1
|
Yazıcı D, Demir SÇ, Sezer H. Insulin Resistance, Obesity, and Lipotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:391-430. [PMID: 39287860 DOI: 10.1007/978-3-031-63657-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Lipotoxicity, originally used to describe the destructive effects of excess fat accumulation on glucose metabolism, causes functional impairments in several metabolic pathways, both in adipose tissue and peripheral organs, like liver, heart, pancreas, and muscle. Ectopic lipid accumulation in the kidneys, liver, and heart has important clinical counterparts like diabetic nephropathy in type 2 diabetes mellitus, obesity-related glomerulopathy, nonalcoholic fatty liver disease, and cardiomyopathy. Insulin resistance due to lipotoxicity indirectly lead to reproductive system disorders, like polycystic ovary syndrome. Lipotoxicity has roles in insulin resistance and pancreatic beta-cell dysfunction. Increased circulating levels of lipids and the metabolic alterations in fatty acid utilization and intracellular signaling have been related to insulin resistance in muscle and liver. Different pathways, like novel protein kinase c pathways and the JNK-1 pathway, are involved as the mechanisms of how lipotoxicity leads to insulin resistance in nonadipose tissue organs, such as liver and muscle. Mitochondrial dysfunction plays a role in the pathogenesis of insulin resistance. Endoplasmic reticulum stress, through mainly increased oxidative stress, also plays an important role in the etiology of insulin resistance, especially seen in non-alcoholic fatty liver disease. Visceral adiposity and insulin resistance both increase the cardiometabolic risk, and lipotoxicity seems to play a crucial role in the pathophysiology of these associations.
Collapse
Affiliation(s)
- Dilek Yazıcı
- Koç University Medical School, Section of Endocrinology and Metabolism, Koç University Hospital, Topkapi, Istanbul, Turkey.
| | - Selin Çakmak Demir
- Koç University Medical School, Section of Endocrinology and Metabolism, Koç University Hospital, Topkapi, Istanbul, Turkey
| | - Havva Sezer
- Koç University Medical School, Section of Endocrinology and Metabolism, Koç University Hospital, Topkapi, Istanbul, Turkey
| |
Collapse
|
2
|
Adipose tissue macrophages and their role in obesity-associated insulin resistance: an overview of the complex dynamics at play. Biosci Rep 2023; 43:232519. [PMID: 36718668 PMCID: PMC10011338 DOI: 10.1042/bsr20220200] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Obesity, a major global health concern, is characterized by serious imbalance between energy intake and expenditure leading to excess accumulation of fat in adipose tissue (AT). A state of chronic low-grade AT inflammation is prevalent during obesity. The adipose tissue macrophages (ATM) with astounding heterogeneity and complex regulation play a decisive role in mediating obesity-induced insulin resistance. Adipose-derived macrophages were broadly classified as proinflammatory M1 and anti-inflammatory M2 subtypes but recent reports have proclaimed several novel and intermediate profiles, which are crucial in understanding the dynamics of macrophage phenotypes during development of obesity. Lipid-laden hypertrophic adipocytes release various chemotactic signals that aggravate macrophage infiltration into AT skewing toward mostly proinflammatory status. The ratio of M1-like to M2-like macrophages is increased substantially resulting in copious secretion of proinflammatory mediators such as TNFα, IL-6, IL-1β, MCP-1, fetuin-A (FetA), etc. further worsening insulin resistance. Several AT-derived factors could influence ATM content and activation. Apart from being detrimental, ATM exerts beneficial effects during obesity. Recent studies have highlighted the prime role of AT-resident macrophage subpopulations in not only effective clearance of excess fat and dying adipocytes but also in controlling vascular integrity, adipocyte secretions, and fibrosis within obese AT. The role of ATM subpopulations as friend or foe is determined by an intricate interplay of such factors arising within hyperlipidemic microenvironment of obese AT. The present review article highlights some of the key research advances in ATM function and regulation, and appreciates the complex dynamics of ATM in the pathophysiologic scenario of obesity-associated insulin resistance.
Collapse
|
3
|
Lapa GB, Gruber P, Untergasser G, Moiseeva NI, Hofmann J. New Biological Evaluation of Thienoquinolines as Disruptors of the PKCε/RACK2 Protein–Protein Interaction. MOSCOW UNIVERSITY CHEMISTRY BULLETIN 2022; 77:S46-S54. [DOI: 10.3103/s0027131422070082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 01/03/2025]
|
4
|
Tamas I, Major E, Horvath D, Keller I, Ungvari A, Haystead TA, MacDonald JA, Lontay B. Mechanisms by which smoothelin-like protein 1 reverses insulin resistance in myotubules and mice. Mol Cell Endocrinol 2022; 551:111663. [PMID: 35508278 DOI: 10.1016/j.mce.2022.111663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
Insulin resistance (InR) is manifested in skeletal muscle by decreased insulin-stimulated glucose uptake due to impaired insulin signaling and multiple post-receptor intracellular defects. Chronic glucose-induced insulin resistance leads to the activation of Ser/Thr kinases and elevated phosphorylation of insulin receptor substrate 1 (IRS1) on Ser residues. Phosphorylation of IRS1 triggers the dissociation of IRS1 and its downstream effector, phosphatidylinositol 3-kinase. In the present study, we provide evidence for the insulin-sensitizing role of smoothelin-like protein 1 (SMTNL1) that is a ligand-dependent co-regulator of steroid receptors, predominantly the progesterone receptor. SMTNL1 was transiently overexpressed in insulin-resistant C2C12 myotubes. A proteome profiler array revealed that mTOR and Ser/Thr kinases were SMTNL1-dependent signaling pathways. In the presence of progesterone, overexpression was coupled to decreased Ser phosphorylation of IRS1 at Ser307, Ser318, and Ser612 residues. SMTNL1 also induced the expression and activity of the p85 subunit of PI3K. SMTNL1 regulated the expression of PKCε, which phosphorylates IRS1 at Ser318 residue. SMTNL1 also regulated ERK1/2 and JNK, which phosphorylate IRS1 at Ser612 and Ser307, respectively. Real-time metabolic measurements of oxygen consumption rate and extracellular acidification rate revealed that SMTNL1 improved glycolysis and promoted the utilization of alternative carbon fuels. SMTNL1 also rescued the mitochondrial respiration defect induced by chronic insulin exposure. Collectively, SMTNL1 plays a crucial role in maintaining the physiological ratio of Tyr/Ser IRS1 phosphorylation and attenuates the insulin-signaling cascade that contributes to impaired glucose disposal, which makes it a potential therapeutic target for improving InR.
Collapse
Affiliation(s)
- Istvan Tamas
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Evelin Major
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Daniel Horvath
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ilka Keller
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adam Ungvari
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Timothy A Haystead
- Duke University School of Medicine, Department of Pharmacology and Cancer Biology, Durham, NC, USA
| | - Justin A MacDonald
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Beata Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
5
|
Yan S, Sun M, Gao L, Yao N, Feng T, Yang Y, Li X, Hu W, Cui W, Li B. Identification of Key LncRNAs and Pathways in Prediabetes and Type 2 Diabetes Mellitus for Hypertriglyceridemia Patients Based on Weighted Gene Co-Expression Network Analysis. Front Endocrinol (Lausanne) 2022; 12:800123. [PMID: 35140684 PMCID: PMC8818867 DOI: 10.3389/fendo.2021.800123] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/13/2021] [Indexed: 12/19/2022] Open
Abstract
Aims Prevalence of prediabetes and type 2 diabetes mellitus(T2DM) are increasing worldwide. Key lncRNAs were detected to provide a reference for searching potential biomarkers of prediabetes and T2DM in hypertriglyceridemia patients. Methods The study included 18 hypertriglyceridemia patients: 6 newly diagnosed type 2 diabetes patients, 6 samples with prediabetes and 6 samples with normal blood glucose. Weighted gene co-expression network analysis (WGCNA) was conducted to construct co-expression network and obtain modules related to blood glucose, thus detecting key lncRNAs. Results The green, yellow and yellow module was significantly related to blood glucose in T2DM versus normal controls, T2DM versus prediabetes, prediabetes versus normal controls, respectively. ENST00000503273, ENST00000462720, ENST00000480633 and ENST00000485392 were detected as key lncRNAs for the above three groups, respectively. Conclusions For hypertriglyceridemia patients with different blood glucose levels, ENST00000503273, ENST00000462720 and ENST00000480633 could be potential biomarkers of T2DM.
Collapse
Affiliation(s)
- Shoumeng Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Mengzi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Lichao Gao
- Department of Endocrinology, The First Hospital of Jilin University, Changchun, China
| | - Nan Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Tianyu Feng
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Yixue Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Xiaotong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Wenyu Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Weiwei Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Bo Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
6
|
Differential and Synergistic Effects of Low Birth Weight and Western Diet on Skeletal Muscle Vasculature, Mitochondrial Lipid Metabolism and Insulin Signaling in Male Guinea Pigs. Nutrients 2021; 13:nu13124315. [PMID: 34959870 PMCID: PMC8704817 DOI: 10.3390/nu13124315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
Low birth weight (LBW) offspring are at increased risk for developing insulin resistance, a key precursor in metabolic syndrome and type 2 diabetes mellitus. Altered skeletal muscle vasculature, extracellular matrix, amino acid and mitochondrial lipid metabolism, and insulin signaling are implicated in this pathogenesis. Using uteroplacental insufficiency (UPI) to induce intrauterine growth restriction (IUGR) and LBW in the guinea pig, we investigated the relationship between UPI-induced IUGR/LBW and later life skeletal muscle arteriole density, fibrosis, amino acid and mitochondrial lipid metabolism, markers of insulin signaling and glucose uptake, and how a postnatal high-fat, high-sugar “Western” diet (WD) modulates these changes. Muscle of 145-day-old male LBW glucose-tolerant offspring displayed diminished vessel density and altered acylcarnitine levels. Disrupted muscle insulin signaling despite maintained whole-body glucose homeostasis also occurred in both LBW and WD-fed male “lean” offspring. Additionally, postnatal WD unmasked LBW-induced impairment of mitochondrial lipid metabolism, as reflected by increased acylcarnitine accumulation. This study provides evidence that early markers of skeletal muscle metabolic dysfunction appear to be influenced by the in utero environment and interact with a high-fat/high-sugar postnatal environment to exacerbate altered mitochondrial lipid metabolism, promoting mitochondrial overload.
Collapse
|
7
|
Schianchi F, Glatz JFC, Navarro Gascon A, Nabben M, Neumann D, Luiken JJFP. Putative Role of Protein Palmitoylation in Cardiac Lipid-Induced Insulin Resistance. Int J Mol Sci 2020; 21:ijms21249438. [PMID: 33322406 PMCID: PMC7764417 DOI: 10.3390/ijms21249438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022] Open
Abstract
In the heart, inhibition of the insulin cascade following lipid overload is strongly associated with contractile dysfunction. The translocation of fatty acid transporter CD36 (SR-B2) from intracellular stores to the cell surface is a hallmark event in the lipid-overloaded heart, feeding forward to intracellular lipid accumulation. Yet, the molecular mechanisms by which intracellularly arrived lipids induce insulin resistance is ill-understood. Bioactive lipid metabolites (diacyl-glycerols, ceramides) are contributing factors but fail to correlate with the degree of cardiac insulin resistance in diabetic humans. This leaves room for other lipid-induced mechanisms involved in lipid-induced insulin resistance, including protein palmitoylation. Protein palmitoylation encompasses the reversible covalent attachment of palmitate moieties to cysteine residues and is governed by protein acyl-transferases and thioesterases. The function of palmitoylation is to provide proteins with proper spatiotemporal localization, thereby securing the correct unwinding of signaling pathways. In this review, we provide examples of palmitoylations of individual signaling proteins to discuss the emerging role of protein palmitoylation as a modulator of the insulin signaling cascade. Second, we speculate how protein hyper-palmitoylations (including that of CD36), as they occur during lipid oversupply, may lead to insulin resistance. Finally, we conclude that the protein palmitoylation machinery may offer novel targets to fight lipid-induced cardiomyopathy.
Collapse
Affiliation(s)
- Francesco Schianchi
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
| | - Jan F. C. Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
- Department of Clinical Genetics, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands
| | - Artur Navarro Gascon
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
- Department of Clinical Genetics, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands
| | - Dietbert Neumann
- Department of Pathology, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands;
| | - Joost J. F. P. Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
- Department of Clinical Genetics, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-43-388-1998
| |
Collapse
|
8
|
Kolczynska K, Loza-Valdes A, Hawro I, Sumara G. Diacylglycerol-evoked activation of PKC and PKD isoforms in regulation of glucose and lipid metabolism: a review. Lipids Health Dis 2020; 19:113. [PMID: 32466765 PMCID: PMC7257441 DOI: 10.1186/s12944-020-01286-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Protein kinase C (PKC) and Protein kinase D (PKD) isoforms can sense diacylglycerol (DAG) generated in the different cellular compartments in various physiological processes. DAG accumulates in multiple organs of the obese subjects, which leads to the disruption of metabolic homeostasis and the development of diabetes as well as associated diseases. Multiple studies proved that aberrant activation of PKCs and PKDs contributes to the development of metabolic diseases. DAG-sensing PKC and PKD isoforms play a crucial role in the regulation of metabolic homeostasis and therefore might serve as targets for the treatment of metabolic disorders such as obesity and diabetes.
Collapse
Affiliation(s)
- Katarzyna Kolczynska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Angel Loza-Valdes
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Izabela Hawro
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Grzegorz Sumara
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland.
| |
Collapse
|
9
|
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 2018; 98:2133-2223. [PMID: 30067154 PMCID: PMC6170977 DOI: 10.1152/physrev.00063.2017] [Citation(s) in RCA: 1565] [Impact Index Per Article: 223.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022] Open
Abstract
The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have matured, coalescing into solid and fertile ground for clinical application; others remain incompletely investigated and scientifically controversial. Here, we attempt to synthesize this work to guide further mechanistic investigation and to inform the development of novel therapies for type 2 diabetes (T2D). The rational development of such therapies necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D: insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin action. In this review, both the physiology of insulin action and the pathophysiology of insulin resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and white adipose tissue. We aim to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response. First, in section II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III considers the critical and underappreciated role of tissue crosstalk in whole body insulin action, especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The pathophysiology of insulin resistance is then described in section IV. Special attention is given to which signaling pathways and functions become insulin resistant in the setting of chronic overnutrition, and an alternative explanation for the phenomenon of ‟selective hepatic insulin resistanceˮ is presented. Sections V, VI, and VII critically examine the evidence for and against several putative mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol, ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII discusses non-cell autonomous factors proposed to induce insulin resistance, including inflammatory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we propose an integrated model of insulin resistance that links these mediators to final common pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.
Collapse
Affiliation(s)
- Max C Petersen
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
10
|
Alkhalidy H, Wang Y, Liu D. Dietary Flavonoids in the Prevention of T2D: An Overview. Nutrients 2018; 10:nu10040438. [PMID: 29614722 PMCID: PMC5946223 DOI: 10.3390/nu10040438] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/15/2018] [Accepted: 03/29/2018] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes (T2D) is a progressive metabolic disease that is increasing in prevalence globally. It is well established that insulin resistance (IR) and a progressive decline in functional β-cell mass are hallmarks of developing T2D. Obesity is a leading pathogenic factor for developing IR. Constant IR will progress to T2D when β-cells are unable to secret adequate amounts of insulin to compensate for decreased insulin sensitivity. Recently, a considerable amount of research has been devoted to identifying naturally occurring anti-diabetic compounds that are abundant in certain types of foods. Flavonoids are a group of polyphenols that have drawn great interest for their various health benefits. Results from many clinical and animal studies demonstrate that dietary intake of flavonoids might be helpful in preventing T2D, although cellular and molecular mechanisms underlying these effects are still not completely understood. This review discusses our current understanding of the pathophysiology of T2D and highlights the potential anti-diabetic effects of flavonoids and mechanisms of their actions.
Collapse
Affiliation(s)
- Hana Alkhalidy
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA 24060, USA.
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Yao Wang
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA 24060, USA.
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA 24060, USA.
| |
Collapse
|
11
|
Zheng J, Wang Y, Han S, Luo Y, Sun X, Zhu N, Zhao L, Li J. Identification of Protein Kinase C Isoforms Involved in Type 1 Diabetic Encephalopathy in Mice. J Diabetes Res 2018; 2018:8431249. [PMID: 29744369 PMCID: PMC5878894 DOI: 10.1155/2018/8431249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022] Open
Abstract
Diabetic encephalopathy is a complication of diabetes mellitus characterized by impaired cognitive functions. Protein kinase C (PKC) isoforms are rarely reported on diabetic encephalopathy, although they have been believed to play crucial roles in other diabetic complications. In this study, streptozotocin- (STZ-) induced diabetic mice were found to exhibit learning and memory deficits in the Morris water maze test. Meanwhile, the expression of cPKCβII, nPKCε, and cPKCγ did not change in the hippocampus, cortex, and striatum at 2 and 8 weeks after STZ injection. The nPKCε translocation to the membrane, where it is activated, was not altered in the above brain regions at 2 and 8 weeks after STZ injection. Nevertheless, cPKCβII translocation to the membrane was significantly decreased in the cortex and hippocampus at 8 weeks after STZ injection. The translocation of cPKCγ from the cytosol to the membrane was remarkably decreased in the hippocampus at 2 and 8 weeks and in the cortex and striatum at 8 weeks after STZ injection. In addition, deletion of cPKCγ aggravated the impairment of spatial learning and memory. In conclusion, our results suggest that the decrease in the activity of cPKCβII and cPKCγ, especially cPKCγ, may play key roles in the pathogenesis of diabetic encephalopathy.
Collapse
Affiliation(s)
- Jiayin Zheng
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yue Wang
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Song Han
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yanlin Luo
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Xiuli Sun
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Ning Zhu
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Li Zhao
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Junfa Li
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
12
|
Insulin Resistance, Obesity and Lipotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:277-304. [PMID: 28585204 DOI: 10.1007/978-3-319-48382-5_12] [Citation(s) in RCA: 295] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lipotoxicity , originally used to describe the destructive effects of excess fat accumulation on glucose metabolism, causes functional impairments in several metabolic pathways, both in adipose tissue and peripheral organs, like liver, heart, pancreas and muscle. Lipotoxicity has roles in insulin resistance and pancreatic beta cell dysfunction. Increased circulating levels of lipids and the metabolic alterations in fatty acid utilization and intracellular signaling, have been related to insulin resistance in muscle and liver. Different pathways, like novel protein kinase c pathways and the JNK-1 pathway are involved as the mechanisms of how lipotoxicity leads to insulin resistance in nonadipose tissue organs, such as liver and muscle. Mitochondrial dysfunction plays a role in the pathogenesis of insulin resistance. Endoplasmic reticulum stress, through mainly increased oxidative stress, also plays important role in the etiology of insulin resistance, especially seen in non-alcoholic fatty liver disease. Visceral adiposity and insulin resistance both increase the cardiometabolic risk and lipotoxicity seems to play a crucial role in the pathophysiology of these associations.
Collapse
|
13
|
Nandipati KC, Subramanian S, Agrawal DK. Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance. Mol Cell Biochem 2016; 426:27-45. [PMID: 27868170 DOI: 10.1007/s11010-016-2878-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022]
Abstract
Obesity-induced low-grade inflammation (metaflammation) impairs insulin receptor signaling. This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, inhibitor of NF-kB kinase complex β (IKKβ), AMP-activated protein kinase, protein kinase C, Rho-associated coiled-coil containing protein kinase, and RNA-activated protein kinase. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in type 2 diabetes mellitus (T2-DM). Identifying the specific protein kinases involved in obesity-induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity-induced T2-DM.
Collapse
Affiliation(s)
- Kalyana C Nandipati
- Department of Surgery, Creighton University School of Medicine, 601 N. 30th Street, Suite # 3700, Omaha, NE, 68131, USA.
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA.
| | - Saravanan Subramanian
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA
| | - Devendra K Agrawal
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA
| |
Collapse
|
14
|
Capuani B, Pacifici F, Pastore D, Palmirotta R, Donadel G, Arriga R, Bellia A, Di Daniele N, Rogliani P, Abete P, Sbraccia P, Guadagni F, Lauro D, Della-Morte D. The role of epsilon PKC in acute and chronic diseases: Possible pharmacological implications of its modulators. Pharmacol Res 2016; 111:659-667. [PMID: 27461137 DOI: 10.1016/j.phrs.2016.07.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 07/22/2016] [Indexed: 02/06/2023]
|
15
|
Li X, Lu J, Wang Y, Huo X, Li Z, Zhang S, Li C, Guo M, Du X, Chen Z. Establishment and Characterization of a Newly Established Diabetic Gerbil Line. PLoS One 2016; 11:e0159420. [PMID: 27427908 PMCID: PMC4948894 DOI: 10.1371/journal.pone.0159420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/01/2016] [Indexed: 01/09/2023] Open
Abstract
Objectives We aimed to selectively breed a spontaneous diabetic gerbil when a sub-line of inbred gerbil showed increased blood glucose levels was found recently. Then we investigated the characteristics including the serum insulin, triglyceride, cholesterol, leptin, adiponectin and explored the underlying molecular mechanism for the diabetic phenotype. Methods The spontaneous diabetic line of gerbils was selectively inbreed the sub-line of gerbil by monitoring blood glucose of each animal. The serum insulin, adiponectin, and leptin levels were tested using an ELISA kit. The expression levels of GLUT4, Akt, leptin, adiponectin, and calpain 10 (CAPN10) were tested by western blot and Quantitative Real-time PCR (qPCR) in liver, skeletal muscle, and white adipose. Results Our results show that the percentages of animals with FPG≥5.2 (mmol/l), PG2h≥6.8 (mmol/l) and both FPG≥5.2 and PG2h≥6.8 (mmol/l) were increased with the number of breeding generations from F0 (21.33%) to F6 (38.46%). These diabetic gerbils exhibited insulin resistance and leptin resistance as well as decreased adiponectin level in the serum. We also observed decreased expression of adiponectin and increased expression of leptin in the skeletal muscle, respectively. Conclusions These results indicate that we have primarily established a spontaneous diabetic gerbil line, and the diabetic phenotypes may have been accounted for by altered expression of leptin and adiponectin.
Collapse
Affiliation(s)
- Xiaohong Li
- School of Basic Medical Science, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing 100069, China
| | - Jing Lu
- School of Basic Medical Science, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing 100069, China
| | - Ying Wang
- School of Basic Medical Science, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing 100069, China
| | - Xueyun Huo
- School of Basic Medical Science, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing 100069, China
| | - Zhenkun Li
- School of Basic Medical Science, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing 100069, China
| | - Shuangyue Zhang
- School of Basic Medical Science, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing 100069, China
| | - Changlong Li
- School of Basic Medical Science, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing 100069, China
| | - Meng Guo
- School of Basic Medical Science, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing 100069, China
| | - Xiaoyan Du
- School of Basic Medical Science, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing 100069, China
- * E-mail: (ZC); (XD)
| | - Zhenwen Chen
- School of Basic Medical Science, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing 100069, China
- * E-mail: (ZC); (XD)
| |
Collapse
|
16
|
Li M, Vienberg SG, Bezy O, O'Neill BT, Kahn CR. Role of PKCδ in Insulin Sensitivity and Skeletal Muscle Metabolism. Diabetes 2015; 64:4023-32. [PMID: 26307588 PMCID: PMC4657586 DOI: 10.2337/db14-1891] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 08/17/2015] [Indexed: 01/06/2023]
Abstract
Protein kinase C (PKC)δ has been shown to be increased in liver in obesity and plays an important role in the development of hepatic insulin resistance in both mice and humans. In the current study, we explored the role of PKCδ in skeletal muscle in the control of insulin sensitivity and glucose metabolism by generating mice in which PKCδ was deleted specifically in muscle using Cre-lox recombination. Deletion of PKCδ in muscle improved insulin signaling in young mice, especially at low insulin doses; however, this did not change glucose tolerance or insulin tolerance tests done with pharmacological levels of insulin. Likewise, in young mice, muscle-specific deletion of PKCδ did not rescue high-fat diet-induced insulin resistance or glucose intolerance. However, with an increase in age, PKCδ levels in muscle increased, and by 6 to 7 months of age, muscle-specific deletion of PKCδ improved whole-body insulin sensitivity and muscle insulin resistance and by 15 months of age improved the age-related decline in whole-body glucose tolerance. At 15 months of age, M-PKCδKO mice also exhibited decreased metabolic rate and lower levels of some proteins of the OXPHOS complex suggesting a role for PKCδ in the regulation of mitochondrial mass at older age. These data indicate an important role of PKCδ in the regulation of insulin sensitivity and mitochondrial homeostasis in skeletal muscle with aging.
Collapse
Affiliation(s)
- Mengyao Li
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Sara G Vienberg
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen University, Copenhagen, Denmark
| | - Olivier Bezy
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Brian T O'Neill
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| |
Collapse
|
17
|
A polyphenol rescues lipid induced insulin resistance in skeletal muscle cells and adipocytes. Biochem Biophys Res Commun 2014; 452:382-8. [DOI: 10.1016/j.bbrc.2014.08.079] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 08/16/2014] [Indexed: 11/24/2022]
|
18
|
Rechfeld F, Gruber P, Kirchmair J, Boehler M, Hauser N, Hechenberger G, Garczarczyk D, Lapa GB, Preobrazhenskaya MN, Goekjian P, Langer T, Hofmann J. Thienoquinolines as novel disruptors of the PKCε/RACK2 protein-protein interaction. J Med Chem 2014; 57:3235-46. [PMID: 24712764 PMCID: PMC4001449 DOI: 10.1021/jm401605c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
Ten
protein kinase C (PKC) isozymes play divergent roles in signal transduction.
Because of sequence similarities, it is particularly difficult to
generate isozyme-selective small molecule inhibitors. In order to
identify such a selective binder, we derived a pharmacophore model
from the peptide EAVSLKPT, a fragment of PKCε that inhibits
the interaction of PKCε and receptor for activated C-kinase
2 (RACK2). A database of 330 000 molecules was screened in
silico, leading to the discovery of a series of thienoquinolines that
disrupt the interaction of PKCε with RACK2 in vitro. The most
active molecule, N-(3-acetylphenyl)-9-amino-2,3-dihydro-1,4-dioxino[2,3-g]thieno[2,3-b]quinoline-8-carboxamide
(8), inhibited this interaction with a measured IC50 of 5.9 μM and the phosphorylation of downstream target
Elk-1 in HeLa cells with an IC50 of 11.2 μM. Compound 8 interfered with MARCKS phosphorylation and TPA-induced translocation
of PKCε (but not that of PKCδ) from the cytosol to the
membrane. The compound reduced the migration of HeLa cells into a
gap, reduced invasion through a reconstituted basement membrane matrix,
and inhibited angiogenesis in a chicken egg assay.
Collapse
Affiliation(s)
- Florian Rechfeld
- Biocenter, Division of Medical Biochemistry, Innsbruck Medical University , Innrain 80-82, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Schmitz-Peiffer C. The tail wagging the dog--regulation of lipid metabolism by protein kinase C. FEBS J 2013; 280:5371-83. [PMID: 23587021 DOI: 10.1111/febs.12285] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 03/19/2013] [Accepted: 04/11/2013] [Indexed: 12/12/2022]
Abstract
Upon their discovery almost 40 years ago, isoforms of the lipid-activated protein kinase C (PKC) family were initially regarded only as downstream effectors of the second messengers calcium and diacylglycerol, undergoing activation upon phospholipid hydrolysis in response to acute stimuli. Subsequently, several isoforms were found to be associated with the inhibitory effects of lipid over-supply on glucose homeostasis, especially the negative cross-talk with insulin signal transduction, observed upon accumulation of diacylglycerol in insulin target tissues. The PKC family has therefore attracted much attention in diabetes and obesity research, because intracellular lipid accumulation is strongly correlated with defective insulin action and the development of type 2 diabetes. Causal roles for various isoforms in the generation of insulin resistance have more recently been confirmed using PKC-deficient mice. However, during characterization of these animals, it became increasingly evident that the enzymes play key roles in the modulation of lipid metabolism itself, and may control the supply of lipids between tissues such as adipose and liver. Molecular studies have also demonstrated roles for PKC isoforms in several aspects of lipid metabolism, such as adipocyte differentiation and hepatic lipogenesis. While the precise mechanisms involved, especially the identities of protein substrates, are still unclear, the emerging picture suggests that the currently held view of the contribution of PKC isoforms to metabolism is an over-simplification. Although PKCs may inhibit insulin signal transduction, these enzymes are not merely downstream effectors of lipid accumulation, but in fact control the fate of fatty acids, thus the tail wags the dog.
Collapse
Affiliation(s)
- Carsten Schmitz-Peiffer
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
20
|
Sihem B, Leila S, Kheira O, Samia N, Nadjiba H, Saliha B, Abdelhamid S, Ghouti K, Mahdi HE, Yasmina B, Souhila AB. Impact of glucotoxicity induced <i>in vivo</i> and <i>in vitro</i> in <i>Psammomys obesus</i>. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jdm.2012.21010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Kewalramani G, Fink LN, Asadi F, Klip A. Palmitate-activated macrophages confer insulin resistance to muscle cells by a mechanism involving protein kinase C θ and ε. PLoS One 2011; 6:e26947. [PMID: 22046423 PMCID: PMC3202600 DOI: 10.1371/journal.pone.0026947] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 10/06/2011] [Indexed: 12/16/2022] Open
Abstract
Background Macrophage-derived factors contribute to whole-body insulin resistance, partly by impinging on metabolically active tissues. As proof of principle for this interaction, conditioned medium from macrophages treated with palmitate (CM-PA) reduces insulin action and glucose uptake in muscle cells. However, the mechanism whereby CM-PA confers this negative response onto muscle cells remains unknown. Methodology/Principal Findings L6-GLUT4myc myoblasts were exposed for 24 h to palmitate-free conditioned medium from RAW 264.7 macrophages pre-treated with 0.5 mM palmitate for 6 h. This palmitate-free CM-PA, containing selective cytokines and chemokines, inhibited myoblast insulin-stimulated insulin receptor substrate 1 (IRS1) tyrosine phosphorylation, AS160 phosphorylation, GLUT4 translocation and glucose uptake. These effects were accompanied by a rise in c-Jun N-terminal kinase (JNK) activation, degradation of Inhibitor of κBα (IκBα), and elevated expression of proinflammatory cytokines in myoblasts. Notably, CM-PA caused IRS1 phosphorylation on Ser1101, and phosphorylation of novel PKCθ and ε. Co-incubation of myoblasts with CM-PA and the novel and conventional PKC inhibitor Gö6983 (but not with the conventional PKC inhibitor Gö6976) prevented PKCθ and ε activation, JNK phosphorylation, restored IκBα mass and reduced proinflammatory cytokine production. Gö6983 also restored insulin signalling and glucose uptake in myoblasts. Moreover, co-silencing both novel PKC θ and ε isoforms in myoblasts by RNA interference, but not their individual silencing, prevented the inflammatory response and restored insulin sensitivity to CM-PA-treated myoblasts. Conclusions/Clinical Significance The results suggest that the block in muscle insulin action caused by CM-PA is mediated by novel PKCθ and PKCε. This study re-establishes the participation of macrophages as a relay in the action of fatty acids on muscle cells, and further identifies PKCθ and PKCε as key elements in the inflammatory and insulin resistance responses of muscle cells to macrophage products. Furthermore, it portrays these PKC isoforms as potential targets for the treatment of fatty acid-induced, inflammation-linked insulin resistance.
Collapse
Affiliation(s)
| | - Lisbeth Nielsen Fink
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- Hagedorn Research Institute, Novo Nordisk A/S, Gentofte, Denmark
| | - Farzad Asadi
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, School of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- * E-mail:
| |
Collapse
|
22
|
Raddatz K, Turner N, Frangioudakis G, Liao BM, Pedersen DJ, Cantley J, Wilks D, Preston E, Hegarty BD, Leitges M, Raftery MJ, Biden TJ, Schmitz-Peiffer C. Time-dependent effects of Prkce deletion on glucose homeostasis and hepatic lipid metabolism on dietary lipid oversupply in mice. Diabetologia 2011; 54:1447-56. [PMID: 21347625 DOI: 10.1007/s00125-011-2073-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Accepted: 01/10/2011] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS We examined the time-dependent effects of deletion of the gene encoding protein kinase C epsilon (Prkce) on glucose homeostasis, insulin secretion and hepatic lipid metabolism in fat-fed mice. METHODS Prkce(-/-) and wild-type (WT) mice were fed a high-fat diet for 1 to 16 weeks and subjected to i.p. glucose tolerance tests (ipGTT) and indirect calorimetry. We also investigated gene expression and protein levels by RT-PCR, quantitative protein profiling (isobaric tag for relative and absolute quantification; iTRAQ) and immunoblotting. Lipid levels, mitochondrial oxidative capacity and lipid metabolism were assessed in liver and primary hepatocytes. RESULTS While fat-fed WT mice became glucose intolerant after 1 week, Prkce(-/-) mice exhibited normal glucose and insulin levels. iTRAQ suggested differences in lipid metabolism and oxidative phosphorylation between fat-fed WT and Prkce(-/-) animals. Liver triacylglycerols were increased in fat-fed Prkce(-/-) mice, resulting from altered lipid partitioning which promoted esterification of fatty acids in hepatocytes. In WT mice, fat feeding elevated oxygen consumption in vivo and in isolated liver mitochondria, but these increases were not seen in Prkce(-/-) mice. Prkce(-/-) hepatocytes also exhibited reduced production of reactive oxygen species (ROS) in the presence of palmitate. After 16 weeks of fat feeding, however, the improved glucose tolerance in fat-fed Prkce(-/-) mice was instead associated with increased insulin secretion during ipGTT, as we have previously reported. CONCLUSIONS/INTERPRETATION Prkce deletion ameliorates diet-induced glucose intolerance via two temporally distinct phenotypes. Protection against insulin resistance is associated with changes in hepatic lipid partitioning, which may reduce the acute inhibitory effects of fatty acid catabolism, such as ROS generation. In the longer term, enhancement of glucose-stimulated insulin secretion prevails.
Collapse
Affiliation(s)
- K Raddatz
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, NSW 2010, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mechanism of lipid induced insulin resistance: activated PKCε is a key regulator. Biochim Biophys Acta Mol Basis Dis 2011; 1812:495-506. [PMID: 21236337 DOI: 10.1016/j.bbadis.2011.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 12/21/2010] [Accepted: 01/03/2011] [Indexed: 11/20/2022]
Abstract
Fatty acids (FAs) are known to impair insulin signaling in target cells. Accumulating evidences suggest that one of the major sites of FAs adverse effect is insulin receptor (IR). However, the underlying mechanism is yet unclear. An important clue was indicated in leptin receptor deficient (db/db) diabetic mice where increased circulatory FAs was coincided with phosphorylated PKCε and reduced IR expression. We report here that central to this mechanism is the phosphorylation of PKCε by FAs. Kinase dead mutant of PKCε did not augment FA induced IRβ downregulation indicating phosphorylation of PKCε is crucial for FA induced IRβ reduction. Investigation with insulin target cells showed that kinase independent phosphorylation of PKCε by FA occurred through palmitoylation. Mutation at cysteine 276 and 474 residues in PKCε suppressed this process indicating participation of these two residues in palmitoylation. Phosphorylation of PKCε endowed it the ability to migrate to the nuclear region of insulin target cells. It was intriguing to search about how translocation of phosphorylated PKCε occurred without having canonical nuclear localization signal (NLS). We found that F-actin recognized phospho-form of PKCε and chaperoned it to the nuclear region where it interact with HMGA1 and Sp1, the transcription regulator of IR and HMGA1 gene respectively and impaired HMGA1 function. This resulted in the attenuation of HMGA1 driven IR transcription that compromised insulin signaling and sensitivity.
Collapse
|
24
|
Paalanen MMI, Ekokoski E, El Khattabi M, Tuominen RK, Verrips CT, Boonstra J, Blanchetot C. The development of activating and inhibiting camelid VHH domains against human protein kinase C epsilon. Eur J Pharm Sci 2011; 42:332-9. [PMID: 21220006 DOI: 10.1016/j.ejps.2010.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 12/23/2010] [Indexed: 01/17/2023]
Abstract
The 10 isozymes of the protein kinase C (PKC) family can have different roles on the same biological process, making isozyme specific analysis of function crucial. Currently, only few pharmacological compounds with moderate isozyme specific effects exist thus hampering research into individual PKC isozymes. The antigen binding regions of camelid single chain antibodies (VHHs) could provide a solution for obtaining PKC isozyme specific modulators. In the present study, we have successfully selected and characterized PKCɛ specific VHH antibodies from two immune VHH libraries using phage display. The VHHs were shown to exclusively bind to PKCɛ in ELISA and immunoprecipitation studies. Strikingly, five of the VHHs had an effect on PKCɛ kinase activity in vitro. VHHs A10, C1 and D1 increased PKCɛ kinase activity in a concentration-dependent manner (EC(50) values: 212-310nM), whereas E6 and G8 inhibited PKCɛ activity (IC(50) values: 103-233nM). None of these VHHs had an effect on the activity of the other novel PKC isozymes PKCδ and PKCθ. To our knowledge, these antibodies are the first described VHH activators and inhibitors for a protein kinase. Furthermore, the development of PKCɛ specific modulators is an important contribution to PKC research.
Collapse
Affiliation(s)
- Milla M I Paalanen
- Cellular Dynamics, Department of Biology, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
25
|
Totoń E, Ignatowicz E, Skrzeczkowska K, Rybczyńska M. Protein kinase Cε as a cancer marker and target for anticancer therapy. Pharmacol Rep 2011; 63:19-29. [DOI: 10.1016/s1734-1140(11)70395-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/10/2010] [Indexed: 01/23/2023]
|
26
|
Protein kinase C isoforms: mediators of reactive lipid metabolites in the development of insulin resistance. FEBS Lett 2010; 585:269-74. [PMID: 21176778 DOI: 10.1016/j.febslet.2010.12.022] [Citation(s) in RCA: 260] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 12/07/2010] [Accepted: 12/14/2010] [Indexed: 11/23/2022]
Abstract
The role of protein kinase C (PKCs) isoforms in the regulation of glucose metabolism by insulin is complex, partly due to the large PKC family consisting of three sub-groups: conventional, novel and atypical. Activation of some conventional and novel PKCs in response to increased levels of diacylglycerol (DAG) have been shown to counteract insulin signalling. However, roles of atypical PKCs (aPKCs) remain poorly understood. aPKCs act as molecular switches by promoting or suppressing signalling pathways, in response to insulin or ceramides respectively. Understanding how DAG- and ceramide-activated PKCs impair insulin signalling would help to develop treatments to fight insulin resistance.
Collapse
|
27
|
Kewalramani G, Bilan PJ, Klip A. Muscle insulin resistance: assault by lipids, cytokines and local macrophages. Curr Opin Clin Nutr Metab Care 2010; 13:382-90. [PMID: 20495453 DOI: 10.1097/mco.0b013e32833aabd9] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW The present review outlines possible mechanisms by which high fatty acids, associated with high-fat diet and obesity, impose insulin resistance on glucose uptake into skeletal muscle. RECENT FINDINGS It is well established that muscle insulin resistance arises in conditions of high-fatty acid availability, and correlates with accumulation of triglycerides within skeletal muscle fibres. However, it is debated whether triglycerides or other lipid metabolites such as diacylglycerols and ceramides are directly responsible. These lipid metabolites can activate serine kinases that impair insulin signalling. Accumulation of acylcarnitines and reactive oxygen species could be additional causative agents of insulin resistance. Further, the precise defects in insulin signalling in muscle caused by high intramuscular lipid (i.e. lipotoxicity) remain unclear. In parallel, proinflammatory activation within the adipose tissue of obese and high-fat fed animals or humans causes muscle insulin resistance, and is ascribed to circulating inflammatory cytokines. Recent evidence also shows proinflammatory macrophages infiltrating muscle tissue and/or intermuscular adipose tissue, and there is growing evidence that fatty acids trigger macrophages to secrete factors that directly impair insulin actions. These factors are postulated to activate stress-signalling pathways in muscle that act on the same insulin-signalling components affected by lipotoxicity. SUMMARY Altered intramuscular lipid metabolism, circulating cytokines, and inflammatory macrophage infiltration of muscle tissue have been recently linked to muscle insulin resistance provoked by fatty acids. Each is analysed separately in this review, but they may act simultaneously and synergistically to render skeletal muscle insulin-resistant.
Collapse
|
28
|
Biswas A, Bhattacharya S, Dasgupta S, Kundu R, Roy SS, Pal BC, Bhattacharya S. Insulin resistance due to lipid-induced signaling defects could be prevented by mahanine. Mol Cell Biochem 2009; 336:97-107. [PMID: 19826769 DOI: 10.1007/s11010-009-0257-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Accepted: 09/15/2009] [Indexed: 02/06/2023]
Abstract
It is well known that free fatty acids (FFAs) play a key role in implementing insulin resistance and type 2 diabetes. Resources of chemical compounds that intervene the derogatory effect of FFAs are indeed very limited. We have isolated mahanine, a carbazole alkaloid, from the leaves of Murraya koenegii that prevented palmitate-induced inhibition of insulin-stimulated phosphorylation of IRbeta, PI3K, PDK1, and Akt in L6 myotubes. This was also reflected in the palmitate-induced inhibition of insulin-stimulated [(3)H] 2-DOG uptake by L6 myotubes, where palmitate adverse effect was significantly blocked by mahanine. Previous reports indicated that one of the major targets of lipid-induced damage in insulin signaling pathway resulting impairment of insulin sensitivity is insulin receptor (IR). Here, we have observed that palmitate significantly increased pPKCepsilon in both cytosol and nuclear region of L6 myotubes in comparison to control. Translocation of pPKCepsilon to the nucleus was associated with the impairment of HMGA1, the architectural transcription factor of IR gene and all these were reversed by mahanine. Palmitate-induced activation of IKK/IkappaBeta/NF-kappaBeta pathway was also attenuated by mahanine. Taken together, mahanine showed encouraging possibility to deal with lipid induced insulin resistance. In order to examine it further, mahanine was administered on nutritionally induced type 2 diabetic golden hamsters; it significantly improved hyperglycemia in all the treated animals. Our results, therefore, suggest that mahanine acts on two important sites of lipid induced insulin resistance (i) impairment of IR gene expression and (ii) activation of NF-kappaBeta pathway, thus, showing promise for its therapeutic choice for type 2 diabetes.
Collapse
Affiliation(s)
- Anindita Biswas
- Cellular and Molecular Endocrinology Laboratory, Department of Zoology, School of Life Science, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| | | | | | | | | | | | | |
Collapse
|
29
|
Shafrir E, Ziv E. A useful list of spontaneously arising animal models of obesity and diabetes. Am J Physiol Endocrinol Metab 2009; 296:E1450-2. [PMID: 19468077 DOI: 10.1152/ajpendo.00113.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Signal transduction of constitutively active protein kinase C epsilon. Cell Signal 2009; 21:745-52. [DOI: 10.1016/j.cellsig.2009.01.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 01/03/2009] [Indexed: 11/18/2022]
|
31
|
Batarseh A, Giatzakis C, Papadopoulos V. Phorbol-12-myristate 13-acetate acting through protein kinase Cepsilon induces translocator protein (18-kDa) TSPO gene expression. Biochemistry 2009; 47:12886-99. [PMID: 18975922 DOI: 10.1021/bi8012643] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Translocator protein (TSPO) is an 18-kDa cholesterol-binding protein that is expressed at high levels in steroid synthesizing and several cancer cells where it is involved in steroidogenesis and cell proliferation, respectively. The factors regulating Tspo expression are unknown. We analyzed Tspo transcriptional responses to the tumor promoter, phorbol-12-myristate 13-acetate (PMA), in cells with varying TSPO levels. PMA induced Tspo promoter activity and Tspo mRNA levels in TSPO-poor nonsteroidogenic cells (NIH-3T3 fibroblasts and COS-7 kidney) but not in TSPO-rich steroidogenic cells (MA-10 Leydig) with high basal Tspo transcriptional activity. The stimulatory effect of PMA was mediated by an 805-515-bp region upstream of the transcription start site. Electrophoretic mobility shift assay (EMSA) revealed that PMA induced binding of c-jun and GA-binding protein transcription factor (GABP-alpha) to their respective activator protein 1 (AP1) and v-ets erythroblastosis virus E26 oncogene homologue (Ets) sites in this region. Protein kinase C (PKC)-specific inhibitors blocked PMA induction of Tspo promoter activity with an inhibition profile suggestive of involvement of PKCepsilon. PKCepsilon expression correlated with TSPO content in the three cell lines. In NIH-3T3 cells, PKCepsilon overexpression induced Tspo promoter activity and mRNA levels and enhanced PMA-induced up regulation of c-jun and TSPO. In MA-10 cells, a PKCepsilon-specific translocation inhibitor peptide reduced basal Tspo promoter activity. PKCepsilon siRNA pool reduced PKCepsilon and TSPO levels in MA-10 cells indicating a role for PKCepsilon in regulating TSPO expression. Taken together, these data suggest that elevated TSPO expression in steroidogenic cells may be due to high constitutive expression of PKCepsilon that renders them unresponsive to further induction while PMA activation of PKCepsilon drives inducible TSPO expression in nonsteroidogenic cells, likely through AP1 and Ets.
Collapse
Affiliation(s)
- Amani Batarseh
- Department of Biochemistry & Molecular and Cell Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | |
Collapse
|
32
|
Abstract
Free fatty acids are known to play a key role in promoting loss of insulin sensitivity,thereby causing insulin resistance and type 2 diabetes.However,the underlying mechanism involved is still unclear.In searching for the cause of the mechanism,it has been found that palmitate inhibits insulin receptor (IR)gene expression,leading to a reduced amount of IR protein in insulin target cells. PDK1-independent phosphorylation of PKC(eta) causes this reduction in insulin receptor gene expression.One of the pathways through which fatty acid can induce insulin resistance in insulin target cells is suggested by these studies.We provide an overview of this important area,emphasizing the current status.
Collapse
Affiliation(s)
- Samir Bhattacharya
- Cellular and Molecular Endocrinology Laboratory, Department of Zoology, School of Life Science, Visva-Bharati (A Central University), Santiniketan 731 235, India.
| | | | | |
Collapse
|
33
|
Mack E, Ziv E, Reuveni H, Kalman R, Niv MY, Jörns A, Lenzen S, Shafrir E. Prevention of insulin resistance and beta-cell loss by abrogating PKCepsilon-induced serine phosphorylation of muscle IRS-1 in Psammomys obesus. Diabetes Metab Res Rev 2008; 24:577-84. [PMID: 18613220 DOI: 10.1002/dmrr.881] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Psammomys obesus gerbil exhibits PKCepsilon over-expression on high-energy (HE) diet. Muscle insulin receptor (IR) signalling and tyrosine kinase activity are inhibited eliciting insulin resistance. We aimed at preventing diabetes by inhibiting PKCepsilon-induced serine phosphorylation of IRS-1 with novel PKCepsilon abrogating peptides. RESEARCH DESIGN PKCepsilon abrogating peptides were copied from catalytic domain of PKC molecule (PCT patent IL2006/000755). Psammomys fed a diabetogenic HE diet received i.p. peptides KCe-12 and KCe-16 (18 mg/kg) on days 0, 7 and 14 controls received peptide solvent. RESULTS Food consumption and animal weight remained unchanged. On day 16, non-fasting blood glucose levels returned to normal (90 +/- 5 versus 347 +/- 16 mg/dL in untreated controls). Hyperinsulinemia fell from 584 +/- 55 to 180 +/- 22 mU/L. Western blot analysis showed that the increased phosphoserine(636, 639) content on IRS-1 in gastrocnemius muscle of diabetic animals was reduced three fold, the PKB/AKT activity increased two fold and muscle GLUT4 tended to increase, compared with controls. Likewise, administration of KCe-12 prior to placing the HE diet prevented the onset of diabetes. KCe-12 treatment did not reduce muscle PKCepsilon level. Damage and loss of insulin in pancreatic beta cells on HE diet were prevented by KCe-12, as shown in micrographs of islet hematoxylin-eosin staining and insulin immunostaining. The preserved secretory function enabled Psammomys to normalize glucose homeostasis. CONCLUSIONS KCe-16 and KCe-12 peptides derived from PKCepsilon substrate-binding region prevented the nutritional diabetes and protected muscle IRS-1 from PKCepsilon-induced serine phosphorylation, abrogating the insulin-signalling impediment in the Psammomys model of type 2 diabetes. Anti-diabetic peptides may lead to novel modalities preventing human overnutrition-induced insulin resistance and diabetes.
Collapse
Affiliation(s)
- Esther Mack
- Diabetes Center, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Schmitz-Peiffer C, Biden TJ. Protein kinase C function in muscle, liver, and beta-cells and its therapeutic implications for type 2 diabetes. Diabetes 2008; 57:1774-83. [PMID: 18586909 PMCID: PMC2453608 DOI: 10.2337/db07-1769] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 04/15/2008] [Indexed: 01/27/2023]
Affiliation(s)
| | - Trevor J. Biden
- From the Garvan Institute of Medical Research, Darlinghurst, Australia
| |
Collapse
|
35
|
Basu A, Sivaprasad U. Protein kinase Cepsilon makes the life and death decision. Cell Signal 2007; 19:1633-42. [PMID: 17537614 PMCID: PMC1986651 DOI: 10.1016/j.cellsig.2007.04.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 04/23/2007] [Indexed: 12/20/2022]
Abstract
Cancer is caused by dysregulation in cellular signaling systems that control cell proliferation, differentiation and cell death. Protein kinase C (PKC), a family of serine/threonine kinases, plays an important role in the growth factor signal transduction pathway. PKCepsilon, however, is the only PKCepsilon isozyme that has been considered as an oncogene. It can contribute to malignancy by enhancing cell proliferation or by inhibiting cell death. This review focuses on how PKCepsilon collaborates with other signaling pathways, such as Ras/Raf/ERK and Akt, to regulate cell survival and cell death. We have also discussed how PKCepsilon mediates its antiapoptotic signal by altering the level or function of pro- and antiapoptotic Bcl-2 family members.
Collapse
Affiliation(s)
- Alakananda Basu
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | | |
Collapse
|
36
|
Dey D, Bhattacharya A, Roy S, Bhattacharya S. Fatty acid represses insulin receptor gene expression by impairing HMGA1 through protein kinase Cepsilon. Biochem Biophys Res Commun 2007; 357:474-9. [PMID: 17434141 DOI: 10.1016/j.bbrc.2007.03.183] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Accepted: 03/26/2007] [Indexed: 10/23/2022]
Abstract
It is known that free fatty acid (FFA) contributes to the development of insulin resistance and type2 diabetes. However, the underlying mechanism in FFA-induced insulin resistance is still unclear. In the present investigation we have demonstrated that palmitate significantly (p <0.001) inhibited insulin-stimulated phosphorylation of PDK1, the key insulin signaling molecule. Consequently, PDK1 phosphorylation of plasma membrane bound PKCepsilon was also inhibited. Surprisingly, phosphorylation of cytosolic PKCepsilon was greatly stimulated by palmitate; this was then translocated to the nuclear region and associated with the inhibition of insulin receptor (IR) gene transcription. A PKCepsilon translocation inhibitor peptide, epsilonV1, suppressed this inhibitory effect of palmitate, suggesting requirement of phospho-PKCepsilon migration to implement palmitate effect. Experimental evidences indicate that phospho-PKCepsilon adversely affected HMGA1. Since HMGA1 regulates IR promoter activity, expression of IR gene was impaired causing reduction of IR on cell surface and that compromises with insulin sensitivity.
Collapse
Affiliation(s)
- Debleena Dey
- Molecular Endocrinology Laboratory, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | | | | | | |
Collapse
|
37
|
Specific protein kinase C isoforms as transducers and modulators of insulin signaling. Mol Genet Metab 2006; 89:32-47. [PMID: 16798038 DOI: 10.1016/j.ymgme.2006.04.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2006] [Revised: 04/23/2006] [Accepted: 04/23/2006] [Indexed: 12/14/2022]
Abstract
Recent studies implicate specific PKC isoforms in the insulin-signaling cascade. Insulin activates PKCs alpha, betaII, delta and zeta in several cell types. In addition, as will be documented in this review, certain members of the PKC family may also be activated and act upstream of PI3 and MAP kinases. Each of these isoforms has been shown one way or another either to mimic or to modify insulin-stimulated effects in one or all of the insulin-responsive tissues. Moreover, each of the isoforms has been shown to be activated by insulin stimulation or conditions important for effective insulin stimulation. Studies attempting to demonstrate a definitive role for any of the isoforms have been performed on different cells, ranging from appropriate model systems for skeletal muscle, liver and fat, such as primary cultures, and cell lines and even in vivo studies, including transgenic mice with selective deletion of specific PKC isoforms. In addition, studies have been done on certain expression systems such as CHO or HEK293 cells, which are far removed from the tissues themselves and serve mainly as vessels for potential protein-protein interactions. Thus, a clear picture for many of the isoforms remains elusive in spite of over two decades of intensive research. The recent intrusion of transgenic and precise molecular biology technologies into the research armamentarium has opened a wide range of additional possibilities for direct involvement of individual isoforms in the insulin signaling cascade. As we hope to discuss within the context of this review, whereas many of the long sought-after answers to specific questions are not yet clear, major advances have been made in our understanding of precise roles for individual PKC isoforms in mediation of insulin effects. In this review, in which we shall focus our attention on isoforms in the conventional and novel categories, a clear case will be made to show that these isoforms are not only expressed but are importantly involved in regulation of insulin metabolic effects.
Collapse
|
38
|
Hefetz S, Ziv E, Jörns A, Lenzen S, Shafrir E. Prevention of nutritionally induced diabetes by rosiglitazone in the gerbil Psammomys obesus. Diabetes Metab Res Rev 2006; 22:139-45. [PMID: 16088969 DOI: 10.1002/dmrr.583] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Psammomys obesus is a desert gerbil developing hyperglycaemia, hyperinsulinaemia and insulin resistance when placed for 2 weeks on a high-energy (HE) diet. The mechanism underlying the antidiabetic effect of rosiglitazone (RG) treatment (20 mg/kg per day for 2 weeks) was studied. METHODS The antidiabetogenic effect of RG treatment on serum insulin and metabolic parameters in serum and target tissues of insulin action was investigated in vivo and compared with the pancreatic beta cell protective effects of RG. RESULTS Almost all RG-treated animals remained normoglycaemic compared to controls, but, at the same time, they were hyperinsulinaemic. RG had no effect on serum free fatty acid and serum and muscle triglyceride concentrations and did not appreciably affect body weight and fat depots. RG prevented a HE diet-induced reduction of GLUT 4 glucose transporter content in epididymal adipose tissue, but not in gastrocnemius muscle. The normoglycaemic effect was not associated with a suppression of liver PEPCK activity. Muscle PKCepsilon expression, known to be elevated in diabetic Psammomys and to inhibit insulin signalling, was only marginally decreased. However, RG treatment prevented the marked decrease in insulin immunostaining as well as the vacuolization of the beta cells and accelerated beta cell proliferation. CONCLUSIONS These data indicate that the skeletal muscle is not the primary target of RG action, whereas the preservation of the insulin secretory capacity and the prevention of degenerative beta cell vacuolization in spite of persisting insulin resistance appear to be the basis for the anti-hyperglycaemic effect of RG in Psammomys.
Collapse
Affiliation(s)
- Simona Hefetz
- Diabetes Center, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
39
|
Dey D, Basu D, Roy SS, Bandyopadhyay A, Bhattacharya S. Involvement of novel PKC isoforms in FFA induced defects in insulin signaling. Mol Cell Endocrinol 2006; 246:60-4. [PMID: 16448741 DOI: 10.1016/j.mce.2005.12.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Involvement of novel PKCs (nPKCs) in the negative regulation of insulin-signaling pathway is a current interest of many workers investigating the cause for insulin resistance and type 2 diabetes. Free fatty acids (FFAs) are recently shown to be the major players in inducing insulin resistance in insulin target cells. They are also found to be involved in activating nPKCs associated with the impairment of insulin sensitivity. In this overview, we describe PKC delta, theta and epsilon linked to the FFA induced damage of insulin-signaling molecules.
Collapse
Affiliation(s)
- Debleena Dey
- Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | | | | | | | | |
Collapse
|
40
|
Dey D, Mukherjee M, Basu D, Datta M, Roy SS, Bandyopadhyay A, Bhattacharya S. Inhibition of insulin receptor gene expression and insulin signaling by fatty acid: interplay of PKC isoforms therein. Cell Physiol Biochem 2006; 16:217-28. [PMID: 16301821 DOI: 10.1159/000089847] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2005] [Indexed: 11/19/2022] Open
Abstract
Fatty acids are known to play a key role in promoting the loss of insulin sensitivity causing insulin resistance and type 2 diabetes. However, underlying mechanism involved here is still unclear. Incubation of rat skeletal muscle cells with palmitate followed by I(125)- insulin binding to the plasma membrane receptor preparation demonstrated a two-fold decrease in receptor occupation. In searching the cause for this reduction, we found that palmitate inhibition of insulin receptor (IR) gene expression effecting reduced amount of IR protein in skeletal muscle cells. This was followed by the inhibition of insulin-stimulated IRbeta tyrosine phosphorylation that consequently resulted inhibition of insulin receptor substrate 1 (IRS 1) and IRS 1 associated phosphatidylinositol-3 kinase (PI3 Kinase), phosphoinositide dependent kinase-1 (PDK 1) phosphorylation. PDK 1 dependent phosphorylation of PKCzeta and Akt/PKB were also inhibited by palmitate. Surprisingly, although PKCepsilon phosphorylation is PDK1 dependent, palmitate effected its constitutive phosphorylation independent of PDK1. Time kinetics study showed translocation of palmitate induced phosphorylated PKCepsilon from cell membrane to nuclear region and its possible association with the inhibition of IR gene transcription. Our study suggests one of the pathways through which fatty acid can induce insulin resistance in skeletal muscle cell.
Collapse
Affiliation(s)
- Debleena Dey
- Cellular and Molecular Endocrinology Laboratory, Department of Zoology, School of Life Science, Visva-Bharati University, Santiniketan, India
| | | | | | | | | | | | | |
Collapse
|
41
|
Hillel J, Gefel D, Kalman R, Ben-Ari G, David L, Orion O, Feldman MW, Bar-On H, Blum S, Raz I, Schaap T, Shpirer I, Lavi U, Shafrir E, Ziv E. Evidence for a major gene affecting the transition from normoglycaemia to hyperglycaemia in Psammomys obesus. Heredity (Edinb) 2005; 95:158-65. [PMID: 15931239 DOI: 10.1038/sj.hdy.6800701] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We investigated the mode of inheritance of nutritionally induced diabetes in the desert gerbil Psammomys obesus (sand rat), following transfer from low-energy (LE) to high-energy (HE) diet which induces hyperglycaemia. Psammomys selected for high or low blood glucose level were used as two parental lines. A first backcross generation (BC(1)) was formed by crossing F(1) males with females of the diabetes-prone line. The resulting 232 BC(1) progeny were assessed for blood glucose. All progeny were weaned at 3 weeks of age (week 0), and their weekly assessment of blood glucose levels proceeded until week 9 after weaning, with all progeny maintained on HE diet. At weeks 1 to 9 post weaning, a clear bimodal distribution statistically different from unimodal distribution of blood glucose was observed, normoglycaemic and hyperglycaemic at a 1:1 ratio. This ratio is expected at the first backcross generation for traits controlled by a single dominant gene. From week 0 (prior to the transfer to HE diet) till week 8, the hyperglycaemic individuals were significantly heavier (4--17%) than the normoglycaemic ones. The bimodal blood glucose distribution in BC(1) generation, with about equal frequencies in each mode, strongly suggests that a single major gene affects the transition from normo- to hyperglycaemia. The wide range of blood glucose values among the hyperglycaemic individuals (180 to 500 mg/dl) indicates that several genes and environmental factors influence the extent of hyperglycaemia. The diabetes-resistant allele appears to be dominant; the estimate for dominance ratio is 0.97.
Collapse
Affiliation(s)
- J Hillel
- The Robert H Smith Institute of Plant Sciences & Genetics, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Neschen S, Morino K, Hammond LE, Zhang D, Liu ZX, Romanelli AJ, Cline GW, Pongratz RL, Zhang XM, Choi CS, Coleman RA, Shulman GI. Prevention of hepatic steatosis and hepatic insulin resistance in mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase 1 knockout mice. Cell Metab 2005; 2:55-65. [PMID: 16054099 DOI: 10.1016/j.cmet.2005.06.006] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 05/10/2005] [Accepted: 06/22/2005] [Indexed: 10/25/2022]
Abstract
In order to investigate the role of mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase 1 (mtGPAT1) in the pathogenesis of hepatic steatosis and hepatic insulin resistance, we examined whole-body insulin action in awake mtGPAT1 knockout (mtGPAT1(-/-)) and wild-type (wt) mice after regular control diet or three weeks of high-fat feeding. In contrast to high-fat-fed wt mice, mtGPAT1(-/-) mice displayed markedly lower hepatic triacylglycerol and diacylglycerol concentrations and were protected from hepatic insulin resistance possibly due to a lower diacylglycerol-mediated PKC activation. Hepatic acyl-CoA has previously been implicated in the pathogenesis of insulin resistance. Surprisingly, compared to wt mice, mtGPAT1(-/-) mice exhibited increased hepatic insulin sensitivity despite an almost 2-fold elevation in hepatic acyl-CoA content. These data suggest that mtGPAT1 might serve as a novel target for treatment of hepatic steatosis and hepatic insulin resistance and that long chain acyl-CoA's do not mediate fat-induced hepatic insulin resistance in this model.
Collapse
Affiliation(s)
- Susanne Neschen
- Howard Hughes Medical Institute, Department of Internal Medicine, Yale University School of Medicine, New Haven, CN 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ohashi K, Kanazawa A, Tsukada S, Maeda S. PKCepsilon induces interleukin-6 expression through the MAPK pathway in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2005; 327:707-12. [PMID: 15649404 DOI: 10.1016/j.bbrc.2004.12.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Indexed: 10/26/2022]
Abstract
Recent reports have suggested that PKCepsilon contributes to systemic insulin resistance, and is involved in the pathogenesis of type 2 diabetes, however, the exact mechanism is still unknown. To elucidate the possible involvement of PKCepsilon in the pathogenesis of type 2 diabetes, we examined the role of PKCepsilon in differentiated adipocytes using mouse 3T3-L1 adipocytes. We found that the over-expression of PKCepsilon resulted in the increase of IL-6 expression in differentiated adipocytes. This PKCepsilon-induced IL-6 expression could be completely inhibited by U0126, an inhibitor of mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase. We also demonstrated that PKCepsilon increased the transcriptional activity of Est-like transcription factor (Elk-1) as well as the DNA-binding activity of activator protein-1 (AP-1) in differentiated 3T3-L1 adipocytes. These results suggest that PKCepsilon is able to increase IL-6 expression via the ERK-AP-1 pathway in differentiated adipocytes, and that PKCepsilon is involved in systemic insulin resistance by regulating plasma IL-6 concentrations.
Collapse
Affiliation(s)
- Kana Ohashi
- SNP Research Center, The Institute of Physical and Chemical Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | |
Collapse
|
44
|
Raz I, Eldor R, Cernea S, Shafrir E. Diabetes: insulin resistance and derangements in lipid metabolism. Cure through intervention in fat transport and storage. Diabetes Metab Res Rev 2005; 21:3-14. [PMID: 15386813 DOI: 10.1002/dmrr.493] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We present multiple findings on derangements in lipid metabolism in type 2 diabetes. The increase in the intracellular deposition of triglycerides (TG) in muscles, liver and pancreas in subjects prone to diabetes is well documented and demonstrated to attenuate glucose metabolism by interfering with insulin signaling and insulin secretion. The obesity often associated with type 2 diabetes is mainly central, resulting in the overload of abdominal adipocytes with TG and reducing fat depot capacity to protect other tissues from utilizing a large proportion of dietary fat. In contrast to subcutaneous adipocytes, the central adipocytes exhibit a high rate of basal lipolysis and are highly sensitive to fat mobilizing hormones, but respond poorly to lipolysis restraining insulin. The enlarged visceral adipocytes are flooding the portal circulation with free fatty acids (FFA) at metabolically inappropriate time, when FFA should be oxidized, thus exposing nonadipose tissues to fat excess. This leads to ectopic TG accumulation in muscles, liver and pancreatic beta-cells, resulting in insulin resistance and beta-cell dysfunction. This situation, based on a large number of observations in humans and experimental animals, confirms that peripheral adipose tissue is closely regulated, performing a vital role of buffering fluxes of FFA in the circulation. The central adipose tissues tend to upset this balance by releasing large amounts of FFA. To reduce the excessive fat outflow from the abdominal depots and prevent the ectopic fat deposition it is important to decrease the volume of central fat stores or increase the peripheral fat stores. One possibility is to downregulate the activity of lipoprotein lipase, which is overexpressed in abdominal relatively to subcutaneous fat stores. This can be achieved by gastrointestinal bypass or gastroplasty, which decrease dietary fat absorption, or by direct means that include surgical removal of mesenteric fat. Indirect treatment consists of the compliant application of drastic lifestyle change comprising both diet and exercise and pharmacotherapy that reduces mesenteric fat mass and activity. The first step should be an attempt to effectively induce a lifestyle change. Next comes pharmacotherapy including acarbose, metformin, PPARgamma, or PPARgammaalpha agonists, statins and orlistat, estrogens in postmenopausal women or testosterone in men. Among surgical procedures, gastric bypass has been proven to produce beneficial results in advance of other surgical techniques, the evidence basis of which still needs strengthening.
Collapse
Affiliation(s)
- Itamar Raz
- Department of Medicine, Diabetes Center, Hadassah University Hospital, Jerusalem 91120, Israel.
| | | | | | | |
Collapse
|
45
|
Briaud I, Dickson LM, Lingohr MK, McCuaig JF, Lawrence JC, Rhodes CJ. Insulin receptor substrate-2 proteasomal degradation mediated by a mammalian target of rapamycin (mTOR)-induced negative feedback down-regulates protein kinase B-mediated signaling pathway in beta-cells. J Biol Chem 2004; 280:2282-93. [PMID: 15537654 DOI: 10.1074/jbc.m412179200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Regulation of insulin receptor substrate (IRS)-2 expression is critical to beta-cell survival, but the mechanisms that control this are complex and undefined. Here in pancreatic beta-cells (INS-1), chronic exposure (>8 h) to 15 mm glucose and/or 5 nm IGF-1, increased Ser/Thr phosphorylation of IRS-2, which correlated with decreased IRS-2 levels. This glucose/IGF-1-induced decrease in IRS-2 levels was prevented by the proteasomal inhibitor, lactacystin. In addition, the glucose/IGF-1-induced increase in Ser/Thr phosphorylation of IRS-2 and the subsequent decrease in INS-1 cell IRS-2 protein levels was thwarted by the mammalian target of rapamycin(mTOR) inhibitor, rapamycin. Moreover, adenoviral-mediated expression of constitutively active mTOR (mTORDelta) further increased glucose/IGF-1-induced Ser/Thr phosphorylation of IRS-2 and decreased IRS-2 protein levels, whereas adenoviral-mediated expression of "kinase-dead" mTOR (mTOR-KD) conversely reduced Ser/Thr phosphorylation of IRS-2 and maintained IRS-2 protein levels. In adenoviral-infected beta-cells expressing mTORDelta, the decrease in IRS-2 protein levels was also prevented by rapamycin or lactacystin, further indicating a proteasomal mediated degradation of IRS-2 mediated via mTOR-induced Ser/Thr phosphorylation of IRS-2. Finally, we found that chronic activation of mTOR leading to decreased levels of IRS-2 in INS-1 cells led to a significant decrease in PKB activation and consequently increased beta-cell apoptosis. Thus, chronic activation of mTOR by glucose (and/or IGF-1) in beta-cells leads to increased Ser/Thr phosphorylation of IRS-2 that targets it for proteasomal degradation, resulting in decreased IRS-2 expression and increased beta-cell apoptosis. This may be a contributing mechanism as to how beta-cell mass is decreased by chronic hyperglycemia in the pathogenesis of type-2 diabetes.
Collapse
Affiliation(s)
- Isabelle Briaud
- Pacific Northwest Research Institute, and Department of Pharmacology, University of Washington, Seattle, Washington 98122, USA
| | | | | | | | | | | |
Collapse
|
46
|
Heled Y, Shapiro Y, Shani Y, Moran DS, Langzam L, Barash V, Sampson SR, Meyerovitch J. Physical exercise enhances hepatic insulin signaling and inhibits phosphoenolpyruvate carboxykinase activity in diabetes-prone Psammomys obesus. Metabolism 2004; 53:836-41. [PMID: 15254873 DOI: 10.1016/j.metabol.2004.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have shown that physical exercise enhances insulin sensitivity of skeletal muscle in diabetes-prone Psammomys-obesus. In this study, we examined the effect of physical exercise on the liver of these animals. Three groups of animals were exposed to a 4-week protocol; high-energy diet (CH), high-energy diet and exercising (EH), and low-energy diet (CL). Different groups were studied either in a fed state or after an overnight fast, 30 minutes after intraperitoneal (IP) injection of 1 U insulin. Hepatic phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) activity was measured. Insulin signaling response was examined after insulin injection in the fast state by analyzing tyrosine phosphorylation of insulin receptor (IR) and the association between insulin receptor substrate-1 (IRS-1) and IRS-2 with phosphatidylinositol 3 kinase (PI3-K). After 4 weeks, none of the EH animals became diabetic, whereas all the CH animals became diabetic. PEPCK activity in the fed state was higher in the CH group compared with the CL and EH groups (480 +/- 28 nmol/min/mg protein, 280 +/- 30 nmol/min/mg protein, and 208 +/- 13 nmol/min/mg protein, respectively) (P < .02). G6Pase activity was higher in the CH and EH groups compared with the CL group (261 +/- 54 nmol/min/mg protein, 251 +/- 34 nmol/min/mg protein, and 75 +/- 32 nmol/min/mg protein, respectively) (P < .01). After insulin administration in the fast state, tyrosine phosphorylation of IR and association of IRS-2 with PI3-K were higher in the EH and CL groups than in the CH group. We conclude that exercise improves in vivo hepatic insulin sensitivity in diabetes-prone Psammomys-obesus.
Collapse
Affiliation(s)
- Yuval Heled
- Heller Institute of Medical Research and Pediatric Division, Sheba Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Vaziri ND, Kim CH, Dang B, Zhan CD, Liang K. Downregulation of hepatic acyl-CoA:diglycerol acyltransferase in chronic renal failure. Am J Physiol Renal Physiol 2004; 287:F90-4. [PMID: 15010358 DOI: 10.1152/ajprenal.00358.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic renal failure (CRF) is associated with hypertriglyceridemia and elevated plasma VLDL and IDL concentrations. These events can be due to either increased production or depressed catabolism of triglyceride-rich lipoproteins. Several studies have documented downregulation of lipoprotein lipase, hepatic triglyceride lipase, and the VLDL receptor, leading to depressed clearance and elevated plasma concentration of triglyceride-rich lipoproteins and their remnants in CRF. However, the effect of CRF on the triglyceride biosynthetic pathway has not been explored. Diglycerol acyltransferase (DGAT) is a microsomal enzyme that joins acyl-CoA to 1,2 diacylglycerol and, as such, constitutes the final step in triglyceride biosynthesis. Two distinct forms of DGAT (DGAT-1 and -2) have thus far been identified. The present study was undertaken to examine the effect of CRF on DGAT gene expression and activity in the liver, which is the source of endogenous triglycerides in the circulation. Male Sprague-Dawley rats were studied 8 wk after 5/6 nephrectomy (CRF) or sham operation. DGAT-1 and DGAT-2 mRNA abundance and DGAT activity were quantified. The CRF group showed reduced creatinine clearance, elevated plasma triglycerides, and VLDL concentrations. This was accompanied by significant reductions in hepatic DGAT-2 mRNA abundance (P < 0.01) and total DGAT activity (P < 0.1), pointing to diminished hepatic triglyceride production capacity in CRF animals. In conclusion, CRF results in significant downregulation of hepatic DGAT gene expression and activity. Given the critical role of DGAT in triglyceride biosynthesis, the present study points to diminished, not increased, hepatic triglyceride synthetic capacity in CRF rats.
Collapse
Affiliation(s)
- N D Vaziri
- Division of Nephrology and Hypertension, University of California, Irvine, Orange, CA 92868, USA.
| | | | | | | | | |
Collapse
|
48
|
van Ginneken MME, Keizer HA, Wijnberg ID, van Dam KG, Schaart G, de Graaf-Roelfsema E, van der Kolk JH, van Breda E. Immunohistochemical identification and fiber type specific localization of protein kinase C isoforms in equine skeletal muscle. Am J Vet Res 2004; 65:69-73. [PMID: 14719705 DOI: 10.2460/ajvr.2004.65.69] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate whether protein kinase C (PKC) isoforms are expressed in equine skeletal muscle and determine their distribution in various types of fibers by use of immunofluorescence microscopy. ANIMALS 5 healthy adult Dutch Warmblood horses. PROCEDURE In each horse, 2 biopsy specimens were obtained from the vastus lateralis muscle. Cryosections of equine muscle were stained with PKC isoform (alpha, beta1, beta2, delta, epsilon, or zeta)-specific polyclonal antibodies and examined by use of a fluorescence microscope. Homogenized muscle samples were evaluated via western blot analysis. RESULTS The PKC alpha, beta1, beta2, delta, epsilon, and zeta isoforms were localized within the fibers of equine skeletal muscle. In addition, PKC alpha and beta2 were detected near or in the plasma membrane of muscle cells. For some PKC isoforms, distribution was specific for fiber type. Staining of cell membranes for PKC alpha was observed predominantly in fibers that reacted positively with myosin heavy chain (MHC)-IIa; PKC delta and epsilon staining were more pronounced in MHC-I-positive fibers. In contrast, MHC-I negative fibers contained more PKC zeta than MHC-I-positive fibers. Distribution of PKC beta1 was equal among the different fiber types. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that PKC isoforms are expressed in equine skeletal muscle in a fiber type-specific manner. Therefore, the involvement of PKC isoforms in signal transduction in equine skeletal muscle might be dependent on fiber type.
Collapse
Affiliation(s)
- Mireille M E van Ginneken
- Department of Equine Sciences, Discipline of Internal Medicine, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Zoltowska M, Ziv E, Delvin E, Sinnett D, Kalman R, Garofalo C, Seidman E, Levy E. Cellular aspects of intestinal lipoprotein assembly in Psammomys obesus: a model of insulin resistance and type 2 diabetes. Diabetes 2003; 52:2539-45. [PMID: 14514638 DOI: 10.2337/diabetes.52.10.2539] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although postprandial hypertriglyceridemia is a major contributing factor in the development of atherosclerosis, little information is available on the effect of insulin resistance and diabetes on intestinal fat transport. The aim of the present study was to examine intracellular events that govern lipid transport and apolipoprotein (apo) B-48-containing lipoprotein assembly in the small intestine of Psammomys obesus, a model of nutritionally induced insulin resistance and type 2 diabetes. Animals with normoglycemia/hyperinsulinemia and hyperglycemia/hyperinsulinemia exhibited high levels of triglycerides (TGs) in the plasma and intestine and postprandial plasma chylomicrons and apo B-48 compared with normoglycemic/normoinsulinemic animals. In vitro studies, using cultured jejunal explants incubated with either [14C]oleic acid or [35S]methionine, revealed their higher efficiency in de novo TG synthesis, apo B-48 biogenesis, and TG-rich lipoprotein assembly. Accordingly, enhanced monoacylglycerol and diacylglycerol acyltransferase activity was also discernible and concomitant with an increased content of L-fatty acid binding protein and in vivo chylomicron production rates. However, both the I-fatty acid binding protein amount and the apo B-48 proteasomal degradative pathway were decreased. Overall, our findings show that the development of an insulin-resistant/diabetic state in Psammomys obesus triggers the whole intra-enterocyte machinery, leading to lipoprotein assembly and favoring the intestinal oversecretion of apo B-48-lipoproteins, which may contribute to characteristic hypertriglyceridemia.
Collapse
Affiliation(s)
- Monika Zoltowska
- Department of Nutrition, Centre de Recherche, Hôpital Sainte-Justine, and Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kohen-Avramoglu R, Theriault A, Adeli K. Emergence of the metabolic syndrome in childhood: an epidemiological overview and mechanistic link to dyslipidemia. Clin Biochem 2003; 36:413-20. [PMID: 12951167 DOI: 10.1016/s0009-9120(03)00038-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Insulin resistance and type 2 diabetes are rapidly emerging as major disorders of childhood and adolescence. This appears to be closely linked to a rapid rise in the prevalence of obesity in the pediatric population. The development of insulin resistance appears to lead to a "metabolic syndrome" which includes a number of major complications such as dyslipidemia and hypertension. Childhood metabolic syndrome promotes the development of premature atherosclerosis and significantly increases cardiovascular disease risk early in life. The mechanisms linking obesity, insulin resistance, and metabolic dyslipidemia are not fully understood. This review will attempt to discuss some of the key mechanistic issues surrounding insulin resistance and its association with metabolic dyslipidemia. Most of the recent progress in this field has come from the use of genetic and diet-induced animal models of insulin resistance. New data from these animal studies particularly the fructose-fed hamster, a model of metabolic syndrome and dyslipidemia, will be reviewed. Evidence from both animal and human studies suggest a key role for insulin sensitive tissues such as adipose tissue, liver, and intestine in the development of an insulin resistant state and its associated lipid and lipoprotein disorders. The critical interaction of metabolic signals among these tissues appears to govern the transition from an insulin sensitive to an insulin resistant state that underlies dyslipidemic conditions.
Collapse
Affiliation(s)
- Rita Kohen-Avramoglu
- Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|