1
|
Ba T, Ren Q, Gong S, Li M, Cai X, Liu W, Luo Y, Zhang S, Zhang R, Zhou L, Zhu Y, Zhang X, Chen J, Wu J, Zhou X, Li Y, Wang X, Wang F, Zhong L, Han X, Ji L. Phenotypic features, prevalence of KCNJ11-MODY in Chinese patients with early-onset diabetes and a literature review. Clin Endocrinol (Oxf) 2024; 101:466-474. [PMID: 39190464 DOI: 10.1111/cen.15126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024]
Abstract
OBJECTIVE Gain-of-function (GOF) variants of KCNJ11 cause neonate diabetes and maturity-onset diabetes of the young (KCNJ11-MODY), while loss-of-function (LOF) variants lead to hyperinsulinemia hypoglycemia and subsequent diabetes. Given the limited research of KCNJ11-MODY, we aimed to analyse its phenotypic features and prevalence in Chinese patients with early-onset type 2 diabetes (EOD). DESIGN, PATIENTS AND MEASUREMENTS We performed next-generation sequencing on 679 Chinese EOD patients to screen for KCNJ11 exons variants. Bioinformatics prediction and the American College of Medical Genetics and Genomics guidelines was used to determine the pathogenicity and diagnosed KCNJ11-MODY. A literature review was conducted to investigate the phenotypic features of KCNJ11-MODY. RESULTS We identified six predicted deleterious rare variants in six EOD patients (0.88%). They were classified as uncertain significance (variant of uncertain significance [VUS]), but more common in this EOD cohort than a general Chinese population database, however, without significant difference (53/10,588, 0.50%) (p = .268). Among 80 previously reported patients with KCNJ11-MODY, 23.8% (19/80) carried 9 (32.1%) LOF variants, who had significantly older age at diagnosis, higher birthweight and higher fasting C-peptide compared to patients with GOF variants. Many patients carrying VUS were not correctly diagnosed. CONCLUSIONS Some rare variants of KCNJ11 might contribute to the development of Chinese EOD, although available evidence has not enough power to support them as cause of KCNJ11-MODY. The clinical features of LOF variants were different from GOF variants in KCNJ11-MODY patients. It is necessary to evaluate the pathogenicity of VUS through function experiments.
Collapse
Affiliation(s)
- Tianhao Ba
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Qian Ren
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Siqian Gong
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Meng Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Wei Liu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Yingying Luo
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Simin Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Rui Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Lingli Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Yu Zhu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Xiuying Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Jing Chen
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Jing Wu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Xianghai Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Yufeng Li
- Department of Endocrinology and Metabolism, Beijing Pinggu Hospital, Beijing, China
| | - Xirui Wang
- Department of Endocrinology and Metabolism, Beijing Airport Hospital, Beijing, China
| | - Fang Wang
- Department of Endocrinology and Metabolism, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liyong Zhong
- Department of Endocrinology and Metabolism, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| |
Collapse
|
2
|
Marassi M, Morieri ML, Sanga V, Ceolotto G, Avogaro A, Fadini GP. The Elusive Nature of ABCC8-related Maturity-Onset Diabetes of the Young (ABCC8-MODY). A Review of the Literature and Case Discussion. Curr Diab Rep 2024; 24:197-206. [PMID: 38980630 PMCID: PMC11303576 DOI: 10.1007/s11892-024-01547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE OF REVIEW Maturity-onset diabetes of the young (MODY) are monogenic forms of diabetes resulting from genetic defects, usually transmitted in an autosomal dominant fashion, leading to β-cell dysfunction. Due to the lack of homogeneous clinical features and univocal diagnostic criteria, MODY is often misdiagnosed as type 1 or type 2 diabetes, hence its diagnosis relies mostly on genetic testing. Fourteen subtypes of MODY have been described to date. Here, we review ABCC8-MODY pathophysiology, genetic and clinical features, and current therapeutic options. RECENT FINDINGS ABCC8-MODY is caused by mutations in the adenosine triphosphate (ATP)-binding cassette transporter subfamily C member 8 (ABCC8) gene, involved in the regulation of insulin secretion. The complexity of ABCC8-MODY genetic picture is mirrored by a variety of clinical manifestations, encompassing a wide spectrum of disease severity. Such inconsistency of genotype-phenotype correlation has not been fully understood. A correct diagnosis is crucial for the choice of adequate treatment and outcome improvement. By targeting the defective gene product, sulfonylureas are the preferred medications in ABCC8-MODY, although efficacy vary substantially. We illustrate three case reports in whom a diagnosis of ABCC8-MODY was suspected after the identification of novel ABCC8 variants that turned out to be of unknown significance. We discuss that careful interpretation of genetic testing is needed even on the background of a suggestive clinical context. We highlight the need for further research to unravel ABCC8-MODY disease mechanisms, as well as to clarify the pathogenicity of identified ABCC8 variants and their influence on clinical presentation and response to therapy.
Collapse
Affiliation(s)
- Marella Marassi
- Department of Medicine, University of Padova, Via Giustiniani 2, Padua, 35100, Italy
| | - Mario Luca Morieri
- Department of Medicine, University of Padova, Via Giustiniani 2, Padua, 35100, Italy
| | - Viola Sanga
- Department of Medicine, University of Padova, Via Giustiniani 2, Padua, 35100, Italy
| | - Giulio Ceolotto
- Department of Medicine, University of Padova, Via Giustiniani 2, Padua, 35100, Italy
| | - Angelo Avogaro
- Department of Medicine, University of Padova, Via Giustiniani 2, Padua, 35100, Italy
| | - Gian Paolo Fadini
- Department of Medicine, University of Padova, Via Giustiniani 2, Padua, 35100, Italy.
- Veneto Institute of Molecular Medicine, Padua, 35100, Italy.
| |
Collapse
|
3
|
Butnariu LI, Bizim DA, Păduraru G, Păduraru L, Moisă ȘM, Popa S, Gimiga N, Ghiga G, Bădescu MC, Lupu A, Vasiliu I, Trandafir LM. Congenital Hyperinsulinism Caused by Mutations in ABCC8 Gene Associated with Early-Onset Neonatal Hypoglycemia: Genetic Heterogeneity Correlated with Phenotypic Variability. Int J Mol Sci 2024; 25:5533. [PMID: 38791571 PMCID: PMC11122115 DOI: 10.3390/ijms25105533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Congenital hyperinsulinism (CHI) is a rare disorder of glucose metabolism and is the most common cause of severe and persistent hypoglycemia (hyperinsulinemic hypoglycemia, HH) in the neonatal period and childhood. Most cases are caused by mutations in the ABCC8 and KCNJ11 genes that encode the ATP-sensitive potassium channel (KATP). We present the correlation between genetic heterogeneity and the variable phenotype in patients with early-onset HH caused by ABCC8 gene mutations. In the first patient, who presented persistent severe hypoglycemia since the first day of life, molecular genetic testing revealed the presence of a homozygous mutation in the ABCC8 gene [deletion in the ABCC8 gene c.(2390+1_2391-1)_(3329+1_3330-1)del] that correlated with a diffuse form of hyperinsulinism (the parents being healthy heterozygous carriers). In the second patient, the onset was on the third day of life with severe hypoglycemia, and genetic testing identified a heterozygous mutation in the ABCC8 gene c.1792C>T (p.Arg598*) inherited on the paternal line, which led to the diagnosis of the focal form of hyperinsulinism. To locate the focal lesions, (18)F-DOPA (3,4-dihydroxy-6-[18F]fluoro-L-phenylalanine) positron emission tomography/computed tomography (PET/CT) was recommended (an investigation that cannot be carried out in the country), but the parents refused to carry out the investigation abroad. In this case, early surgical treatment could have been curative. In addition, the second child also presented secondary adrenal insufficiency requiring replacement therapy. At the same time, she developed early recurrent seizures that required antiepileptic treatment. We emphasize the importance of molecular genetic testing for diagnosis, management and genetic counseling in patients with HH.
Collapse
Affiliation(s)
- Lăcrămioara Ionela Butnariu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Delia Andreia Bizim
- Departament of Diabetes, Saint Mary’s Emergency Children Hospital, 700309 Iasi, Romania
| | - Gabriela Păduraru
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.P.); (Ș.M.M.); (N.G.); (G.G.); (A.L.); (L.M.T.)
| | - Luminița Păduraru
- Department of Mother and Child, Division Neonatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Ștefana Maria Moisă
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.P.); (Ș.M.M.); (N.G.); (G.G.); (A.L.); (L.M.T.)
| | - Setalia Popa
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Nicoleta Gimiga
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.P.); (Ș.M.M.); (N.G.); (G.G.); (A.L.); (L.M.T.)
| | - Gabriela Ghiga
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.P.); (Ș.M.M.); (N.G.); (G.G.); (A.L.); (L.M.T.)
| | - Minerva Codruța Bădescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| | - Ancuta Lupu
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.P.); (Ș.M.M.); (N.G.); (G.G.); (A.L.); (L.M.T.)
| | - Ioana Vasiliu
- Department of Morphofunctional Sciences II, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Laura Mihaela Trandafir
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.P.); (Ș.M.M.); (N.G.); (G.G.); (A.L.); (L.M.T.)
| |
Collapse
|
4
|
Wang P, Liao H, Wang Q, Xie H, Xu B, Xiang Q, Wang H, Yang M, Liu S. Functional characterization of inactivating ABCC8 variants causing congenital hyperinsulinism. Clin Genet 2024; 105:549-554. [PMID: 38225536 DOI: 10.1111/cge.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024]
Abstract
Congenital hyperinsulinism (CHI; OMIM: 256450) is characterized by persistent insulin secretion despite severe hypoglycemia. The most common causes are variants in the ATP-binding cassette subfamily C member 8(ABCC8) and potassium inwardly-rectifying channel subfamily J member 11(KCNJ11) genes. These encode ATP-sensitive potassium (KATP) channel subunit sulfonylurea receptor 1 (SUR1) and inwardly rectifying potassium channel (Kir6.2) proteins. A 7-day-old male infant presented with frequent hypoglycemic episodes and was clinically diagnosed with CHI, underwent trio-whole-exome sequencing, revealing compound heterozygous ABCC8 variants (c.307C>T, p.His103Tyr; and c.3313_3315del, p.Ile1105del) were identified. In human embryonic kidney 293 (HEK293) and rat insulinoma cells (INS-1) transfected with wild-type and variant plasmids, KATP channels formed by p.His103Tyr were delivered to the plasma membrane, whereas p.Ile1105del or double variants (p.His103Tyr coupled with p.Ile1105del) failed to be transported to the plasma membrane. Compared to wild-type channels, the channels formed by the variants (p.His103Tyr; p.Ile1105del) had elevated basal [Ca2+]i, but did not respond to stimulation by glucose. Our results provide evidence that the two ABCC8 variants may be related to CHI owing to defective trafficking and dysfunction of KATP channels.
Collapse
Affiliation(s)
- Ping Wang
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Hong Liao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Quyou Wang
- Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hanbing Xie
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Bocheng Xu
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Qinqin Xiang
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - He Wang
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Mei Yang
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Shanling Liu
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
5
|
Juliana CA, Benjet J, De Leon DD. Characterization of the zebrafish as a model of ATP-sensitive potassium channel hyperinsulinism. BMJ Open Diabetes Res Care 2024; 12:e003735. [PMID: 38575153 PMCID: PMC11005463 DOI: 10.1136/bmjdrc-2023-003735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/25/2024] [Indexed: 04/06/2024] Open
Abstract
INTRODUCTION Congenital hyperinsulinism (HI) is the leading cause of persistent hypoglycemia in infants. Current models to study the most common and severe form of HI resulting from inactivating mutations in the ATP-sensitive potassium channel (KATP) are limited to primary islets from patients and the Sur1 -/- mouse model. Zebrafish exhibit potential as a novel KATPHI model since they express canonical insulin secretion pathway genes and those with identified causative HI mutations. Moreover, zebrafish larvae transparency provides a unique opportunity for in vivo visualization of pancreatic islets. RESEARCH DESIGN AND METHODS We evaluated zebrafish as a model for KATPHI using a genetically encoded Ca2+ sensor (ins:gCaMP6s) expressed under control of the insulin promoter in beta cells of an abcc8 -/- zebrafish line. RESULTS We observed significantly higher islet cytosolic Ca2+ in vivo in abcc8 -/- compared with abcc8 +/+ zebrafish larvae. Additionally, abcc8 -/- larval zebrafish had significantly lower whole body glucose and higher whole body insulin levels compared with abcc8 +/+ controls. However, adult abcc8 -/- zebrafish do not show differences in plasma glucose, plasma insulin, or glucose tolerance when compared with abcc8 +/+ zebrafish. CONCLUSIONS Our results identify that zebrafish larvae, but not adult fish, are a demonstrable novel model for advancement of HI research.
Collapse
Affiliation(s)
- Christine A Juliana
- Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Joshua Benjet
- Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Diva D De Leon
- Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Li C, Juliana CA, Yuan Y, Li M, Lu M, Chen P, Boodhansingh KE, Doliba NM, Bhatti TR, Adzick NS, Stanley CA, De León DD. Phenotypic Characterization of Congenital Hyperinsulinism Due to Novel Activating Glucokinase Mutations. Diabetes 2023; 72:1809-1819. [PMID: 37725835 PMCID: PMC10658072 DOI: 10.2337/db23-0465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023]
Abstract
The importance of glucokinase (GK) in the regulation of insulin secretion has been highlighted by the phenotypes of individuals with activating and inactivating mutations in the glucokinase gene (GCK). Here we report 10 individuals with congenital hyperinsulinism (HI) caused by eight unique activating mutations of GCK. Six are novel and located near previously identified activating mutations sites. The first recognized episode of hypoglycemia in these patients occurred between birth and 24 years, and the severity of the phenotype was also variable. Mutant enzymes were expressed and purified for enzyme kinetics in vitro. Mutant enzymes had low glucose half-saturation concentration values and an increased enzyme activity index compared with wild-type GK. We performed functional evaluation of islets from the pancreata of three children with GCK-HI who required pancreatectomy. Basal insulin secretion in perifused GCK-HI islets was normal, and the response to glyburide was preserved. However, the threshold for glucose-stimulated insulin secretion in perifused glucokinase hyperinsulinism (GCK-HI) islets was decreased, and glucagon secretion was greatly suppressed. Our evaluation of novel GCK disease-associated mutations revealed that the detrimental effects of these mutations on glucose homeostasis can be attributed not only to a lowering of the glucose threshold of insulin secretion but also to a decreased counterregulatory glucagon secretory response. ARTICLE HIGHLIGHTS Our evaluation of six novel and two previously published activating GCK mutations revealed that the detrimental effects of these mutations on glucose homeostasis can be attributed not only to a lowering of the glucose threshold of insulin secretion but also to a decreased counterregulatory glucagon secretory response. These studies provide insights into the pathophysiology of GCK-hyperinsulinism and the dual role of glucokinase in β-cells and α-cells to regulate glucose homeostasis.
Collapse
Affiliation(s)
- Changhong Li
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Nanjing AscendRare Pharmaceutical Technology Co., Nanjing, China
| | - Christine A. Juliana
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Yue Yuan
- Nanjing AscendRare Pharmaceutical Technology Co., Nanjing, China
| | - Ming Li
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Lu
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Pan Chen
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Kara E. Boodhansingh
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Nicolai M. Doliba
- Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Tricia R. Bhatti
- Department of Pathology, The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - N. Scott Adzick
- Department of Surgery, The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Charles A. Stanley
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Diva D. De León
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
7
|
Clemente M, Cobo P, Antolín M, Campos A, Yeste D, Tomasini R, Caimari M, Masas M, García-Arumí E, Fernández-Cancio M, Baz-Redón N, Camats-Tarruella N. Genetics and Natural History of Non-pancreatectomized Patients With Congenital Hyperinsulinism Due to Variants in ABCC8. J Clin Endocrinol Metab 2023; 108:e1316-e1328. [PMID: 37216904 DOI: 10.1210/clinem/dgad280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
CONTEXT Patients with congenital hyperinsulinism due to ABCC8 variants generally present severe hypoglycemia and those who do not respond to medical treatment typically undergo pancreatectomy. Few data exist on the natural history of non-pancreatectomized patients. OBJECTIVE This work aims to describe the genetic characteristics and natural history in a cohort of non-pancreatectomized patients with congenital hyperinsulinism due to variants in the ABCC8 gene. METHODS Ambispective study of patients with congenital hyperinsulinism with pathogenic or likely pathogenic variants in ABCC8 treated in the last 48 years and who were not pancreatectomized. Continuous glucose monitoring (CGM) has been periodically performed in all patients since 2003. An oral glucose tolerance test was performed if hyperglycemia was detected in the CGM. RESULTS Eighteen non-pancreatectomized patients with ABCC8 variants were included. Seven (38.9%) patients were heterozygous, 8 (44.4%) compound heterozygous, 2 (11.1%) homozygous, and 1 patient carried 2 variants with incomplete familial segregation studies. Seventeen patients were followed up and 12 (70.6%) of them evolved to spontaneous resolution (median age 6.0 ± 4 years; range, 1-14). Five of these 12 patients (41.7%) subsequently progressed to diabetes with insufficient insulin secretion. Evolution to diabetes was more frequent in patients with biallelic variants in the ABCC8 gene. CONCLUSION The high remission rate observed in our cohort makes conservative medical treatment a reliable strategy for the management of patients with congenital hyperinsulinism due to ABCC8 variants. In addition, a periodic follow-up of glucose metabolism after remission is recommended, as a significant proportion of patients evolved to impaired glucose tolerance or diabetes (biphasic phenotype).
Collapse
Affiliation(s)
- María Clemente
- Paediatric Endocrinology Section, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Paediatrics, Obstetrics and Gynaecology and Preventive Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 08035 Barcelona, Spain
| | - Patricia Cobo
- Paediatric Endocrinology Section, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - María Antolín
- Department of Clinical and Molecular Genetics and Rare Diseases, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Medicine Genetics Group, VHIR, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Ariadna Campos
- Paediatric Endocrinology Section, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Paediatrics, Obstetrics and Gynaecology and Preventive Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Diego Yeste
- Paediatric Endocrinology Section, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Paediatrics, Obstetrics and Gynaecology and Preventive Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 08035 Barcelona, Spain
| | - Rosangela Tomasini
- Paediatric Endocrinology Unit, Hospital Universitari Mútua Terrassa, 08021 Terrassa, Spain
| | - María Caimari
- Paediatric Endocrinology, Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Miriam Masas
- Department of Clinical and Molecular Genetics and Rare Diseases, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Medicine Genetics Group, VHIR, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Elena García-Arumí
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 08035 Barcelona, Spain
- Department of Clinical and Molecular Genetics and Rare Diseases, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Medicine Genetics Group, VHIR, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Research Group on Neuromuscular and Mitochondrial Disorders, VHIR, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Mónica Fernández-Cancio
- Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 08035 Barcelona, Spain
| | - Noelia Baz-Redón
- Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 08035 Barcelona, Spain
| | - Núria Camats-Tarruella
- Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 08035 Barcelona, Spain
| |
Collapse
|
8
|
Souabni SA, Harvengt A, Legat C, Lysy PA. Congenital hyperinsulinemic hypoglycemia (HH) requiring treatment as the presenting feature of Kabuki syndrome. Clin Case Rep 2023; 11:e7336. [PMID: 37257167 PMCID: PMC10220455 DOI: 10.1002/ccr3.7336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 06/02/2023] Open
Abstract
Kabuki syndrome is a congenital condition characterized by a set of facial dysmorphic features that often help the clinician to suspect the diagnosis. However, more insidious symptoms can rarely occur, such as manifestations of hypoglycemia in newborns with congenital hyperinsulinism hypoglycemia, especially when a variant of the KDM6A gene is found. In those cases, a treatment with diazoxide can be started and can be replaced with lanreotide if a satisfying glycemic control is not achieved. We report the case of a female patient born at 37 weeks of gestational age, without any obvious facial dysmorphic features, after a non-complicated pregnancy, that presented with feeding difficulties, drowsiness, and irritability revealing a hyperinsulinemic hypoglycemia. Further testing at 6 months old found a KDM6A mutation. The patient was initially treated by diazoxide alone, but its dosage had to be lowered because of the occurrence of treatment side effects, and lanreotide had been added to maintain acceptable blood sugar levels. A congenital hyperinsulinemia hypoglycemia revealed heterozygous truncating variant in the KDM6A gene, also known as X-linked Kabuki syndrome in a newborn. In cases of neonatal hypoglycemia, the first-line therapy is diazoxide. Our report shows that analogues of somatostatin such as lanreotide should be considered if the diazoxide regimen is not tolerated.
Collapse
Affiliation(s)
- Saloua Ait Souabni
- Pediatric Endocrinology, Specialized Pediatrics ServiceCliniques Universitaires Saint Luc, UCLouvainBrusselsBelgium
| | - Antoine Harvengt
- Pediatric Endocrinology, Specialized Pediatrics ServiceCliniques Universitaires Saint Luc, UCLouvainBrusselsBelgium
| | - Camille Legat
- Pediatric Endocrinology, Specialized Pediatrics ServiceCliniques Universitaires Saint Luc, UCLouvainBrusselsBelgium
| | - Philippe A. Lysy
- Pediatric Endocrinology, Specialized Pediatrics ServiceCliniques Universitaires Saint Luc, UCLouvainBrusselsBelgium
| |
Collapse
|
9
|
Juliana CA, Chai J, Arroyo P, Rico-Bautista E, Betz SF, De León DD. A selective nonpeptide somatostatin receptor 5 (SST5) agonist effectively decreases insulin secretion in hyperinsulinism. J Biol Chem 2023:104816. [PMID: 37178920 DOI: 10.1016/j.jbc.2023.104816] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023] Open
Abstract
Congenital hyperinsulinism (HI), a beta cell disorder most commonly caused by inactivating mutations of beta cell KATP channels, results in dysregulated insulin secretion and persistent hypoglycemia. Children with KATP-HI are unresponsive to diazoxide, the only FDA-approved drug for HI, and utility of octreotide, the second line therapy, is limited because of poor efficacy, desensitization, and somatostatin receptor type 2 (SST2)-mediated side effects. Selective targeting of SST5, an SST receptor associated with potent insulin secretion suppression, presents a new avenue for HI therapy. Here, we determined that CRN02481, a highly selective nonpeptide SST5 agonist, significantly decreased basal and amino acid-stimulated insulin secretion in both Sur1-/- (a model for KATP-HI) and wild type mouse islets. Oral administration of CRN02481 significantly increased fasting glucose and prevented fasting hypoglycemia compared to vehicle in Sur1-/- mice. During a glucose tolerance test, CRN02481 significantly increased glucose excursion in both WT and Sur1-/- mice compared to control. CRN02481 also reduced glucose- and tolbutamide-stimulated insulin secretion from healthy, control human islets similar to the effects observed with SS14 and peptide somatostatin analogs. Moreover, CRN02481 significantly decreased glucose- and amino acid-stimulated insulin secretion in islets from two infants with KATP-HI and one with Beckwith-Weideman Syndrome-HI. Taken together, these data demonstrate that a potent and selective SST5 agonist effectively prevents fasting hypoglycemia and suppresses insulin secretion not only in a KATP-HI mouse model, but also in healthy human islets and islets from HI patients.
Collapse
Affiliation(s)
- Christine A Juliana
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jinghua Chai
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA
| | | | | | | | - Diva D De León
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
10
|
ATP-Sensitive Potassium Channels in Migraine: Translational Findings and Therapeutic Potential. Cells 2022; 11:cells11152406. [PMID: 35954249 PMCID: PMC9367966 DOI: 10.3390/cells11152406] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 12/10/2022] Open
Abstract
Globally, migraine is a leading cause of disability with a huge impact on both the work and private life of affected persons. To overcome the societal migraine burden, better treatment options are needed. Increasing evidence suggests that ATP-sensitive potassium (KATP) channels are involved in migraine pathophysiology. These channels are essential both in blood glucose regulation and cardiovascular homeostasis. Experimental infusion of the KATP channel opener levcromakalim to healthy volunteers and migraine patients induced headache and migraine attacks in 82-100% of participants. Thus, this is the most potent trigger of headache and migraine identified to date. Levcromakalim likely induces migraine via dilation of cranial arteries. However, other neuronal mechanisms are also proposed. Here, basic KATP channel distribution, physiology, and pharmacology are reviewed followed by thorough review of clinical and preclinical research on KATP channel involvement in migraine. KATP channel opening and blocking have been studied in a range of preclinical migraine models and, within recent years, strong evidence on the importance of their opening in migraine has been provided from human studies. Despite major advances, translational difficulties exist regarding the possible anti-migraine efficacy of KATP channel blockage. These are due to significant species differences in the potency and specificity of pharmacological tools targeting the various KATP channel subtypes.
Collapse
|
11
|
Congenital hyperinsulinism: localization of a focal lesion with 18F-FDOPA positron emission tomography. Pediatr Radiol 2022; 52:693-701. [PMID: 34668049 DOI: 10.1007/s00247-021-05206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/29/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
Hyperinsulinemic hypoglycemia of infancy, also known as congenital hyperinsulinism, is a group of disorders characterized by dysregulated insulin release. Neonates with severe, persistent hyperinsulinemic hypoglycemia who are unresponsive to medical therapy require pancreatectomy to prevent brain damage from hypoglycemia. To date, multiple genetic mutations and syndromes and several unique histopathological entities have been identified in children with hyperinsulinism. Histopathology is characterized as diffuse, focal or atypical. Surgical resection of a focal lesion results in a cure in up to 97% of these children. Imaging with 6-fluoro-(18F)-L-3,4-dihydroxyphenylalanine (18F-FDOPA) positron emission tomography (PET) is the test of choice for identifying and localizing a focal lesion and has proved to be an invaluable guide for surgical resection. Genetic evaluation is essential for determining who will benefit from PET imaging. This article provides an approach to determine who should be imaged, how to set up a protocol and how to interpret the imaging findings. The diagnosis and management of this disorder require a multidisciplinary approach to prevent brain damage from hypoglycemia.
Collapse
|
12
|
Nichols CG, York NW, Remedi MS. ATP-Sensitive Potassium Channels in Hyperinsulinism and Type 2 Diabetes: Inconvenient Paradox or New Paradigm? Diabetes 2022; 71:367-375. [PMID: 35196393 PMCID: PMC8893938 DOI: 10.2337/db21-0755] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/28/2021] [Indexed: 11/13/2022]
Abstract
Secretion of insulin from pancreatic β-cells is complex, but physiological glucose-dependent secretion is dominated by electrical activity, in turn controlled by ATP-sensitive potassium (KATP) channel activity. Accordingly, loss-of-function mutations of the KATP channel Kir6.2 (KCNJ11) or SUR1 (ABCC8) subunit increase electrical excitability and secretion, resulting in congenital hyperinsulinism (CHI), whereas gain-of-function mutations cause underexcitability and undersecretion, resulting in neonatal diabetes mellitus (NDM). Thus, diazoxide, which activates KATP channels, and sulfonylureas, which inhibit KATP channels, have dramatically improved therapies for CHI and NDM, respectively. However, key findings do not fit within this simple paradigm: mice with complete absence of β-cell KATP activity are not hyperinsulinemic; instead, they are paradoxically glucose intolerant and prone to diabetes, as are older human CHI patients. Critically, despite these advances, there has been little insight into any role of KATP channel activity changes in the development of type 2 diabetes (T2D). Intriguingly, the CHI progression from hypersecretion to undersecretion actually mirrors the classical response to insulin resistance in the progression of T2D. In seeking to explain the progression of CHI, multiple lines of evidence lead us to propose that underlying mechanisms are also similar and that development of T2D may involve loss of KATP activity.
Collapse
Affiliation(s)
- Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| | - Nathaniel W York
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| | - Maria S Remedi
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
- Division of Endocrinology Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
13
|
Lithovius V, Otonkoski T. Stem Cell Based Models in Congenital Hyperinsulinism - Perspective on Practicalities and Possibilities. Front Endocrinol (Lausanne) 2022; 13:837450. [PMID: 35250887 PMCID: PMC8895269 DOI: 10.3389/fendo.2022.837450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/27/2022] [Indexed: 12/31/2022] Open
Abstract
Congenital hyperinsulinism (CHI) is a severe inherited neonatal disorder characterized by inappropriate insulin secretion caused by genetic defects of the pancreatic beta cells. Several open questions remain in CHI research, such as the optimal treatment for the most common type of CHI, caused by mutations in the genes encoding ATP-sensitive potassium channels, and the molecular mechanisms of newly identified CHI genes. Answering these questions requires robust preclinical models, particularly since primary patient material is extremely scarce and accurate animal models are not available. In this short review, we explain why pluripotent stem cell derived islets present an attractive solution to these issues and outline the current progress in stem-cell based modeling of CHI. Stem cell derived islets enable the study of molecular mechanisms of CHI and the discovery of novel antihypoglycemic drugs, while also providing a valuable model to study the biology of variable functional states of beta cells.
Collapse
Affiliation(s)
- Väinö Lithovius
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- *Correspondence: Väinö Lithovius, ; Timo Otonkoski,
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children’s Hospital, Helsinki University Hospital, Helsinki, Finland
- *Correspondence: Väinö Lithovius, ; Timo Otonkoski,
| |
Collapse
|
14
|
Song Y, Liu J, Li J, Ou Z, Liang D, Chen X, Tang T, Xing P, Guo L, Ye Q, Chen X, Li W, Chen Y, Wang X. Generation and characterization of a human iPSC line HECi001-A from a healthy adult donor pancreata. Stem Cell Res 2021; 56:102541. [PMID: 34600296 DOI: 10.1016/j.scr.2021.102541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSC) are considered promising sources of pancreatic islet organoids to treat diabetes. Due to that epigenetic memory predisposes iPSCs to enhanced differentiation into the parental cell type, we sought to generate iPSC lines from islet cells isolated from healthy adult pancreata. Islet cells were reprogrammed with CytoTune-iPS 2.0 Sendai Reprogramming Kit, where the generated iPSCs showed normal karyotype, expression of pluripotency associated markers and in vivoteratoma formation. This cell line will be a valuable resource for drug screening, and potential source for high-efficient generation of insulin-producing islets for treating diabetes.
Collapse
Affiliation(s)
- Yizhe Song
- Department of Histology and Embryology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Jing Liu
- Sunshine Lake Pharma Co., Ltd., Dongguan, Guangdong, China
| | - Jingqiu Li
- Sunshine Lake Pharma Co., Ltd., Dongguan, Guangdong, China
| | - Zhensheng Ou
- Sunshine Lake Pharma Co., Ltd., Dongguan, Guangdong, China
| | - Decan Liang
- Sunshine Lake Pharma Co., Ltd., Dongguan, Guangdong, China
| | - Xiaoqian Chen
- Sunshine Lake Pharma Co., Ltd., Dongguan, Guangdong, China
| | - Tingting Tang
- Sunshine Lake Pharma Co., Ltd., Dongguan, Guangdong, China
| | - Peiwen Xing
- Sunshine Lake Pharma Co., Ltd., Dongguan, Guangdong, China
| | - Leilei Guo
- Sunshine Lake Pharma Co., Ltd., Dongguan, Guangdong, China
| | - Qunrui Ye
- Sunshine Lake Pharma Co., Ltd., Dongguan, Guangdong, China
| | - Xiaofeng Chen
- Sunshine Lake Pharma Co., Ltd., Dongguan, Guangdong, China
| | - Wenjia Li
- Sunshine Lake Pharma Co., Ltd., Dongguan, Guangdong, China.
| | - Yinghua Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Xiuli Wang
- Department of Histology and Embryology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
15
|
Abstract
This review focuses on the human pancreatic islet-including its structure, cell composition, development, function, and dysfunction. After providing a historical timeline of key discoveries about human islets over the past century, we describe new research approaches and technologies that are being used to study human islets and how these are providing insight into human islet physiology and pathophysiology. We also describe changes or adaptations in human islets in response to physiologic challenges such as pregnancy, aging, and insulin resistance and discuss islet changes in human diabetes of many forms. We outline current and future interventions being developed to protect, restore, or replace human islets. The review also highlights unresolved questions about human islets and proposes areas where additional research on human islets is needed.
Collapse
Affiliation(s)
- John T Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Diane C Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marcela Brissova
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
16
|
Yang J, Hammoud B, Li C, Ridler A, Yau D, Kim J, Won KJ, Stanley CA, Hoshi T, Stanescu DE. Decreased KATP Channel Activity Contributes to the Low Glucose Threshold for Insulin Secretion of Rat Neonatal Islets. Endocrinology 2021; 162:6301135. [PMID: 34134142 PMCID: PMC8276892 DOI: 10.1210/endocr/bqab121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 12/12/2022]
Abstract
Transitional hypoglycemia in normal newborns occurs in the first 3 days of life and has clinical features consistent with hyperinsulinism. We found a lower threshold for glucose-stimulated insulin secretion from freshly isolated embryonic day (E) 22 rat islets, which persisted into the first postnatal days. The threshold reached the adult level by postnatal day (P) 14. Culturing P14 islets also decreased the glucose threshold. Freshly isolated P1 rat islets had a lower threshold for insulin secretion in response to 2-aminobicyclo-(2, 2, 1)-heptane-2-carboxylic acid, a nonmetabolizable leucine analog, and diminished insulin release in response to tolbutamide, an inhibitor of β-cell KATP channels. These findings suggested that decreased KATP channel function could be responsible for the lower glucose threshold for insulin secretion. Single-cell transcriptomic analysis did not reveal a lower expression of KATP subunit genes in E22 compared with P14 β cells. The investigation of electrophysiological characteristics of dispersed β cells showed that early neonatal and cultured cells had fewer functional KATP channels per unit membrane area. Our findings suggest that decreased surface density of KATP channels may contribute to the observed differences in glucose threshold for insulin release.
Collapse
Affiliation(s)
- Juxiang Yang
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Batoul Hammoud
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Changhong Li
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Abigail Ridler
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Daphne Yau
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Junil Kim
- Biotech Research & Innovation Centre, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, South Korea
| | - Kyoung-Jae Won
- Biotech Research & Innovation Centre, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Charles A Stanley
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Toshinori Hoshi
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diana E Stanescu
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: Diana Elena Stanescu, MD, The Children's Hospital of Philadelphia, Abramson Pediatric Research Center, 3615 Civic Center Blvd, #802G, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Henquin JC. Non-glucose modulators of insulin secretion in healthy humans: (dis)similarities between islet and in vivo studies. Metabolism 2021; 122:154821. [PMID: 34174327 DOI: 10.1016/j.metabol.2021.154821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022]
Abstract
Optimal metabolic homeostasis requires precise temporal and quantitative control of insulin secretion. Both in vivo and in vitro studies have often focused on the regulation by glucose although many additional factors including other nutrients, neurotransmitters, hormones and drugs, modulate the secretory function of pancreatic β-cells. This review is based on the analysis of clinical investigations characterizing the effects of non-glucose modulators of insulin secretion in healthy subjects, and of experimental studies testing the same modulators in islets isolated from normal human donors. The aim was to determine whether the information gathered in vitro can reliably be translated to the in vivo situation. The comparison evidenced both convincing similarities and areas of discordance. The lack of coherence generally stems from the use of exceedingly high concentrations of test agents at too high or too low glucose concentrations in vitro, which casts doubts on the physiological relevance of a number of observations made in isolated islets. Future projects resorting to human islets should avoid extreme experimental conditions, such as oversized stimulations or inhibitions of β-cells, which are unlikely to throw light on normal insulin secretion and contribute to the elucidation of its defects.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium.
| |
Collapse
|
18
|
Li M, Gong S, Han X, Zhang S, Ren Q, Cai X, Luo Y, Zhou L, Zhang R, Liu W, Zhu Y, Zhou X, Sun Y, Li Y, Ma Y, Ji L. Genetic variants of ABCC8 and phenotypic features in Chinese early onset diabetes. J Diabetes 2021; 13:542-553. [PMID: 33300273 DOI: 10.1111/1753-0407.13144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/21/2020] [Accepted: 12/06/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND ABCC8 variants cause neonatal diabetes, maturity onset diabetes of the young (MODY), and hyperinsulinemic hypoglycemia because of activating or inactivating variants. In this study we used targeted exon sequencing to investigate genetic variants of ABCC8 and phenotypic features in Chinese patients with early onset diabetes (EOD). METHODS A cross-sectional study of 543 Chinese patients with EOD was recruited and the exons of them were conducted targeted sequencing. The pathogenicity of ABCC8 variants was defined according to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology guideline. The phenotypes of patients owing to ABCC8 variants (ABCC8-MODY) were characterized. RESULTS Among the 543 participants, eight (1.5%) patients with ABCC8-MODY were identified. They harbored eight missense ABCC8 variants (p.R306C, p.E1326K, and p.R1379H, previously reported; p.R298C, p.F1176C, p.R1221W, p.K1358R, and p.I1404V) classified as likely pathogenic. Two family members with ABCC8-MODY were also confirmed. The average diagnosed age of the 10 patients was 26.8 ± 12.9 years. The majority of them had unsatisfactory glucose control, 80% of them had diabetic kidney disease, and neurological features were not observed. CONCLUSION Using targeted exon sequencing followed by pathogenicity analysis, we could be able to make genetic diagnoses for eight (1.5%) patients with ABCC8-MODY. The phenotype was variable with higher risk of diabetic microvascular complications. Genetic diagnosis is conducive for facilitating the personalized treatment of ABCC8-MODY.
Collapse
Affiliation(s)
- Meng Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Siqian Gong
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Simin Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Qian Ren
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yingying Luo
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Lingli Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Rui Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Wei Liu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yu Zhu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xianghai Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yanfang Sun
- Department of Internal Medicine, Hebei Province Sanhe Hospital, Langfang, China
| | - Yufeng Li
- Department of Endocrinology and Metabolism, Capital Medical University Pinggu Hospital, Beijing, China
| | - Yumin Ma
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| |
Collapse
|
19
|
Henquin JC. Glucose-induced insulin secretion in isolated human islets: Does it truly reflect β-cell function in vivo? Mol Metab 2021; 48:101212. [PMID: 33737253 PMCID: PMC8065218 DOI: 10.1016/j.molmet.2021.101212] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diabetes always involves variable degrees of β-cell demise and malfunction leading to insufficient insulin secretion. Besides clinical investigations, many research projects used rodent islets to study various facets of β-cell pathophysiology. Their important contributions laid the foundations of steadily increasing numbers of experimental studies resorting to isolated human islets. SCOPE OF REVIEW This review, based on an analysis of data published over 60 years of clinical investigations and results of more recent studies in isolated islets, addresses a question of translational nature. Does the information obtained in vitro with human islets fit with our knowledge of insulin secretion in man? The aims are not to discuss specificities of pathways controlling secretion but to compare qualitative and quantitative features of glucose-induced insulin secretion in isolated human islets and in living human subjects. MAJOR CONCLUSIONS Much of the information gathered in vitro can reliably be translated to the in vivo situation. There is a fairly good, though not complete, qualitative and quantitative coherence between insulin secretion rates measured in vivo and in vitro during stimulation with physiological glucose concentrations, but the concordance fades out under extreme conditions. Perplexing discrepancies also exist between insulin secretion in subjects with Type 2 diabetes and their islets studied in vitro, in particular concerning the kinetics. Future projects should ascertain that the experimental conditions are close to physiological and do not alter the function of normal and diabetic islets.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium.
| |
Collapse
|
20
|
Lithovius V, Saarimäki-Vire J, Balboa D, Ibrahim H, Montaser H, Barsby T, Otonkoski T. SUR1-mutant iPS cell-derived islets recapitulate the pathophysiology of congenital hyperinsulinism. Diabetologia 2021; 64:630-640. [PMID: 33404684 DOI: 10.1007/s00125-020-05346-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/13/2020] [Indexed: 12/27/2022]
Abstract
AIMS/HYPOTHESIS Congenital hyperinsulinism caused by mutations in the KATP-channel-encoding genes (KATPHI) is a potentially life-threatening disorder of the pancreatic beta cells. No optimal medical treatment is available for patients with diazoxide-unresponsive diffuse KATPHI. Therefore, we aimed to create a model of KATPHI using patient induced pluripotent stem cell (iPSC)-derived islets. METHODS We derived iPSCs from a patient carrying a homozygous ABCC8V187D mutation, which inactivates the sulfonylurea receptor 1 (SUR1) subunit of the KATP-channel. CRISPR-Cas9 mutation-corrected iPSCs were used as controls. Both were differentiated to stem cell-derived islet-like clusters (SC-islets) and implanted into NOD-SCID gamma mice. RESULTS SUR1-mutant and -corrected iPSC lines both differentiated towards the endocrine lineage, but SUR1-mutant stem cells generated 32% more beta-like cells (SC-beta cells) (64.6% vs 49.0%, p = 0.02) and 26% fewer alpha-like cells (16.1% vs 21.8% p = 0.01). SUR1-mutant SC-beta cells were 61% more proliferative (1.23% vs 0.76%, p = 0.006), and this phenotype could be induced in SUR1-corrected cells with pharmacological KATP-channel inactivation. The SUR1-mutant SC-islets secreted 3.2-fold more insulin in low glucose conditions (0.0174% vs 0.0054%/min, p = 0.0021) and did not respond to KATP-channel-acting drugs in vitro. Mice carrying grafts of SUR1-mutant SC-islets presented with 38% lower fasting blood glucose (4.8 vs 7.7 mmol/l, p = 0.009) and their grafts failed to efficiently shut down insulin secretion during induced hypoglycaemia. Explanted SUR1-mutant grafts displayed an increase in SC-beta cell proportion and SC-beta cell nucleomegaly, which was independent of proliferation. CONCLUSIONS/INTERPRETATION We have created a model recapitulating the known pathophysiology of KATPHI both in vitro and in vivo. We have also identified a novel role for KATP-channel activity during human islet development. This model will enable further studies for the improved understanding and clinical management of KATPHI without the need for primary patient tissue.
Collapse
Affiliation(s)
- Väinö Lithovius
- Stem Cells and Metabolism Research Program in the Faculty of Medicine of the University of Helsinki, Helsinki, Finland.
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program in the Faculty of Medicine of the University of Helsinki, Helsinki, Finland
| | - Diego Balboa
- Stem Cells and Metabolism Research Program in the Faculty of Medicine of the University of Helsinki, Helsinki, Finland
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program in the Faculty of Medicine of the University of Helsinki, Helsinki, Finland
| | - Hossam Montaser
- Stem Cells and Metabolism Research Program in the Faculty of Medicine of the University of Helsinki, Helsinki, Finland
| | - Tom Barsby
- Stem Cells and Metabolism Research Program in the Faculty of Medicine of the University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program in the Faculty of Medicine of the University of Helsinki, Helsinki, Finland.
| |
Collapse
|
21
|
Li M, Han X, Ji L. Clinical and Genetic Characteristics of ABCC8 Nonneonatal Diabetes Mellitus: A Systematic Review. J Diabetes Res 2021; 2021:9479268. [PMID: 34631896 PMCID: PMC8497126 DOI: 10.1155/2021/9479268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Diabetes mellitus (DM) is a major chronic metabolic disease in the world, and the prevalence has been increasing rapidly in recent years. The channel of KATP plays an important role in the regulation of insulin secretion. The variants in ABCC8 gene encoding the SUR1 subunit of KATP could cause a variety of phenotypes, including neonatal diabetes mellitus (ABCC8-NDM) and ABCC8-induced nonneonatal diabetes mellitus (ABCC8-NNDM). Since the features of ABCC8-NNDM have not been elucidated, this study is aimed at concluding the genetic features and clinical characteristics. METHODS We comprehensively reviewed the literature associated with ABCC8-NNDM in the following databases: MEDLINE, PubMed, and Web of Science to investigate the features of ABCC8-NNDM. RESULTS Based on a comprehensive literature search, we found that 87 probands with ABCC8-NNDM carried 71 ABCC8 genetic variant alleles, 24% of whom carried inactivating variants, 24% carried activating variants, and the remaining 52% carried activating or inactivating variants. Nine of these variants were confirmed to be activating or inactivating through functional studies, while four variants (p.R370S, p.E1506K, p.R1418H, and p.R1420H) were confirmed to be inactivating. The phenotypes of ABCC8-NNDM were variable and could also present with early hyperinsulinemia followed by reduced insulin secretion, progressing to diabetes later. They had a relatively high risk of microvascular complications and low prevalence of nervous disease, which is different from ABCC8-NDM. CONCLUSIONS Genetic testing is essential for proper diagnosis and appropriate treatment for patients with ABCC8-NNDM. And further studies are required to determine the complex mechanism of the variants of ABCC8-NNDM.
Collapse
Affiliation(s)
- Meng Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China 100044
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China 100044
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China 100044
| |
Collapse
|
22
|
Rosenfeld E, Mitteer L, Boodhansingh K, Becker SA, McKnight H, Boyajian L, Ackermann AM, Kalish JM, Bhatti TR, States LJ, Adzick NS, Lord K, De León DD. Case Report: Two Distinct Focal Congenital Hyperinsulinism Lesions Resulting From Separate Genetic Events. Front Pediatr 2021; 9:699129. [PMID: 34336745 PMCID: PMC8322518 DOI: 10.3389/fped.2021.699129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/18/2021] [Indexed: 01/06/2023] Open
Abstract
Focal hyperinsulinism (HI) comprises nearly 50% of all surgically treated HI cases and is cured if the focal lesion can be completely resected. Pre-operative localization of the lesion is thus critical. Few cases of hyperinsulinism with multiple focal lesions have been reported, and assessment of the molecular mechanisms driving this rare occurrence has been limited. We present two cases of multifocal HI, each resulting from two independent, pancreatic focal lesions. 18Fluoro-dihydroxyphenylalanine positron emission tomography/computed tomography detected both lesions preoperatively in one patient, whereas identification of the second lesion was an incidental finding during surgical exploration in the other. Complete resection of the focal lesions resulted in cure of the HI in both cases. In each patient, genetic testing of the individual focal lesions revealed different regions of loss of heterozygosity for the maternal 11p15 allele, confirming that each lesion arose from independent somatic events in the setting of a paternally inherited germline ABCC8 mutation. These cases highlight the importance of a multidisciplinary and personalized approach to the management of infants with HI.
Collapse
Affiliation(s)
- Elizabeth Rosenfeld
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Lauren Mitteer
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kara Boodhansingh
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Susan A Becker
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Heather McKnight
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Linda Boyajian
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Amanda M Ackermann
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Jennifer M Kalish
- Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Tricia R Bhatti
- Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Lisa J States
- Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Radiology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - N Scott Adzick
- Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Surgery, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Katherine Lord
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Diva D De León
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
23
|
Enhanced differentiation of human pluripotent stem cells into pancreatic endocrine cells in 3D culture by inhibition of focal adhesion kinase. Stem Cell Res Ther 2020; 11:488. [PMID: 33198821 PMCID: PMC7667734 DOI: 10.1186/s13287-020-02003-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Background Generation of insulin-producing cells from human pluripotent stem cells (hPSCs) in vitro would be useful for drug discovery and cell therapy in diabetes. Three-dimensional (3D) culture is important for the acquisition of mature insulin-producing cells from hPSCs, but the mechanism by which it promotes β cell maturation is poorly understood. Methods We established a stepwise method to induce high-efficiency differentiation of human embryonic stem cells (hESCs) into mature monohormonal pancreatic endocrine cells (PECs), with the last maturation stage in 3D culture. To comprehensively compare two-dimensional (2D) and 3D cultures, we examined gene expression, pancreas-specific markers, and functional characteristics in 2D culture-induced PECs and 3D culture-induced PECs. The mechanisms were considered from the perspectives of cell–cell and cell–extracellular matrix interactions which are fundamentally different between 2D and 3D cultures. Results The expression of the pancreatic endocrine-specific transcription factors PDX1, NKX6.1, NGN3, ISL1, and PAX6 and the hormones INS, GCG, and SST was significantly increased in 3D culture-induced PECs. 3D culture yielded monohormonal endocrine cells, while 2D culture-induced PECs co-expressed INS and GCG or INS and SST or even expressed all three hormones. We found that focal adhesion kinase (FAK) phosphorylation was significantly downregulated in 3D culture-induced PECs, and treatment with the selective FAK inhibitor PF-228 improved the expression of β cell-specific transcription factors in 2D culture-induced PECs. We further demonstrated that 3D culture may promote endocrine commitment by limiting FAK-dependent activation of the SMAD2/3 pathway. Moreover, the expression of the gap junction protein Connexin 36 was much higher in 3D culture-induced PECs than in 2D culture-induced PECs, and inhibition of the FAK pathway in 2D culture increased Connexin 36 expression. Conclusion We developed a strategy to induce differentiation of monohormonal mature PECs from hPSCs and found limited FAK-dependent activation of the SMAD2/3 pathway and unregulated expression of Connexin 36 in 3D culture-induced PECs. This study has important implications for the generation of mature, functional β cells for drug discovery and cell transplantation therapy for diabetes and sheds new light on the signaling events that regulate endocrine specification. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02003-z.
Collapse
|
24
|
Sun Y, He Y, Yang L, Liang D, Shi W, Zhu X, Jiang Y, Ou C. Manganese induced nervous injury by α-synuclein accumulation via ATP-sensitive K(+) channels and GABA receptors. Toxicol Lett 2020; 332:164-170. [PMID: 32659473 DOI: 10.1016/j.toxlet.2020.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/27/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
Manganese (Mn) is an environmental pollutant having a toxic effect on Parkinson's disease, with significant damage seen in the neurons of basal ganglia. Hence, Mn pollution is a public health concern. A Sprague-Dawley rat model was used to determine the damage to basal nuclei, and the effect of Mn intake was detected using the Morris water maze test and transmission electron microscopy. The SH-SY5Y cell line was exposed to Mn, and downstream signaling was assessed to determine the mechanism of toxicity. Mn exposure injured neurons, repressing GABAAR receptors and inducing GABABR receptors. The synergistic effect of the GABABR receptor and Kir6.1-SUR1 or Kir6.2-SUR1 was found to be one of the potential factors for the secretion of α-synuclein. The accumulation of α-synuclein regulated downstream factors calmodulin (CAM) cAMP response element-binding protein (CREB), thereby impairing learning and memory. Other genes downstream of CREB, rather than the feedback regulation of CREB, and brain-derived neurotrophic factor might also be involved.
Collapse
Affiliation(s)
- Yi Sun
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China
| | - Yonghua He
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China
| | - Lin Yang
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China
| | - Dan Liang
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China
| | - Wenxiang Shi
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China
| | - Xiaonian Zhu
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China
| | - Yueming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Naning 530021, China
| | - Chaoyan Ou
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China.
| |
Collapse
|
25
|
Metabolomics Analysis of Nutrient Metabolism in β-Cells. J Mol Biol 2020; 432:1429-1445. [DOI: 10.1016/j.jmb.2019.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 01/05/2023]
|
26
|
Matsutani N, Furuta H, Matsuno S, Oku Y, Morita S, Uraki S, Doi A, Furuta M, Iwakura H, Ariyasu H, Nishi M, Akamizu T. Identification of a compound heterozygous inactivating ABCC8 gene mutation responsible for young-onset diabetes with exome sequencing. J Diabetes Investig 2020; 11:333-336. [PMID: 31479591 PMCID: PMC7078087 DOI: 10.1111/jdi.13138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 11/29/2022] Open
Abstract
Activating mutations in the ABCC8 gene cause diabetes and inactivating mutations usually cause hyperinsulinemic hypoglycemia in infancy. Patients with hypoglycemia in infancy due to a heterozygous inactivating mutation have been reported to occasionally progress to diabetes later in life. We explored the gene responsible for diabetes in two brothers, who were suspected to have diabetes at 15 and 18 years-of-age, respectively, with whole exome sequencing, and identified a compound heterozygous ABCC8 gene mutation (p.Arg168Cys and p.Arg1421Cys). Although their father and mother were heterozygous carriers of the p.Arg168Cys and the p.Arg1421Cys mutation, respectively, neither parent had diabetes. These mutations have been reported to be responsible for hypoglycemia in infancy and function as an inactivating mutation. Our results suggest that the inactivating ABCC8 gene mutation is also important in the etiology of diabetes.
Collapse
Affiliation(s)
- Norihiko Matsutani
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| | - Hiroto Furuta
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| | - Shohei Matsuno
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| | | | - Shuhei Morita
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| | - Shinsuke Uraki
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| | - Asako Doi
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| | - Machi Furuta
- Clinical Laboratory MedicineWakayama Medical UniversityWakayamaJapan
| | - Hiroshi Iwakura
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| | - Hiroyuki Ariyasu
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| | - Masahiro Nishi
- Department of Clinical Nutrition and MetabolismWakayama Medical UniversityWakayamaJapan
| | - Takashi Akamizu
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
27
|
Islam MS. Stimulus-Secretion Coupling in Beta-Cells: From Basic to Bedside. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:943-963. [PMID: 31646540 DOI: 10.1007/978-3-030-12457-1_37] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Insulin secretion in humans is usually induced by mixed meals, which upon ingestion, increase the plasma concentration of glucose, fatty acids, amino acids, and incretins like glucagon-like peptide 1. Beta-cells can stay in the off-mode, ready-mode or on-mode; the mode-switching being determined by the open state probability of the ATP-sensitive potassium channels, and the activity of enzymes like glucokinase, and glutamate dehydrogenase. Mitochondrial metabolism is critical for insulin secretion. A sound understanding of the intermediary metabolism, electrophysiology, and cell signaling is essential for comprehension of the entire spectrum of the stimulus-secretion coupling. Depolarization brought about by inhibition of the ATP sensitive potassium channel, together with the inward depolarizing currents through the transient receptor potential (TRP) channels, leads to electrical activities, opening of the voltage-gated calcium channels, and exocytosis of insulin. Calcium- and cAMP-signaling elicited by depolarization, and activation of G-protein-coupled receptors, including the free fatty acid receptors, are intricately connected in the form of networks at different levels. Activation of the glucagon-like peptide 1 receptor augments insulin secretion by amplifying calcium signals by calcium induced calcium release (CICR). In the treatment of type 2 diabetes, use of the sulfonylureas that act on the ATP sensitive potassium channel, damages the beta cells, which eventually fail; these drugs do not improve the cardiovascular outcomes. In contrast, drugs acting through the glucagon-like peptide-1 receptor protect the beta-cells, and improve cardiovascular outcomes. The use of the glucagon-like peptide 1 receptor agonists is increasing and that of sulfonylurea is decreasing. A better understanding of the stimulus-secretion coupling may lead to the discovery of other molecular targets for development of drugs for the prevention and treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Md Shahidul Islam
- Department of Clinical Science and Education, Södersjukhuset, Research Center, Karolinska Institutet, Stockholm, Sweden. .,Department of Emergency Care and Internal Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
28
|
Karatojima M, Furuta H, Matsutani N, Matsuno S, Tamai M, Komiya K, Morita S, Uraki S, Doi A, Furuta M, Iwakura H, Ariyasu H, Nishi M, Akamizu T. A family in which people with a heterozygous ABCC8 gene mutation (p.Lys1385Gln) have progressed from hyperinsulinemic hypoglycemia to hyperglycemia. J Diabetes 2020; 12:21-24. [PMID: 31578783 DOI: 10.1111/1753-0407.12990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/04/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
- Mai Karatojima
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hiroto Furuta
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Norihiko Matsutani
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shohei Matsuno
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | | | | | - Shuhei Morita
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shinsuke Uraki
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Asako Doi
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Machi Furuta
- Clinical Laboratory Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hiroshi Iwakura
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hiroyuki Ariyasu
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Masahiro Nishi
- Department of Clinical Nutrition and Metabolism, Wakayama Medical University, Wakayama, Japan
| | - Takashi Akamizu
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
29
|
Henquin JC. The challenge of correctly reporting hormones content and secretion in isolated human islets. Mol Metab 2019; 30:230-239. [PMID: 31767174 PMCID: PMC6829677 DOI: 10.1016/j.molmet.2019.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/28/2019] [Accepted: 10/07/2019] [Indexed: 12/30/2022] Open
Abstract
Background An increased access of research laboratories to isolated human islets has improved our understanding of the biology of the endocrine pancreas and hence the mechanisms causing diabetes. However, in vitro studies of human islets remain technically challenging, and optimal use of such precious material requires a minimum of rigor and coordination to optimize the reliability and share of the information. A detailed report of the demographics of pancreas donors and of the procedures of islet handling after isolation is important but insufficient. Correct characterization of islet basic functions (a token of quality) at the time of experimentation is also crucial. Scope of review I have analyzed the literature reporting measurements of insulin and glucagon in the human pancreas or isolated human islets. The published information is often fragmentary. Elementary features such as islet size, insulin content, or rate of hormone secretion are either unreported or incorrectly reported in many papers. Although internal comparisons between control and test groups may remain valid, comparisons with data from other laboratories are problematic. The drawbacks, pitfalls and errors of common ways of expressing hormone content or secretion rates are discussed and alternatives to harmonize data presentation are proposed. Major Conclusions Greater coherence and rigor in the report of in vitro studies using human islets are necessary to ensure optimal progress in our understanding of the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium.
| |
Collapse
|
30
|
Abstract
A potentiating effect of medium-chain triglycerides on glucose-stimulated insulin secretion (GSIS) has been observed since the 1960s. Subsequent observations identified octanoic acid (OA), the main component of medium-chain triglyceride, as the potentiator of GSIS, but the mechanism was unclear. We used wild-type (WT), short-chain 3-hydroxyacyl-CoA dehydrogenase knockout (Hadh-/-), and sulfonylurea receptor 1 knockout (Sur1-/-) mouse islets to define the mechanism of OA potentiation of insulin secretion. Application of OA alone induced a 2- to 3- fold increase of insulin secretion with an apparent threshold of 3 mM in WT mouse islets, suggesting that OA itself is a weak insulin secretagogue. However, OA at 1 mM strongly potentiated fuel-stimulated insulin secretion, especially GSIS. The potentiating effect on fuel-stimulated insulin secretion by OA did not require fatty acid β-oxidation because OA also potentiated amino acid-stimulated insulin secretion in islets isolated from Hadh-/- mice, which cannot fully oxidize OA. Measurements using Sur1-/- islets indicated that the potentiating effect of OA on fuel-stimulated insulin secretion is Ca2+ dependent and is often accompanied by β-cell membrane potential depolarization, and may also involve the Ca2+/calmodulin complex. Experiments using DCPIB, an ethacrynic acid derivative, to inhibit volume-sensitive anion channels (VSACs) in Sur1-/- islets demonstrated that the potentiation effects of OA on insulin secretion are in part medicated by activation of VSAC. In addition, inhibition of IP3 receptor also abolishes the OA-induced intracellular Ca2+ increase in Sur1-/- islets.
Collapse
Affiliation(s)
- Tingting Zhang
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Pan Chen
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles A. Stanley
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Toshinori Hoshi
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Toshinori HoshiDepartment of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Changhong Li
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- CONTACT Changhong Li Division of Endocrinology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Congenital hyperinsulinism is the most common cause of persistent hypoglycemia in infants and children. Early and appropriate recognition and treatment of hypoglycemia is vital to minimize neurocognitive impairment. RECENT FINDINGS There are at least 11 known monogenic forms of hyperinsulinism and several associated syndromes. Molecular diagnosis allows for prediction of the effectiveness of diazoxide and the likelihood of focal hyperinsulinism. Inactivating mutations in the genes encoding the ATP-sensitive potassium channel (KATP hyperinsulinism) account for 60% of all identifiable mutations, including 85% of diazoxide-unresponsive cases. Syndromes or disorders associated with hyperinsulinism include Beckwith-Wiedemann syndrome, Kabuki syndrome, Turner syndrome, and congenital disorders of glycosylation. Although focal hyperinsulinism can be cured by resection of the lesion, therapeutic options for nonfocal hyperinsulinism remain limited and include diazoxide, octreotide, long-acting somatostatin analogs, and near-total pancreatectomy. Although sirolimus has been reported to improve glycemic control in infants with diazoxide-unresponsive hyperinsulinism, the extent of improvement has been limited, and significant adverse events have been reported. SUMMARY Identification of the cause of congenital hyperinsulinism helps guide management decisions. Use of therapies with limited benefit and significant potential risks should be avoided.
Collapse
|
32
|
Gibson CE, Boodhansingh KE, Li C, Conlin L, Chen P, Becker SA, Bhatti T, Bamba V, Adzick NS, De Leon DD, Ganguly A, Stanley CA. Congenital Hyperinsulinism in Infants with Turner Syndrome: Possible Association with Monosomy X and KDM6A Haploinsufficiency. Horm Res Paediatr 2018; 89:413-422. [PMID: 29902804 PMCID: PMC6067979 DOI: 10.1159/000488347] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/07/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Previous case reports have suggested a possible association of congenital hyperinsulinism with Turner syndrome. OBJECTIVE We examined the clinical and molecular features in girls with both congenital hyperinsulinism and Turner syndrome seen at The Children's Hospital of Philadelphia (CHOP) between 1974 and 2017. METHODS Records of girls with hyperinsulinism and Turner syndrome were reviewed. Insulin secretion was studied in pancreatic islets and in mouse islets treated with an inhibitor of KDM6A, an X chromosome gene associated with hyperinsulinism in Kabuki syndrome. RESULTS Hyperinsulinism was diagnosed in 12 girls with Turner syndrome. Six were diazoxide-unresponsive; 3 had pancreatectomies. The incidence of Turner syndrome among CHOP patients with hyperinsulinism (10 of 1,050 from 1997 to 2017) was 48 times more frequent than expected. The only consistent chromosomal anomaly in these girls was the presence of a 45,X cell line. Studies of isolated islets from 1 case showed abnormal elevated cytosolic calcium and heightened sensitivity to amino acid-stimulated insulin release; similar alterations were demonstrated in mouse islets treated with a KDM6A inhibitor. CONCLUSION These results demonstrate a higher than expected frequency of Turner syndrome among children with hyperinsulinism. Our data suggest that haploinsufficiency for KDM6A due to mosaic X chromosome monosomy may be responsible for hyperinsulinism in Turner syndrome.
Collapse
Affiliation(s)
- Christopher E. Gibson
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kara E. Boodhansingh
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Changhong Li
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Laura Conlin
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Department of Pathology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Pan Chen
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Susan A. Becker
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Tricia Bhatti
- Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA,Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Vaneeta Bamba
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - N. Scott Adzick
- Department of Surgery, The Children's Hospital of Philadelphia, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Diva D. De Leon
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arupa Ganguly
- Department of Genetics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charles A. Stanley
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA,*Charles A Stanley, MD, Division of Endocrinology, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104 (USA), E-Mail
| |
Collapse
|
33
|
Srivastava S, Li Z, Soomro I, Sun Y, Wang J, Bao L, Coetzee WA, Stanley CA, Li C, Skolnik EY. Regulation of K ATP Channel Trafficking in Pancreatic β-Cells by Protein Histidine Phosphorylation. Diabetes 2018; 67:849-860. [PMID: 29440278 PMCID: PMC5909995 DOI: 10.2337/db17-1433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/05/2018] [Indexed: 11/13/2022]
Abstract
Protein histidine phosphatase 1 (PHPT-1) is an evolutionarily conserved 14-kDa protein that dephosphorylates phosphohistidine. PHPT-1-/- mice were generated to gain insight into the role of PHPT-1 and histidine phosphorylation/dephosphorylation in mammalian biology. PHPT-1-/- mice exhibited neonatal hyperinsulinemic hypoglycemia due to impaired trafficking of KATP channels to the plasma membrane in pancreatic β-cells in response to low glucose and leptin and resembled patients with congenital hyperinsulinism (CHI). The defect in KATP channel trafficking in PHPT-1-/- β-cells was due to the failure of PHPT-1 to directly activate transient receptor potential channel 4 (TRPC4), resulting in decreased Ca2+ influx and impaired downstream activation of AMPK. Thus, these studies demonstrate a critical role for PHPT-1 in normal pancreatic β-cell function and raise the possibility that mutations in PHPT-1 and/or TRPC4 may account for yet to be defined cases of CHI.
Collapse
Affiliation(s)
- Shekhar Srivastava
- Division of Nephrology, New York University Langone Medical Center, New York, NY
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, New York University Langone Medical Center, New York, NY
- Skirball Institute for Biomolecular Medicine Skirball Institute, New York University Langone Medical Center, New York, NY
| | - Zhai Li
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, New York University Langone Medical Center, New York, NY
- Skirball Institute for Biomolecular Medicine Skirball Institute, New York University Langone Medical Center, New York, NY
| | - Irfana Soomro
- Division of Nephrology, New York University Langone Medical Center, New York, NY
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, New York University Langone Medical Center, New York, NY
- Skirball Institute for Biomolecular Medicine Skirball Institute, New York University Langone Medical Center, New York, NY
| | - Ying Sun
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, New York University Langone Medical Center, New York, NY
- Skirball Institute for Biomolecular Medicine Skirball Institute, New York University Langone Medical Center, New York, NY
| | - Jianhui Wang
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, New York University Langone Medical Center, New York, NY
- Skirball Institute for Biomolecular Medicine Skirball Institute, New York University Langone Medical Center, New York, NY
| | - Li Bao
- Department of Pediatrics, New York University Langone Medical Center, New York, NY
| | - William A Coetzee
- Department of Pediatrics, New York University Langone Medical Center, New York, NY
| | - Charles A Stanley
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Chonghong Li
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Edward Y Skolnik
- Division of Nephrology, New York University Langone Medical Center, New York, NY
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, New York University Langone Medical Center, New York, NY
- Skirball Institute for Biomolecular Medicine Skirball Institute, New York University Langone Medical Center, New York, NY
| |
Collapse
|
34
|
Lu M, Li C. Nutrient sensing in pancreatic islets: lessons from congenital hyperinsulinism and monogenic diabetes. Ann N Y Acad Sci 2017; 1411:65-82. [PMID: 29044608 DOI: 10.1111/nyas.13448] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/05/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022]
Abstract
Pancreatic beta cells sense changes in nutrients during the cycles of fasting and feeding and release insulin accordingly to maintain glucose homeostasis. Abnormal beta cell nutrient sensing resulting from gene mutations leads to hypoglycemia or diabetes. Glucokinase (GCK) plays a key role in beta cell glucose sensing. As one form of congenital hyperinsulinism (CHI), activating mutations of GCK result in a decreased threshold for glucose-stimulated insulin secretion and hypoglycemia. In contrast, inactivating mutations of GCK result in diabetes, including a mild form (MODY2) and a severe form (permanent neonatal diabetes mellitus (PNDM)). Mutations of beta cell ion channels involved in insulin secretion regulation also alter glucose sensing. Activating or inactivating mutations of ATP-dependent potassium (KATP ) channel genes result in severe but completely opposite clinical phenotypes, including PNDM and CHI. Mutations of the other ion channels, including voltage-gated potassium channels (Kv 7.1) and voltage-gated calcium channels, also lead to abnormal glucose sensing and CHI. Furthermore, amino acids can stimulate insulin secretion in a glucose-independent manner in some forms of CHI, including activating mutations of the glutamate dehydrogenase gene, HDAH deficiency, and inactivating mutations of KATP channel genes. These genetic defects have provided insight into a better understanding of the complicated nature of beta cell fuel-sensing mechanisms.
Collapse
Affiliation(s)
- Ming Lu
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics & Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Changhong Li
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics & Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|