1
|
Giacco A, Petito G, Silvestri E, Scopigno N, Vigliotti M, Mercurio G, de Lange P, Lombardi A, Moreno M, Goglia F, Lanni A, Senese R, Cioffi F. Comparative effects of 3,5-diiodo-L-thyronine and 3,5,3'-triiodo-L-thyronine on mitochondrial damage and cGAS/STING-driven inflammation in liver of hypothyroid rats. Front Endocrinol (Lausanne) 2024; 15:1432819. [PMID: 39301315 PMCID: PMC11410700 DOI: 10.3389/fendo.2024.1432819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024] Open
Abstract
Maintaining a well-functioning mitochondrial network through the mitochondria quality control (MQC) mechanisms, including biogenesis, dynamics and mitophagy, is crucial for overall health. Mitochondrial dysfunction caused by oxidative stress and further exacerbated by impaired quality control can trigger inflammation through the release of the damage-associated molecular patterns (mtDAMPs). mtDAMPs act by stimulating the cyclic GMP-AMP synthase (cGAS) stimulator of interferon genes (STING) pathway. Recently, aberrant signalling of the cGAS-STING axis has been recognised to be closely associated with several sterile inflammatory diseases (e.g. non-alcoholic fatty liver disease, obesity). This may fit the pathophysiology of hypothyroidism, an endocrine disorder characterised by the reduction of thyroid hormone production associated with impaired metabolic fluxes, oxidative balance and inflammatory status. Both 3,5,3'-triiodo-L-tyronine (T3) and its derivative 3,5-diiodo-L-thyronine (3,5-T2), are known to mitigate processes targeting mitochondria, albeit the underlying mechanisms are not yet fully understood. Therefore, we used a chemically induced hypothyroidism rat model to investigate the effect of 3,5-T2 or T3 administration on inflammation-related factors (inflammatory cytokines, hepatic cGAS-STING pathway), oxidative stress, antioxidant defence enzymes, mitochondrial DNA (mtDNA) damage, release and repair, and the MQC system in the liver. Hypothyroid rats showed: i) increased oxidative stress, ii) accumulation of mtDNA damage, iii) high levels of circulating cytokines, iv) hepatic activation of cGAS-STING pathways and v) impairment of MQC mechanisms and autophagy. Both iodothyronines restored oxidative balance by enhancing antioxidant defence, preventing mtDNA damage through the activation of mtDNA repair mechanisms (OGG1, APE1, and POLγ) and promoting autophagy progression. Concerning MQC, both iodothyronines stimulated mitophagy and dynamics, with 3,5-T2 activating fusion and T3 modulating both fusion and fission processes. Moreover, only T3 enhanced mitochondrial biogenesis. Notably, 3,5-T2, but not T3, reversed the hypothyroidism-induced activation of the cGAS-STING inflammatory cascade. In addition, it is noteworthy that 3,5-T2 seems more effective than T3 in reducing circulating pro-inflammatory cytokines IL-6 and IL-1B and in stimulating the release of IL-10, a known anti-inflammatory cytokine. These findings reveal novel molecular mechanisms of hepatic signalling pathways involved in hypothyroidism, which could be targeted by natural iodothyronines, particularly 3,5-T2, paving the way for the development of new treatment strategies for inflammatory diseases.
Collapse
Affiliation(s)
- Antonia Giacco
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Giuseppe Petito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Elena Silvestri
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Nicla Scopigno
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Michela Vigliotti
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Giovanna Mercurio
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Pieter de Lange
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Assunta Lombardi
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Maria Moreno
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Fernando Goglia
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Antonia Lanni
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Federica Cioffi
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| |
Collapse
|
2
|
Yilmaz U, Tanbek K. Intracerebroventricular prokineticin 2 infusion may play a role on the hypothalamus-pituitary-thyroid axis and energy metabolism. Physiol Behav 2024; 283:114601. [PMID: 38838800 DOI: 10.1016/j.physbeh.2024.114601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
AIM The hypothesis of this study is to determine the effects of intracerebroventricular (icv) prokineticin 2 infusion on food consumption and body weight and to elucidate whether it has effects on energy expenditure via the hypothalamus-pituitary-thyroid (HPT) axis in adipose tissue. MATERIAL AND METHODS A total of 40 rats were used in the study and 4 groups were established: Control, Sham, Prokineticin 1.5 and Prokineticin 4.5 (n=10). Except for the Control group, rats were treated intracerebroventricularly via osmotic minipumps, the Sham group was infused with aCSF (vehicle), and the Prokineticin 1.5 and Prokineticin 4.5 groups were infused with 1.5 nMol and 4.5 nMol prokineticin 2, respectively. Food and water consumption and body weight were monitored during 7-day infusion in all groups. At the end of the infusion, the rats were decapitated and serum TSH, fT4 and fT3 levels were determined by ELISA. In addition, PGC-1α and UCP1 gene expression levels in white adipose tissue (WAT) and brown adipose tissue (BAT), TRH from rat hypothalamic tissue were determined by real-time PCR. RESULTS Icv prokineticin 2 (4.5 nMol) infusion had no effect on water consumption but reduced daily food consumption and body weight (p<0.05). Icv prokineticin 2 (4.5 nMol) infusion significantly increased serum TSH, fT4 and fT3 levels when compared to Control and Sham groups (p<0.05). Also, icv prokineticin 2 (4.5 nMol) infusion increased the expression of TRH in the hypothalamus tissue and expression of PGC-1α UCP1 in the WAT and BAT (p<0.05). CONCLUSION Icv prokineticin 2 (4.5 nMol) infusion may suppress food consumption via its receptors in the hypothalamus and reduce body weight by stimulating energy expenditure and thermogenesis in adipose tissue through the HPT axis.
Collapse
Affiliation(s)
- Umit Yilmaz
- Department of Physiology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| | - Kevser Tanbek
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
3
|
Huang L, Jang WY, Yoon JH, Piao Z, Su J, Kim DS, Kwon KW, Kim JW, Park SH, Kim S, Kim JH, Cho JY. Protective effect of Korean red ginseng water extract on levothyroxine-induced hyperthyroidism and propylthiouracil-induced hypothyroidism in rats. Integr Med Res 2024; 13:101071. [PMID: 39263445 PMCID: PMC11388169 DOI: 10.1016/j.imr.2024.101071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/19/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Background Korean red ginseng extract (KRGE) (Family: Araliaceae) is one of the most widely used traditional herbs in Asia. Multiple studies have shown that KRGE has anti-inflammation, anti-fatigue, anti-obesity, anti-oxidant, and anti-cancer effects. Methods Sprague-Dawley rats were divided into five groups for PTU-induced hypothyroidism and six groups for LT4-induced hyperthyroidism. At the experiment's conclusion, rats were sacrificed, and blood, thyroid gland, and liver samples were collected. Body weight was recorded weekly, and serum hormone levels were assessed using enzyme-linked immunoassay. Thyroid gland and liver tissues were stained with hematoxylin and eosin. KRGE was prepared in 0.5% CMC and stored at 4 °C before administration. Results In the LT4-induced hyperthyroidism model, KRGE prevented decreases in body weight, thyroid gland weight, liver weight, serum glucose, and thyroid hormone levels compared to the PTU group. It also reduced increases in T3, T4, and serum aspartate aminotransferase levels after LT4 treatment. Additionally, KRGE improved thyroid gland and liver histopathology, effects not observed in the PTU-induced hypothyroidism model. Conclusion All things considered, our research points to KRGE's potential protective role in rat hyperthyroidism caused by LT4 by lowering thyroid hormone production.
Collapse
Affiliation(s)
- Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Won Young Jang
- Department of Integrative Biotechnology, Biomedical Institute for Convergence of SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Ji Hye Yoon
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Zhenyan Piao
- Department of Integrative Biotechnology, Biomedical Institute for Convergence of SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Jinghan Su
- Department of Integrative Biotechnology, Biomedical Institute for Convergence of SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Dong Seon Kim
- Department of Integrative Biotechnology, Biomedical Institute for Convergence of SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Ki Woong Kwon
- Department of Integrative Biotechnology, Biomedical Institute for Convergence of SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Ji Won Kim
- Department of Integrative Biotechnology, Biomedical Institute for Convergence of SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sunggyu Kim
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Integrative Biotechnology, Biomedical Institute for Convergence of SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology College of Medicine, Chonbuk National University Iksan, Republic of Korea
| | - Jae Youl Cho
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Integrative Biotechnology, Biomedical Institute for Convergence of SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
4
|
Fan C, Ren Y, Zhang W, Wen J, Zhang W, Lin S, Bai Y, Zheng T, Abay B, Li M, Fan L. Thyroid hormone enhances efficacy of cisplatin in lung cancer patients via down-regulating GLUT1 expression and reversing the Warburg effect. Mitochondrion 2024; 78:101919. [PMID: 38876298 DOI: 10.1016/j.mito.2024.101919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Cisplatin (CDDP) is a standard non-small cell lung cancer (NSCLC) chemotherapy, but its efficacy is hampered by resistance, partly due to the Warburg effect. This study investigates how thyroid hormones enhance the Warburg effect, increasing sensitivity to cisplatin in lung cancer. Clinical data from advanced NSCLC patients were analyzed based on thyroid hormone levels, categorizing patients into high and low groups. Cellular experiments involved Control, 10uM CDDP, 10uM CDDP + 0.1uM T3, and 10uM CDDP + 0.1uM T4 categories. Parameters were measured in A549 and PC9 lung cancer cells, including proliferation, apoptosis, mitochondrial membrane potential, ROS production, glycolysis enzyme activity, lactic acid level, and ATP content. Gene and protein expressions were assessed using qPCR and Western Blot. Analysis revealed higher FT3 levels correlated with prolonged progression-free survival before chemotherapy (median PFS: high FT3 group = 12.67 months, low FT3 group = 7.03 months, p = 0.01). Cellular experiments demonstrated that thyroid hormones increase lung cancer cell sensitivity to cisplatin, inhibiting proliferation and enhancing efficacy. The mechanism involves thyroid hormones and cisplatin jointly down-regulating MSI1/AKT/GLUT1 expression, reducing lactic acid and glycolysis. This Warburg effect reversal boosts ATP levels, elevates ROS, and decreases MMP, enhancing cisplatin effectiveness in A549 and PC9 cells. In conclusion, elevated free T3 levels in advanced NSCLC patients correlate with prolonged progression-free survival under cisplatin chemotherapy. Cellular experiments reveal that thyroid hormones enhance lung cancer cell sensitivity to cisplatin by reversing the Warburg effect, providing a mechanistic basis for improved therapeutic outcomes.
Collapse
Affiliation(s)
- Chenchen Fan
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yanbei Ren
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Wen Zhang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jing Wen
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenjia Zhang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Shumeng Lin
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yidong Bai
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Tiansheng Zheng
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Baigenzhin Abay
- National Scientific Medical Research Center, Astana, Kazakhstan
| | - Ming Li
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Lihong Fan
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
5
|
Chauhan A, Patel SS. Thyroid Hormone and Diabetes Mellitus Interplay: Making Management of Comorbid Disorders Complicated. Horm Metab Res 2024. [PMID: 39159661 DOI: 10.1055/a-2374-8756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Insulin and thyroid hormones play important roles in our body. Insulin helps regulate the glucose level while the thyroid hormones affect various cells and tissues, metabolizing protein, lipids, and glucose. Hyperthyroidism and thyrotoxicosis are potential hazards for type 2 diabetes mellitus. There is a high prevalence of hypothyroidism being more common compared to hyperthyroidism coexisting with diabetes mellitus. Thyroid hormones affect glucose metabolism through its action on peripheral tissues (gastrointestinal tract, liver, skeletal muscles, adipose tissue, and pancreas). High-level thyroid hormone causes hyperglycemia, upregulation of glucose transport, and reduction in glycogen storage. The reverse is observed during low levels of thyroid hormone along with insulin clearance. The net result of thyroid disorder is insulin resistance. Type 2 diabetes mellitus can downsize the regulation of thyroid stimulating hormones and impair the conversion of thyroxine to triiodothyronine in peripheral tissues. Furthermore, poorly managed type 2 diabetes mellitus may result in insulin resistance and hyperinsulinemia, contributing to the proliferation of thyroid tissue and an increase in nodule formation and goiter size. Although metformin proves advantageous for both type 2 diabetes mellitus and thyroid disorder patients, other antidiabetics like sulfonylureas, pioglitazone, and thiazolidinediones may have adverse effects on thyroid disorders. Moreover, antithyroid drugs such as methimazole can weaken glycemic control in individuals with diabetes. Thus, an interplay between both endocrinopathies is observed and individualized care and management of the disorder needs to be facilitated.
Collapse
Affiliation(s)
- Ayush Chauhan
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Snehal S Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
6
|
Oefele M, Hau M, Ruuskanen S, Casagrande S. Mitochondrial function is enhanced by thyroid hormones during zebra finch development. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240417. [PMID: 39086825 PMCID: PMC11288688 DOI: 10.1098/rsos.240417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
An organism's response to its environment is largely determined by changes in the energy supplied by aerobic mitochondrial metabolism via adenosine triphosphate (ATP) production. ATP is especially important under energy-demanding conditions, such as during rapid growth. It is currently poorly understood how environmental factors influence energy metabolism and mitochondrial functioning, but recent studies suggest the role of thyroid hormones (TH). TH are key regulators of growth and metabolism and can be flexibly adjusted to environmental conditions, such as environmental temperature or food availability. To test whether TH enhancement is causally linked to mitochondrial function and growth, we provided TH orally at physiological concentrations during the main growth phase in zebra finch (Taeniopygia guttata) nestlings reared in a challenging environment. TH treatment accelerated maximal mitochondrial working capacity-a trait that reflects mitochondrial ATP production, without affecting growth. To our knowledge, this is the first study to characterize the regulation of mitochondria by TH during development in a semi-naturalistic context and to address implications for fitness-related traits, such as growth.
Collapse
Affiliation(s)
- Marlene Oefele
- Evolutionary Physiology Research Group, Max Planck Institute for Biological Intelligence, Eberhard-Gwinner-Strasse, Seewiesen82319, Germany
| | - Michaela Hau
- Evolutionary Physiology Research Group, Max Planck Institute for Biological Intelligence, Eberhard-Gwinner-Strasse, Seewiesen82319, Germany
- Department of Biology, University of Konstanz, KonstanzD-78464, Germany
| | - Suvi Ruuskanen
- Environmental Physiology Research Group, University of Jyväskylä, Seminaarinkatu 15, University of Jyväskylä, JyväskyläFI-40014, Finland
| | - Stefania Casagrande
- Evolutionary Physiology Research Group, Max Planck Institute for Biological Intelligence, Eberhard-Gwinner-Strasse, Seewiesen82319, Germany
| |
Collapse
|
7
|
Alymbaeva D, Szabo C, Jocsak G, Bartha T, Zsarnovszky A, Kovago C, Ondrasovicova S, Kiss DS. Analysis of arsenic-modulated expression of hypothalamic estrogen receptor, thyroid receptor, and peroxisome proliferator-activated receptor gamma mRNA and simultaneous mitochondrial morphology and respiration rates in the mouse. PLoS One 2024; 19:e0303528. [PMID: 38753618 PMCID: PMC11098319 DOI: 10.1371/journal.pone.0303528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Arsenic has been identified as an environmental toxicant acting through various mechanisms, including the disruption of endocrine pathways. The present study assessed the ability of a single intraperitoneal injection of arsenic, to modify the mRNA expression levels of estrogen- and thyroid hormone receptors (ERα,β; TRα,β) and peroxisome proliferator-activated receptor gamma (PPARγ) in hypothalamic tissue homogenates of prepubertal mice in vivo. Mitochondrial respiration (MRR) was also measured, and the corresponding mitochondrial ultrastructure was analyzed. Results show that ERα,β, and TRα expression was significantly increased by arsenic, in all concentrations examined. In contrast, TRβ and PPARγ remained unaffected after arsenic injection. Arsenic-induced dose-dependent changes in state 4 mitochondrial respiration (St4). Mitochondrial morphology was affected by arsenic in that the 5 mg dose increased the size but decreased the number of mitochondria in agouti-related protein- (AgRP), while increasing the size without affecting the number of mitochondria in pro-opiomelanocortin (POMC) neurons. Arsenic also increased the size of the mitochondrial matrix per host mitochondrion. Complex analysis of dose-dependent response patterns between receptor mRNA, mitochondrial morphology, and mitochondrial respiration in the neuroendocrine hypothalamus suggests that instant arsenic effects on receptor mRNAs may not be directly reflected in St3-4 values, however, mitochondrial dynamics is affected, which predicts more pronounced effects in hypothalamus-regulated homeostatic processes after long-term arsenic exposure.
Collapse
Affiliation(s)
- Daiana Alymbaeva
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Csaba Szabo
- Department of Animal Physiology and Health, Hungarian University of Agricultural and Life Sciences, Godollo, Hungary
| | - Gergely Jocsak
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Tibor Bartha
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Attila Zsarnovszky
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
- Department of Animal Physiology and Health, Hungarian University of Agricultural and Life Sciences, Godollo, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Physiology and Health, Institute of Physiology and Nutrition, Hungarian University of Agricultural and Life Sciences, Kaposvar, Hungary
| | - Csaba Kovago
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Silvia Ondrasovicova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - David Sandor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
8
|
Forini F, Nicolini G, Amato R, Balzan S, Saba A, Bertolini A, Andreucci E, Marracci S, Melecchi A, Terlizzi D, Zucchi R, Iervasi G, Lulli M, Casini G. Local modulation of thyroid hormone signaling in the retina affects the development of diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166892. [PMID: 37758065 DOI: 10.1016/j.bbadis.2023.166892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Thyroid hormone (TH) dyshomeostasis is associated with poor prognosis in acute and prolonged illness, but its role in diabetic retinopathy (DR) has never been investigated. Here, we characterized the TH system in the retinas of db/db mice and highlighted regulatory processes in MIO-M1 cells. In the db/db retinas, typical functional traits and molecular signatures of DR were paralleled by a tissue-restricted reduction of TH levels. A local condition of low T3 (LT3S) was also demonstrated, which was likely to be induced by deiodinase 3 (DIO3) upregulation, and by decreased expression of DIO2 and of TH receptors. Concurrently, T3-responsive genes, including mitochondrial markers and microRNAs (miR-133-3p, 338-3p and 29c-3p), were downregulated. In MIO-M1 cells, a feedback regulatory circuit was evidenced whereby miR-133-3p triggered the post-transcriptional repression of DIO3 in a T3-dependent manner, while high glucose (HG) led to DIO3 upregulation through a nuclear factor erythroid 2-related factor 2-hypoxia-inducible factor-1 pathway. Finally, an in vitro simulated condition of early LT3S and hyperglycemia correlated with reduced markers of both mitochondrial function and stress response, which was reverted by T3 replacement. Together, the data suggest that, in the early phases of DR, a DIO3-driven LT3S may be protective against retinal stress, while, in the chronic phase, it not only fails to limit HG-induced damage, but also increases cell vulnerability likely due to persistent mitochondrial dysfunction.
Collapse
Affiliation(s)
- Francesca Forini
- Institute of Clinical Physiology, National Research Council, Pisa, Italy.
| | | | - Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy.
| | - Silvana Balzan
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Alessandro Saba
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy; Center for Instrument Sharing (CISUP), University of Pisa, Pisa, Italy.
| | - Andrea Bertolini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy.
| | - Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| | | | | | - Domiziana Terlizzi
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Riccardo Zucchi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy.
| | - Giorgio Iervasi
- Department of Biomedical Sciences, National Research Council, Rome, Italy.
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| | - Giovanni Casini
- Department of Biology, University of Pisa, Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy; Center for Instrument Sharing (CISUP), University of Pisa, Pisa, Italy.
| |
Collapse
|
9
|
Vardar Acar N, Özgül RK. A big picture of the mitochondria-mediated signals: From mitochondria to organism. Biochem Biophys Res Commun 2023; 678:45-61. [PMID: 37619311 DOI: 10.1016/j.bbrc.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Mitochondria, well-known for years as the powerhouse and biosynthetic center of the cell, are dynamic signaling organelles beyond their energy production and biosynthesis functions. The metabolic functions of mitochondria, playing an important role in various biological events both in physiological and stress conditions, transform them into important cellular stress sensors. Mitochondria constantly communicate with the rest of the cell and even from other cells to the organism, transmitting stress signals including oxidative and reductive stress or adaptive signals such as mitohormesis. Mitochondrial signal transduction has a vital function in regulating integrity of human genome, organelles, cells, and ultimately organism.
Collapse
Affiliation(s)
- Neşe Vardar Acar
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - R Köksal Özgül
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
10
|
Newsome SD, Tian F, Shoemaker T, Fitzgerald KC, Cassard SD, Fiol J, Snoops S, Cooper DS, Mammen JSR, Bhargava P, Mowry EM, Calabresi PA. A Phase 1b, Open-Label Study to Evaluate the Safety and Tolerability of the Putative Remyelinating Agent, Liothyronine, in Individuals with MS. Neurotherapeutics 2023; 20:1263-1274. [PMID: 37460763 PMCID: PMC10480368 DOI: 10.1007/s13311-023-01402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 09/07/2023] Open
Abstract
Thyroid hormones are essential during developmental myelination and may play a direct role in remyelination and repair in the adult central nervous system by promoting the differentiation of oligodendrocyte precursor cells into mature oligodendrocytes. Since tri-iodothyronine (T3) is believed to mediate the majority of important thyroid hormone actions, liothyronine (synthetic T3) has the potential to induce reparative mechanisms and limit neurodegeneration in multiple sclerosis (MS). We completed a phase 1b clinical trial to determine the safety and tolerability of ascending doses of liothyronine in individuals with relapsing and progressive MS. A total of 20 people with MS were enrolled in this single-center trial of oral liothyronine. Eighteen participants completed the 24-week study. Our study cohort included mostly women (11/20), majority relapsing MS (12/20), mean age of 46, and baseline median EDSS of 3.5. Liothyronine was tolerated well without treatment-related severe/serious adverse events or evidence of disease activation/clinical deterioration. The most common adverse events included gastrointestinal distress and abnormal thyroid function tests. No clinical thyrotoxicosis occurred. Importantly, we did not observe a negative impact on secondary clinical outcome measures. The CSF proteomic changes suggest a biological effect of T3 treatment within the CNS. We noted changes primarily in proteins associated with immune cell function and angiogenesis. Liothyronine appeared safe and was well tolerated in people with MS. A larger clinical trial will help assess whether liothyronine can promote oligodendrogenesis and enhance remyelination in vivo, limit axonal degeneration, or improve function.
Collapse
Affiliation(s)
- Scott D Newsome
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Baltimore, MD, USA.
| | - Fan Tian
- Department of Mathematics, Tufts University, Medford, USA
| | | | - Kathryn C Fitzgerald
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Baltimore, MD, USA
| | - Sandra D Cassard
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Baltimore, MD, USA
| | - Julie Fiol
- National Multiple Sclerosis Society, New York, NY, USA
| | - Sarah Snoops
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Baltimore, MD, USA
| | - David S Cooper
- Department of Medicine, Division of Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer S R Mammen
- Department of Medicine, Division of Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pavan Bhargava
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Baltimore, MD, USA
| | - Ellen M Mowry
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Baltimore, MD, USA
| |
Collapse
|
11
|
Wolf SE, Shalev I. The shelterin protein expansion of telomere dynamics: Linking early life adversity, life history, and the hallmarks of aging. Neurosci Biobehav Rev 2023; 152:105261. [PMID: 37268182 PMCID: PMC10527177 DOI: 10.1016/j.neubiorev.2023.105261] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Aging is characterized by functional decline occurring alongside changes to several hallmarks of aging. One of the hallmarks includes attrition of repeated DNA sequences found at the ends of chromosomes called telomeres. While telomere attrition is linked to morbidity and mortality, whether and how it causally contributes to lifelong rates of functional decline is unclear. In this review, we propose the shelterin-telomere hypothesis of life history, in which telomere-binding shelterin proteins translate telomere attrition into a range of physiological outcomes, the extent of which may be modulated by currently understudied variation in shelterin protein levels. Shelterin proteins may expand the breadth and timing of consequences of telomere attrition, e.g., by translating early life adversity into acceleration of the aging process. We consider how the pleiotropic roles of shelterin proteins provide novel insights into natural variation in physiology, life history, and lifespan. We highlight key open questions that encourage the integrative, organismal study of shelterin proteins that enhances our understanding of the contribution of the telomere system to aging.
Collapse
Affiliation(s)
- Sarah E Wolf
- Department of Biobehavioral Health, Penn State University, University Park, PA 16802, USA.
| | - Idan Shalev
- Department of Biobehavioral Health, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
12
|
Rastoldo G, Tighilet B. Thyroid Axis and Vestibular Physiopathology: From Animal Model to Pathology. Int J Mol Sci 2023; 24:9826. [PMID: 37372973 DOI: 10.3390/ijms24129826] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
A recent work of our group has shown the significant effects of thyroxine treatment on the restoration of postural balance function in a rodent model of acute peripheral vestibulopathy. Based on these findings, we attempt to shed light in this review on the interaction between the hypothalamic-pituitary-thyroid axis and the vestibular system in normal and pathological situations. Pubmed database and relevant websites were searched from inception through to 4 February 2023. All studies relevant to each subsection of this review have been included. After describing the role of thyroid hormones in the development of the inner ear, we investigated the possible link between the thyroid axis and the vestibular system in normal and pathological conditions. The mechanisms and cellular sites of action of thyroid hormones on animal models of vestibulopathy are postulated and therapeutic options are proposed. In view of their pleiotropic action, thyroid hormones represent a target of choice to promote vestibular compensation at different levels. However, very few studies have investigated the relationship between thyroid hormones and the vestibular system. It seems then important to more extensively investigate the link between the endocrine system and the vestibule in order to better understand the vestibular physiopathology and to find new therapeutic leads.
Collapse
Affiliation(s)
- Guillaume Rastoldo
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France
| | - Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France
- GDR Vertige CNRS Unité GDR2074, 13331 Marseille, France
| |
Collapse
|
13
|
Sabatino L. Nrf2-Mediated Antioxidant Defense and Thyroid Hormone Signaling: A Focus on Cardioprotective Effects. Antioxidants (Basel) 2023; 12:1177. [PMID: 37371907 DOI: 10.3390/antiox12061177] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Thyroid hormones (TH) perform a plethora of actions in numerous tissues and induce an overall increase in metabolism, with an augmentation in energy demand and oxygen expenditure. Oxidants are required for normal thyroid-cell proliferation, as well as for the synthesis of the main hormones secreted by the thyroid gland, triiodothyronine (T3) and thyroxine (T4). However, an uncontrolled excess of oxidants can cause oxidative stress, a major trigger in the pathogenesis of a broad spectrum of diseases, including inflammation and cancer. In particular, oxidative stress is implicated in both hypo- and hyper-thyroid diseases. Furthermore, it is important for the TH system to rely on efficient antioxidant defense, to maintain balance, despite sustained tissue exposure to oxidants. One of the main endogenous antioxidant responses is the pathway centered on the nuclear factor erythroid 2-related factor (Nrf2). The aim of the present review is to explore the multiple links between Nrf2-related pathways and various TH-associated conditions. The main aspect of TH signaling is described and the role of Nrf2 in oxidant-antioxidant homeostasis in the TH system is evaluated. Next, the antioxidant function of Nrf2 associated with oxidative stress induced by TH pathological excess is discussed and, subsequently, particular attention is given to the cardioprotective role of TH, which also acts through the mediation of Nrf2. In conclusion, the interaction between Nrf2 and most common natural antioxidant agents in altered states of TH is briefly evaluated.
Collapse
Affiliation(s)
- Laura Sabatino
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
14
|
Petito G, Cioffi F, Magnacca N, de Lange P, Senese R, Lanni A. Adipose Tissue Remodeling in Obesity: An Overview of the Actions of Thyroid Hormones and Their Derivatives. Pharmaceuticals (Basel) 2023; 16:ph16040572. [PMID: 37111329 PMCID: PMC10146771 DOI: 10.3390/ph16040572] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Metabolic syndrome and obesity have become important health issues of epidemic proportions and are often the cause of related pathologies such as type 2 diabetes (T2DM), hypertension, and cardiovascular disease. Adipose tissues (ATs) are dynamic tissues that play crucial physiological roles in maintaining health and homeostasis. An ample body of evidence indicates that in some pathophysiological conditions, the aberrant remodeling of adipose tissue may provoke dysregulation in the production of various adipocytokines and metabolites, thus leading to disorders in metabolic organs. Thyroid hormones (THs) and some of their derivatives, such as 3,5-diiodo-l-thyronine (T2), exert numerous functions in a variety of tissues, including adipose tissues. It is known that they can improve serum lipid profiles and reduce fat accumulation. The thyroid hormone acts on the brown and/or white adipose tissues to induce uncoupled respiration through the induction of the uncoupling protein 1 (UCP1) to generate heat. Multitudinous investigations suggest that 3,3',5-triiodothyronine (T3) induces the recruitment of brown adipocytes in white adipose depots, causing the activation of a process known as "browning". Moreover, in vivo studies on adipose tissues show that T2, in addition to activating brown adipose tissue (BAT) thermogenesis, may further promote the browning of white adipose tissue (WAT), and affect adipocyte morphology, tissue vascularization, and the adipose inflammatory state in rats receiving a high-fat diet (HFD). In this review, we summarize the mechanism by which THs and thyroid hormone derivatives mediate adipose tissue activity and remodeling, thus providing noteworthy perspectives on their efficacy as therapeutic agents to counteract such morbidities as obesity, hypercholesterolemia, hypertriglyceridemia, and insulin resistance.
Collapse
Affiliation(s)
- Giuseppe Petito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy
| | - Federica Cioffi
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Nunzia Magnacca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy
| | - Pieter de Lange
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy
| | - Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy
| | - Antonia Lanni
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy
| |
Collapse
|
15
|
Mechanisms and Management of Thyroid Disease and Atrial Fibrillation: Impact of Atrial Electrical Remodeling and Cardiac Fibrosis. Cells 2022; 11:cells11244047. [PMID: 36552815 PMCID: PMC9777224 DOI: 10.3390/cells11244047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia associated with increased cardiovascular morbidity and mortality. The pathophysiology of AF is characterized by electrical and structural remodeling occurring in the atrial myocardium. As a source of production of various hormones such as angiotensin-2, calcitonin, and atrial natriuretic peptide, the atria are a target for endocrine regulation. Studies have shown that disorders associated with endocrine dysregulation are potential underlying causes of AF. The thyroid gland is an endocrine organ that secretes three hormones: triiodothyronine (T3), thyroxine (T4) and calcitonin. Thyroid dysregulation affects the cardiovascular system. Although there is a well-established relationship between thyroid disease (especially hyperthyroidism) and AF, the underlying biochemical mechanisms leading to atrial fibrosis and atrial arrhythmias are poorly understood in thyrotoxicosis. Various animal models and cellular studies demonstrated that thyroid hormones are involved in promoting AF substrate. This review explores the recent clinical and experimental evidence of the association between thyroid disease and AF. We highlight the current knowledge on the potential mechanisms underlying the pathophysiological impact of thyroid hormones T3 and T4 dysregulation, in the development of the atrial arrhythmogenic substrate. Finally, we review the available therapeutic strategies to treat AF in the context of thyroid disease.
Collapse
|
16
|
Abstract
The analogy of mitochondria as powerhouses has expired. Mitochondria are living, dynamic, maternally inherited, energy-transforming, biosynthetic, and signaling organelles that actively transduce biological information. We argue that mitochondria are the processor of the cell, and together with the nucleus and other organelles they constitute the mitochondrial information processing system (MIPS). In a three-step process, mitochondria (1) sense and respond to both endogenous and environmental inputs through morphological and functional remodeling; (2) integrate information through dynamic, network-based physical interactions and diffusion mechanisms; and (3) produce output signals that tune the functions of other organelles and systemically regulate physiology. This input-to-output transformation allows mitochondria to transduce metabolic, biochemical, neuroendocrine, and other local or systemic signals that enhance organismal adaptation. An explicit focus on mitochondrial signal transduction emphasizes the role of communication in mitochondrial biology. This framework also opens new avenues to understand how mitochondria mediate inter-organ processes underlying human health.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA.
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Zekri Y, Guyot R, Flamant F. An Atlas of Thyroid Hormone Receptors’ Target Genes in Mouse Tissues. Int J Mol Sci 2022; 23:ijms231911444. [PMID: 36232747 PMCID: PMC9570117 DOI: 10.3390/ijms231911444] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
We gathered available RNA-seq and ChIP-seq data in a single database to better characterize the target genes of thyroid hormone receptors in several cell types. This database can serve as a resource to analyze the mode of action of thyroid hormone (T3). Additionally, it is an easy-to-use and convenient tool to obtain information on specific genes regarding T3 regulation or to extract large gene lists of interest according to the users’ criteria. Overall, this atlas is a unique compilation of recent sequencing data focusing on T3, its receptors, modes of action, targets and roles, which may benefit researchers within the field. A preliminary analysis indicates extensive variations in the repertoire of target genes where transcription is upregulated by chromatin-bound nuclear receptors. Although it has a major influence, chromatin accessibility is not the only parameter that determines the cellular selectivity of the hormonal response.
Collapse
|
18
|
Fetal programming in sheep: Effects on pre- and postnatal organs and glands development in lambs. Res Vet Sci 2022; 151:100-109. [PMID: 35878535 DOI: 10.1016/j.rvsc.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/14/2021] [Accepted: 07/18/2022] [Indexed: 11/20/2022]
Abstract
The present systematic review and meta-analysis aim to summarize the effects of maternal undernutrition or overnutrition during pregnancy on the absolute weight and relative weight of the organs (liver, kidneys, heart, spleen, and lung) and glands (adrenal, pancreas, and thyroid) measured during gestation, birth and the postnatal period in lambs. After completing the search, selection, and data extraction steps, the measure of effect was generated by the individual comparison of each variable response compared with the average of the control and treated group (undernutrition or overnutrition) using the DerSimonian and Laird method for random effects. The liver was the organ most affected by maternal undernutrition, as the absolute weight of the liver was reduced during pregnancy, birth, and the postnatal period. The extent of this effect is related to the duration of the intervention. Reductions in the absolute fetal weight of the lungs and spleen have also been observed. No change in organs weight were observed when the results were expressed as relative weight. For overnutrition, the fetal weight of the liver was reduced to both absolute and relative values. In contrast, the relative weight of the kidneys has been increased. For the glands analyzed, no changes in weight were observed in either scenario (absolute or relative weight). Thus, the organs are more likely to suffer weight changes, especially during pregnancy, as a result of maternal nutrition. However, this change in organ weight seems to be closely related to the reduction in body weight of the progeny as a whole.
Collapse
|
19
|
Effects of meteorin-like hormone on endocrine function of hypothalamo-hypophysial system and peripheral uncoupling proteins in rats. Mol Biol Rep 2022; 49:5919-5925. [PMID: 35332411 DOI: 10.1007/s11033-022-07374-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Meteorin-like hormone (Metrnl) is a peptide secreted from the adipose tissue and modulates the whole-body energy metabolism. Metrnl release into the circulation is influenced by obesity, cold exposure, and exercise. Thyroid hormones also exert many of their effects on metabolism through uncoupling proteins (UCPs). This study aimed to determine effect of Metrnl on hypothalamo-hypophysier-thyroid axis and energy metabolism and reveal the possible involvement of UCPs in this process. METHODS AND RESULTS Fourty male Sprague-Dawley rats were divided into 4 groups with 10 animals in each group: control, sham, 10 and 100 nM Metrnl. Hypothalamus, muscle, white adipose tissue (WAT) and brown adipose tissue (BAT) samples were collected to detect thyrotropin-releasing hormone (TRH), and UCP1 and UCP3 protein levels by western blot analysis. Serum thyroid-stimulating hormone (TSH), triiodothyronine (T3) and thyroxine (T4) hormone levels were determined by enzyme-linked immunosorbent assay. Central infusion of Metrnl caused significant increase in serum TSH, T3 and T4 levels compared to control (p < 0.05). After Metrnl treatment, there were significant increases in TRH in hypothalamus tissue, UCP1 in WAT and BAT; and UCP3 protein in the muscle tissue (p < 0.05). CONCLUSIONS The findings that Metrnl induced increases in the peripheral UCPs and hypothalamus-pituitary-thyroid axis hormones implicate a role for this hormone in body energy homeostasis through UCP-mediated mechanisms.
Collapse
|
20
|
Cioffi F, Giacco A, Goglia F, Silvestri E. Bioenergetic Aspects of Mitochondrial Actions of Thyroid Hormones. Cells 2022; 11:cells11060997. [PMID: 35326451 PMCID: PMC8947633 DOI: 10.3390/cells11060997] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/04/2022] [Accepted: 03/13/2022] [Indexed: 02/07/2023] Open
Abstract
Much is known, but there is also much more to discover, about the actions that thyroid hormones (TH) exert on metabolism. Indeed, despite the fact that thyroid hormones are recognized as one of the most important regulators of metabolic rate, much remains to be clarified on which mechanisms control/regulate these actions. Given their actions on energy metabolism and that mitochondria are the main cellular site where metabolic transformations take place, these organelles have been the subject of extensive investigations. In relatively recent times, new knowledge concerning both thyroid hormones (such as the mechanisms of action, the existence of metabolically active TH derivatives) and the mechanisms of energy transduction such as (among others) dynamics, respiratory chain organization in supercomplexes and cristes organization, have opened new pathways of investigation in the field of the control of energy metabolism and of the mechanisms of action of TH at cellular level. In this review, we highlight the knowledge and approaches about the complex relationship between TH, including some of their derivatives, and the mitochondrial respiratory chain.
Collapse
|
21
|
Chen H, Carty RK, Bautista AC, Hayakawa KA, Lein PJ. Triiodothyronine or Antioxidants Block the Inhibitory Effects of BDE-47 and BDE-49 on Axonal Growth in Rat Hippocampal Neuron-Glia Co-Cultures. TOXICS 2022; 10:92. [PMID: 35202279 PMCID: PMC8879960 DOI: 10.3390/toxics10020092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 12/31/2022]
Abstract
We previously demonstrated that polybrominated diphenyl ethers (PBDEs) inhibit the growth of axons in primary rat hippocampal neurons. Here, we test the hypothesis that PBDE effects on axonal morphogenesis are mediated by thyroid hormone and/or reactive oxygen species (ROS)-dependent mechanisms. Axonal growth and ROS were quantified in primary neuronal-glial co-cultures dissociated from neonatal rat hippocampi exposed to nM concentrations of BDE-47 or BDE-49 in the absence or presence of triiodothyronine (T3; 3-30 nM), N-acetyl-cysteine (NAC; 100 µM), or α-tocopherol (100 µM). Co-exposure to T3 or either antioxidant prevented inhibition of axonal growth in hippocampal cultures exposed to BDE-47 or BDE-49. T3 supplementation in cultures not exposed to PBDEs did not alter axonal growth. T3 did, however, prevent PBDE-induced ROS generation and alterations in mitochondrial metabolism. Collectively, our data indicate that PBDEs inhibit axonal growth via ROS-dependent mechanisms, and that T3 protects axonal growth by inhibiting PBDE-induced ROS. These observations suggest that co-exposure to endocrine disruptors that decrease TH signaling in the brain may increase vulnerability to the adverse effects of developmental PBDE exposure on axonal morphogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA; (H.C.); (R.K.C.); (A.C.B.); (K.A.H.)
| |
Collapse
|
22
|
L-Thyroxine Improves Vestibular Compensation in a Rat Model of Acute Peripheral Vestibulopathy: Cellular and Behavioral Aspects. Cells 2022; 11:cells11040684. [PMID: 35203333 PMCID: PMC8869897 DOI: 10.3390/cells11040684] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
Unilateral vestibular lesions induce a vestibular syndrome, which recovers over time due to vestibular compensation. The therapeutic effect of L-Thyroxine (L-T4) on vestibular compensation was investigated by behavioral testing and immunohistochemical analysis in a rat model of unilateral vestibular neurectomy (UVN). We demonstrated that a short-term L-T4 treatment reduced the vestibular syndrome and significantly promoted vestibular compensation. Thyroid hormone receptors (TRα and TRβ) and type II iodothyronine deiodinase (DIO2) were present in the vestibular nuclei (VN), supporting a local action of L-T4. We confirmed the T4-induced metabolic effects by demonstrating an increase in the number of cytochrome oxidase-labeled neurons in the VN three days after the lesion. L-T4 treatment modulated glial reaction by decreasing both microglia and oligodendrocytes in the deafferented VN three days after UVN and increased cell proliferation. Survival of newly generated cells in the deafferented vestibular nuclei was not affected, but microglial rather than neuronal differentiation was favored by L-T4 treatment.
Collapse
|
23
|
Main Factors Involved in Thyroid Hormone Action. Molecules 2021; 26:molecules26237337. [PMID: 34885918 PMCID: PMC8658769 DOI: 10.3390/molecules26237337] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 11/21/2022] Open
Abstract
The thyroid hormone receptors are the mediators of a multitude of actions by the thyroid hormones in cells. Most thyroid hormone activities require interaction with nuclear receptors to bind DNA and regulate the expression of target genes. In addition to genomic regulation, thyroid hormones function via activation of specific cytosolic pathways, bypassing interaction with nuclear DNA. In the present work, we reviewed the most recent literature on the characteristics and roles of different factors involved in thyroid hormone function in particular, we discuss the genomic activity of thyroid hormone receptors in the nucleus and the functions of different thyroid hormone receptor isoforms in the cytosol. Furthermore, we describe the integrin αvβ3-mediated thyroid hormone signaling pathway and its rapid nongenomic action in the cell. We furthermore reviewed the thyroid hormone transporters enabling the uptake of thyroid hormones in the cell, and we also include a paragraph on the proteins that mediate thyroid receptors’ shuttling from the nucleus to the cytosol.
Collapse
|
24
|
Głombik K, Detka J, Budziszewska B. Hormonal Regulation of Oxidative Phosphorylation in the Brain in Health and Disease. Cells 2021; 10:2937. [PMID: 34831160 PMCID: PMC8616269 DOI: 10.3390/cells10112937] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/18/2022] Open
Abstract
The developing and adult brain is a target organ for the vast majority of hormones produced by the body, which are able to cross the blood-brain barrier and bind to their specific receptors on neurons and glial cells. Hormones ensure proper communication between the brain and the body by activating adaptive mechanisms necessary to withstand and react to changes in internal and external conditions by regulating neuronal and synaptic plasticity, neurogenesis and metabolic activity of the brain. The influence of hormones on energy metabolism and mitochondrial function in the brain has gained much attention since mitochondrial dysfunctions are observed in many different pathological conditions of the central nervous system. Moreover, excess or deficiency of hormones is associated with cell damage and loss of function in mitochondria. This review aims to expound on the impact of hormones (GLP-1, insulin, thyroid hormones, glucocorticoids) on metabolic processes in the brain with special emphasis on oxidative phosphorylation dysregulation, which may contribute to the formation of pathological changes. Since the brain concentrations of sex hormones and neurosteroids decrease with age as well as in neurodegenerative diseases, in parallel with the occurrence of mitochondrial dysfunction and the weakening of cognitive functions, their beneficial effects on oxidative phosphorylation and expression of antioxidant enzymes are also discussed.
Collapse
Affiliation(s)
- Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.D.); (B.B.)
| | - Jan Detka
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.D.); (B.B.)
| | - Bogusława Budziszewska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.D.); (B.B.)
- Department of Biochemical Toxicology, Chair of Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
25
|
Steinhauser CB, Askelson K, Hobbs KC, Bazer FW, Satterfield MC. Maternal nutrient restriction alters thyroid hormone dynamics in placentae of sheep having small for gestational age fetuses. Domest Anim Endocrinol 2021; 77:106632. [PMID: 34062290 PMCID: PMC8380679 DOI: 10.1016/j.domaniend.2021.106632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/06/2021] [Accepted: 04/17/2021] [Indexed: 12/31/2022]
Abstract
Thyroid hormones regulate a multitude of metabolic and cellular processes involved in placental and fetal growth, while maternal nutrient restriction (NR) has the potential to influence these processes. Those fetuses most impacted by NR, as categorized by weight, are termed small for gestational age (SGA), but the role of thyroid hormones in these pregnancies is not fully understood. Therefore, the aims of the present study were to determine effects of NR during pregnancy on maternal and fetal thyroid hormone concentrations, as well as temporal and cell-specific expression of mRNAs and proteins for placental thyroid hormone transporters, thyroid hormone receptors, and deiodinases in ewes having either SGA or normal weight fetuses. Ewes with singleton pregnancies were fed either a 100% NRC (n = 8) or 50% NRC (NR; n = 28) diet from Days 35 to 135 of pregnancy with a single placentome surgically collected on Day 70. Fetal weight at necropsy on Day 135 was used to designate the fetuses as NR NonSGA (n = 7; heaviest NR fetuses) or NR SGA (n = 7; lightest NR fetuses). Thyroid hormone levels were lower in NR SGA compared to NR NonSGA ewes, while all NR fetuses had lower concentrations of thyroxine at Day 135. Expression of mRNAs for thyroid hormone transporters SLC16A2, SLC16A10, SLCO1C1, and SLCO4A1 were altered by day, but not nutrient restriction. Expression of THRA mRNA and protein was dysregulated in NR SGA fetuses with protein localized to syncytial and stromal cells in placentomes in all groups. The ratio of deiodinases DIO2 and DIO3 was greater for NR SGA placentae at Day 70, while DIO3 protein was less abundant in placentae from NR SGA than 100% NRC ewes. These results identify mid-gestational modifications in thyroid hormone-associated proteins in placentomes of ewes having SGA fetuses, as well as a potential for placentomes from NonSGA pregnancies to adapt to, and overcome, nutritional restrictions during pregnancy.
Collapse
Affiliation(s)
- C B Steinhauser
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, Texas 77843
| | - K Askelson
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, Texas 77843
| | - K C Hobbs
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, Texas 77843
| | - F W Bazer
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, Texas 77843
| | - M C Satterfield
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, Texas 77843.
| |
Collapse
|
26
|
Thyroid Hormone Induces Ca 2+-Mediated Mitochondrial Activation in Brown Adipocytes. Int J Mol Sci 2021; 22:ijms22168640. [PMID: 34445344 PMCID: PMC8395422 DOI: 10.3390/ijms22168640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 01/26/2023] Open
Abstract
Thyroid hormones, including 3,5,3′-triiodothyronine (T3), cause a wide spectrum of genomic effects on cellular metabolism and bioenergetic regulation in various tissues. The non-genomic actions of T3 have been reported but are not yet completely understood. Acute T3 treatment significantly enhanced basal, maximal, ATP-linked, and proton-leak oxygen consumption rates (OCRs) of primary differentiated mouse brown adipocytes accompanied with increased protein abundances of uncoupling protein 1 (UCP1) and mitochondrial Ca2+ uniporter (MCU). T3 treatment depolarized the resting mitochondrial membrane potential (Ψm) but augmented oligomycin-induced hyperpolarization in brown adipocytes. Protein kinase B (AKT) and mammalian target of rapamycin (mTOR) were activated by T3, leading to the inhibition of autophagic degradation. Rapamycin, as an mTOR inhibitor, blocked T3-induced autophagic suppression and UCP1 upregulation. T3 increases intracellular Ca2+ concentration ([Ca2+]i) in brown adipocytes. Most of the T3 effects, including mTOR activation, UCP1 upregulation, and OCR increase, were abrogated by intracellular Ca2+ chelation with BAPTA-AM. Calmodulin inhibition with W7 or knockdown of MCU dampened T3-induced mitochondrial activation. Furthermore, edelfosine, a phospholipase C (PLC) inhibitor, prevented T3 from acting on [Ca2+]i, UCP1 abundance, Ψm, and OCR. We suggest that short-term exposure of T3 induces UCP1 upregulation and mitochondrial activation due to PLC-mediated [Ca2+]i elevation in brown adipocytes.
Collapse
|
27
|
Hu JY, Cheng HW. Warm perches: a novel approach for reducing cold stress effect on production, plasma hormones, and immunity in laying hens. Poult Sci 2021; 100:101294. [PMID: 34237550 PMCID: PMC8267593 DOI: 10.1016/j.psj.2021.101294] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 12/29/2022] Open
Abstract
Cold temperature is a common environmental stressor that induces pathophysiological stress in birds with profound economic losses. Current methods used for preventing cold stress, such as reducing ventilation and using gas heaters, are facing challenges due to poor indoor air quality and deleterious effects on bird and caretaker health. The aim of this study was to examine if the novel designed warmed perch system, as a thermal device, can reduce cold stress-associated adverse effects on laying hens. Seventy-two 32-week-old DeKalb hens were randomly assigned to 36 cages arranged to 3 banks. The banks were assigned to 1 of 3 treatments: cages with warmed perches (WP; perches with circulating water at 30°C), air perches (AP, regular perches only), or no perches (NP) for a 21-d trial. The room temperature was set at 10°C during the entire experimental period. Rectal temperature and body weight were measured from the same bird of each cage at d 1, 8, 15, and 21 during the cold exposure. Egg production was recorded daily. Feed intake, egg and eggshell quality were determined during the 1st and 3rd wk of cold stress. Plasma levels of corticosterone, thyroid hormones (3, 3’, 5-triiodothyronine and thyroxine), interleukin (IL)-6 and IL-10, were determined after 1 d and 21 d of cold exposure. Compared to both AP and NP hens, WP hens were able to maintain their body temperature without increasing feed intake and losing BW. The eggs from WP hens had thicker eggshell during the 3rd wk of cold exposure. Warmed perch hens also had a lower thyroxine conversion rate (3, 3’, 5-triiodothyronine/thyroxine) at d 1, while higher plasma concentrations of IL-6 at d 21. Plasma levels of corticosterone, 3, 3’, 5-triiodothyronine, and IL-10 were not different among treatments. Our results indicate that the warmed perch system can be used as a novel thermal device for preventing cold stress-induced negative effects on hen health and welfare through regulating immunity and metabolic hormonal homeostasis.
Collapse
Affiliation(s)
- J Y Hu
- Department of Animal Sciences, Purdue University, West Lafayette IN 47907, USA
| | - H W Cheng
- USDA-Agricultural Research Service, Livestock Behavior Research Unit, West Lafayette, IN 47907, USA.
| |
Collapse
|
28
|
Affortit C, Casas F, Ladrech S, Ceccato JC, Bourien J, Coyat C, Puel JL, Lenoir M, Wang J. Exacerbated age-related hearing loss in mice lacking the p43 mitochondrial T3 receptor. BMC Biol 2021; 19:18. [PMID: 33526032 PMCID: PMC7852282 DOI: 10.1186/s12915-021-00953-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/08/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Age-related hearing loss (ARHL), also known as presbycusis, is the most common sensory impairment seen in elderly people. However, the cochlear aging process does not affect people uniformly, suggesting that both genetic and environmental (e.g., noise, ototoxic drugs) factors and their interaction may influence the onset and severity of ARHL. Considering the potential links between thyroid hormone, mitochondrial activity, and hearing, here, we probed the role of p43, a N-terminally truncated and ligand-binding form of the nuclear receptor TRα1, in hearing function and in the maintenance of hearing during aging in p43-/- mice through complementary approaches, including in vivo electrophysiological recording, ultrastructural assessments, biochemistry, and molecular biology. RESULTS We found that the p43-/- mice exhibit no obvious hearing loss in juvenile stages, but that these mice developed a premature, and more severe, ARHL resulting from the loss of cochlear sensory outer and inner hair cells and degeneration of spiral ganglion neurons. Exacerbated ARHL in p43-/- mice was associated with the early occurrence of a drastic fall of SIRT1 expression, together with an imbalance between pro-apoptotic Bax, p53 expression, and anti-apoptotic Bcl2 expression, as well as an increase in mitochondrial dysfunction, oxidative stress, and inflammatory process. Finally, p43-/- mice were also more vulnerable to noise-induced hearing loss. CONCLUSIONS These results demonstrate for the first time a requirement for p43 in the maintenance of hearing during aging and highlight the need to probe the potential link between human THRA gene polymorphisms and/or mutations and accelerated age-related deafness or some adult-onset syndromic deafness.
Collapse
Affiliation(s)
- Corentin Affortit
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université de Montpellier, 34000, Montpellier, France
| | - François Casas
- INRA, UMR 866 Dynamique Musculaire et Métabolisme,, 34060, Montpellier, France
| | - Sabine Ladrech
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université de Montpellier, 34000, Montpellier, France
| | - Jean-Charles Ceccato
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université de Montpellier, 34000, Montpellier, France
| | - Jérôme Bourien
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université de Montpellier, 34000, Montpellier, France
| | - Carolanne Coyat
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université de Montpellier, 34000, Montpellier, France
| | - Jean-Luc Puel
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université de Montpellier, 34000, Montpellier, France
| | - Marc Lenoir
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université de Montpellier, 34000, Montpellier, France
| | - Jing Wang
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France.
- Université de Montpellier, 34000, Montpellier, France.
- ENT Department, CHU Montpellier, 34295, Montpellier, France.
| |
Collapse
|
29
|
Barisón MJ, Pereira IT, Waloski Robert A, Dallagiovanna B. Reorganization of Metabolism during Cardiomyogenesis Implies Time-Specific Signaling Pathway Regulation. Int J Mol Sci 2021; 22:1330. [PMID: 33572750 PMCID: PMC7869011 DOI: 10.3390/ijms22031330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding the cell differentiation process involves the characterization of signaling and regulatory pathways. The coordinated action involved in multilevel regulation determines the commitment of stem cells and their differentiation into a specific cell lineage. Cellular metabolism plays a relevant role in modulating the expression of genes, which act as sensors of the extra-and intracellular environment. In this work, we analyzed mRNAs associated with polysomes by focusing on the expression profile of metabolism-related genes during the cardiac differentiation of human embryonic stem cells (hESCs). We compared different time points during cardiac differentiation (pluripotency, embryoid body aggregation, cardiac mesoderm, cardiac progenitor and cardiomyocyte) and showed the immature cell profile of energy metabolism. Highly regulated canonical pathways are thoroughly discussed, such as those involved in metabolic signaling and lipid homeostasis. We reveal the critical relevance of retinoic X receptor (RXR) heterodimers in upstream retinoic acid metabolism and their relationship with thyroid hormone signaling. Additionally, we highlight the importance of lipid homeostasis and extracellular matrix component biosynthesis during cardiomyogenesis, providing new insights into how hESCs reorganize their metabolism during in vitro cardiac differentiation.
Collapse
Affiliation(s)
| | | | | | - Bruno Dallagiovanna
- Basic Stem Cell Biology Laboratory, Instituto Carlos Chagas-FIOCRUZ-PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR 81350-010, Brazil; (M.J.B.); (I.T.P.); (A.W.R.)
| |
Collapse
|
30
|
Zhao S, Xia Y, Huang Y, Zou H, Wang X, Chen Z, Zhou H, Han Y, Tang H, Yan R, Yao Z, Lu Q. The Correlation Between Thyroid Function, Frontal Gray Matter, and Executive Function in Patients With Major Depressive Disorder. Front Endocrinol (Lausanne) 2021; 12:779693. [PMID: 34887837 PMCID: PMC8649711 DOI: 10.3389/fendo.2021.779693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
The present study was aimed to investigate the relationships between serum thyroid hormones (THs), frontal gray matter volume, and executive function in selected patients with major depressive disorder (MDD). One hundred and four MDD patients and seventy-five healthy controls (HCs) were subjected to thyroid-stimulating hormone (TSH), free Triiodothyronine (fT3), free Thyroxine (fT4), and executive function tests and underwent structural magnetic resonance imaging (MRI). Voxel-based morphometry (VBM) analysis was performed to compare group differences in the gray matter for the frontal lobe. Furthermore, mediation analysis was used to investigate whether gray matter volumes of the frontal gyrus mediated the relationship between serum THs and executive function in MDD patients. MDD patients exhibited significant gray matter volume reduction in several brain regions, including the left rectus, right middle frontal cortex, and left middle frontal cortex. Serum TSH levels are positively associated with altered regional gray matter volume patterns within MFG and executive function. Importantly, gray matter in the right MFG was a significant mediator between serum TSH levels and executive function. These findings expand our understanding of how thyroid function affects brain structure changes and executive function in MDD patients.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Xia
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yinghong Huang
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China
| | - Haowen Zou
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xumiao Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zhilu Chen
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hongliang Zhou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yinglin Han
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Tang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Yan
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zhijian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Zhijian Yao, ; Qing Lu,
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
- *Correspondence: Zhijian Yao, ; Qing Lu,
| |
Collapse
|
31
|
Yau WW, Yen PM. Thermogenesis in Adipose Tissue Activated by Thyroid Hormone. Int J Mol Sci 2020; 21:ijms21083020. [PMID: 32344721 PMCID: PMC7215895 DOI: 10.3390/ijms21083020] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Thermogenesis is the production of heat that occurs in all warm-blooded animals. During cold exposure, there is obligatory thermogenesis derived from body metabolism as well as adaptive thermogenesis through shivering and non-shivering mechanisms. The latter mainly occurs in brown adipose tissue (BAT) and muscle; however, white adipose tissue (WAT) also can undergo browning via adrenergic stimulation to acquire thermogenic potential. Thyroid hormone (TH) also exerts profound effects on thermoregulation, as decreased body temperature and increased body temperature occur during hypothyroidism and hyperthyroidism, respectively. We have termed the TH-mediated thermogenesis under thermoneutral conditions “activated” thermogenesis. TH acts on the brown and/or white adipose tissues to induce uncoupled respiration through the induction of the uncoupling protein (Ucp1) to generate heat. TH acts centrally to activate the BAT and browning through the sympathetic nervous system. However, recent studies also show that TH acts peripherally on the BAT to directly stimulate Ucp1 expression and thermogenesis through an autophagy-dependent mechanism. Additionally, THs can exert Ucp1-independent effects on thermogenesis, most likely through activation of exothermic metabolic pathways. This review summarizes thermogenic effects of THs on adipose tissues.
Collapse
Affiliation(s)
- Winifred W Yau
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke NUS Medical School, Singapore 169857, Singapore
| | - Paul M Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke NUS Medical School, Singapore 169857, Singapore
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27708, USA
| |
Collapse
|
32
|
Abstract
Despite many studies, the molecular mechanisms of hepatocellular carcinoma (HCC) development remain unclear. Thyroid hormone (TH) levels may vary in many chronic diseases including cirrhosis. The aim of this study was to evaluate TH status in patients with cirrhosis and HCC and to investigate the relationship between THs and HCC development.Five hundred seventy-seven patients with cirrhosis who applied to Demiroğlu Bilim University, Faculty of Medicine, Gastroenterology Department between 2004 and 2019 were included the study. Three hundred sixty-seven patients who applied to Internal Medicine Unit for general health check-up were included in the study as healthy control group. Demographic, laboratory, and imaging findings of study groups were retrospectively reviewed and recorded from hospital information system.In the cirrhosis group, 252 patients had HCC (43.67%), and 325 patients had non-HCC cirrhosis (56.33%). Free thyroxine (FT4) levels were higher in the control group than in the cirrhotic group but there was no significant difference (P = .501). Thyroid-stimulating hormone (TSH) and FT4 levels were similar between groups, while free triiodothyronine (FT3) levels were significantly different between HCC group, non-HCC cirrhosis group, and control group (P = .299 for TSH, P = .263 for FT4, P < .001 for FT3). FT3 levels were significantly higher in HCC group than non-HCC cirrhosis group, but significantly lower than control group (P < .05).Our study confirmed the presence of hypothyroidism in cirrhosis patients and clearly demonstrated a strong relationship between FT3 levels and HCC development.
Collapse
Affiliation(s)
| | - Alihan Oral
- Department of Internal Medicine, Faculty of Medicine, Demiroğlu Bilim University, Istanbul, Turkey
| | - Fatih Turker
- Department of Internal Medicine, Faculty of Medicine, Demiroğlu Bilim University, Istanbul, Turkey
| | | |
Collapse
|
33
|
Gothié J, Vancamp P, Demeneix B, Remaud S. Thyroid hormone regulation of neural stem cell fate: From development to ageing. Acta Physiol (Oxf) 2020; 228:e13316. [PMID: 31121082 PMCID: PMC9286394 DOI: 10.1111/apha.13316] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 12/13/2022]
Abstract
In the vertebrate brain, neural stem cells (NSCs) generate both neuronal and glial cells throughout life. However, their neuro‐ and gliogenic capacity changes as a function of the developmental context. Despite the growing body of evidence on the variety of intrinsic and extrinsic factors regulating NSC physiology, their precise cellular and molecular actions are not fully determined. Our review focuses on thyroid hormone (TH), a vital component for both development and adult brain function that regulates NSC biology at all stages. First, we review comparative data to analyse how TH modulates neuro‐ and gliogenesis during vertebrate brain development. Second, as the mammalian brain is the most studied, we highlight the molecular mechanisms underlying TH action in this context. Lastly, we explore how the interplay between TH signalling and cell metabolism governs both neurodevelopmental and adult neurogenesis. We conclude that, together, TH and cellular metabolism regulate optimal brain formation, maturation and function from early foetal life to adult in vertebrate species.
Collapse
Affiliation(s)
- Jean‐David Gothié
- Department of Neurology & Neurosurgery Montreal Neurological Institute & Hospital, McGill University Montreal Quebec Canada
| | - Pieter Vancamp
- CNRS UMR 7221 Muséum National d’Histoire Naturelle Paris France
| | | | - Sylvie Remaud
- CNRS UMR 7221 Muséum National d’Histoire Naturelle Paris France
| |
Collapse
|
34
|
Regulation of mitochondrial activity controls the duration of skeletal muscle regeneration in response to injury. Sci Rep 2019; 9:12249. [PMID: 31439911 PMCID: PMC6706433 DOI: 10.1038/s41598-019-48703-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
Thyroid hormone is a major regulator of skeletal muscle development and repair, and also a key regulator of mitochondrial activity. We have previously identified a 43 kDa truncated form of the nuclear T3 receptor TRα1 (p43) which stimulates mitochondrial activity and regulates skeletal muscle features. However, its role in skeletal muscle regeneration remains to be addressed. To this end, we performed acute muscle injury induced by cardiotoxin in mouse tibialis in two mouse models where p43 is overexpressed in or depleted from skeletal muscle. The measurement of muscle fiber size distribution at different time point (up to 70 days) upon injury lead us to unravel requirement of the p43 signaling pathway for satellite cells dependent muscle regeneration; strongly delayed in the absence of p43; whereas the overexpression of the receptor enhances of the regeneration process. In addition, we found that satellite cells derived from p43-Tg mice display higher proliferation rates when cultured in vitro when compared to control myoblasts, whereas p43-/- satellites shows reduced proliferation capacity. These finding strongly support that p43 plays an important role in vivo by controling the duration of skeletal muscle regeneration after acute injury, possibly through the regulation of mitochondrial activity and myoblasts proliferation.
Collapse
|
35
|
Protective Effects of Euthyroidism Restoration on Mitochondria Function and Quality Control in Cardiac Pathophysiology. Int J Mol Sci 2019; 20:ijms20143377. [PMID: 31295805 PMCID: PMC6678270 DOI: 10.3390/ijms20143377] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunctions are major contributors to heart disease onset and progression. Under ischemic injuries or cardiac overload, mitochondrial-derived oxidative stress, Ca2+ dis-homeostasis, and inflammation initiate cross-talking vicious cycles leading to defects of mitochondrial DNA, lipids, and proteins, concurrently resulting in fatal energy crisis and cell loss. Blunting such noxious stimuli and preserving mitochondrial homeostasis are essential to cell survival. In this context, mitochondrial quality control (MQC) represents an expanding research topic and therapeutic target in the field of cardiac physiology. MQC is a multi-tier surveillance system operating at the protein, organelle, and cell level to repair or eliminate damaged mitochondrial components and replace them by biogenesis. Novel evidence highlights the critical role of thyroid hormones (TH) in regulating multiple aspects of MQC, resulting in increased organelle turnover, improved mitochondrial bioenergetics, and the retention of cell function. In the present review, these emerging protective effects are discussed in the context of cardiac ischemia-reperfusion (IR) and heart failure, focusing on MQC as a strategy to blunt the propagation of connected dangerous signaling cascades and limit adverse remodeling. A better understanding of such TH-dependent signaling could provide insights into the development of mitochondria-targeted treatments in patients with cardiac disease.
Collapse
|
36
|
Chattergoon NN. Thyroid hormone signaling and consequences for cardiac development. J Endocrinol 2019; 242:T145-T160. [PMID: 31117055 PMCID: PMC6613780 DOI: 10.1530/joe-18-0704] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 01/10/2023]
Abstract
The fetal heart undergoes its own growth and maturation stages all while supplying blood and nutrients to the growing fetus and its organs. Immature contractile cardiomyocytes proliferate to rapidly increase and establish cardiomyocyte endowment in the perinatal period. Maturational changes in cellular maturation, size and biochemical capabilities occur, and require, a changing hormonal environment as the fetus prepares itself for the transition to extrauterine life. Thyroid hormone has long been known to be important for neuronal development, but also for fetal size and survival. Fetal circulating 3,5,3'-triiodothyronine (T3) levels surge near term in mammals and are responsible for maturation of several organ systems, including the heart. Growth factors like insulin-like growth factor-1 stimulate proliferation of fetal cardiomyocytes, while thyroid hormone has been shown to inhibit proliferation and drive maturation of the cells. Several cell signaling pathways appear to be involved in this complicated and coordinated process. The aim of this review was to discuss the foundational studies of thyroid hormone physiology and the mechanisms responsible for its actions as we speculate on potential fetal programming effects for cardiovascular health.
Collapse
Affiliation(s)
- Natasha N Chattergoon
- Center for Developmental Health, Oregon Health and Science University, Portland, Oregon, USA
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
37
|
Seyedhosseini Tamijani SM, Beirami E, Ahmadiani A, Dargahi L. Thyroid hormone treatment alleviates the impairments of neurogenesis, mitochondrial biogenesis and memory performance induced by methamphetamine. Neurotoxicology 2019; 74:7-18. [PMID: 31075280 DOI: 10.1016/j.neuro.2019.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 11/30/2022]
Abstract
Chronic use of methamphetamine (MA), a neurotoxic psychostimulant, leads to long-lasting cognitive dysfunctions in humans and animal models. Thyroid hormones (THs) have several physiological actions and are crucial for normal behavioral, intellectual and neurological development. Considering the importance of THs in the cognitive processes, the present study was designed to evaluate the therapeutic effects of THs on cognitive and neurological impairments induced by MA. Escalating doses of MA (1-10 mg/kg, IP) were injected twice daily for 10 consecutive days in rats and cognitive functions were evaluated using behavioral tests. The expression of factors involved in neurogenesis (NES and DCX), mitochondrial biogenesis (PGC-1α, NRF-1, and TFAM), neuroinflammation (GFAP, Iba-1, and COX-2) as well as Reelin and NT-3 (synaptic plasticity and neurotrophic factor, respectively) was measured in the hippocampus of MA-treated animals. The effects of three different doses of T4 (20, 40 or 80 μg/kg; intraperitoneally) or T3 (20, 40 or 80 μg/rat; 2.5 μl/nostril; intranasal) treatment, once a day for one week after MA cessation, were assessed in MA-treated rats. After the last behavioral test, serum T4 and T3 levels were measured using radioimmunoassay. The results revealed that repeated escalating regimen of MA impaired cognitive functions concomitant with neurogenesis and synaptic plasticity impairments, mitochondrial dysfunction, and neuroinflammation. T4 or T3 treatment partially decreased the alterations induced by MA. These findings suggest that THs can be considered as potential candidates for the reduction of MA abuse related neurocognitive disturbances.
Collapse
Affiliation(s)
- Seyedeh Masoumeh Seyedhosseini Tamijani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elmira Beirami
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Singh BK, Sinha RA, Yen PM. Novel Transcriptional Mechanisms for Regulating Metabolism by Thyroid Hormone. Int J Mol Sci 2018; 19:E3284. [PMID: 30360449 PMCID: PMC6214012 DOI: 10.3390/ijms19103284] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022] Open
Abstract
The thyroid hormone plays a key role in energy and nutrient metabolisms in many tissues and regulates the transcription of key genes in metabolic pathways. It has long been believed that thyroid hormones (THs) exerted their effects primarily by binding to nuclear TH receptors (THRs) that are associated with conserved thyroid hormone response elements (TREs) located on the promoters of target genes. However, recent transcriptome and ChIP-Seq studies have challenged this conventional view as discordance was observed between TH-responsive genes and THR binding to DNA. While THR association with other transcription factors bound to DNA, TH activation of THRs to mediate effects that do not involve DNA-binding, or TH binding to proteins other than THRs have been invoked as potential mechanisms to explain this discrepancy, it appears that additional novel mechanisms may enable TH to regulate the mRNA expression. These include activation of transcription factors by SIRT1 via metabolic actions by TH, the post-translational modification of THR, the THR co-regulation of transcription with other nuclear receptors and transcription factors, and the microRNA (miR) control of RNA transcript expression to encode proteins involved in the cellular metabolism. Together, these novel mechanisms enlarge and diversify the panoply of metabolic genes that can be regulated by TH.
Collapse
Affiliation(s)
- Brijesh Kumar Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857, Singapore.
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Paul Michael Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857, Singapore.
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
39
|
Theunissen TEJ, Nguyen M, Kamps R, Hendrickx AT, Sallevelt SCEH, Gottschalk RWH, Calis CM, Stassen APM, de Koning B, Mulder-Den Hartog ENM, Schoonderwoerd K, Fuchs SA, Hilhorst-Hofstee Y, de Visser M, Vanoevelen J, Szklarczyk R, Gerards M, de Coo IFM, Hellebrekers DMEI, Smeets HJM. Whole Exome Sequencing Is the Preferred Strategy to Identify the Genetic Defect in Patients With a Probable or Possible Mitochondrial Cause. Front Genet 2018; 9:400. [PMID: 30369941 PMCID: PMC6194163 DOI: 10.3389/fgene.2018.00400] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/03/2018] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial disorders, characterized by clinical symptoms and/or OXPHOS deficiencies, are caused by pathogenic variants in mitochondrial genes. However, pathogenic variants in some of these genes can lead to clinical manifestations which overlap with other neuromuscular diseases, which can be caused by pathogenic variants in non-mitochondrial genes as well. Mitochondrial pathogenic variants can be found in the mitochondrial DNA (mtDNA) or in any of the 1,500 nuclear genes with a mitochondrial function. We have performed a two-step next-generation sequencing approach in a cohort of 117 patients, mostly children, in whom a mitochondrial disease-cause could likely or possibly explain the phenotype. A total of 86 patients had a mitochondrial disorder, according to established clinical and biochemical criteria. The other 31 patients had neuromuscular symptoms, where in a minority a mitochondrial genetic cause is present, but a non-mitochondrial genetic cause is more likely. All patients were screened for pathogenic variants in the mtDNA and, if excluded, analyzed by whole exome sequencing (WES). Variants were filtered for being pathogenic and compatible with an autosomal or X-linked recessive mode of inheritance in families with multiple affected siblings and/or consanguineous parents. Non-consanguineous families with a single patient were additionally screened for autosomal and X-linked dominant mutations in a predefined gene-set. We identified causative pathogenic variants in the mtDNA in 20% of the patient-cohort, and in nuclear genes in 49%, implying an overall yield of 68%. We identified pathogenic variants in mitochondrial and non-mitochondrial genes in both groups with, obviously, a higher number of mitochondrial genes affected in mitochondrial disease patients. Furthermore, we show that 31% of the disease-causing genes in the mitochondrial patient group were not included in the MitoCarta database, and therefore would have been missed with MitoCarta based gene-panels. We conclude that WES is preferable to panel-based approaches for both groups of patients, as the mitochondrial gene-list is not complete and mitochondrial symptoms can be secondary. Also, clinically and genetically heterogeneous disorders would require sequential use of multiple different gene panels. We conclude that WES is a comprehensive and unbiased approach to establish a genetic diagnosis in these patients, able to resolve multi-genic disease-causes.
Collapse
Affiliation(s)
- Tom E J Theunissen
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands.,Research Institute GROW, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Minh Nguyen
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands.,Research Institute GROW, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Rick Kamps
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Alexandra T Hendrickx
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Suzanne C E H Sallevelt
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Ralph W H Gottschalk
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Chantal M Calis
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Alphons P M Stassen
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Bart de Koning
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | | | - Sabine A Fuchs
- Department of Metabolic Disorders, University Medical Centre Utrecht, Utrecht, Netherlands
| | | | - Marianne de Visser
- Department of Neurology, Academic Medical Centre Amsterdam, Amsterdam, Netherlands
| | - Jo Vanoevelen
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Radek Szklarczyk
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands.,Research Institute GROW, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Mike Gerards
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands.,Maastricht Center for Systems Biology (MaCSBio), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Irenaeus F M de Coo
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands.,Department of Pediatric Neurology, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Debby M E I Hellebrekers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Hubert J M Smeets
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands.,Research Institute GROW, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
40
|
Fathi M, Mosaferi Ziaaldini M, Khairabadi S, Hejazi K. Effect of Aerobic Exercise on Thyroid Hormones and Quality of Life in Obese Postmenopausal Women. MEDICAL LABORATORY JOURNAL 2018. [DOI: 10.29252/mlj.12.6.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
41
|
Lassiter K, Dridi S, Greene E, Kong B, Bottje W. Identification of mitochondrial hormone receptors in avian muscle cells. Poult Sci 2018; 97:2926-2933. [DOI: 10.3382/ps/pey126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/14/2018] [Indexed: 01/16/2023] Open
|
42
|
Singh BK, Sinha RA, Tripathi M, Mendoza A, Ohba K, Sy JAC, Xie SY, Zhou J, Ho JP, Chang CY, Wu Y, Giguère V, Bay BH, Vanacker JM, Ghosh S, Gauthier K, Hollenberg AN, McDonnell DP, Yen PM. Thyroid hormone receptor and ERRα coordinately regulate mitochondrial fission, mitophagy, biogenesis, and function. Sci Signal 2018; 11:eaam5855. [PMID: 29945885 DOI: 10.1126/scisignal.aam5855] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Thyroid hormone receptor β1 (THRB1) and estrogen-related receptor α (ESRRA; also known as ERRα) both play important roles in mitochondrial activity. To understand their potential interactions, we performed transcriptome and ChIP-seq analyses and found that many genes that were co-regulated by both THRB1 and ESRRA were involved in mitochondrial metabolic pathways. These included oxidative phosphorylation (OXPHOS), the tricarboxylic acid (TCA) cycle, and β-oxidation of fatty acids. TH increased ESRRA expression and activity in a THRB1-dependent manner through the induction of the transcriptional coactivator PPARGC1A (also known as PGC1α). Moreover, TH induced mitochondrial biogenesis, fission, and mitophagy in an ESRRA-dependent manner. TH also induced the expression of the autophagy-regulating kinase ULK1 through ESRRA, which then promoted DRP1-mediated mitochondrial fission. In addition, ULK1 activated the docking receptor protein FUNDC1 and its interaction with the autophagosomal protein MAP1LC3B-II to induce mitophagy. siRNA knockdown of ESRRA, ULK1, DRP1, or FUNDC1 inhibited TH-induced autophagic clearance of mitochondria through mitophagy and decreased OXPHOS. These findings show that many of the mitochondrial actions of TH are mediated through stimulation of ESRRA expression and activity, and co-regulation of mitochondrial turnover through the PPARGC1A-ESRRA-ULK1 pathway is mediated by their regulation of mitochondrial fission and mitophagy. Hormonal or pharmacologic induction of ESRRA expression or activity could improve mitochondrial quality in metabolic disorders.
Collapse
Affiliation(s)
- Brijesh K Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore.
| | - Rohit A Sinha
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Madhulika Tripathi
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Arturo Mendoza
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Kenji Ohba
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
- Department of Internal Medicine, Enshu Hospital, Hamamatsu, Shizuoka 430-0929, Japan
| | - Jann A C Sy
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Sherwin Y Xie
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Jin Zhou
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Jia Pei Ho
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C238A Levine Science Research Center, Durham, NC 27710, USA
| | - Yajun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, NUS, Singapore
| | - Vincent Giguère
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, NUS, Singapore
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Sujoy Ghosh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Anthony N Hollenberg
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Donald P McDonnell
- Department of Internal Medicine, Enshu Hospital, Hamamatsu, Shizuoka 430-0929, Japan
| | - Paul M Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore.
| |
Collapse
|
43
|
Johnsen L, Lyckegaard NB, Khanal P, Quistorff B, Raun K, Nielsen MO. Fetal over- and undernutrition differentially program thyroid axis adaptability in adult sheep. Endocr Connect 2018; 7:777-790. [PMID: 29794141 PMCID: PMC5970278 DOI: 10.1530/ec-18-0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 04/10/2018] [Indexed: 11/08/2022]
Abstract
OBJECTIVE We aimed to test, whether fetal under- or overnutrition differentially program the thyroid axis with lasting effects on energy metabolism, and if early-life postnatal overnutrition modulates implications of prenatal programming. DESIGN Twin-pregnant sheep (n = 36) were either adequately (NORM), under- (LOW; 50% of NORM) or overnourished (HIGH; 150% of energy and 110% of protein requirements) in the last-trimester of gestation. From 3 days-of-age to 6 months-of-age, twin lambs received a conventional (CONV) or an obesogenic, high-carbohydrate high-fat (HCHF) diet. Subgroups were slaughtered at 6-months-of-age. Remaining lambs were fed a low-fat diet until 2½ years-of-age (adulthood). METHODS Serum hormone levels were determined at 6 months- and 2½ years-of-age. At 2½ years-of-age, feed intake capacity (intake over 4-h following 72-h fasting) was determined, and an intravenous thyroxine tolerance test (iTTT) was performed, including measurements of heart rate, rectal temperature and energy expenditure (EE). RESULTS In the iTTT, the LOW and nutritionally mismatched NORM:HCHF and HIGH:CONV sheep increased serum T3, T3:T4 and T3:TSH less than NORM:CONV, whereas TSH was decreased less in HIGH, NORM:HCHF and LOW:HCHF. Early postnatal exposure to the HCHF diet decreased basal adult EE in NORM and HIGH, but not LOW, and increased adult feed intake capacity in NORM and LOW, but not HIGH.Conclusions: The iTTT revealed a differential programming of central and peripheral HPT axis function in response to late fetal malnutrition and an early postnatal obesogenic diet, with long-term implications for adult HPT axis adaptability and associated consequences for adiposity risk.
Collapse
Affiliation(s)
- L Johnsen
- Department of Large Animal SciencesFaculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - N B Lyckegaard
- Department of Large Animal SciencesFaculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - P Khanal
- Department of Large Animal SciencesFaculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - B Quistorff
- Department of Biomedical SciencesFaculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - K Raun
- Diabetes and Obesity PharmacologyNovo Nordisk A/S, Måløv, Denmark
| | - M O Nielsen
- Department of Large Animal SciencesFaculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Marino F, Guasti L, Cosentino M, Piazza DDE, Simoni C, Bianchi V, Piantanida E, Saporiti F, Cimpanelli M, Crespi C, Vanoli P, Palma DDE, Klersy C, Frigo G, Bartalena L, Venco A, Lecchini S. Thyroid Hormone and Thyrotropin Regulate Intracellular Free Calcium Concentrations in Human Polymorphonuclear Leukocytes: In Vivo and in vitro Studies. Int J Immunopathol Pharmacol 2018. [DOI: 10.1177/205873920601900115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Intracellular free calcium concentrations ([Ca++]1) were studied in polymorphonuclear leukocytes (PMNs) from 13 athyreotic patients who had been previously treated by total thyroidectomy and radioiodine therapy for differentiated thyroid carcinoma, and from age- and sex-matched euthyroid healthy controls. Patients were studied twice, when hypothyroid (visit 1) and after restoration of euthyroidism by L-T4 TSH-suppressive therapy (visit 2). PMNs from patients at visit 1 had significantly lower resting [Ca++]1 levels compared to both visit 2 and controls. Values at visit 2 did not differ from those of the controls. Stimulus-induced [Ca++]1 rise was also significantly blunted at visit 1 and normalized at visit 2, possibly through a differential contribution of distinct intracellular Ca++ stores, as suggested by the response pattern to the chemotactic agent, N-formyl-Met-Leu-Phe (fMLP), to the selective SERCA pump inhibitor, thapsigargine, and to the mitochondrial uncoupler, carbonyl cyanide p-trifluoromethoxyphenyl-hydrazone (FCCP). In vitro treatment of PMNs from healthy subjects with high TSH concentrations impaired intracellular Ca++ store function. Both resting [Ca++]1 levels and fMLP-induced [Ca++]1 rise increased in the presence either of low-concentration TSH or of T4, but effects of TSH and T4 were not additive. T3, rT3, and TRIAC had no effect. In conclusion, this study provides evidence for a direct relationship between thyroid status and [Ca[Ca++]1 homeostasis in human PMNs, mainly related to direct actions of TSH and T4 on these cells.
Collapse
Affiliation(s)
- F. Marino
- Department of Clinical Medicine, University of Insubria, Varese
| | - L. Guasti
- Department of Clinical Medicine, University of Insubria, Varese
| | - M. Cosentino
- Department of Clinical Medicine, University of Insubria, Varese
| | - D. DE Piazza
- Department of Clinical Medicine, University of Insubria, Varese
| | - C. Simoni
- Department of Clinical Medicine, University of Insubria, Varese
| | - V. Bianchi
- Department of Clinical Medicine, University of Insubria, Varese
| | - E. Piantanida
- Department of Clinical Medicine, University of Insubria, Varese
| | - F. Saporiti
- Department of Clinical Medicine, University of Insubria, Varese
| | - M.G. Cimpanelli
- Department of Clinical Medicine, University of Insubria, Varese
| | - C. Crespi
- Department of Clinical Medicine, University of Insubria, Varese
| | - P. Vanoli
- Section of Nuclear Medicine and Radiotherapy, Ospedale “Di Circolo” e Fondazione Macchi, Varese
| | - D. DE Palma
- Section of Nuclear Medicine and Radiotherapy, Ospedale “Di Circolo” e Fondazione Macchi, Varese
| | - C. Klersy
- Biometry and Clinical Epidemiology, IRCCS Policlinico S. Matteo, Pavia
| | - G.M. Frigo
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - L. Bartalena
- Department of Clinical Medicine, University of Insubria, Varese
| | - A. Venco
- Department of Clinical Medicine, University of Insubria, Varese
| | - S. Lecchini
- Department of Clinical Medicine, University of Insubria, Varese
| |
Collapse
|
45
|
Gorski T, Mathes S, Krützfeldt J. Uncoupling protein 1 expression in adipocytes derived from skeletal muscle fibro/adipogenic progenitors is under genetic and hormonal control. J Cachexia Sarcopenia Muscle 2018; 9:384-399. [PMID: 29399988 PMCID: PMC5879989 DOI: 10.1002/jcsm.12277] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/29/2017] [Accepted: 11/20/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Intramuscular fatty infiltration is generally associated with the accumulation of white adipocytes in skeletal muscle and unfavourable metabolic outcomes. It is, however, still unclear whether intramuscular adipocytes could also acquire a brown-like phenotype. Here, we detected intramuscular expression of brown adipocyte markers during fatty infiltration in an obesity-resistant mouse strain and extensively compared the potential of two different stem cell populations residing in skeletal muscle to differentiate into brown-like adipocytes. METHODS Fatty infiltration was induced using intramuscular glycerol or cardiotoxin injection in the tibialis anterior muscles of young or aged 129S6/SvEvTac (Sv/129) mice or interleukin-6 (IL-6) knockout mice, and the expression of general and brown adipocyte markers was assessed after 4 weeks. Fibro/adipogenic progenitors (FAPs) and myogenic progenitors were prospectively isolated using fluorescence-activated cell sorting from skeletal muscle of male and female C57Bl6/6J and Sv/129 mice, and monoclonal and polyclonal cultures were treated with brown adipogenic medium. Additionally, FAPs were differentiated with medium supplemented or not with triiodothyronine. RESULTS Although skeletal muscle expression of uncoupling protein 1 (Ucp1) was barely detectable in uninjected tibialis anterior muscle, it was drastically induced following intramuscular adipogenesis in Sv/129 mice and further increased in response to beta 3-adrenergic stimulation. Intramuscular Ucp1 expression did not depend on IL-6 and was preserved in aged skeletal muscle. Myogenic progenitors did not form adipocytes neither in polyclonal nor monoclonal cultures. Fibro/adipogenic progenitors, on the other hand, readily differentiated into brown-like, UCP1+ adipocytes. Uncoupling protein 1 expression in differentiated FAPs was regulated by genetic background, sex, and triiodothyronine treatment independently of adipogenic differentiation levels. CONCLUSIONS Intramuscular adipogenesis is associated with increased Ucp1 expression in skeletal muscle from obesity-resistant mice. Fibro/adipogenic progenitors provide a likely source for intramuscular adipocytes expressing UCP1 under control of both genetic and hormonal factors. Therefore, FAPs constitute a possible target for therapies aiming at the browning of intramuscular adipose tissue and the metabolic improvement of skeletal muscle affected by fatty infiltration.
Collapse
Affiliation(s)
- Tatiane Gorski
- Division of Endocrinology, Diabetes, and Clinical NutritionUniversity Hospital ZürichRämistrasse 100Zürich8091Switzerland
- Competence Center Personalized Medicine UZH/ETHETH Zürich and University of ZürichZürichSwitzerland
| | - Sebastian Mathes
- Division of Endocrinology, Diabetes, and Clinical NutritionUniversity Hospital ZürichRämistrasse 100Zürich8091Switzerland
- Zürich Center for Integrative Human PhysiologyUniversity of ZürichZürichSwitzerland
| | - Jan Krützfeldt
- Division of Endocrinology, Diabetes, and Clinical NutritionUniversity Hospital ZürichRämistrasse 100Zürich8091Switzerland
- Competence Center Personalized Medicine UZH/ETHETH Zürich and University of ZürichZürichSwitzerland
- Zürich Center for Integrative Human PhysiologyUniversity of ZürichZürichSwitzerland
| |
Collapse
|
46
|
Abstract
The evolution of cardiac disease after an acute ischemic event depends on a complex and dynamic network of mechanisms alternating from ischemic damage due to acute coronary occlusion to reperfusion injury due to the adverse effects of coronary revascularization till post-ischemic remodeling. Cardioprotection is a new purpose of the therapeutic interventions in cardiology with the goal to reduce infarct size and thus prevent the progression toward heart failure after an acute ischemic event. In a complex biological system such as the human one, an effective cardioprotective strategy should diachronically target the network of cross-talking pathways underlying the disease progression. Thyroid system is strictly interconnected with heart homeostasis, and recent studies highlighted its role in cardioprotection, in particular through the preservation of mitochondrial function and morphology, the antifibrotic and proangiogenetic effect and also to the potential induction of cell regeneration and growth. The objective of this review was to highlight the cardioprotective role of triiodothyronine in the complexity of post-ischemic disease evolution.
Collapse
|
47
|
Casas F, Fouret G, Lecomte J, Cortade F, Pessemesse L, Blanchet E, Wrutniak-Cabello C, Coudray C, Feillet-Coudray C. Skeletal muscle expression of p43, a truncated thyroid hormone receptor α, affects lipid composition and metabolism. J Bioenerg Biomembr 2018; 50:71-79. [PMID: 29332207 DOI: 10.1007/s10863-018-9743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/02/2018] [Indexed: 11/25/2022]
Abstract
Thyroid hormone is a major regulator of metabolism and mitochondrial function. Thyroid hormone also affects reactions in almost all pathways of lipids metabolism and as such is considered as the main hormonal regulator of lipid biogenesis. The aim of this study was to explore the possible involvement of p43, a 43 Kda truncated form of the nuclear thyroid hormone receptor TRα1 which stimulates mitochondrial activity. Therefore, using mouse models overexpressing p43 in skeletal muscle (p43-Tg) or lacking p43 (p43-/-), we have investigated the lipid composition in quadriceps muscle and in mitochondria. Here, we reported in the quadriceps muscle of p43-/- mice, a fall in triglycerides, an inhibition of monounsaturated fatty acids (MUFA) synthesis, an increase in elongase index and an decrease in desaturase index. However, in mitochondria from p43-/- mice, fatty acid profile was barely modified. In the quadriceps muscle of p43-Tg mice, MUFA content was decreased whereas the unsaturation index was increased. In addition, in quadriceps mitochondria of p43-Tg mice, we found an increase of linoleic acid level and unsaturation index. Last, we showed that cardiolipin content, a key phospholipid for mitochondrial function, remained unchanged both in quadriceps muscle and in its mitochondria whatever the mice genotype. In conclusion, this study shows that muscle lipid content and fatty acid profile are strongly affected in skeletal muscle by p43 levels. We also demonstrate that regulation of cardiolipin biosynthesis by the thyroid hormone does not imply p43.
Collapse
Affiliation(s)
- François Casas
- DMEM, INRA, Montpellier, France.
- University of Montpellier, Montpellier, France.
| | - Gilles Fouret
- DMEM, INRA, Montpellier, France
- University of Montpellier, Montpellier, France
| | - Jérome Lecomte
- University of Montpellier, Montpellier, France
- IATE, INRA, Montpellier, France
- CIRAD, Montpellier, France
- SupAgro, Montpellier, France
| | - Fabienne Cortade
- DMEM, INRA, Montpellier, France
- University of Montpellier, Montpellier, France
| | - Laurence Pessemesse
- DMEM, INRA, Montpellier, France
- University of Montpellier, Montpellier, France
| | - Emilie Blanchet
- DMEM, INRA, Montpellier, France
- University of Montpellier, Montpellier, France
| | | | - Charles Coudray
- DMEM, INRA, Montpellier, France
- University of Montpellier, Montpellier, France
| | | |
Collapse
|
48
|
Xie S, Yang X, Wang D, Zhu F, Yang N, Hou Z, Ning Z. Thyroid transcriptome analysis reveals different adaptive responses to cold environmental conditions between two chicken breeds. PLoS One 2018; 13:e0191096. [PMID: 29320582 PMCID: PMC5761956 DOI: 10.1371/journal.pone.0191096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 12/28/2017] [Indexed: 11/18/2022] Open
Abstract
Selection for cold tolerance in chickens is important for improving production performance and animal welfare. The identification of chicken breeds with higher cold tolerance and production performance will help to target candidates for the selection. The thyroid gland plays important roles in thermal adaptation, and its function is influenced by breed differences and transcriptional plasticity, both of which remain largely unknown in the chicken thyroid transcriptome. In this study, we subjected Bashang Long-tail (BS) and Rhode Island Red (RIR) chickens to either cold or warm environments for 21 weeks and investigated egg production performance, body weight changes, serum thyroid hormone concentrations, and thyroid gland transcriptome profiles. RIR chickens had higher egg production than BS chickens under warm conditions, but BS chickens produced more eggs than RIRs under cold conditions. Furthermore, BS chickens showed stable body weight gain under cold conditions while RIRs did not. These results suggested that BS breed is a preferable candidate for cold-tolerance selection and that the cold adaptability of RIRs should be improved in the future. BS chickens had higher serum thyroid hormone concentrations than RIRs under both environments. RNA-Seq generated 344.3 million paired-end reads from 16 sequencing libraries, and about 90% of the processed reads were concordantly mapped to the chicken reference genome. Differential expression analysis identified 46-1,211 genes in the respective comparisons. With regard to breed differences in the thyroid transcriptome, BS chickens showed higher cell replication and development, and immune response-related activity, while RIR chickens showed higher carbohydrate and protein metabolism activity. The cold environment reduced breed differences in the thyroid transcriptome compared with the warm environment. Transcriptional plasticity analysis revealed different adaptive responses in BS and RIR chickens to cope with the cold, and showed higher responsiveness in BS compared with RIR chickens, suggesting greater adaptability of the thyroid in BS chickens. Moreover, 10,053 differential splicing events were revealed among the groups, with RNA splicing and processing, gene expression, transport, and metabolism being the main affected biological processes, identifying a valuable alternative splicing repertoire for the chicken thyroid. A short isoform of TPO (encoding thyroid peroxidase) containing multiple open reading frames was generated in both breeds by skipping exons 4 and 5 in the cold environment. These findings provide novel clues for future studies of the molecular mechanisms underlying cold adaptation and/or acclimation in chickens.
Collapse
Affiliation(s)
- Shanshan Xie
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xukai Yang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dehe Wang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Feng Zhu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhuocheng Hou
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
49
|
Yu G, Tzouvelekis A, Wang R, Herazo-Maya JD, Ibarra GH, Srivastava A, de Castro JPW, DeIuliis G, Ahangari F, Woolard T, Aurelien N, e Drigo RA, Gan Y, Graham M, Liu X, Homer RJ, Scanlan TS, Mannam P, Lee PJ, Herzog EL, Bianco AC, Kaminski N. Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function. Nat Med 2018; 24:39-49. [PMID: 29200204 PMCID: PMC5760280 DOI: 10.1038/nm.4447] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 10/23/2017] [Indexed: 12/15/2022]
Abstract
Thyroid hormone (TH) is critical for the maintenance of cellular homeostasis during stress responses, but its role in lung fibrosis is unknown. Here we found that the activity and expression of iodothyronine deiodinase 2 (DIO2), an enzyme that activates TH, were higher in lungs from patients with idiopathic pulmonary fibrosis than in control individuals and were correlated with disease severity. We also found that Dio2-knockout mice exhibited enhanced bleomycin-induced lung fibrosis. Aerosolized TH delivery increased survival and resolved fibrosis in two models of pulmonary fibrosis in mice (intratracheal bleomycin and inducible TGF-β1). Sobetirome, a TH mimetic, also blunted bleomycin-induced lung fibrosis. After bleomycin-induced injury, TH promoted mitochondrial biogenesis, improved mitochondrial bioenergetics and attenuated mitochondria-regulated apoptosis in alveolar epithelial cells both in vivo and in vitro. TH did not blunt fibrosis in Ppargc1a- or Pink1-knockout mice, suggesting dependence on these pathways. We conclude that the antifibrotic properties of TH are associated with protection of alveolar epithelial cells and restoration of mitochondrial function and that TH may thus represent a potential therapy for pulmonary fibrosis.
Collapse
Affiliation(s)
- Guoying Yu
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Argyris Tzouvelekis
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
- Division of Immunology, Biomedical Sciences Research Center
“Alexander Fleming”, Athens, Greece
| | - Rong Wang
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Jose D. Herazo-Maya
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Gabriel H. Ibarra
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Anup Srivastava
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Joao Pedro Werneck de Castro
- Division of Endocrinology/Metabolism, Rush University Medical
Center, Chicago IL
- Biophysics Institute, Federal University of Rio de Janeiro, RJ,
Brazil
| | - Giuseppe DeIuliis
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Farida Ahangari
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Tony Woolard
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Nachelle Aurelien
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Rafael Arrojo e Drigo
- The Salk Institute for Biological Studies, Molecular and Cell
biology laboratory, La Jolla, CA
| | - Ye Gan
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Morven Graham
- CCMI Electron Microscopy Core Facility, Yale University School of
Medicine, New Haven, CT
| | - Xinran Liu
- CCMI Electron Microscopy Core Facility, Yale University School of
Medicine, New Haven, CT
| | - Robert J. Homer
- Department of Pathology, Yale University School of Medicine, New
Haven, C
- Pathology and Laboratory Medicine Service, VA CT HealthCare System,
West Haven, CT
| | - Thomas S. Scanlan
- Department of Physiology and Pharmacology, Oregon Health and Science
University, Portland, Oregon, USA
| | - Praveen Mannam
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Patty J. Lee
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Erica L. Herzog
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Antonio C. Bianco
- Division of Endocrinology/Metabolism, Rush University Medical
Center, Chicago IL
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
| |
Collapse
|
50
|
Wrutniak-Cabello C, Casas F, Cabello G. Mitochondrial T3 receptor and targets. Mol Cell Endocrinol 2017; 458:112-120. [PMID: 28167126 DOI: 10.1016/j.mce.2017.01.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/28/2017] [Accepted: 01/31/2017] [Indexed: 12/25/2022]
Abstract
The demonstration that TRα1 mRNA encodes a nuclear thyroid hormone receptor and two proteins imported into mitochondria with molecular masses of 43 and 28 kDa has brought new clues to better understand the pleiotropic influence of iodinated hormones. If p28 activity remains unknown, p43 binds to T3 responsive elements occurring in the organelle genome, and, in the T3 presence, stimulates mitochondrial transcription and the subsequent synthesis of mitochondrial encoded proteins. This influence increases mitochondrial activity and through changes in the mitochondrial/nuclear cross talk affects important nuclear target genes regulating cell proliferation and differentiation, oncogenesis, or apoptosis. In addition, this pathway influences muscle metabolic and contractile phenotype, as well as glycaemia regulation. Interestingly, according to the process considered, p43 exerts opposite or cooperative effects with the well-known T3 pathway, thus allowing a fine tuning of the physiological influence of this hormone.
Collapse
Affiliation(s)
- Chantal Wrutniak-Cabello
- INRA, UMR 866 Dynamique Musculaire et Métabolisme, 34060 Montpellier, France; Université de Montpellier, UMR 866 Dynamique Musculaire et Métabolisme, 34060 Montpellier, France.
| | - François Casas
- INRA, UMR 866 Dynamique Musculaire et Métabolisme, 34060 Montpellier, France; Université de Montpellier, UMR 866 Dynamique Musculaire et Métabolisme, 34060 Montpellier, France
| | - Gérard Cabello
- INRA, UMR 866 Dynamique Musculaire et Métabolisme, 34060 Montpellier, France; Université de Montpellier, UMR 866 Dynamique Musculaire et Métabolisme, 34060 Montpellier, France
| |
Collapse
|