1
|
Conway RB, Pratte KA, Bowler RP, Young KA, Kinney GL, Austin E, Li Y, McClain D, Hokanson J, Crapo JD. Plasma Proteomic Markers of Iron and Risk of Diabetes in a Cohort of African American and White American Current and Former Smokers. Diabetes Metab Syndr Obes 2024; 17:4767-4776. [PMID: 39678225 PMCID: PMC11646377 DOI: 10.2147/dmso.s492124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/29/2024] [Indexed: 12/17/2024] Open
Abstract
Background Little information is available on iron with diabetes risk among African Americans, a population where both anemia and elevated ferritin are common. We tested whether plasma proteomic measurements of ferritin and transferrin were associated with increased diabetes risk in a cohort of current and former African American (NHB) and Non-Hispanic White (NHW) smokers. Methods NHB and NHW participants from the COPDGene study who were free of diabetes (n = 4693) at baseline were followed for incident diabetes. The SomaScan was used to determine the relative amounts of natural log-transformed ferritin, transferrin, and hepcidin. Findings During an average of 5.6 years of follow-up, diabetes incidence was 7.9%. Ferritin at follow-up was higher in NHB than NHW participants (p = <0.0001). Ferritin at follow-up was associated with increased diabetes risk (OR = 1.36, 95% CI = 1.08-1.70), while transferrin was associated with decreased risk (OR = 0.25, 95% CI = 0.08-0.77) controlling for age, sex, BMI, smoking pack-years, hepcidin, CRP, and Il-6. Race-specifically, increased risk associated with higher ferritin levels among NHB (OR = 1.56, 95% CI = 1.13-2.16) but not NHW (OR = 1.22, 95% CI = 0.89-1.68) participants. Sex-specifically, ferritin's relationship was similar among NHB men and women and NHW women (ORs ranging from 1.41-1.59); but not NHW men (OR = 0.98, 95% CI = 0.64-1.49). Similarly, transferrin ORs non-significantly ranged from 0.19-0.30 for NHB men and women and NHW women, but was significant for NHW men (OR = 0.07, 95% CI = 0.01-0.63). Interpretation Higher body iron stores is associated with increased diabetes risk among both NHB and NHW people. Unsuspected elevated iron stores may increase diabetes risk in NHB patients and should be monitored.
Collapse
Affiliation(s)
- Rebecca Baqiyyah Conway
- Department of Epidemiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Katherine A Pratte
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, CO, 80206, USA
| | - Russell Paul Bowler
- Department of Genomic Sciences, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Kendra A Young
- Department of Epidemiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Gregory l Kinney
- Department of Epidemiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Erin Austin
- Department of Mathematical and Statistical Sciences, Denver, University of Colorado, Denver, CO, 80204, USA
| | - Yisha Li
- Department of Epidemiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Donald McClain
- Section of Endocrinology and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - John Hokanson
- Department of Epidemiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - James D Crapo
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| |
Collapse
|
2
|
Tam E, Nguyen K, Sung HK, Sweeney G. MitoNEET preserves muscle insulin sensitivity during iron overload by regulating mitochondrial iron, reactive oxygen species and fission. FEBS J 2024; 291:4062-4075. [PMID: 38944692 DOI: 10.1111/febs.17214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/13/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024]
Abstract
Iron overload (IO) is known to contribute to metabolic dysfunctions such as type 2 diabetes and insulin resistance. Using L6 skeletal muscle cells overexpressing the CDGSH iron-sulfur domain-containing protein 1 (CISD1, also known as mitoNEET) (mitoN) protein, we examined the potential role of MitoN in preventing IO-induced insulin resistance. In L6 control cells, IO resulted in insulin resistance which could be prevented by MitoN as demonstrated by western blot of p-Akt and Akt biosensor cells. Mechanistically, IO increased; mitochondrial iron accumulation, mitochondrial reactive oxygen species (ROS), Fis1-dependent mitochondrial fission, mitophagy, FUN14 domain-containing protein 1 (FUNDC1) expression, and decreased Parkin. MitoN overexpression was able to reduce increases in mitochondrial iron accumulation, mitochondrial ROS, mitochondrial fission, mitophagy and FUNDC1 upregulation due to IO. MitoN did not have any effect on the IO-induced downregulation of Parkin. MitoN alone also upregulated peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) protein levels, a master regulator of mitochondrial biogenesis. The use of mitochondrial antioxidant, Skq1, or fission inhibitor, Mdivi-1, prevented IO-induced insulin resistance implying both mitochondrial ROS and fission play a causal role in the development of insulin resistance. Taken together, MitoN is able to confer protection against IO-induced insulin resistance in L6 skeletal muscle cells through regulation of mitochondrial iron content, mitochondrial ROS, and mitochondrial fission.
Collapse
Affiliation(s)
- Eddie Tam
- Department of Biology, York University, Toronto, Canada
| | - Khang Nguyen
- Department of Biology, York University, Toronto, Canada
| | | | - Gary Sweeney
- Department of Biology, York University, Toronto, Canada
| |
Collapse
|
3
|
Mo M, Pan L, Deng L, Liang M, Xia N, Liang Y. Iron Overload Induces Hepatic Ferroptosis and Insulin Resistance by Inhibiting the Jak2/stat3/slc7a11 Signaling Pathway. Cell Biochem Biophys 2024; 82:2079-2094. [PMID: 38801513 DOI: 10.1007/s12013-024-01315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Recent studies showed that patients with iron overload had increased risk of insulin resistance or diabetes. Ferroptosis is a new type of cell death mainly caused by iron-dependent oxidative damage. In the present study, we investigated potential mechanisms of iron overload induced hepatic ferroptosis and insulin resistance through in vivo and in vitro experiments. In vivo, the mice models of iron overload were established by intraperitoneal injection of iron dextran. The changes of body weight, serum ferritin and blood glucose were measured. Hematoxylin-eosin (HE) and Perl's stainings were used to observe the pathological changes and iron deposition in the liver of mice. In vitro, HepG2 cells were treated with ferric ammonium citrate (FAC, 9 mmol/L, 24 h) to establish the cell models of iron overload. The labile iron pool, cell viability, glucose consumption and glycogen contents were measured. The ultrastructure of mitochondria was observed by transmission electron microscope (TEM). The malondialdehyde (MDA) and glutathione (GSH) kits were used to detect lipid peroxidation in liver tissues of mice and HepG2 cells. RT-PCR and Western blot were used to detect the mRNA and protein expression levels of ferroptosis factors and JAK2/STAT3 signaling pathway. In this study, we used the iron chelator deferasirox in mice and HepG2 cells. Iron overload caused weight loss, elevated serum ferritin, fasting blood glucose, fasting insulin, HOMA-IR, impaired glucose tolerance, and decreased insulin sensitivity in mice. HE staining and Perls staining showed clumps of iron deposition in the liver of iron overload mice. Iron overload could reduce the glucose consumption, increase MDA contents of HepG2 cells, while reduce glycogen and GSH contents in liver tissues of mice and HepG2 cells. TEM showed deletion of mitochondrial ridge and rupture of outer membrane in HepG2 cells with iron overload. Iron chelator deferasirox could significantly improve the above indicators, which might be related to the activation of JAK2/STAT3/SLC7A11 signaling pathway and hepatic ferroptosis. Iron overload could induce hepatic ferroptosis and insulin resistance by inhibiting the JAK2/STAT3/SLC7A11 signaling pathway, and the iron chelator deferasirox might improve hepatic insulin resistance induced by iron overload.
Collapse
Affiliation(s)
- Manqiu Mo
- Geriatric Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ling Pan
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ling Deng
- Department of Endocrinology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Min Liang
- Geriatric Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ning Xia
- Geriatric Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Yuzhen Liang
- Department of Endocrinology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
4
|
Ahanchi NS, Khatami F, Llanaj E, Quezada-Pinedo HG, Dizdari H, Bano A, Glisic M, Eisenga MF, Vidal PM, Muka T. The complementary roles of iron and estrogen in menopausal differences in cardiometabolic outcomes. Clin Nutr 2024; 43:1136-1150. [PMID: 38593499 DOI: 10.1016/j.clnu.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/25/2024] [Accepted: 03/24/2024] [Indexed: 04/11/2024]
Abstract
Biological hormonal changes are frequently cited as an explanatory factor of sex and menopause differences in cardiometabolic diseases (CMD) and its associated risk factors. However, iron metabolism which varies between sexes and among women of different reproductive stages could also play a role. Recent evidence suggest that iron may contribute to CMD risk by modulating oxidative stress pathways and inflammatory responses, offering insights into the mechanistic interplay between iron and CMD development. In the current review, we provide a critical appraisal of the existing evidence on sex and menopausal differences in CMD, discuss the pitfall of current estrogen hypothesis as sole explanation, and the emerging role of iron in CMD as complementary pathway. Prior to menopause, body iron stores are lower in females as compared to males, but the increase during and after menopause, is tandem with an increased CMD risk. Importantly, basic science experiments show that an increased iron status is related to the development of type 2 diabetes (T2D), and different cardiovascular diseases (CVD). While epidemiological studies have consistently reported associations between heme iron intake and some iron biomarkers such as ferritin and transferrin saturation with the risk of T2D, the evidence regarding their connection to CVD remains controversial. We delve into the factors contributing to this inconsistency, and the limitation of relying on observational evidence, as it does not necessarily imply causation. In conclusion, we provide recommendations for future studies on evaluating the potential role of iron in elucidating the sex and menopausal differences observed in CMD.
Collapse
Affiliation(s)
- Noushin Sadat Ahanchi
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland; Department of Internal Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Farnaz Khatami
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland; Community Medicine Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Erand Llanaj
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Hugo G Quezada-Pinedo
- Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics Erasmus MC-Sophia Children's Hospital University, Rotterdam, the Netherlands
| | - Helga Dizdari
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Arjola Bano
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marija Glisic
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Swiss Paraplegic Research, Nottwil, Switzerland
| | - Michele F Eisenga
- Division of Nephrology, Department of Internal Medicine, University of Groningen, Groningen, Netherlands
| | - Pedro-Marques Vidal
- Department of Internal Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
5
|
Sun Y, Peng W, Lin S, Cui J, Lu J. Iron Metabolic Biomarkers and the Mortality Risk in the General Population: A Nationwide Population-Based Cohort Study. J Endocr Soc 2024; 8:bvae063. [PMID: 38623382 PMCID: PMC11017327 DOI: 10.1210/jendso/bvae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Indexed: 04/17/2024] Open
Abstract
Context Iron is an essential element in the human body and plays a critical role in many physiological and cellular processes. However, the association between iron status and the risk of all-cause or cause-specific mortality has not been well-investigated. And it is unclear whether the association between iron metabolic biomarkers and the risk of mortality differs between people with and without diabetes mellitus (DM). Objective This work aimed to investigate associations between iron metabolic biomarkers and all-cause and cause-specific mortality risk in the general population, and heterogeneities in the associations among population with and without DM.. Methods A total of 29 166 adults from the National Health and Nutrition Examination Survey (NHANES) III and NHANES 1999 to 2010 were included, with linkage to the National Death Index to December 31, 2019. Cox proportional-hazard models and Fine-Gray subdistribution hazard models were used to estimate associations between iron metabolic biomarkers and outcomes. Results During a median follow-up of 18.83 years, 9378 deaths were observed, including 3420 cardiovascular disease (CVD) deaths and 1969 cancer deaths. A significant linear association between serum ferritin (SF) and all-cause mortality was observed among the overall population and those without DM. J-shaped associations between transferrin saturation (TSAT) and all-cause and CVD mortality were observed among all populations. In the overall population, compared to the first quartile (Q1) group, the adjusted hazard ratio (HR) (95% CI) for all-cause mortality was 1.07 (1.00-1.15), 1.05 (0.98-1.12), 1.13 (1.05-1.21) in Q2, Q3, and Q4 groups for SF, while the HR was 0.94 (0.88-0.99), 0.92 (0.86-0.97), and 0.93 (0.88-0.99) for TSAT. In individuals without DM, the adjusted HR of the Q4 of SF were 1.19 (1.03-1.37) for CVD mortality and 1.25 (1.05-1.48) for cancer mortality. In individuals with DM, the adjusted HRs of the Q4 of TSAT were 0.76 (0.62-0.93) for CVD mortality and 1.47 (1.07-2.03) for cancer mortality. Conclusion Iron metabolism abnormalities increase mortality risk in the general population. The associations of iron status with mortality were significantly different between individuals with and without DM, which indicated tailored strategies for iron homeostasis are needed.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Department of Geriatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China
| | - Wenyao Peng
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Siqi Lin
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Jingjing Cui
- Department of Geriatric Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China
| | - Jiapeng Lu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| |
Collapse
|
6
|
Liu Y, Clarke R, Bennett DA, Zong G, Gan W. Iron Status and Risk of Heart Disease, Stroke, and Diabetes: A Mendelian Randomization Study in European Adults. J Am Heart Assoc 2024; 13:e031732. [PMID: 38497484 PMCID: PMC11010009 DOI: 10.1161/jaha.123.031732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/28/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND The relevance of iron status biomarkers for coronary artery disease (CAD), heart failure (HF), ischemic stroke (IS), and type 2 diabetes (T2D) is uncertain. We compared the observational and Mendelian randomization (MR) analyses of iron status biomarkers and hemoglobin with these diseases. METHODS AND RESULTS Observational analyses of hemoglobin were compared with genetically predicted hemoglobin with cardiovascular diseases and diabetes in the UK Biobank. Iron biomarkers included transferrin saturation, serum iron, ferritin, and total iron binding capacity. MR analyses assessed associations with CAD (CARDIOGRAMplusC4D [Coronary Artery Disease Genome Wide Replication and Meta-Analysis Plus The Coronary Artery Disease Genetics], n=181 522 cases), HF (HERMES [Heart Failure Molecular Epidemiology for Therapeutic Targets), n=115 150 cases), IS (GIGASTROKE, n=62 100 cases), and T2D (DIAMANTE [Diabetes Meta-Analysis of Trans-Ethnic Association Studies], n=80 154 cases) genome-wide consortia. Observational analyses demonstrated J-shaped associations of hemoglobin with CAD, HF, IS, and T2D. In contrast, MR analyses demonstrated linear positive associations of higher genetically predicted hemoglobin levels with 8% higher risk per 1 SD higher hemoglobin for CAD, 10% to 13% for diabetes, but not with IS or HF in UK Biobank. Bidirectional MR analyses confirmed the causal relevance of iron biomarkers for hemoglobin. Further MR analyses in global consortia demonstrated modest protective effects of iron biomarkers for CAD (7%-14% lower risk for 1 SD higher levels of iron biomarkers), adverse effects for T2D, but no associations with IS or HF. CONCLUSIONS Higher levels of iron biomarkers were protective for CAD, had adverse effects on T2D, but had no effects on IS or HF. Randomized trials are now required to assess effects of iron supplements on risk of CAD in high-risk older people.
Collapse
Affiliation(s)
- Yunan Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Robert Clarke
- Nuffield Department of Population HealthUniversity of OxfordOxfordUnited Kingdom
| | - Derrick A. Bennett
- Nuffield Department of Population HealthUniversity of OxfordOxfordUnited Kingdom
- Medical Research Council Population Health Research Unit at the University of OxfordOxfordUnited Kingdom
| | - Geng Zong
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Wei Gan
- Human Genetics Centre of Excellence, Novo Nordisk Research Centre Oxford, Innovation Building, Old Road CampusOxfordUnited Kingdom
| |
Collapse
|
7
|
Liang Y, Luo S, Wong THT, He B, Schooling CM, Au Yeung SL. Association of iron homeostasis biomarkers in type 2 diabetes and glycaemic traits: a bidirectional two-sample Mendelian randomization study. Int J Epidemiol 2023; 52:1914-1925. [PMID: 37400992 DOI: 10.1093/ije/dyad093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Mendelian randomization (MR) studies show iron positively associated with type 2 diabetes (T2D) but included potentially biasing hereditary haemochromatosis variants and did not assess reverse causality. METHODS We assessed the relation of iron homeostasis with T2D and glycaemic traits bidirectionally, using genome-wide association studies (GWAS) of iron homeostasis biomarkers [ferritin, serum iron, total iron-binding capacity (TIBC), transferrin saturation (TSAT) (n ≤ 246 139)], T2D (DIAMANTE n = 933 970 and FinnGen n = 300 483), and glycaemic traits [fasting glucose (FG), 2-h glucose, glycated haemoglobin (HbA1c) and fasting insulin (FI) (n ≤ 209 605)]. Inverse variance weighting (IVW) was the main analysis, supplemented with sensitivity analyses and assessment of mediation by hepcidin. RESULTS Iron homeostasis biomarkers were largely unrelated to T2D, although serum iron was potentially associated with higher T2D [odds ratio: 1.07 per standard deviation; 95% confidence interval (CI): 0.99 to 1.16; P-value: 0.078) in DIAMANTE only. Higher ferritin, serum iron, TSAT and lower TIBC likely decreased HbA1c, but were not associated with other glycaemic traits. Liability to T2D likely increased TIBC (0.03 per log odds; 95% CI: 0.01 to 0.05; P-value: 0.005), FI likely increased ferritin (0.29 per log pmol/L; 95% CI: 0.12 to 0.47; P-value: 8.72 x 10-4). FG likely increased serum iron (0.06 per mmol/L; 95% CI: 0.001 to 0.12; P-value: 0.046). Hepcidin did not mediate these associations. CONCLUSION It is unlikely that ferritin, TSAT and TIBC cause T2D although an association for serum iron could not be excluded. Glycaemic traits and liability to T2D may affect iron homeostasis, but mediation by hepcidin is unlikely. Corresponding mechanistic studies are warranted.
Collapse
Affiliation(s)
- Ying Liang
- School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Shan Luo
- School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Tommy Hon Ting Wong
- School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Baoting He
- School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - C Mary Schooling
- School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
- School of Public Health and Health Policy, City University of New York, New York, NY, USA
| | - Shiu Lun Au Yeung
- School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Hilton C, Sabaratnam R, Drakesmith H, Karpe F. Iron, glucose and fat metabolism and obesity: an intertwined relationship. Int J Obes (Lond) 2023; 47:554-563. [PMID: 37029208 PMCID: PMC10299911 DOI: 10.1038/s41366-023-01299-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 04/09/2023]
Abstract
A bidirectional relationship exists between adipose tissue metabolism and iron regulation. Total body fat, fat distribution and exercise influence iron status and components of the iron-regulatory pathway, including hepcidin and erythroferrone. Conversely, whole body and tissue iron stores associate with fat mass and distribution and glucose and lipid metabolism in adipose tissue, liver, and muscle. Manipulation of the iron-regulatory proteins erythroferrone and erythropoietin affects glucose and lipid metabolism. Several lines of evidence suggest that iron accumulation and metabolism may play a role in the development of metabolic diseases including obesity, type 2 diabetes, hyperlipidaemia and non-alcoholic fatty liver disease. In this review we summarise the current understanding of the relationship between iron homoeostasis and metabolic disease.
Collapse
Affiliation(s)
- Catriona Hilton
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
| | - Rugivan Sabaratnam
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Valenti L, Corradini E, Adams LA, Aigner E, Alqahtani S, Arrese M, Bardou-Jacquet E, Bugianesi E, Fernandez-Real JM, Girelli D, Hagström H, Henninger B, Kowdley K, Ligabue G, McClain D, Lainé F, Miyanishi K, Muckenthaler MU, Pagani A, Pedrotti P, Pietrangelo A, Prati D, Ryan JD, Silvestri L, Spearman CW, Stål P, Tsochatzis EA, Vinchi F, Zheng MH, Zoller H. Consensus Statement on the definition and classification of metabolic hyperferritinaemia. Nat Rev Endocrinol 2023; 19:299-310. [PMID: 36805052 PMCID: PMC9936492 DOI: 10.1038/s41574-023-00807-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/19/2023]
Abstract
Hyperferritinaemia is a common laboratory finding that is often associated with metabolic dysfunction and fatty liver. Metabolic hyperferritinaemia reflects alterations in iron metabolism that facilitate iron accumulation in the body and is associated with an increased risk of cardiometabolic and liver diseases. Genetic variants that modulate iron homeostasis and tissue levels of iron are the main determinants of serum levels of ferritin in individuals with metabolic dysfunction, raising the hypothesis that iron accumulation might be implicated in the pathogenesis of insulin resistance and the related organ damage. However, validated criteria for the non-invasive diagnosis of metabolic hyperferritinaemia and the staging of iron overload are still lacking, and there is no clear evidence of a benefit for iron depletion therapy. Here, we provide an overview of the literature on the relationship between hyperferritinaemia and iron accumulation in individuals with metabolic dysfunction, and on the associated clinical outcomes. We propose an updated definition and a provisional staging system for metabolic hyperferritinaemia, which has been agreed on by a multidisciplinary global panel of expert researchers. The goal is to foster studies into the epidemiology, genetics, pathophysiology, clinical relevance and treatment of metabolic hyperferritinaemia, for which we provide suggestions on the main unmet needs, optimal design and clinically relevant outcomes.
Collapse
Affiliation(s)
- Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
- Biological Resource Center and Precision Medicine Lab, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy.
- Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy.
| | - Elena Corradini
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy.
- Internal Medicine and Centre for Hemochromatosis and Hereditary Liver Diseases, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy.
| | - Leon A Adams
- Medical School, University of Western Australia, Perth, Australia
| | - Elmar Aigner
- First Department of Medicine, University Clinic Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Saleh Alqahtani
- Royal Clinics and Gastroenterology and Hepatology, King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia
- Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA
| | - Marco Arrese
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Edouard Bardou-Jacquet
- University of Rennes, UMR1241, CHU Rennes, National Reference Center for Hemochromatosis and iron metabolism disorder, INSERM CIC1414, Rennes, France
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, Turin, Italy
| | - Jose-Manuel Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr Josep Trueta University Hospital, Girona, Spain
- Department of Medical Sciences, Faculty of Medicine, Girona University, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Domenico Girelli
- Section of Internal Medicine, Department of Medicine, University of Verona, Policlinico Giambattista Rossi, Verona, Italy
| | - Hannes Hagström
- Division of Hepatology, Department of Upper GI Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Benjamin Henninger
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kris Kowdley
- Liver Institute Northwest, Seattle, WA, USA
- Elson S. Floyd College of Medicine, Washington State University, Seattle, WA, USA
| | - Guido Ligabue
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Division of Radiology, Ospedale di Sassuolo S.p.A, Sassuolo, Modena, Italy
| | - Donald McClain
- Wake Forest School of Medicine, Winston Salem, NC, USA
- Department of Veterans Affairs, Salisbury, NC, USA
| | - Fabrice Lainé
- INSERM CIC1414, Liver Unit, CHU Rennes, Rennes, France
| | - Koji Miyanishi
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Martina U Muckenthaler
- Department of Paediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
- Center for Molecular Translational Iron Research, Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- German Centre for Cardiovascular Research, Partner Site Heidelberg, Heidelberg, Germany
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Patrizia Pedrotti
- Laboratorio di RM Cardiaca Cardiologia 4, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Antonello Pietrangelo
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Internal Medicine and Centre for Hemochromatosis and Hereditary Liver Diseases, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy
| | - Daniele Prati
- Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - John D Ryan
- Hepatology Unit, Beaumont Hospital, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - C Wendy Spearman
- Division of Hepatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Per Stål
- Division of Hepatology, Department of Upper GI Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, UK
| | - Francesca Vinchi
- Iron Research Laboratory, Lindsley F.Kimball Research Institute, New York Blood Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Heinz Zoller
- Department of Medicine I, Medical University of Innsbruck, Innsbruck, Austria
- Doppler Laboratory on Iron and Phosphate Biology, Innsbruck, Austria
| |
Collapse
|
10
|
Feng J, Shan X, Wang L, Lu J, Cao Y, Yang L. Association of Body Iron Metabolism with Type 2 Diabetes Mellitus in Chinese Women of Childbearing Age: Results from the China Adult Chronic Disease and Nutrition Surveillance (2015). Nutrients 2023; 15:nu15081935. [PMID: 37111154 PMCID: PMC10141641 DOI: 10.3390/nu15081935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
High iron stores have been reported to be associated with type 2 diabetes mellitus (T2DM). However, evidence for the associations of iron metabolism with T2DM is inconsistent, and whether there is a threshold effect remains controversial. In the present study, we aimed to examine the associations between various iron biomarkers and the risk of T2DM as well as impaired glucose metabolism (IGM) and hyperglycemia in Chinese women of childbearing age. A total of 1145 women were divided into three groups (normal blood glucose metabolism group; IGM group; T2DM group). Biomarkers of iron metabolism (serum ferritin (SF), transferrin, soluble transferrin receptor (sTfR), transferrin saturation, serum iron, total body iron, and sTfR-to-lgferritin index) were measured. After adjusting for various confounding risk factors, SF and sTfR were positively associated with the risk of IGM (fourth vs. first quartile: SF odds ratio (OR) = 1.93 (95% CI 1.17-3.20) and sTfR OR = 3.08 (95% CI 1.84-5.14)) and T2DM (SF OR = 2.39 (95% CI 1.40-4.06) and sTfR OR = 3.84 (95% CI 2.53-5.83)). There was a nonlinear relationship between SF and risk of T2DM and hyperglycemia (p for nonlinearity < 0.01). Our findings suggested that SF and sTfR could be independent predictors of T2DM risk.
Collapse
Affiliation(s)
- Jie Feng
- Key Laboratory of Trace Element Nutrition of National Health Committee, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xiaoyun Shan
- Key Laboratory of Trace Element Nutrition of National Health Committee, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 241001, China
| | - Lijuan Wang
- Key Laboratory of Trace Element Nutrition of National Health Committee, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jiaxi Lu
- Key Laboratory of Trace Element Nutrition of National Health Committee, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yang Cao
- Key Laboratory of Trace Element Nutrition of National Health Committee, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Lichen Yang
- Key Laboratory of Trace Element Nutrition of National Health Committee, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| |
Collapse
|
11
|
Wai KM, Akuzawa R, Umeda Y, Munakata W, Takahashi Y, Nakaji S, Ihara K. Effects of body compositions on the associations between ferritin and diabetes parameters among Japanese community dwellers. J Trace Elem Med Biol 2023; 78:127174. [PMID: 37080017 DOI: 10.1016/j.jtemb.2023.127174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/22/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Ferritin is associated with an increased prevalence of diabetes mellitus. Moreover, the ferritin levels differ across the body compositions. Although there were studies reporting the association of ferritin and diabetes, the alteration in ferritin-diabetes association by body composition differences is rarely explained. Thus, the aim of this study is to identify the effects of body compositions on the association between ferritin and diabetes parameters among the Japanese population. METHODS This study analyzed the data of a cross-sectional study with 1065 subjects aged over 19 years in the Iwaki area, Japan. Independent variables were ferritin and body compositions, while dependent variables were blood sugar, HbA1c, and diabetes mellitus. Correlations between serum ferritin and blood sugar and HbA1c were analyzed using Spearman's Rank Correlation. Multivariate linear or logistic regressions were used to investigate the effects of body compositions (body fat percentage, muscle mass, or visceral fat level) on the ferritin-diabetes associations by adjusting the confounders. RESULTS There were significant positive correlations between ferritin and blood sugar in both sexes (p < 0.05), while a significant correlation between ferritin and HbA1c was found only in females (p < 0.001). Higher ferritin was significantly associated with an increase in blood sugar in individuals with normal body fat percentage (lowest vs. highest quartile group, coefficient=5.07, 95 % confidence intervals [CI]: 1.48-8.65), normal visceral fat level (lowest vs. highest quartile group, coefficient=4.84, 95 % CI: 1.74-7.94), and very high muscle mass (lowest vs. highest quartile group, coefficient=14.14, 95 % CI: 5.00-23.29). CONCLUSIONS By our study findings, individuals' body composition notably influenced the associations of serum ferritin and diabetes parameters, and the association was attenuated in obese individuals.
Collapse
Affiliation(s)
- Kyi Mar Wai
- Department of Social Medicine, Graduate School of Medicine, Hirosaki University, Japan.
| | - Rei Akuzawa
- School of Medicine, Hirosaki University, Japan
| | - Yoko Umeda
- Department of Social Medicine, Graduate School of Medicine, Hirosaki University, Japan
| | - Wataru Munakata
- Department of Hematology, National Cancer Center Hospital, Japan
| | - Yoshiko Takahashi
- Center of Innovation, Research Initiatives Organization, Hirosaki University, Japan
| | - Shigeyuki Nakaji
- Department of Social Medicine, Graduate School of Medicine, Hirosaki University, Japan; Center of Innovation, Research Initiatives Organization, Hirosaki University, Japan
| | - Kazushige Ihara
- Department of Social Medicine, Graduate School of Medicine, Hirosaki University, Japan
| |
Collapse
|
12
|
Qin Y, Huang Y, Li Y, Qin L, Wei Q, Chen X, Yang C, Zhang M. Association between systemic iron status and β-cell function and insulin sensitivity in patients with newly diagnosed type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1143919. [PMID: 37077360 PMCID: PMC10107407 DOI: 10.3389/fendo.2023.1143919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
OBJECTIVE Abnormal iron metabolism is related to the risk of diabetes, but the underlying mechanism of this association remains uncertain. This study was conducted to evaluate the contributions of systemic iron status to β-cell function and insulin sensitivity of patients with newly diagnosed T2DM. METHODS A total of 162 patients with newly diagnosed T2DM and 162 healthy controls were enrolled in the study. Basic characteristics, biochemical indicators, and iron metabolism biomarkers, including serum iron (SI), ferritin (SF), transferrin (Trf), and transferrin saturation (TS), were collected. All patients underwent a 75 g oral glucose tolerance test. A series of parameters for assessing β-cell function and insulin sensitivity were calculated. The multivariate stepwise linear regression model was used to investigate the contributions of iron metabolism to β-cell function and insulin sensitivity. RESULTS Compared with healthy controls, patients with newly diagnosed T2DM had significantly higher levels of SF. Among the diabetic patients, the SI and TS levels were higher, and the percentage of Trf levels below normal values was lower in men than in women. In all diabetic patients, SF was the independent risk factor associated with impaired β-cell function. Further stratification analysis showed that Trf was an independent protective factor for β-cell function in male patients, while SF was an independent risk factor for impaired β-cell function in female patients. However, systemic iron status did not affect insulin sensitivity. CONCLUSION Elevated SF levels and decreased Trf levels had a profound effect on impaired β-cell function in Chinese patients with newly diagnosed T2DM.
Collapse
Affiliation(s)
- Yao Qin
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yiting Huang
- Department of Clinical Nutrition, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxiao Li
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Qin
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qianying Wei
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Chen
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanhui Yang
- Department of Endocrinology, the First People’s Hospital of Lianyungang, Lianyungang, China
| | - Mei Zhang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Mei Zhang,
| |
Collapse
|
13
|
James JV, Varghese J, John NM, Deschemin JC, Vaulont S, McKie AT, Jacob M. Insulin resistance and adipose tissue inflammation induced by a high-fat diet are attenuated in the absence of hepcidin. J Nutr Biochem 2023; 111:109175. [PMID: 36223834 DOI: 10.1016/j.jnutbio.2022.109175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 06/15/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022]
Abstract
Increased body iron stores and inflammation in adipose tissue have been implicated in the pathogenesis of insulin resistance (IR) and type 2 diabetes mellitus. However, the underlying basis of these associations is unclear. To attempt to investigate this, we studied the development of IR and associated inflammation in adipose tissue in the presence of increased body iron stores. Male hepcidin knock-out (Hamp1-/-) mice, which have increased body iron stores, and wild-type (WT) mice were fed a high-fat diet (HFD) for 12 and 24 weeks. Development of IR and metabolic parameters linked to this, insulin signaling in various tissues, and inflammation and iron-related parameters in visceral adipose tissue were studied in these animals. HFD-feeding resulted in impaired glucose tolerance in both genotypes of mice. In response to the HFD for 24 weeks, Hamp1-/- mice gained less body weight and developed less systemic IR than corresponding WT mice. This was associated with less lipid accumulation in the liver and decreased inflammation and lipolysis in the adipose tissue in the knock-out mice, than in the WT animals. Fewer macrophages infiltrated the adipose tissue in the knockout mice than in wild-type mice, with these macrophages exhibiting a predominantly anti-inflammatory (M2-like) phenotype and indirect evidence of a possible lowered intracellular iron content. The absence of hepcidin was thus associated with attenuated inflammation in the adipose tissue and increased whole-body insulin sensitivity, suggesting a role for it in these processes.
Collapse
Affiliation(s)
- Jithu Varghese James
- Department of Biochemistry, Christian Medical College, Vellore, India; Department of Diabetes & Obesity, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
| | - Joe Varghese
- Department of Biochemistry, Christian Medical College, Vellore, India
| | | | - Jean-Christophe Deschemin
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-Ex, Paris, France
| | - Sophie Vaulont
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-Ex, Paris, France
| | - Andrew Tristan McKie
- Department of Haematology, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Molly Jacob
- Department of Biochemistry, Christian Medical College, Vellore, India.
| |
Collapse
|
14
|
He J, Chen F, Wan S, Luo Y, Luo J, He S, Zhou D, An P, Zeng P. Association of Serum Antioxidant Minerals and Type 2 Diabetes Mellitus in Chinese Urban Residents. Antioxidants (Basel) 2022; 12:62. [PMID: 36670924 PMCID: PMC9854585 DOI: 10.3390/antiox12010062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Antioxidant minerals including zinc, copper and selenium play critical roles in the maintenance of the redox balance in the body. However, their influences on type 2 diabetes mellitus (T2DM) are still inconclusive in Chinese populations. To elucidate the relationship between antioxidant minerals and T2DM, serum zinc, copper and selenium concentrations were measured in 1443 Chinese urban residents using a 1:2 matched case-control study. Conditional logistic regression models (CLR) were used to obtain the odds ratios (ORs) and 95% confidence intervals (CIs), and restricted cubic splines (RCS) were used to examine their dose−response associations. Serum zinc (OR = 0.52 [0.35, 0.77]) and copper concentrations (OR = 0.25 [0.17, 0.37]) were negatively associated with T2DM in a fully adjusted model. An L-shaped zinc-T2DM association (Poverall association = 0.003, and Pnonlinearity = 0.005) and a negative linear copper-T2DM association (Poverall association < 0.0001, and Pnonlinearity = 0.395) were observed. No association was found between serum selenium and T2DM in fully adjusted CLR or RCS models. In addition, joint associations with T2DM were identified between serum zinc and copper and between serum selenium and copper. In conclusion, our study emphasizes the importance of an adequate intake of antioxidant minerals for T2DM prevention in the Chinese population.
Collapse
Affiliation(s)
- Jingjing He
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fangyan Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Sitong Wan
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yongting Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Junjie Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Shuli He
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Daizhan Zhou
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Peng An
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Ping Zeng
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| |
Collapse
|
15
|
Qiu F, Wu L, Yang G, Zhang C, Liu X, Sun X, Chen X, Wang N. The role of iron metabolism in chronic diseases related to obesity. Mol Med 2022; 28:130. [PMID: 36335331 PMCID: PMC9636637 DOI: 10.1186/s10020-022-00558-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2022] Open
Abstract
Obesity is one of the major public health problems threatening the world, as well as a potential risk factor for chronic metabolic diseases. There is growing evidence that iron metabolism is altered in obese people, however, the highly refined regulation of iron metabolism in obesity and obesity-related complications is still being investigated. Iron accumulation can affect the body’s sensitivity to insulin, Type 2 diabetes, liver disease and cardiovascular disease. This review summarized the changes and potential mechanisms of iron metabolism in several chronic diseases related to obesity, providing new clues for future research.
Collapse
|
16
|
Liu L, Chen J, Liu C, Luo Y, Chen J, Fu Y, Xu Y, Wu H, Li X, Wang H. Relationships Between Biological Heavy Metals and Breast Cancer: A Systematic Review and Meta-Analysis. Front Nutr 2022; 9:838762. [PMID: 35782923 PMCID: PMC9245072 DOI: 10.3389/fnut.2022.838762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Heavy metals were classified as essential, probably essential, and potentially toxic in the general population. Until now, it has been reported inconsistently on the association between heavy metals and BC. In this meta-analysis, we aimed to assess the association between heavy metals and BC and review the potential mechanisms systematically. Methods We searched for epidemiological studies in English about the association between heavy metals and BC published before September 2020 in PubMed, Web of Science, and Embase databases. In total 36 studies, comprising 4,151 individuals from five continents around the world were identified and included. Results In all biological specimens, Cu, Cd, and Pb concentrations were higher, but Zn and Mn concentrations were lower in patients with BC than in non-BC participants [SMD (95% CIs): 0.62 (0.12, 1.12); 1.64 (0.76, 2.52); 2.03 (0.11, 3.95); −1.40 (−1.96, −0.85); −2.26 (−3.39, −1.13); p = 0.01, 0.0003, 0.04, <0.0001, <0.0001]. Specifically, higher plasma or serum Cu and Cd, as well as lower Zn and Mn, were found in cases [SMD (95% CIs): 0.98 (0.36, 1.60); 2.55 (1.16, 3.94); −1.53 (−2.28, −0.78); −2.40 (−3.69, −1.10); p = 0.002, 0.0003, <0.0001, 0.0003]; in hair, only lower Zn was observed [SMD (95% CIs): −2.12 (−3.55, −0.68); p = 0.0004]. Furthermore, the status of trace elements probably needs to be re-explored, particularly in BC. More prospective studies, randomized clinical trials, and specific pathogenic studies are needed to prevent BC. The main mechanisms underlying above-mentioned findings are comprehensively reviewed. Conclusion For BC, this review identified the current knowledge gaps which we currently have in understanding the impact of different heavy metals on BC. Systematic Review Registration www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020176934, identifier: CRD42020176934.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Chen
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxuan Luo
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayun Chen
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Fu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yajie Xu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haili Wu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Xue Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xue Li
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Hui Wang
| |
Collapse
|
17
|
Jaccard E, Seyssel K, Gouveia A, Vergely C, Baratali L, Gubelmann C, Froissart M, Favrat B, Marques-Vidal P, Tappy L, Waeber G. Effect of acute iron infusion on insulin secretion: A randomized, double-blind, placebo-controlled trial. EClinicalMedicine 2022; 48:101434. [PMID: 35706490 PMCID: PMC9092517 DOI: 10.1016/j.eclinm.2022.101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
Abstract
Background Chronic exposure to high iron levels increases diabetes risk partly by inducing oxidative stress, but the consequences of acute iron administration on beta cells are unknown. We tested whether the acute administration of iron for the correction of iron deficiency influenced insulin secretion and the production of reactive oxygen species. Methods Single-center, double-blinded, randomized controlled trial conducted between June 2017 and March 2020. 32 women aged 18 to 47 years, displaying symptomatic iron deficiency without anaemia, were recruited from a community setting and randomly allocated (1:1) to a single infusion of 1000 mg intravenous ferric carboxymaltose (iron) or saline (placebo). The primary outcome was the between group mean difference from baseline to day 28 in first and second phase insulin secretion, assessed by a two-step hyperglycaemic clamp. All analyses were performed by intention to treat. This trial was registered in ClinicalTrials.gov NCT03191201. Findings Iron infusion did not affect first and second phase insulin release. For first phase, the between group mean difference from baseline to day 28 was 0 μU × 10 min/mL [95% CI, -22 to 22, P = 0.99]. For second phase, it was -5 μUx10min/mL [95% CI, -161 to 151; P = 0.95] at the first plateau of the clamp and -249 μUx10min/mL [95% CI, -635 to 137; P = 0.20] at the second plateau. Iron infusion increased serum ascorbyl/ascorbate ratio, a marker of plasma oxidative stress, at day 14, with restoration of normal ratio at day 28 relative to placebo. Finally, high-sensitive C-reactive protein levels remained similar among groups. Interpretation In iron deficient women without anaemia, intravenous administration of 1000 mg of iron in a single sitting did not impair glucose-induced insulin secretion despite a transient increase in the levels of circulating reactive oxygen species. Funding The Swiss National Science Foundation, University of Lausanne and Leenaards, Raymond-Berger and Placide Nicod Foundations.
Collapse
Affiliation(s)
- Evrim Jaccard
- Department of Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, rue du Bugnon 46, Lausanne 1011, Switzerland
| | - Kévin Seyssel
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, rue du Bugnon 7a, Lausanne 1005, Switzerland
| | - Alexandre Gouveia
- Center for Primary Care and Public Health, University of Lausanne, rue du Bugnon 44, Lausanne, Switzerland
| | - Catherine Vergely
- Pathophysiology and Epidemiology of Cerebro-Cardiovascular Diseases (PEC2, EA7460),UFR des Sciences de Santé, University of Bourgogne Franche-Comté, 7 boulevard Jeanne d’ Arc, Dijon 21079, France
| | - Laila Baratali
- Department of Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, rue du Bugnon 46, Lausanne 1011, Switzerland
| | - Cédric Gubelmann
- Department of Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, rue du Bugnon 46, Lausanne 1011, Switzerland
| | - Marc Froissart
- Clinical Research Center, CHUV, University of Lausanne, Switzerland
| | - Bernard Favrat
- Center for Primary Care and Public Health, University of Lausanne, rue du Bugnon 44, Lausanne, Switzerland
| | - Pedro Marques-Vidal
- Department of Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, rue du Bugnon 46, Lausanne 1011, Switzerland
| | - Luc Tappy
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, rue du Bugnon 7a, Lausanne 1005, Switzerland
| | - Gérard Waeber
- Department of Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, rue du Bugnon 46, Lausanne 1011, Switzerland
| |
Collapse
|
18
|
Naeem M, Schipf S, Bülow R, Werner N, Dörr M, Lerch MM, Kühn JP, Rathmann W, Nauck M, Paulista Markus MR, Targher G, Ittermann T, Völzke H. Association between hepatic iron overload assessed by magnetic resonance imaging and glucose intolerance states in the general population. Nutr Metab Cardiovasc Dis 2022; 32:1470-1476. [PMID: 35282980 DOI: 10.1016/j.numecd.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 02/03/2022] [Accepted: 02/18/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIM While there is evidence that iron overload disorders are associated with type 2 diabetes, the relationship between hepatic iron overload and prediabetes remains unclear. We aimed to investigate the association between hepatic iron overload, as assessed by magnetic resonance imaging (MRI), and different glucose intolerance states in the population-based Study. METHODS AND RESULTS We included data from 1622 individuals with MRI data, who did not have known type 2 diabetes (T2DM). Using an oral glucose tolerance testing, participants were classified as having isolated impaired fasting glucose (i-IFG), isolated impaired glucose tolerance (i-IGT), combined IFG and IGT (IFG + IGT) or previously unknown T2DM. Hepatic iron and fat contents were assessed through quantitative MRI. We undertook linear and multinomial logistic regression models adjusted for potential confounders and MRI-assessed hepatic fat content to examine the association of hepatic iron overload with different glucose intolerance states or continuous markers of glucose metabolism. MRI-assessed hepatic iron overload was positively associated only with both 2-h plasma glucose (β = 0.32; 95%CI 0.04-0.60) and the combined IFG + IGT category (relative risk ratio = 1.87; 95%CI 1.15-3.06). No significant associations were found between hepatic iron overload and other glucose intolerance states or biomarkers of glucose metabolism, independently of potential confounders. CONCLUSIONS MRI-assessed hepatic iron overload was associated with higher 2-h glucose concentrations and the combined IFG + IGT category, but not with other glucose intolerance states. Our findings suggest a weak adverse impact of hepatic iron overload on glucose metabolism, but further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Muhammad Naeem
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany; Department of Zoology, University of Malakand, 18800, Pakistan.
| | - Sabine Schipf
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany; German Center for Diabetes Research (DZD), Partner Site Greifswald, Germany
| | - Robin Bülow
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Germany
| | - Nicole Werner
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Marcus Dörr
- Department of Internal Medicine B - Cardiology, Intensive Care, Pulmonary Medicine and Infectious Diseases, University Medicine Greifswald, Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Germany
| | - Markus M Lerch
- Department of Gastroenterology, University Medicine Greifswald, Greifswald, Germany
| | - Jens-Peter Kühn
- Institute and Policlinic for Diagnostic and Interventional Radiology, University Hospital, Carl Gustav Carus University, TU Dresden, Dresden, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), Partner Site Greifswald, Germany; Institute for Biometrics and Epidemiology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Matthias Nauck
- Institute for Laboratory Medicine and Clinical Chemistry, University Medicine Greifswald, Greifswald, Germany
| | - Marcello Ricardo Paulista Markus
- Department of Internal Medicine B - Cardiology, Intensive Care, Pulmonary Medicine and Infectious Diseases, University Medicine Greifswald, Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Germany; German Center for Diabetes Research (DZD), Partner Site Greifswald, Germany
| | - Giovanni Targher
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona, Verona, Italy
| | - Till Ittermann
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Germany; German Center for Diabetes Research (DZD), Partner Site Greifswald, Germany
| |
Collapse
|
19
|
Gao H, Yang J, Pan W, Yang M. Iron Overload and the Risk of Diabetes in the General Population: Results of the Chinese Health and Nutrition Survey Cohort Study. Diabetes Metab J 2022; 46:307-318. [PMID: 35249273 PMCID: PMC8987685 DOI: 10.4093/dmj.2020.0287] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Recent studies have found that there are significant associations between body iron status and the development of diabetes. In the present study, we aimed to analyze the association among iron overload (IO), insulin resistance (IR), and diabetes in Chinese adults, and to explore the sex difference. METHODS Men and women (age >19 years) who participated in the Chinese Health and Nutrition Survey and did not have diabetes at baseline were followed between 2009 and 2015 (n=5,779). Over a mean of 6 years, 75 participants were diagnosed with incident diabetes. Logistic regression was used to assess the risk factors associated with IO. Cox proportional hazard regression was used to estimate the risk of incident diabetes and to determine whether the risk differed among subgroups. Causal mediation analysis (CMA) was used to explore the mechanism linking IO and diabetes. RESULTS According to sex-stratified multivariable-adjusted Cox proportional hazards regression, IO increased the risk of incident diabetes. Women with IO had a higher risk of diabetes than men. Subgroup analysis with respect to age showed that the association between IO and diabetes was stronger in older women and younger men (P<0.001). CMA showed that liver injury (alanine transaminase) and lipid metabolism abnormalities (triglyceride, apolipoprotein B) contributed to the association between IO and diabetes. CONCLUSION IO is associated with diabetes and this association is sex-specific. IO may indirectly induce IR via liver injury and lipid metabolism abnormalities, resulting in diabetes.
Collapse
Affiliation(s)
- He Gao
- Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinying Yang
- Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenfei Pan
- Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Yang
- Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Corresponding author: Min Yang https://orcid.org/0000-0001-9487-6828 Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-hang-tang Road, Hangzhou, Zhejiang 310058, China E-mail:
| |
Collapse
|
20
|
Suárez-Ortegón MF, McLachlan S, Fernandez-Real JM, Tuomainen TP, Aregbesola A, Wild SH. Serum ferritin and incident cardiometabolic diseases in Scottish adults. Cardiovasc Diabetol 2022; 21:26. [PMID: 35172838 PMCID: PMC8851777 DOI: 10.1186/s12933-022-01450-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
Background Iron stores, estimated as ferritin levels, and type 2 diabetes (T2D) have been associated previously, while findings regarding coronary heart disease (CHD) and cerebrovascular disease (CEVD) are still inconclusive. No study has focused on simultaneous evaluation of associations between iron stores and the above cardiometabolic diseases (CMD) in the same population. We aim to evaluate the association between serum ferritin and risk of T2D, CHD and CEVD in Scottish population over a wide range of ferritin levels. Methods Longitudinal study in 6,497 participants of the 1995 and 1998 Scottish health surveys, who were followed-up until 2011. Cox regression models were conducted adjusting for age, sex/menopausal status, fibrinogen, GGT levels, smoking, alcohol consumption, total cholesterol, HDL-cholesterol, blood pressure, and BMI. Ferritin was used as continuous (sex/menopausal status-specific Z score) and categorical variable (sex/menopausal status-specific quartiles, quintiles and sextiles). Results During follow-up, 4.9% of the participants developed T2D, 5.3% CHD, and 2.3% CEVD. By using ferritin quartiles, serum ferritin was positively associated with T2D, CHD and CEVD but only the association with T2D remained after adjustment for covariates [Quartile 4 v. 1: adjusted HR 95% CI 1.59 (1.10–2.34); P = 0.006]. When ferritin sextiles were used (6 v. 1), the ferritin-CEVD association became slightly stronger and significant [adjusted HR 95% CI 2.08 (1.09–3.94); P = 0.024]. Conclusions Iron stores relate differently to each CMD. Serum ferritin levels were positively and independently associated with incident T2D, and with incident CEVD if higher cut-off points for high ferritin levels were considered. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-022-01450-7.
Collapse
Affiliation(s)
- Milton-Fabian Suárez-Ortegón
- Departamento de Alimentación Y Nutrición, Facultad de Ciencias de La Salud, Pontificia Universidad Javeriana Seccional Cali, Calle 18 No. 118-250, Cali, Colombia. .,Grupo de Investigación en Ciencias Básicas Y Clínicas de La Salud, Facultad de Ciencias de la Salud, Pontificia Universidad Javeriana Seccional Cali, Cali, Colombia.
| | | | - José-Manuel Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBERobn Fisiopatología de La Obesidad Y Nutrición (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), and Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.
| | - Tomi-Pekka Tuomainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Alex Aregbesola
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Department of Paediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Sarah H Wild
- Usher Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
21
|
Hou Y, Xiang J, Dai H, Wang T, Li M, Lin H, Wang S, Xu Y, Lu J, Chen Y, Wang W, Ning G, Zhao Z, Bi Y, Xu M. New clusters of serum electrolytes aid in stratification of diabetes and metabolic risk. J Diabetes 2022; 14:121-133. [PMID: 34963041 PMCID: PMC9060051 DOI: 10.1111/1753-0407.13244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/01/2021] [Accepted: 11/26/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Serum electrolytes were found to associate with type 2 diabetes. Our study aimed to stratify nondiabetes by clusters based on multiple serum electrolytes and evaluate their associations with risk of developing diabetes and longitudinal changes in glucose and lipid metabolic traits. METHODS We performed a data-driven cluster analysis in 4937 nondiabetes individuals aged ≥40 years at baseline from a cohort follow-up for an average of 4.4 years. Cluster analysis was based on seven commonly measured serum electrolytes (iron, chlorine, magnesium, sodium, potassium, calcium, and phosphorus) by using the k-means method. RESULTS A total of 4937 nondiabetes individuals were classified into three distinct clusters, with 1635 (33.1%) assigned to Cluster A, 1490 (30.2%) to Cluster B, and 1812 (36.7%) to Cluster C. Individuals in Cluster A had higher serum chlorine, were older, and more were women. Individuals in Cluster B had higher serum iron and body mass index (BMI). Individuals in Cluster C had higher serum phosphorus, were younger, and had lower BMI. Cluster B had 1.41-fold higher risk of developing diabetes and Cluster C's risk was 1.33-fold higher compared with Cluster A. Over an average follow-up of 4.4 years, Cluster A showed a moderate and stable BMI, Cluster B showed an accelerated deterioration in glucose metabolism, and Cluster C showed the most sharply increased serum low-density lipoprotein cholesterol level. CONCLUSIONS Clusters based on seven common serum electrolytes differed in diabetes risk and progression of glucose and lipid metabolic traits. Serum electrolytes clusters could provide a powerful tool to differentiate individuals into different risk stratification for developing type 2 diabetes.
Collapse
Affiliation(s)
- Yanan Hou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiali Xiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Huajie Dai
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hong Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuangyuan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
22
|
Iglesias-Vázquez L, Arija V, Aranda N, Aglago EK, Cross AJ, Schulze MB, Quintana Pacheco D, Kühn T, Weiderpass E, Tumino R, Redondo-Sánchez D, de Magistris MS, Palli D, Ardanaz E, Laouali N, Sonestedt E, Drake I, Rizzolo L, Santiuste C, Sacerdote C, Quirós R, Amiano P, Agudo A, Jakszyn P. Factors associated with serum ferritin levels and iron excess: results from the EPIC-EurGast study. Eur J Nutr 2022; 61:101-114. [PMID: 34213605 DOI: 10.1007/s00394-021-02625-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Excess iron is involved in the development of non-communicable diseases such as cancer, type 2 diabetes and cardiovascular conditions. We aimed to describe the prevalence of excess iron and its determinants in healthy European adults. METHODS Sociodemographic, lifestyle, iron status, dietary information, and HFE genotyping were obtained from controls from the nested case-control study EPIC-EurGast study. High sensitivity C-reactive protein (hsCRP) was measured to address possible systemic inflammation. Descriptive and multivariate analyses were used to assess iron status and its determinants. RESULTS Out of the 828 participants (median age: 58.7 years), 43% were females. Median serum ferritin and prevalence of excess iron were 143.7 µg/L and 35.2% in males, respectively, and 77 µg/L and 20% in females, both increasing with latitude across Europe. Prevalence of HFE C282Y mutation was significantly higher in Northern and Central Europe (~ 11%) than in the South (5%). Overweight/obesity, age, and daily alcohol and heme iron intake were independent determinants for iron status, with sex differences even after excluding participants with hsCRP > 5 mg/L. Obese males showed a greater consumption of alcohol, total and red meat, and heme iron, compared with those normal weight. CONCLUSION Obesity, higher alcohol and heme iron consumption were the main risk factors for excess iron in males while only age was associated with iron overload in females. Weight control and promoting healthy lifestyle may help prevent iron overload, especially in obese people. Further research is needed to clarify determinants of excess iron in the healthy adult population, helping to reduce the associated comorbidities.
Collapse
Affiliation(s)
- Lucía Iglesias-Vázquez
- Research group of Nutrition and Mental Health (NUTRISAM), Unit of Nutrition and Public Health, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Victoria Arija
- Research group of Nutrition and Mental Health (NUTRISAM), Unit of Nutrition and Public Health, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), Tarragona, Spain.
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
- Institut d'investigació en Atenció Primària (IDIAP) Jordi Gol, Institut Català de la Salut (ICS), Barcelona, Spain.
| | - Núria Aranda
- Research group of Nutrition and Mental Health (NUTRISAM), Unit of Nutrition and Public Health, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Elom K Aglago
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Amanda J Cross
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | | | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Rosario Tumino
- Cancer Registry and Histopathology Department, Provincial Health Authority (ASP 7) Ragusa, Ragusa, Italy
| | - Daniel Redondo-Sánchez
- Escuela Andaluza de Salud Pública (EASP), Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Villa delle Rose, Florence, Italy
| | - Eva Ardanaz
- Navarra Public Health Institute, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Nasser Laouali
- Paris-Saclay University, UVSQ, University Paris-Sud, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP, 94805, Villejuif, France
| | - Emily Sonestedt
- Nutritional Epidemiology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Isabel Drake
- Nutritional Epidemiology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Lucía Rizzolo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology - ICO, Nutrition and Cancer Group, Bellvitge Biomedical Research Institute -(IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Carmen Santiuste
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città Della Salute e Della Scienza University-Hospital, Via Santena 7, 10126, Turin, Italy
| | - Ramón Quirós
- EPIC Asturias, Public Health Directorate, Asturias, Spain
| | - Pilar Amiano
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Public Health Division of Gipuzkoa, BioDonostia Research Institute, Donostia-San Sebastian, Spain
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology - ICO, Nutrition and Cancer Group, Bellvitge Biomedical Research Institute -(IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Paula Jakszyn
- Unit of Nutrition and Cancer, Catalan Institute of Oncology - ICO, Nutrition and Cancer Group, Bellvitge Biomedical Research Institute -(IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
- Blanquerna School of Health Sciences, Ramon Llull University, Barcelona, Spain.
| |
Collapse
|
23
|
Cao Z, Wong MY. Approximate profile likelihood estimation for Cox regression with covariate measurement error. Stat Med 2022; 41:910-931. [PMID: 35067954 DOI: 10.1002/sim.9324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/24/2021] [Accepted: 12/21/2021] [Indexed: 11/09/2022]
Abstract
In nutritional epidemiology, measurement error in covariates is a well-known problem since dietary intakes are usually assessed through self-reporting. In this article, we consider an additive error model in which error variables are highly correlated, and propose a new method called approximate profile likelihood estimation (APLE) for covariates measured with error in the Cox regression. Asymptotic normality of this estimator is established under regularity conditions, and simulation studies are conducted to examine the finite sample performance of the proposed estimator empirically. Moreover, the popular correction method called regression calibration is shown to be a special case of APLE. We then apply APLE to deal with measurement error in some nutrients of interest in the EPIC-InterAct Study under a sensitivity analysis framework.
Collapse
Affiliation(s)
- Zhiqiang Cao
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
| | - Man Yu Wong
- Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
24
|
Shang X, Zhang R, Wang X, Yao J, Zhao X, Li H. The Relationship of Hyperferritinemia to Metabolism and Chronic Complications in Type 2 Diabetes. Diabetes Metab Syndr Obes 2022; 15:175-182. [PMID: 35068935 PMCID: PMC8769058 DOI: 10.2147/dmso.s348232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
AIM Elevated serum ferritin has been found to be closely related to type 2 diabetes mellitus. This study aimed to explore the relationship of high serum ferritin to metabolism and chronic complications in type 2 diabetes. METHODS This was a cross-sectional study. A total of 330 type 2 diabetes patients who visited an endocrine clinic were included for the analysis. Serum ferritin and metabolic parameters were recorded. The prevalence of chronic diabetic complications was evaluated. Based on serum ferritin, participants were divided into hyperferritinemia and normal-ferritin groups. Metabolic parameters and prevalence of chronic diabetic complications were compared. The relationship between hyperferritinemia and chronic diabetic complications was explored with multivariate logistic regression models. Data were statistically analyzed by sex. RESULTS Compared with the normal-ferritin group, the hyperferritinemia group showed higher levels of the serum inflammatory marker CRP and higher prevalence of diabetic retinopathy (DR) and coronary heart disease (CHD), regardless of sex (p<0.05). Moreover, male patients with hyperferritinemia had increased serum triglyceride, alanine transferase, γ-glutamyltranspeptidase, urea nitrogen, creatinine, and uric acid and higher prevalence of microalbuminuria (p<0.01). After controlling for demographics and metabolic profiles, hyperferritinemia remained an independent risk factor of DR (male OR 3.957, 95% CI 1.559-10.041, p=0.004; female OR 2.474, 95% CI 1.127-5.430, p=0.024) and CHD (male OR 2.607, 95% CI 1.087-6.257, p=0.032; female OR 2.293, 95% CI 1.031-5.096, p=0.042). CONCLUSION This study found that hyperferritinemia was associated with increased CRP and higher prevalence of DR and CHD in type 2 diabetes. In men, high serum ferritin was also associated with dyslipidemia, hepatic dysfunction, and microalbuminuria.
Collapse
Affiliation(s)
- Xiaojing Shang
- Department of Endocrinology, Tianjin Fourth Central Hospital, Tianjin, People’s Republic of China
| | - Rui Zhang
- Division of Health Management, Tianjin Fourth Central Hospital, Tianjin, People’s Republic of China
| | - Xiaolai Wang
- Department of Endocrinology, Tianjin Fourth Central Hospital, Tianjin, People’s Republic of China
| | - Junxin Yao
- Department of Endocrinology, Tianjin Fourth Central Hospital, Tianjin, People’s Republic of China
| | - Xiaoying Zhao
- Department of Endocrinology, Tianjin Fourth Central Hospital, Tianjin, People’s Republic of China
| | - Huanming Li
- Department of Cardiology, Tianjin Fourth Central Hospital, Tianjin, People’s Republic of China
- Correspondence: Huanming Li Email
| |
Collapse
|
25
|
Zhou J, Wang N, Wang D, Zhao R, Zhao D, Ouyang B, Peng X, Hao L. Interactive effects of serum ferritin and high sensitivity C-reactive protein on diabetes in hypertensive patients. J Trace Elem Med Biol 2021; 68:126824. [PMID: 34352498 DOI: 10.1016/j.jtemb.2021.126824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/07/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Hypertensive patients, often characterized by chronic inflammation, are susceptible to diabetes. Evidence suggests that the positive association between serum ferritin (SF) and diabetes was affected by high-sensitivity C-reactive protein (hs-CRP), an inflammation marker. We investigate whether there was an interaction between SF and hs-CRP on diabetes in hypertensive patients. METHODS We analysed data of 1,735 hypertensive people in this cross-sectional study. Diabetes was diagnosed when fasting blood glucose ≥ 7.0 mmol/L and/or a previous clinical diagnosis of diabetes. Logistic regression models were used to estimate the association of the SF and hs-CRP with diabetes. Multiplicative interaction was evaluated by incorporating a cross-product term for SF and hs-CRP to the logistic regression model. Additive interaction was assessed by calculating the relative excess risk of interaction (RERI) and attributed proportion due to interaction (AP). RESULTS In the adjusted analysis, SF (highest vs lowest tertile: odds ratio [OR], 1.61; 95 % confidence interval [CI], 1.20-2.16) was positively associated with diabetes. There was no multiplicative interaction between SF and hs-CRP, but evidence of additive interaction in regard to diabetes (RERI: 0.86; 95 % CI: 0.06-1.67). Compared to the patients with low SF (lower two thirds) and low hs-CRP (≤ 2 mg/L), those with high SF (upper one third) and high hs-CRP (> 2 mg/L) had increased OR for diabetes (adjusted OR: 2.33 [1.65-3.30]), with 37.0 % of the effects attributed to the additive interaction (AP: 0.37; 95 % CI: 0.09-0.65). CONCLUSIONS Within a cross-sectional study consisting of hypertensive patients, co-exposure to high SF and high hs-CRP was synergistically associated with diabetes. Dietary intervention or pharmacological treatment to lowering SF concentration may help to reduce diabetes morbidity in hypertensive patient with chronic inflammation.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, and Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, PR China
| | - Ning Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, and Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, PR China
| | - Dongxia Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, and Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, PR China
| | - Rui Zhao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, and Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, PR China
| | - Dan Zhao
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, Guangdong Province, 518051, PR China
| | - Binfa Ouyang
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, Guangdong Province, 518051, PR China
| | - Xiaolin Peng
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, Guangdong Province, 518051, PR China
| | - Liping Hao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, and Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, PR China.
| |
Collapse
|
26
|
Cui Y, Liao M, Xu A, Chen G, Liu J, Yu X, Li S, Ke X, Tan S, Luo Z, Wang Q, Liu Y, Wang D, Zeng F. Association of maternal pre-pregnancy dietary intake with adverse maternal and neonatal outcomes: A systematic review and meta-analysis of prospective studies. Crit Rev Food Sci Nutr 2021:1-22. [PMID: 34666569 DOI: 10.1080/10408398.2021.1989658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study aimed to summarize the evidence regarding the effects of dietary intake before conception on pregnancy outcomes by performing a systematic review and meta-analysis of prospective studies. Electronic databases were searched from inception up to August 2021. Overall, 65 studies involving 831 798 participants were included and 38 studies were quantitatively pooled. With regard to maternal outcomes, pre-pregnancy intake of fried food, fast food, red and processed meat, heme iron and a low-carbohydrate dietary pattern was positively associated with the risk of gestational diabetes mellitus (GDM) (all P < 0.05). However, a high dietary fiber intake and folic acid supplementation were negatively associated with GDM risk (both P < 0.05). With regard to neonatal outcomes, maternal caffeine intake before pregnancy significantly increased the risk of spontaneous abortion, while folic acid supplementation had protective effects on total adverse neonatal outcomes, preterm birth, and small-for-gestational age (SGA, all P < 0.05). However, no significant associations were found between adverse pregnancy outcomes (i.e., GDM and SGA) and the pre-pregnancy dietary intake of sugar-sweetened beverages, potato, fish, and carbohydrates and the Healthy Eating Index. Our study suggests that maintaining a healthy diet before conception has significant beneficial effects on pregnancy outcomes.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2021.1989658.
Collapse
Affiliation(s)
- Yunfeng Cui
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Minqi Liao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Aihua Xu
- Department of Gynaecology and Obstetrics, Ganzhou Maternal and Child Health Hospital, Ganzhou, China
| | - Gengdong Chen
- Department of Obstetrics, Foshan Institute of Fetal Medicine, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Jun Liu
- Department of Preventive Medicine Laboratory, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Xiaoxuan Yu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Shuna Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Xingyao Ke
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Sixian Tan
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Zeyan Luo
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Qian Wang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Yanhua Liu
- Department of Nutrition, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Donghong Wang
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Fangfang Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
27
|
Pitchika A, Kühn JP, Schipf S, Nauck M, Dörr M, Lerch MM, Kromrey ML, Felix SB, Markus MRP, Rathmann W, Völzke H, Ittermann T. Hepatic steatosis and hepatic iron overload modify the association of iron markers with glucose metabolism disorders and metabolic syndrome. Liver Int 2021; 41:1841-1852. [PMID: 33683798 DOI: 10.1111/liv.14868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/16/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Iron status has been linked with impaired glucose metabolism (IGM), type 2 diabetes mellitus (T2DM) and the metabolic syndrome (MetS), but the role of hepatic steatosis or iron overload on these associations remains uncertain. METHODS We analysed data from 2310 participants without known T2DM of the population-based Study of Health in Pomerania (SHIP-TREND, Germany) through logistic regression models. We tested additive and multiplicative interactions between ferritin and hepatic steatosis or iron overload. RESULTS Serum ferritin was positively associated with IGM (OR per 100 µg/L: 1.11 [1.01, 1.23]), T2DM (OR per 100 µg/L: 1.20 [1.06, 1.36]) and MetS (OR per 100 µg/L: 1.11 [1.02, 1.20]) in the total population as well as in participants without hepatic iron overload. However, the synergistic effect of higher ferritin concentrations and hepatic iron overload showed stronger associations with IGM and T2DM. Similarly, while ferritin was positively associated with T2DM and MetS even in the absence of hepatic steatosis, the synergistic effect of higher ferritin concentrations and hepatic steatosis showed stronger associations with IGM, T2DM and MetS. Transferrin was associated with isolated impaired glucose tolerance but not with T2DM and MetS. CONCLUSIONS Our study suggests that ferritin may be associated with glucose metabolism disorders and MetS even in people without hepatic steatosis or iron overload. However, in individuals with higher ferritin concentrations, the presence of hepatic steatosis may indicate stronger risk for glucose metabolism disorders and MetS, while the presence of hepatic iron overload may indicate stronger risk only for glucose metabolism disorders.
Collapse
Affiliation(s)
- Anitha Pitchika
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Jens-Peter Kühn
- Institute and Policlinic for Diagnostic and Interventional Radiology, University Hospital, Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Sabine Schipf
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany.,Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.,German Center for Cardiovascular Research (DZHK e.V.), Partner site Greifswald, Greifswald, Germany
| | - Marcus Dörr
- German Center for Cardiovascular Research (DZHK e.V.), Partner site Greifswald, Greifswald, Germany.,Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Marie-Luise Kromrey
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Stephan B Felix
- German Center for Cardiovascular Research (DZHK e.V.), Partner site Greifswald, Greifswald, Germany.,Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Marcello R P Markus
- German Center for Cardiovascular Research (DZHK e.V.), Partner site Greifswald, Greifswald, Germany.,Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZD (German Center for Diabetes Research), Site Greifswald, Greifswald, Germany
| | - Wolfgang Rathmann
- DZD (German Center for Diabetes Research), Site Greifswald, Greifswald, Germany.,Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, German Diabetes Center (DDZ), Institute for Biometrics and Epidemiology, Düsseldorf, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany.,German Center for Cardiovascular Research (DZHK e.V.), Partner site Greifswald, Greifswald, Germany.,DZD (German Center for Diabetes Research), Site Greifswald, Greifswald, Germany
| | - Till Ittermann
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
28
|
Dietary Management of Type 2 Diabetes in the MENA Region: A Review of the Evidence. Nutrients 2021; 13:nu13041060. [PMID: 33805161 PMCID: PMC8064070 DOI: 10.3390/nu13041060] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/21/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022] Open
Abstract
The alarmingly rising trend of type 2 diabetes constitutes a major global public health challenge particularly in the Middle Eastern and North African (MENA) region where the prevalence is among the highest in the world with a projection to increase by 96% by 2045. The economic boom in the MENA region over the past decades has brought exceptionally rapid shifts in eating habits characterized by divergence from the traditional Mediterranean diet towards a more westernized unhealthy dietary pattern, thought to be leading to the dramatic rises in obesity and non-communicable diseases. Research efforts have brought a greater understanding of the different pathways through which diet and obesity may affect diabetes clinical outcomes, emphasizing the crucial role of dietary interventions and weight loss in the prevention and management of diabetes. The purpose of this review is to explore the mechanistic pathways linking obesity with diabetes and to summarize the most recent evidence on the association of the intake of different macronutrients and food groups with the risk of type 2 diabetes. We also summarize the most recent evidence on the effectiveness of different macronutrient manipulations in the prevention and management of diabetes while highlighting the possible underlying mechanisms of action and latest evidence-based recommendations. We finally discuss the need to adequately integrate dietetic services in diabetes care specific to the MENA region and conclude with recommendations to improve dietetic care for diabetes in the region.
Collapse
|
29
|
Hu X, Li Y, Cheng P, Wu A, Li G. Serum Level of Transferrin Unique Peptide Is Decreased in Patients With Acute Ischemic Stroke. Front Neurol 2021; 12:619310. [PMID: 33633672 PMCID: PMC7901928 DOI: 10.3389/fneur.2021.619310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Objectives: Free irons are transported into brain tissues by transferrin and play an important role in neuronal/glial cell damage. Lower serum levels of transferrin have been found in patients with ischemic stroke, compared with healthy subjects. In present study, we investigated whether transferrin unique peptide (TF-UP) could be employed as a serum biomarker for brain tissue damage in acute ischemic stroke. Methods: The venous blood samples of 94 ischemic stroke patients and 35 brain tumor-stroke mimics (BT-SM) patients were collected within the first 72 h (Median time 23.25, Interquartile range 60.75) of acute onset in the emergency room. Total TF-UP and total albumin unique peptide (Alb-UP) were identified with liquid chromatography/mass spectrometry (LC-MS/MS) and quantified by multiple reaction monitoring (MRM) method using labeled reference peptide (LRP) for further analysis. Results: Median ratio of total TF-UP/LRP was 0.85 (Interquartile range, 0.21) in the brain tumor-stroke mimics (BT-SM) group, and 0.45 (0.14) in the ischemic stroke group; median Alb-UP/LRP ratio was 0.66 (0.16) in the BT-SM group, and 0.55 (0.20) in the ischemic stroke group. The overall trend from low to high levels was statistically significant for TF-UP/LRP (P < 0.0001), but not for Alb-UP/LRP (P = 0.1667). According to the receiver operating characteristic (ROC) curve, the area under the curve (AUC) was 0.9565 and the optimal cutoff value of serum TF-UP was 0.6317, which yielded a sensitivity of 91.49% and a specificity of 88.57%. The odds ratio (95% confidence intervals) of serum TF-UP/LRP was 83.31 (23.43, 296.22, P < 0.0001). Conclusions: Serum TF-UP/LRP level is decreased in patients with acute ischemic stroke in comparison with brain tumor, and it may serve as a serum biomarker for the neuronal/glial cell damage in cerebral infarction.
Collapse
Affiliation(s)
- Xizheng Hu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yinghui Li
- Department of Medical Genetics, School of Life Science, China Medical University, Shenyang, China
| | - Peng Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Guangyu Li
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
30
|
Pilar Vaquero M, Martínez-Suárez M, García-Quismondo Á, Del Cañizo FJ, Sánchez-Muniz FJ. Diabesity negatively affects transferrin saturation and iron status. The DICARIVA study. Diabetes Res Clin Pract 2021; 172:108653. [PMID: 33422582 DOI: 10.1016/j.diabres.2021.108653] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/16/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022]
Abstract
AIMS The relationship between iron status, obesity and type 2 diabetes mellitus (T2DM) has scarcely been tested. This study hypothesizes that patients with obesity and T2DM have altered iron metabolism. METHODS 537 T2DM patients were selected from the cross-sectional DICARIVA study excluding patients with high-sensitivity-C-reactive-protein (hs-CRP) ≥ 10 mg/L. Three groups according to body mass index (BMI) and waist perimeter (WP) were analysed: a) BMI < 30 kg/m2, non-high WP (n = 105); b) BMI < 30 kg/m2, high WP (n = 202); and c) diabesity, BMI ≥ 30 kg/m2, high WP (n = 230). Group differences on cardiometabolic and iron status markers were tested. RESULTS Women had significantly lower iron, ferritin, and transferrin saturation (TSAT) but higher transferrin and total iron binding capacity than men. Triglycerides/HDL-c ratio, as insulin-resistance (IR) marker, was higher in men while hs-CRP in women. TSAT was inversely related to BMI and hs-CRP. The diabesity group showed the highest hs-CRP (p < 0.001) and IR (p < 0.001) with the lowest TSAT (p = 0.003). CONCLUSIONS Low TSAT was highly prevalent in diabesity, mainly in women, suggesting that IR, inflammation, and abdominal adiposity alter iron transport and accumulation. The convenience of iron supplementation in diabesity patients with low TSAT should be urgently assessed, due the pro-oxidant effects of excess iron.
Collapse
Affiliation(s)
- M Pilar Vaquero
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain.
| | - Miriam Martínez-Suárez
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain
| | - Ángel García-Quismondo
- Department of Nutrition and Food Science. Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | | | - Francisco J Sánchez-Muniz
- Department of Nutrition and Food Science. Facultad de Farmacia, Universidad Complutense, Madrid, Spain; The AFUSAN Research Group, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria from Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| |
Collapse
|
31
|
Ibsen DB, Steur M, Imamura F, Overvad K, Schulze MB, Bendinelli B, Guevara M, Agudo A, Amiano P, Aune D, Barricarte A, Ericson U, Fagherazzi G, Franks PW, Freisling H, Quiros JR, Grioni S, Heath AK, Huybrechts I, Katze V, Laouali N, Mancini F, Masala G, Olsen A, Papier K, Ramne S, Rolandsson O, Sacerdote C, Sánchez MJ, Santiuste C, Simeon V, Spijkerman AMW, Srour B, Tjønneland A, Tong TYN, Tumino R, van der Schouw YT, Weiderpass E, Wittenbecher C, Sharp SJ, Riboli E, Forouhi NG, Wareham NJ. Replacement of Red and Processed Meat With Other Food Sources of Protein and the Risk of Type 2 Diabetes in European Populations: The EPIC-InterAct Study. Diabetes Care 2020; 43:2660-2667. [PMID: 32868270 PMCID: PMC7576430 DOI: 10.2337/dc20-1038] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/24/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE There is sparse evidence for the association of suitable food substitutions for red and processed meat on the risk of type 2 diabetes. We modeled the association between replacing red and processed meat with other protein sources and the risk of type 2 diabetes and estimated its population impact. RESEARCH DESIGN AND METHODS The European Prospective Investigation into Cancer (EPIC)-InterAct case cohort included 11,741 individuals with type 2 diabetes and a subcohort of 15,450 participants in eight countries. We modeled the replacement of self-reported red and processed meat with poultry, fish, eggs, legumes, cheese, cereals, yogurt, milk, and nuts. Country-specific hazard ratios (HRs) for incident type 2 diabetes were estimated by Prentice-weighted Cox regression and pooled using random-effects meta-analysis. RESULTS There was a lower hazard for type 2 diabetes for the modeled replacement of red and processed meat (50 g/day) with cheese (HR 0.90, 95% CI 0.83-0.97) (30 g/day), yogurt (0.90, 0.86-0.95) (70 g/day), nuts (0.90, 0.84-0.96) (10 g/day), or cereals (0.92, 0.88-0.96) (30 g/day) but not for replacements with poultry, fish, eggs, legumes, or milk. If a causal association is assumed, replacing red and processed meat with cheese, yogurt, or nuts could prevent 8.8%, 8.3%, or 7.5%, respectively, of new cases of type 2 diabetes. CONCLUSIONS Replacement of red and processed meat with cheese, yogurt, nuts, or cereals was associated with a lower rate of type 2 diabetes. Substituting red and processed meat by other protein sources may contribute to the prevention of incident type 2 diabetes in European populations.
Collapse
Affiliation(s)
- Daniel B Ibsen
- Research Unit for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, U.K
| | - Marinka Steur
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, U.K
| | - Fumiaki Imamura
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, U.K
| | - Kim Overvad
- Research Unit for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| | - Benedetta Bendinelli
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Marcela Guevara
- Navarre Public Health Institute, Pamplona, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO), and Nutrition and Cancer Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pilar Amiano
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Public Health Division of Gipuzkoa, San Sebastian, Spain
- Instituto Biodonostia, Basque Government, San Sebastian, Spain
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, U.K
- Department of Nutrition, Bjørknes University College, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Ullevål, Oslo, Norway
| | | | - Ulrika Ericson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Guy Fagherazzi
- Digital Epidemiology and e-Health Research Hub, Department of Population Health, Luxembourg Institute of Health, Luxembourg
- Center of Epidemiology and Population Health, UMR 1018, INSERM, Paris South-Paris Saclay University, Gustave Roussy Institute, Villejuif, France
| | | | - Heinz Freisling
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | | | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, U.K
| | - Inge Huybrechts
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Verena Katze
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nasser Laouali
- Center of Epidemiology and Population Health, UMR 1018, INSERM, Paris South-Paris Saclay University, Gustave Roussy Institute, Villejuif, France
| | - Francesca Mancini
- Center of Epidemiology and Population Health, UMR 1018, INSERM, Paris South-Paris Saclay University, Gustave Roussy Institute, Villejuif, France
| | - Giovanna Masala
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Anja Olsen
- Research Unit for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Keren Papier
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, U.K
| | - Stina Ramne
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Olov Rolandsson
- Family Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino and Center for Cancer Prevention (CPO), Turin, Italy
| | - Maria-José Sánchez
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Escuela Andaluza de Salud Pública, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, Granada, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Carmen Santiuste
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Authority, IMIB-Arrixaca, Murcia, Spain
| | - Vittorio Simeon
- Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Bernard Srour
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Tammy Y N Tong
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, U.K
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, Azienda Sanitaria Provinciale, Ragusa, Italy
- Associazone Iblea per la Ricerca Epidemiologica - Organizazione Non Lucrativa di Utilità Sociale (AIRE-ONLUS), Ragusa, Italy
| | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Clemens Wittenbecher
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Stephen J Sharp
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, U.K
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, U.K
| | - Nita G Forouhi
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, U.K.
| | - Nick J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, U.K
| |
Collapse
|
32
|
Díaz-López A, Iglesias-Vázquez L, Pallejà-Millán M, Rey Reñones C, Flores Mateo G, Arija V. Association between Iron Status and Incident Type 2 Diabetes: A Population-Based Cohort Study. Nutrients 2020; 12:nu12113249. [PMID: 33114064 PMCID: PMC7690731 DOI: 10.3390/nu12113249] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 02/08/2023] Open
Abstract
Type 2 diabetes poses a major public health challenge. Here, we conducted a cohort study with a large sample size to determine the association of baseline serum ferritin (SF), a marker of iron status, with incident type 2 diabetes in primary healthcare patients in Catalonia, a western Mediterranean region. A total of 206,115 patients aged 35–75 years without diabetes and with available baseline SF measurements were eligible. The variables analyzed included sociodemographic characteristics, anthropometry, lifestyle, morbidity and iron status (SF, serum iron and hemoglobin). Incident type 2 diabetes during follow-up (2006–2016) was ascertained using the International Classification of Diseases, 10th edition. Cox proportional-hazards models adjusted for multiple baseline confounders/mediators were used to estimate hazard ratios (HRs). Over a median follow-up of 8.4 years, 12,371 new cases of type 2 diabetes were diagnosed, representing an incidence rate of 7.5 cases/1000 persons/year. Since at baseline, the median SF concentration was higher in subjects who developed type 2 diabetes (107.0 µg/L vs. 60.3 µg/L; p < 0.001), SF was considered an independent risk predictor for type 2 diabetes; the multivariable-adjusted HRs for incident type 2 diabetes across SF quartiles 1–4 were 1.00 (reference), 0.95 (95% CI = 0.85–1.06), 1.18 (95% CI = 1.65–1.31) and 1.51 (95% CI = 1.36–1.65), respectively. Our study suggested that higher baseline SF was significantly associated with an increased risk of new-onset type 2 diabetes in Catalan primary healthcare users, supporting the relevance of monitoring iron stores in order to improve the diagnosis and management of diabetes in clinical practice.
Collapse
Affiliation(s)
- Andrés Díaz-López
- Medicine and Health Sciences Faculty, Universitat Rovira i Virgili (URV), 43201 Reus, Spain; (A.D.-L.); (L.I.-V.)
- Institute of Health Research Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Biomedical Research in Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Lucía Iglesias-Vázquez
- Medicine and Health Sciences Faculty, Universitat Rovira i Virgili (URV), 43201 Reus, Spain; (A.D.-L.); (L.I.-V.)
- Institute of Health Research Pere Virgili (IISPV), 43204 Reus, Spain
- Research Group in Nutrition and Mental Health (NUTRISAM), URV, 43201 Reus, Spain
| | - Meritxell Pallejà-Millán
- Unit of Research Support Reus-Tarragona, Jordi Gol University Institute for Primary Care Research (IDIAP), 43202 Tarragona, Spain; (M.P.-M.); (C.R.R.); (G.F.M.)
| | - Cristina Rey Reñones
- Unit of Research Support Reus-Tarragona, Jordi Gol University Institute for Primary Care Research (IDIAP), 43202 Tarragona, Spain; (M.P.-M.); (C.R.R.); (G.F.M.)
| | - Gemma Flores Mateo
- Unit of Research Support Reus-Tarragona, Jordi Gol University Institute for Primary Care Research (IDIAP), 43202 Tarragona, Spain; (M.P.-M.); (C.R.R.); (G.F.M.)
| | - Victoria Arija
- Medicine and Health Sciences Faculty, Universitat Rovira i Virgili (URV), 43201 Reus, Spain; (A.D.-L.); (L.I.-V.)
- Institute of Health Research Pere Virgili (IISPV), 43204 Reus, Spain
- Research Group in Nutrition and Mental Health (NUTRISAM), URV, 43201 Reus, Spain
- Unit of Research Support Reus-Tarragona, Jordi Gol University Institute for Primary Care Research (IDIAP), 43202 Tarragona, Spain; (M.P.-M.); (C.R.R.); (G.F.M.)
- Correspondence: ; Tel.: +34-977-75-93-34
| |
Collapse
|
33
|
Lucci C, Cosentino N, Genovese S, Campodonico J, Milazzo V, De Metrio M, Rondinelli M, Riggio D, Biondi ML, Rubino M, Celentano K, Bonomi A, Capra N, Veglia F, Agostoni P, Bartorelli AL, Marenzi G. Prognostic impact of admission high-sensitivity C-reactive protein in acute myocardial infarction patients with and without diabetes mellitus. Cardiovasc Diabetol 2020; 19:183. [PMID: 33081810 PMCID: PMC7576820 DOI: 10.1186/s12933-020-01157-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/10/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND High-sensitivity C-reactive protein (hs-CRP) elevation frequently occurs in acute myocardial infarction (AMI) and is associated with adverse outcomes. Since diabetes mellitus (DM) is characterized by an underlying chronic inflammation, hs-CRP may have a different prognostic power in AMI patients with and without DM. METHODS We prospectively included 2064 AMI patients; hs-CRP was measured at hospital admission. Patients were grouped according to hs-CRP quartiles and DM status. The primary endpoint was a composite of in-hospital mortality, cardiogenic shock, and acute pulmonary edema. Two-year all-cause mortality was the secondary endpoint. RESULTS Twenty-six percent (n = 548) of patients had DM and they had higher hs-CRP levels than non-DM patients (5.32 vs. 3.24 mg/L; P < 0.0001). The primary endpoint incidence in the overall population (7%, 9%, 13%, 22%; P for trend < 0.0001), in DM (14%, 9%, 21%, 27%; P = 0.0001), and non-DM (5%, 8%, 10%, 19%; P < 0.0001) patients increased in parallel with hs-CRP quartiles. The adjusted risk of the primary endpoint increased in parallel with hs-CRP quartiles in DM and non-DM patients but this relationship was less evident in DM patients. In the overall population, the adjusted OR of the primary endpoint associated with an hs-CRP value ≥ 2 mg/L was 2.10 (95% CI 1.46-3.00). For the same risk, hs-CRP was 7 and 2 mg/L in patients with and without DM. A similar behavior was observed for the secondary endpoint when the HR associated with an hs-CRP value ≥ 2 mg/L found in the overall population was 2.25 (95% CI 1.57-3.22). For the same risk, hs-CRP was 8 and 1.5 mg/L in DM and non-DM patients. CONCLUSIONS This study shows that hs-CRP predicts in-hospital outcome and two-year mortality in AMI patients with and without DM. However, in DM patients, the same risk of developing events as in non-DM patients is associated to higher hs-CRP levels.
Collapse
Affiliation(s)
- Claudia Lucci
- Centro Cardiologico Monzino IRCCS, Via Parea 4, Milan, 20138, Italy
| | - Nicola Cosentino
- Centro Cardiologico Monzino IRCCS, Via Parea 4, Milan, 20138, Italy
| | - Stefano Genovese
- Centro Cardiologico Monzino IRCCS, Via Parea 4, Milan, 20138, Italy
| | | | | | - Monica De Metrio
- Centro Cardiologico Monzino IRCCS, Via Parea 4, Milan, 20138, Italy
| | | | - Daniela Riggio
- Centro Cardiologico Monzino IRCCS, Via Parea 4, Milan, 20138, Italy
| | | | - Mara Rubino
- Centro Cardiologico Monzino IRCCS, Via Parea 4, Milan, 20138, Italy
| | - Katia Celentano
- Centro Cardiologico Monzino IRCCS, Via Parea 4, Milan, 20138, Italy
| | - Alice Bonomi
- Centro Cardiologico Monzino IRCCS, Via Parea 4, Milan, 20138, Italy
| | - Nicolò Capra
- Centro Cardiologico Monzino IRCCS, Via Parea 4, Milan, 20138, Italy
| | - Fabrizio Veglia
- Centro Cardiologico Monzino IRCCS, Via Parea 4, Milan, 20138, Italy
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino IRCCS, Via Parea 4, Milan, 20138, Italy
- Department of Clinical Sciences and Community Health - Cardiovascular Section, University of Milan, Milan, Italy
| | - Antonio L Bartorelli
- Centro Cardiologico Monzino IRCCS, Via Parea 4, Milan, 20138, Italy
- Department of Biomedical and Clinical Sciences, "Luigi Sacco", University of Milan, Milan, Italy
| | - Giancarlo Marenzi
- Centro Cardiologico Monzino IRCCS, Via Parea 4, Milan, 20138, Italy.
| |
Collapse
|
34
|
Kim JD, Lim DM, Park KY, Park SE, Rhee EJ, Park CY, Lee WY, Oh KW. Serum Transferrin Predicts New-Onset Type 2 Diabetes in Koreans: A 4-Year Retrospective Longitudinal Study. Endocrinol Metab (Seoul) 2020; 35:610-617. [PMID: 32981303 PMCID: PMC7520588 DOI: 10.3803/enm.2020.721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/10/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND It is well known that high serum ferritin, a marker of iron storage, predicts incident type 2 diabetes. Limited information is available on the association between transferrin, another marker of iron metabolism, and type 2 diabetes. Thus, we investigated the association between transferrin and incident type 2 diabetes. METHODS Total 31,717 participants (mean age, 40.4±7.2 years) in a health screening program in 2005 were assessed via cross-sectional analysis. We included 30,699 subjects who underwent medical check-up in 2005 and 2009 and did not have type 2 diabetes at baseline in this retrospective longitudinal analysis. RESULTS The serum transferrin level was higher in the type 2 diabetes group than in the non-type 2 diabetes group (58.32±7.74 μmol/L vs. 56.17±7.96 μmol/L, P<0.001). Transferrin correlated with fasting serum glucose and glycosylated hemoglobin in the correlational analysis (r=0.062, P<0.001 and r=0.077, P<0.001, respectively) after full adjustment for covariates. Transferrin was more closely related to homeostasis model assessment of insulin resistance than to homeostasis model assessment of β cell function (r=0.042, P<0.001 and r=-0.019, P=0.004, respectively) after full adjustment. Transferrin predicted incident type 2 diabetes in non-type 2 diabetic subjects in a multivariate linear regression analysis; the odds ratio (95% confidence interval [CI]) of the 3rd tertile compared to that in the 1st tertile of transferrin for incident diabetes was 1.319 (95% CI, 1.082 to 1.607) after full adjustment (P=0.006). CONCLUSION Transferrin is positively associated with incident type 2 diabetes in Koreans.
Collapse
Affiliation(s)
- Jong Dai Kim
- Division of Endocrinology, Department of Internal Medicine, Konyang University Hospital, Konyang University College of Medicine, Daejeon, Korea
| | - Dong-Mee Lim
- Division of Endocrinology, Department of Internal Medicine, Konyang University Hospital, Konyang University College of Medicine, Daejeon, Korea
| | - Keun-Young Park
- Division of Endocrinology, Department of Internal Medicine, Konyang University Hospital, Konyang University College of Medicine, Daejeon, Korea
| | - Se Eun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Cheol-Young Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki Won Oh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Berthault C, Staels W, Scharfmann R. Purification of pancreatic endocrine subsets reveals increased iron metabolism in beta cells. Mol Metab 2020; 42:101060. [PMID: 32763423 PMCID: PMC7498953 DOI: 10.1016/j.molmet.2020.101060] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 11/18/2022] Open
Abstract
Objectives The main endocrine cell types in pancreatic islets are alpha, beta, and delta cells. Although these cell types have distinct roles in the regulation of glucose homeostasis, inadequate purification methods preclude the study of cell type-specific effects. We developed a reliable approach that enables simultaneous sorting of live alpha, beta, and delta cells from mouse islets for downstream analyses. Methods We developed an antibody panel against cell surface antigens to enable isolation of highly purified endocrine subsets from mouse islets based on the specific differential expression of CD71 on beta cells and CD24 on delta cells. We rigorously demonstrated the reliability and validity of our approach using bulk and single cell qPCR, immunocytochemistry, reporter mice, and transcriptomics. Results Pancreatic alpha, beta, and delta cells can be separated based on beta cell-specific CD71 surface expression and high expression of CD24 on delta cells. We applied our new sorting strategy to demonstrate that CD71, which is the transferrin receptor mediating the uptake of transferrin-bound iron, is upregulated in beta cells during early postnatal weeks. We found that beta cells express higher levels of several other genes implicated in iron metabolism and iron deprivation significantly impaired beta cell function. In human beta cells, CD71 is similarly required for iron uptake and CD71 surface expression is regulated in a glucose-dependent manner. Conclusions This study provides a novel and efficient purification method for murine alpha, beta, and delta cells, identifies for the first time CD71 as a postnatal beta cell-specific marker, and demonstrates a central role of iron metabolism in beta cell function. CD71 is a marker that is highly expressed in murine pancreatic beta-cells. CD71 and CD24 can be used to purify live murine alpha-, beta-, and delta-cells. Iron metabolism in murine beta-cells is increased compared to that in alpha-, and delta-cells. Human beta-cells regulate CD71 surface expression in a glucose-dependent manner.
Collapse
Affiliation(s)
- C Berthault
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, 123 Boulevard de Port Royal, 75014 Paris, France.
| | - W Staels
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, 123 Boulevard de Port Royal, 75014 Paris, France; Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium; Department of Pediatrics, Division of Pediatric Endocrinology, University Hospital of Brussels, Laarbeeklaan 101, Jette, Belgium
| | - R Scharfmann
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, 123 Boulevard de Port Royal, 75014 Paris, France.
| |
Collapse
|
36
|
Vaquero MP, Martínez-Maqueda D, Gallego-Narbón A, Zapatera B, Pérez-Jiménez J. Relationship between iron status markers and insulin resistance: an exploratory study in subjects with excess body weight. PeerJ 2020; 8:e9528. [PMID: 32821534 PMCID: PMC7397981 DOI: 10.7717/peerj.9528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022] Open
Abstract
Background Controversy exists on the relationship between iron metabolism and cardiometabolic risk. The aim of this study was to determine if there is a link between dysmetabolic iron and cardiometabolic markers in subjects with excess body weight. Methods Cross-sectional study with fifty participants presenting overweight or obesity and at least another metabolic syndrome factor. Determinations: anthropometry, body composition, blood pressure, lipids, glucose, insulin, leptin, areas under the curve (AUC) for glucose and insulin after an oral glucose tolerance test, hs-C reactive protein (hs-CRP), blood count, ferritin, transferrin, transferrin saturation (TSAT), soluble transferrin receptor (sTfR). Gender-adjusted linear correlations and two independent samples t tests were used. Results Ferritin was positively correlated with insulin-AUC (r = 0.547, p = 0.008) and TSAT was negatively correlated with waist-hip ratio (r = − 0.385, p = 0.008), insulin (r = − 0.551, p < 0.001), and insulin resistance (HOMA-IR, r = − 0.586, p < 0.001). Subjects with TSAT ≤ 20% had higher insulin (p = 0.012) and HOMA-IR (p = 0.003) compared to those with TSAT > 20%. In conclusion, the observed results suggest that iron transport and storage are altered in subjects with overweight/obesity, at the same time that they exhibit the characteristic features of insulin resistance. Nevertheless, this occurs without iron overload or deficiency. These results should be validated in wider cohorts since they suggest that iron transport and storage should be assessed when performing the clinical evaluation of subjects with excess body weight.
Collapse
Affiliation(s)
- M Pilar Vaquero
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | - Daniel Martínez-Maqueda
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN-CSIC), Madrid, Spain.,Madrid Institute for Rural, Agricultural and Food Research and Development (IMIDRA), Madrid, Spain
| | - Angélica Gallego-Narbón
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN-CSIC), Madrid, Spain.,Department of Biology, Universidad Autónoma de Madrid (UAM), Madrid, Spain, España
| | - Belén Zapatera
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | - Jara Pérez-Jiménez
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| |
Collapse
|
37
|
Restrepo-Gallego M, Díaz LE, Rondó PHC. Classic and emergent indicators for the assessment of human iron status. Crit Rev Food Sci Nutr 2020; 61:2827-2840. [PMID: 32619106 DOI: 10.1080/10408398.2020.1787326] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Iron deficiency is the leading cause of anemia, a significant global public health problem. Different methods exist for assessing iron nutritional status, including laboratory tests that focus on storage, transportation, and iron functional compartment parameters. Classical markers such as bone marrow, serum iron, ferritin, hemoglobin, erythrocyte parameters, transferrin, transferrin receptors, and zinc protoporphyrin are discussed in this review. Additional parameters calculated from these indicators, including transferrin saturation, ferritin index and Thomas plot, and some emergent parameters such as hepcidin, erythroferrone, and low hemoglobin density are also discussed. There is no a single indicator for assessing iron nutritional status. Therefore, the use of more than one indicator may be the best practice to obtain the correct diagnosis, also considering the influence of inflammation/infection on many of these indicators. The constant validation of the current parameters, the improvement of assessment methods, and the identification of new indicators will be the key to refine the assessment of iron nutritional status and the right choice of treatment for its improvement.
Collapse
Affiliation(s)
| | - Luis E Díaz
- Doctorate Program in Bioscience, La Sabana University, Chía, Colombia
| | - Patrícia H C Rondó
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
38
|
Liu J, Li Q, Yang Y, Ma L. Iron metabolism and type 2 diabetes mellitus: A meta-analysis and systematic review. J Diabetes Investig 2020; 11:946-955. [PMID: 31975563 PMCID: PMC7378429 DOI: 10.1111/jdi.13216] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/19/2019] [Accepted: 01/16/2020] [Indexed: 12/25/2022] Open
Abstract
AIMS/INTRODUCTION Iron metabolism can directly or indirectly affect the occurrence and development of type 2 diabetes. This meta-analysis and systematic review aimed to analyze the association between serum iron metabolism indicators and type 2 diabetes. MATERIALS AND METHODS The databases PubMed and Embase were searched for studies on the correlations between serum iron metabolism indicators (iron, ferritin, transferrin, hepcidin and soluble transferrin receptor) and type 2 diabetes since January 2006. Relevant data were extracted from the included studies, and meta-analysis was carried out. RESULTS A total of 12 case-control and cohort studies were analyzed. Of the 12 studies, 11 described the correlation between serum ferritin levels and type 2 diabetes. The median and high serum ferritin concentrations were significantly associated with the risks of type 2 diabetes (odds ratio [OR] 1.20, 95% confidence interval [CI] 1.08-1.33 and OR 1.43, 95% CI 1.29-1.59, respectively). However, the low concentration was not correlated with the risk of type 2 diabetes (OR 0.99, 95% CI 0.89-1.11). No significant association was observed between serum soluble transferrin receptor and type 2 diabetes, whereas the soluble transferrin receptor-to-ferritin ratio was significantly inversely related to the risk of type 2 diabetes in the median and high ratio subgroups (OR 0.71, 95% CI 0.51, 0.99 and OR 0.65, 95% CI 0.45-0.95). CONCLUSIONS The elevated serum ferritin was one of the risk factors for type 2 diabetes, and soluble transferrin receptor-to-ferritin ratio was inversely related to the risk of type 2 diabetes. A systematic review showed that serum transferrin and hepcidin might be directly or indirectly related to the development of diabetes.
Collapse
Affiliation(s)
- Jingfang Liu
- Department of EndocrinologyThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Qingxiu Li
- Department of EndocrinologyThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Yaxian Yang
- Department of EndocrinologyThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Lihua Ma
- Department of EndocrinologyThe First Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
39
|
Development of insulin resistance preceded major changes in iron homeostasis in mice fed a high-fat diet. J Nutr Biochem 2020; 84:108441. [PMID: 32629238 PMCID: PMC7115812 DOI: 10.1016/j.jnutbio.2020.108441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 03/10/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (T2DM) and insulin resistance (IR) have been associated with dysregulation of iron metabolism. The basis for this association is not completely understood. To attempt to investigate this, we studied temporal associations between onset of insulin resistance (IR) and dysregulated iron homeostasis, in a mouse model of T2DM. Male C57Bl/6 mice (aged 8 weeks) were fed a high-fat diet (HFD; 60% energy from fat) or a control diet (CD; 10% energy from fat) for 4, 8, 12, 16, 20 and 24 weeks. Development of IR was documented, and various metabolic, inflammatory and iron-related parameters were studied in these mice. HFD-feeding induced weight gain, hepato-steatosis and IR in the mice. Onset of IR occurred from 12 weeks onwards. Hepatic iron stores progressively declined from 16 weeks onwards. Accompanying changes included a decrease in hepatic hepcidin (Hamp1) mRNA expression and serum hepcidin levels and an increase in iron content in the epididymal white adipose tissue (eWAT). Iron content in the liver negatively correlated with that in the eWAT. Factors known to regulate hepatic Hamp1 expression (such as serum iron levels, systemic inflammation, and bone marrow-derived erythroid regulators) were not affected by HFD-feeding. In conclusion, the results show that the onset of IR in HFD-fed mice preceded dysregulation of iron homeostasis, evidence of which were found both in the liver and visceral adipose tissue.
Collapse
|
40
|
Pitchika A, Schipf S, Nauck M, Dörr M, Lerch MM, Felix SB, Markus MRP, Völzke H, Ittermann T. Associations of iron markers with type 2 diabetes mellitus and metabolic syndrome: Results from the prospective SHIP study. Diabetes Res Clin Pract 2020; 163:108149. [PMID: 32304796 DOI: 10.1016/j.diabres.2020.108149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/04/2020] [Accepted: 04/07/2020] [Indexed: 01/29/2023]
Abstract
AIMS To assess the role of serum ferritin and transferrin with prevalent and incident type 2 diabetes mellitus (T2DM) and metabolic syndrome (MetS) and whether these associations are independent of inflammatory markers and hepatic enzymes. METHODS We analyzed data from 3,232 participants aged 20-81 years of the population-based Study of Health in Pomerania (SHIP) from Northeast Germany with a median follow-up time of 10.6 years. Logistic and Cox regression analyses were performed. RESULTS Serum ferritin concentrations were associated with a higher prevalence of T2DM (total population OR: 1.16 [95% CI: 1.07, 1.26]; men OR: 1.18 [95% CI: 1.08, 1.30) and MetS (total population OR: 1.27 [95% CI: 1.16, 1.38]; men OR: 1.26 [95% CI: 1.15, 1.38]) in the total population and men independently of inflammatory markers and hepatic enzymes. In longitudinal analyses, baseline ferritin concentrations were associated with a higher risk of incident T2DM in women (HR: 1.38 [95% CI: 1.10, 1.71]), but not in men or in the total population and also with a higher risk of incident MetS (HR: 1.09 [95% CI: 1.01, 1.17]) in the total population. These longitudinal associations attenuated considerably after adjustment for hepatic enzymes but not inflammatory markers. Transferrin was not associated with any of the outcomes. CONCLUSIONS Our results suggest a link between ferritin and T2DM and MetS, which might be partially explained by hepatic dysfunction.
Collapse
Affiliation(s)
- Anitha Pitchika
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany.
| | - Sabine Schipf
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany; German Center for Cardiovascular Research (DZHK e.V.), Partner site Greifswald, Greifswald, Germany
| | - Marcus Dörr
- German Center for Cardiovascular Research (DZHK e.V.), Partner site Greifswald, Greifswald, Germany; Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Stephan B Felix
- German Center for Cardiovascular Research (DZHK e.V.), Partner site Greifswald, Greifswald, Germany; Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Marcello Ricardo Paulista Markus
- German Center for Cardiovascular Research (DZHK e.V.), Partner site Greifswald, Greifswald, Germany; Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany; DZD (German Center for Diabetes Research), Site Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany; German Center for Cardiovascular Research (DZHK e.V.), Partner site Greifswald, Greifswald, Germany; DZD (German Center for Diabetes Research), Site Greifswald, Greifswald, Germany
| | - Till Ittermann
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
41
|
Lee J, Park HK, Kwon MJ, Ham SY, Kim JM, Lim SY, Song JU. Decreased lung function is associated with elevated ferritin but not iron or transferrin saturation in 42,927 healthy Korean men: A cross-sectional study. PLoS One 2020; 15:e0231057. [PMID: 32240239 PMCID: PMC7117746 DOI: 10.1371/journal.pone.0231057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/14/2020] [Indexed: 12/28/2022] Open
Abstract
Objectives Though elevated ferritin level and decreased lung function both predispose people to cardio-metabolic disease, few reports have investigated the association between them. Furthermore, it remains unclear whether the association reflects a change in iron stores or an epiphenomenon reflecting metabolic stress. Therefore, we looked for possible associations between ferritin, iron, and transferrin saturation (TSAT) and lung function to clarify the role of iron-related parameters in healthy men. Methods We conducted a cohort study of 42,927 healthy Korean men (mean age: 38.6 years). Percent predicted forced expiratory volume in one second (FEV1%) and forced vital capacity (FVC%) were categorized into quartiles. Adjusted odds ratios (aORs) and 95% confidence intervals (using the highest quartile as reference) were calculated for hyperferritinemia, high iron, and high TSAT after controlling for potential confounders. Results The median ferritin level was 199.8 (141.5–275.6) ng/mL. The prevalence of hyperferritinemia (defined as >300 ng/mL) was 19.3%. Subjects with hyperferritinemia had lower FEV1% and FVC% than those with normal ferritin level with a slight difference, but those were statistically significant (99.22% vs.99.61% for FEV1%, p = 0.015 and 98.43% vs. 98.87% for FVC, p = 0.001). However, FEV1/FVC ratio was not significantly different between groups (P = 0.797). Compared with the highest quartile, the aORs for hyperferritinemia across decreasing quartiles were 1.081 (1.005–1.163), 1.100 (1.007–1.200), and 1.140 (1.053–1.233) for FEV1% (p for trend = 0.007) and 1.094 (1.018–1.176), 1.101 (1.021–1.188), and 1.150 (1.056–1.252) for FVC% (p for trend = 0.001). However, neither FEV1% nor FVC% was associated with iron or TSAT. Conclusions Hyperferritinemia was associated with decreased lung function in healthy Korean men, but iron and TSAT were not. Longitudinal follow-up studies are required to validate our findings.
Collapse
Affiliation(s)
- Jonghoo Lee
- Department of Internal Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Hye kyeong Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Ilsan, Republic of Korea
| | - Min-Jung Kwon
- Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Soo-Youn Ham
- Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joon Mo Kim
- Department of Ophthalmology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Si-Young Lim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae-Uk Song
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
42
|
Cosentino N, Genovese S, Campodonico J, Bonomi A, Lucci C, Milazzo V, Moltrasio M, Biondi ML, Riggio D, Veglia F, Ceriani R, Celentano K, De Metrio M, Rubino M, Bartorelli AL, Marenzi G. High-Sensitivity C-Reactive Protein and Acute Kidney Injury in Patients with Acute Myocardial Infarction: A Prospective Observational Study. J Clin Med 2019; 8:jcm8122192. [PMID: 31842300 PMCID: PMC6947188 DOI: 10.3390/jcm8122192] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 01/08/2023] Open
Abstract
Background. Accumulating evidence suggests that inflammation plays a key role in acute kidney injury (AKI) pathogenesis. We explored the relationship between high-sensitivity C-reactive protein (hs-CRP) and AKI in acute myocardial infarction (AMI). Methods. We prospectively included 2,063 AMI patients in whom hs-CRP was measured at admission. AKI incidence and a clinical composite of in-hospital death, cardiogenic shock, and acute pulmonary edema were the study endpoints. Results. Two-hundred-thirty-four (11%) patients developed AKI. hs-CRP levels were higher in AKI patients (45 ± 87 vs. 16 ± 41 mg/L; p < 0.0001). The incidence and severity of AKI, as well as the rate of the composite endpoint, increased in parallel with hs-CRP quartiles (p for trend <0.0001 for all comparisons). A significant correlation was found between hs-CRP and the maximal increase of serum creatinine (R = 0.23; p < 0.0001). The AUC of hs-CRP for AKI prediction was 0.69 (p < 0.001). At reclassification analysis, addition of hs-CRP allowed to properly reclassify 14% of patients when added to creatinine and 8% of patients when added to a clinical model. Conclusions. In AMI, admission hs-CRP is closely associated with AKI development and severity, and with in-hospital outcomes. Future research should focus on whether prophylactic renal strategies in patients with high hs-CRP might prevent AKI and improve outcome.
Collapse
Affiliation(s)
- Nicola Cosentino
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (N.C.); (S.G.); (J.C.); (A.B.); (C.L.); (V.M.); (M.M.); (M.L.B.); (D.R.); (F.V.); (R.C.); (K.C.); (M.D.M.); (M.R.); (A.L.B.)
| | - Stefano Genovese
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (N.C.); (S.G.); (J.C.); (A.B.); (C.L.); (V.M.); (M.M.); (M.L.B.); (D.R.); (F.V.); (R.C.); (K.C.); (M.D.M.); (M.R.); (A.L.B.)
| | - Jeness Campodonico
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (N.C.); (S.G.); (J.C.); (A.B.); (C.L.); (V.M.); (M.M.); (M.L.B.); (D.R.); (F.V.); (R.C.); (K.C.); (M.D.M.); (M.R.); (A.L.B.)
| | - Alice Bonomi
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (N.C.); (S.G.); (J.C.); (A.B.); (C.L.); (V.M.); (M.M.); (M.L.B.); (D.R.); (F.V.); (R.C.); (K.C.); (M.D.M.); (M.R.); (A.L.B.)
| | - Claudia Lucci
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (N.C.); (S.G.); (J.C.); (A.B.); (C.L.); (V.M.); (M.M.); (M.L.B.); (D.R.); (F.V.); (R.C.); (K.C.); (M.D.M.); (M.R.); (A.L.B.)
| | - Valentina Milazzo
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (N.C.); (S.G.); (J.C.); (A.B.); (C.L.); (V.M.); (M.M.); (M.L.B.); (D.R.); (F.V.); (R.C.); (K.C.); (M.D.M.); (M.R.); (A.L.B.)
| | - Marco Moltrasio
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (N.C.); (S.G.); (J.C.); (A.B.); (C.L.); (V.M.); (M.M.); (M.L.B.); (D.R.); (F.V.); (R.C.); (K.C.); (M.D.M.); (M.R.); (A.L.B.)
| | - Maria Luisa Biondi
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (N.C.); (S.G.); (J.C.); (A.B.); (C.L.); (V.M.); (M.M.); (M.L.B.); (D.R.); (F.V.); (R.C.); (K.C.); (M.D.M.); (M.R.); (A.L.B.)
| | - Daniela Riggio
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (N.C.); (S.G.); (J.C.); (A.B.); (C.L.); (V.M.); (M.M.); (M.L.B.); (D.R.); (F.V.); (R.C.); (K.C.); (M.D.M.); (M.R.); (A.L.B.)
| | - Fabrizio Veglia
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (N.C.); (S.G.); (J.C.); (A.B.); (C.L.); (V.M.); (M.M.); (M.L.B.); (D.R.); (F.V.); (R.C.); (K.C.); (M.D.M.); (M.R.); (A.L.B.)
| | - Roberto Ceriani
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (N.C.); (S.G.); (J.C.); (A.B.); (C.L.); (V.M.); (M.M.); (M.L.B.); (D.R.); (F.V.); (R.C.); (K.C.); (M.D.M.); (M.R.); (A.L.B.)
| | - Katia Celentano
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (N.C.); (S.G.); (J.C.); (A.B.); (C.L.); (V.M.); (M.M.); (M.L.B.); (D.R.); (F.V.); (R.C.); (K.C.); (M.D.M.); (M.R.); (A.L.B.)
| | - Monica De Metrio
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (N.C.); (S.G.); (J.C.); (A.B.); (C.L.); (V.M.); (M.M.); (M.L.B.); (D.R.); (F.V.); (R.C.); (K.C.); (M.D.M.); (M.R.); (A.L.B.)
| | - Mara Rubino
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (N.C.); (S.G.); (J.C.); (A.B.); (C.L.); (V.M.); (M.M.); (M.L.B.); (D.R.); (F.V.); (R.C.); (K.C.); (M.D.M.); (M.R.); (A.L.B.)
| | - Antonio L. Bartorelli
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (N.C.); (S.G.); (J.C.); (A.B.); (C.L.); (V.M.); (M.M.); (M.L.B.); (D.R.); (F.V.); (R.C.); (K.C.); (M.D.M.); (M.R.); (A.L.B.)
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20138 Milan, Italy
| | - Giancarlo Marenzi
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (N.C.); (S.G.); (J.C.); (A.B.); (C.L.); (V.M.); (M.M.); (M.L.B.); (D.R.); (F.V.); (R.C.); (K.C.); (M.D.M.); (M.R.); (A.L.B.)
- Correspondence: ; Tel.: +39-02-580021; Fax: +39-02-58002287
| |
Collapse
|
43
|
Jiang L, Wang K, Lo K, Zhong Y, Yang A, Fang X, Akezhuoli H, Song Z, Chen L, An P, Xu M, Min J, Wang F. Sex-Specific Association of Circulating Ferritin Level and Risk of Type 2 Diabetes: A Dose-Response Meta-Analysis of Prospective Studies. J Clin Endocrinol Metab 2019; 104:4539-4551. [PMID: 31074789 DOI: 10.1210/jc.2019-00495] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/06/2019] [Indexed: 12/15/2022]
Abstract
CONTEXT Although the role of iron in the development of type 2 diabetes (T2D) has long been a concern, prospective studies directly linking body iron stores to T2D risk in a sex-dependent context have been inconsistent. OBJECTIVE A systematic meta-analysis was conducted to explore the sex-specific association of circulating ferritin with T2D risk. DATA SOURCES We searched PubMed, Web of Science, and EMBASE databases to identify available prospective studies through 1 August 2018. RESULTS Fifteen prospective studies comprising 77,352 participants and 18,404 patients with T2D, aged 20 to 80 years, and with ∼3 to 17 years of follow-up were identified. For each 100-μg/L increment in ferritin levels of overall participants, T2D risk increased by 22% (RR, 1.22; 95% CI, 1.14 to 1.31). Of note, major heterogeneities by sex were identified, with increased ferritin level having an apparently greater effect on T2D risk in women (RR, 1.53; 95% CI, 1.29 to 1.82) than in men (RR, 1.21; 95% CI, 1.15 to 1.27) after exclusion of a study with high heterogeneity (41,512 men and 6974 women for sex-specific analyses; P = 0.020 for sex difference). Further nonlinear analysis between circulating ferritin and T2D risk also showed sex-dimorphic association in that the T2D risk of women was twice as strong in magnitude as that of men at the same ferritin level. CONCLUSIONS Greater circulating ferritin levels were independently associated with increased T2D risk, which appeared stronger among women than men. Our findings provide prospective evidence for further testing of the utility of ferritin levels in predicting T2D risk in a sex-specific manner.
Collapse
Affiliation(s)
- Li Jiang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
- The First Affiliated Hospital, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Kai Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Kenneth Lo
- Departments of Cardiology and Endocrinology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Centre for Global Cardiometabolic Health, Department of Epidemiology, Brown University, Providence, Rhode Island
| | - Yueyang Zhong
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Aimin Yang
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Kong Kong SAR, China
| | - Xuexian Fang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hailati Akezhuoli
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zijun Song
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Liyun Chen
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng An
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Mingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Junxia Min
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fudi Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
- The First Affiliated Hospital, School of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
44
|
Mo D, Liu S, Ma H, Tian H, Yu H, Zhang X, Tong N, Liao J, Ren Y. Effects of acarbose and metformin on the inflammatory state in newly diagnosed type 2 diabetes patients: a one-year randomized clinical study. Drug Des Devel Ther 2019; 13:2769-2776. [PMID: 31496653 PMCID: PMC6691948 DOI: 10.2147/dddt.s208327] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/08/2019] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the changes in inflammatory biomarkers between newly diagnosed type 2 diabetes (T2DM) patients under one-year acarbose treatments and those under metformin managements. METHODS Seventy patients with newly diagnosed T2DM and 32 volunteers with normal glucose tolerance (normal controls, NCs) were enrolled. Seventy patients with T2DM were randomly assigned to two subgroups and treated with acarbose (n=34) or metformin (n=36) for 1 year. Blood glucose, insulin, glycosylated hemoglobin (A1C), triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and inflammatory biomarker levels (interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-2 (IL-2), and ferritin) were detected at 0, 6 and 12 months. RESULTS After adjusting for sex, the waist-to-hip ratio (WHR) and body mass index (BMI), higher fasting plasma glucose (FPG), standard meal test 1/2 hr and 2 hr glucose, TG, TC, LDL-C, IL-6, TNF-α, IL-2 and ferritin levels were observed in T2DM group than in NCs (P<0.05). After 6 months of treatment, TNF-α levels were significantly decreased in both subgroups, and IL-6 and ferritin levels were significantly decreased after 12 months (P<0.05). However, no significant differences in the IL-6, TNF-α and ferritin levels were observed between the two subgroups. Moreover, significantly higher IL-6 and TNF-α levels were detected in the T2DM group than in NCs after 12 months of treatment (P<0.05). CONCLUSION Patients with newly diagnosed T2DM exhibited a marked chronic inflammatory state characterized by increased IL-6, TNF-α, IL-1β, IL-2 and ferritin levels. After 1 year of treatment with acarbose or metformin, IL-6, TNF-α, IL-1β and ferritin levels were significantly decreased compared with the baseline. The anti-inflammatory effects of acarbose and metformin were comparable and required a long-term treatment (1 year), but the characteristics were different. Further investigations are needed to determine whether this effect was independent of the hypoglycemic effects.
Collapse
Affiliation(s)
- Dan Mo
- Division of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu610041, People’s Republic of China
| | - Songfang Liu
- Division of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu610041, People’s Republic of China
| | - Hong Ma
- Division of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu610041, People’s Republic of China
| | - Haoming Tian
- Division of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu610041, People’s Republic of China
| | - Honglin Yu
- Laboratory of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu610041, People’s Republic of China
| | - Xiangxun Zhang
- Laboratory of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu610041, People’s Republic of China
| | - Nanwei Tong
- Laboratory of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu610041, People’s Republic of China
| | - Jiayu Liao
- Department of Bioengineering, Bourns College of Engineering, University of California, Riverside, CA92521, USA
- West China Hospital-California Multiomics Research Center, Key Laboratory of Transplant Engineering and Immunology, National Health Commission of PRC, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yan Ren
- Division of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu610041, People’s Republic of China
| |
Collapse
|
45
|
Serum Ferritin and Glucose Homeostasis in Women With Recent Gestational Diabetes. Can J Diabetes 2019; 43:567-572. [PMID: 31439472 DOI: 10.1016/j.jcjd.2019.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Serum markers of iron storage have been linked to type 2 diabetes; however, the mechanism underlying this association is unclear. In pregnancy, increased serum ferritin has been reported in women with gestational diabetes (GDM), a patient population at high risk of future type 2 diabetes. However, in the years after pregnancy, it is not known if ferritin relates to their diabetes risk or the pathophysiologic determinants thereof (insulin sensitivity and beta-cell function). Therefore, we sought to characterize the relationship between ferritin and glucose homeostasis in the early postpartum years in women with and without recent GDM. METHODS At both 1 and 3 years postpartum, 340 women (105 with recent GDM) underwent serum ferritin measurement and an oral glucose tolerance test that enabled assessment of insulin sensitivity and/or resistance (Matsuda index and Homeostasis Model Assessment [HOMA-IR]), beta-cell function (Insulin Secretion-Sensitivity Index-2 and insulinogenic index/HOMA-IR) and glucose tolerance. RESULTS Serum ferritin did not differ between women who had GDM and their peers at either 1 or 3 years postpartum. Baseline-adjusted change in ferritin between 1 and 3 years correlated with the concomitant change in C-reactive protein (r=0.21, p=0.0002) but was not associated with measures of insulin sensitivity and/or resistance, beta-cell function or glycemia. On adjusted analyses, neither baseline ferritin nor its change from 1 to 3 years was independently associated with any of the following metabolic outcomes at 3-years postpartum: Matsuda index, HOMA-IR, Insulin Secretion-Sensitivity Index-2, insulinogenic index/HOMA-IR, fasting glucose, 2-h glucose or glucose intolerance. CONCLUSIONS Serum ferritin is not associated with glucose homeostasis in the early years after a GDM pregnancy.
Collapse
|
46
|
Suárez-Ortegón MF, Echeverri I, Prats-Puig A, Bassols J, Carreras-Badosa G, López-Bermejo A, Fernández-Real JM. Iron Status and Metabolically Unhealthy Obesity in Prepubertal Children. Obesity (Silver Spring) 2019; 27:636-644. [PMID: 30821086 DOI: 10.1002/oby.22425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/10/2018] [Indexed: 01/19/2023]
Abstract
OBJECTIVE This study aimed to evaluate the association of metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUO) with iron status markers in prepubertal children. METHODS Three hundred twelve prepubertal children with overweight and obesity from a pediatric general Spanish population were evaluated. MHO and MUO were defined as obesity with the absence or presence of metabolic syndrome components. Phenotypes of metabolically healthy overweight including obesity (MHOV) and metabolically unhealthy overweight including obesity (MUOV) were also studied and defined using the same criteria. Serum ferritin, transferrin, and blood hemoglobin levels were evaluated. RESULTS Prevalence rates of MHOV and MHO were 35% (n = 111/312) and 27.1% (n = 42/155), respectively. Ferritin and hemoglobin levels were higher in children with MUOV versus MHOV (P < 0.05). MUO was positively associated with ferritin (beta [95% CI] = 0.43 [0.05 to 0.81]) and hemoglobin levels (0.43 [0.05 to 0.81]). These associations remained significant independently of age, sex, C-reactive protein, physical activity, and BMI/waist z scores in bivariate linear regression models. In multivariable models, transaminase levels attenuated the association of MUO with ferritin and hemoglobin levels (P > 0.05). CONCLUSIONS MUOV and MUO are associated with higher ferritin and hemoglobin levels in prepubertal children affected by overweight and obesity. Increased circulating ferritin in MUO might be influenced by liver injury.
Collapse
Affiliation(s)
- Milton Fabian Suárez-Ortegón
- Basic and Clinic Sciences Group-Department of Basic Sciences of Health, Pontificia Universidad Javeriana, Cali, Colombia
- Nutrition Group, University of Valle, Cali, Colombia
| | | | - Anna Prats-Puig
- Pediatrics Research Group, Girona Institute for Biomedical Research, Girona, Spain
- Department of Pediatrics, Dr Josep Trueta Hospital, Girona, Spain
- Department of Physical Therapy, University School of Health and Sports, University of Girona, Girona, Spain
| | - Judit Bassols
- Pediatrics Research Group, Girona Institute for Biomedical Research, Girona, Spain
- Department of Pediatrics, Dr Josep Trueta Hospital, Girona, Spain
| | - Gemma Carreras-Badosa
- Pediatrics Research Group, Girona Institute for Biomedical Research, Girona, Spain
- Department of Pediatrics, Dr Josep Trueta Hospital, Girona, Spain
| | - Abel López-Bermejo
- Pediatrics Research Group, Girona Institute for Biomedical Research, Girona, Spain
- Department of Pediatrics, Dr Josep Trueta Hospital, Girona, Spain
- TransLab Research Group, Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Jose Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Department of Medical Sciences, Faculty of Medicine, Girona Institute for Biomedical Research, Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition and National Institute of Health Carlos III, Girona, Spain
| |
Collapse
|
47
|
Circulating miR-146a in healthy aging and type 2 diabetes: Age- and gender-specific trajectories. Mech Ageing Dev 2019; 180:1-10. [PMID: 30880174 DOI: 10.1016/j.mad.2019.03.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/12/2019] [Indexed: 01/08/2023]
Abstract
To evaluate the combined effect of age and glycemic state on circulating levels of the inflamma-miR-146a levels, 188 healthy subjects (CTR) aged 20-104 years and 144 type-2 diabetic patients (T2DM), aged 40-80 years, were analyzed. In CTR subjects, miR-146a levels showed a significant age-related decline. When a gender-stratified analysis was ran, the miR-146a age-related trajectory was confirmed only in men and a negative correlation with PAI-1, uric acid, and creatinine was also observed. In women, miR-146a circulating levels showed negative correlations with azotemia, uric acid, waist/hip ratio and ferritin. A significant miR-146a decline with aging was also observed in T2DM patients. Significant positive correlations were found between miR-146a in diabetic patients and total cholesterol, LDL-C, ApoA1, ApoB, and platelets, and negative correlations with serum iron and ferritin. Notably, miR-146a was significantly overexpressed in T2DM patients treated with metformin. MiR-146a levels were significantly lower in diabetic patients than in age-matched CTR and negatively correlated to both fasting glucose and HbA1c in males. Finally, age-related trajectories for circulating miR-146a levels showed an inverted U-shaped relationship; however, in T2DM patients the trajectory was significantly shifted towards lower levels. Our findings support the hypothesis that miR-146a could be a functional biomarker of healthy/unhealthy aging.
Collapse
|
48
|
Suárez-Ortegón MF, Blanco E, McLachlan S, Fernandez-Real JM, Burrows R, Wild SH, Lozoff B, Gahagan S. Ferritin levels throughout childhood and metabolic syndrome in adolescent stage. Nutr Metab Cardiovasc Dis 2019; 29:268-278. [PMID: 30648600 PMCID: PMC6758555 DOI: 10.1016/j.numecd.2018.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 10/10/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Increased ferritin levels have been widely associated with cardiovascular risk in adults. Whether ferritin levels and their changes during childhood are related to metabolic syndrome (MetS) at adolescence is unknown. We aimed to evaluate these associations using levels of ferritin at 5, 10 and 16 years and their linear increases and patterns of sustained increased levels across childhood. METHODS AND RESULTS There were four samples evaluated according to non-missing values for study variables at each stage (5 years: 562; 10 years: 381; and 16 years: 567 children; non-missing values at any stage: 379). MetS risk was evaluated as a continuous Z score. Patterns of sustained increased ferritin (highest tertile) and slope of the change of ferritin per year across the follow-up were calculated. Ferritin levels in the highest versus lowest tertile at five and 16 years were significantly positively associated with MetS risk Z score at adolescence in boys and these associations were unaffected by adjustment for covariates. Having high, compared to low/moderate ferritin level at 2 or more time periods between 5 and 16 years was related to higher Mets Z-score in boys only [e.g. 5-10 years adjusted-beta (95 %CI):0.26 (0.05-0.48),P < 0.05]. In girls, ferritin Z score at 10 and 16 years was positively and independently associated with HOMA-IR Z score. In girls, the slope of ferritin per year in the highest tertile was positively associated with MetS risk Z-score [adjusted-beta (95 %CI):0.21 (0.05-0.38),P < 0.05]. CONCLUSIONS Ferritin levels throughout childhood are positively related to cardiometabolic risk in adolescence, with associations varying by sex.
Collapse
Affiliation(s)
- M F Suárez-Ortegón
- Basic and Clinic Sciences Group-Department of Basic Sciences of Health, Pontificia Universidad Javeriana, Cali, Colombia; Nutrition Group, Universidad del Valle, Cali, Colombia.
| | - E Blanco
- Division of Child Development and Community Health, University of California, San Diego, La Jolla, CA, USA
| | - S McLachlan
- Basic and Clinic Sciences Group-Department of Basic Sciences of Health, Pontificia Universidad Javeriana, Cali, Colombia
| | - J M Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - R Burrows
- University of Chile, Santiago, Chile
| | - S H Wild
- Basic and Clinic Sciences Group-Department of Basic Sciences of Health, Pontificia Universidad Javeriana, Cali, Colombia
| | - B Lozoff
- Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, USA
| | - S Gahagan
- Division of Child Development and Community Health, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
49
|
Mineral Nutrition and the Risk of Chronic Diseases: A Mendelian Randomization Study. Nutrients 2019; 11:nu11020378. [PMID: 30759836 PMCID: PMC6412267 DOI: 10.3390/nu11020378] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
We applied Mendelian randomization analyses to investigate the potential causality between blood minerals (calcium, magnesium, iron, copper, and zinc) and osteoporosis (OP), gout, rheumatoid arthritis (RA), type 2 diabetes (T2D), Alzheimer’s disease (AD), bipolar disorder (BD), schizophrenia, Parkinson’s disease and major depressive disorder. Single nucleotide polymorphisms (SNPs) that are independent (r2 < 0.01) and are strongly related to minerals (p < 5 × 10−8) are selected as instrumental variables. Each standard deviation increase in magnesium (0.16 mmol/L) is associated with an 8.94-fold increase in the risk of RA (p = 0.044) and an 8.78-fold increase in BD (p = 0.040) but a 0.10 g/cm2 increase in bone density related to OP (p = 0.014). Each per-unit increase in copper is associated with a 0.87-fold increase in the risk of AD (p = 0.050) and BD (p = 0.010). In addition, there is suggestive evidence that calcium is positively correlated (OR = 1.36, p = 0.030) and iron is negatively correlated with T2D risk (OR = 0.89, p = 0.010); both magnesium (OR = 0.26, p = 0.013) and iron (OR = 0.71, p = 0.047) are negatively correlated with gout risk. In the sensitivity analysis, causal estimation is not affected by pleiotropy. This study supports the long-standing hypothesis that magnesium supplementation can increase RA and BD risks and decrease OP risk and that copper intake can reduce AD and BD risks. This study will be helpful to address some controversial debates on the relationships between minerals and chronic diseases.
Collapse
|
50
|
Han Z, Yu Y, Xu J, Bao Z, Xu Z, Hu J, Yu M, Bamba D, Ma W, Ding F, Zhang L, Jin M, Yan G, Huang Q, Wang X, Hua B, Yang F, Li Y, Lei L, Cao N, Pan Z, Cai B. Iron Homeostasis Determines Fate of Human Pluripotent Stem Cells Via Glycerophospholipids-Epigenetic Circuit. Stem Cells 2019; 37:489-503. [PMID: 30599084 DOI: 10.1002/stem.2967] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022]
Abstract
Iron homeostasis is crucial for a variety of biological processes, but the biological role of iron homeostasis in pluripotent stem cells (PSCs) remains largely unknown. The present study aimed to determine whether iron homeostasis is involved in maintaining the pluripotency of human PSCs (hPSCs). We found that the intracellular depletion of iron leads to a rapid downregulation of NANOG and a dramatic decrease in the self-renewal of hPSCs as well as spontaneous and nonspecific differentiation. Moreover, long-term depletion of iron can result in the remarkable cell death of hPSCs via apoptosis and necrosis pathways. Additionally, we found that the depletion of iron increased the activity of lipoprotein-associated phospholipase A2 (LP-PLA2) and the production of lysophosphatidylcholine, thereby suppressing NANOG expression by enhancer of zeste homolog 2-mediated trimethylation of histone H3 lysine 27. Consistently, LP-PLA2 inhibition abrogated iron depletion-induced loss of pluripotency and differentiation. Altogether, the findings of our study demonstrates that iron homeostasis, acting through glycerophospholipid metabolic pathway, is essential for the pluripotency and survival of hPSCs. Stem Cells 2019;37:489-503.
Collapse
Affiliation(s)
- Zhenbo Han
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Ying Yu
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Juan Xu
- Department of Bioinformatics, Harbin Medical University, Harbin, People's Republic of China
| | - Zhengyi Bao
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Zihang Xu
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Jiancheng Hu
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Meixi Yu
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Djibril Bamba
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Wenya Ma
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Fengzhi Ding
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Lai Zhang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Mengyu Jin
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Gege Yan
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Qi Huang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Xiuxiu Wang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Bingjie Hua
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Fan Yang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Yuan Li
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Harbin, People's Republic of China
| | - Nan Cao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China.,The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People's Republic of China
| | - Zhenwei Pan
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Benzhi Cai
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|