1
|
Jahdkaran M, Sistanizad M. From lipids to glucose: Investigating the role of dyslipidemia in the risk of insulin resistance. J Steroid Biochem Mol Biol 2025; 250:106744. [PMID: 40158704 DOI: 10.1016/j.jsbmb.2025.106744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/11/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Dyslipidemia is recognized as one of the most prevalent metabolic disorders and is frequently associated with other prevalent conditions, particularly diabetes mellitus. There appears to be a bidirectional connection between these two metabolic disorders. While considerable research has focused on how insulin resistance can lead to lipid abnormalities, the reverse relationship specifically, how dyslipidemia could assist in developing insulin resistance and diabetes mellitus has received relatively less attention. This review aims to comprehensively evaluate the mechanisms through which dyslipidemia can induce insulin resistance. Dyslipidemia is primarily classified into three main categories: hypercholesterolemia, hypertriglyceridemia, and low levels of HDL. These conditions may promote insulin resistance across multiple pathways, including the accumulation of lipid metabolites, dysfunction of pancreatic β-cells, increased reactive oxygen species, endoplasmic reticulum stress and inflammation, endothelial dysfunction, alterations in adiponectin levels, changes in bile acid composition and concentration, and dysbiosis of gut microbiota. However, further investigation is required to fully elucidate the cellular and molecular mechanisms underlying the relationship between lipid disorders and insulin resistance. Emphasizing such research could facilitate the development of therapeutic strategies targeting both conditions simultaneously.
Collapse
Affiliation(s)
- Mahtab Jahdkaran
- Prevention of Cardiovascular Disease Research Center, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sistanizad
- Prevention of Cardiovascular Disease Research Center, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Millan-Pacheco C, Serratos IN, Félix-Martínez GJ, Blancas-Flores G, Osorno A, Godínez R. Cholesterol Concentration in Cell Membranes and its Impact on Receptor-Ligand Interaction: A Computational Study of ATP-Sensitive Potassium Channels and ATP Binding. J Membr Biol 2025:10.1007/s00232-025-00345-4. [PMID: 40137942 DOI: 10.1007/s00232-025-00345-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
This work describes a computer study that looks at how different amounts of cholesterol (0%, 25%, and 50%) in cell membranes change the relationship between ATP and the KATP channel. This could explain why pancreatic beta-cells secrete insulin differently. We use computer simulations of molecular dynamics, calculations of binding free energy, and an integrated oscillator model to look at the electrical activity of beta-cells. There is a need for this kind of multiscale approach right now because cholesterol plays a part in metabolic syndrome and early type 2 diabetes. Our results showed that the increase in cholesterol concentration in the cell membrane affects the electrostatic interactions between ATP and the KATP channel, especially with charged residues in the binding site. Cholesterol can influence the properties of a membrane, including its local charge distribution near the channel. This affects the electrostatic environment around the ATP-binding site, increasing the affinity of ATP for the channel as our results indicated from 0 to 25 and 50% cholesterol (- 141 to - 113 kJ/mol, respectively). Simulating this change in the affinity to ATP of the KATP channels in a model of the electrical activity of the pancreatic beta-cell indicates that even a minimal increase could produce hyperinsulism. The study answers an important research question about how the structure of the membrane affects the function of KATP and, in turn, insulin releases a common feature of metabolic syndrome and early stages of type 2 diabetes.
Collapse
Affiliation(s)
- Cesar Millan-Pacheco
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Morelos. Av. Universidad No. 1001, Colonia Chamilpa, 62209, Morelos, México
| | - Iris N Serratos
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, C. P. 09340, Ciudad de Mexico, México.
| | - Gerardo J Félix-Martínez
- Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, C. P. 09340, Ciudad de Mexico, México
| | - Gerardo Blancas-Flores
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C. P. 09340, Ciudad de Mexico, México
| | - Alejandra Osorno
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, C. P. 09340, Ciudad de Mexico, México
| | - Rafael Godínez
- Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, C. P. 09340, Ciudad de Mexico, México.
| |
Collapse
|
3
|
Tarekegn ET, Gobezie MY, Haile MB, Zerga AA. Glycemic control and associated factors among type 2 diabetes patients attending at Dessie comprehensive specialized hospital outpatient department. Sci Rep 2025; 15:9286. [PMID: 40102612 PMCID: PMC11920592 DOI: 10.1038/s41598-025-93739-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 03/10/2025] [Indexed: 03/20/2025] Open
Abstract
Effective glycemic control is essential for managing diabetes-related complications. While studies in Ethiopia have shown poor glycemic control based on fasting blood glucose levels, further research using the glycated hemoglobin (HbA1c) test is necessary. This study aimed to evaluate glycemic control and identify associated factors among patients with type 2 diabetes. A hospital-based cross-sectional study was conducted from February 1 to March 30, 2023, involving 465 type 2 diabetes patients. Socio-demographic and clinical data were collected using a semi-structured questionnaire through consecutive sampling. Laboratory tests, including glycated hemoglobin, fasting blood sugar, renal function, and lipid profiles, were performed. Data analysis was carried out using Epi-data version 4.6.0.4 and SPSS version 26, employing descriptive statistics and binary logistic regression. Multivariable analysis was performed on variables with P < 0.25. The results were presented using numbers, frequencies, and tables. Approximately 73.5% (95% CI = 69.5, 77.4) of the patients demonstrated poor glycemic control. Factors associated with poor glycemic control were lack of formal education (AOR = 4.94, 95% CI = 2.99, 8.15), obesity (AOR = 5.32, 95% CI = 2.02, 14.04), overweight (AOR = 3.77, 95% CI = 1.65, 8.63), high total cholesterol (AOR = 7.79, 95% CI = 4.44, 13.66), and a diabetes duration of more than 10 years (AOR = 3.32, 95% CI = 1.87, 5.89). The research highlights a significant proportion of diabetic patients with inadequate glycemic control, which is associated with factors such as education level, BMI, total cholesterol, and the duration of diabetes. Addressing these factors through personalized management strategies is essential for improving glycemic control and reducing complications.
Collapse
Affiliation(s)
- Endalkachew Tedila Tarekegn
- Department of Epidemiology and Biostatistics, School of Public Health, Colleges of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Mengistie Yirsaw Gobezie
- Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia.
| | - Melese Belete Haile
- Department of Pre-clerkship College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Aregash Abebayehu Zerga
- Department of Nutrition, School of Public Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| |
Collapse
|
4
|
Da Dalt L, Baragetti A, Norata GD. Targeting PCSK9 beyond the liver: evidence from experimental and clinical studies. Expert Opin Ther Targets 2025; 29:137-157. [PMID: 40110803 DOI: 10.1080/14728222.2025.2482545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 03/22/2025]
Abstract
INTRODUCTION PCSK9 has been widely studied as a target for lipid-lowering as its inhibition increases LDLR recycling on the surface of hepatocytes, which promotes the catabolism of LDL particles. PCSK9 can be synthesized in extra-hepatic tissues, including in the brain, the pancreas, and the heart, and in immune cells. It is of interest to understand whether the extra-hepatic effects observed when PCSK9 is genetically inhibited by naturally occurring mutations are also recapitulated by pharmacology. AREA COVERED Genetics studies reported an increased risk of developing new-onset diabetes, ectopic adiposity, and reduced immune-inflammatory responses with PCSK9 deficiency. However, these aspects were not observed in clinical trials and data from real-world medicine with monoclonal antibodies (mAbs) and gene silencing approaches targeting PCSK9. EXPERT OPINION It is possible that the biological adaptations occurring when PCSK9 is inhibited lifelong, as in the case of genetic studies, could explain the discrepancy with the data obtained by clinical studies testing the pharmacological inhibition of PCSK9. Also, PCSK9 mAbs have been in use for 12 years; thus, probably, in this time window, a pharmacological reduction of circulating PCSK9 up to 80-90% does not lead to changes other than the impressive reduction in LDL-C and in CVD events.
Collapse
Affiliation(s)
- Lorenzo Da Dalt
- Department of Pharmacological Sciences 'Rodolfo Paoletti', University of Milan, Milano, Italy
| | - Andrea Baragetti
- Department of Pharmacological Sciences 'Rodolfo Paoletti', University of Milan, Milano, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological Sciences 'Rodolfo Paoletti', University of Milan, Milano, Italy
| |
Collapse
|
5
|
Akter R, Hogan MF, Esser N, Barrow BM, Castillo JJ, Boyko EJ, Templin AT, Hull RL, Zraika S, Kahn SE. Increased Steroidogenic Acute Regulatory Protein Contributes to Cholesterol-induced β-Cell Dysfunction. Endocrinology 2025; 166:bqaf027. [PMID: 39928527 PMCID: PMC11833471 DOI: 10.1210/endocr/bqaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/13/2025] [Accepted: 02/07/2025] [Indexed: 02/12/2025]
Abstract
Hypercholesterolemia is often observed in individuals with type 2 diabetes. Cholesterol accumulation in subcellular compartments within islet β-cells can result in insulin secretory dysfunction, which is a key pathological feature of diabetes. Previously, we demonstrated that expression of the mitochondrial cholesterol transport protein, steroidogenic acute regulatory protein (StAR), is induced in islets under conditions of β-cell dysfunction. However, whether it contributes to mitochondrial cholesterol accumulation in β-cells and cholesterol-induced β-cell dysfunction has not been determined. Thus, we sought to examine the role of StAR in isolated mouse islets under conditions of excess exogenous cholesterol. Cholesterol treatment of islets upregulated StAR expression, which was associated with cholesterol accumulation in mitochondria, decreased mitochondrial membrane potential and impaired mitochondrial oxidative phosphorylation. Impaired insulin secretion and reduced islet insulin content were also observed in cholesterol-laden islets. To determine the impact of StAR overexpression in β-cells per se, a lentivirus was used to increase StAR expression in INS-1 cells. Under these conditions, StAR overexpression was sufficient to increase mitochondrial cholesterol content, impair mitochondrial oxidative phosphorylation, and reduce insulin secretion. These findings suggest that elevated cholesterol in diabetes may contribute to β-cell dysfunction via increases in StAR-mediated mitochondrial cholesterol transport and accumulation.
Collapse
Affiliation(s)
- Rehana Akter
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Meghan F Hogan
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Nathalie Esser
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, CHU Liège, University of Liège, Liège 4000, Belgium
| | - Breanne M Barrow
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Joseph J Castillo
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Edward J Boyko
- Epidemiologic Research and Information Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Andrew T Templin
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Medicine, Roudebush Veterans Affairs Medical Center and Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rebecca L Hull
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| |
Collapse
|
6
|
Lundquist I, Mohammed Al-Amily I, Henningsson R, Salehi A. Islet NO-Synthases, extracellular NO and glucose-stimulated insulin secretion: Possible impact of neuronal NO-Synthase on the pentose phosphate pathway. PLoS One 2025; 20:e0315126. [PMID: 39854399 PMCID: PMC11760571 DOI: 10.1371/journal.pone.0315126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/20/2024] [Indexed: 01/26/2025] Open
Abstract
The impact of islet neuronal nitric oxide synthase (nNOS) on glucose-stimulated insulin secretion (GSIS) is less understood. We investigated this issue by performing simultaneous measurements of the activity of nNOS versus inducible NOS (iNOS) in GSIS using isolated murine islets. Additionally, the significance of extracellular NO on GSIS was studied. Islets incubated at basal glucose showed modest nNOS but no iNOS activity. Glucose-induced concentration-response studies revealed an increase in both NOS activities in relation to secreted insulin. Culturing at high glucose increased both nNOS and iNOS activities inducing a marked decrease in GSIS in a following short-term incubation at high glucose. Culturing at half-maximal glucose showed strong iNOS expression revealed by fluorescence microscopy also in human islets. Experiments with nNOS-inhibitors revealed that GSIS was inversely related to nNOS activity, the effect of iNOS activity being negligible. The increased GSIS after blockade of nNOS was reversed by the intracellular NO-donor hydroxylamine. The enhancing effect on GSIS by nNOS inhibition was independent of membrane depolarization and most likely exerted in the pentose phosphate pathway (PPP). GSIS was markedly reduced, 50%, by glucose-6-phosphate dehydrogenase (G-6-PD) inhibition both in the absence and presence of nNOS inhibition. NO gas stimulated GSIS at low and inhibited at high NO concentrations. The stimulatory action was dependent on membrane thiol groups. In comparison, carbon monoxide (CO) exclusively potentiated GSIS. CO rather than NO stimulated islet cyclic GMP during GSIS. It is suggested that increased nNOS activity restrains GSIS, and that the alternative pathway along the PPP initially might involve as much as 50% of total GSIS. In the PPP, the acute insulin response is downregulated by a negative feedback effect executed by a marked upregulation of nNOS activity elicited from secreted insulin exciting insulin receptors at exocytotic sites of an nNOS-associated population of secretory granules.
Collapse
Affiliation(s)
- Ingmar Lundquist
- Department of Clinical Science, SUS, Division of Islet Cell Physiology, University of Lund, Malmö, Sweden
- Department of Experimental Medical Science, University of Lund, Lund, Sweden
| | - Israa Mohammed Al-Amily
- Department of Clinical Science, SUS, Division of Islet Cell Physiology, University of Lund, Malmö, Sweden
| | - Ragnar Henningsson
- Department of Experimental Medical Science, University of Lund, Lund, Sweden
| | - Albert Salehi
- Department of Clinical Science, SUS, Division of Islet Cell Physiology, University of Lund, Malmö, Sweden
| |
Collapse
|
7
|
Bussuan RM, Bersch-Ferreira ÂC, Marcadenti A. Association between the number of glucose-lowering drugs in use, diet quality, and nutrient intake among adults with type 2 diabetes mellitus. Nutr Health 2024:2601060241303629. [PMID: 39659244 DOI: 10.1177/02601060241303629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
BACKGROUND The use of several glucose-lowering drugs (GLDs) in individuals with type 2 diabetes mellitus is common, but their effects on dietary intake have been little explored. AIM Our study aimed to examine the association between the number of GLDs used by adults with type 2 diabetes mellitus and their diet quality and nutrient intake. METHODS This is a cross-sectional analysis of baseline data from a Brazilian national multicenter randomized clinical trial involving participants with type 2 diabetes mellitus aged >30 years. We collected sociodemographic, clinical, biochemical, and anthropometric information and food intake data (24-h dietary recall). Diet quality was assessed by the modified Alternative Healthy Eating Index. Multiple linear regression models were used to examine the association of dietary intake with the number of GLDs in use. RESULTS Our analysis included data from a total of 363 participants, mean age of 60.8 ± 9.5 years, and mean glycated hemoglobin of 8.7 ± 1.5%. Of these, 28.1% were taking one GLD; 48.8% were taking two GLDs; and 23.1% were taking ≥3 GLDs. We found no difference in diet quality, but the intake of total polyunsaturated fatty acids and omega-3 and omega-6 fatty acids was different between the three groups (p ≤ 0.03). However, this association was no longer seen after adjusting for age, sex, duration of diabetes, prior diagnosis of dyslipidemia, physical activity and mean monthly family income. CONCLUSIONS We did not find an association between the number of GLDs in use and either diet quality or nutrient intake in individuals with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Renata Maksoud Bussuan
- Graduate Program in Health Sciences (Cardiology), Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, Porto Alegre, Brazil
| | - Ângela Cristine Bersch-Ferreira
- Hcor Research Institute, Hcor, São Paulo, Brazil
- PROADI-SUS Office, Real e Benemérita Associação Portuguesa de Beneficência, São Paulo, Brazil
| | - Aline Marcadenti
- Graduate Program in Health Sciences (Cardiology), Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, Porto Alegre, Brazil
- Hcor Research Institute, Hcor, São Paulo, Brazil
| |
Collapse
|
8
|
Zhang Y, Song K, Bi S, Li M, Yao Z. Higher remnant cholesterol increases the risk of coronary heart disease and diabetes in postmenopausal women. Front Endocrinol (Lausanne) 2024; 15:1475933. [PMID: 39717102 PMCID: PMC11663658 DOI: 10.3389/fendo.2024.1475933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
Background Postmenopausal women represent the demographic increasingly susceptible to cardiovascular and metabolic diseases. Elevated levels of remnant cholesterol (RC) have been implicated in atherosclerosis and insulin resistance. Methods This study aimed to investigate the relationship between RC and the prevalence of coronary heart disease (CHD), diabetes, and CHD combined with diabetes in a nationally representative sample of US postmenopausal women using data from the National Health and Nutrition Examination Survey (NHANES) 2007-2018. Multivariate logistic regression models were employed to evaluate the association between RC and the outcomes of interest. Nonlinear associations were assessed using restricted cubic splines (RCS), and subgroup analyses, along with interaction tests, were performed. Results A total of 1611 participants were included in the final analysis. Higher RC levels were significantly associated with increased risks of CHD [OR=1.67, 95%CI (1.02, 2.74)], diabetes [OR=1.77, 95%CI (1.22, 2.58)], and CHD combined with diabetes [OR=2.28, 95%CI (1.17, 4.42)] (all P<0.05). Compared to the lowest RC quartile (Q1), the highest quartile (Q4) demonstrated elevated incidences of CHD [OR=1.76, 95%CI (1.04, 2.98)], diabetes [OR=1.81, 95%CI (1.30, 2.53)], and CHD combined with diabetes [OR=3.08, 95%CI (1.29, 7.37)] (all P<0.05). RCS curves indicated a nearly linear relationship between RC and the risks of CHD, diabetes, and CHD combined with diabetes. Conclusion Our study reveals a significant positive correlation between RC levels and the prevalence of CHD, diabetes, and CHD combined with diabetes among postmenopausal women. Understanding these associations could potentially inform targeted prevention and management strategies tailored to this vulnerable population.
Collapse
Affiliation(s)
- Yan Zhang
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
| | - Kexin Song
- Department of Internal Medicine, Graduate School of Hebei Medical University, Shijiazhuang, China
| | - Shuli Bi
- School of Medicine, Nankai University, Tianjin, China
| | - Mingyang Li
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Zhuhua Yao
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
9
|
Holendová B, Stokičová L, Plecitá-Hlavatá L. Lipid Dynamics in Pancreatic β-Cells: Linking Physiology to Diabetes Onset. Antioxid Redox Signal 2024; 41:865-889. [PMID: 39495600 DOI: 10.1089/ars.2024.0724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Significance: Glucose-induced lipid metabolism is essential for preserving functional β-cells, and its disruption is linked to type 2 diabetes (T2D) development. Lipids are an integral part of the cells playing an indispensable role as structural components, energy storage molecules, and signals. Recent Advances: Glucose presence significantly impacts lipid metabolism in β-cells, where fatty acids are primarily synthesized de novo and/or are transported from the bloodstream. This process is regulated by the glycerolipid/free fatty acid cycle, which includes lipogenic and lipolytic reactions producing metabolic coupling factors crucial for insulin secretion. Disrupted lipid metabolism involving oxidative stress and inflammation is a hallmark of T2D. Critical Issues: Lipid metabolism in β-cells is complex involving multiple simultaneous processes. Exact compartmentalization and quantification of lipid metabolism and its intermediates, especially in response to glucose or chronic hyperglycemia, are essential. Current research often uses non-physiological conditions, which may not accurately reflect in vivo situations. Future Directions: Identifying and quantifying individual steps and their signaling, including redox, within the complex fatty acid and lipid metabolic pathways as well as the metabolites formed during acute versus chronic glucose stimulation, will uncover the detailed mechanisms of glucose-stimulated insulin secretion. This knowledge is crucial for understanding T2D pathogenesis and identifying pharmacological targets to prevent this disease. Antioxid. Redox Signal. 41, 865-889.
Collapse
Affiliation(s)
- Blanka Holendová
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Linda Stokičová
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- Charles University, Prague, Czech Republic
| | - Lydie Plecitá-Hlavatá
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
10
|
Kong L, Wu Y, Yang H, Guo M, Zhong Y, Li J, Wu S, Xiong Z. Nonlinear association between remnant cholesterol and reversion from impaired fasting glucose to normoglycemia: a multicenter cohort study. Lipids Health Dis 2024; 23:303. [PMID: 39300559 PMCID: PMC11414174 DOI: 10.1186/s12944-024-02286-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Remnant cholesterol (RC), a potent atherogenic lipid, has been shown to be strongly correlated with insulin resistance and the pathogenesis of diabetes mellitus. However, the relationship between RC and normoglycemia reversal in individuals with impaired fasting glucose (IFG) is crucial and remains unclear. This investigation, which aimed to clarify this association, is important for understanding and potentially improving the management of diabetes. METHOD This study, which included 15,019 IFG participants from 11 Chinese cities between 2010 and 2016, was conducted with a rigorous research process. Cox regression analysis revealed intriguing findings regarding the relationship between RC and normoglycemia reversal in individuals with IFG. Potential nonlinear associations were further explored via smooth curve-fitting techniques and 4-knot restricted cubic spline functions, ensuring a comprehensive analysis. To examine the validity of the results, an array of subgroup and sensitivity analyses were conducted, further bolstering the robustness of the findings. RESULTS By the end of the 2.89-year median follow-up period, 6,483 of the 15,019 IFG participants (43.17%) had reverted to normoglycemia. The findings, which reveal that increased RC levels are inversely associated with the likelihood of normoglycemia reversal, are novel and significant. According to the fully adjusted Cox proportional hazards model analysis, an increase of one standard deviation in RC was associated with a 20% decrease in the likelihood of normoglycemia reversal among IFG participants (HR: 0.80, 95% CI: 0.77-0.82). A nonlinear association between RC and normoglycemia reversal was observed, with an inflection point at 41.37 mg/dL. This suggests that the growth rate of the likelihood of reversion decreased and stabilized after the inflection point was reached. Moreover, significant interactions were observed between the age groups, providing a more nuanced understanding of this complex relationship. CONCLUSION Among Chinese adults with IFG, RC exhibited a negative nonlinear relationship with the probability of normoglycemia reversal. When RC levels reached or exceeded 41.38 mg/dL, the probability of achieving normoglycemia progressively diminished and subsequently stabilized. Maintaining RC levels below 41.38 mg/dL can significantly improve the probability of normoglycemia reversal among individuals with IFG, especially those aged 60 years or older.
Collapse
Affiliation(s)
- Laixi Kong
- School of Nursing, Chengdu Medical College, Chengdu, 610083, Sichuan, China
| | - Yuqing Wu
- School of Nursing, Chengdu Medical College, Chengdu, 610083, Sichuan, China
| | - Huiqi Yang
- Nanbu County People's Hospital, Nanchong, Sichuan, 637300, China
| | - Maoting Guo
- School of Nursing, Chengdu Medical College, Chengdu, 610083, Sichuan, China
| | - Yuxin Zhong
- School of Nursing, Chengdu Medical College, Chengdu, 610083, Sichuan, China
| | - Jingru Li
- Nanbu County People's Hospital, Nanchong, Sichuan, 637300, China
| | - Shuang Wu
- School of Nursing, Chengdu Medical College, Chengdu, 610083, Sichuan, China.
| | - Zhenzhen Xiong
- School of Nursing, Chengdu Medical College, Chengdu, 610083, Sichuan, China.
| |
Collapse
|
11
|
Su S, Zhang E, Gao S, Zhang Y, Liu J, Xie S, Yu J, Zhao Q, Yue W, Liu R, Yin C. Associations of remnant cholesterol in early pregnancy with gestational diabetes mellitus risk: a prospective birth cohort study. Lipids Health Dis 2024; 23:243. [PMID: 39123218 PMCID: PMC11312247 DOI: 10.1186/s12944-024-02230-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Remnant cholesterol (RC) reportedly contributes to the development of diabetes mellitus. However, evidence on the relationship between maternal RC and the risk of developing gestational diabetes mellitus (GDM) during pregnancy is limited. This study aimed to assess the relationship between maternal RC and GDM risk during early pregnancy, and explore the potential pathways involved in the relationship between RC levels and GDM risk. METHODS From 2018 to 2021, a prospective birth cohort study was designed and carried out in China. The associations of maternal RC and other lipid parameters with GDM risk were estimated using logistic regression models and restricted cubic splines. Subgroup analyses were performed stratified by prepregnancy body mass index (pre-BMI), maternal age and gravidity. Mediation analyses were conducted to explore the mediating effect of some related factors on the relationship between RC levels and the risk of GDM. RESULTS A total of 33,018 pregnant women were included. The median RC level was 0.47 ± 0.20 mmol/L. The prevalence of GDM was 15.19%. As RC quartiles increased, the incidence of GDM increased substantially, reaching 19.24% for the highest quartile of RC (P < 0.001). Maternal RC in the first trimester was positively correlated with GDM risk (OR: 2.254, 95% CI: 1.943-2.615). Compared to the lowest RC quartile, higher RC quartiles were correlated with an increased risk of GDM, and the ORs (95% CIs) for Q3 and Q4 were 1.208 (1.101-1.325) and 1.489 (1.364-1.626), respectively. Moreover, a linear dose-response relationship was found for this association (P for all < 0.001, P for nonlinearity > 0.05) and was consistent across subgroups with different pre-BMIs, maternal ages and gravidities (all P values for interactions > 0.05). Furthermore, the correlation between RC level and GDM risk was partially mediated by pre-BMI (9.20%) and blood glucose level (-11.1%). CONCLUSIONS Higher maternal RC levels in the early stage of pregnancy was positively associated with an increased risk of developing GDM. This association was partially mediated by pre- BMI and blood glucose levels.
Collapse
Affiliation(s)
- Shaofei Su
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Enjie Zhang
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Shen Gao
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Yue Zhang
- Department of Research Management, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Jianhui Liu
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Shuanghua Xie
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Jinghan Yu
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Qiutong Zhao
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Wentao Yue
- Department of Research Management, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China.
| | - Ruixia Liu
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China.
| | - Chenghong Yin
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China.
| |
Collapse
|
12
|
Chen W, Hu H, Cao C, Liu D, Han Y. Link between remnant cholesterol and the reversion to normoglycemia in Chinese adults with prediabetes: a 5-year cohort study. Sci Rep 2024; 14:18098. [PMID: 39103476 PMCID: PMC11300864 DOI: 10.1038/s41598-024-69169-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024] Open
Abstract
Despite the clear association between remnant cholesterol (RC)and diabetes risk, no study to date has examined the relationship between RC and reversal of prediabetes to normoglycemia. This retrospective cohort study included a total of 15,023 patients with prediabetes who underwent a physical examination between 2010 and 2016. The link between initial RC levels and the reversion from prediabetes to normoglycemia was analyzed using the Cox proportional-hazards regression model. Additionally, the study explored the possible relationship between RC and the probability of returning normoglycemia by applying Cox proportional hazards regression models with cubic spline functions. To address competing risks, a multivariate Cox regression analysis was undertaken, treating the onset of diabetes as a competing risk event for reversing prediabetes to normoglycemia. Additionally, the study incorporated extensive subgroup analyses alongside multiple sensitivity analyses, enhancing the reliability and robustness of the results. After adjusting for covariates, the findings indicated that RC was inversely associated with the likelihood of reverting to normoglycemia (per 5 mg/dL increase, HR = 0.918, 95% CI 0.909-0.927). The analysis also revealed a nonlinear relationship between RC and normoglycemia reversion, with an inflection point at 51.08 mg/dL. For RC values below this inflection point (RC < 50.08 mg/dL), the HR for the probability of returning to normoglycemia was 0.907 (95% CI 0.897-0.917 per 5 mg/dL). Additionally, the competing risks model demonstrated a negative relationship between RC and the reversal of prediabetes to normoglycemia (SHR = 0.92, 95% CI 0.91-0.93). Sensitivity analyses confirmed the robustness and stability of these results. This study demonstrated a negative and non-linear association between RC and the probability of reversion to normoglycemia in Chinese adults with prediabetes. By actively intervening to reduce RC levels, at least to below 51.08 mg/dL, further reduction of RC may significantly increase the probability of returning to normoglycemia from prediabetes.
Collapse
Affiliation(s)
- Weifeng Chen
- Department of General Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, Guangdong, China
| | - Haofei Hu
- Department of Nephrology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, Guangdong, China
| | - Changchun Cao
- Department of Rehabilitation, Shenzhen Dapeng New District Nan'ao People's Hospital, Shenzhen, 518000, Guangdong, China
| | - Dehong Liu
- Department of Emergency, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, No.3002 Sungang Road, Futian District, Shenzhen, 518000, Guangdong, China.
| | - Yong Han
- Department of Emergency, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, No.3002 Sungang Road, Futian District, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
13
|
Ouyang S, Xiang S, Wang X, Yang X, Liu X, Zhang M, Zhou Y, Xiao Y, Zhou L, Fan G, Yang J. The downregulation of SCGN induced by lipotoxicity promotes NLRP3-mediated β-cell pyroptosis. Cell Death Discov 2024; 10:340. [PMID: 39068218 PMCID: PMC11283536 DOI: 10.1038/s41420-024-02107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Lipotoxicity is a well-established phenomenon that could exacerbate damage to islet β-cells and play a significant role in the development of type 2 diabetes, the underlying mechanisms of which, however, remain unclear. In lipotoxic conditions, secretagogin (SCGN), an EF-hand calcium-binding protein abundantly expressed in islets, is found to undergo downregulation. In light of this, we aim to explore the role of SCGN in lipotoxicity-induced β-cell injury. Our findings show that exposure to ox-LDL in vitro or long-term high-fat diets (HFD) in vivo decreases SCGN expression and induces pyroptosis in β-cells. Moreover, restoring SCGN partially reverses the pyroptotic cell death under ox-LDL or HFD treatments. We have observed that the downregulation of SCGN facilitates the translocation of ChREBP from the cytosol to the nucleus, thereby promoting TXNIP transcription. The upregulation of TXNIP activates the NLRP3/Caspase-1 pathway, leading to pyroptotic cell death. In summary, our study demonstrates that lipotoxicity leads to the downregulation of SCGN expression in islet β-cells, resulting in ChREBP accumulation in the nucleus and subsequent activation of the NLRP3/Caspase-1 pyroptotic pathway. Thus, administering SCGN could be a potential therapeutic strategy to alleviate β-cell damage induced by lipotoxicity in type 2 diabetes.
Collapse
Affiliation(s)
- Shuhui Ouyang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Sunmin Xiang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Department of Hospital Infection Control, Xingsha District of Hunan Provincial People's Hospital (Changsha County People's Hospital), Changsha, 410100, Hunan, China
| | - Xin Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xin Yang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xuan Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Meilin Zhang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yiting Zhou
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yang Xiao
- The School of Humanities and Social Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Lingzhi Zhou
- Department of pediatrics, Huazhong University of Science and Technology Union Shenzhen Hospital (Shenzhen Nanshan people's hospital), Shenzhen, 518052, Guangdong, China
| | - Gang Fan
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital (Shenzhen Nanshan people's hospital), Shenzhen, 518052, Guangdong, China.
| | - Jing Yang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Department of Metabolism and Endocrinology, Huazhong University of Science and Technology Union Shenzhen Hospital (Shenzhen Nanshan people's hospital), Shenzhen, 518052, Guangdong, China.
| |
Collapse
|
14
|
Babalola JA, Stracke A, Loeffler T, Schilcher I, Sideromenos S, Flunkert S, Neddens J, Lignell A, Prokesch M, Pazenboeck U, Strobl H, Tadic J, Leitinger G, Lass A, Hutter-Paier B, Hoefler G. Effect of astaxanthin in type-2 diabetes -induced APPxhQC transgenic and NTG mice. Mol Metab 2024; 85:101959. [PMID: 38763496 PMCID: PMC11153249 DOI: 10.1016/j.molmet.2024.101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024] Open
Abstract
OBJECTIVES Aggregation and misfolding of amyloid beta (Aβ) and tau proteins, suggested to arise from post-translational modification processes, are thought to be the main cause of Alzheimer's disease (AD). Additionally, a plethora of evidence exists that links metabolic dysfunctions such as obesity, type 2 diabetes (T2D), and dyslipidemia to the pathogenesis of AD. We thus investigated the combinatory effect of T2D and human glutaminyl cyclase activity (pyroglutamylation), on the pathology of AD and whether astaxanthin (ASX) treatment ameliorates accompanying pathophysiological manifestations. METHODS Male transgenic AD mice, APPxhQC, expressing human APP751 with the Swedish and the London mutation and human glutaminyl cyclase (hQC) enzyme and their non-transgenic (NTG) littermates were used. Both APPxhQC and NTG mice were allocated to 3 groups, control, T2D-control, and T2D-ASX. Mice were fed control or high fat diet ± ASX for 13 weeks starting at an age of 11-12 months. High fat diet fed mice were further treated with streptozocin for T2D induction. Effects of genotype, T2D induction, and ASX treatment were evaluated by analysing glycemic readouts, lipid concentration, Aβ deposition, hippocampus-dependent cognitive function and nutrient sensing using immunosorbent assay, ELISA-based assays, western blotting, immunofluorescence staining, and behavioral testing via Morris water maze (MWM), respectively. RESULTS APPxhQC mice presented a higher glucose sensitivity compared to NTG mice. T2D-induced brain dysfunction was more severe in NTG compared to the APPxhQC mice. T2D induction impaired memory functions while increasing hepatic LC3B, ABCA1, and p65 levels in NTG mice. T2D induction resulted in a progressive shift of Aβ from the soluble to insoluble form in APPxhQC mice. ASX treatment reversed T2D-induced memory dysfunction in NTG mice and in parallel increased hepatic pAKT while decreasing p65 and increasing cerebral p-S6rp and p65 levels. ASX treatment reduced soluble Aβ38 and Aβ40 and insoluble Aβ40 levels in T2D-induced APPxhQC mice. CONCLUSIONS We demonstrate that T2D induction in APPxhQC mice poses additional risk for AD pathology as seen by increased Aβ deposition. Although ASX treatment reduced Aβ expression in T2D-induced APPxhQC mice and rescued T2D-induced memory impairment in NTG mice, ASX treatment alone may not be effective in cases of T2D comorbidity and AD.
Collapse
Affiliation(s)
| | - Anika Stracke
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Austria
| | | | | | - Spyridon Sideromenos
- QPS Austria GmbH, Grambach, Austria; Medical University of Vienna, Vienna, Austria
| | | | | | | | | | - Ute Pazenboeck
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Austria
| | - Herbert Strobl
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Austria
| | - Jelena Tadic
- Institute of Molecular Biosciences, University of Graz, Austria
| | - Gerd Leitinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Austria
| | | | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology Medical University of Graz, Graz, Austria.
| |
Collapse
|
15
|
Zhang X, van der Vorst EPC. High-Density Lipoprotein Modifications: Causes and Functional Consequences in Type 2 Diabetes Mellitus. Cells 2024; 13:1113. [PMID: 38994965 PMCID: PMC11240616 DOI: 10.3390/cells13131113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024] Open
Abstract
High-density lipoprotein (HDL) is a group of small, dense, and protein-rich lipoproteins that play a role in cholesterol metabolism and various cellular processes. Decreased levels of HDL and HDL dysfunction are commonly observed in individuals with type 2 diabetes mellitus (T2DM), which is also associated with an increased risk for cardiovascular disease (CVD). Due to hyperglycemia, oxidative stress, and inflammation that develop in T2DM, HDL undergoes several post-translational modifications such as glycation, oxidation, and carbamylation, as well as other alterations in its lipid and protein composition. It is increasingly recognized that the generation of HDL modifications in T2DM seems to be the main cause of HDL dysfunction and may in turn influence the development and progression of T2DM and its related cardiovascular complications. This review provides a general introduction to HDL structure and function and summarizes the main modifications of HDL that occur in T2DM. Furthermore, the potential impact of HDL modifications on the pathogenesis of T2DM and CVD, based on the altered interactions between modified HDL and various cell types that are involved in glucose homeostasis and atherosclerotic plaque generation, will be discussed. In addition, some perspectives for future research regarding the T2DM-related HDL modifications are addressed.
Collapse
Affiliation(s)
- Xiaodi Zhang
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), 80336 Munich, Germany
| |
Collapse
|
16
|
Yang T, Li G, Xu Y, He X, Song B, Cao Y. Characterization of the gut microbiota in polycystic ovary syndrome with dyslipidemia. BMC Microbiol 2024; 24:169. [PMID: 38760705 PMCID: PMC11100065 DOI: 10.1186/s12866-024-03329-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/10/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is an endocrinopathy in childbearing-age females which can cause many complications, such as diabetes, obesity, and dyslipidemia. The metabolic disorders in patients with PCOS were linked to gut microbial dysbiosis. However, the correlation between the gut microbial community and dyslipidemia in PCOS remains unillustrated. Our study elucidated the different gut microbiota in patients with PCOS and dyslipidemia (PCOS.D) compared to those with only PCOS and healthy women. RESULTS In total, 18 patients with PCOS, 16 healthy females, and 18 patients with PCOS.D were enrolled. The 16 S rRNA sequencing in V3-V4 region was utilized for identifying the gut microbiota, which analyzes species annotation, community diversity, and community functions. Our results showed that the β diversity of gut microbiota did not differ significantly among the three groups. Regarding gut microbiota dysbiosis, patients with PCOS showed a decreased abundance of Proteobacteria, and patients with PCOS.D showed an increased abundance of Bacteroidota compared to other groups. With respect to the gut microbial imbalance at genus level, the PCOS.D group showed a higher abundance of Clostridium_sensu_stricto_1 compared to other two groups. Furthermore, the abundances of Faecalibacterium and Holdemanella were lower in the PCOS.D than those in the PCOS group. Several genera, including Faecalibacterium and Holdemanella, were negatively correlated with the lipid profiles. Pseudomonas was negatively correlated with luteinizing hormone levels. Using PICRUSt analysis, the gut microbiota community functions suggested that certain metabolic pathways (e.g., amino acids, glycolysis, and lipid) were altered in PCOS.D patients as compared to those in PCOS patients. CONCLUSIONS The gut microbiota characterizations in patients with PCOS.D differ from those in patients with PCOS and controls, and those might also be related to clinical parameters. This may have the potential to become an alternative therapy to regulate the clinical lipid levels of patients with PCOS in the future.
Collapse
Affiliation(s)
- Tianjin Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Guanjian Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China
| | - Xiaojin He
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China.
- Reproductive Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Bing Song
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China.
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China.
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China.
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China.
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
17
|
Ding J, Nguyen AT, Lohman K, Hensley MT, Parker D, Hou L, Taylor J, Voora D, Sawyer JK, Boudyguina E, Bancks MP, Bertoni A, Pankow JS, Rotter JI, Goodarzi MO, Tracy RP, Murdoch DM, Duprez D, Rich SS, Psaty BM, Siscovick D, Newgard CB, Herrington D, Hoeschele I, Shea S, Stein JH, Patel M, Post W, Jacobs D, Parks JS, Liu Y. LXR signaling pathways link cholesterol metabolism with risk for prediabetes and diabetes. J Clin Invest 2024; 134:e173278. [PMID: 38747290 PMCID: PMC11093600 DOI: 10.1172/jci173278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 03/20/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUNDPreclinical studies suggest that cholesterol accumulation leads to insulin resistance. We previously reported that alterations in a monocyte cholesterol metabolism transcriptional network (CMTN) - suggestive of cellular cholesterol accumulation - were cross-sectionally associated with obesity and type 2 diabetes (T2D). Here, we sought to determine whether the CMTN alterations independently predict incident prediabetes/T2D risk, and correlate with cellular cholesterol accumulation.METHODSMonocyte mRNA expression of 11 CMTN genes was quantified among 934 Multi-Ethnic Study of Atherosclerosis (MESA) participants free of prediabetes/T2D; cellular cholesterol was measured in a subset of 24 monocyte samples.RESULTSDuring a median 6-year follow-up, lower expression of 3 highly correlated LXR target genes - ABCG1 and ABCA1 (cholesterol efflux) and MYLIP (cholesterol uptake suppression) - and not other CMTN genes, was significantly associated with higher risk of incident prediabetes/T2D. Lower expression of the LXR target genes correlated with higher cellular cholesterol levels (e.g., 47% of variance in cellular total cholesterol explained by ABCG1 expression). Further, adding the LXR target genes to overweight/obesity and other known predictors significantly improved prediction of incident prediabetes/T2D.CONCLUSIONThese data suggest that the aberrant LXR/ABCG1-ABCA1-MYLIP pathway (LAAMP) is a major T2D risk factor and support a potential role for aberrant LAAMP and cellular cholesterol accumulation in diabetogenesis.FUNDINGThe MESA Epigenomics and Transcriptomics Studies were funded by NIH grants 1R01HL101250, 1RF1AG054474, R01HL126477, R01DK101921, and R01HL135009. This work was supported by funding from NIDDK R01DK103531 and NHLBI R01HL119962.
Collapse
Affiliation(s)
- Jingzhong Ding
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Kurt Lohman
- Department of Medicine, Division of Cardiology, and
| | | | - Daniel Parker
- Department of Medicine, Division of Geriatrics, Duke University, Durham, North Carolina, USA
| | - Li Hou
- Department of Medicine, Division of Cardiology, and
| | - Jackson Taylor
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio, USA
| | - Deepak Voora
- Department of Medicine, Division of Cardiology, and
| | - Janet K. Sawyer
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Elena Boudyguina
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Michael P. Bancks
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Alain Bertoni
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - James S. Pankow
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Mark O. Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - David M. Murdoch
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University, Durham, North Carolina, USA
| | - Daniel Duprez
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, Washington, USA
| | | | - Christopher B. Newgard
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - David Herrington
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Ina Hoeschele
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - Steven Shea
- Department of Medicine, Columbia University, New York, New York, USA
| | - James H. Stein
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Manesh Patel
- Department of Medicine, Division of Cardiology, and
| | - Wendy Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - David Jacobs
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - John S. Parks
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Yongmei Liu
- Department of Medicine, Division of Cardiology, and
| |
Collapse
|
18
|
Sardà H, Colom C, Benitez S, Carreras G, Amigó J, Miñambres I, Viladés D, Blanco-Vaca F, Sanchez-Quesada JL, Pérez A. PCSK9 plasma concentration is associated with epicardial adipose tissue volume and metabolic control in patients with type 1 diabetes. Sci Rep 2024; 14:7195. [PMID: 38532033 DOI: 10.1038/s41598-024-57708-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024] Open
Abstract
Patients with type 1 diabetes (T1D) have a greater risk of cardiovascular disease. Proconvertase subtilisin-kexin 9 (PCSK9) is involved in the atherosclerosis process. This study aimed to determine the relationship between PCSK9 levels and epicardial adipose tissue (EAT) volume and cardiometabolic variables in patients with T1D. This was an observational cross-sectional study including 73 patients with T1D. Clinical, biochemical and imaging data were collected. We divided the patients into two groups according to their glycemic control and the EAT index (iEAT) percentile. We performed a correlation analysis between the collected variables and PCSK9 levels; subsequently, we performed a multiple regression analysis with the significant parameters. The mean age was 47.6 ± 8.5 years, 58.9% were men, and the BMI was 26.9 ± 4.6 kg/m2. A total of 31.5%, 49.3% and 34.2% of patients had hypertension, dyslipidemia and smoking habit, respectively. The PCSK9 concentration was 0.37 ± 0.12 mg/L, which was greater in patients with worse glycemic control (HbA1c > 7.5%), dyslipidemia and high EAT volume (iEAT > 75th percentile). The PCSK9 concentration was positively correlated with age (r = 0.259; p = 0.027), HbA1c (r = 0.300; p = 0.011), insulin dose (r = 0.275; p = 0.020), VLDL-C level (r = 0.331; p = 0.004), TG level (r = 0.328; p = 0.005), and iEAT (r = 0.438; p < 0.001). Multiple regression analysis revealed that 25% of the PCSK9 variability was explained by iEAT and HbA1c (p < 0.05). The PCSK9 concentration is associated with metabolic syndrome parameters, poor glycemic control and increased EAT volume in patients with T1D.
Collapse
Affiliation(s)
- Helena Sardà
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau - Hospital Dos de Maig, Antoni Maria Claret, 167, 08025, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Cristina Colom
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau - Hospital Dos de Maig, Antoni Maria Claret, 167, 08025, Barcelona, Spain
| | - Sonia Benitez
- Cardiovascular Biochemistry Group, Institut de Recerca Sant Pau (IR Sant Pau), Sant Quintí, 77-79, 08041, Barcelona, Spain
- CIBER en Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, Spain
| | - Gemma Carreras
- Department of Pediatrics, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Pediatrics, Obstetrics and Gynecology, and Preventive Medicine and Public Health, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Judit Amigó
- Department of Endocrinology and Nutrition, Hospital Universitari Vall d'Hebrón, Barcelona, Spain
| | - Inka Miñambres
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau - Hospital Dos de Maig, Antoni Maria Claret, 167, 08025, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER en Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, Spain
| | - David Viladés
- Cardiac Imaging Unit, Cardiology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Centro de Investigación en red de enfermedades cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco Blanco-Vaca
- CIBER en Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, Spain
- Department of Clinical Biochemistry, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jose Luís Sanchez-Quesada
- Cardiovascular Biochemistry Group, Institut de Recerca Sant Pau (IR Sant Pau), Sant Quintí, 77-79, 08041, Barcelona, Spain.
- CIBER en Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, Spain.
| | - Antonio Pérez
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau - Hospital Dos de Maig, Antoni Maria Claret, 167, 08025, Barcelona, Spain.
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- CIBER en Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, Spain.
| |
Collapse
|
19
|
Yan Z, Xu Y, Li K, Liu L. Association between high-density lipoprotein cholesterol and type 2 diabetes mellitus: dual evidence from NHANES database and Mendelian randomization analysis. Front Endocrinol (Lausanne) 2024; 15:1272314. [PMID: 38455653 PMCID: PMC10917910 DOI: 10.3389/fendo.2024.1272314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Background Low levels of high-density lipoprotein cholesterol (HDL-C) are commonly seen in patients with type 2 diabetes mellitus (T2DM). However, it is unclear whether there is an independent or causal link between HDL-C levels and T2DM. This study aims to address this gap by using the The National Health and Nutrition Examination Survey (NHANES) database and Mendelian randomization (MR) analysis. Materials and methods Data from the NHANES survey (2007-2018) with 9,420 participants were analyzed using specialized software. Logistic regression models and restricted cubic splines (RCS) were used to assess the relationship between HDL-C and T2DM incidence, while considering covariates. Genetic variants associated with HDL-C and T2DM were obtained from genome-wide association studies (GWAS), and Mendelian randomization (MR) was used to evaluate the causal relationship between HDL-C and T2DM. Various tests were conducted to assess pleiotropy and outliers. Results In the NHANES study, all groups, except the lowest quartile (Q1: 0.28-1.09 mmol/L], showed a significant association between HDL-C levels and reduced T2DM risk (all P < 0.001). After adjusting for covariates, the Q2 [odds ratio (OR) = 0.67, 95% confidence interval (CI): (0.57, 0.79)], Q3 [OR = 0.51, 95% CI: (0.40, 0.65)], and Q4 [OR = 0.29, 95% CI: (0.23, 0.36)] groups exhibited average reductions in T2DM risk of 23%, 49%, and 71%, respectively. In the sensitivity analysis incorporating other lipid levels, the Q4 group still demonstrates a 57% reduction in the risk of T2DM. The impact of HDL-C levels on T2DM varied with age (P for interaction = 0.006). RCS analysis showed a nonlinear decreasing trend in T2DM risk with increasing HDL-C levels (P = 0.003). In the MR analysis, HDL-C levels were also associated with reduced T2DM risk (OR = 0.69, 95% CI = 0.52-0.82; P = 1.41 × 10-13), and there was no evidence of pleiotropy or outliers. Conclusion This study provides evidence supporting a causal relationship between higher HDL-C levels and reduced T2DM risk. Further research is needed to explore interventions targeting HDL-C levels for reducing T2DM risk.
Collapse
Affiliation(s)
- Zhaoqi Yan
- Jiangxi University of Traditional Chinese Medicine, Graduate School, Nanchang, Jiangxi, China
| | - Yifeng Xu
- Jiangxi University of Traditional Chinese Medicine, Graduate School, Nanchang, Jiangxi, China
| | - Keke Li
- Jiangxi University of Traditional Chinese Medicine, Graduate School, Nanchang, Jiangxi, China
| | - Liangji Liu
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Department of Respiratory and Critical Care Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
20
|
Dong W, Yan S, Chen H, Zhao J, Zhang Z, Gu W. Association of remnant cholesterol and newly diagnosed early-onset type 2 diabetes mellitus in Chinese population: A retrospective cross-sectional study. J Diabetes 2024; 16:e13498. [PMID: 37961994 PMCID: PMC10859310 DOI: 10.1111/1753-0407.13498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/18/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND With the increasing incidence of diabetes worldwide, patients diagnosed with diabetes has been getting younger. Previous studies have shown that high remnant cholesterol (RC) level leads to an increased risk of cardiovascular disease events. However, the relationship between RC levels and newly diagnosed early-onset type 2 diabetes mellitus (T2DM) is unknown. This study aimed to explore the association between RC and newly diagnosed early-onset T2DM. METHODS A total of 606 patients newly diagnosed with early-onset T2DM and 619 gender-matched subjects with normal blood glucose levels were retrospectively enrolled in this study. All T2DM patients showed onset age of 18-40 years. Binary logistic regression analysis was performed to analyze independent risk factors and receiver operating characteristic (ROC) analysis was used to explore the predictive value of RC and other unconventional lipids. Moreover, the correlation between RC and insulin resistance in patients with newly diagnosed early-onset T2DM was also examined with binary logistic regression analysis and Spearman correlation analysis. RESULTS Increased RC level was an independent risk factor for early-onset T2DM (p < .05). The area under the curve on ROC analysis of RC was 0.805, 95% confidence interval (CI) was 0.781 ~ 0.826, sensitivity was 82.18% and specificity was 66.24%, which showed higher predictive value than those of triglyceride/high-density lipoprotein cholesterol (TG/HDL-C) ratio and total cholesterol (TC)/HDL-C ratio. Cutoff value of RC was 0.32 mmol/L. Level of RC in early-onset T2DM patients with moderate or severe insulin resistance was significantly higher than that in patients with mild insulin resistance (p < .0001). No difference in RC levels was found between patients with moderate and severe insulin resistance (p > .05). RC was still correlated with insulin resistance after adjusting the conventional lipid parameters (TG, TC, HDL-C, and low-density lipoprotein cholesterol) using partial correlation analysis. CONCLUSION RC level was higher in patients with early-onset T2DM and was correlated to the degree of insulin resistance as well. Patients aged 18-40 years with RC >0.32 mmol/L showed an increased risk of developing T2DM.
Collapse
Affiliation(s)
- Wenjing Dong
- Chinese PLA Medical CollegeBeijingChina
- Department of EndocrinologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of GerontologyHainan Hospital of Chinese PLA General HospitalSanyaChina
| | - Shiju Yan
- Department of OrthopedicsHainan Hospital of Chinese PLA General HospitalSanyaChina
| | - Han Chen
- Department of InformationHainan Hospital of Chinese PLA General HospitalSanyaChina
| | - Jian Zhao
- Chinese PLA Medical CollegeBeijingChina
- Department of EndocrinologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Zengqiang Zhang
- Department of GerontologyHainan Hospital of Chinese PLA General HospitalSanyaChina
| | - Weijun Gu
- Department of EndocrinologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| |
Collapse
|
21
|
Mineo C, Shaul PW. New Player in an Old Field? Ecto-F 1-ATPase in Antidiabetic Actions of HDL in Pancreatic β-Cells. Arterioscler Thromb Vasc Biol 2024; 44:419-422. [PMID: 38095108 PMCID: PMC10842905 DOI: 10.1161/atvbaha.123.320426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Affiliation(s)
- Chieko Mineo
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- Dept. of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Philip W. Shaul
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| |
Collapse
|
22
|
Manandhar B, Pandzic E, Deshpande N, Chen SY, Wasinger VC, Kockx M, Glaros EN, Ong KL, Thomas SR, Wilkins MR, Whan RM, Cochran BJ, Rye KA. ApoA-I Protects Pancreatic β-Cells From Cholesterol-Induced Mitochondrial Damage and Restores Their Ability to Secrete Insulin. Arterioscler Thromb Vasc Biol 2024; 44:e20-e38. [PMID: 38095105 DOI: 10.1161/atvbaha.123.319378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/13/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND High cholesterol levels in pancreatic β-cells cause oxidative stress and decrease insulin secretion. β-cells can internalize apo (apolipoprotein) A-I, which increases insulin secretion. This study asks whether internalization of apoA-I improves β-cell insulin secretion by reducing oxidative stress. METHODS Ins-1E cells were cholesterol-loaded by incubation with cholesterol-methyl-β-cyclodextrin. Insulin secretion in the presence of 2.8 or 25 mmol/L glucose was quantified by radioimmunoassay. Internalization of fluorescently labeled apoA-I by β-cells was monitored by flow cytometry. The effects of apoA-I internalization on β-cell gene expression were evaluated by RNA sequencing. ApoA-I-binding partners on the β-cell surface were identified by mass spectrometry. Mitochondrial oxidative stress was quantified in β-cells and isolated islets with MitoSOX and confocal microscopy. RESULTS An F1-ATPase β-subunit on the β-cell surface was identified as the main apoA-I-binding partner. β-cell internalization of apoA-I was time-, concentration-, temperature-, cholesterol-, and F1-ATPase β-subunit-dependent. β-cells with internalized apoA-I (apoA-I+ cells) had higher cholesterol and cell surface F1-ATPase β-subunit levels than β-cells without internalized apoA-I (apoA-I- cells). The internalized apoA-I colocalized with mitochondria and was associated with reduced oxidative stress and increased insulin secretion. The IF1 (ATPase inhibitory factor 1) attenuated apoA-I internalization and increased oxidative stress in Ins-1E β-cells and isolated mouse islets. Differentially expressed genes in apoA-I+ and apoA-I- Ins-1E cells were related to protein synthesis, the unfolded protein response, insulin secretion, and mitochondrial function. CONCLUSIONS These results establish that β-cells are functionally heterogeneous, and apoA-I restores insulin secretion in β-cells with elevated cholesterol levels by improving mitochondrial redox balance.
Collapse
Affiliation(s)
- Bikash Manandhar
- School of Biomedical Sciences, Faculty of Medicine (B.M., E.N.G., K.L.O., S.R.T., B.J.C., K.-A.R.), UNSW, Sydney, Australia
| | - Elvis Pandzic
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre (E.P., R.M.W.), UNSW, Sydney, Australia
| | - Nandan Deshpande
- School of Biotechnology and Biomolecular Sciences (N.D., S.-Y.C., M.R.W.), UNSW, Sydney, Australia
| | - Sing-Young Chen
- School of Biotechnology and Biomolecular Sciences (N.D., S.-Y.C., M.R.W.), UNSW, Sydney, Australia
| | - Valerie C Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre (V.C.W.), UNSW, Sydney, Australia
| | - Maaike Kockx
- ANZAC Research Institute, Concord, Sydney, Australia (M.K.)
| | - Elias N Glaros
- School of Biomedical Sciences, Faculty of Medicine (B.M., E.N.G., K.L.O., S.R.T., B.J.C., K.-A.R.), UNSW, Sydney, Australia
| | - Kwok Leung Ong
- School of Biomedical Sciences, Faculty of Medicine (B.M., E.N.G., K.L.O., S.R.T., B.J.C., K.-A.R.), UNSW, Sydney, Australia
| | - Shane R Thomas
- School of Biomedical Sciences, Faculty of Medicine (B.M., E.N.G., K.L.O., S.R.T., B.J.C., K.-A.R.), UNSW, Sydney, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences (N.D., S.-Y.C., M.R.W.), UNSW, Sydney, Australia
| | - Renee M Whan
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre (E.P., R.M.W.), UNSW, Sydney, Australia
| | - Blake J Cochran
- School of Biomedical Sciences, Faculty of Medicine (B.M., E.N.G., K.L.O., S.R.T., B.J.C., K.-A.R.), UNSW, Sydney, Australia
| | - Kerry-Anne Rye
- School of Biomedical Sciences, Faculty of Medicine (B.M., E.N.G., K.L.O., S.R.T., B.J.C., K.-A.R.), UNSW, Sydney, Australia
| |
Collapse
|
23
|
Yan P, Li J, Zhang Y, Dan X, Wu X, Zhang X, Yang Y, Chen X, Li S, Chen P, Wan Q, Xu Y. Association of Circulating Carbohydrate Antigen 19-9 Level with Type 2 Diabetic Kidney Disease in Chinese Adults: A Cross-Sectional Study. Diabetes Metab Syndr Obes 2024; 17:467-477. [PMID: 38312210 PMCID: PMC10838495 DOI: 10.2147/dmso.s434972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Objective Very few and conflicting data are available regarding the correlation between circulating carbohydrate antigen 19-9 (CA19-9) levels and diabetic kidney disease (DKD) and its components including albuminuria and a low estimated glomerular filtration rate (eGFR). This study aimed to examine the association of circulating CA19-9 and DKD in Chinese patients with type 2 diabetes mellitus (T2DM). Methods A total of 402 hospitalized T2DM patients between September 2017 and December 2021 were included in this cross-sectional study. There were 224 and 178 subjects in non-DKD and DKD groups, respectively. Serum CA19-9 was measured by chemiluminescence method, and its potential relationship with DKD was evaluated by multivariate logistic regression and correlation analyses, and receiver operating characteristic (ROC) curve analysis. Results T2DM patients with DKD had significantly higher serum CA19-9 levels than those without, and serum CA19-9 levels were positively related to urinary albumin-to-creatinine ratio and negatively to eGFR (P<0.01). Multivariate regression analysis revealed that serum CA 19-9 was an independent factor of DKD [odds ratio (OR), 1.018; 95% confidence interval (CI), 1.002-1.035; P<0.05]. Moreover, an increased progressively risk of DKD with an increase in serum CA19-9 quartiles was observed (P for trend <0.001), and T2DM patients in the highest serum CA19-9 quartile were associated with an increased likelihood of DKD when compared to those in the lowest quartile (OR: 2.936, 95% CI 1.129-7.633, P<0.05). Last, the analysis of ROC curves suggested that serum CA 19-9 at a cut of 25.09 U/mL resulted in the highest Youden index with sensitivity 43.8% and 75.4% specificity to predict the presence of DKD. Conclusion These results showed that high circulating CA19-9 was related to DKD and may serve as a useful biomarker of DKD in hospitalized Chinese T2DM patients.
Collapse
Affiliation(s)
- Pijun Yan
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People's Republic of China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, People's Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, People's Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, People's Republic of China
| | - Jia Li
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People's Republic of China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, People's Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, People's Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, People's Republic of China
| | - Yi Zhang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People's Republic of China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, People's Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, People's Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, People's Republic of China
| | - Xiaofang Dan
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People's Republic of China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, People's Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, People's Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, People's Republic of China
| | - Xian Wu
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People's Republic of China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, People's Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, People's Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, People's Republic of China
| | - Xing Zhang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People's Republic of China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, People's Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, People's Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, People's Republic of China
| | - Yuxia Yang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People's Republic of China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, People's Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, People's Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, People's Republic of China
| | - Xiping Chen
- Clinical medical College, Southwest Medical University, Luzhou, People's Republic of China
| | - Shengxi Li
- Clinical medical College, Southwest Medical University, Luzhou, People's Republic of China
| | - Pan Chen
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People's Republic of China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, People's Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, People's Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, People's Republic of China
| | - Qin Wan
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People's Republic of China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, People's Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, People's Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, People's Republic of China
| | - Yong Xu
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People's Republic of China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, People's Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, People's Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, People's Republic of China
| |
Collapse
|
24
|
Hawes E, Claxton D, Oeser J, O’Brien R. Identification of structural motifs critical for human G6PC2 function informed by sequence analysis and an AlphaFold2-predicted model. Biosci Rep 2024; 44:BSR20231851. [PMID: 38095063 PMCID: PMC10776900 DOI: 10.1042/bsr20231851] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
G6PC2 encodes a glucose-6-phosphatase (G6Pase) catalytic subunit, primarily expressed in pancreatic islet β cells, which modulates the sensitivity of insulin secretion to glucose and thereby regulates fasting blood glucose (FBG). Mutational analyses were conducted to validate an AlphaFold2 (AF2)-predicted structure of human G6PC2 in conjunction with a novel method to solubilize and purify human G6PC2 from a heterologous expression system. These analyses show that residues forming a predicted intramolecular disulfide bond are essential for G6PC2 expression and that residues forming part of a type 2 phosphatidic acid phosphatase (PAP2) motif are critical for enzyme activity. Additional mutagenesis shows that residues forming a predicted substrate cavity modulate enzyme activity and substrate specificity and residues forming a putative cholesterol recognition amino acid consensus (CRAC) motif influence protein expression or enzyme activity. This CRAC motif begins at residue 219, the site of a common G6PC2 non-synonymous single-nucleotide polymorphism (SNP), rs492594 (Val219Leu), though the functional impact of this SNP is disputed. In microsomal membrane preparations, the L219 variant has greater activity than the V219 variant, but this difference disappears when G6PC2 is purified in detergent micelles. We hypothesize that this was due to a differential association of the two variants with cholesterol. This concept was supported by the observation that the addition of cholesteryl hemi-succinate to the purified enzymes decreased the Vmax of the V219 and L219 variants ∼8-fold and ∼3 fold, respectively. We anticipate that these observations should support the rational development of G6PC2 inhibitors designed to lower FBG.
Collapse
Affiliation(s)
- Emily M. Hawes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, U.S.A
| | - Derek P. Claxton
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, U.S.A
| | - James K. Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, U.S.A
| | - Richard M. O’Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, U.S.A
| |
Collapse
|
25
|
Lin H, Suzuki K, Smith N, Li X, Nalbach L, Fuentes S, Spigelman AF, Dai XQ, Bautista A, Ferdaoussi M, Aggarwal S, Pepper AR, Roma LP, Ampofo E, Li WH, MacDonald PE. A role and mechanism for redox sensing by SENP1 in β-cell responses to high fat feeding. Nat Commun 2024; 15:334. [PMID: 38184650 PMCID: PMC10771529 DOI: 10.1038/s41467-023-44589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024] Open
Abstract
Pancreatic β-cells respond to metabolic stress by upregulating insulin secretion, however the underlying mechanisms remain unclear. Here we show, in β-cells from overweight humans without diabetes and mice fed a high-fat diet for 2 days, insulin exocytosis and secretion are enhanced without increased Ca2+ influx. RNA-seq of sorted β-cells suggests altered metabolic pathways early following high fat diet, where we find increased basal oxygen consumption and proton leak, but a more reduced cytosolic redox state. Increased β-cell exocytosis after 2-day high fat diet is dependent on this reduced intracellular redox state and requires the sentrin-specific SUMO-protease-1. Mice with either pancreas- or β-cell-specific deletion of this fail to up-regulate exocytosis and become rapidly glucose intolerant after 2-day high fat diet. Mechanistically, redox-sensing by the SUMO-protease requires a thiol group at C535 which together with Zn+-binding suppresses basal protease activity and unrestrained β-cell exocytosis, and increases enzyme sensitivity to regulation by redox signals.
Collapse
Affiliation(s)
- Haopeng Lin
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Guangzhou Laboratory, Guangzhou, 510005, Guangdong, China
| | - Kunimasa Suzuki
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Nancy Smith
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Xi Li
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-9039, USA
| | - Lisa Nalbach
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
- Biophysics Department, Center for Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Sonia Fuentes
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-9039, USA
| | - Aliya F Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Xiao-Qing Dai
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Austin Bautista
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Mourad Ferdaoussi
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Saloni Aggarwal
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Andrew R Pepper
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Leticia P Roma
- Biophysics Department, Center for Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Wen-Hong Li
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-9039, USA
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
26
|
Hou Y, Dai H, Chen N, Zhao Z, Wang Q, Hou T, Zheng J, Wang T, Li M, Lin H, Wang S, Zheng R, Lu J, Xu Y, Chen Y, Liu R, Ning G, Wang W, Bi Y, Wang J, Xu M. Whole Blood-based Transcriptional Risk Score for Nonobese Type 2 Diabetes Predicts Dynamic Changes in Glucose Metabolism. J Clin Endocrinol Metab 2023; 109:114-124. [PMID: 37555255 PMCID: PMC10735316 DOI: 10.1210/clinem/dgad466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023]
Abstract
CONTEXT The performance of peripheral blood transcriptional markers in evaluating risk of type 2 diabetes (T2D) with normal body mass index (BMI) is unknown. OBJECTIVE We developed a whole blood-based transcriptional risk score (wb-TRS) for nonobese T2D and assessed its contributions on disease risk and dynamic changes in glucose metabolism. METHODS Using a community-based cohort with blood transcriptome data, we developed the wb-TRS in 1105 participants aged ≥40 years who maintained a normal BMI for up to 10 years, and we validated the wb-TRS in an external dataset. Potential biological significance was explored. RESULTS The wb-TRS included 144 gene transcripts. Compared to the lowest tertile, wb-TRS in tertile 3 was associated with 8.91-fold (95% CI, 3.53-22.5) higher risk and each 1-unit increment was associated with 2.63-fold (95% CI, 1.87-3.68) higher risk of nonobese T2D. Furthermore, baseline wb-TRS significantly associated with dynamic changes in average, daytime, nighttime, and 24-hour glucose, HbA1c values, and area under the curve of glucose measured by continuous glucose monitoring over 6 months of intervention. The wb-TRS improved the prediction performance for nonobese T2D, combined with fasting glucose, triglycerides, and demographic and anthropometric parameters. Multi-contrast gene set enrichment (Mitch) analysis implicated oxidative phosphorylation, mTORC1 signaling, and cholesterol metabolism involved in nonobese T2D pathogenesis. CONCLUSION A whole blood-based nonobese T2D-associated transcriptional risk score was validated to predict dynamic changes in glucose metabolism. These findings suggested several biological pathways involved in the pathogenesis of nonobese T2D.
Collapse
Affiliation(s)
- Yanan Hou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huajie Dai
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Na Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qi Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tianzhichao Hou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuangyuan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruizhi Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
27
|
Wang W, Li N, Wang X, Zhang X, Tu M, Lin L, Li Q, Zhang H, Liu J, Yang X, Hao L, Yang N. Remnant Cholesterol Is Associated With Gestational Diabetes Mellitus: A Cohort Study. J Clin Endocrinol Metab 2023; 108:2924-2930. [PMID: 37167108 DOI: 10.1210/clinem/dgad262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
CONTEXT The association between remnant cholesterol (RC) and gestational diabetes mellitus (GDM) risk is unclear. OBJECTIVE This study investigated the association between RC and GDM. METHODS We used data from the Tongji Maternal and Child Health Cohort, a prospective cohort study in China. Fasting lipid concentrations were measured around 16 weeks' gestation. RC was calculated as total cholesterol minus low-density lipoprotein cholesterol and high-density lipoprotein cholesterol. GDM was diagnosed by a 75-g oral glucose tolerance test at 24 to 28 weeks' gestation. Log-Poisson regression models were performed to estimate relative risks (RRs) of GDM across quartiles of RC levels and triglyceride (TG) levels after adjustment for potential confounders. TG and RC were mutually adjusted. RESULTS Among 2528 women, 256 (10.1%) developed GDM. The adjusted RRs (95% CIs) for GDM across increasing quartiles of RC were 1.00 (reference), 1.35 (0.91, 1.99), 1.68 (1.16, 2.45), and 1.73 (1.19, 2.50), respectively. Compared to pregnant women without 3 risk indicators (TG <2.08 mmol/L, RC <0.40 mmol/L, and pre-BMI <24.0 kg/m2), the risk of GDM was elevated in those with normal pre-BMI but high RC (aRR: 1.54; 95% CI: 1.08, 2.19) or high TG (aRR: 2.15; 95% CI: 1.33, 3.49). For those with all 3 risk indicators, the risk of GDM was the highest (aRR: 4.80; 95% CI: 3.20, 7.18). CONCLUSION Elevated RC levels were associated with the increased risk of GDM and independent of traditional risk factors. Pregnant women with high pre-BMI, high TG, and high RC were at greatly increased risk of GDM.
Collapse
Affiliation(s)
- Weiming Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Na Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Xiaoyi Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
- Department of Clinical Nutrition, The Third People's Hospital of Hubei Province, Wuhan, Hubei, 430030, China
| | - Xu Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Menghan Tu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Lixia Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Qian Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Jin Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Liping Hao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Nianhong Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| |
Collapse
|
28
|
Makki BE, Rahman S. Alzheimer's Disease in Diabetic Patients: A Lipidomic Prospect. Neuroscience 2023; 530:79-94. [PMID: 37652288 DOI: 10.1016/j.neuroscience.2023.08.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/04/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Diabetes Mellitus (DM) and Alzheimer's disease (AD) have been two of the most common chronic diseases affecting people worldwide. Type 2 DM (T2DM) is a metabolic disease depicted by insulin resistance, dyslipidemia, and chronic hyperglycemia while AD is a neurodegenerative disease marked by Amyloid β (Aβ) accumulation, neurofibrillary tangles aggregation, and tau phosphorylation. Various clinical, epidemiological, and lipidomics studies have linked those diseases claiming shared pathological pathways raising the assumption that diabetic patients are at an increased risk of developing AD later in their lives. Insulin resistance is the tipping point beyond where advanced glycation end (AGE) products and free radicals are produced leading to oxidative stress and lipid peroxidation. Additionally, different types of lipids are playing a crucial role in the development and the relationship between those diseases. Lipidomics, an analysis of lipid structure, formation, and interactions, evidently exhibits these lipid changes and their direct and indirect effect on Aβ synthesis, insulin resistance, oxidative stress, and neuroinflammation. In this review, we have discussed the pathophysiology of T2DM and AD, the interconnecting pathological pathways they share, and the lipidomics where different lipids such as cholesterol, phospholipids, sphingolipids, and sulfolipids contribute to the underlying features of both diseases. Understanding their role can be beneficial for diagnostic purposes or introducing new drugs to counter AD.
Collapse
Affiliation(s)
| | - Sarah Rahman
- School of Medicine, Tehran University of Medical Sciences, Iran
| |
Collapse
|
29
|
Gadgil MD, Herrington DM, Singh SK, Kandula NR, Kanaya AM. Association of lipoprotein subfractions with incidence of type 2 diabetes among five U.S. Race and Ethnic groups: The Mediators of Atherosclerosis in South Asians Living in America (MASALA) and Multi-Ethnic study of Atherosclerosis (MESA). Diabetes Res Clin Pract 2023; 204:110926. [PMID: 37777016 PMCID: PMC10886444 DOI: 10.1016/j.diabres.2023.110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
AIMS We examined associations between lipoprotein subfractions and prevalent and incident T2D in two race/ethnically diverse cohort studies. METHODS Adults self-identifying as White, Black, Chinese, Hispanic and South Asian-American without cardiovascular disease, with fasting serum, demographic, and clinical data at enrollment and after 5 years of follow-up were included. Lipoprotein subfractions were measured at enrollment using NMR spectrometry. LASSO regularized logistic regression models adjusted for age, sex, race/ethnicity, lipid-lowering agent use, and waist circumference assessed odds of incident T2D in pooled analyses. RESULTS There were 4474 participants with lipoprotein subfraction data at enrollment and 3839 participants without prevalent diabetes, mean age 62 years, 51 % women, with 234 incident T2D cases at 5 years. Triglycerides in small, dense LDL-5 [OR 1.26 (95 % CI 1.11,1.43)], VLDL triglycerides 1.30** [1.16,1.46] and phospholipids in VLDL-1 [OR 1.31 (1.17,1.47)] were associated with higher odds of incident T2D, while free cholesterol in large HDL-1 [OR 0.75 (95 % CI 0.63,0.89)] was inversely associated. The results were similar for prevalent diabetes and did not vary by race/ethnic group. CONCLUSIONS Composition of lipoprotein subfractions is differentially associated with prevalent and incident T2D without difference by race/ethnic group. Assessment of lipoprotein composition may enhance targeted risk reduction for T2D.
Collapse
Affiliation(s)
- Meghana D Gadgil
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, CA, 1545 Divisadero Street, Suite 320, San Francisco, CA 941430320, United States.
| | - David M Herrington
- Section on Cardiovascular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Sukhmani K Singh
- Division of Endocrinology, Department of Medicine, University of California, San Francisco, CA, United States
| | - Namratha R Kandula
- Division of General Internal Medicine and Geriatrics, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Alka M Kanaya
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, CA, 1545 Divisadero Street, Suite 320, San Francisco, CA 941430320, United States; Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, United States
| |
Collapse
|
30
|
Gao Y, Hu Y, Xiang L. Remnant cholesterol, but not other cholesterol parameters, is associated with gestational diabetes mellitus in pregnant women: a prospective cohort study. J Transl Med 2023; 21:531. [PMID: 37544989 PMCID: PMC10405385 DOI: 10.1186/s12967-023-04322-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/01/2023] [Indexed: 08/08/2023] Open
Abstract
OBJECTIVE No evidence has been found of a relationship between remnant cholesterol (RC) and the likelihood of gestational diabetes mellitus (GDM) in pregnant women. The aim of our study was to investigate the link between serum RC at 12-14 weeks of gestation and the risk of GDM. METHODS This was a secondary analysis with data from a prospective cohort study in Korea. A total of 590 single pregnant women attending two hospitals in Korea, up to 14 weeks gestation, from November 2014 to July 2016 were included in the study. The formula used to calculate RC in detail was RC (mg/dL) = TC (mg/dL)-HDL-c (mg/dL)-LDL-c (mg/dL). Logistic regression models were employed to examine the relationship between RC and GDM and explore the association between other lipoprotein cholesterol parameters and the risk of GDM. Furthermore, receiver operating characteristic (ROC) analysis was performed to assess the ability of RC to identify GDM. Additionally, sensitivity and subgroup analyses were conducted. RESULTS The mean age of participants was 32.06 ± 3.80 years. The median of RC was 34.66 mg/dL. 37 pregnant women (6.27%) were eventually diagnosed with GDM. Multivariate adjusted logistic regression analysis showed that RC was positively associated with the risk of GDM (OR = 1.458, 95% CI 1.221, 1.741). There was no significant association between other lipoprotein cholesterols (including TC, LDL-c, HDL-c) and the risk of GDM. The area under the ROC curve for RC as a predictor of GDM was 0.8038 (95% CI 0.7338-0.8738), and the optimal RC cut-off was 24.30 mg/dL. Our findings were demonstrated to be robust by performing a series of sensitivity analyses. CONCLUSION Serum RC levels at 12-14 weeks of gestation are positively associated with GDM risk in pregnant women. RC in early pregnancy is an early warning indicator of GDM in pregnant women, especially those with normal HDL-c, LDL-c, and TC that are easily overlooked. There is a high risk of developing GDM in pregnant women whose RC is more than 24.30 mg/dL. This study may help optimize GDM prevention in pregnant women and facilitate communication between physicians, pregnant patients, and their families.
Collapse
Affiliation(s)
- Yajing Gao
- Department of Anesthesiology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, 518028, China
| | - Yanhua Hu
- College of Information Science and Engineering, Liuzhou Institute of Technology, No. 99, Xinliu Avenue, Yufeng District, Liuzhou, 545616, Guangxi Zhuang Autonomous Region, China.
| | - Lan Xiang
- School of Medical Technology and Nursing, Shenzhen Polytechnic, No.113, Tongfa Road 113, Nanshan District, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
31
|
Bai Y, Hei N, Gao M, Dong X, Li M, Jiang S, Zhang L. LDLR heterozygous deletion reduces hamster testicular cholesterol toxicity via AMPK/Sirt1/PGC-1α pathway. Toxicol Lett 2023; 384:30-43. [PMID: 37459939 DOI: 10.1016/j.toxlet.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Cholesterol is an important part of the human diet. The relationship and molecular mechanisms between intracellular cholesterol and male infertility are unclear. The purpose of this study was to evaluate the role of low-density lipoprotein receptor (LDLR) in male infertility. Both wild-type (WT) and LDLR heterozygous deletion (LDLR+/-) male Golden Syrian hamsters were fed either a high-fat diet (HFD) or a normal diet (ND). Plasma biochemistry, serum hormone, testicular histopathology, mRNA and protein expression of AMPK/Sirt1/PGC-1α in both testicular tissue and isolated Leydig cells (LCs) were measured. Compared with the ND animals, the WT HFD hamsters developed dyslipidemia at three weeks with lipid droplets deposited in LCs, testosterone decreased at four weeks (0.440 ± 0.264 ng/ml vs. 2.367 ± 1.236 ng/ml), the number of the Sertoli cells decreased (21.578 ± 2.934/one tubule vs. 25.733 ± 3.424/one tubule), the seminiferous epithelium became thinner (0.0813 ± 0.01729 mm vs. 0.0944 ± 0.0138 mm), testicular atrophy and AMPK/Sirt1/PGC-1α pathway downregulated at five weeks. All these changes persisted until the end of the study. LDLR+/- alleviated all of the above changes by downregulating the cellular influx of cholesterol induced by HFD except for higher hyperlipidemia. In summary, excessive intracellular cholesterol inactivates AMPK/Sirt1/PGC-1α pathway firstly in LCs and then in both Sertoli and spermatids. Cholesterol toxicity was LDLR dependent.
Collapse
Affiliation(s)
- Yun Bai
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Obstetrics and Gynecology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Naiheng Hei
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China; The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Mingming Gao
- Laboratory of Lipid Metabolism, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaohui Dong
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Mingzhao Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shaohao Jiang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lianshan Zhang
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
32
|
Jiang H, Si M, Tian T, Shi H, Huang N, Chi H, Yang R, Long X, Qiao J. Adiposity and lipid metabolism indicators mediate the adverse effect of glucose metabolism indicators on oogenesis and embryogenesis in PCOS women undergoing IVF/ICSI cycles. Eur J Med Res 2023; 28:216. [PMID: 37400924 DOI: 10.1186/s40001-023-01174-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) women have high incidences of dyslipidemia, obesity, impaired glucose tolerance (IGT), diabetes, and insulin resistance (IR) and are fragile to female infertility. Obesity and dyslipidemia may be the intermediate biological mechanism for the associations between glucose metabolism dysfunction and abnormal oogenesis and embryogenesis. METHODS This retrospective cohort study was performed at a university-affiliated reproductive center. A total of 917 PCOS women aged between 20 and 45 undergoing their first IVF/ICSI embryo transfer cycles from January 2018 to December 2020 were involved. Associations between glucose metabolism indicators, adiposity and lipid metabolism indicators, and IVF/ICSI outcomes were explored using multivariable generalized linear models. Mediation analyses were further performed to examine the potential mediation role of adiposity and lipid metabolism indicators. RESULTS Significant dose-dependent relationships were found between glucose metabolism indicators and IVF/ICSI early reproductive outcomes and between glucose metabolism indicators and adiposity and lipid metabolism indicators (all P < 0.05). Also, we found significant dose-dependent relationships between adiposity and lipid metabolism indicators and IVF/ICSI early reproductive outcomes (all P < 0.05). The mediation analysis indicated that elevated FPG, 2hPG, FPI, 2hPI, HbA1c, and HOMA2-IR were significantly associated with decreased retrieved oocyte count, MII oocyte count, normally fertilized zygote count, normally cleaved embryo count, high-quality embryo count, or blastocyst formation count after controlling for adiposity and lipid metabolism indicators. Serum TG mediated 6.0-31.0% of the associations; serum TC mediated 6.1-10.8% of the associations; serum HDL-C mediated 9.4-43.6% of the associations; serum LDL-C mediated 4.2-18.2% of the associations; and BMI mediated 26.7-97.7% of the associations. CONCLUSIONS Adiposity and lipid metabolism indicators (i.e., serum TG, serum TC, serum HDL-C, serum LDL-C, and BMI) are significant mediators of the effect of glucose metabolism indicators on IVF/ICSI early reproductive outcomes in PCOS women, indicating the importance of preconception glucose and lipid management and the dynamic equilibrium of glucose and lipid metabolism in PCOS women.
Collapse
Affiliation(s)
- Huahua Jiang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Manfei Si
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Tian Tian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Huifeng Shi
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Centre for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Ning Huang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Hongbin Chi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Rui Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xiaoyu Long
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
33
|
Casas-Deza D, Espina S, Martínez-Sapiña A, Del Moral-Bergos R, Garcia-Sobreviela MP, Lopez-Yus M, Calmarza P, Bernal-Monterde V, Arbones-Mainar JM. Triglyceride-rich lipoproteins and insulin resistance in patients with chronic hepatitis C receiving direct-acting antivirals. Atherosclerosis 2023; 375:59-66. [PMID: 37245427 DOI: 10.1016/j.atherosclerosis.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) interferes with carbohydrate and lipid metabolism causing cardiovascular disease and insulin resistance (IR). Direct-acting antivirals (DAAs) are highly effective for the eradication of HCV, with positive effects on metabolic health although paradoxically associated with increased total and LDL-cholesterol. The aims of this study were 1) to characterize dyslipidemia (lipoprotein content, number, and size) in naive HCV-infected individuals and 2) to evaluate the longitudinal association of metabolic changes and lipoparticle characteristics after DAA therapy. METHODS We conducted a prospective study with one-year follow-up. 83 naive outpatients treated with DAAs were included. Those co-infected with HBV or HIV were excluded. IR was analyzed using the HOMA index. Lipoproteins were studied by fast-protein liquid chromatography (FPLC) and Nuclear Magnetic Resonance Spectroscopy (NMR). RESULTS FPLC analysis showed that lipoprotein-borne HCV was only present in the VLDL region most enriched in APOE. There was a lack of association between HOMA and total cholesterol or cholesterol carried by LDL or HDL at baseline. Alternatively, a positive association was found between HOMA and total circulating triglycerides (TG), as well as with TG transported in VLDL, LDL, and HDL. HCV eradication with DAAs resulted in a strong and significant decrease in HOMA (-22%) and HDL-TG (-18%) after one-year follow-up. CONCLUSIONS HCV-dependent lipid abnormalities are associated with IR and DAA therapy can reverse this association. These findings may have potential clinical implications as the HDL-TG trajectory may inform the evolution of glucose tolerance and IR after HCV eradication.
Collapse
Affiliation(s)
- Diego Casas-Deza
- Gastroenterology Department, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) Aragon, 50009, Zaragoza, Spain
| | - Silvia Espina
- Gastroenterology Department, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) Aragon, 50009, Zaragoza, Spain
| | - Ana Martínez-Sapiña
- Clinical Microbiology Department, Miguel Servet University Hospital, 50009, Zaragoza, Spain
| | - Raquel Del Moral-Bergos
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) Aragon, 50009, Zaragoza, Spain; Instituto Aragones de Ciencias de la Salud (IACS), 50009, Zaragoza, Spain
| | - Maria Pilar Garcia-Sobreviela
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) Aragon, 50009, Zaragoza, Spain
| | - Marta Lopez-Yus
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Instituto Aragones de Ciencias de la Salud (IACS), 50009, Zaragoza, Spain
| | - Pilar Calmarza
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009, Zaragoza, Spain; Clinical Biochemistry Department, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto Salud Carlos III, 28029, Madrid, Spain
| | - Vanesa Bernal-Monterde
- Gastroenterology Department, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) Aragon, 50009, Zaragoza, Spain.
| | - Jose M Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) Aragon, 50009, Zaragoza, Spain; Instituto Aragones de Ciencias de la Salud (IACS), 50009, Zaragoza, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
34
|
Vasileva V, Chubinskiy-Nadezhdin V. Regulation of PIEZO1 channels by lipids and the structural components of extracellular matrix/cell cytoskeleton. J Cell Physiol 2023; 238:918-930. [PMID: 36947588 DOI: 10.1002/jcp.31001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/31/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
PIEZO1 is a mechanosensitive channel widely presented in eukaryotic organisms. Although the PIEZO family was discovered in 2010, main questions related to the molecular structure as well as to specific activation mechanisms and regulating pathways remain open. Two hypotheses of PIEZO1 gating were formulated: the first, as a dominant hypothesis, through the plasma membrane (force-from-lipids) and the second, via the participation of the cytoskeleton and the components of the extracellular matrix (ECM) (force-from-filaments). Many researchers provide convincing evidence for both hypotheses. It was demonstrated that PIEZO1 has a propeller-like shape forming a membrane curvature within the lipid bilayer. That suggests the participation of lipids in channel modulation, and many studies demonstrate the critical role of lipids and compounds that modify the lipid bilayer in the regulation of PIEZO1 properties. At the same time, the components of ECM and cortical cytoskeleton can be affected by the membrane curvature and thus have an impact on PIEZO1 properties. In living cells, PIEZO1 properties are reported to be critically dependent on channel microenvironment that is on combinatorial influence of plasma membrane, cytoskeleton and ECM. Thus, it is necessary to understand which factors can affect PIEZO1 and consider them when interpreting the role of PIEZO1 in various physiological processes. This review summarizes the current knowledge about regulation of Piezo1 by lipids and the components of ECM and cytoskeleton.
Collapse
Affiliation(s)
- Valeria Vasileva
- Group of Ionic Mechanisms of Cell Signalling, Department of Intracellular Signalling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Vladislav Chubinskiy-Nadezhdin
- Group of Ionic Mechanisms of Cell Signalling, Department of Intracellular Signalling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
35
|
Rundblad A, Christensen JJ, Hustad KS, Bastani NE, Ottestad I, Holven KB, Ulven SM. Associations between dietary intake and glucose tolerance in clinical and metabolomics-based metabotypes. GENES & NUTRITION 2023; 18:3. [PMID: 36899329 PMCID: PMC10007735 DOI: 10.1186/s12263-023-00721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/23/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND Metabotyping is a novel concept to group metabolically similar individuals. Different metabotypes may respond differently to dietary interventions; hence, metabotyping may become an important future tool in precision nutrition strategies. However, it is not known if metabotyping based on comprehensive omic data provides more useful identification of metabotypes compared to metabotyping based on only a few clinically relevant metabolites. AIM This study aimed to investigate if associations between habitual dietary intake and glucose tolerance depend on metabotypes identified from standard clinical variables or comprehensive nuclear magnetic resonance (NMR) metabolomics. METHODS We used cross-sectional data from participants recruited through advertisements aimed at people at risk of type 2 diabetes mellitus (n = 203). Glucose tolerance was assessed with a 2-h oral glucose tolerance test (OGTT), and habitual dietary intake was recorded with a food frequency questionnaire. Lipoprotein subclasses and various metabolites were quantified with NMR spectroscopy, and plasma carotenoids were quantified using high-performance liquid chromatography. We divided participants into favorable and unfavorable clinical metabotypes based on established cutoffs for HbA1c and fasting and 2-h OGTT glucose. Favorable and unfavorable NMR metabotypes were created using k-means clustering of NMR metabolites. RESULTS While the clinical metabotypes were separated by glycemic variables, the NMR metabotypes were mainly separated by variables related to lipoproteins. A high intake of vegetables was associated with a better glucose tolerance in the unfavorable, but not the favorable clinical metabotype (interaction, p = 0.01). This interaction was confirmed using plasma concentrations of lutein and zeaxanthin, objective biomarkers of vegetable intake. Although non-significantly, the association between glucose tolerance and fiber intake depended on the clinical metabotypes, while the association between glucose tolerance and intake of saturated fatty acids and dietary fat sources depended on the NMR metabotypes. CONCLUSION Metabotyping may be a useful tool to tailor dietary interventions that will benefit specific groups of individuals. The variables that are used to create metabotypes will affect the association between dietary intake and disease risk.
Collapse
Affiliation(s)
- Amanda Rundblad
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046 Blindern, 0317, Oslo, Norway.
| | - Jacob J Christensen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046 Blindern, 0317, Oslo, Norway
| | - Kristin S Hustad
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046 Blindern, 0317, Oslo, Norway
| | - Nasser E Bastani
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046 Blindern, 0317, Oslo, Norway
| | - Inger Ottestad
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046 Blindern, 0317, Oslo, Norway
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046 Blindern, 0317, Oslo, Norway.,National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046 Blindern, 0317, Oslo, Norway
| |
Collapse
|
36
|
Li RX, Chen LY, Limbu SM, Yao B, Qian YF, Zhou WH, Chen LQ, Qiao F, Zhang ML, Du ZY, Luo Y. Atorvastatin remodels lipid distribution between liver and adipose tissues through blocking lipoprotein efflux in fish. Am J Physiol Regul Integr Comp Physiol 2023; 324:R281-R292. [PMID: 36572553 DOI: 10.1152/ajpregu.00222.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The regulation of cholesterol metabolism in fish is still unclear. Statins play important roles in promoting cholesterol metabolism development in mammals. However, studies on the role of statins in cholesterol metabolism in fish are currently limited. The present study evaluated the effects of statins on cholesterol metabolism in fish. Nile tilapia (Oreochromis niloticus) were fed on control diets supplemented with three atorvastatin levels (0, 12, and 24 mg/kg diet, ATV0, ATV12, and ATV24, respectively) for 4 wk. Intriguingly, the results showed that both atorvastatin treatments increased hepatic cholesterol and triglyceride contents mainly through inhibiting bile acid synthesis and efflux, and compensatorily enhancing cholesterol synthesis in fish liver (P < 0.05). Moreover, atorvastatin treatment significantly inhibited hepatic very-low-density lipoprotein (VLDL) assembly and thus decreased serum VLDL content (P < 0.05). However, fish treated with atorvastatin significantly reduced cholesterol and triglycerides contents in adipose tissue (P < 0.05). Further molecular analysis showed that atorvastatin treatment promoted cholesterol synthesis and lipogenesis pathways, but inhibited lipid catabolism and low-density lipoprotein (LDL) uptake in the adipose tissue of fish (P < 0.05). In general, atorvastatin induced the remodeling of lipid distribution between liver and adipose tissues through blocking VLDL efflux from the liver to adipose tissue of fish. Our results provide a novel regulatory pattern of cholesterol metabolism response caused by atorvastatin in fish, which is distinct from mammals: cholesterol inhibition by atorvastatin activates hepatic cholesterol synthesis and inhibits its efflux to maintain cholesterol homeostasis, consequently reduces cholesterol storage in fish adipose tissue.
Collapse
Affiliation(s)
- Rui-Xin Li
- LANEH, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Ling-Yun Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Samwel M Limbu
- Department of Aquaculture Technology, School of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Bing Yao
- LANEH, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Yi-Fan Qian
- LANEH, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Wen-Hao Zhou
- LANEH, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Li-Qiao Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Fang Qiao
- LANEH, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Yuan Luo
- LANEH, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| |
Collapse
|
37
|
Saruarov Y, Nuskabayeva G, Gencer MZ, Sadykova K, Zhunissova M, Tatykayeva U, Iskandirova E, Sarsenova G, Durmanova A, Gaipov A, Atageldiyeva K, Sarría-Santamera A. Associations of Clusters of Cardiovascular Risk Factors with Insulin Resistance and Β-Cell Functioning in a Working-Age Diabetic-Free Population in Kazakhstan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3918. [PMID: 36900929 PMCID: PMC10001384 DOI: 10.3390/ijerph20053918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Cardiovascular risk factors aggregate in determined individuals. Patients with Type 2 diabetes mellitus (T2DM) have higher cardiovascular This study aimed to investigate insulinresistance (IR) and β-cell function using the homeostasis model assessment (HOMA) indexes in a general Kazakh population and determine the effect he effect that cardiovascular factors may have on those indexes. We conducted a cross-sectional study among employees of the Khoja Akhmet Yassawi International Kazakh-Turkish University (Turkistan, Kazakhstan) aged between 27 and 69 years. Sociodemographic variables, anthropometric measurements (body mass, height, waist circumference, hip circumference), and blood pressure were obtained. Fasting blood samples were collected to measure insulin, glucose, total cholesterol (TC), triglycerides (TG), and high- (HDL) andlow-density lipoprotein (LDL) levels. Oral glucose tolerance tests were performed. Hierarchical and K-means cluster analyses were obtained. The final sample was composed of 427 participants. Spearmen correlation analysis showed that cardiovascular parameters were statistically associated with HOMA-β (p < 0.001) and not with HOMA IR. Participants were aggregated into the three clusters where the cluster with a higher age and cardiovascular risk revealed deficient β-cell functioning, but not IR (p < 0.000 and p = 0.982). Common and easy to obtain biochemical and anthropometric measurements capturing relevant cardiovascular risk factors have been demonstrated to be associated with significant deficiency in insulin secretion. Although further longitudinal studies of the incidence of T2DM are needed, this study highlights that cardiovascular profiling has a significant role not just for risk stratification of patients for cardiovascular prevention but also for targeted vigilant glucose monitoring.
Collapse
Affiliation(s)
- Yerbolat Saruarov
- Department of Special Clinical Disciplines, Faculty of Medicine, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan
| | - Gulnaz Nuskabayeva
- Department of Special Clinical Disciplines, Faculty of Medicine, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan
| | - Mehmet Ziya Gencer
- Department of Special Clinical Disciplines, Faculty of Medicine, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan
| | - Karlygash Sadykova
- Department of Special Clinical Disciplines, Faculty of Medicine, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan
| | - Mira Zhunissova
- Department of Special Clinical Disciplines, Faculty of Medicine, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan
| | - Ugilzhan Tatykayeva
- Department of Human Pathology and Physiology, Faculty of Dentistry, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan
| | - Elmira Iskandirova
- Department of Therapy, Shymkent Medical Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Shymkent 160019, Kazakhstan
| | - Gulmira Sarsenova
- Department of Therapy, Shymkent Medical Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Shymkent 160019, Kazakhstan
| | - Aigul Durmanova
- Academic Department of Internal Medicine, University Medical Center, Astana 020000, Kazakhstan
| | - Abduzhappar Gaipov
- Academic Department of Internal Medicine, University Medical Center, Astana 020000, Kazakhstan
- Department of Medicine, Nazarbayev University School of Medicine, Astana 020000, Kazakhstan
| | - Kuralay Atageldiyeva
- Academic Department of Internal Medicine, University Medical Center, Astana 020000, Kazakhstan
- Department of Medicine, Nazarbayev University School of Medicine, Astana 020000, Kazakhstan
| | | |
Collapse
|
38
|
Yuan L, Liu J, Huang Z, Zhao Y, Feng Y, Yang X, Hu H, Zhang J, Li T, Li Y, Wu Y, Li X, Huang H, Hu F, Hu D, Zhang M. Elevated remnant cholesterol increase 6-year type 2 diabetes mellitus onset risk. Clin Chim Acta 2023; 541:117253. [PMID: 36796575 DOI: 10.1016/j.cca.2023.117253] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
AIM To investigate the association of remnant cholesterol (RC) with future type 2 diabetes mellitus (T2DM) risk, and to assess the underlying impact of some recognized risk factors on it. METHODS A total of 11468 nondiabetic adults in rural China were recruited in 2007-2008 and followed up in 2013-2014. Logistic regression was used to assess the risk of incident T2DM by quartiles of baseline RC, estimating odds ratios (ORs) and 95% confidence intervals (CIs). Association of the combinations of RC and low-density lipoprotein cholesterol (LDL-C) with T2DM risk were further evaluated. RESULTS Multivariable adjusted OR (95% CI) for incident T2DM associated with quartile 4 versus quartile 1 of RC was 2.72 (2.05-3.62). Per 1-standard deviation (SD) increases in RC levels was associated with a 34% higher T2DM risk. However, gender modified the specific association (Pinteraction < 0.05), with the association stronger among females. When combining the low LDL-C and low RC groups as reference, individuals with RC levels ≥ 0.56 mmol/L had more than a 2-fold T2DM risk, regardless of LDL-C level. CONCLUSIONS Elevated RC levels increase T2DM risk in rural Chinese populations. In those who cannot control their risk by lowering LDL-C levels, the goal of lipid-lowering therapy can be shifted to RC.
Collapse
Affiliation(s)
- Lijun Yuan
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Jiong Liu
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China; Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Zelin Huang
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China; Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Yang Zhao
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yifei Feng
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xingjin Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Huifang Hu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jinli Zhang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Tianze Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yang Li
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China; Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Yuying Wu
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China; Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Xi Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Hao Huang
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Fulan Hu
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China; Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Dongsheng Hu
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China; Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China; Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Ming Zhang
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
39
|
Li RX, Chen LY, Limbu SM, Qian YC, Zhou WH, Chen LQ, Luo Y, Qiao F, Zhang ML, Du ZY. High cholesterol intake remodels cholesterol turnover and energy homeostasis in Nile tilapia ( Oreochromis niloticus). MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:56-74. [PMID: 37073330 PMCID: PMC10077235 DOI: 10.1007/s42995-022-00158-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 12/08/2022] [Indexed: 05/03/2023]
Abstract
The roles of dietary cholesterol in fish physiology are currently contradictory. The issue reflects the limited studies on the metabolic consequences of cholesterol intake in fish. The present study investigated the metabolic responses to high cholesterol intake in Nile tilapia (Oreochromis niloticus), which were fed with four cholesterol-contained diets (0.8, 1.6, 2.4 and 3.2%) and a control diet for eight weeks. All fish-fed cholesterol diets showed increased body weight, but accumulated cholesterol (the peak level was in the 1.6% cholesterol group). Then, we selected 1.6% cholesterol and control diets for further analysis. The high cholesterol diet impaired liver function and reduced mitochondria number in fish. Furthermore, high cholesterol intake triggered protective adaptation via (1) inhibiting endogenous cholesterol synthesis, (2) elevating the expression of genes related to cholesterol esterification and efflux, and (3) promoting chenodeoxycholic acid synthesis and efflux. Accordingly, high cholesterol intake reshaped the fish gut microbiome by increasing the abundance of Lactobacillus spp. and Mycobacterium spp., both of which are involved in cholesterol and/or bile acids catabolism. Moreover, high cholesterol intake inhibited lipid catabolic activities through mitochondrial β-oxidation, and lysosome-mediated lipophagy, and depressed insulin signaling sensitivity. Protein catabolism was elevated as a compulsory response to maintain energy homeostasis. Therefore, although high cholesterol intake promoted growth, it led to metabolic disorders in fish. For the first time, this study provides evidence for the systemic metabolic response to high cholesterol intake in fish. This knowledge contributes to an understanding of the metabolic syndromes caused by high cholesterol intake or deposition in fish. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00158-7.
Collapse
Affiliation(s)
- Rui-Xin Li
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Ling-Yun Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Samwel M. Limbu
- Department of Aquaculture Technology, School of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, P. O. Box 60091, Dar es Salaam, Tanzania
| | - Yu-Cheng Qian
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Wen-Hao Zhou
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Li-Qiao Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Yuan Luo
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Fang Qiao
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241 China
| |
Collapse
|
40
|
Galli A, Arunagiri A, Dule N, Castagna M, Marciani P, Perego C. Cholesterol Redistribution in Pancreatic β-Cells: A Flexible Path to Regulate Insulin Secretion. Biomolecules 2023; 13:224. [PMID: 36830593 PMCID: PMC9953638 DOI: 10.3390/biom13020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic β-cells, by secreting insulin, play a key role in the control of glucose homeostasis, and their dysfunction is the basis of diabetes development. The metabolic milieu created by high blood glucose and lipids is known to play a role in this process. In the last decades, cholesterol has attracted significant attention, not only because it critically controls β-cell function but also because it is the target of lipid-lowering therapies proposed for preventing the cardiovascular complications in diabetes. Despite the remarkable progress, understanding the molecular mechanisms responsible for cholesterol-mediated β-cell function remains an open and attractive area of investigation. Studies indicate that β-cells not only regulate the total cholesterol level but also its redistribution within organelles, a process mediated by vesicular and non-vesicular transport. The aim of this review is to summarize the most current view of how cholesterol homeostasis is maintained in pancreatic β-cells and to provide new insights on the mechanisms by which cholesterol is dynamically distributed among organelles to preserve their functionality. While cholesterol may affect virtually any activity of the β-cell, the intent of this review is to focus on early steps of insulin synthesis and secretion, an area still largely unexplored.
Collapse
Affiliation(s)
- Alessandra Galli
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MA 48106, USA
| | - Nevia Dule
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Michela Castagna
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Paola Marciani
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Carla Perego
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| |
Collapse
|
41
|
Zhao X, Song L, Li J, Zhou J, Li N, Yan S, Chen R, Wang Y, Liu C, Zhou P, Sheng Z, Chen Y, Zhao H, Yan H. Effect of Triglyceride-Glucose Indices and Circulating PCSK9-Associated Cardiovascular Risk in STEMI Patients with Primary Percutaneous Coronary Artery Disease: A Prospective Cohort Study. J Inflamm Res 2023; 16:269-282. [PMID: 36713050 PMCID: PMC9875734 DOI: 10.2147/jir.s389778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/05/2022] [Indexed: 01/21/2023] Open
Abstract
Background and Aims This study aimed to determine whether convertase subtilisin/kexin type 9 (PCSK9)-associated cardiovascular risk is modulated by triglyceride-glucose (TyG) in ST-segment elevation myocardial infarction (STEMI) patients with primary percutaneous coronary disease (PCI). Methods A total of 1541 patients with STEMI (aged ≥18 years) undergoing primary PCI were consecutively enrolled between March 2017 and March 2019. Outcomes When stratifying the overall population according to TyG indices less than or greater than the median (TyG median = 9.07) as well as according to quartiles of PCSK9 levels, higher TyG index levels were significantly associated with all-cause mortality only when TyG levels were 9.07 or higher (ie, relative to quartile 1 [Q1], the adjusted HR for all-cause mortality was 3.20 [95% CI, 0.54-18.80] for Q2, p = 0.199; 7.89 [95% CI, 1.56-40.89] for Q3, p = 0.013; and 5.61 [95% CI, 1.04-30.30] for Q4, p = 0.045. During a median follow-up period of 1.96 years, the HR for all-cause mortality was higher in the subset of patients with TyG ≥median and PCSK9 ≥median (p for trend = 0.023) among those with type 2 diabetes mellitus (T2DM). However, there were no statistically significant differences among the subgroups. Among T2DM patients with a TyG index greater than the median, the Kaplan-Meier curve showed that patients with the highest PCSK9 levels had an increased risk of all-cause mortality (log-rank p = 0.017) and cardiac-cause mortality (log-rank p = 0.037) compared with lower PCSK9 quartile levels. Conclusion Elevated PCSK9 levels are related to all-cause mortality and cardiac-related mortality when TyG levels are greater than the median, but not when levels are less than the median. This suggests a potential benefit of lowering circulating PCSK9 levels in STEMI patients with insulin resistance.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Li Song
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Jiannan Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Jinying Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Nan Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Shaodi Yan
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, People’s Republic of China
| | - Runzhen Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Ying Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Chen Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Peng Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Zhaoxue Sheng
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yi Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Hanjun Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, People’s Republic of China,Hanjun Zhao, Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, No. 167, Beijing, 100037, People’s Republic of China, Tel +86-15210020808, Email
| | - Hongbing Yan
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, People’s Republic of China,Correspondence: Hongbing Yan, Fuwai Hospital, Chinese Academy of Medical Sciences, 12 Langshan Road, Shenzhen, 518000, People’s Republic of China, Tel +86-13701339287, Email
| |
Collapse
|
42
|
Zheng X, Jiang M, Ren X, Han L. The longitudinal association of remnant cholesterol with diabetes in middle-aged and elderly Chinese: A nationwide population-based cohort study. J Diabetes Complications 2023; 37:108360. [PMID: 36459863 DOI: 10.1016/j.jdiacomp.2022.108360] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND AIMS The association between remnant cholesterol (RC) and diabetes remains unclear in Chinese. METHODS AND RESULTS We used the data of 9464 Chinese adults aged ≥45 years from the China Health and Retirement Longitudinal Study (CHARLS). Estimated RC level was calculated as total cholesterol minus high-density lipoprotein cholesterol minus low-density lipoprotein cholesterol. Cox proportional hazard models and restricted cubic spline models were used to assess the relationships between RC and diabetes. RESULTS After 6 years of follow-up, a total of 777 respondents experienced new-onset diabetes. In multivariable-adjusted analyses, the adjusted hazard ratios (95 % confidence intervals) for the highest versus lowest quartile of RC was 1.45 (1.19-1.75) for risk of diabetes, and each 1-SD increase of RC (19.52 mg/dl) was associated with 9 % (HRs = 1.09; 1.03-1.15) increased risk of diabetes. There were also significant linear associations between RC level and diabetes (P for linearity <0.001). CONCLUSION Elevated RC levels were positively associated with increased risk of diabetes in Chinese adult population, suggesting that RC could be considered as a preferential predictor and treatment target of diabetes in Chinese population. Future prospective studies are needed to verify our findings and to assess the effect of RC-lowering interventions in diabetes prevention.
Collapse
Affiliation(s)
- Xiaowei Zheng
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Minglan Jiang
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiao Ren
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Longyang Han
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
43
|
Chen RB, Wang QY, Wang YY, Wang YD, Liu JH, Liao ZZ, Xiao XH. Feeding-induced hepatokines and crosstalk with multi-organ: A novel therapeutic target for Type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1094458. [PMID: 36936164 PMCID: PMC10020511 DOI: 10.3389/fendo.2023.1094458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Hyperglycemia, which can be caused by either an insulin deficit and/or insulin resistance, is the main symptom of Type 2 diabetes, a significant endocrine metabolic illness. Conventional medications, including insulin and oral antidiabetic medicines, can alleviate the signs of diabetes but cannot restore insulin release in a physiologically normal amount. The liver detects and reacts to shifts in the nutritional condition that occur under a wide variety of metabolic situations, making it an essential organ for maintaining energy homeostasis. It also performs a crucial function in glucolipid metabolism through the secretion of hepatokines. Emerging research shows that feeding induces hepatokines release, which regulates glucose and lipid metabolism. Notably, these feeding-induced hepatokines act on multiple organs to regulate glucolipotoxicity and thus influence the development of T2DM. In this review, we focus on describing how feeding-induced cross-talk between hepatokines, including Adropin, Manf, Leap2 and Pcsk9, and metabolic organs (e.g.brain, heart, pancreas, and adipose tissue) affects metabolic disorders, thus revealing a novel approach for both controlling and managing of Type 2 diabetes as a promising medication.
Collapse
Affiliation(s)
- Rong-Bin Chen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qi-Yu Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuan-Yuan Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ya-Di Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiang-Hua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhe-Zhen Liao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- *Correspondence: Xin-Hua Xiao, ; Zhe-Zhen Liao,
| | - Xin-Hua Xiao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- *Correspondence: Xin-Hua Xiao, ; Zhe-Zhen Liao,
| |
Collapse
|
44
|
Päth G, Perakakis N, Mantzoros CS, Seufert J. PCSK9 inhibition and cholesterol homeostasis in insulin producing β-cells. Lipids Health Dis 2022; 21:138. [PMID: 36527064 PMCID: PMC9756761 DOI: 10.1186/s12944-022-01751-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Low-density lipoprotein cholesterol (LDL-C) plays a central role in the pathology of atherosclerotic cardiovascular disease. For decades, the gold standard for LDL-C lowering have been statins, although these drugs carry a moderate risk for the development of new-onset diabetes. The inhibitors of proprotein convertase subtilisin/kexin type 9 (PCSK9) have emerged in the last years as potential alternatives to statins due to their high efficiency and safety without indications for a diabetes risk so far. Both approaches finally eliminate LDL-C from bloodstream by upregulation of LDL receptor surface expression. Due to their low antioxidant capacity, insulin producing pancreatic β-cells are sensitive to increased lipid oxidation and related generation of reactive oxygen species. Thus, PCSK9 inhibition has been argued to promote diabetes like statins. Potentially, the remaining patients at risk will be identified in the future. Otherwise, there is increasing evidence that loss of circulating PCSK9 does not worsen glycaemia since it is compensated by local PCSK9 expression in β-cells and other islet cells. This review explores the situation in β-cells. We evaluated the relevant biology of PCSK9 and the effects of its functional loss in rodent knockout models, carriers of LDL-lowering gene variants and PCSK9 inhibitor-treated patients.
Collapse
Affiliation(s)
- Günter Päth
- grid.5963.9Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany, Hugstetter Str. 55, Freiburg, Germany
| | - Nikolaos Perakakis
- grid.4488.00000 0001 2111 7257Division of Metabolic and Vascular Medicine, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany ,grid.38142.3c000000041936754XDivision of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Christos S. Mantzoros
- grid.38142.3c000000041936754XDivision of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA ,grid.410370.10000 0004 4657 1992Section of Endocrinology, VA Boston Healthcare System, MA Jamaica Plain, USA
| | - Jochen Seufert
- grid.5963.9Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany, Hugstetter Str. 55, Freiburg, Germany
| |
Collapse
|
45
|
Butyrate Lowers Cellular Cholesterol through HDAC Inhibition and Impaired SREBP-2 Signalling. Int J Mol Sci 2022; 23:ijms232415506. [PMID: 36555149 PMCID: PMC9779842 DOI: 10.3390/ijms232415506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
In animal studies, HDAC inhibitors such as butyrate have been reported to reduce plasma cholesterol, while conferring protection from diabetes, but studies on the underlying mechanisms are lacking. This study compares the influence of butyrate and other HDAC inhibitors to that of statins on cholesterol metabolism in multiple cell lines, but primarily in HepG2 hepatic cells due to the importance of the liver in cholesterol metabolism. Sodium butyrate reduced HepG2 cholesterol content, as did sodium valproate and the potent HDAC inhibitor trichostatin A, suggesting HDAC inhibition as the exacting mechanism. In contrast to statins, which increase SREBP-2 regulated processes, HDAC inhibition downregulated SREBP-2 targets such as HMGCR and the LDL receptor. Moreover, in contrast to statin treatment, butyrate did not increase cholesterol uptake by HepG2 cells, consistent with its failure to increase LDL receptor expression. Sodium butyrate also reduced ABCA1 and SRB1 protein expression in HepG2 cells, but these effects were not consistent across all cell types. Overall, the underlying mechanism of cell cholesterol lowering by sodium butyrate and HDAC inhibition is consistent with impaired SREBP-2 signalling, and calls into question the possible use of butyrate for lowering of serum LDL cholesterol in humans.
Collapse
|
46
|
Marku A, Da Dalt L, Galli A, Dule N, Corsetto P, Rizzo AM, Moregola A, Uboldi P, Bonacina F, Marciani P, Castagna M, Catapano AL, Norata GD, Perego C. Pancreatic PCSK9 controls the organization of the β-cell secretory pathway via LDLR-cholesterol axis. Metabolism 2022; 136:155291. [PMID: 35981632 DOI: 10.1016/j.metabol.2022.155291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cholesterol is central to pancreatic β-cell physiology and alterations of its homeostasis contribute to β-cell dysfunction and diabetes. Proper intracellular cholesterol levels are maintained by different mechanisms including uptake via the low-density lipoprotein receptor (LDLR). In the liver, the proprotein convertase subtilisin/kexin type 9 (PCSK9) routes the LDLR to lysosomes for degradation, thus limiting its recycling to the membrane. PCSK9 is also expressed in the pancreas and loss of function mutations of PCSK9 result in higher plasma glucose levels and increased risk of Type 2 diabetes mellitus. Aim of this study was to investigate whether PCSK9 also impacts β-cells function. METHODS Pancreas-specific Pcsk9 null mice (Pdx1Cre/Pcsk9 fl/fl) were generated and characterized for glucose tolerance, insulin release and islet morphology. Isolated Pcsk9-deficient islets and clonal β-cells (INS1E) were employed to characterize the molecular mechanisms of PCSK9 action. RESULTS Pdx1Cre/Pcsk9 fl/fl mice exhibited normal blood PCSK9 and cholesterol levels but were glucose intolerant and had defective insulin secretion in vivo. Analysis of PCSK9-deficient islets revealed comparable β-cell mass and insulin content but impaired stimulated secretion. Increased proinsulin/insulin ratio, modifications of SNARE proteins expression and decreased stimulated‑calcium dynamics were detected in PCSK9-deficient β-cells. Mechanistically, pancreatic PCSK9 silencing impacts β-cell LDLR expression and cholesterol content, both in vivo and in vitro. The key role of LDLR is confirmed by the demonstration that LDLR downregulation rescued the phenotype. CONCLUSIONS These findings establish pancreatic PCSK9 as a novel critical regulator of the functional maturation of the β-cell secretory pathway, via modulation of cholesterol homeostasis.
Collapse
Affiliation(s)
- Algerta Marku
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Lorenzo Da Dalt
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Alessandra Galli
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Nevia Dule
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Paola Corsetto
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Angela Maria Rizzo
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Annalisa Moregola
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Patrizia Uboldi
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Fabrizia Bonacina
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Paola Marciani
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Michela Castagna
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Alberico Luigi Catapano
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy; IRCCS Multimedica Hospital, Sesto San Giovanni, 20099 Milan, Italy
| | - Giuseppe Danilo Norata
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy; Centro SISA per lo studio dell'Aterosclerosi, Ospedale Bassini, 20092 Cinisello Balsamo, Italy.
| | - Carla Perego
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy.
| |
Collapse
|
47
|
Galper J, Kim WS, Dzamko N. LRRK2 and Lipid Pathways: Implications for Parkinson's Disease. Biomolecules 2022; 12:1597. [PMID: 36358947 PMCID: PMC9687231 DOI: 10.3390/biom12111597] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 04/10/2024] Open
Abstract
Genetic alterations in the LRRK2 gene, encoding leucine-rich repeat kinase 2, are a common risk factor for Parkinson's disease. How LRRK2 alterations lead to cell pathology is an area of ongoing investigation, however, multiple lines of evidence suggest a role for LRRK2 in lipid pathways. It is increasingly recognized that in addition to being energy reservoirs and structural entities, some lipids, including neural lipids, participate in signaling cascades. Early investigations revealed that LRRK2 localized to membranous and vesicular structures, suggesting an interaction of LRRK2 and lipids or lipid-associated proteins. LRRK2 substrates from the Rab GTPase family play a critical role in vesicle trafficking, lipid metabolism and lipid storage, all processes which rely on lipid dynamics. In addition, LRRK2 is associated with the phosphorylation and activity of enzymes that catabolize plasma membrane and lysosomal lipids. Furthermore, LRRK2 knockout studies have revealed that blood, brain and urine exhibit lipid level changes, including alterations to sterols, sphingolipids and phospholipids, respectively. In human LRRK2 mutation carriers, changes to sterols, sphingolipids, phospholipids, fatty acyls and glycerolipids are reported in multiple tissues. This review summarizes the evidence regarding associations between LRRK2 and lipids, and the functional consequences of LRRK2-associated lipid changes are discussed.
Collapse
Affiliation(s)
- Jasmin Galper
- Charles Perkins Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Woojin S Kim
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Nicolas Dzamko
- Charles Perkins Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
48
|
Zhang H, Xiu X, Yang Y, Yang Y, Zhao H. Identification of Putative Causal Relationships Between Type 2 Diabetes and Blood-Based Biomarkers in East Asians by Mendelian Randomization. Am J Epidemiol 2022; 191:1867-1876. [PMID: 35801869 DOI: 10.1093/aje/kwac118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 04/22/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
Observational studies have revealed phenotypic associations between type 2 diabetes (T2D) and many biomarkers. However, causality between these conditions in East Asians is unclear. We leveraged genome-wide association study (GWAS) summary statistics on T2D (n = 77,418 cases; n = 356,122 controls) from the Asian Genetic Epidemiology Network (sample recruited during 2001-2011) and GWAS summary statistics on 42 biomarkers (n = 12,303-143,658) from BioBank Japan (sample recruited during 2003-2008) to investigate causal relationships between T2D and biomarkers. Applications of Mendelian randomization approaches consistently revealed genetically instrumented associations of T2D with increased serum potassium levels (liability-scale β = 0.04-0.10; P = 6.41 × 10-17-9.85 × 10-5) and decreased serum chloride levels (liability-scale β = -0.16 to -0.06; P = 5.22 × 10-27-3.14 × 10-5), whereas these 2 biomarkers showed no causal effects on T2D. Heritability Estimation Using Summary Statistics (ρ-HESS) and summary-data-based Mendelian randomization highlighted 27 genomic regions and 3 genes (α-1,3-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase (MGAT1), transducing-like enhancer (TLE) family member 1, transcriptional corepressor (TLE1), and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR)) that interactively associated with the shared genetics underlying T2D and the 2 biomarkers. Thus, T2D may causally affect serum potassium and chloride levels among East Asians. In contrast, the relationships of potassium and chloride with T2D are not causal, suggesting the importance of monitoring electrolyte disorders for T2D patients.
Collapse
|
49
|
Guevara-Olaya L, Chimal-Vega B, Castañeda-Sánchez CY, López-Cossio LY, Pulido-Capiz A, Galindo-Hernández O, Díaz-Molina R, Ruiz Esparza-Cisneros J, García-González V. LDL Promotes Disorders in β-Cell Cholesterol Metabolism, Implications on Insulin Cellular Communication Mediated by EVs. Metabolites 2022; 12:754. [PMID: 36005626 PMCID: PMC9415214 DOI: 10.3390/metabo12080754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/01/2022] Open
Abstract
Dyslipidemia is described as a hallmark of metabolic syndrome, promoting a stage of metabolic inflammation (metainflammation) that could lead to misbalances in energetic metabolism, contributing to insulin resistance, and modifying intracellular cholesterol pathways and the renin-angiotensin system (RAS) in pancreatic islets. Low-density lipoprotein (LDL) hypercholesterolemia could disrupt the tissue communication between Langerhans β-cells and hepatocytes, wherein extracellular vesicles (EVs) are secreted by β-cells, and exposition to LDL can impair these phenomena. β-cells activate compensatory mechanisms to maintain insulin and metabolic homeostasis; therefore, the work aimed to characterize the impact of LDL on β-cell cholesterol metabolism and the implication on insulin secretion, connected with the regulation of cellular communication mediated by EVs on hepatocytes. Our results suggest that β-cells can endocytose LDL, promoting an increase in de novo cholesterol synthesis targets. Notably, LDL treatment increased mRNA levels and insulin secretion; this hyperinsulinism condition was associated with the transcription factor PDX-1. However, a compensatory response that maintains basal levels of intracellular calcium was described, mediated by the overexpression of calcium targets PMCA1/4, SERCA2, and NCX1, together with the upregulation of the unfolded protein response (UPR) through the activation of IRE1 and PERK arms to maintain protein homeostasis. The LDL treatment induced metainflammation by IL-6, NF-κB, and COX-2 overexpression. Furthermore, LDL endocytosis triggered an imbalance of the RAS components. LDL treatment increased the intracellular levels of cholesterol on lipid droplets; the adaptive β-cell response was portrayed by the overexpression of cholesterol transporters ABCA1 and ABCG1. Therefore, lipotoxicity and hyperinsulinism induced by LDL were regulated by the natural compound auraptene, a geranyloxyn coumarin modulator of cholesterol-esterification by ACAT1 enzyme inhibition. EVs isolated from β-cells impaired insulin signaling via mTOR/p70S6Kα in hepatocytes, a phenomenon regulated by auraptene. Our results show that LDL overload plays a novel role in hyperinsulinism, mechanisms associated with a dysregulation of intracellular cholesterol, lipotoxicity, and the adaptive UPR, which may be regulated by coumarin-auraptene; these conditions explain the affectations that occur during the initial stages of insulin resistance.
Collapse
Affiliation(s)
- Lizbeth Guevara-Olaya
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | - Brenda Chimal-Vega
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | - César Yahel Castañeda-Sánchez
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | - Leslie Y. López-Cossio
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | - Angel Pulido-Capiz
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio de Biología Molecular, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
| | - Octavio Galindo-Hernández
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | - Raúl Díaz-Molina
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | | | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| |
Collapse
|
50
|
Lv C, Sun Y, Zhang ZY, Aboelela Z, Qiu X, Meng ZX. β-cell dynamics in type 2 diabetes and in dietary and exercise interventions. J Mol Cell Biol 2022; 14:6656373. [PMID: 35929791 PMCID: PMC9710517 DOI: 10.1093/jmcb/mjac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/07/2022] [Accepted: 08/03/2022] [Indexed: 01/14/2023] Open
Abstract
Pancreatic β-cell dysfunction and insulin resistance are two of the major causes of type 2 diabetes (T2D). Recent clinical and experimental studies have suggested that the functional capacity of β-cells, particularly in the first phase of insulin secretion, is a primary contributor to the progression of T2D and its associated complications. Pancreatic β-cells undergo dynamic compensation and decompensation processes during the development of T2D, in which metabolic stresses such as endoplasmic reticulum stress, oxidative stress, and inflammatory signals are key regulators of β-cell dynamics. Dietary and exercise interventions have been shown to be effective approaches for the treatment of obesity and T2D, especially in the early stages. Whilst the targeted tissues and underlying mechanisms of dietary and exercise interventions remain somewhat vague, accumulating evidence has implicated the improvement of β-cell functional capacity. In this review, we summarize recent advances in the understanding of the dynamic adaptations of β-cell function in T2D progression and clarify the effects and mechanisms of dietary and exercise interventions on β-cell dysfunction in T2D. This review provides molecular insights into the therapeutic effects of dietary and exercise interventions on T2D, and more importantly, it paves the way for future research on the related underlying mechanisms for developing precision prevention and treatment of T2D.
Collapse
Affiliation(s)
- Chengan Lv
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuchen Sun
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China,Zhejiang University–University of Edinburgh Institute (ZJE), Zhejiang University, Haining 314400, China
| | - Zhe Yu Zhang
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zeyad Aboelela
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China,Bachelors of Surgery, Bachelors of Medicine (MBBS), Zhejiang University School of Medicine, Hangzhou 310003, China
| | | | | |
Collapse
|