sandra Paola Santander González
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá Carrera 111 #159A-61, Bogota 111321, Colombia
| |
Collapse
|
39
|
Yang C, Das Q, Rehman MA, Yin X, Shay J, Gauthier M, Lau CHF, Ross K, Diarra MS. Microbiome of Ceca from Broiler Chicken Vaccinated or Not against Coccidiosis and Fed Berry Pomaces. Microorganisms 2023; 11:1184. [PMID: 37317158 DOI: 10.3390/microorganisms11051184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
American cranberry (Vaccinium macrocarpon) and lowbush/wild blueberry (V. angustifolium) pomace are polyphenol-rich products having potentially beneficial effects in broiler chickens. This study investigated the cecal microbiome of broiler-vaccinated or non-vaccinated birds against coccidiosis. Birds in each of the two groups (vaccinated or non-vaccinated) were fed a basal non-supplemented diet (NC), a basal diet supplemented with bacitracin (BAC), American cranberry (CP), and lowbush blueberry (BP) pomace alone or in combination (CP + BP). At 21 days of age, cecal DNA samples were extracted and analyzed using both whole-metagenome shotgun sequencing and targeted-resistome sequencing approaches. Ceca from vaccinated birds showed a lower abundance of Lactobacillus and a higher abundance of Escherichia coli than non-vaccinated birds (p < 0.05). The highest and lowest abundance of L. crispatus and E. coli, respectively, were observed in birds fed CP, BP, and CP + BP compared to those from NC or BAC treatments (p < 0.05). Coccidiosis vaccination affected the abundance of virulence genes (VGs) related to adherence, flagella, iron utilization, and secretion system. Toxin-related genes were observed in vaccinated birds (p < 0.05) in general, with less prevalence in birds fed CP, BP, and CP + BP than NC and BAC (p < 0.05). More than 75 antimicrobial resistance genes (ARGs) detected by the shotgun metagenomics sequencing were impacted by vaccination. Ceca from birds fed CP, BP, and CP + BP showed the lowest (p < 0.05) abundances of ARGs related to multi-drug efflux pumps, modifying/hydrolyzing enzyme and target-mediated mutation, when compared to ceca from birds fed BAC. Targeted metagenomics showed that resistome from BP treatment was distant to other groups for antimicrobials, such as aminoglycosides (p < 0.05). Significant differences in the richness were observed between the vaccinated and non-vaccinated groups for aminoglycosides, β-lactams, lincosamides, and trimethoprim resistance genes (p < 0.05). Overall, this study demonstrated that dietary berry pomaces and coccidiosis vaccination significantly impacted cecal microbiota, virulome, resistome, and metabolic pathways in broiler chickens.
Collapse
Affiliation(s)
- Chongwu Yang
- Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada
| | - Quail Das
- Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada
| | - Muhammad A Rehman
- Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada
| | - Xianhua Yin
- Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada
| | - Julie Shay
- Ottawa Laboratory (Carling) Research and Development, Canadian Food Inspection Agency, Ottawa, ON K1Y 4K7, Canada
| | - Martin Gauthier
- Biological Informatics Centre of Excellence, AAFC, Saint-Hyacinthe, QC J2S 8E3, Canada
| | - Calvin Ho-Fung Lau
- Ottawa Laboratory (Carling) Research and Development, Canadian Food Inspection Agency, Ottawa, ON K1Y 4K7, Canada
| | - Kelly Ross
- Summerland Research and Development Center, AAFC, Summerland, BC V0H 1Z0, Canada
| | - Moussa S Diarra
- Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada
| |
Collapse
|
40
|
Nutritional supplements for the control of avian coccidiosis. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Abstract
Coccidiosis is acclaimed as the most prevalent enteric parasitic ailment of poultry. It is caused by an apicomplexan protozoon of the genus Eimeria, which resides in chicken intestinal epithelium leading to intestinal damage. As a result, bloody droppings are there, feed efficiency is reduced, the growth rate is impaired, and egg production is temporarily decreased. Treatment and prevention of coccidiosis are primarily accomplished by inoculating live vaccines and administering anticoccidial drugs. Due to anticoccidials’ continuous and excessive use, the mounting issue is drug resistant Eimeria strains. The poultry industry has managed resistance-related issues by suggesting shuttle and rotation schemes. Furthermore, new drugs have also been developed and introduced, but it takes a long time and causes cost inflation in the poultry industry. Moreover, government disallows growth promoters and drugs at sub-therapeutic doses in poultry due to increased concerns about the drug residues in poultry products. These constraints have motivated scientists to work on alternative ways to control coccidiosis effectively, safely, and sustainably. Using nutritional supplements is a novel way to solve the constraints mentioned above. The intriguing aspects of using dietary supplements against coccidiosis are that they reduce the risk of drug-resistant pathogen strains, ensure healthy, nutritious poultry products, have less reliance on synthetic drugs, and are typically considered environmentally safe. Furthermore, they improve productivity, enhance nonspecific immunity, preventing oxidation of fats (acting as antioxidants) and inflammation (acting as an anti-inflammatory). The present manuscript focuses on the efficacy, possible mechanism of action, applications, and different facets of nutrition supplements (such as organic acids, minerals, vitamins, probiotics, essential oils, amino acids, dietary nucleotides, feed enzymes, and yeast derivatives) as feed additive for treating poultry coccidiosis.
Collapse
|
41
|
Kim E, Lambert W, Kiarie EG. Research Note: Impact of Eimeria on apparent retention of components and metabolizable energy in broiler chickens fed single or mixture of feed ingredients-based diets. Poult Sci 2023; 102:102526. [PMID: 36805397 PMCID: PMC9969314 DOI: 10.1016/j.psj.2023.102526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
The effect of Eimeria on apparent retention (AR) of components and metabolizable energy corrected for nitrogen (AMEn) content in corn, wheat, soybean meal (SBM), and pork meal (PM) was investigated in broiler chickens. A total of 840 male d-old Ross 708 chicks were placed in 84 cages (10 birds/cage) and allocated either a nitrogen-free diet (NFD), or 1 of 6 test cornstarch-based semipurified diets: 1) corn, 2) wheat, 3) SBM, 4) PM, 5) corn, SBM, and PM (CSP) mixture, and 6) wheat, SBM, and PM (WSP) mixture (n = 12). Diets contained 0.3% titanium dioxide and nutrient digestibility was determined by difference method using NFD. On d 10, birds in half of replicates per diet were orally challenge with 1 mL of E. acervulina and E. maxima culture and the other half equal volume of saline. Excreta samples were collected from d 12 to 14. With exception of AR of Ca and P, there was no interaction (P > 0.05) between Eimeria and diet on AR of dry matter, crude fat (CF), crude protein and gross energy and AMEn of ingredients. Eimeria reduced AR of CF (P = 0.01) and had a tendency to reduce AR of DM (P = 0.09) and AMEn (P = 0.063) of ingredients. The data demonstrated exposure to Eimeria impacted nutrient retention and energy utilization irrespective to diet composition.
Collapse
Affiliation(s)
- Emily Kim
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | | | - Elijah G. Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada,Corresponding author:
| |
Collapse
|
42
|
Wang M, Tian D, Xu L, Lu M, Yan R, Li X, Song X. Protective efficacy induced by Eimeria maxima rhomboid-like protein 1 against homologous infection. Front Vet Sci 2023; 9:1049551. [PMID: 36686197 PMCID: PMC9845710 DOI: 10.3389/fvets.2022.1049551] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Avian coccidiosis, caused by apicomplexan protozoa belonging to the Eimeria genus, is considered one of the most important diseases in the intensive poultry industry worldwide. Due to the shortcomings of live anticoccidial vaccines and drugs, the development of novel anticoccidial vaccines is increasingly urgent. Methods Eimeria maxima rhomboid-like protein 1 (EmROM1), an invasion-related molecule, was selected as a candidate antigen to evaluate its protective efficacy against E. maxima in chickens. Firstly, the prokaryotic recombinant plasmid pET-32a-EmROM1 was constructed to prepare EmROM1 recombinant protein (rEmROM1), which was used as a subunit vaccine. The eukaryotic recombinant plasmid pVAX1.0-EmROM1 (pEmROM1) was constructed as a DNA vaccine. Subsequently, 2-week-old chicks were separately vaccinated with the rEmROM1 and pEmROM1 twice every 7 days. One week post the booster vaccination, induced cellular immune responses were determined by evaluating the mRNA level of cytokines including IL-2, IFN-γ, IL-4, IL-10, TGF-β, IL-17, and TNFSF15, as well as the percentages of CD4+ and CD8+ T cells from spleens of vaccinated chickens. Specific serum antibody level in the vaccinated chickens was determined to assess induced humoral immune responses. Finally, the protective efficacy of EmROM1 was evaluated by a vaccination-challenge trial. Results EmROM1 vaccination significantly upregulated the cytokine transcription levels and CD4+/CD8+ T cell percentages in vaccinated chickens compared with control groups, and also significantly increased the levels of serum-specific antibodies in vaccinated chickens. The animal trial showed that EmROM1 vaccination significantly reduced oocyst shedding, enteric lesions, and weight loss of infected birds compared with the controls. The anticoccidial index (ACI) from the rEmROM-vaccination group and pEmROM1-vaccination group were 174.11 and 163.37, respectively, showing moderate protection against E. maxima infection. Discussion EmROM1 is an effective candidate antigen for developing DNA or subunit vaccines against avian coccidiosis.
Collapse
|
43
|
Kandeel M, Morsy MA, Abd El-Lateef HM, Marzok M, El-Beltagi HS, Al Khodair KM, Albokhadaim I, Venugopala KN, Al-Rasheed M, Ismail MM. A century of "anticoccidial drugs": bibliometric analysis. Front Vet Sci 2023; 10:1157683. [PMID: 37205230 PMCID: PMC10185802 DOI: 10.3389/fvets.2023.1157683] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/03/2023] [Indexed: 05/21/2023] Open
Abstract
Publications are an important measure of scientific and technological progress. The quantitative examination of the number of publications in a certain research topic is known as bibliometrics. Bibliographic studies are widely used to analyse the condition of research, future potential, and current growth patterns in a certain topic. It can serve as a basis for making decisions and implementing strategies to achieve long-term development goals. To our knowledge, no research has been conducted in these domains; so, this work aims to employ bibliometric analysis to provide comprehensive data on publications related to anticoccidial drugs. As a result, the current study uses bibliometric analysis to track the evolution of anticoccidial drugs and its consequences in the academic and public worlds via a survey of relevant scientific and popular publications. The Dimensions database was used to retrieve the bibliographical statistics, which were then cleaned and analyzed. The data was also loaded into the VOS viewer, which generated a network visualization of the authors with the most joint articles. The investigation discovered three stages of publications and citations since the first article on anticoccidial drugs in 1949. The first stage, which ran from 1920 to 1968, was characterized by a scarcity of research articles on anticoccidial drugs. From 1969 to 2000, the second stage was marked by a stable and marginally increased number of articles. The scientific field was characterized by an increasing trend in the number of publications and their citations from 2002 to 2021. The study gave a complete list of the top anticoccidial drugs funding agents, countries, research institutes, most cited publications, and important co-authorship and partnerships. The outcomes of the study will help veterinary practitioners and researchers understand the trends and best sources of knowledge in the field of anticoccidial medications.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
- *Correspondence: Mahmoud Kandeel,
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Hany M. Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mohamed Marzok
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Surgery, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Khalid M. Al Khodair
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ibrahim Albokhadaim
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Mohammed Al-Rasheed
- College of Veterinary Medicine, Avian Research Center, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahmoud M. Ismail
- Department of Poultry and Rabbit Diseases, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
44
|
Hatabu T, Pham HHS, Aota W, Fujino S, Nishihara R, Kawamura G, Sakogawa Y, Taniguchi S, Matsubayashi M. Reduction of oocyte shedding and cecal inflammation by 5-aminolevulinic acid daily supplementation in laying hens infected with Eimeria tenella. Anim Sci J 2023; 94:e13806. [PMID: 36627207 DOI: 10.1111/asj.13806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/09/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023]
Abstract
The present study aimed to evaluate the effects of 5-aminolevulinic acid (5-ALA) on Eimeria tenella infection in laying hens. Oocyst shedding and histopathology were evaluated. A reduced oocyst shedding was observed 5 and 7 days post-infection (dpi) in the 5-ALA-administered group, but the total number of oocysts during the first infection period was not different between control and 5-ALA-treated groups. After E. tenella attack infection, the period of oocyst shedding in the 5-ALA-administered group lasted less long than that in controls. During the attack infection period, the total number of fecal oocysts in the 5-ALA-treated group was significantly lower than that in the control group. However, the parasite burden score in hens receiving 5-ALA was higher than that in controls after E. tenella attack infection. The lesion scores at 5 and 30 dpi in the control group were significantly lower than those in the 5-ALA-administered group. Therefore, 5-ALA administration might be beneficial against E. tenella infection in laying hens.
Collapse
Affiliation(s)
- Toshimitsu Hatabu
- Laboratory of Animal Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hung Hoang Son Pham
- Department of Veterinary Medicine, Faculty of Animal Science and Veterinary Medicine, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Wataru Aota
- Laboratory of Animal Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Shota Fujino
- Laboratory of Animal Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Rio Nishihara
- Laboratory of Animal Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Go Kawamura
- Laboratory of Animal Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yuudai Sakogawa
- Laboratory of Animal Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Shin Taniguchi
- Agricultural Promotion and Advisory Division, Agriculture, Forestry and Fisheries Department, Hokusatsu Regional Promotion Bureau, Satsumasendai, Japan
| | - Makoto Matsubayashi
- Department of Veterinary Science, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Izumisano, Japan
| |
Collapse
|
45
|
Yu Z, Xu L, He K, Lu M, Yan R, Song X, Li X. Actin depolymerizing factor-based nanomaterials: A novel strategy to enhance E. mitis-specific immunity. Front Immunol 2022; 13:1080630. [PMID: 36618362 PMCID: PMC9810622 DOI: 10.3389/fimmu.2022.1080630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
The epidemic of avian coccidiosis seriously threatens the animals' welfare and the economic gains of the poultry industry. Widespread in avian coccidiosis, Eimeria mitis (E. mitis) could obviously impair the production performance of the infected chickens. So far, few effective vaccines targeting E. mitis have been reported, and the nanovaccines composed of nanospheres captured our particular attention. At the present study, we construct two kinds of nanospheres carrying the recombinant E. mitis actin depolymerizing factor (rEmADF), then the characterization was then analyzed. After safety evaluation, the protective efficacy of rEmADF along with its nanospheres were investigated in chickens. The promoted secretions of antibodies and cytokines, as well as the enhanced percentages of CD4+ and CD8+ T cells were evaluated by the ELISA and flow cytometry assay. In addition, the absolute quantitative real-time PCR (qPCR) assay implied that vaccinations with rEmADF-entrapped nanospheres could significantly reduce the replications of E. mitis in feces. Compared with the rEmADF-loaded chitosan (EmADF-CS) nanospheres, the PLGA nanospheres carrying rEmADF (EmADF-PLGA nanosphers) were more effective in up-regulating weight efficiency of animals and generated equally ability in controlling E. mitis burdens in feces, suggesting the PLGA and CS nanospheres loaded with rEmADF were the satisfactory nanovaccines for E. mitis defense. Collectively, nanomaterials may be an effective antigen delivery system that could help recombinant E. mitis actin depolymerizing factor to enhance immunoprotections in chicken against the infections of E. mitis.
Collapse
Affiliation(s)
- ZhengQing Yu
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China,Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - LiXin Xu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ke He
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - MingMin Lu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - RuoFeng Yan
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - XiaoKai Song
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - XiangRui Li
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China,*Correspondence: XiangRui Li,
| |
Collapse
|
46
|
Chen X, Wang Z, Chen Y, Akinci I, Luo W, Xu Y, Jebessa E, Blake D, Sparks N, Hanotte O, Nie Q. Transcriptome analysis of differentially expressed circRNAs miRNAs and mRNAs during the challenge of coccidiosis. Front Immunol 2022; 13:910860. [PMID: 36458003 PMCID: PMC9706185 DOI: 10.3389/fimmu.2022.910860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/24/2022] [Indexed: 09/23/2023] Open
Abstract
Avian coccidiosis is a common enzootic disease caused by infection of Eimeria species parasites. It causes huge economic losses in the global poultry industry. Current control using anticoccidial drugs or vaccination is limited due to drug resistance and the relatively high cost of vaccines. Improving host genetic resistance to Eimeria species is considered an effective strategy for improved control of coccidiosis. Circular RNAs (circRNAs) have been found to function as biomarkers or diagnoses of various kinds of diseases. The molecular biological functions of circRNAs, miRNAs, and mRNAs related to Sasso chicken have not yet been described during Eimeria species challenge. In this study, RNA-seq was used to profile the expression pattern of circRNAs, miRNAs, and mRNAs in spleens from Eimeria tenella-infected and non-infected commercial dual-purpose Sasso T445 breed chickens. Results showed a total of 40 differentially expressed circRNAs (DEcircRNAs), 31 differentially expressed miRNAs (DEmiRNAs), and 820 differentially expressed genes (DEmRNAs) between infected and non-infected chickens. Regulatory networks were constructed between differentially expressed circRNAs, miRNAs, and mRNAs to offer insights into the interaction mechanisms between chickens and Eimeria spp. Functional validation of a significantly differentially expressed circRNA, circMGAT5, revealed that circMGAT5 could sponge miR-132c-5p to promote the expression of the miR-132c-5p target gene monocyte to macrophage differentiation-associated (MMD) during the infection of E. tenella sporozoites or LPS stimulation. Pathologically, knockdown of circMGAT5 significantly upregulated the expression of macrophage surface markers and the macrophage activation marker, F4/80 and MHC-II, which indicated that circMGAT5 might inhibit the activation of macrophage. miR-132c-5p markedly facilitated the expression of F4/80 and MHC-II while circMGAT5 could attenuate the increase of F4/80 and MHC-II induced by miR-132c-5p, indicating that circMGAT5 exhibited function through the circMGAT5-miR-132c-5p-MMD axis. Together, our results indicate that circRNAs exhibit their resistance or susceptive roles during E. tenella infection. Among these, circMGAT5 may inhibit the activation of macrophages through the circMGAT5-miR-132c-5p-MMD axis to participate in the immune response induced by Eimeria infection.
Collapse
Affiliation(s)
- Xiaolan Chen
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, China
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Zhijun Wang
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, China
| | - Yangfeng Chen
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, China
| | - Ibrahim Akinci
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Department of Animal Breeding and Genetics, Poultry Research Institute, Ankara, Turkey
| | - Wei Luo
- State Key Laboratory of Livestock and Poultry Breeding & Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yibin Xu
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, China
| | - Endashaw Jebessa
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, China
- LiveGene – CTLGH, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Damer Blake
- Pathobiology and Population Sciences, Royal Veterinary College, North Mymms, United Kingdom
| | - Nick Sparks
- Roslin Institute Building, Scotland’s Rural College, Edinburgh, United Kingdom
| | - Olivier Hanotte
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- LiveGene – CTLGH, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Qinghua Nie
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, China
| |
Collapse
|
47
|
Smith MK, Buhr DL, Dhlakama TA, Dupraw D, Fitz-Coy S, Francisco A, Ganesan A, Hubbard SA, Nederlof A, Newman LJ, Stoner MR, Teichmann J, Voyta JC, Wooster R, Zeygerman A, Zwilling MF, Kiss MM. Automated enumeration of Eimeria oocysts in feces for rapid coccidiosis monitoring. Poult Sci 2022; 102:102252. [PMID: 36463777 PMCID: PMC9719016 DOI: 10.1016/j.psj.2022.102252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Coccidiosis represents a major driver in the economic performance of poultry operations, as coccidia control is expensive, and infections can result in increased feed conversion ratios, uneven growth rates, increased co-morbidities with pathogens such as Salmonella, and mortality within flocks. Shifts in broiler production to antibiotic-free strategies, increased attention on pre-harvest food safety, and growing incidence of anti-coccidial drug resistance has created a need for increased understanding of interventional efficacy and methods of coccidia control. Conventional methods to quantify coccidia oocysts in fecal samples involve manual microscopy processes that are time and labor intensive and subject to operator error, limiting their use as a diagnostic and monitoring tool in animal parasite control. To address the need for a high-throughput, robust, and reliable method to enumerate coccidia oocysts from poultry fecal samples, a novel diagnostic tool was developed. Utilizing the PIPER instrument and MagDrive technology, the diagnostic eliminates the requirement for extensive training and manual counting which currently limits the application of conventional microscopic methods of oocysts per gram (OPG) measurement. Automated microscopy to identify and count oocysts and report OPG simplifies analysis and removes potential sources of operator error. Morphometric analysis on identified oocysts allows for the oocyst counts to be separated into 3 size categories, which were shown to discriminate the 3 most common Eimeria species in commercial broilers, E. acervulina, E. tenella, and E. maxima. For 75% of the samples tested, the counts obtained by the PIPER and hemocytometer methods were within 2-fold of each other. Additionally, the PIPER method showed less variability than the hemocytometer counting method when OPG levels were below 100,000. By automated identification and counting of oocysts from 12 individual fecal samples in less than one hour, this tool could enable routine, noninvasive diagnostic monitoring of coccidia in poultry operations. This approach can generate large, uniform, and accurate data sets that create new opportunities for understanding the epidemiology and economics of coccidia infections and interventional efficacy.
Collapse
|
48
|
Nouri A. Anticoccidial and immunogenic effectivity of encapsulated organic acids and anticoccidial drugs in broilers infected with Eimeria spp. Sci Rep 2022; 12:17060. [PMID: 36224232 PMCID: PMC9556528 DOI: 10.1038/s41598-022-20990-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/21/2022] [Indexed: 12/30/2022] Open
Abstract
The study was conducted to consider the anticoccidial and immunogenic effectivities of encapsulated organic acids and anticoccidial drugs in broilers reared on a reused litter infected with Eimeria spp. for simulating in-field exposure to avian coccidiosis. 525 mixed-sex one-day-old broiler chicks (Ross 308) were used in a 2 × 3 factorial experiment as a completely randomized design with seven experimental groups and five replicates of 15 chicks. The seven experimental groups were included: negative (uninfected; T1) and positive (infected; T2) control groups fed a diet without additive, and other infected groups (T3-T7) fed diets supplemented with 0.05% maduramicin, 0.02% diclazuril, 0.1% EOAs, 0.05% maduramicin and 0.1% EOAs, 0.02% diclazuril and 0.1% EOAs. During the experimental period, the evaluated parameters were European production efficiency factor (EPEF; at 22 days of age (d)), oocyst output per gram feces (OPG; at different ages), oocyst reduction rate (ORR; at 22-d), survival rate (SR; at 22-d), caecal lesion score (CLS at 22-d), sporulation percentage (SP; by in vitro anticoccidial tests), bloody diarrhea (BD; by scoring the bloody feces each morning from 13 to 31-d), immunity (humoral test at 28 and 35-d and cell-mediated test at 22-d), goblet cells analysis of the jejunum (GC; at 22-d) and anti-coccidiosis index (ACI; at 22-d). EOAs and anticoccidials, especially their simultaneous feeding improved (P < 0.05) broiler's EPEF, SR, OPG, ORR, SP, CLS, immunity and BD (scored). ACI was improved (P < 0.05) by EOAs more than anticoccidials (marked vs. moderate). The highest ACI was significantly observed in EOAs + diclazuril group. EOAs as a safe alternative had more intensive anticoccidial and immunogenic properties and increased the anticoccidial drugs' effectiveness, especially diclazuril in Eimeria spp-infected broilers.
Collapse
Affiliation(s)
- Ali Nouri
- grid.449232.a0000 0004 0494 0390Department of Animal Science, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| |
Collapse
|
49
|
AHMADI P, BAAKHTARI M, YASUDA M, NONAKA N, YOSHIDA A. Toltrazuril and diclazuril: comparative evaluation of anti-coccidial drugs using a murine model. J Vet Med Sci 2022; 84:1345-1351. [PMID: 35922919 PMCID: PMC9586018 DOI: 10.1292/jvms.22-0136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022] Open
Abstract
Intestinal coccidiosis caused by Eimeria protozoan species is an economically important disease, especially in poultry and cattle. Anti-coccidial drugs commonly used for controlling coccidiosis are toltrazuril (TTZ) and diclazuril (DCZ). In this study, the efficacies of TTZ and DCZ were compared using a murine model, and the effect of these treatments on the induction of acquired resistance was evaluated. Male C57BL/6J mice were inoculated with 1,000 sporulated E. vermiformis oocytes and treated with TTZ or DCZ. The recommended TTZ dose for cattle (15 mg/kg) completely prevented oocyte excretion. But, mice required 5 mg/kg of DCZ, which is five times the recommended dose for cattle, to reduce oocyte excretion. In E. vermiformis re-infection, TTZ (15 mg/kg) and DCZ (5 mg/kg) treatments did not interfere with the development of acquired resistance. Bodyweight gain was significantly higher in the TTZ-treated group than in the control (untreated/infected) group and the DCZ-treated group, and no significant difference in bodyweight gain was observed between the TTZ-treated group and the healthy (uninfected/untreated) group. Analysis of T lymphocyte subsets in the spleen and mesenteric lymph nodes indicated that the relative populations of CD4+ and CD8+ T cells were reduced in the DCZ-treated and control (untreated/infected) groups, suggesting there was immunosuppression during the infection. However, no reductions in T cell populations were observed in the TTZ-treated group. The results indicated that an optimal anti-coccidial drug is one that can completely break the parasite life cycle in the host animal.
Collapse
Affiliation(s)
- Parnian AHMADI
- Laboratory of Veterinary Parasitic Diseases, Department of
Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Faculty of Veterinary Science, Balkh University, Balkh,
Afghanistan
| | - Mahmoud BAAKHTARI
- Faculty of Veterinary Science, Balkh University, Balkh,
Afghanistan
- Laboratory of Veterinary Anatomy, Department of Veterinary
Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masahiro YASUDA
- Laboratory of Veterinary Anatomy, Department of Veterinary
Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Nariaki NONAKA
- Laboratory of Parasitology, Faculty of Veterinary Medicine,
Hokkaido University, Hokkaido, Japan
| | - Ayako YOSHIDA
- Laboratory of Veterinary Parasitic Diseases, Department of
Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Center for Animal Diseases Control, University of Miyazaki,
Miyazaki, Japan
| |
Collapse
|
50
|
Pu J, Xiao J, Bai X, Chen H, Zheng R, Gu X, Xie Y, He R, Xu J, Jing B, Peng X, Yang G. Prokaryotic Expression of Eimeria magna SAG10 and SAG11 Genes and the Preliminary Evaluation of the Effect of the Recombinant Protein on Immune Protection in Rabbits. Int J Mol Sci 2022; 23:ijms231810942. [PMID: 36142854 PMCID: PMC9506328 DOI: 10.3390/ijms231810942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Eimeria magna is a common coccidia in the intestines of rabbits, causing anorexia, weight loss, diarrhea, and bloody stools. This study cloned and determined the expression levels of four Eimeria surface antigens (EmSAGs) at different developmental stages and showed that EmSAG10 and EmSAG11 are highly expressed at the merozoite stage. Rabbits were immunized with rEmSAG10 and rEmSAG11, and then challenged with E. magna after 2 weeks. Serum-specific antibodies and cytokine levels were detected using ELISA. Immune protection was evaluated based on the rate of the oocysts decrease, the output of oocysts (p < 0.05), the average weight gain, and the feed: meat ratio. Our results showed that rabbits immunized with rEmSAG10 and rEmSAG11 had a higher average weight gain (62.7%, 61.1%), feed; meat ratio (3.8:1, 4.5:1), and the oocysts decrease rate (70.8%, 81.2%) than those in the control group, and also significantly reduced intestinal lesions. The specific IgG level increased one week after the first rEmSAG10 and rEmSAG11 immunization and was maintained until two weeks after the challenge (p < 0.05). The TGF-β, IL-4, and IL-10 levels in the serum increased significantly after the secondary immunization with rEmSAG10 and rEmSAG11, while the IL-2 levels increased significantly after the secondary immunization with rEmSAG11 (both p < 0.05), suggesting that rEmSAG10 can induce a humoral and cellular immunity, while rEmSAG11 can only induce a humoral immunity. Therefore, rEmSAG10 is a candidate antigen for E. magna recombinant subunit vaccines.
Collapse
Affiliation(s)
- Jiayan Pu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Jie Xiao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Xin Bai
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Hao Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Ruoyu Zheng
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Bo Jing
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Correspondence:
| |
Collapse
|