1
|
Lin H, Liu J, Hou Y, Yu Z, Hong J, Yu J, Chen Y, Hu J, Xia D. Microneedle patch with pure drug tips for delivery of liraglutide: pharmacokinetics in rats and minipigs. Drug Deliv Transl Res 2025; 15:216-230. [PMID: 38619705 DOI: 10.1007/s13346-024-01582-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2024] [Indexed: 04/16/2024]
Abstract
Transdermal delivery of peptide drugs is almost impossible with conventional penetration enhancers because of epidermal barrier function. Microneedle (MN) patches can bypass the epidermal barrier and have been developed for trans- and intradermal delivery of peptide drugs and vaccines. However, dissolving MN patches are limited by low drug loading capacities due to their small size and admixture of drug and water-soluble excipients. Furthermore, few in vivo pharmacokinetic studies, especially in large animals such as pigs, have been performed to assess post-application systemic drug exposure. Here, we developed a dissolving MN patch with pure liraglutide at the needle tips. The MN patch could load up to 2.21 ± 0.14 mg of liraglutide in a patch size of 0.9 cm2, which was nearly two orders of magnitude higher than that obtained with conventional MN patches of the same size. Raman imaging confirmed that liraglutide was localized at the MN tips. The MN had sufficient mechanical strength to penetrate the epidermis and could deliver up to 0.93 ± 0.04 mg of liraglutide into skin with a dosing variability of less than 6.8%. The MN patch delivery enabled faster absorption of liraglutide than that provided by subcutaneous (S.C.) injection, and achieved relative bioavailability of 69.8% and 46.3% compared to S.C. injection in rats and minipigs, respectively. The MN patch also exhibited similar patterns of anti-hyperglycemic effect in diabetic rats and individual variability in pharmacokinetic parameters as S.C. injection. The liraglutide MN application was well tolerated; no skin irritation was observed in minipigs except for mild erythema occurring within 4 h after once daily administration for 7 days at the same site. Our preclinical study suggests that MN patch with pure drug needle tips might offer a safe and effective alternative to S.C. injection for administration of liraglutide.
Collapse
Affiliation(s)
- Hongbing Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jinbin Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yulin Hou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhiyan Yu
- Dongguan HEC Biopharmaceutical R&D Co., Ltd., Dongguan, China
| | - Juan Hong
- Dongguan HEC Biopharmaceutical R&D Co., Ltd., Dongguan, China
| | - Jianghong Yu
- Dongguan HEC Biopharmaceutical R&D Co., Ltd., Dongguan, China
| | - Yu Chen
- Dongguan HEC Biopharmaceutical R&D Co., Ltd., Dongguan, China
| | - Jingwen Hu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Dengning Xia
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
2
|
Chandrasekaran P, Weiskirchen R. The Role of Obesity in Type 2 Diabetes Mellitus-An Overview. Int J Mol Sci 2024; 25:1882. [PMID: 38339160 PMCID: PMC10855901 DOI: 10.3390/ijms25031882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Obesity or excessive weight gain is identified as the most important and significant risk factor in the development and progression of type 2 diabetes mellitus (DM) in all age groups. It has reached pandemic dimensions, making the treatment of obesity crucial in the prevention and management of type 2 DM worldwide. Multiple clinical studies have demonstrated that moderate and sustained weight loss can improve blood glucose levels, insulin action and reduce the need for diabetic medications. A combined approach of diet, exercise and lifestyle modifications can successfully reduce obesity and subsequently ameliorate the ill effects and deadly complications of DM. This approach also helps largely in the prevention, control and remission of DM. Obesity and DM are chronic diseases that are increasing globally, requiring new approaches to manage and prevent diabetes in obese individuals. Therefore, it is essential to understand the mechanistic link between the two and design a comprehensive approach to increase life expectancy and improve the quality of life in patients with type 2 DM and obesity. This literature review provides explicit information on the clinical definitions of obesity and type 2 DM, the incidence and prevalence of type 2 DM in obese individuals, the indispensable role of obesity in the pathophysiology of type 2 DM and their mechanistic link. It also discusses clinical studies and outlines the recent management approaches for the treatment of these associated conditions. Additionally, in vivo studies on obesity and type 2 DM are discussed here as they pave the way for more rigorous development of therapeutic approaches.
Collapse
Affiliation(s)
- Preethi Chandrasekaran
- UT Southwestern Medical Center Dallas, 5323 Harry Hines Blvd. ND10.504, Dallas, TX 75390-9014, USA
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH), University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|
3
|
Sourris KC, Ding Y, Maxwell SS, Al-Sharea A, Kantharidis P, Mohan M, Rosado CJ, Penfold SA, Haase C, Xu Y, Forbes JM, Crawford S, Ramm G, Harcourt BE, Jandeleit-Dahm K, Advani A, Murphy AJ, Timmermann DB, Karihaloo A, Knudsen LB, El-Osta A, Drucker DJ, Cooper ME, Coughlan MT. Glucagon-like peptide-1 receptor signaling modifies the extent of diabetic kidney disease through dampening the receptor for advanced glycation end products-induced inflammation. Kidney Int 2024; 105:132-149. [PMID: 38069998 DOI: 10.1016/j.kint.2023.09.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 01/07/2024]
Abstract
Glucagon like peptide-1 (GLP-1) is a hormone produced and released by cells of the gastrointestinal tract following meal ingestion. GLP-1 receptor agonists (GLP-1RA) exhibit kidney-protective actions through poorly understood mechanisms. Here we interrogated whether the receptor for advanced glycation end products (RAGE) plays a role in mediating the actions of GLP-1 on inflammation and diabetic kidney disease. Mice with deletion of the GLP-1 receptor displayed an abnormal kidney phenotype that was accelerated by diabetes and improved with co-deletion of RAGE in vivo. Activation of the GLP-1 receptor pathway with liraglutide, an anti-diabetic treatment, downregulated kidney RAGE, reduced the expansion of bone marrow myeloid progenitors, promoted M2-like macrophage polarization and lessened markers of kidney damage in diabetic mice. Single cell transcriptomics revealed that liraglutide induced distinct transcriptional changes in kidney endothelial, proximal tubular, podocyte and macrophage cells, which were dominated by pathways involved in nutrient transport and utilization, redox sensing and the resolution of inflammation. The kidney-protective action of liraglutide was corroborated in a non-diabetic model of chronic kidney disease, the subtotal nephrectomised rat. Thus, our findings identify a novel glucose-independent kidney-protective action of GLP-1-based therapies in diabetic kidney disease and provide a valuable resource for exploring the cell-specific kidney transcriptional response ensuing from pharmacological GLP-1R agonism.
Collapse
Affiliation(s)
- Karly C Sourris
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia; Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia.
| | - Yi Ding
- Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia; Diabetes Complications Research, Novo Nordisk, Måløv, Denmark
| | - Scott S Maxwell
- Epigenetics in Human Health and Disease Program, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Annas Al-Sharea
- Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Phillip Kantharidis
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Muthukumar Mohan
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Carlos J Rosado
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Sally A Penfold
- Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Claus Haase
- Diabetes Complications Research, Novo Nordisk, Måløv, Denmark
| | - Yangsong Xu
- Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Josephine M Forbes
- Mater Research Institute, the University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Simon Crawford
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Georg Ramm
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Brooke E Harcourt
- Murdoch Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Karin Jandeleit-Dahm
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michaels Hospital, Toronto, Ontario, Canada
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Anil Karihaloo
- Novo Nordisk Research Center Seattle, Inc., Seattle, Washington, USA
| | | | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mark E Cooper
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia; Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Parkville, Victoria, Australia.
| |
Collapse
|
4
|
Yagihashi S. Contribution of animal models to diabetes research: Its history, significance, and translation to humans. J Diabetes Investig 2023; 14:1015-1037. [PMID: 37401013 PMCID: PMC10445217 DOI: 10.1111/jdi.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 07/05/2023] Open
Abstract
Diabetes mellitus is still expanding globally and is epidemic in developing countries. The combat of this plague has caused enormous economic and social burdens related to a lowered quality of life in people with diabetes. Despite recent significant improvements of life expectancy in patients with diabetes, there is still a need for efforts to elucidate the complexities and mechanisms of the disease processes to overcome this difficult disorder. To this end, the use of appropriate animal models in diabetes studies is invaluable for translation to humans and for the development of effective treatment. In this review, a variety of animal models of diabetes with spontaneous onset in particular will be introduced and discussed for their implication in diabetes research.
Collapse
Affiliation(s)
- Soroku Yagihashi
- Department of Exploratory Medicine for Nature, Life and HumansToho University School of MedicineChibaJapan
- Department of PathologyHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
5
|
Swarbrick MM, Cox CL, Graham JL, Knudsen LB, Stanhope K, Raun K, Havel PJ. Growth hormone treatment does not augment the anti-diabetic effects of liraglutide in UCD-T2DM rats. Endocrinol Diabetes Metab 2022; 6:e392. [PMID: 36480511 PMCID: PMC9836246 DOI: 10.1002/edm2.392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The incretin hormone glucagon-like peptide-1 (GLP-1) slows gastric emptying, increases satiety and enhances insulin secretion. GLP-1 receptor agonists, such as liraglutide, are used therapeutically in humans to improve glycaemic control and delay the onset of type 2 diabetes mellitus (T2DM). In UCD-T2DM rats, a model of polygenic obesity and insulin resistance, we have previously reported that daily liraglutide administration delayed diabetes onset by >4 months. Growth hormone (GH) may exert anti-diabetic effects, including increasing β-cell mass and insulin secretion, while disrupting GH signalling in mice reduces both the size and number of pancreatic islets. We therefore hypothesized that GH supplementation would augment liraglutide's anti-diabetic effects. METHODS Male UCD-T2DM rats were treated daily with GH (0.3 mg/kg) and/or liraglutide (0.2 mg/kg) from 2 months of age. Control (vehicle) and food-restricted (with food intake matched to liraglutide-treated rats) groups were also studied. The effects of treatment on diabetes onset and weight gain were assessed, as well as measures of glucose tolerance, lipids and islet morphology. RESULTS Liraglutide treatment significantly reduced food intake and body weight and improved glucose tolerance and insulin sensitivity, relative to controls. After 4.5 months, none of the liraglutide-treated rats had developed T2DM (overall p = .019). Liraglutide-treated rats also displayed lower fasting triglyceride (TG) concentrations and lower hepatic TG content, compared to control rats. Islet morphology was improved in liraglutide-treated rats, with significantly increased pancreatic insulin content (p < .05 vs. controls). Although GH treatment tended to increase body weight (and gastrocnemius muscle weight), there were no obvious effects on diabetes onset or other diabetes-related outcomes. CONCLUSION GH supplementation did not augment the anti-diabetic effects of liraglutide.
Collapse
Affiliation(s)
- Michael M. Swarbrick
- Departments of Nutrition and Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisOne Shielad AvenueDavisCaliforniaUSA,Present address:
Bone Research Program, ANZAC Research InstituteThe University of SydneyConcordNew South WalesAustralia,Present address:
Concord Clinical School, Faculty of Medicine and HealthThe University of SydneyAustralia
| | - Chad L. Cox
- Departments of Nutrition and Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisOne Shielad AvenueDavisCaliforniaUSA
| | - James L. Graham
- Departments of Nutrition and Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisOne Shielad AvenueDavisCaliforniaUSA
| | | | - Kimber Stanhope
- Departments of Nutrition and Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisOne Shielad AvenueDavisCaliforniaUSA
| | | | - Peter J. Havel
- Departments of Nutrition and Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisOne Shielad AvenueDavisCaliforniaUSA
| |
Collapse
|
6
|
Nikolic D, Patti AM, Giglio RV, Chianetta R, Castellino G, Magán-Fernández A, Citarrella R, Papanas N, Janez A, Stoian AP, Rizvi AA, Rizzo M. Liraglutide Improved Cardiometabolic Parameters More in Obese than in Non-obese Patients with Type 2 Diabetes: A Real-World 18-Month Prospective Study. Diabetes Ther 2022; 13:453-464. [PMID: 35167051 PMCID: PMC8853434 DOI: 10.1007/s13300-022-01217-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION The glucagon-like peptide-1 agonist (GLP1-RA) liraglutide is currently approved for the treatment of both obesity and type 2 diabetes (T2DM). We investigated whether the effect of this agent on cardiometabolic parameters in subjects with T2DM varied in relation to the concomitant presence of obesity. METHODS One hundred thirty-five subjects (78 men and 57 women; age: 62 ± 10 years) naïve to incretin-based therapies were treated with low-dose liraglutide (1.2 mg/day) as an add-on to metformin for 18 months. Patients were divided into two subgroups based on their body-mass index (BMI): (a) obese (BMI ≥ 30) and (b) non-obese (BMI < 30). Clinical and laboratory analyses were assessed at baseline and every 6 months. RESULTS During follow-up, significant improvements were seen in both groups in fasting glycemia, glycated hemoglobin, waist circumference, and carotid intima-media thickness (cIMT), while body weight, BMI, total cholesterol, and low-density lipoprotein cholesterol decreased significantly in obese subjects only. Correlation analysis revealed that changes in subclinical atherosclerosis (assessed by cIMT) were associated with changes in triglycerides (r = 0.488, p < 0.0001) in the obese group only. CONCLUSION Liraglutide had beneficial actions on glycemic parameters and cardiometabolic risk factors in both non-obese and obese patients with T2DM, with a greater efficacy in the latter. These findings reinforce the benefits of liraglutide for the cardiometabolic outcomes of obese patients with T2DM in the real-world setting. This has critical importance during the current pandemic, since patients with diabetes and obesity are exposed globally to the most severe forms of COVID-19, related complications, and death. TRIAL REGISTRATION ClinicalTrials.gov identifier, NCT01715428.
Collapse
Affiliation(s)
- Dragana Nikolic
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| | - Angelo M Patti
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| | - Rosaria V Giglio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| | - Roberta Chianetta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| | - Giuseppa Castellino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| | - Antonio Magán-Fernández
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| | - Roberto Citarrella
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Andrej Janez
- Department of Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University Medical Centre Ljubljana, University of Ljubljana, Ljubljana, Slovenia
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine, Bucharest, Romania
| | - Ali A Rizvi
- Division of Endocrinology, Diabetes and Metabolism, University of South Carolina School of Medicine Columbia, Columbia, SC, USA
- Department of Medicine, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Palermo, Italy.
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine, Bucharest, Romania.
- Division of Endocrinology, Diabetes and Metabolism, University of South Carolina School of Medicine Columbia, Columbia, SC, USA.
| |
Collapse
|
7
|
Wang AN, Carlos J, Fraser GM, McGuire JJ. Zucker Diabetic Sprague Dawley rat (ZDSD): type 2 diabetes translational research model. Exp Physiol 2022; 107:265-282. [PMID: 35178802 PMCID: PMC9314054 DOI: 10.1113/ep089947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
New Findings What is the topic of this review? The Zucker Diabetic‐Sprague Dawley (ZDSD) rat is in the early adoption phase of use by researchers in the fields of diabetes, including prediabetes, obesity and metabolic syndrome. It is essential that physiology researchers choose preclinical models that model human type 2 diabetes appropriately and are aware of the limitations on experimental design. What advances does it highlight? Our review of the scientific literature finds that although sex, age and diets contribute to variability, the ZDSD phenotype and disease progression model the characteristics of humans who have prediabetes and diabetes, including co‐morbidities.
Abstract Type 2 diabetes (T2D) is a prevalent disease and a significant concern for global population health. For persons with T2D, clinical treatments target not only the characteristics of hyperglycaemia and insulin resistance, but also co‐morbidities, such as obesity, cardiovascular and renal disease, neuropathies and skeletal bone conditions. The Zucker Diabetic‐Sprague Dawley (ZDSD) rat is a rodent model developed for experimental studies of T2D. We reviewed the scientific literature to highlight the characteristics of T2D development and the associated phenotypes, such as metabolic syndrome, cardiovascular complications and bone and skeletal pathologies in ZDSD rats. We found that ZDSD phenotype characteristics are independent of leptin receptor signalling. The ZDSD rat develops prediabetes, then progresses to overt diabetes that is accelerated by introduction of a timed high‐fat diet. In male ZDSD rats, glycated haemoglobin (HbA1c) increases at a constant rate from 7 to >30 weeks of age. Diabetic ZDSD rats are moderately hypertensive compared with other rat strains. Diabetes in ZDSD rats leads to endothelial dysfunction in specific vasculatures, impaired wound healing, decreased systolic and diastolic cardiac function, neuropathy and nephropathy. Changes to bone composition and the skeleton increase the risk of bone fractures. Zucker Diabetic‐Sprague Dawley rats have not yet achieved widespread use by researchers. We highlight sex‐related differences in the ZDSD phenotype and gaps in knowledge for future studies. Overall, scientific data support the premise that the phenotype and disease progression in ZDSD rats models the characteristics in humans. We conclude that ZDSD rats are an advantageous model to advance understanding and discovery of treatments for T2D through preclinical research.
Collapse
Affiliation(s)
- Andrea N Wang
- Departments of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Joselia Carlos
- Departments of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Graham M Fraser
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland, Canada
| | - John J McGuire
- Departments of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
8
|
Lipoproteins and Cardiovascular Disease: An Update on the Clinical Significance of Atherogenic Small, Dense LDL and New Therapeutical Options. Biomedicines 2021; 9:biomedicines9111579. [PMID: 34829807 PMCID: PMC8615620 DOI: 10.3390/biomedicines9111579] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
Dyslipidemia is a potent risk factor for the genesis and progression of cardiovascular disease (CVD), and both the concentration and type of low-density lipoproteins (LDL) augment this association. The small, dense LDL (sdLDL) subfraction is the subtype which is most strongly predictive of atherosclerosis and cardiovascular events. In addition to the traditionally available lipid-lowering treatment options, certain novel therapies have been shown to favorably impact sdLDL, among them the antidiabetic class of agents known as glucagon-like peptide 1 receptor agonists (GLP1-RAs). These drugs seem to alter the pathophysiologic mechanisms responsible for the formation and accumulation of atherogenic lipoprotein particles, thus potentially reducing cardiovascular outcomes. They represent a uniquely targeted therapeutic approach to reduce cardiometabolic risk and warrant further study for their beneficial nonglycemic actions.
Collapse
|
9
|
Rodgers M, Migdal AL, Rodríguez TG, Chen ZZ, Nath AK, Gerszten RE, Kasid N, Toschi E, Tripaldi J, Heineman B, Phan M, Ngo L, Maratos-Flier E, Dushay J. Weight Loss Outcomes Among Early High Responders to Exenatide Treatment: A Randomized, Placebo Controlled Study in Overweight and Obese Women. Front Endocrinol (Lausanne) 2021; 12:742873. [PMID: 34867786 PMCID: PMC8635796 DOI: 10.3389/fendo.2021.742873] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE As there is significant heterogeneity in the weight loss response to pharmacotherapy, one of the most important clinical questions in obesity medicine is how to predict an individual's response to pharmacotherapy. The present study examines patterns of weight loss among overweight and obese women who demonstrated early robust response to twice daily exenatide treatment compared to those treated with hypocaloric diet and matched placebo injections. METHODS We randomized 182 women (BMI 25-48 kg/m2) to treatment with exenatide alone or matched placebo injections plus hypocaloric diet. In both treatment groups, women who demonstrated ≥ 5% weight loss at 12 weeks were characterized as high responders and those who lost ≥10% of body weight were classified as super responders. Our primary outcome was long-term change in body weight among early high responders to either treatment. An exploratory metabolomic analysis was also performed. RESULTS We observed individual variability in weight loss with both exenatide and hypocaloric diet plus placebo injections. There was a trend toward a higher percentage of subjects who achieved ≥ 5% weight loss with exenatide compared to diet (56% of those treated with exenatide, 76% of those treated with diet, p = 0.05) but no significant difference in those who achieved ≥ 10% weight loss (23% of individuals treated with exenatide and 36% of those treated with diet, p = 0.55). In both treatment groups, higher weight loss at 3 months of treatment predicted super responder status (diet p=0.0098, exenatide p=0.0080). Both treatment groups also demonstrated similar peak weight loss during the study period. We observed lower cysteine concentrations in the exenatide responder group (0.81 vs 0.48 p < 0.0001) and a trend toward higher levels of serotonin, aminoisobutyric acid, anandamide, and sarcosine in the exenatide super responder group. CONCLUSION In a population of early high responders, longer term weight loss with exenatide treatment is similar to that achieved with a hypocaloric diet. CLINICAL TRIAL REGISTRATION www.clinicaltrialsgov, identifier NCT01590433.
Collapse
|
10
|
Hui C, Tomilov A, Garcia C, Jiang X, Fash DM, Khdour OM, Rosso C, Filippini G, Prato M, Graham J, Hecht S, Havel P, Cortopassi G. Novel idebenone analogs block Shc's access to insulin receptor to improve insulin sensitivity. Biomed Pharmacother 2020; 132:110823. [PMID: 33045613 DOI: 10.1016/j.biopha.2020.110823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 10/23/2022] Open
Abstract
There has been little innovation in identifying novel insulin sensitizers. Metformin, developed in the 1920s, is still used first for most Type 2 diabetes patients. Mice with genetic reduction of p52Shc protein have improved insulin sensitivity and glucose tolerance. By high-throughput screening, idebenone was isolated as the first small molecule 'Shc Blocker'. Idebenone blocks p52Shc's access to Insulin Receptor to increase insulin sensitivity. In this work the avidity of 34 novel idebenone analogs and 3 metabolites to bind p52Shc, and to block the interaction of p52Shc with the Insulin receptor was tested. Our hypothesis was that if an idebenone analog bound and blocked p52Shc's access to insulin receptor better than idebenone, it should be a more effective insulin sensitizing agent than idebenone itself. Of 34 analogs tested, only 2 both bound p52Shc more tightly and/or blocked the p52Shc-Insulin Receptor interaction more effectively than idebenone. Of those 2 only idebenone analog #11 was a superior insulin sensitizer to idebenone. Also, the long-lasting insulin-sensitizing potency of idebenone in rodents over many hours had been puzzling, as the parent molecule degrades to metabolites within 1 h. We observed that two of the idebenone's three metabolites are insulin sensitizing almost as potently as idebenone itself, explaining the persistent insulin sensitization of this rapidly metabolized molecule. These results help to identify key SAR = structure-activity relationship requirements for more potent small molecule Shc inhibitors as Shc-targeted insulin sensitizers for type 2 diabetes.
Collapse
Affiliation(s)
- ChunKiu Hui
- Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., VM3B, UC Davis, CA, 95616, USA.
| | - Alexey Tomilov
- Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., VM3B, UC Davis, CA, 95616, USA.
| | - Chase Garcia
- Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., VM3B, UC Davis, CA, 95616, USA.
| | - XiaoSong Jiang
- Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., VM3B, UC Davis, CA, 95616, USA.
| | - David M Fash
- Center for BioEnergetics, Biodesign Institute, Arizona State University, 1001 S McAllister Ave, Tempe, AZ, 85287, USA.
| | - Omar M Khdour
- Center for BioEnergetics, Biodesign Institute, Arizona State University, 1001 S McAllister Ave, Tempe, AZ, 85287, USA.
| | - Cristian Rosso
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy.
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy.
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy; Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014, Donostia San Sebastián, Spain; Basque Fdn Sci, Ikerbasque, Bilbao, 48013, Spain.
| | - James Graham
- Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., VM3B, UC Davis, CA, 95616, USA.
| | - Sidney Hecht
- Center for BioEnergetics, Biodesign Institute, Arizona State University, 1001 S McAllister Ave, Tempe, AZ, 85287, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| | - Peter Havel
- Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., VM3B, UC Davis, CA, 95616, USA.
| | - Gino Cortopassi
- Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., VM3B, UC Davis, CA, 95616, USA.
| |
Collapse
|
11
|
Briand F, Brousseau E, Maupoint J, Dubroca C, Costard C, Breyner N, Burcelin R, Sulpice T. Liraglutide shows superior cardiometabolic benefits than lorcaserin in a novel free choice diet-induced obese rat model. Eur J Pharmacol 2020; 882:173316. [DOI: 10.1016/j.ejphar.2020.173316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022]
|
12
|
Waterman C, Graham JL, Arnold CD, Stanhope KL, Tong JH, Jaja-Chimedza A, Havel PJ. Moringa Isothiocyanate-rich Seed Extract Delays the Onset of Diabetes in UC Davis Type-2 Diabetes Mellitus Rats. Sci Rep 2020; 10:8861. [PMID: 32483245 PMCID: PMC7264139 DOI: 10.1038/s41598-020-65722-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 05/07/2020] [Indexed: 12/27/2022] Open
Abstract
Moringa seeds have been used traditionally in the management of type 2 diabetes mellitus (T2DM) and contain potent bioactive isothiocyanates. This study evaluated the efficacy of an isothiocyanate-rich moringa seed extract in delaying the onset of T2DM in UC Davis T2DM rats, a well validated model which closely mimics T2DM in humans. Rats were separated into three groups; control, moringa seed extract at 0.4%, and a weight matched group. Rats were fed respective diets for 8 months, during which energy intake, body weight, the onset of diabetes circulating hormones, metabolites and markers of inflammation and liver function, and were monitored. The MS group had a significantly slower rate of diabetes onset p = 0.027), lower plasma glucose (p = 0.043), and lower HbA1c (p = 0.008) compared with CON animals. There were no significant differences in food intake and body weight between all groups. This study demonstrated MS can delay the onset of diabetes in the UC Davis T2DM rat model to a greater extent than moderate caloric restriction (by comparison to the WM group). The results support its documented traditional uses and a bioactive role of moringa isothiocyanates and suggest the potential efficacy for moringa supplementation for diabetes management in populations at risk for T2DM.
Collapse
Affiliation(s)
- Carrie Waterman
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA.
| | - James L Graham
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA.,Department of Molecular Biosciences, School of Veterinary Medicine, UC, Davis, USA
| | - Charles D Arnold
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Kimber L Stanhope
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Jason H Tong
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Asha Jaja-Chimedza
- Department of Plant Biology, Rutgers University, 59 Dudley Rd, New Brunswick, NJ, 08901, USA
| | - Peter J Havel
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA.,Department of Molecular Biosciences, School of Veterinary Medicine, UC, Davis, USA
| |
Collapse
|
13
|
Mesenteric arterial dysfunction in the UC Davis Type 2 Diabetes Mellitus rat model is dependent on pre-diabetic versus diabetic status and is sexually dimorphic. Eur J Pharmacol 2020; 879:173089. [PMID: 32320701 DOI: 10.1016/j.ejphar.2020.173089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 01/27/2023]
Abstract
Previous reports suggest that diabetes may differentially affect the vascular beds of females and males. However, there is insufficient evidence to establish the timeline of the vascular dysfunction in diabetes, specifically in relation to sex. Here, we determined whether mesenteric arterial function is altered in UC Davis Type-2 Diabetes Mellitus (UCD-T2DM) rats and if this occurs as early as the pre-diabetic stage of the disease. Specifically, we investigated whether vascular dysfunction differs between pre-diabetic or diabetic status and if this varies by sex. We measured the responses to endothelium-dependent and -independent vasorelaxant as well as vasoconstrictor agents and explored the potential mechanisms involved in sex-specific development of arterial dysfunction in UCD-T2DM rats. In addition, indices of insulin sensitivity were assessed. We report the reduced insulin sensitivity in pre-diabetic males and diabetic females. Vascular relaxation to acetylcholine was impaired to a greater extent in mesenteric artery from males in the pre-diabetic stage than in their female counterparts. In contrast, the arteries from females with diabetes exhibited a greater impairment to acetylcholine compared with diabetic males. Additionally, the sensitivity of mesenteric artery to contractile agents in females, but not in males, after the onset of diabetes was increased. Our data suggest that the reduced insulin sensitivity through AKT may predispose vessels to injury in the pre-diabetic stage in males. On the other hand, reduced insulin sensitivity as well as enhanced responsiveness to contractile agents may predispose arteries to injury in the diabetic stage in females.
Collapse
|
14
|
Papaetis GS. Liraglutide Therapy in a Prediabetic State: Rethinking the Evidence. Curr Diabetes Rev 2020; 16:699-715. [PMID: 31886752 DOI: 10.2174/1573399816666191230113446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/20/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Prediabetes is defined as a state of glucose metabolism between normal glucose tolerance and type 2 diabetes. Continuous β-cell failure and death are the reasons for the evolution from normal glucose tolerance to prediabetes and finally type 2 diabetes. INTRODUCTION The necessity of new therapeutic approaches in order to prevent or delay the development of type 2 diabetes is obligatory. Liraglutide, a long-acting GLP-1 receptor agonist, has 97% homology for native GLP-1. Identification of the trophic and antiapoptotic properties of liraglutide in preclinical studies, together with evidence of sustained β-cell function longevity during its administration in type 2 diabetes individuals, indicated its earliest possible administration during this disease, or even before its development, so as to postpone or delay its onset. METHODS Pubmed and Google databases have been thoroughly searched and relevant studies were selected. RESULTS This paper explores the current evidence of liraglutide administration both in humans and animal models with prediabetes. Also, it investigates the safety profile of liraglutide treatment and its future role to postpone or delay the evolution of type 2 diabetes. CONCLUSION Liralgutide remains a valuable tool in our therapeutic armamentarium for individuals who are overweight or obese and have prediabetes. Future well designed studies will give valuable information that will help clinicians to stratify individuals who will derive the most benefit from this agent, achieving targeted therapeutic strategies.
Collapse
Affiliation(s)
- Georgios S Papaetis
- Internal Medicine and Diabetes Clinic, Eleftherios Venizelos Avenue 62, Paphos, Cyprus
| |
Collapse
|
15
|
Knudsen LB. Inventing Liraglutide, a Glucagon-Like Peptide-1 Analogue, for the Treatment of Diabetes and Obesity. ACS Pharmacol Transl Sci 2019; 2:468-484. [PMID: 32259078 DOI: 10.1021/acsptsci.9b00048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Indexed: 01/08/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) has been in focus since the early 1980s as a long looked for incretin hormone, released from the gastrointestinal tract and with an important effect on glucose-dependent insulin secretion, providing efficient glucose lowering, with little risk for hypoglycemia. The enzyme dipeptidyl peptidase-4 (DPP-4) degrades GLP-1 very fast, and the remaining metabolite is cleared rapidly by the kidneys. Liraglutide is a fatty acid acylated analogue of GLP-1 that provides efficacy for 24 h/day. The mechanism of action for liraglutide is reviewed in detail with focus on pancreatic efficacy and safety, thyroid safety, and weight loss mechanism. Evolving science hypothesizes that GLP-1 has important effects on atherosclerosis, relevant for the cardiovascular benefit seen in the treatment of diabetes and obesity. Also, GLP-1 may be relevant in neurodegenerative diseases.
Collapse
Affiliation(s)
- Lotte Bjerre Knudsen
- Global Drug Discovery, Novo Nordisk, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| |
Collapse
|
16
|
Ding M, Fang QH, Cui YT, Shen QL, Liu Q, Wang PH, Yu DM, Li CJ. Liraglutide prevents β-cell apoptosis via inactivation of NOX2 and its related signaling pathway. J Diabetes Complications 2019; 33:267-277. [PMID: 30772113 DOI: 10.1016/j.jdiacomp.2018.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/20/2018] [Accepted: 12/26/2018] [Indexed: 01/01/2023]
Abstract
AIMS High glucose (HG)-induced pancreatic β-cell apoptosis may be a major contributor to the progression of diabetes mellitus (DM). NADPH oxidase (NOX2) has been considered a crucial regulator in β-cell apoptosis. This study was designed to evaluate the impact of GLP-1 receptor agonist (GLP-1Ra) liraglutide on pancreatic β-cell apoptosis in diabetes and the underlying mechanisms involved. METHODS The diabetic rat models induced by streptozotocin (STZ) and a high fat diet (HFD) received 12 weeks of liraglutide treatment. Hyperglycemic clamp test was carried out to evaluate β-cell function in vivo. Flow cytometry analysis was used to measure apoptosis rates in vitro. DCFH-DA method was used to detected ROS level in vivo and in vitro. RESULTS Liraglutide significantly improved islet function and morphology in diabetic rats and decreased cell apoptosis rates. Thr183/Thr185 p-JNK1/2 and NOX2 levels reduced in diabetic rats and HG-induced INS-1 cell following liraglutide treatment. In addition, liraglutide upregulated the phosphorylation of AMPKα (p-AMPKα), which prevented NOX2 activation and alleviated HG-induced β-cell apoptosis. CONCLUSION The p-AMPKα/NOX2/JNK1/2 pathway is essential for liraglutide to attenuate HG-induced β-cell apoptosis, which further proves that GLP-1Ras may become promising therapeutics for diabetes mellitus.
Collapse
Affiliation(s)
- Min Ding
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin 300070, PR China
| | - Qian-Hua Fang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin 300070, PR China
| | - Yuan-Tao Cui
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin 300070, PR China
| | - Qi-Ling Shen
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin 300070, PR China
| | - Qian Liu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin 300070, PR China
| | - Peng-Hua Wang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin 300070, PR China
| | - De-Min Yu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin 300070, PR China.
| | - Chun-Jun Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin 300070, PR China.
| |
Collapse
|
17
|
Yaribeygi H, Simental-Mendía LE, Barreto GE, Sahebkar A. Metabolic effects of antidiabetic drugs on adipocytes and adipokine expression. J Cell Physiol 2019; 234:16987-16997. [PMID: 30825205 DOI: 10.1002/jcp.28420] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/05/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022]
Abstract
Several classes of antidiabetic agents have been developed that achieve their hypoglycemic outcomes via various molecular mechanisms. Adipose tissue is a major metabolic and energy-storing tissue and plays an important role in many metabolic pathways, including insulin signaling and insulin sensitivity. Adipose tissue monitors and regulates whole body homeostasis via production and release of potent proteins, such as adipokine and adiponectin, into the circulation. Therefore, any agent that can modulate adipocyte metabolism can, in turn, affect metabolic and glucose homeostatic pathways. Antidiabetic drugs are not only recognized primarily as hypoglycemic agents but may also alter adipose tissue itself, as well as adipocyte-derived adipokine expression and secretion. In the current review, we present the major evidence concerning routinely used antidiabetic agents on adipocyte metabolism and adipokine expression.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Luis E Simental-Mendía
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, México, México
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Li Z, Yang P, Liang Y, Xia N, Li Y, Su H, Pan H. Effects of liraglutide on lipolysis and the AC3/PKA/HSL pathway. Diabetes Metab Syndr Obes 2019; 12:1697-1703. [PMID: 31564937 PMCID: PMC6732560 DOI: 10.2147/dmso.s216455] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/29/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Liraglutide reduces blood glucose, body weight and blood lipid levels. Hormone-sensitive lipase (HSL) is a key enzyme in lipolysis. Evidence from our and other studies have demonstrated that adenylate cyclase 3 (AC3) is associated with obesity and can be upregulated by liraglutide in obese mice. In the present study, we investigated whether hepatic HSL activity is regulated by liraglutide and characterized the effect of liraglutide in the AC3/protein kinase A (PKA)/HSL signalling pathway. METHODS Obese mice or their lean littermates were treated with liraglutide or saline for 8 weeks. Serum was collected for the measurement of insulin and lipids. We investigated hepatic AC3, HSL and phosphorylated HSL Ser-660 (p-HSL(S660)) protein expression levels andAC3 and HSL mRNA expression levels and cyclic adenosine monophosphate (cAMP), PKA activity in liver tissue. RESULTS Liraglutide treatment decreased triglycerides (TGs) and free fatty acids (FFAs), increased glycerol, and upregulated hepatic AC3 and p-HSL(s660) levels and cAMP and PKA activities. CONCLUSION The results suggest that liraglutide can upregulates AC3/PKA/HSL pathway and may promotes lipolysis.
Collapse
Affiliation(s)
- Zhengming Li
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Pijian Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People’s Republic of China
| | - Yuzhen Liang
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
- Correspondence: Yuzhen LiangDepartment of Endocrinology and Metabolism, Second Affiliated Hospital of Guangxi Medical University, Nanning530007, People’s Republic of China Email
| | - Ning Xia
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People’s Republic of China
- Ning XiaDepartment of Endocrinology and Metabolism, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning530021, People’s Republic of China Email
| | - Yingrong Li
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Hongye Su
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Hailin Pan
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| |
Collapse
|
19
|
Piccolo BD, Graham JL, Stanhope KL, Nookaew I, Mercer KE, Chintapalli SV, Wankhade UD, Shankar K, Havel PJ, Adams SH. Diabetes-associated alterations in the cecal microbiome and metabolome are independent of diet or environment in the UC Davis Type 2 Diabetes Mellitus Rat model. Am J Physiol Endocrinol Metab 2018; 315:E961-E972. [PMID: 30016149 PMCID: PMC6293161 DOI: 10.1152/ajpendo.00203.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/02/2018] [Accepted: 07/12/2018] [Indexed: 01/04/2023]
Abstract
The composition of the gut microbiome is altered in obesity and type 2 diabetes; however, it is not known whether these alterations are mediated by dietary factors or related to declines in metabolic health. To address this, cecal contents were collected from age-matched, chow-fed male University of California, Davis Type 2 Diabetes Mellitus (UCD-T2DM) rats before the onset of diabetes (prediabetic PD; n = 15), 2 wk recently diabetic (RD; n = 10), 3 mo (D3M; n = 11), and 6 mo (D6M; n = 8) postonset of diabetes. Bacterial species and functional gene counts were assessed by shotgun metagenomic sequencing of bacterial DNA in cecal contents, while metabolites were identified by gas chromatography-quadrupole time-off-flight-mass spectrometry. Metagenomic analysis showed a shift from Firmicutes species in early stages of diabetes (PD + RD) toward an enrichment of Bacteroidetes species in later stages of diabetes (D3M + D6M). In total, 45 bacterial species discriminated early and late stages of diabetes with 25 of these belonging to either Bacteroides or Prevotella genera. Furthermore, 61 bacterial gene clusters discriminated early and later stages of diabetes with elevations of enzymes related to stress response (e.g., glutathione and glutaredoxin) and amino acid, carbohydrate, and bacterial cell wall metabolism. Twenty-five cecal metabolites discriminated early vs. late stages of diabetes, with the largest differences observed in abundances of dehydroabietic acid and phosphate. Alterations in the gut microbiota and cecal metabolome track diabetes progression in UCD-T2DM rats when controlling for diet, age, and housing environment. Results suggest that diabetes-specific host signals impact the ecology and end product metabolites of the gut microbiome when diet is held constant.
Collapse
Affiliation(s)
- Brian D Piccolo
- Arkansas Children's Nutrition Center , Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Science , Little Rock, Arkansas
| | - James L Graham
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California , Davis, California
- Department of Nutrition, University of California , Davis, California
| | - Kimber L Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California , Davis, California
- Department of Nutrition, University of California , Davis, California
| | - Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | - Kelly E Mercer
- Arkansas Children's Nutrition Center , Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Science , Little Rock, Arkansas
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center , Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Science , Little Rock, Arkansas
| | - Umesh D Wankhade
- Arkansas Children's Nutrition Center , Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Science , Little Rock, Arkansas
| | - Kartik Shankar
- Arkansas Children's Nutrition Center , Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Science , Little Rock, Arkansas
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California , Davis, California
- Department of Nutrition, University of California , Davis, California
| | - Sean H Adams
- Arkansas Children's Nutrition Center , Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Science , Little Rock, Arkansas
| |
Collapse
|
20
|
Moustafa PE, Abdelkader NF, El Awdan SA, El-Shabrawy OA, Zaki HF. Liraglutide ameliorated peripheral neuropathy in diabetic rats: Involvement of oxidative stress, inflammation and extracellular matrix remodeling. J Neurochem 2018; 146:173-185. [DOI: 10.1111/jnc.14336] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 12/24/2022]
Affiliation(s)
| | - Noha F. Abdelkader
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Cairo University; Cairo Egypt
| | | | | | - Hala F. Zaki
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Cairo University; Cairo Egypt
| |
Collapse
|
21
|
Boye KS, Botros FT, Haupt A, Woodward B, Lage MJ. Glucagon-Like Peptide-1 Receptor Agonist Use and Renal Impairment: A Retrospective Analysis of an Electronic Health Records Database in the U.S. Population. Diabetes Ther 2018; 9:637-650. [PMID: 29460259 PMCID: PMC6104268 DOI: 10.1007/s13300-018-0377-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION The study characterizes the use of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) in patients with type 2 diabetes (T2D) with and without renal impairment and examines the effects of such use on the clinical outcomes of estimated glomerular filtration rate (eGFR) and glycated hemoglobin (A1c). METHODS Data from the Practice Fusion electronic health records database from 1 January 2012 through 30 April 2015 were used. Adults with T2D who received serum creatinine laboratory tests and initiated therapy with a GLP-1 RA (N = 3225) or other glucose-lowering agent (GLA) (N = 37,074) were included in the analysis. The GLP-1 RA cohort was matched to cohorts initiating therapy any other GLA, and multivariable analyses examined the association between GLP-1 RA use and changes in eGFR or A1c at 1 year after therapy initiation. RESULTS In this study, only 5.7% of patients with an eGFR of < 30 and ≥ 15 mL/min/1.73 m2 and 3.6% of patients with an eGFR of < 15 mL/min/1.73 m2 initiated therapy with a GLP-1 RA. Compared to other GLAs, at 1-year after initiation of therapy the use of a GLP-1 RA was associated with a significantly smaller decline in eGFR (- 0.80 vs. - 1.03 mL/min/1.73 m2; P = 0.0005), a significantly smaller likelihood of having a ≥ 30% reduction in eGFR (2.19 vs. 3.14%; P < 0.0001), and a significantly larger reduction in A1c (- 0.48 vs. - 0.43; P = 0.0064). CONCLUSION In clinical practice, the use of GLP-1 RAs in patients with a higher degree of renal impairment disease was limited. Compared to other GLAs, the use of GLP-1 RAs was associated with a significantly smaller decline in eGFR and a larger reduction in A1c over the 1 year following therapy initiation. FUNDING Eli Lilly and Company.
Collapse
Affiliation(s)
- Kristina S Boye
- Global Patient Outcomes and Real World Evidence, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Fady T Botros
- Diabetes, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Axel Haupt
- Early Phase Clinical Research-Diabetes and Complications, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Brad Woodward
- Diabetes, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Maureen J Lage
- HealthMetrics Outcomes Research, 27576 River Reach Drive, Bonita Springs, FL, 34134, USA.
| |
Collapse
|
22
|
Kleinert M, Clemmensen C, Hofmann SM, Moore MC, Renner S, Woods SC, Huypens P, Beckers J, de Angelis MH, Schürmann A, Bakhti M, Klingenspor M, Heiman M, Cherrington AD, Ristow M, Lickert H, Wolf E, Havel PJ, Müller TD, Tschöp MH. Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol 2018; 14:140-162. [PMID: 29348476 DOI: 10.1038/nrendo.2017.161] [Citation(s) in RCA: 547] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
More than one-third of the worldwide population is overweight or obese and therefore at risk of developing type 2 diabetes mellitus. In order to mitigate this pandemic, safer and more potent therapeutics are urgently required. This necessitates the continued use of animal models to discover, validate and optimize novel therapeutics for their safe use in humans. In order to improve the transition from bench to bedside, researchers must not only carefully select the appropriate model but also draw the right conclusions. In this Review, we consolidate the key information on the currently available animal models of obesity and diabetes and highlight the advantages, limitations and important caveats of each of these models.
Collapse
Affiliation(s)
- Maximilian Kleinert
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Christoffer Clemmensen
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Susanna M Hofmann
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Ziemssenstr. 1, D-80336 Munich, Germany
| | - Mary C Moore
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, USA
| | - Simone Renner
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilan University München, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Stephen C Woods
- University of Cincinnati College of Medicine, Department of Psychiatry and Behavioral Neuroscience, Metabolic Diseases Institute, 2170 East Galbraith Road, Cincinnati, Ohio 45237, USA
| | - Peter Huypens
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Technische Universität München, Chair of Experimental Genetics, D-85354 Freising, Germany
| | - Martin Hrabe de Angelis
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Technische Universität München, Chair of Experimental Genetics, D-85354 Freising, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Mostafa Bakhti
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, Technische Universität München, TUM School of Life Sciences Weihenstephan, Gregor-Mendel-Str. 2, D-85354 Freising, Germany
- Else Kröner-Fresenius Center for Nutritional Medicine, Technische Universität München, D-85354 Freising, Germany
- Institute for Food & Health, Technische Universität München, D-85354 Freising, Germany
| | - Mark Heiman
- MicroBiome Therapeutics, 1316 Jefferson Ave, New Orleans, Louisiana 70115, USA
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, USA
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, CH-8603 Zurich-Schwerzenbach, Switzerland
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Eckhard Wolf
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilan University München, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, 3135 Meyer Hall, University of California, Davis, California 95616-5270, USA
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| |
Collapse
|
23
|
Koska J, Lopez L, D'Souza K, Osredkar T, Deer J, Kurtz J, Salbe AD, Harman SM, Reaven PD. Effect of liraglutide on dietary lipid-induced insulin resistance in humans. Diabetes Obes Metab 2018; 20:69-76. [PMID: 28605158 DOI: 10.1111/dom.13037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/01/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022]
Abstract
AIMS To test whether liraglutide suppresses postprandial elevations in lipids and thus protects against high saturated fatty acid (SFA) diet-induced insulin resistance. METHODS In a randomized placebo-controlled crossover study, 32 participants with normal or mildly impaired glucose tolerance received liraglutide and placebo for 3 weeks each. Insulin suppression tests (IST) were conducted at baseline and after a 24-hour SFA-enriched diet after each treatment. Plasma glucose, insulin, triglycerides and non-esterified fatty acids (NEFA) were measured over the initial 8 hours (breakfast and lunch) on the SFA diet. A subset of participants underwent ex vivo measurements of insulin-mediated vasodilation of adipose tissue arterioles and glucose metabolism regulatory proteins in skeletal muscle. RESULTS Liraglutide reduced plasma glucose, triglycerides and NEFA concentrations during the SFA diet (by 50%, 25% and 9%, respectively), and the SFA diet increased plasma glucose during the IST (by 36%; all P < .01 vs placebo). The SFA diet-induced impairment of vasodilation on placebo (-9.4% vs baseline; P < .01) was ameliorated by liraglutide (-4.8%; P = .1 vs baseline). In skeletal muscle, liraglutide abolished the SFA-induced increase in thioredoxin-interacting protein (TxNIP) expression (75% decrease; P < .01 vs placebo) and increased 5'AMP-activated protein kinase (AMPK) phosphorylation (50% vs -3%; P = .04 vs placebo). CONCLUSIONS Liraglutide blunted the SFA-enriched diet-induced peripheral insulin resistance. This effect may be related to improved microvascular function and modulation of TxNIP and AMPK pathways in skeletal muscle.
Collapse
Affiliation(s)
- Juraj Koska
- Phoenix VA Health Care System, Phoenix, Arizona
| | | | | | | | - James Deer
- Phoenix VA Health Care System, Phoenix, Arizona
| | - Julie Kurtz
- Phoenix VA Health Care System, Phoenix, Arizona
| | | | - Sherman M Harman
- Phoenix VA Health Care System, Phoenix, Arizona
- Kronos Longevity Research Institute, Phoenix, Arizona
| | | |
Collapse
|
24
|
Ji WW, Yu DA, Fan M, You M, Lu Y, Li EB, Xie N, Yan SS. Effects of GW002, a novel recombinant human glucagon-like peptide-1 (GLP-1) analog fusion protein, on CHO recombinant cells and BKS-db mice. Acta Diabetol 2017; 54:685-693. [PMID: 28424924 DOI: 10.1007/s00592-017-0992-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/03/2017] [Indexed: 12/17/2022]
Abstract
AIMS GLP-1-based strategies have many advantages in treatment of type 2 diabetes mellitus (T2DM), but native GLP-1 has a short half-life in the circulation, which limits its clinical application. The purpose of this study was to evaluate the effects of GW002, a novel recombinant GLP-1 analog fusion protein produced by linking the human GLP-1 analog C-terminus to the N-terminus of human serum albumin via a linker, in vitro and in BKS-db mice. METHODS To determine whether GW002 can activate the GLP-1 receptor in cells, the level of luciferase expression was evaluated in vitro. In vivo, body weight, food intake, non-fasting and fasting blood glucose, oral glucose tolerance test, blood glucose and insulin levels, liver histology, liver function parameters and antibody levels in BKS-db mice were investigated to evaluate the effects of GW002. Albiglutide was chosen as a positive comparator. RESULTS Cyclic adenosine monophosphate levels were increased in a dose-dependent manner in cells. In vivo studies demonstrated that GW002 lowers non-fasting and fasting blood glucose levels and improves glucose tolerance and insulin secretion in BKS-db mice. The degree of hepatic steatosis and hepatic biochemical indexes was also decreased. In this study, the mice body weight was not reduced significantly. CONCLUSIONS The above results showed that the efficacy of GW002 in BKS-db mice displayed a significant hypoglycemic effect, which indicated that GW002 might be a potential candidate for the treatment of T2DM.
Collapse
Affiliation(s)
- Wan-Wan Ji
- Jiangsu T-mab BioPharma Co., Ltd, G03, 1# Yao-Cheng Avenue, Taizhou, Jiangsu, People's Republic of China
| | - Dong-An Yu
- Jiangsu T-mab BioPharma Co., Ltd, G03, 1# Yao-Cheng Avenue, Taizhou, Jiangsu, People's Republic of China
| | - Min Fan
- Jiangsu T-mab BioPharma Co., Ltd, G03, 1# Yao-Cheng Avenue, Taizhou, Jiangsu, People's Republic of China
| | - Meng You
- Jiangsu T-mab BioPharma Co., Ltd, G03, 1# Yao-Cheng Avenue, Taizhou, Jiangsu, People's Republic of China
| | - You Lu
- Jiangsu T-mab BioPharma Co., Ltd, G03, 1# Yao-Cheng Avenue, Taizhou, Jiangsu, People's Republic of China
| | - Er-Bing Li
- Nanjing Biomedical Research Institute of Nanjing University, 12#, Xue-Fu Road, Nanjing, Jiangsu, People's Republic of China
| | - Ning Xie
- Jiangsu T-mab BioPharma Co., Ltd, G03, 1# Yao-Cheng Avenue, Taizhou, Jiangsu, People's Republic of China
| | - Shou-Sheng Yan
- Jiangsu T-mab BioPharma Co., Ltd, G03, 1# Yao-Cheng Avenue, Taizhou, Jiangsu, People's Republic of China.
| |
Collapse
|
25
|
McGavigan AK, Garibay D, Henseler ZM, Chen J, Bettaieb A, Haj FG, Ley RE, Chouinard ML, Cummings BP. TGR5 contributes to glucoregulatory improvements after vertical sleeve gastrectomy in mice. Gut 2017; 66:226-234. [PMID: 26511794 PMCID: PMC5512436 DOI: 10.1136/gutjnl-2015-309871] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Vertical sleeve gastrectomy (VSG) produces high rates of type 2 diabetes remission; however, the mechanisms responsible remain incompletely defined. VSG increases circulating bile acid concentrations and bile acid signalling through TGR5 improves glucose homeostasis. Therefore, we investigated the role of TGR5 signalling in mediating the glucoregulatory benefits of VSG. DESIGN VSG or sham surgery was performed in high-fat-fed male Tgr5+/+ (wild type) and Tgr5-/- (knockout) littermates. Sham-operated mice were fed ad libitum or food restricted to match their body weight to VSG-operated mice. Body weight, food intake, energy expenditure, insulin signalling and circulating bile acid profiles were measured and oral glucose tolerance testing, islet immunohistochemistry and gut microbial profiling were performed. RESULTS VSG decreased food intake and body weight, increased energy expenditure and circulating bile acid concentrations, improved fasting glycaemia, glucose tolerance and glucose-stimulated insulin secretion, enhanced nutrient-stimulated glucagon-like peptide 1 secretion and produced favourable shifts in gut microbial populations in both genotypes. However, the body weight-independent improvements in fasting glycaemia, glucose tolerance, hepatic insulin signalling, hepatic inflammation and islet morphology after VSG were attenuated in Tgr5-/- relative to Tgr5+/+ mice. Furthermore, VSG produced metabolically favourable alterations in circulating bile acid profiles that were blunted in Tgr5-/- relative to Tgr5+/+ mice. TGR5-dependent regulation of hepatic Cyp8b1 expression may have contributed to TGR5-mediated shifts in the circulating bile acid pool after VSG. CONCLUSIONS These results suggest that TGR5 contributes to the glucoregulatory benefits of VSG surgery by promoting metabolically favourable shifts in the circulating bile acid pool.
Collapse
Affiliation(s)
- Anne K McGavigan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Darline Garibay
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Zachariah M Henseler
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Jack Chen
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | - Fawaz G Haj
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | - Ruth E Ley
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Michael L Chouinard
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA
| | - Bethany P Cummings
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
26
|
Cao X, Zhou X, Liu XM, Zhou LH. Liraglutide alters DPP4 in the circumvallate papillae of type 2 diabetic rats. J Mol Endocrinol 2016; 57:13-21. [PMID: 27151572 DOI: 10.1530/jme-16-0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/04/2016] [Indexed: 11/08/2022]
Abstract
Liraglutide, a human glucagon-like peptide (GLP1) analog that partially inhibits dipeptidyl-peptidase 4 (DPP4), can decrease glucose levels and suppress appetite in patients with type 2 diabetes (T2DM). GLP1 and its receptor (GLP1R) also exist in the taste buds of rodents and regulate taste sensitivity. DPP4, a protease, functions in homeostasis of blood glucose, lipids, and body weight. Interactions among GLP1, GLP1R, and DPP4 likely affect taste and food-intake behavior. The aim of the present study was to investigate DPP4 expression in the taste buds of the circumvallate papillae (CV) in T2DM rats, and determine the effects of liraglutide treatment. Rats were divided into diabetic control (T2DM-C), normal control (NC), and liraglutide-treated diabetic (T2DM+LIR) groups. DPP4 localization and gene expression levels were evaluated by immunohistochemistry and quantitative reverse transcription-polymerase chain reaction (RT-qPCR), respectively. DPP4 immunoreactive cells were localized in the taste buds of the rat CV. RT-qPCR showed significantly higher expression of Dpp4 mRNA in both the taste buds and hypothalamus of T2DM-C rats compared with NC rats. However, in the T2DM+LIR group, Dpp4 expression differed between the taste buds and hypothalamus, with significantly higher and lower levels compared with the T2DM-C group, respectively. Dpp4 mRNA expression is increased in the taste buds of the CV of T2DM rats. Liraglutide simultaneously upregulated (taste buds) and downregulated (hypothalamus) Dpp4 expression in T2DM rats. Therefore, DPP4 may be closely associated with the anorexigenic signaling and weight loss induced by the treatment of liraglutide in type 2 diabetic patients.
Collapse
Affiliation(s)
- Xun Cao
- Department of EndocrinologyHarbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiao Zhou
- Department of Human Anatomy and EmbryologyHarbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiao-Min Liu
- Department of EndocrinologyHarbin Medical University, Harbin, Heilongjiang Province, China
| | - Li-Hong Zhou
- Department of EndocrinologyHarbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
27
|
¿Existe un espacio para los análogos de la incretina como terapia para el sobrepeso, la obesidad y la prevención de la enfermedad cardio-metabólica? REVISTA COLOMBIANA DE CARDIOLOGÍA 2016. [DOI: 10.1016/j.rccar.2015.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
28
|
Barreto-Vianna ARC, Aguila MB, Mandarim-de-Lacerda CA. Effects of liraglutide in hypothalamic arcuate nucleus of obese mice. Obesity (Silver Spring) 2016; 24:626-33. [PMID: 26916241 DOI: 10.1002/oby.21387] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/06/2015] [Accepted: 10/06/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The neuroprotective effects of liraglutide (200 μg/kg, twice daily, subcutaneous administration) in the hypothalamic arcuate nucleus (ARC) of diet-induced obese mice were investigated. METHODS C57BL/6 mice were separated into groups: standard chow treated with vehicle or liraglutide and the respective liraglutide pair-fed group; high-fat diet treated with vehicle or liraglutide and the respective pair-fed group. Body mass (BM) evolution, carbohydrate metabolism, leptin resistance, proteins involved in energetic balance, apoptosis, and microglia in the ARC were studied. RESULTS Obese animals showed glucose intolerance, resistance to insulin and to anorexigenic effect of leptin, and microgliosis accompanied by elevated Bax/Bcl2 ratio in the ARC. Liraglutide improved the carbohydrate metabolism, BM loss, and the activation of pro-opiomelanocortin (POMC) and cocaine and amphetamine-regulated transcript (CART) in the ARC. The liraglutide enhanced leptin sensitivity and diminished the microgliosis with decrease in Bax/Bcl2 ratio. CONCLUSIONS Liraglutide activates central anorexigenic pathways, thereby diminishing the energy intake of obese mice and improving the metabolic parameters related to obesity. Liraglutide is a relevant neuroprotective agent, which can decrease the microgliosis and stimulate the anti-apoptotic pathway, a significant effect in the treatment of obesity and its comorbidities. Some benefits of liraglutide are independent of the BM loss, which usually accompanies the drug administration.
Collapse
Affiliation(s)
- Andre R C Barreto-Vianna
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio De Janeiro, Rio De Janeiro, Brazil
| | - Marcia B Aguila
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio De Janeiro, Rio De Janeiro, Brazil
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio De Janeiro, Rio De Janeiro, Brazil
| |
Collapse
|
29
|
Connelly KA, Advani A, Zhang Y, Advani SL, Kabir G, Abadeh A, Desjardins JF, Mitchell M, Thai K, Gilbert RE. Dipeptidyl peptidase-4 inhibition improves cardiac function in experimental myocardial infarction: Role of stromal cell-derived factor-1α. J Diabetes 2016; 8:63-75. [PMID: 25565455 DOI: 10.1111/1753-0407.12258] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 11/21/2014] [Accepted: 12/11/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND In addition to degrading glucagon-like peptide-1 (GLP-1), dipeptidyl peptidase-4 (DPP-4) inactivates several chemokines, including stromal cell-derived factor-1α (SDF-1α), a pro-angiogenic and cardiomyocyte protective protein. We hypothesized that DPP-4 inhibition may confer benefit following myocardial infarction (MI) in the diabetic setting as a consequence of enhanced SDF-1α availability rather than potentiating GLP-1. To test this we compared the effects of saxagliptin with those of liraglutide and used the SDF-1α receptor (CXCR4) antagonist plerixafor. METHODS Studies were conducted in streptozotocin-diabetic rats. Rats were randomized to receive saxagliptin (10 mg/kg per day), liraglutide (0.2 mg/kg, s.c., b.i.d.), plerixafor (1 mg/kg per day, s.c.), saxagliptin plus plerixafor or vehicle (1% phosphate-buffered saline). Two weeks later, rats underwent experimental MI, with cardiac function examined 4 weeks after MI. RESULTS Glycemic control and MI size were similar in all groups. Four weeks after MI, mortality was reduced in saxagliptin-treated rats compared with vehicle treatment (P < 0.05). Furthermore, rats receiving saxagliptin had improved cardiac function compared with vehicle-treated rats (P < 0.05). Antagonism of CXCR4 prevented the improvement in cardiac function in saxagliptin-treated rats and was associated with increased mortality (P < 0.05). CONCLUSION Saxagliptin-mediated DPP-4 inhibition, but not liraglutide-mediated GLP-1R agonism, improved cardiac function after MI independent of glucose lowering. These findings suggest that non-GLP-1 actions of DPP-4 inhibition, such as SDF-1α potentiation, mediate biological effects.
Collapse
Affiliation(s)
- Kim A Connelly
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Yanling Zhang
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Suzanne L Advani
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Golam Kabir
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Armin Abadeh
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Jean-Francois Desjardins
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Melissa Mitchell
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Kerri Thai
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Richard E Gilbert
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Candeias EM, Sebastião IC, Cardoso SM, Correia SC, Carvalho CI, Plácido AI, Santos MS, Oliveira CR, Moreira PI, Duarte AI. Gut-brain connection: The neuroprotective effects of the anti-diabetic drug liraglutide. World J Diabetes 2015; 6:807-827. [PMID: 26131323 PMCID: PMC4478577 DOI: 10.4239/wjd.v6.i6.807] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/30/2015] [Accepted: 05/18/2015] [Indexed: 02/05/2023] Open
Abstract
Long-acting glucagon-like peptide-1 (GLP-1) analogues marketed for type 2 diabetes (T2D) treatment have been showing positive and protective effects in several different tissues, including pancreas, heart or even brain. This gut secreted hormone plays a potent insulinotropic activity and an important role in maintaining glucose homeostasis. Furthermore, growing evidences suggest the occurrence of several commonalities between T2D and neurodegenerative diseases, insulin resistance being pointed as a main cause for cognitive decline and increased risk to develop dementia. In this regard, it has also been suggested that stimulation of brain insulin signaling may have a protective role against cognitive deficits. As GLP-1 receptors (GLP-1R) are expressed throughout the central nervous system and GLP-1 may cross the blood-brain-barrier, an emerging hypothesis suggests that they may be promising therapeutic targets against brain dysfunctional insulin signaling-related pathologies. Importantly, GLP-1 actions depend not only on the direct effect mediated by its receptor activation, but also on the gut-brain axis involving an exchange of signals between both tissues via the vagal nerve, thereby regulating numerous physiological functions (e.g., energy homeostasis, glucose-dependent insulin secretion, as well as appetite and weight control). Amongst the incretin/GLP-1 mimetics class of anti-T2D drugs with an increasingly described neuroprotective potential, the already marketed liraglutide emerged as a GLP-1R agonist highly resistant to dipeptidyl peptidase-4 degradation (thereby having an increased half-life) and whose systemic GLP-1R activity is comparable to that of native GLP-1. Importantly, several preclinical studies showed anti-apoptotic, anti-inflammatory, anti-oxidant and neuroprotective effects of liraglutide against T2D, stroke and Alzheimer disease (AD), whereas several clinical trials, demonstrated some surprising benefits of liraglutide on weight loss, microglia inhibition, behavior and cognition, and in AD biomarkers. Herein, we discuss the GLP-1 action through the gut-brain axis, the hormone’s regulation of some autonomic functions and liraglutide’s neuroprotective potential.
Collapse
|
31
|
Hoang V, Bi J, Mohankumar SM, Vyas AK. Liraglutide improves hypertension and metabolic perturbation in a rat model of polycystic ovarian syndrome. PLoS One 2015; 10:e0126119. [PMID: 26010091 PMCID: PMC4444207 DOI: 10.1371/journal.pone.0126119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/30/2015] [Indexed: 12/21/2022] Open
Abstract
Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder in women of reproductive age, with a prevalence of 5–8%. Type 2 diabetes and cardiovascular disease (CVD) are its long-term complications. Targeted therapies addressing both these complications together are lacking. Glucagon like peptide-1 (GLP-1) agonists that are used to treat type 2 diabetes mellitus have beneficial effects on the cardiovascular system. Hence we hypothesized that a GLP-1 agonist would improve both cardiovascular and metabolic outcomes in PCOS. To test this hypothesis, we used an established rat model of PCOS. Prepubertal female Sprague Dawley rats were sham-implanted or implanted s.c. with dihydrotestosterone (DHT) pellets (90 day release; 83μg/day). At 12 wks of age, sham implanted rats received saline injections and the DHT treated animals were administered either saline or liraglutide (0.2mg/kg s.c twice daily) for 4 weeks. Subgroups of rats were implanted with telemeters between 12-13 weeks of age to monitor blood pressure. DHT implanted rats had irregular estrus cycles and were significantly heavier than the control females at 12 weeks (mean± SEM 251.9±3.4 vs 216.8±3.4 respectively; p<0.05) and 4 weeks of treatment with liraglutide in DHT treated rats significantly decreased body weight (mean± SEM 294.75 ±3.2 in DHT+ saline vs 276.25±2.7 in DHT+ liraglutide group respectively; p<0.01). Liraglutide treatment in the DHT implanted rats significantly improved glucose excursion during oral glucose tolerance test (area under the curve: DHT+ saline 28674±310 vs 24990± 420 in DHT +liraglutide p <0.01). DHT rats were hypertensive and liraglutide treatment significantly improved mean arterial pressure. These results suggest that GLP-1 treatment could improve DHT–induced metabolic and blood pressure deficits associated with PCOS.
Collapse
Affiliation(s)
- Vanessa Hoang
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, Michigan, United States of America
| | - Jiangjiang Bi
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, Michigan, United States of America
- Department of Anesthesiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheba M. Mohankumar
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, Georgia, United States of America
| | - Arpita K. Vyas
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
32
|
Preservation of the blood brain barrier and cortical neuronal tissue by liraglutide, a long acting glucagon-like-1 analogue, after experimental traumatic brain injury. PLoS One 2015; 10:e0120074. [PMID: 25822252 PMCID: PMC4379006 DOI: 10.1371/journal.pone.0120074] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 02/02/2015] [Indexed: 01/04/2023] Open
Abstract
Cerebral edema is a common complication following moderate and severe traumatic brain injury (TBI), and a significant risk factor for development of neuronal death and deterioration of neurological outcome. To this date, medical approaches that effectively alleviate cerebral edema and neuronal death after TBI are not available. Glucagon-like peptide-1 (GLP-1) has anti-inflammatory properties on cerebral endothelium and exerts neuroprotective effects. Here, we investigated the effects of GLP-1 on secondary injury after moderate and severe TBI. Male Sprague Dawley rats were subjected either to TBI by Controlled Cortical Impact (CCI) or sham surgery. After surgery, vehicle or a GLP-1 analogue, Liraglutide, were administered subcutaneously twice daily for two days. Treatment with Liraglutide (200 μg/kg) significantly reduced cerebral edema in pericontusional regions and improved sensorimotor function 48 hours after CCI. The integrity of the blood-brain barrier was markedly preserved in Liraglutide treated animals, as determined by cerebral extravasation of Evans blue conjugated albumin. Furthermore, Liraglutide reduced cortical tissue loss, but did not affect tissue loss and delayed neuronal death in the thalamus on day 7 post injury. Together, our data suggest that the GLP-1 pathway might be a promising target in the therapy of cerebral edema and cortical neuronal injury after moderate and severe TBI.
Collapse
|
33
|
Kanoski SE, Ong ZY, Fortin SM, Schlessinger ES, Grill HJ. Liraglutide, leptin and their combined effects on feeding: additive intake reduction through common intracellular signalling mechanisms. Diabetes Obes Metab 2015; 17:285-93. [PMID: 25475828 PMCID: PMC4320650 DOI: 10.1111/dom.12423] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/14/2014] [Accepted: 12/01/2014] [Indexed: 01/05/2023]
Abstract
AIM To investigate the behavioural and intracellular mechanisms by which the glucagon like peptide-1 (GLP-1) receptor agonist, liraglutide, and leptin in combination enhance the food intake inhibitory and weight loss effects of either treatment alone. METHODS We examined the effects of liraglutide (a long-acting GLP-1 analogue) and leptin co-treatment, delivered in low or moderate doses subcutaneously (s.c.) or to the third ventricle, respectively, on cumulative intake, meal patterns and hypothalamic expression of intracellular signalling proteins [phosphorylated signal transducer and activator of transcription-3 (pSTAT3) and protein tyrosine phosphatase-1B (PTP1B)] in lean rats. RESULTS A low-dose combination of liraglutide (25 µg/kg) and leptin (0.75 µg) additively reduced cumulative food intake and body weight, a result mediated predominantly through a significant reduction in meal frequency that was not present with either drug alone. Liraglutide treatment alone also reduced meal size; an effect not enhanced with leptin co-administration. Moderate doses of liraglutide (75 µg/kg) and leptin (4 µg), examined separately, each reduced meal frequency, cumulative food intake and body weight; only liraglutide reduced meal size. In combination these doses did not further enhance the anorexigenic effects of either treatment alone. Ex vivo immunoblot analysis showed elevated pSTAT3 in the hypothalamic tissue after liraglutide-leptin co-treatment, an effect which was greater than that of leptin treatment alone. In addition, s.c. liraglutide reduced the expression of PTP1B (a negative regulator of leptin receptor signalling), revealing a potential mechanism for the enhanced pSTAT3 response after liraglutide-leptin co-administration. CONCLUSIONS Collectively, these results show novel behavioural and molecular mechanisms underlying the additive reduction in food intake and body weight after liraglutide-leptin combination treatment.
Collapse
Affiliation(s)
- Scott E. Kanoski
- Department of Biological Sciences, University of Southern California
| | - Zhi Yi Ong
- Department of Psychology, University of Pennsylvania
| | | | | | | |
Collapse
|
34
|
Streckel E, Braun-Reichhart C, Herbach N, Dahlhoff M, Kessler B, Blutke A, Bähr A, Übel N, Eddicks M, Ritzmann M, Krebs S, Göke B, Blum H, Wanke R, Wolf E, Renner S. Effects of the glucagon-like peptide-1 receptor agonist liraglutide in juvenile transgenic pigs modeling a pre-diabetic condition. J Transl Med 2015; 13:73. [PMID: 25890210 PMCID: PMC4362632 DOI: 10.1186/s12967-015-0431-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/07/2015] [Indexed: 02/06/2023] Open
Abstract
Background The glucagon-like peptide-1 receptor (GLP1R) agonist liraglutide improves glycemic control and reduces body weight of adult type 2 diabetic patients. However, efficacy and safety of liraglutide in adolescents has not been systematically investigated. Furthermore, possible pro-proliferative effects of GLP1R agonists on the endocrine and exocrine pancreas need to be further evaluated. We studied effects of liraglutide in adolescent pigs expressing a dominant-negative glucose-dependent insulinotropic polypeptide receptor (GIPRdn) in the beta-cells, leading to a pre-diabetic condition including disturbed glucose tolerance, reduced insulin secretion and progressive reduction of functional beta-cell mass. Methods Two-month-old GIPRdn transgenic pigs were treated daily with liraglutide (0.6-1.2 mg per day) or placebo for 90 days. Glucose homeostasis was evaluated prior to and at the end of the treatment period by performing mixed meal and intravenous glucose tolerance tests (MMGTT and IVGTT). Finally animals were subjected to necropsy and quantitative-stereological analyses were performed for evaluation of alpha- and beta-cell mass, beta-cell proliferation as well as acinus-cell proliferation. Results MMGTT at the end of the study revealed 23% smaller area under the curve (AUC) for glucose, a 36% smaller AUC insulin, and improved insulin sensitivity, while IVGTT showed a 15% smaller AUC glucose but unchanged AUC insulin in liraglutide- vs. placebo-treated animals. Liraglutide led to marked reductions in body weight gain (-31%) and food intake (-30%) compared to placebo treatment, associated with reduced phosphorylation of insulin receptor beta (INSRB)/insulin-like growth factor-1 receptor beta (IGF1RB) and protein kinase B (AKT) in skeletal muscle. Absolute alpha- and beta-cell mass was reduced in liraglutide-treated animals, but alpha- and beta-cell mass-to-body weight ratios were unchanged. Liraglutide neither stimulated beta-cell proliferation in the endocrine pancreas nor acinus-cell proliferation in the exocrine pancreas, excluding both beneficial and detrimental effects on the pig pancreas. Conclusions Although plasma liraglutide levels of adolescent transgenic pigs treated in our study were higher compared to human trials, pro-proliferative effects on the endocrine or exocrine pancreas or other liraglutide-related side-effects were not observed. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0431-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisabeth Streckel
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany.
| | | | - Nadja Herbach
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Munich, Germany.
| | - Maik Dahlhoff
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany.
| | - Barbara Kessler
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany.
| | - Andreas Blutke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Munich, Germany.
| | - Andrea Bähr
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany.
| | - Nicole Übel
- Clinic for Swine, Center for Clinical Veterinary Medicine, LMU Munich, Munich, Germany.
| | - Matthias Eddicks
- Clinic for Swine, Center for Clinical Veterinary Medicine, LMU Munich, Munich, Germany.
| | - Mathias Ritzmann
- Clinic for Swine, Center for Clinical Veterinary Medicine, LMU Munich, Munich, Germany.
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany.
| | - Burkhard Göke
- Department of Internal Medicine II, Clinical Center of the LMU Munich, Campus Großhadern, Munich, Germany.
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany.
| | - Rüdiger Wanke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Munich, Germany.
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany. .,Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany. .,Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377, Munich, Germany.
| | - Simone Renner
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany.
| |
Collapse
|
35
|
Papaetis GS. Incretin-based therapies in prediabetes: Current evidence and future perspectives. World J Diabetes 2014; 5:817-834. [PMID: 25512784 PMCID: PMC4265868 DOI: 10.4239/wjd.v5.i6.817] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 09/10/2014] [Accepted: 11/10/2014] [Indexed: 02/05/2023] Open
Abstract
The prevalence of type 2 diabetes (T2D) is evolving globally at an alarming rate. Prediabetes is an intermediate state of glucose metabolism that exists between normal glucose tolerance (NGT) and the clinical entity of T2D. Relentless β-cell decline and failure is responsible for the progression from NGT to prediabetes and eventually T2D. The huge burden resulting from the complications of T2D created the need of therapeutic strategies in an effort to prevent or delay its development. The beneficial effects of incretin-based therapies, dipeptidyl peptidase-4 inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists, on β-cell function in patients with T2D, together with their strictly glucose-depended mechanism of action, suggested their possible use in individuals with prediabetes when greater β-cell mass and function are preserved and the possibility of β-cell salvage is higher. The present paper summarizes the main molecular intracellular mechanisms through which GLP-1 exerts its activity on β-cells. It also explores the current evidence of incretin based therapies when administered in a prediabetic state, both in animal models and in humans. Finally it discusses the safety of incretin-based therapies as well as their possible role in order to delay or prevent T2D.
Collapse
|
36
|
Sakai T, Kusakabe T, Ebihara K, Aotani D, Yamamoto-Kataoka S, Zhao M, Gumbilai VMJ, Ebihara C, Aizawa-Abe M, Yamamoto Y, Noguchi M, Fujikura J, Hosoda K, Inagaki N, Nakao K. Leptin restores the insulinotropic effect of exenatide in a mouse model of type 2 diabetes with increased adiposity induced by streptozotocin and high-fat diet. Am J Physiol Endocrinol Metab 2014; 307:E712-9. [PMID: 25159327 DOI: 10.1152/ajpendo.00272.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Leptin may reduce pancreatic lipid deposition, which increases with progression of obesity and can impair β-cell function. The insulinotropic effect of glucagon-like peptide-1 (GLP-1) and the efficacy of GLP-1 receptor agonist are reduced associated with impaired β-cell function. In this study, we examined whether leptin could restore the efficacy of exenatide, a GLP-1 receptor agonist, in type 2 diabetes with increased adiposity. We chronically administered leptin (500 μg·kg⁻¹·day⁻¹) and/or exenatide (20 μg·kg⁻¹·day⁻¹) for 2 wk in a mouse model of type 2 diabetes with increased adiposity induced by streptozotocin and high-fat diet (STZ/HFD mice). The STZ/HFD mice exhibited hyperglycemia, overweight, increased pancreatic triglyceride level, and reduced glucose-stimulated insulin secretion (GSIS); moreover, the insulinotropic effect of exenatide was reduced. However, leptin significantly reduced pancreatic triglyceride level, and adding leptin to exenatide (LEP/EX) remarkably enhanced GSIS. These results suggested that the leptin treatment restored the insulinotropic effect of exenatide in the mice. In addition, LEP/EX reduced food intake, body weight, and triglyceride levels in the skeletal muscle and liver, and corrected hyperglycemia to a greater extent than either monotherapy. The pair-feeding experiment indicated that the marked reduction of pancreatic triglyceride level and enhancement of GSIS by LEP/EX occurred via mechanisms other than calorie restriction. These results suggest that leptin treatment may restore the insulinotropic effect of exenatide associated with the reduction of pancreatic lipid deposition in type 2 diabetes with increased adiposity. Combination therapy with leptin and exenatide could be an effective treatment for patients with type 2 diabetes with increased adiposity.
Collapse
Affiliation(s)
- Takeru Sakai
- Department of Diabetes, Endocrinology, and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan; Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toru Kusakabe
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan;
| | - Ken Ebihara
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan; and
| | - Daisuke Aotani
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sachiko Yamamoto-Kataoka
- Department of Diabetes, Endocrinology, and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mingming Zhao
- Department of Diabetes, Endocrinology, and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Chihiro Ebihara
- Department of Diabetes, Endocrinology, and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Megumi Aizawa-Abe
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan; and
| | - Yuji Yamamoto
- Department of Diabetes, Endocrinology, and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Michio Noguchi
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Junji Fujikura
- Department of Diabetes, Endocrinology, and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kiminori Hosoda
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Human Health Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology, and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuwa Nakao
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
37
|
Maternal ileal interposition surgery confers metabolic improvements to offspring independent of effects on maternal body weight in UCD-T2DM rats. Obes Surg 2014; 23:2042-9. [PMID: 24036841 DOI: 10.1007/s11695-013-1076-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Increasing numbers of people are undergoing bariatric surgery, of which approximately half are women in their childbearing years. However, information on the long-term effects of maternal bariatric surgery in their children is lacking. Furthermore, since bariatric surgery is performed to reduce body weight, clinical studies have not been able to differentiate between benefits to the child due to maternal body weight loss versus other maternal postoperative metabolic changes. Therefore, we used the University of California, Davis, type 2 diabetes mellitus (UCD-T2DM) rat model to test the hypothesis that maternal ileal interposition (IT) surgery would confer beneficial metabolic effects in offspring, independent of effects on maternal body weight. METHODS IT surgery was performed on 2-month-old prediabetic female UCD-T2DM rats. Females were bred 3 weeks after surgery, and male pups were studied longitudinally. RESULTS Maternal IT surgery resulted in decreased body weight in offspring compared with sham offspring (P < 0.05). IT offspring exhibited improvements of glucose-stimulated insulin secretion and nutrient-stimulated glucagon-like peptide-2 (GLP-2) secretion (P < 0.05). Fasting plasma unconjugated bile acid concentrations were 4-fold lower in IT offspring compared with sham offspring at two months of age (P < 0.001). CONCLUSIONS Overall, maternal IT surgery confers modest improvements of body weight and improves insulin secretion and nutrient-stimulated GLP-2 secretion in offspring in the UCD-T2DM rat model of type 2 diabetes, indicating that this is a useful model for investigating the weight-independent metabolic effects of maternal bariatric surgery.
Collapse
|
38
|
Gotfredsen CF, Mølck AM, Thorup I, Nyborg NCB, Salanti Z, Knudsen LB, Larsen MO. The human GLP-1 analogs liraglutide and semaglutide: absence of histopathological effects on the pancreas in nonhuman primates. Diabetes 2014; 63:2486-97. [PMID: 24608440 DOI: 10.2337/db13-1087] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Increased pancreas mass and glucagon-positive adenomas have been suggested to be a risk associated with sitagliptin or exenatide therapy in humans. Novo Nordisk has conducted extensive toxicology studies, including data on pancreas weight and histology, in Cynomolgus monkeys dosed with two different human glucagon-like peptide-1 (GLP-1) receptor agonists. In a 52-week study with liraglutide, a dose-related increase in absolute pancreas weight was observed in female monkeys only. Such dose-related increase was not found in studies of 4, 13, or 87 weeks' duration. No treatment-related histopathological abnormalities were observed in any of the studies. Quantitative histology of the pancreas from the 52-week study showed an increase in the exocrine cell mass in liraglutide-dosed animals, with normal composition of endocrine and exocrine cellular compartments. Proliferation rate of the exocrine tissue was low and comparable between groups. Endocrine cell mass and proliferation rates were unaltered by liraglutide treatment. Semaglutide showed no increase in pancreas weight and no treatment-related histopathological findings in the pancreas after 13 or 52 weeks' dosing. Overall, results in 138 nonhuman primates showed no histopathological changes in the pancreas associated with liraglutide or semaglutide, two structurally different GLP-1 receptor agonists.
Collapse
Affiliation(s)
| | | | - Inger Thorup
- Diabetes Research Unit, Novo Nordisk, Måløv, Denmark
| | | | - Zaki Salanti
- Diabetes Research Unit, Novo Nordisk, Måløv, Denmark
| | | | | |
Collapse
|
39
|
Deterioration of plasticity and metabolic homeostasis in the brain of the UCD-T2DM rat model of naturally occurring type-2 diabetes. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1313-23. [PMID: 24840661 DOI: 10.1016/j.bbadis.2014.05.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 02/07/2023]
Abstract
The rising prevalence of type-2 diabetes is becoming a pressing issue based on emerging reports that T2DM can also adversely impact mental health. We have utilized the UCD-T2DM rat model in which the onset of T2DM develops spontaneously across time and can serve to understand the pathophysiology of diabetes in humans. An increased insulin resistance index and plasma glucose levels manifested the onset of T2DM. There was a decrease in hippocampal insulin receptor signaling in the hippocampus, which correlated with peripheral insulin resistance index along the course of diabetes onset (r=-0.56, p<0.01). T2DM increased the hippocampal levels of 4-hydroxynonenal (4-HNE; a marker of lipid peroxidation) in inverse proportion to the changes in the mitochondrial regulator PGC-1α. Disrupted energy homeostasis was further manifested by a concurrent reduction in energy metabolic markers, including TFAM, SIRT1, and AMPK phosphorylation. In addition, T2DM influenced brain plasticity as evidenced by a significant reduction of BDNF-TrkB signaling. These results suggest that the pathology of T2DM in the brain involves a progressive and coordinated disruption of insulin signaling, and energy homeostasis, with profound consequences for brain function and plasticity. All the described consequences of T2DM were attenuated by treatment with the glucagon-like peptide-1 receptor agonist, liraglutide. Similar results to those of liraglutide were obtained by exposing T2DM rats to a food energy restricted diet, which suggest that normalization of brain energy metabolism is a crucial factor to counteract central insulin sensitivity and synaptic plasticity associated with T2DM.
Collapse
|
40
|
Cummings BP, Bettaieb A, Graham JL, Stanhope K, Haj FG, Havel PJ. Administration of pioglitazone alone or with alogliptin delays diabetes onset in UCD-T2DM rats. J Endocrinol 2014; 221:133-44. [PMID: 24627447 PMCID: PMC4457365 DOI: 10.1530/joe-13-0601] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is a need to identify strategies for type 2 diabetes prevention. Therefore, we investigated the efficacy of pioglitazone and alogliptin alone and in combination to prevent type 2 diabetes onset in UCD-T2DM rats, a model of polygenic obese type 2 diabetes. At 2 months of age, rats were divided into four groups: control, alogliptin (20 mg/kg per day), pioglitazone (2.5 mg/kg per day), and alogliptin+pioglitazone. Non-fasting blood glucose was measured weekly to determine diabetes onset. Pioglitazone alone and in combination with alogliptin lead to a 5-month delay in diabetes onset despite promoting increased food intake and body weight (BW). Alogliptin alone did not delay diabetes onset or affect food intake or BW relative to controls. Fasting plasma glucose, insulin, and lipid concentrations were lower and adiponectin concentrations were threefold higher in groups treated with pioglitazone. All treatment groups demonstrated improvements in glucose tolerance and insulin secretion during an oral glucose tolerance test with an additive improvement observed with alogliptin+pioglitazone. Islet histology revealed an improvement of islet morphology in all treatment groups compared with control. Pioglitazone treatment also resulted in increased expression of markers of mitochondrial biogenesis in brown adipose tissue and white adipose tissue, with mild elevations observed in animals treated with alogliptin alone. Pioglitazone markedly delays the onset of type 2 diabetes in UCD-T2DM rats through improvements of glucose tolerance, insulin sensitivity, islet function, and markers of adipose mitochondrial biogenesis; however, addition of alogliptin at a dose of 20 mg/kg per day to pioglitazone treatment does not enhance the prevention/delay of diabetes onset.
Collapse
Affiliation(s)
- Bethany P Cummings
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, T7 022A Veterinary Research Tower (Box 17), Ithaca, New York 14850, USA Department of Molecular Biosciences, School of Veterinary Medicine Department of Nutrition, University of California Davis, Davis, California, USA Department of Internal Medicine, University of California, Davis, Sacramento, California, USA
| | | | | | | | | | | |
Collapse
|
41
|
Neff KJ, Frankel AH, Tam FWK, Sadlier DM, Godson C, le Roux CW. The effect of bariatric surgery on renal function and disease: a focus on outcomes and inflammation. Nephrol Dial Transplant 2013; 28 Suppl 4:iv73-82. [PMID: 24071659 DOI: 10.1093/ndt/gft262] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Renal dysfunction and disease, including hyperfiltration, proteinuria and hypofiltration, are commonly associated with obesity. Diabetic kidney disease is also common in obese cohorts. Weight loss interventions, including bariatric surgery, can effectively reduce weight and improve renal outcomes. Some of this effect may be due to the remission of Type 2 diabetes and hypertension. However, other mechanisms, including the resolution of inflammatory processes, may also contribute. The effect of bariatric surgery on renal function has only recently become a focus of particular investigation. In this study, we will review the effects of bariatric surgery on obesity-associated kidney disease. We will discuss the pitfalls in assessing renal function in obese cohorts and will examine the effect of bariatric surgery on renal function and urinary protein excretion using different mechanisms. We will give particular attention to the evidence for bariatric surgery in cohorts with established renal disease and suggest future directions. In particular, we will outline the evidence for inflammation as an important therapeutic target, and the emerging medical therapies being considered to exploit this target in obesity- and diabetes-related kidney disease.
Collapse
Affiliation(s)
- Karl J Neff
- Diabetic Complication Research Centre, UCD Conway Institute, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | |
Collapse
|
42
|
Nguyen TD, Shingu Y, Amorim PA, Schwarzer M, Doenst T. Glucagon-like peptide-1 reduces contractile function and fails to boost glucose utilization in normal hearts in the presence of fatty acids. Int J Cardiol 2013; 168:4085-92. [PMID: 23890859 DOI: 10.1016/j.ijcard.2013.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 06/28/2013] [Accepted: 07/03/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED GLP-1 and exendin-4, which are used as insulin sensitizers or weight reducing drugs, were shown to improve glucose uptake in the heart. However, the direct effects of GLP-1 or exendin-4 on normal hearts in the presence of fatty acids, the main cardiac substrates, have never been investigated. We therefore assessed the effects of GLP-1 or exendin-4 on myocardial glucose uptake (GU), glucose oxidation (GO) and cardiac performance (CP) under conditions of fatty acid utilization. METHODS AND RESULTS Rat hearts were perfused with only glucose (5 mM) or glucose (5 mM) plus oleate (0.4 mM) as substrates for 60 min. After 30 min, GLP-1 or exendin-4 (0.5 nM or 5 nM) was added. In the absence of oleate, GLP-1 increased both GU and GO. Exendin-4 increased GO but showed no effect on GU. Neither GLP-1 nor exendin-4 affected CP. However, when oleate was present, GLP-1 failed to stimulate glucose utilization and exendin-4 even decreased GU. Furthermore, now GLP-1 reduced CP. In contrast to prior reports, this negative inotropic effect could not be blocked by the protein kinase A inhibitor H-89. We then measured myocardial GO and CP in rats receiving a 4-week GLP-1 infusion. Interestingly, this chronic treatment resulted in a significant reduction in both GO and CP. CONCLUSIONS Under the influence of oleate, GLP-1 reduces contractile function and fails to stimulate glucose utilization in normal hearts. Exendin-4 may acutely reduce cardiac glucose uptake but not contractility. We suggest advanced investigation of heart function and metabolism in patients treating with these peptides.
Collapse
Affiliation(s)
- T Dung Nguyen
- Department of Cardiothoracic Surgery, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | | | | | | | | |
Collapse
|
43
|
Campos GM, Rabl C, Havel PJ, Rao M, Schwarz JM, Schambelan M, Mulligan K. Changes in post-prandial glucose and pancreatic hormones, and steady-state insulin and free fatty acids after gastric bypass surgery. Surg Obes Relat Dis 2013; 10:1-8. [PMID: 24209879 DOI: 10.1016/j.soard.2013.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 06/25/2013] [Accepted: 07/15/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND Changes in the multiple mechanisms that regulate glucose metabolism after gastric bypass (RYGB) are still being unveiled. The objective of this study was to compare the changes of glucose and pancreatic hormones [C-peptide, glucagon, and pancreatic polypeptide (PP)] during a meal tolerance test (MTT) and steady-state insulin and free fatty acid (FFA) concentrations during euglycemic-hyperinsulinemic clamp 14 days and 6 months after RYGB in morbidly obese nondiabetic patients. METHODS Two groups were studied at baseline and at 14 days: the RYGB followed by caloric restriction group (RYGB, n = 12) and the equivalent caloric restriction alone group (Diet, n = 10), to control for energy intake and weight loss. The RYGB group was studied again at 6 months to assess the changes after substantial weight loss. During MTT, the early and overall changes in glucose and pancreatic hormone concentrations were determined, and during the clamp, steady-state insulin and FFA concentrations were assessed. RESULTS After 14 days, RYGB patients had enhanced postprandial glucose, C-peptide, and glucagon responses, and decreased postprandial PP concentrations. Steady-state insulin concentrations were decreased at 14 days only in RYGB patients, and FFA increased in both groups. Six months after RYGB and substantial weight loss, the decrease in insulin concentrations during clamp persisted, and there were further changes in postprandial glucose and glucagon responses. FFA concentrations during clamp were significantly lower at 6 months, relative to presurgical values. CONCLUSIONS In morbidly obese nondiabetic patients, RYGB produces early changes in postmeal glucose, C-peptide, glucagon, and PP responses, and it appears to enhance insulin clearance early after RYGB and improve insulin sensitivity in adipose tissue at 6 months postsurgery. The early changes cannot be explained by caloric restriction alone.
Collapse
Affiliation(s)
- Guilherme M Campos
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Department of Surgery, University of California San Francisco, San Francisco, California.
| | - Charlotte Rabl
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Department of Surgery, University of California San Francisco, San Francisco, California; Department of Surgery, Paracelsus Medical University, Salzburg, Austria
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California Davis, Davis, California
| | - Madhu Rao
- Department of Medicine, University of California San Francisco, San Francisco, California
| | | | - Morris Schambelan
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Kathleen Mulligan
- Department of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
44
|
Irwin N, Frizelle P, O'Harte FPM, Flatt PR. (pGlu-Gln)-CCK-8[mPEG]: a novel, long-acting, mini-PEGylated cholecystokinin (CCK) agonist that improves metabolic status in dietary-induced diabetes. Biochim Biophys Acta Gen Subj 2013; 1830:4009-16. [PMID: 23583730 DOI: 10.1016/j.bbagen.2013.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/29/2013] [Accepted: 04/02/2013] [Indexed: 01/12/2023]
Abstract
BACKGROUND Cholecystokinin (CCK) is a gastrointestinal hormone that has been proposed as a potential therapeutic option for obesity-diabetes. As such, (pGlu-Gln)-CCK-8 is an N-terminally modified CCK-8 analogue with improved biological effectiveness over the native peptide. METHODS The current study has examined the in vitro stability, biological activity and in vivo therapeutic applicability of a novel second generation mini-PEGylated form of (pGlu-Gln)-CCK-8, (pGlu-Gln)-CCK-8[mPEG]. RESULTS (pGlu-Gln)-CCK-8[mPEG] was completely resistant to enzymatic degradation and in addition displayed similar insulinotropic (p<0.05 to p<0.001) and satiating effects (p<0.01 to p<0.001) as (pGlu-Gln)-CCK-8. This confirmed the capability of (pGlu-Gln)-CCK-8[mPEG] to bind to and activate the CCK receptor. Sub-chronic twice daily injection of (pGlu-Gln)-CCK-8[mPEG] in high fat fed mice for 35days significantly decreased body weight gain (p<0.05), food intake (p<0.01 to p<0.001) and triacylglycerol deposition in liver (p<0.001) and muscle (p<0.001). Furthermore, (pGlu-Gln)-CCK-8[mPEG] markedly improved intraperitoneal glucose tolerance (p<0.05) and insulin sensitivity (p<0.001). Despite this therapeutic profile, once daily injection of (pGlu-Gln)-CCK-8[mPEG] in high fat fed mice for 33days, at the same dose, was not associated with alterations in food intake and body weight. In addition, metabolic responses to exogenous glucose and insulin injection were similar to saline treated controls. CONCLUSION These studies emphasise the therapeutic potential of (pGlu-Gln)-CCK-8[mPEG] and similar molecules. GENERAL SIGNIFICANCE A more detailed analysis of the dose and administration schedule employed for (pGlu-Gln)-CCK-8[mPEG] could provide a novel and effective compound to treat obesity-diabetes.
Collapse
Affiliation(s)
- Nigel Irwin
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK.
| | | | | | | |
Collapse
|
45
|
Guo N, Sun J, Chen H, Zhang H, Zhang Z, Cai D. Liraglutide prevents diabetes progression in prediabetic OLETF rats. Endocr J 2013; 60:15-28. [PMID: 22986487 DOI: 10.1507/endocrj.ej12-0094] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
One of human GLP-1 analogues, liraglutide has been approved as adjuvant therapy to oral medication in T2DM. It was also shown to prevent diabetes in obese subjects and rats. However, it is unknown whether liraglutide can effectively mitigate the effects of prediabetes. We therefore investigate this by treating 12-weeks old Otsuka-Long-Evans-Tokushima fatty (OLETF) rats with liraglutide 50, 100, and 200 μg/kg, respectively twice a day for 12 weeks. Eight Long-Evans-Tokushima-Otsuka (LETO) rats with saline injection served as normal controls. Body weight, food intake, lipid profiles, inflammatory markers (fibrinogen, Hs-CRP, IL-6, TNFα, and PAI-1), glycemic metabolism and insulin sensitivity, and apoptotic factors (Bcl-2 and Bax) expression were monitored. We found that 12-week old OLETF rats had significantly increased body weight, food intake, serum levels of lipid profiles, inflammatory markers, and insulin compared to LETO rats. FPG level was significantly increased but still lower than 7mmol/L without impaired glucose tolerance (IGT). After 12 weeks, vehicle-treated OLETF rats had further deterioration in IFG, IGT, insulin resistance, lipid profiles, and inflammatory state. Pancreatic islets were hypertrophic with distorted structure, scarring, and inflammatory cell infiltration. However, in the three liraglutide-treated groups, IFG, IGT, the increased lipid profiles and inflammatory markers were reversed. Insulin resistance was similar to the level before the treatment. Moreover, liraglutide restored the islet structure, up-regulated Bcl-2 expression and down-regulated Bax expression. It indicated that liraglutide could suppress diabetes onset in OLETF rats with prediabetes, probably by reserving β cell function via regulating apoptotic factors as well as ameliorating lipid metabolism and inflammatory reactions.
Collapse
Affiliation(s)
- Nanjing Guo
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | | | | | | | | | | |
Collapse
|
46
|
Cummings BP, Bettaieb A, Graham JL, Kim J, Ma F, Shibata N, Stanhope KL, Giulivi C, Hansen F, Jelsing J, Vrang N, Kowala M, Chouinard ML, Haj FG, Havel PJ. Bile-acid-mediated decrease in endoplasmic reticulum stress: a potential contributor to the metabolic benefits of ileal interposition surgery in UCD-T2DM rats. Dis Model Mech 2012; 6:443-56. [PMID: 23264565 PMCID: PMC3597026 DOI: 10.1242/dmm.010421] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Post-operative increases in circulating bile acids have been suggested to contribute to the metabolic benefits of bariatric surgery; however, their mechanistic contributions remain undefined. We have previously reported that ileal interposition (IT) surgery delays the onset of type 2 diabetes in UCD-T2DM rats and increases circulating bile acids, independently of effects on energy intake or body weight. Therefore, we investigated potential mechanisms by which post-operative increases in circulating bile acids improve glucose homeostasis after IT surgery. IT, sham or no surgery was performed on 2-month-old weight-matched male UCD-T2DM rats. Animals underwent an oral fat tolerance test (OFTT) and serial oral glucose tolerance tests (OGTT). Tissues were collected at 1.5 and 4.5 months after surgery. Cell culture models were used to investigate interactions between bile acids and ER stress. IT-operated animals exhibited marked improvements in glucose and lipid metabolism, with concurrent increases in postprandial glucagon-like peptide-1 (GLP-1) secretion during the OFTT and OGTTs, independently of food intake and body weight. Measurement of circulating bile acid profiles revealed increases in circulating total bile acids in IT-operated animals, with a preferential increase in circulating cholic acid concentrations. Gut microbial populations were assessed as potential contributors to the increases in circulating bile acid concentrations, which revealed proportional increases in Gammaproteobacteria in IT-operated animals. Furthermore, IT surgery decreased all three sub-arms of ER stress signaling in liver, adipose and pancreas tissues. Amelioration of ER stress coincided with improved insulin signaling and preservation of β-cell mass in IT-operated animals. Incubation of hepatocyte, adipocyte and β-cell lines with cholic acid decreased ER stress. These results suggest that postoperative increases in circulating cholic acid concentration contribute to improvements in glucose homeostasis after IT surgery by ameliorating ER stress.
Collapse
Affiliation(s)
- Bethany P Cummings
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Guglielmino K, Jackson K, Harris TR, Vu V, Dong H, Dutrow G, Evans JE, Graham J, Cummings BP, Havel PJ, Chiamvimonvat N, Despa S, Hammock BD, Despa F. Pharmacological inhibition of soluble epoxide hydrolase provides cardioprotection in hyperglycemic rats. Am J Physiol Heart Circ Physiol 2012; 303:H853-62. [PMID: 22865388 DOI: 10.1152/ajpheart.00154.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glycemic regulation improves myocardial function in diabetic patients, but finding optimal therapeutic strategies remains challenging. Recent data have shown that pharmacological inhibition of soluble epoxide hydrolase (sEH), an enzyme that decreases the endogenous levels of protective epoxyeicosatrienoic acids (EETs), improves glucose homeostasis in insulin-resistant mice. Here, we tested whether the administration of sEH inhibitors preserves cardiac myocyte structure and function in hyperglycemic rats. University of California-Davis-type 2 diabetes mellitus (UCD-T2DM) rats with nonfasting blood glucose levels in the range of 150-200 mg/dl were treated with the sEH inhibitor 1-(1-acetypiperidin-4-yl)-3-adamantanylurea (APAU) for 6 wk. Administration of APAU attenuated the progressive increase of blood glucose concentration and preserved mitochondrial structure and myofibril morphology in cardiac myocytes, as revealed by electron microscopy imaging. Fluorescence microscopy with Ca(2+) indicators also showed a 40% improvement of cardiac Ca(2+) transients in treated rats. Sarcoplasmic reticulum Ca(2+) content was decreased in both treated and untreated rats compared with control rats. However, treatment limited this reduction by 30%, suggesting that APAU may protect the intracellular Ca(2+) effector system. Using Western blot analysis on cardiac myocyte lysates, we found less downregulation of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA), the main route of Ca(2+) reuptake in the sarcoplasmic reticulum, and lower expression of hypertrophic markers in treated versus untreated UCD-T2DM rats. In conclusion, APAU enhances the therapeutic effects of EETs, resulting in slower progression of hyperglycemia, efficient protection of myocyte structure, and reduced Ca(2+) dysregulation and SERCA remodeling in hyperglycemic rats. The results suggest that sEH/EETs may be an effective therapeutic target for cardioprotection in insulin resistance and diabetes.
Collapse
|
48
|
Inaba W, Mizukami H, Kamata K, Takahashi K, Tsuboi K, Yagihashi S. Effects of long-term treatment with the dipeptidyl peptidase-4 inhibitor vildagliptin on islet endocrine cells in non-obese type 2 diabetic Goto-Kakizaki rats. Eur J Pharmacol 2012; 691:297-306. [PMID: 22820107 DOI: 10.1016/j.ejphar.2012.07.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/25/2012] [Accepted: 07/10/2012] [Indexed: 01/09/2023]
Abstract
Reduced β cell mass is a characteristic feature of type 2 diabetes and incretin therapy is expected to prevent this condition. However, it is unknown whether dipeptidyl peptidase-4 inhibitors influence β and α cell mass in animal models of diabetes that can be translated to humans. Therefore, we examined the long-term effects of treatment with the dipeptidyl peptidase-4 inhibitor vildagliptin on islet morphology in Goto-Kakizaki (GK) rats, a spontaneous, non-obese model of type 2 diabetes, and explored the underlying mechanisms. Four-week-old GK rats were orally administered with vildagliptin (15 mg/kg) twice daily for 18 weeks. Glucose tolerance was monitored during the study. After 18 weeks, β and α cell morphology and the expression of molecules involved in cell proliferation and cell death were examined by immunohistochemistry and morphometric analysis. We found that vildagliptin improved glucose tolerance and insulin secretion, and suppressed hyperglucagonemia by increasing plasma active glucagon-like peptide-1 concentrations. β cell mass was reduced in GK rats to 40% of that in Wistar rats, but was restored to 80% by vildagliptin. Vildagliptin enhanced β and α cell proliferation, and increased the number of small neogenetic islets. Vildagliptin also reduced the number of 8-hydroxy-2'-deoxyguanosine-positive cells and forkhead box protein O1 expression, inhibited macrophage infiltration, and enhanced S6 ribosomal protein, molecule of target of rapamycin, and pancreatic duodenal homeobox 1 expression. These results indicate that starting vildagliptin treatment from an early age improved glucose tolerance and preserved islet β cell mass in GK rats by facilitating the proliferation of islet endocrine cells.
Collapse
Affiliation(s)
- Wataru Inaba
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Shirakawa J, Tanami R, Togashi Y, Tajima K, Orime K, Kubota N, Kadowaki T, Goshima Y, Terauchi Y. Effects of liraglutide on β-cell-specific glucokinase-deficient neonatal mice. Endocrinology 2012; 153:3066-75. [PMID: 22569791 DOI: 10.1210/en.2012-1165] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The glucagon-like peptide-1 receptor agonist liraglutide is used to treat diabetes. A hallmark of liraglutide is the glucose-dependent facilitation of insulin secretion from pancreatic β-cells. In β-cells, the glycolytic enzyme glucokinase plays a pivotal role as a glucose sensor. However, the role of glucokinase in the glucose-dependent action of liraglutide remains unknown. We first examined the effects of liraglutide on glucokinase haploinsufficient (Gck(+/-)) mice. Single administration of liraglutide significantly improved glucose tolerance in Gck(+/-) mice without increase of insulin secretion. We also assessed the effects of liraglutide on the survival rates, metabolic parameters, and histology of liver or pancreas of β-cell-specific glucokinase-deficient (Gck(-/-)) newborn mice. Liraglutide reduced the blood glucose levels in Gck(-/-) neonates but failed to prolong survival, and all the mice died within 1 wk. Furthermore, liraglutide did not improve glucose-induced insulin secretion in isolated islets from Gck(-/-) neonates. Liraglutide initially prevented increases in alanine aminotransferase, free fatty acids, and triglycerides in Gck(-/-) neonates but not at 4 d after birth. Liraglutide transiently prevented liver steatosis, with reduced triglyceride contents and elevated glycogen contents in Gck(-/-) neonate livers at 2 d after birth. Liraglutide also protected against reductions in β-cells in Gck(-/-) neonates at 4 d after birth. Taken together, β-cell glucokinase appears to be essential for liraglutide-mediated insulin secretion, but liraglutide may improve glycemic control, steatosis, and β-cell death in a glucokinase-independent fashion.
Collapse
Affiliation(s)
- Jun Shirakawa
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kinalska I, Bednarska-Chabowska D, Adamiec-Mroczek J, Hak L. The influence of incretin mimetics on cardiovascular risk factors in diabetes. ISRN ENDOCRINOLOGY 2012; 2012:625809. [PMID: 22462016 PMCID: PMC3302114 DOI: 10.5402/2012/625809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 12/01/2011] [Indexed: 12/25/2022]
Abstract
The authors discuss the strategy of use of incretin hormones in type 2 diabetes treatment in the context of cardiovascular complications. The results of the phase III study on human GLP-1 (Glucagon-like peptide-1) analogue-liraglutide have been presented under common acronym LEAD (Liraglutide-Effect and Action In Diabetes). The liraglutide therapy improved glycemic control with low hypoglycemia risk and decreased glycated hemoglobin by an average 1,13%. Decreases in systolic pressure and significant body weight loss were observed. Not only did the index describing beta cells function HOMA-B improve but also did the ratio of insulin to proinsulin. Summing up, incretin hormones beneficially influence blood glucose level, moreover, their use decreases blood pressure and body weight which might indicate their positive influence on cardiovascular system in diabetic patients.
Collapse
Affiliation(s)
- Ida Kinalska
- Clinic of Endocrinology Diabetology and Internal Medicine, Medical University of Bialystok, M.Curie-Sklodowska 24a, 15-269 Bialystok, Poland
| | | | | | | |
Collapse
|