1
|
Zhou Z, Zhu R, Yang H, Deng W, Zhang Z, Li Y, Xu J, Yan Z, Wang R, Chang S, Yin Z, Wu Y, Zhang D, Fang M, Liu C, Que Y, Zhang J, Xia N, Wang Y, Xu L, Cheng T. Transgenic mice expressing the human CDHR3 receptor: A sensitive RV-C infection model for the evaluation of vaccines and therapeutics. Antiviral Res 2025; 235:106102. [PMID: 39922540 DOI: 10.1016/j.antiviral.2025.106102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/10/2025]
Abstract
Rhinovirus C (RV-C) is the primary causative agent of severe acute respiratory illnesses (ARTIs) in infants and young children. The limited availability of animal models complicates the development of prophylactic and therapeutic strategies targeting RV-C. Previous studies have identified human cadherin-related family member 3 (hCDHR3) as the cellular receptor for RV-C, with its expression enabling previously unsusceptible cells to support both viral entry and replication. Recently, an adult hCDHR3 transgenic mouse model was developed to investigate the role of human stimulator of interferon genes (hSTING) in RV-C15 infection in vivo. However, adult mice do not support efficient RV-C15 infection. Here, we report a transgenic mouse line expressing hCDHR3 constitutively that is highly susceptible to early-life infections by multiple serotypes of RV-C, including RV-C15, RV-C2, and RV-C41. Neonatal transgenic mice infected with various RV-C strains via the intraperitoneal (i.p.) route exhibit similar symptoms, such as severe inflammation, limb paralysis, and death. Moreover, passive immunization with antisera or therapeutic antibodies can protect against lethal RV-C infection in these transgenic mice. Overall, this study provides a valuable animal model for the in vivo antiviral evaluation against RV-C.
Collapse
Affiliation(s)
- Zhenhong Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Rui Zhu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Hongwei Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Weixi Deng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Zijie Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Yue Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Jiaxin Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Ziyang Yan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Ruoxi Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Sijia Chang
- Beijing Wantai Biological Pharmacy Enterprise Co., Ltd., Beijing, 102206, PR China
| | - Zhichao Yin
- Beijing Wantai Biological Pharmacy Enterprise Co., Ltd., Beijing, 102206, PR China
| | - Yuanyuan Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Dongqing Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Mujin Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Che Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Yuqiong Que
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Jun Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Yingbin Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China.
| | - Longfa Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China.
| | - Tong Cheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China.
| |
Collapse
|
2
|
Phillips SR. WITHDRAWN: MHC-B Diversity and Signs of Respiratory Illness in Wild, East African Chimpanzees ( Pan troglodytes schweinfurthii ). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.08.02.551731. [PMID: 37577711 PMCID: PMC10418158 DOI: 10.1101/2023.08.02.551731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
bioRxiv has withdrawn this preprint following a formal investigation by the University of New Mexico Office of Research Integrity and Compliance.
Collapse
|
3
|
Chapman CA, Gogarten JF, Golooba M, Kalbitzer U, Omeja PA, Opito EA, Sarkar D. Fifty+ years of primate research illustrates complex drivers of abundance and increasing primate numbers. Am J Primatol 2025; 87:e23577. [PMID: 37985837 DOI: 10.1002/ajp.23577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/25/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023]
Abstract
Many primate populations are threatened by human actions and a central tool used for their protection is establishing protected areas. However, even if populations in such areas are protected from hunting and deforestation, they still may be threatened by factors such as climate change and its cascading impacts on habitat quality and disease dynamics. Here we provide a long-term and geographically wide-spread population assessment of the five common diurnal primates of Kibale National Park, Uganda. Over 7 year-long or longer census efforts that spanned 52 years, our team walked 1466 km, and recorded 480 monkey groups. Populations were generally relatively stable with a few exceptions, for which no apparent causative factors could be identified. This stability is unexpected as many ecological changes documented over the last 34+ years (e.g., decreasing food abundance and quality) were predicted to have negative impacts. Populations of some species declined at some sites but increased at others. This highlights the need for large, protected areas so that declines in particular areas are countered by gains in others. Kibale has large areas of regenerating forest and this most recent survey revealed that after 20+ years, forest regeneration in many of these areas appears sufficient to sustain sizeable primate populations, except for blue monkeys that have not colonized these areas. Indeed, the average primate abundance in the regenerating forest was only 8.1% lower than in neighboring old-growth forest. Thus, park-wide primate abundance has likely increased, despite many pressures on the park having risen; however, some areas in the park remain to be assessed. Our study suggests that the restoration, patrolling, and community outreach efforts of the Uganda Wildlife Authority and their partners have contributed significantly to protecting the park and its animals.
Collapse
Affiliation(s)
- Colin A Chapman
- Biology Department, Vancouver Island University, Nanaimo, British Columbia, Canada
- Wilson Center, Washington, District of Columbia, USA
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Jan F Gogarten
- Helmholtz Institute for One Health, Greifswald, Germany
- Department of Applied Zoology and Nature Conservation, University of Greifswald, Greifswald, Germany
| | - Martin Golooba
- Makerere University Biological Field Station, Fort Portal, Uganda
| | - Urs Kalbitzer
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Patrick A Omeja
- Makerere University Biological Field Station, Fort Portal, Uganda
| | - Emmanuel A Opito
- Makerere University Biological Field Station, Fort Portal, Uganda
| | - Dipto Sarkar
- Department of Geography and Environmental Studies, Carleton University, Ottawa, Canada
| |
Collapse
|
4
|
Pierron M, Sueur C, Shimada M, MacIntosh AJJ, Romano V. Epidemiological Consequences of Individual Centrality on Wild Chimpanzees. Am J Primatol 2024; 86:e23682. [PMID: 39245992 DOI: 10.1002/ajp.23682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Disease outbreaks are one of the key threats to great apes and other wildlife. Because the spread of some pathogens (e.g., respiratory viruses, sexually transmitted diseases, ectoparasites) are mediated by social interactions, there is a growing interest in understanding how social networks predict the chain of pathogen transmission. In this study, we built a party network from wild chimpanzees (Pan troglodytes), and used agent-based modeling to test: (i) whether individual attributes (sex, age) predict individual centrality (i.e., whether it is more or less socially connected); (ii) whether individual centrality affects an individual's role in the chain of pathogen transmission; and, (iii) whether the basic reproduction number (R0) and infectious period modulate the influence of centrality on pathogen transmission. We show that sex and age predict individual centrality, with older males presenting many (degree centrality) and strong (strength centrality) relationships. As expected, males are more central than females within their network, and their centrality determines their probability of getting infected during simulated outbreaks. We then demonstrate that direct measures of social interaction (strength centrality), as well as eigenvector centrality, strongly predict disease dynamics in the chimpanzee community. Finally, we show that this predictive power depends on the pathogen's R0 and infectious period: individual centrality was most predictive in simulations with the most transmissible pathogens and long-lasting diseases. These findings highlight the importance of considering animal social networks when investigating disease outbreaks.
Collapse
Affiliation(s)
- Maxime Pierron
- Département de Biologie, Faculté des Sciences et Technologies, Université de Lille, Lille, France
| | - Cédric Sueur
- IPHC UMR 7178, CNRS, Université de Strasbourg, Strasbourg, France
- Institut Universitaire de France, Paris, France
- Anthropo-Lab, ETHICS EA7446, Lille Catholic University, Lille, France
| | - Masaki Shimada
- Department of Animal Sciences, Teikyo University of Science, Uenohara, Yamanashi, Japan
| | | | - Valéria Romano
- IPHC UMR 7178, CNRS, Université de Strasbourg, Strasbourg, France
- Wildlife Research Center, Kyoto University, Inuyama, Japan
- IMBE, Aix Marseille University, Avignon University, CNRS, IRD, Marseille, France
| |
Collapse
|
5
|
Cooksey KE, Sanz C, Massamba JM, Ebombi TF, Teberd P, Abea G, Mbebouti G, Kienast I, Brogan S, Stephens C, Morgan D. Predictors of respiratory illness in western lowland gorillas. Primates 2024; 65:557-569. [PMID: 36653552 PMCID: PMC9849104 DOI: 10.1007/s10329-022-01045-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2022] [Indexed: 01/20/2023]
Abstract
Infectious disease is hypothesized to be one of the most important causes of morbidity and mortality in wild great apes. Specific socioecological factors have been shown to influence incidences of respiratory illness and disease prevalence in some primate populations. In this study, we evaluated potential predictors (including age, sex, group size, fruit availability, and rainfall) of respiratory illness across three western lowland gorilla groups in the Republic of Congo. A total of 19,319 observational health assessments were conducted during daily follows of habituated gorillas in the Goualougo and Djéké Triangles over a 4-year study period. We detected 1146 incidences of clinical respiratory signs, which indicated the timing of probable disease outbreaks within and between groups. Overall, we found that males were more likely to exhibit signs than females, and increasing age resulted in a higher likelihood of respiratory signs. Silverback males showed the highest average monthly prevalence of coughs and sneezes (Goualougo: silverback Loya, 9.35 signs/month; Djéké: silverback Buka, 2.65 signs/month; silverback Kingo,1.88 signs/month) in each of their groups. Periods of low fruit availability were associated with an increased likelihood of respiratory signs. The global pandemic has increased awareness about the importance of continuous monitoring and preparedness for infectious disease outbreaks, which are also known to threaten wild ape populations. In addition to the strict implementation of disease prevention protocols at field sites focused on great apes, there is a need for heightened vigilance and systematic monitoring across sites to protect both wildlife and human populations.
Collapse
Affiliation(s)
- Kristena E Cooksey
- Department of Anthropology, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1114, Saint Louis, MO, 63130, USA.
| | - Crickette Sanz
- Department of Anthropology, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1114, Saint Louis, MO, 63130, USA
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Jean Marie Massamba
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Thierry Fabrice Ebombi
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Prospère Teberd
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Gaston Abea
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Gaeton Mbebouti
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Ivonne Kienast
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, 14850, USA
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
| | - Sean Brogan
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Colleen Stephens
- Department of Anthropology, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1114, Saint Louis, MO, 63130, USA
| | - David Morgan
- Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, 2001 N. Clark Street, Chicago, IL, 60614, USA
| |
Collapse
|
6
|
Weary TE, Mehta KPM, Goldberg TL. Novel Gammapapillomavirus type in the nasal cavity of a wild red colobus (Piliocolobus tephrosceles). Access Microbiol 2024; 6:000866.v3. [PMID: 39165252 PMCID: PMC11334581 DOI: 10.1099/acmi.0.000866.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024] Open
Abstract
Papillomaviruses (PVs) are double-stranded, circular, epitheliotropic DNA viruses causing benign warts (papillomas) or inducing dysplasia that can progress to cancer. Although they have been identified in all vertebrate taxa, most classified types are human PVs (HPVs); relatively little is known about PVs in other species. Here we characterize a novel Gammapapillomavirus type, PtepPV1, from a nasal swab of a wild red colobus (Piliocolobus tephrosceles) in Kibale National Park, Uganda. The virus has a genome of 6576 bases, encoding the seven canonical early (E) ORFs (E6, E7, E1, E2, E4, E1^E4 and E8^E2) and two late (L) ORFs (L1 and L2) of the gammapapillomaviruses, and is 81.0% similar to HPV-mSK_118, detected in a cutaneous wart from an immunocompromised human patient, in the L1 gene at the amino acid level. Alphapapillomaviruses (genus Alphapapillomavirus) cause anogenital carcinomas such as cervical cancer and have been described previously in several nonhuman primates. However, the first gammapapillomavirus (genus Gammapapillomavirus), which cause transient cutaneous infections, was not described until 2019 in a healthy rhesus macaque (Macaca mulatta) genital swab. The new virus from red colobus, PtepPV1, has many genomic features encoded by high-risk oncogenic PVs, such as the E7 gene LXSXE and CXXC motifs, suggesting potential for pRb and zinc-finger binding, respectively. To our knowledge, PtepPV1 is also the first reported nonhuman primate PV found in the nasal cavity. PtepPV1 expands the known host range, geographical distribution, tissue tropism and biological characteristics of nonhuman primate PVs.
Collapse
Affiliation(s)
- Taylor E. Weary
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, USA
| | - Kavi P. M. Mehta
- Department of Comparative Biosciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, USA
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, USA
| |
Collapse
|
7
|
Goldstein ME, Ignacio MA, Loube JM, Whorton MR, Scull MA. Human Stimulator of Interferon Genes Promotes Rhinovirus C Replication in Mouse Cells In Vitro and In Vivo. Viruses 2024; 16:1282. [PMID: 39205256 PMCID: PMC11358906 DOI: 10.3390/v16081282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Rhinovirus C (RV-C) infects airway epithelial cells and is an important cause of acute respiratory disease in humans. To interrogate the mechanisms of RV-C-mediated disease, animal models are essential. Towards this, RV-C infection was recently reported in wild-type (WT) mice, yet, titers were not sustained. Therefore, the requirements for RV-C infection in mice remain unclear. Notably, prior work has implicated human cadherin-related family member 3 (CDHR3) and stimulator of interferon genes (STING) as essential host factors for virus uptake and replication, respectively. Here, we report that even though human (h) and murine (m) CDHR3 orthologs have similar tissue distribution, amino acid sequence homology is limited. Further, while RV-C can replicate in mouse lung epithelial type 1 (LET1) cells and produce infectious virus, we observed a significant increase in the frequency and intensity of dsRNA-positive cells following hSTING expression. Based on these findings, we sought to assess the impact of hCDHR3 and hSTING on RV-C infection in mice in vivo. Thus, we developed hCDHR3 transgenic mice, and utilized adeno-associated virus (AAV) to deliver hSTING to the murine airways. Subsequent challenge of these mice with RV-C15 revealed significantly higher titers 24 h post-infection in mice expressing both hCDHR3 and hSTING-compared to either WT mice, or mice with hCDHR3 or hSTING alone, indicating more efficient infection. Ultimately, this mouse model can be further engineered to establish a robust in vivo model, recapitulating viral dynamics and disease.
Collapse
Affiliation(s)
- Monty E. Goldstein
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, 3134 Biosciences Research Building, University of Maryland, College Park, MD 20742, USA
| | - Maxinne A. Ignacio
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, 3134 Biosciences Research Building, University of Maryland, College Park, MD 20742, USA
| | - Jeffrey M. Loube
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, 3134 Biosciences Research Building, University of Maryland, College Park, MD 20742, USA
| | - Matthew R. Whorton
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Margaret A. Scull
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, 3134 Biosciences Research Building, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
8
|
Ostridge HJ, Fontsere C, Lizano E, Soto DC, Schmidt JM, Saxena V, Alvarez-Estape M, Barratt CD, Gratton P, Bocksberger G, Lester JD, Dieguez P, Agbor A, Angedakin S, Assumang AK, Bailey E, Barubiyo D, Bessone M, Brazzola G, Chancellor R, Cohen H, Coupland C, Danquah E, Deschner T, Dotras L, Dupain J, Egbe VE, Granjon AC, Head J, Hedwig D, Hermans V, Hernandez-Aguilar RA, Jeffery KJ, Jones S, Junker J, Kadam P, Kaiser M, Kalan AK, Kambere M, Kienast I, Kujirakwinja D, Langergraber KE, Lapuente J, Larson B, Laudisoit A, Lee KC, Llana M, Maretti G, Martín R, Meier A, Morgan D, Neil E, Nicholl S, Nixon S, Normand E, Orbell C, Ormsby LJ, Orume R, Pacheco L, Preece J, Regnaut S, Robbins MM, Rundus A, Sanz C, Sciaky L, Sommer V, Stewart FA, Tagg N, Tédonzong LR, van Schijndel J, Vendras E, Wessling EG, Willie J, Wittig RM, Yuh YG, Yurkiw K, Vigilant L, Piel A, Boesch C, Kühl HS, Dennis MY, Marques-Bonet T, Arandjelovic M, Andrés AM. Local genetic adaptation to habitat in wild chimpanzees. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.601734. [PMID: 39026872 PMCID: PMC11257515 DOI: 10.1101/2024.07.09.601734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
How populations adapt to their environment is a fundamental question in biology. Yet we know surprisingly little about this process, especially for endangered species such as non-human great apes. Chimpanzees, our closest living relatives, are particularly interesting because they inhabit diverse habitats, from rainforest to woodland-savannah. Whether genetic adaptation facilitates such habitat diversity remains unknown, despite having wide implications for evolutionary biology and conservation. Using 828 newly generated exomes from wild chimpanzees, we find evidence of fine-scale genetic adaptation to habitat. Notably, adaptation to malaria in forest chimpanzees is mediated by the same genes underlying adaptation to malaria in humans. This work demonstrates the power of non-invasive samples to reveal genetic adaptations in endangered populations and highlights the importance of adaptive genetic diversity for chimpanzees.
Collapse
Affiliation(s)
- Harrison J Ostridge
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Claudia Fontsere
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Esther Lizano
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Daniela C Soto
- University of California, Davis, Genome Center, MIND Institute, Department of Biochemistry & Molecular Medicine, One Shields Drive, Davis, CA, 95616, USA
| | - Joshua M Schmidt
- Flinders Health and Medical Research Institute (FHMRI), Department of Ophthalmology, Flinders University Sturt Rd, Bedford Park South Australia 5042 Australia
| | - Vrishti Saxena
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Marina Alvarez-Estape
- University of California, Davis, Genome Center, MIND Institute, Department of Biochemistry & Molecular Medicine, One Shields Drive, Davis, CA, 95616, USA
| | - Christopher D Barratt
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Paolo Gratton
- University of Rome "Tor Vergata" Department of Biology Via Cracovia, 1, Roma, Italia
| | - Gaëlle Bocksberger
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage, 60325 Frankfurt am Main, Germany
| | - Jack D Lester
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Paula Dieguez
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Anthony Agbor
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Samuel Angedakin
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Alfred Kwabena Assumang
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Emma Bailey
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Donatienne Barubiyo
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Mattia Bessone
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- University of Konstanz, Centre for the Advanced Study of Collective Behaviour, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Gregory Brazzola
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Rebecca Chancellor
- West Chester University, Depts of Anthropology & Sociology and Psychology, West Chester, PA, 19382 USA
| | - Heather Cohen
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Charlotte Coupland
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Emmanuel Danquah
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Tobias Deschner
- Institute of Cognitive Science, University of Osnabrück, Artilleriestrasse 34, 49076 Osnabrück, Germany
| | - Laia Dotras
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
- Department of Social Psychology and Quantitative Psychology, Serra Hunter Programme, University of Barcelona, Barcelona, Spain
| | - Jef Dupain
- Antwerp Zoo Foundation, RZSA, Kon.Astridplein 26, 2018 Antwerp, Belgium
| | - Villard Ebot Egbe
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Anne-Céline Granjon
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Josephine Head
- The Biodiversity Consultancy, 3E Kings Parade, Cambridge, CB2 1SJ, UK
| | - Daniela Hedwig
- Elephant Listening Project, K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| | - Veerle Hermans
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
| | - R Adriana Hernandez-Aguilar
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
- Department of Social Psychology and Quantitative Psychology, Serra Hunter Programme, University of Barcelona, Barcelona, Spain
| | - Kathryn J Jeffery
- School of Natural Sciences, University of Stirling, UK
- Agence National des Parcs Nationaux (ANPN) Batterie 4, BP20379, Libreville, Gabon
| | - Sorrel Jones
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Jessica Junker
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Parag Kadam
- Greater Mahale Ecosystem Research and Conservation Project
| | - Michael Kaiser
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Ammie K Kalan
- Department of Anthropology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
| | - Mbangi Kambere
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Ivonne Kienast
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY 14850, USA
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | - Deo Kujirakwinja
- Wildlife Conservation Society (WCS), 2300 Southern Boulevard. Bronx, New York 10460, USA
| | - Kevin E Langergraber
- School of Human Evolution and Social Change, Institute of Human Origins, Arizona State University, 777 East University Drive, Tempe, AZ 85287 Arizona State University, PO Box 872402, Tempe, AZ 85287-2402 USA
- Institute of Human Origins, Arizona State University, 900 Cady Mall, Tempe, AZ 85287 Arizona State University, PO Box 872402, Tempe, AZ 85287-2402 USA
| | - Juan Lapuente
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | | | | | - Kevin C Lee
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | - Manuel Llana
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
| | - Giovanna Maretti
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Rumen Martín
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Amelia Meier
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- Hawai'i Insititute of Marine Biology, University of Hawai'i at Manoa, 46-007 Lilipuna Place, Kaneohe, HI, 96744, USA
| | - David Morgan
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, 2001 North Clark Street, Chicago, Illinois 60614 USA
| | - Emily Neil
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Sonia Nicholl
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Stuart Nixon
- North of England Zoological Society, Chester Zoo, Upton by Chester, CH2 1LH, United Kingdom
| | | | - Christopher Orbell
- Panthera, 8 W 40TH ST, New York, NY 10018, USA
- School of Natural Sciences, University of Stirling, UK
| | - Lucy Jayne Ormsby
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Robinson Orume
- Korup Rainforest Conservation Society, c/o Korup National Park, P.O. Box 36 Mundemba, South West Region, Cameroon
| | - Liliana Pacheco
- Save the Dogs and Other Animals, DJ 223 Km 3, 905200 Cernavoda CT, Romania
| | - Jodie Preece
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | | | - Martha M Robbins
- Max Planck Institute for Evolutionary Anthropology, Department of Primate Behavior and Evolution, Deutscher Platz 6, 04103 Leipzig
| | - Aaron Rundus
- West Chester University, Depts of Anthropology & Sociology and Psychology, West Chester, PA, 19382 USA
| | - Crickette Sanz
- Washington University in Saint Louis, Department of Anthropology, One Brookings Drive, St. Louis, MO 63130, USA
- Congo Program, Wildlife Conservation Society, 151 Avenue Charles de Gaulle, Brazzaville, Republic of Congo
| | - Lilah Sciaky
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Volker Sommer
- University College London, Department of Anthropology, 14 Taviton Street, London WC1H 0BW, UK
| | - Fiona A Stewart
- University College London, Department of Anthropology, 14 Taviton Street, London WC1H 0BW, UK
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Nikki Tagg
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
- Born Free Foundation, Floor 2 Frazer House, 14 Carfax, Horsham, RH12 1ER, UK
| | - Luc Roscelin Tédonzong
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
| | - Joost van Schijndel
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Elleni Vendras
- Frankfurt Zoological Society, Bernhard-Grzimek-Allee 1, 60316 Frankfurt, Germany
| | - Erin G Wessling
- Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen,Göttingen, Germany
- German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Jacob Willie
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University (UGent), K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Roman M Wittig
- Ape Social Mind Lab, Institute for Cognitive Sciences Marc Jeannerod, CNRS UMR 5229 CNRS, 67 bd Pinel, 69675 Bron CEDEX, France
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, BP 1301, Abidjan 01, CI
| | - Yisa Ginath Yuh
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Kyle Yurkiw
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Linda Vigilant
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Alex Piel
- University College London, Department of Anthropology, 14 Taviton Street, London WC1H 0BW, UK
| | | | - Hjalmar S Kühl
- Senckenberg Museum for Natural History Görlitz, Senckenberg - Member of the Leibniz Association Am Museum 1, 02826 Görlitz, Germany
- International Institute Zittau, Technische Universität Dresden, Markt 23, 02763 Zittau, Germany
| | - Megan Y Dennis
- University of California, Davis, Genome Center, MIND Institute, Department of Biochemistry & Molecular Medicine, One Shields Drive, Davis, CA, 95616, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Mimi Arandjelovic
- Max Planck Institute for Evolutionary Anthropology, Department of Primate Behavior and Evolution, Deutscher Platz 6, 04103 Leipzig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103
| | - Aida M Andrés
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
9
|
Milich KM, Morse SS. The reverse zoonotic potential of SARS-CoV-2. Heliyon 2024; 10:e33040. [PMID: 38988520 PMCID: PMC11234007 DOI: 10.1016/j.heliyon.2024.e33040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
There has been considerable emphasis recently on the zoonotic origins of emerging infectious diseases in humans, including the SARS-CoV-2 pandemic; however, reverse zoonoses (infections transmitted from humans to other animals) have received less attention despite their potential importance. The effects can be devastating for the infected species and can also result in transmission of the pathogen back to human populations or other animals either in the original form or as a variant. Humans have transmitted SARS-CoV-2 to other animals, and the virus is able to circulate and evolve in those species. As global travel resumes, the potential of SARS-CoV-2 as a reverse zoonosis threatens humans and endangered species. Nonhuman primates are of particular concern given their susceptibility to human respiratory infections. Enforcing safety measures for all people working in and visiting wildlife areas, especially those with nonhuman primates, and increasing access to safety measures for people living near protected areas that are home to nonhuman primates will help mitigate reverse zoonotic transmission.
Collapse
Affiliation(s)
- Krista M. Milich
- Department of Anthropology, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO, 63130, United States
| | - Stephen S. Morse
- Department of Epidemiology, Columbia University Mailman School of Public Health, 722 West 168th St., NY, NY, 10032, United States
| |
Collapse
|
10
|
Weary TE, Pappas T, Tusiime P, Tuhaise S, Otali E, Emery Thompson M, Ross E, Gern JE, Goldberg TL. Common cold viruses circulating in children threaten wild chimpanzees through asymptomatic adult carriers. Sci Rep 2024; 14:10431. [PMID: 38714841 PMCID: PMC11076286 DOI: 10.1038/s41598-024-61236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
Reverse zoonotic respiratory diseases threaten great apes across Sub-Saharan Africa. Studies of wild chimpanzees have identified the causative agents of most respiratory disease outbreaks as "common cold" paediatric human pathogens, but reverse zoonotic transmission pathways have remained unclear. Between May 2019 and August 2021, we conducted a prospective cohort study of 234 children aged 3-11 years in communities bordering Kibale National Park, Uganda, and 30 adults who were forest workers and regularly entered the park. We collected 2047 respiratory symptoms surveys to quantify clinical severity and simultaneously collected 1989 nasopharyngeal swabs approximately monthly for multiplex viral diagnostics. Throughout the course of the study, we also collected 445 faecal samples from 55 wild chimpanzees living nearby in Kibale in social groups that have experienced repeated, and sometimes lethal, epidemics of human-origin respiratory viral disease. We characterized respiratory pathogens in each cohort and examined statistical associations between PCR positivity for detected pathogens and potential risk factors. Children exhibited high incidence rates of respiratory infections, whereas incidence rates in adults were far lower. COVID-19 lockdown in 2020-2021 significantly decreased respiratory disease incidence in both people and chimpanzees. Human respiratory infections peaked in June and September, corresponding to when children returned to school. Rhinovirus, which caused a 2013 outbreak that killed 10% of chimpanzees in a Kibale community, was the most prevalent human pathogen throughout the study and the only pathogen present at each monthly sampling, even during COVID-19 lockdown. Rhinovirus was also most likely to be carried asymptomatically by adults. Although we did not detect human respiratory pathogens in the chimpanzees during the cohort study, we detected human metapneumovirus in two chimpanzees from a February 2023 outbreak that were genetically similar to viruses detected in study participants in 2019. Our data suggest that respiratory pathogens circulate in children and that adults become asymptomatically infected during high-transmission times of year. These asymptomatic adults may then unknowingly carry the pathogens into forest and infect chimpanzees. This conclusion, in turn, implies that intervention strategies based on respiratory symptoms in adults are unlikely to be effective for reducing reverse zoonotic transmission of respiratory viruses to chimpanzees.
Collapse
Affiliation(s)
- Taylor E Weary
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, USA
| | - Tressa Pappas
- Department of Paediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | - Emily Otali
- The Kasiisi Project, Fort Portal, Uganda
- Kibale Chimpanzee Project, Fort Portal, Uganda
| | - Melissa Emery Thompson
- Kibale Chimpanzee Project, Fort Portal, Uganda
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
| | | | - James E Gern
- Department of Paediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, USA.
| |
Collapse
|
11
|
Weary TE, Pappas T, Tusiime P, Tuhaise S, Ross E, Gern JE, Goldberg TL. High frequencies of nonviral colds and respiratory bacteria colonization among children in rural Western Uganda. Front Pediatr 2024; 12:1379131. [PMID: 38756971 PMCID: PMC11096560 DOI: 10.3389/fped.2024.1379131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Respiratory illness is the most common childhood disease globally, especially in developing countries. Previous studies have detected viruses in approximately 70-80% of respiratory illnesses. Methods In a prospective cohort study of 234 young children (ages 3-11 years) and 30 adults (ages 22-51 years) in rural Western Uganda sampled monthly from May 2019 to August 2021, only 24.2% of nasopharyngeal swabs collected during symptomatic disease had viruses detectable by multiplex PCR diagnostics and metagenomic sequencing. In the remaining 75.8% of swabs from symptomatic participants, we measured detection rates of respiratory bacteria Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae by quantitative PCR. Results 100% of children tested positive for at least one bacterial species. Detection rates were 87.2%, 96.8%, and 77.6% in children and 10.0%, 36.7%, and 13.3% for adults for H. influenzae, M. catarrhalis, and S. pneumoniae, respectively. In children, 20.8% and 70.4% were coinfected with two and three pathogens, respectively, and in adults 6.7% were coinfected with three pathogens but none were coinfected with two. Detection of any of the three pathogens was not associated with season or respiratory symptoms severity, although parsing detection status by symptoms was challenged by children experiencing symptoms in 80.3% of monthly samplings, whereas adults only reported symptoms 26.6% of the time. Pathobiont colonization in children in Western Uganda was significantly more frequent than in children living in high-income countries, including in a study of age-matched US children that utilized identical diagnostic methods. Detection rates were, however, comparable to rates in children living in other Sub-Saharan African countries. Discussion Overall, our results demonstrate that nonviral colds contribute significantly to respiratory disease burden among children in rural Uganda and that high rates of respiratory pathobiont colonization may play a role. These conclusions have implications for respiratory health interventions in the area, such as increasing childhood immunization rates and decreasing air pollutant exposure.
Collapse
Affiliation(s)
- Taylor E. Weary
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, United States
| | - Tressa Pappas
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | | | | | | | - James E. Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, United States
| |
Collapse
|
12
|
Fedurek P, Asiimwe C, Rice GK, Akankwasa WJ, Reynolds V, Hobaiter C, Kityo R, Muhanguzi G, Zuberbühler K, Crockford C, Cer RZ, Bennett AJ, Rothman JM, Bishop-Lilly KA, Goldberg TL. Selective deforestation and exposure of African wildlife to bat-borne viruses. Commun Biol 2024; 7:470. [PMID: 38649441 PMCID: PMC11035629 DOI: 10.1038/s42003-024-06139-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Proposed mechanisms of zoonotic virus spillover often posit that wildlife transmission and amplification precede human outbreaks. Between 2006 and 2012, the palm Raphia farinifera, a rich source of dietary minerals for wildlife, was nearly extirpated from Budongo Forest, Uganda. Since then, chimpanzees, black-and-white colobus, and red duiker were observed feeding on bat guano, a behavior not previously observed. Here we show that guano consumption may be a response to dietary mineral scarcity and may expose wildlife to bat-borne viruses. Videos from 2017-2019 recorded 839 instances of guano consumption by the aforementioned species. Nutritional analysis of the guano revealed high concentrations of sodium, potassium, magnesium and phosphorus. Metagenomic analyses of the guano identified 27 eukaryotic viruses, including a novel betacoronavirus. Our findings illustrate how "upstream" drivers such as socioeconomics and resource extraction can initiate elaborate chains of causation, ultimately increasing virus spillover risk.
Collapse
Affiliation(s)
- Pawel Fedurek
- Division of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
- Budongo Conservation Field Station, PO Box 362, Masindi, Uganda
| | | | - Gregory K Rice
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, 21702, USA
- Leidos, 1750 Presidents St, Reston, VA, 20190, USA
| | | | - Vernon Reynolds
- Budongo Conservation Field Station, PO Box 362, Masindi, Uganda
- School of Anthropology, University of Oxford, 51/53 Banbury Road, Oxford, OX2 6PE, UK
| | - Catherine Hobaiter
- Budongo Conservation Field Station, PO Box 362, Masindi, Uganda
- School of Psychology and Neuroscience, University of St Andrews; St Mary's Quad, South Street, St Andrews, KY16 9JP, UK
| | - Robert Kityo
- Department of Zoology, Entomology & Fisheries Sciences, Makerere University, PO Box 7062, Kampala, Uganda
| | | | - Klaus Zuberbühler
- Budongo Conservation Field Station, PO Box 362, Masindi, Uganda
- School of Psychology and Neuroscience, University of St Andrews; St Mary's Quad, South Street, St Andrews, KY16 9JP, UK
- Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000, Neuchâtel, Switzerland
| | - Catherine Crockford
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
- Institut des Sciences Cognitives, 67 Bd Pinel, 69500, Bron, France
| | - Regina Z Cer
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, 21702, USA
| | - Andrew J Bennett
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, 21702, USA
- Leidos, 1750 Presidents St, Reston, VA, 20190, USA
| | - Jessica M Rothman
- Department of Anthropology, Hunter College of the City University of New York, 695 Park Avenue, New York, NY, 10065, USA
| | - Kimberly A Bishop-Lilly
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, 21702, USA
| | - Tony L Goldberg
- School of Veterinary Medicine, Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI, USA.
| |
Collapse
|
13
|
Mitani JC, Abwe E, Campbell G, Giles-Vernick T, Goldberg T, McLennan MR, Preuschoft S, Supriatna J, Marshall AJ. Future coexistence with great apes will require major changes to policy and practice. Nat Hum Behav 2024; 8:632-643. [PMID: 38374442 DOI: 10.1038/s41562-024-01830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024]
Abstract
The great apes-bonobos, chimpanzees, gorillas and orangutans-are critically threatened by human activities. We have destroyed their habitats, hunted them and transmitted fatal diseases to them. Yet we also conduct research on them, try to protect them and live alongside them. They are endangered, and time is running out. Here we outline what must be done to ensure that future generations continue to share this planet with great apes. We urge dialogue with those who live with great apes and interact with them often. We advocate conservation plans that acknowledge the realities of climate change, economic drivers and population growth. We encourage researchers to use technology to minimize risks to great apes. Our proposals will require substantial investment, and we identify ways to generate these funds. We conclude with a discussion of how field researchers might alter their work to protect our closest living relatives more effectively.
Collapse
Affiliation(s)
- John C Mitani
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA.
- Ngogo Chimpanzee Project, Phoenix, AZ, USA.
| | - Ekwoge Abwe
- San Diego Zoo Wildlife Alliance, Escondido, CA, USA
- Cameroon Biodiversity Association, Douala, Cameroon
| | | | - Tamara Giles-Vernick
- Anthropology and Ecology of Disease Emergence Unit, Institut Pasteur/Université Paris Cité, Paris, France
| | - Tony Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Matthew R McLennan
- Bulindi Chimpanzee and Community Project, Hoima, Uganda
- Faculty of Humanities and Social Sciences, Oxford Brookes University, Oxford, UK
| | | | - Jatna Supriatna
- Department of Biology, Faculty of Mathematics and Sciences, University of Indonesia, Depok, West Java, Indonesia
| | - Andrew J Marshall
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Program in the Environment, University of Michigan, Ann Arbor, MI, USA
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
- Program in Computing for the Arts and Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
14
|
Strahan EK, Witherbee J, Bergl R, Lonsdorf EV, Mwacha D, Mjungu D, Arandjelovic M, Ikfuingei R, Terio K, Travis DA, Gillespie TR. Potentially Zoonotic Enteric Infections in Gorillas and Chimpanzees, Cameroon and Tanzania. Emerg Infect Dis 2024; 30:577-580. [PMID: 38407249 PMCID: PMC10902540 DOI: 10.3201/eid3003.230318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Despite zoonotic potential, data are lacking on enteric infection diversity in wild apes. We employed a novel molecular diagnostic platform to detect enteric infections in wild chimpanzees and gorillas. Prevalent Cryptosporidium parvum, adenovirus, and diarrheagenic Escherichia coli across divergent sites and species demonstrates potential widespread circulation among apes in Africa.
Collapse
|
15
|
Hobaiter C, Klein H, Gruber T. Habitual ground nesting in the Bugoma Forest chimpanzees (Pan troglodytes schweinfurthii), Uganda. Am J Primatol 2024; 86:e23583. [PMID: 38037523 DOI: 10.1002/ajp.23583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/05/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
We report the presence of habitual ground nesting in a newly studied East African chimpanzee (Pan troglodytes schweinfurthii) population in the Bugoma Central Forest Reserve, Uganda. Across a 2-year period, we encountered 891 night nests, 189 of which were classified as ground nests, a rate of ~21%. We find no preliminary evidence of socio-ecological factors that would promote its use and highlight local factors, such as high incidence of forest disturbance due to poaching and logging, which appear to make its use disadvantageous. While further study is required to establish whether this behavior meets the strict criteria for nonhuman animal culture, we support the argument that the wider use of population and group-specific behavioral repertoires in flagship species, such as chimpanzees, offers a tool to promote the urgent conservation action needed to protect threatened ecosystems, including the Bugoma forest.
Collapse
Affiliation(s)
- Catherine Hobaiter
- Wild Minds Lab, School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
- Bugoma Primate Conservation Project, Bugoma Central Forest Reserve, Hoima, Uganda
| | - Harmonie Klein
- Wild Minds Lab, School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Thibaud Gruber
- Bugoma Primate Conservation Project, Bugoma Central Forest Reserve, Hoima, Uganda
- Faculty of Psychology and Educational Sciences and Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
16
|
Andino R, Kirkegaard K, Macadam A, Racaniello VR, Rosenfeld AB. The Picornaviridae Family: Knowledge Gaps, Animal Models, Countermeasures, and Prototype Pathogens. J Infect Dis 2023; 228:S427-S445. [PMID: 37849401 DOI: 10.1093/infdis/jiac426] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Picornaviruses are nonenveloped particles with a single-stranded RNA genome of positive polarity. This virus family includes poliovirus, hepatitis A virus, rhinoviruses, and Coxsackieviruses. Picornaviruses are common human pathogens, and infection can result in a spectrum of serious illnesses, including acute flaccid myelitis, severe respiratory complications, and hand-foot-mouth disease. Despite research on poliovirus establishing many fundamental principles of RNA virus biology and the first transgenic animal model of disease for infection by a human virus, picornaviruses are understudied. Existing knowledge gaps include, identification of molecules required for virus entry, understanding cellular and humoral immune responses elicited during virus infection, and establishment of immune-competent animal models of virus pathogenesis. Such knowledge is necessary for development of pan-picornavirus countermeasures. Defining enterovirus A71 and D68, human rhinovirus C, and echoviruses 29 as prototype pathogens of this virus family may provide insight into picornavirus biology needed to establish public health strategies necessary for pandemic preparedness.
Collapse
Affiliation(s)
- Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Karla Kirkegaard
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Andrew Macadam
- National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom
| | - Vincent R Racaniello
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Amy B Rosenfeld
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
17
|
Thompson González N, Machanda Z, Emery Thompson M. Age-related social selectivity: An adaptive lens on a later life social phenotype. Neurosci Biobehav Rev 2023; 152:105294. [PMID: 37380041 PMCID: PMC10529433 DOI: 10.1016/j.neubiorev.2023.105294] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Age-related social selectivity is a process in which older humans reduce their number of social partners to a subset of positive and emotionally fulfilling relationships. Although selectivity has been attributed to humans' unique perceptions of time horizons, recent evidence demonstrates that these social patterns and processes occur in other non-human primates, suggesting an evolutionarily wider phenomenon. Here, we develop the hypothesis that selective social behavior is an adaptive strategy that allows social animals to balance the costs and benefits of navigating social environments in the face of age-related functional declines. We first aim to distinguish social selectivity from the non-adaptive social consequences of aging. We then outline multiple mechanisms by which social selectivity in old age may enhance fitness and healthspan. Our goal is to lay out a research agenda to identify selective strategies and their potential benefits. Given the importance of social support for health across primates, understanding why aging individuals lose social connections and how they can remain resilient has vital applications to public health research.
Collapse
Affiliation(s)
- Nicole Thompson González
- Integrative Anthropological Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Zarin Machanda
- Department of Anthropology, Tufts University, Medford, MA 02155, USA
| | | |
Collapse
|
18
|
Vaill M, Kawanishi K, Varki N, Gagneux P, Varki A. Comparative physiological anthropogeny: exploring molecular underpinnings of distinctly human phenotypes. Physiol Rev 2023; 103:2171-2229. [PMID: 36603157 PMCID: PMC10151058 DOI: 10.1152/physrev.00040.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Anthropogeny is a classic term encompassing transdisciplinary investigations of the origins of the human species. Comparative anthropogeny is a systematic comparison of humans and other living nonhuman hominids (so-called "great apes"), aiming to identify distinctly human features in health and disease, with the overall goal of explaining human origins. We begin with a historical perspective, briefly describing how the field progressed from the earliest evolutionary insights to the current emphasis on in-depth molecular and genomic investigations of "human-specific" biology and an increased appreciation for cultural impacts on human biology. While many such genetic differences between humans and other hominids have been revealed over the last two decades, this information remains insufficient to explain the most distinctive phenotypic traits distinguishing humans from other living hominids. Here we undertake a complementary approach of "comparative physiological anthropogeny," along the lines of the preclinical medical curriculum, i.e., beginning with anatomy and considering each physiological system and in each case considering genetic and molecular components that are relevant. What is ultimately needed is a systematic comparative approach at all levels from molecular to physiological to sociocultural, building networks of related information, drawing inferences, and generating testable hypotheses. The concluding section will touch on distinctive considerations in the study of human evolution, including the importance of gene-culture interactions.
Collapse
Affiliation(s)
- Michael Vaill
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
| | - Kunio Kawanishi
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Nissi Varki
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Pascal Gagneux
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Ajit Varki
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
| |
Collapse
|
19
|
Dunay E, Rukundo J, Atencia R, Cole MF, Cantwell A, Emery Thompson M, Rosati AG, Goldberg TL. Viruses in saliva from sanctuary chimpanzees (Pan troglodytes) in Republic of Congo and Uganda. PLoS One 2023; 18:e0288007. [PMID: 37384730 PMCID: PMC10310015 DOI: 10.1371/journal.pone.0288007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Pathogen surveillance for great ape health monitoring has typically been performed on non-invasive samples, primarily feces, in wild apes and blood in sanctuary-housed apes. However, many important primate pathogens, including known zoonoses, are shed in saliva and transmitted via oral fluids. Using metagenomic methods, we identified viruses in saliva samples from 46 wild-born, sanctuary-housed chimpanzees at two African sanctuaries in Republic of Congo and Uganda. In total, we identified 20 viruses. All but one, an unclassified CRESS DNA virus, are classified in five families: Circoviridae, Herpesviridae, Papillomaviridae, Picobirnaviridae, and Retroviridae. Overall, viral prevalence ranged from 4.2% to 87.5%. Many of these viruses are ubiquitous in primates and known to replicate in the oral cavity (simian foamy viruses, Retroviridae; a cytomegalovirus and lymphocryptovirus; Herpesviridae; and alpha and gamma papillomaviruses, Papillomaviridae). None of the viruses identified have been shown to cause disease in chimpanzees or, to our knowledge, in humans. These data suggest that the risk of zoonotic viral disease from chimpanzee oral fluids in sanctuaries may be lower than commonly assumed.
Collapse
Affiliation(s)
- Emily Dunay
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Joshua Rukundo
- Ngamba Island Chimpanzee Sanctuary / Chimpanzee Trust, Entebbe, Uganda
| | - Rebeca Atencia
- Jane Goodall Institute Congo, Pointe-Noire, Republic of Congo
| | - Megan F. Cole
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Averill Cantwell
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Melissa Emery Thompson
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Alexandra G. Rosati
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
20
|
Dunay E, Owens LA, Dunn CD, Rukundo J, Atencia R, Cole MF, Cantwell A, Emery Thompson M, Rosati AG, Goldberg TL. Viruses in sanctuary chimpanzees across Africa. Am J Primatol 2023; 85:e23452. [PMID: 36329642 PMCID: PMC9812903 DOI: 10.1002/ajp.23452] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Infectious disease is a major concern for both wild and captive primate populations. Primate sanctuaries in Africa provide critical protection to thousands of wild-born, orphan primates confiscated from the bushmeat and pet trades. However, uncertainty about the infectious agents these individuals potentially harbor has important implications for their individual care and long-term conservation strategies. We used metagenomic next-generation sequencing to identify viruses in blood samples from chimpanzees (Pan troglodytes) in three sanctuaries in West, Central, and East Africa. Our goal was to evaluate whether viruses of human origin or other "atypical" or unknown viruses might infect these chimpanzees. We identified viruses from eight families: Anelloviridae, Flaviviridae, Genomoviridae, Hepadnaviridae, Parvoviridae, Picobirnaviridae, Picornaviridae, and Rhabdoviridae. The majority (15/26) of viruses identified were members of the family Anelloviridae and represent the genera Alphatorquevirus (torque teno viruses) and Betatorquevirus (torque teno mini viruses), which are common in chimpanzees and apathogenic. Of the remaining 11 viruses, 9 were typical constituents of the chimpanzee virome that have been identified in previous studies and are also thought to be apathogenic. One virus, a novel tibrovirus (Rhabdoviridae: Tibrovirus) is related to Bas-Congo virus, which was originally thought to be a human pathogen but is currently thought to be apathogenic, incidental, and vector-borne. The only virus associated with disease was rhinovirus C (Picornaviridae: Enterovirus) infecting one chimpanzee subsequent to an outbreak of respiratory illness at that sanctuary. Our results suggest that the blood-borne virome of African sanctuary chimpanzees does not differ appreciably from that of their wild counterparts, and that persistent infection with exogenous viruses may be less common than often assumed.
Collapse
Affiliation(s)
- Emily Dunay
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Leah A. Owens
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Christopher D. Dunn
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Joshua Rukundo
- Ngamba Island Chimpanzee Sanctuary/Chimpanzee TrustEntebbeUganda
| | - Rebeca Atencia
- Jane Goodall Institute CongoPointe‐NoireRepublic of Congo
| | - Megan F. Cole
- Department of AnthropologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Averill Cantwell
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | | | - Alexandra G. Rosati
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
- Department of AnthropologyUniversity of MichiganAnn ArborMichiganUSA
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
21
|
Anderson BD, Barnes AN, Umar S, Guo X, Thongthum T, Gray GC. Reverse Zoonotic Transmission (Zooanthroponosis): An Increasing Threat to Animal Health. ZOONOSES: INFECTIONS AFFECTING HUMANS AND ANIMALS 2023:25-87. [DOI: 10.1007/978-3-031-27164-9_59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
22
|
Patrono LV, Röthemeier C, Kouadio L, Couacy‐Hymann E, Wittig RM, Calvignac‐Spencer S, Leendertz FH. Non-invasive genomics of respiratory pathogens infecting wild great apes using hybridisation capture. Influenza Other Respir Viruses 2022; 16:858-861. [PMID: 35388591 PMCID: PMC9343332 DOI: 10.1111/irv.12984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/03/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022] Open
Abstract
Human respiratory pathogens have repeatedly caused lethal outbreaks in wild great apes across Africa, leading to population declines. Nonetheless, our knowledge of potential genomic changes associated with pathogen introduction and spread at the human-great ape interface remains sparse. Here, we made use of target enrichment coupled with next generation sequencing to non-invasively investigate five outbreaks of human-introduced respiratory disease in wild chimpanzees living in Taï National Park, Ivory Coast. By retrieving 34 complete viral genomes and three distinct constellations of pneumococcal virulence factors, we provide genomic insights into these spillover events and describe a framework for non-invasive genomic surveillance in wildlife.
Collapse
Affiliation(s)
- Livia V. Patrono
- Project Group Epidemiology of Highly Pathogenic MicroorganismsRobert Koch InstituteBerlinGermany
- Department of Ecology and Emergence of Zoonotic DiseasesHelmholtz Institute for One HealthGreifswaldGermany
| | - Caroline Röthemeier
- Project Group Epidemiology of Highly Pathogenic MicroorganismsRobert Koch InstituteBerlinGermany
| | - Leonce Kouadio
- Laboratoire National d'Appui au Développement Agricole/Laboratoire Central de Pathologie AnimaleBingervilleCôte d'Ivoire
| | - Emmanuel Couacy‐Hymann
- Laboratoire National d'Appui au Développement Agricole/Laboratoire Central de Pathologie AnimaleBingervilleCôte d'Ivoire
| | - Roman M. Wittig
- Department of PrimatologyMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Taï Chimpanzee ProjectCentre Suisse de Recherches ScientifiquesAbidjanCôte d'Ivoire
| | | | - Fabian H. Leendertz
- Project Group Epidemiology of Highly Pathogenic MicroorganismsRobert Koch InstituteBerlinGermany
- Department of Ecology and Emergence of Zoonotic DiseasesHelmholtz Institute for One HealthGreifswaldGermany
- Taï Chimpanzee ProjectCentre Suisse de Recherches ScientifiquesAbidjanCôte d'Ivoire
| |
Collapse
|
23
|
Spencer JA, Shutt DP, Moser SK, Clegg H, Wearing HJ, Mukundan H, Manore CA. Distinguishing viruses responsible for influenza-like illness. J Theor Biol 2022; 545:111145. [PMID: 35490763 DOI: 10.1016/j.jtbi.2022.111145] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
The many respiratory viruses that cause influenza-like illness (ILI) are reported and tracked as one entity, defined by the CDC as a group of symptoms that include a fever of 100 degrees Fahrenheit, a cough, and/or a sore throat. In the United States alone, ILI impacts 9-49 million people every year. While tracking ILI as a single clinical syndrome is informative in many respects, the underlying viruses differ in parameters and outbreak properties. Most existing models treat either a single respiratory virus or ILI as a whole. However, there is a need for models capable of comparing several individual viruses that cause respiratory illness, including ILI. To address this need, here we present a flexible model and simulations of epidemics for influenza, RSV, rhinovirus, seasonal coronavirus, adenovirus, and SARS/MERS, parameterized by a systematic literature review and accompanied by a global sensitivity analysis. We find that for these biological causes of ILI, their parameter values, timing, prevalence, and proportional contributions differ substantially. These results demonstrate that distinguishing the viruses that cause ILI will be an important aspect of future work on diagnostics, mitigation, modeling, and preparation for future pandemics.
Collapse
Affiliation(s)
- Julie A Spencer
- A-1 Information Systems and Modeling, Los Alamos National Laboratory, NM87545, USA.
| | - Deborah P Shutt
- A-1 Information Systems and Modeling, Los Alamos National Laboratory, NM87545, USA
| | - S Kane Moser
- B-10 Biosecurity and Public Health, Los Alamos National Laboratory, NM87545, USA
| | - Hannah Clegg
- A-1 Information Systems and Modeling, Los Alamos National Laboratory, NM87545, USA
| | - Helen J Wearing
- Department of Biology, University of New Mexico, NM87131, USA; Department of Mathematics and Statistics, University of New Mexico, NM87102, USA
| | - Harshini Mukundan
- C-PCS Physical Chemistry and Applied Spectroscopy, Los Alamos National Laboratory, NM87545, USA
| | - Carrie A Manore
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, NM87545, USA
| |
Collapse
|
24
|
Sanchez CR, Hidalgo-Hermoso E. Mycobacterium tuberculosis sensu stricto in African Apes, What Is Its True Health Impact? Pathogens 2022; 11:484. [PMID: 35631005 PMCID: PMC9145341 DOI: 10.3390/pathogens11050484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022] Open
Abstract
Since the Symposium on Mycobacterial Infections of Zoo Animals held at the National Zoological Park, Smithsonian Institution in 1976, our understanding of tuberculosis (TB) in non-domestic animals has greatly expanded. Throughout the past decades, this knowledge has resulted in improved zoo-habitats and facilities design, stricter biosecurity measures, and advanced diagnostic methods, including molecular techniques, that have significantly decreased the number of clinical disease caused by Mycobacterium tuberculosis in apes under human care settings. In the other hand, exponential growth of human populations has led to human encroachment in wildlife habitat which has resulted in increased inter-species contact and recurrent conflict between humans and wild animals. Although it is widely accepted that non-human primates are susceptible to M. tb infection, opinions differ with regard to the susceptibility to develop disease amongst different taxa. Specifically, some authors suggest that African apes are less susceptible to clinical tuberculosis than other species of primates. The aim of this review article is to evaluate the current scientific literature to determine the actual health impact of disease caused by Mycobacterium tuberculosis and more specifically Mycobacterium tuberculosis sensu stricto in African apes. The literature review included literature databases: Web of Science, Pubmed, Scopus, Wiley, Springer and Science direct, without temporal limit and proceedings of annual conferences in the field of wildlife health. Our general inclusion criteria included information about serological, molecular, pathological (macroscopic and/or microscopic), and clinical evidence of TB in African apes; while our, our more stringent inclusion selection criteria required that in addition to a gross pathology, a molecular test confirmed Mycobacterium tuberculosis sensu stricto as the cause of disease or death. We identified eleven reports of tuberculosis in African apes; of those, only four reports met the more stringent selection criteria that confirmed M. tb sensu stricto in six individuals. All reports that confirmed M. tb sensu stricto originated from zoological collections. Our review suggests that there is little evidence of disease or mortality caused by M. tb in the different species of African apes both under human care and free ranging populations. Additional studies are needed in free-ranging, semi-captive populations (sanctuaries) and animals under human care (zoos and rescue centers) to definitely conclude that this mycobacteria has a limited health effect in African ape species.
Collapse
Affiliation(s)
- Carlos R. Sanchez
- Veterinary Medical Center, Oregon Zoo, Portland, 4001 SW Canyon Rd., Portland, OR 97221, USA
| | - Ezequiel Hidalgo-Hermoso
- Conservation and Research Department, Parque Zoologico Buin Zoo, Panamericana Sur Km 32, Buin 01730, Chile;
| |
Collapse
|
25
|
Frogge H, Jones RA, Angedakin S, Busobozi R, Kabagambe P, Angwela FO, Thompson González N, Brown M. Constraints on population growth of blue monkeys (Cercopithecus mitis) in Kibale National Park, Uganda. BEHAVIOUR 2022. [DOI: 10.1163/1568539x-bja10160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Changes in population size are driven by environmental and social factors. In spite of repeated efforts to identify the constraints on an unusually low-density population of blue monkeys (Cercopithecus mitis), it remains unclear why this generalist species fails to thrive in Kibale National Park in Uganda. While an unidentified disease may occasionally obstruct conception, it does not seem to limit overall reproductive rates. Infanticide at this site is infrequent due to the long tenures of resident males. Our analyses indicate that the single biggest constraint on blue monkey densities may be feeding competition with grey-cheeked mangabeys (Lophocebus albigena): across Kibale, the densities of these two species are strongly and negatively correlated. Though further analysis is needed to understand the timing and strength of feeding competition between them, we conclude that blue monkeys at Ngogo experience competitive exclusion from grey-cheeked mangabeys, possibly resolving the 50-year mystery surrounding this population.
Collapse
Affiliation(s)
- Hannah Frogge
- Department of Anthropology, University of California, Santa Barbara, CA, USA
| | - Revee A. Jones
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel Angedakin
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Prime Kabagambe
- Makerere University Biological Field Stations, Kampala, Uganda
| | - Felix O. Angwela
- Makerere University Biological Field Stations, Kampala, Uganda
- School of Agriculture and Environmental Science, Mountains of the Moon University, Fort Portal, Uganda
| | | | - Michelle Brown
- Department of Anthropology, University of California, Santa Barbara, CA, USA
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
26
|
Rosenfeld AB, Shen EQL, Melendez M, Mishra N, Lipkin WI, Racaniello VR. Cross-Reactive Antibody Responses against Nonpoliovirus Enteroviruses. mBio 2022; 13:e0366021. [PMID: 35038922 PMCID: PMC8764532 DOI: 10.1128/mbio.03660-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 01/14/2023] Open
Abstract
Enteroviruses are among the most common human viral pathogens. Infection with members of a subgroup of viruses within this genus, the nonpoliovirus enteroviruses (NPEVs), can result in a broad spectrum of serious illnesses, including acute flaccid myelitis (AFM), a polio-like childhood paralysis; neonatal sepsis; aseptic meningitis; myocarditis; and hand-foot-mouth disease. Despite the diverse primary sites of virus infection, including the respiratory and alimentary tracts, and an array of diseases associated with these infections, there is significant genetic and antigenic similarity among NPEVs. This conservation results in the induction of cross-reactive antibodies that are either able to bind and neutralize or bind but not neutralize multiple NPEVs. Using plaque reduction and enzyme-linked immunosorbent assay (ELISA)-based binding assays, we define the antigenic relationship among poliovirus and NPEVs, including multiple isolates of EV-D68, EV-A71, EV-D70, EV-94, EV-111, Coxsackievirus A24v, and rhinovirus. The results reveal extensive cross-reactivity among EVs that cannot be predicted from phylogenetic analysis. Determining the immunologic relationship among EVs is critical to understanding the humoral response elicited during homologous and heterologous virus infections. IMPORTANCE Enteroviruses (EVs) are common human pathogens. Although infection with EVs leads to cross-reactive antibodies, the clinical relevance of these antibodies is unclear given the estimated incidence of EV infections in the general population of one per year. The hypothesis that anti-EV cross-reactive antibodies can bind and neutralize heterologous EVs was investigated using polyclonal sera collected from animals immunized with individual EVs. Both binding and neutralization activities against heterologous EVs was observed in these sera, and we speculate that cross-reactive antibodies may modulate infection and disease severity. Defining the antigenic relationship among EVs may provide insights into the epidemiology and pathogenesis of enterovirus infections.
Collapse
Affiliation(s)
- Amy B. Rosenfeld
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Edmund Qian Long Shen
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Michaela Melendez
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Nischay Mishra
- Center for Infection and Immunity, Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - W. Ian Lipkin
- Center for Infection and Immunity, Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Vincent R. Racaniello
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
27
|
Negrey JD, Mitani JC, Wrangham RW, Otali E, Reddy RB, Pappas TE, Grindle KA, Gern JE, Machanda ZP, Muller MN, Langergraber KE, Thompson ME, Goldberg TL. Viruses associated with ill health in wild chimpanzees. Am J Primatol 2022; 84:e23358. [PMID: 35015311 PMCID: PMC8853648 DOI: 10.1002/ajp.23358] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 02/03/2023]
Abstract
Viral infection is a major cause of ill health in wild chimpanzees (Pan troglodytes), but most evidence to date has come from conspicuous disease outbreaks with high morbidity and mortality. To examine the relationship between viral infection and ill health during periods not associated with disease outbreaks, we conducted a longitudinal study of wild eastern chimpanzees (P. t. schweinfurthii) in the Kanyawara and Ngogo communities of Kibale National Park, Uganda. We collected standardized, observational health data for 4 years and then used metagenomics to characterize gastrointestinal viromes (i.e., all viruses recovered from fecal samples) in individual chimpanzees before and during episodes of clinical disease. We restricted our analyses to viruses thought to infect mammals or primarily associated with mammals, discarding viruses associated with nonmammalian hosts. We found 18 viruses (nine of which were previously identified in this population) from at least five viral families. Viral richness (number of viruses per sample) did not vary by health status. By contrast, total viral load (normalized proportion of sequences mapping to viruses) was significantly higher in ill individuals compared with healthy individuals. Furthermore, when ill, Kanyawara chimpanzees exhibited higher viral loads than Ngogo chimpanzees, and males, but not females, exhibited higher infection rates with certain viruses and higher total viral loads as they aged. Post-hoc analyses, including the use of a machine-learning classification method, indicated that one virus, salivirus (Picornaviridae), was the main contributor to health-related and community-level variation in viral loads. Another virus, chimpanzee stool-associated virus (chisavirus; unclassified Picornavirales), was associated with ill health at Ngogo but not at Kanyawara. Chisavirus, chimpanzee adenovirus (Adenoviridae), and bufavirus (Parvoviridae) were also associated with increased age in males. Associations with sex and age are consistent with the hypothesis that nonlethal viral infections cumulatively reflect or contribute to senescence in long-lived species such as chimpanzees.
Collapse
Affiliation(s)
- Jacob D. Negrey
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - John C. Mitani
- Department of Anthropology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Richard W. Wrangham
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | | | - Rachna B. Reddy
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Tressa E. Pappas
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Kristine A. Grindle
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - James E. Gern
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Zarin P. Machanda
- Department of Anthropology, Tufts University, Medford, MA, 02155, USA
| | - Martin N. Muller
- Department of Anthropology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Kevin E. Langergraber
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, 85287, USA
- Institute of Human Origins, Arizona State University, Tempe, AZ, 85287, USA
| | | | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
28
|
Shaheen MNF. The concept of one health applied to the problem of zoonotic diseases. Rev Med Virol 2022; 32:e2326. [PMID: 35060214 DOI: 10.1002/rmv.2326] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022]
Abstract
Zoonotic diseases are a burden on healthcare systems globally, particularly underdeveloped nations. Numerous vertebrate animals (e.g., birds, mammals and reptiles) serve as amplifier hosts or reservoirs for viral zoonoses. The spread of zoonotic disease is associated with environmental factors, climate change, animal health as well as other human activities including globalization, urbanization and travel. Diseases at the human-animal environment interface (e.g., zoonotic diseases, vector-borne diseases, food/water borne diseases) continue to pose risk to animals and humans with a great significant mortality and morbidity. It is estimated that of 1400 infectious diseases known to affect humans, 60% of them are of animal origin. In addition, 75% of the emerging infectious diseases have a zoonotic nature, worldwide. The one health concept plays an important role in the control and prevention of zoonoses by integrating animal, human, and environmental health through collaboration and communication among osteopaths, wildlife, physicians, veterinarians professionals, public health and environmental experts, nurses, dentists, physicists, biomedical engineers, plant pathologists, biochemists, and others. No one sector, organization, or person can address issues at the animal-human-ecosystem interface alone.
Collapse
Affiliation(s)
- Mohamed N F Shaheen
- Environmental Virology Laboratory, Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Center, Giza, Egypt
| |
Collapse
|
29
|
EVALUATING THE EFFICACY OF HUMAN BRONCHIECTASISBASED ANTIBIOTIC THERAPY IN THE TREATMENT OF ORANGUTAN RESPIRATORY DISEASE SYNDROME. J Zoo Wildl Med 2022; 52:1205-1216. [PMID: 34998290 DOI: 10.1638/2020-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 11/21/2022] Open
Abstract
Unique among apes, orangutans (Pongo spp.) develop a chronic respiratory disease called orangutan respiratory disease syndrome (ORDS). The authors define ORDS as intermittent bacterial infection and chronic inflammation of any region or combination of regions of the respiratory tract, including the sinuses, air sacs, cranial bones, airways, and lung parenchyma. Infection in any of these areas can present acutely but then becomes recurrent, chronic, progressive, and ultimately fatal. The closest model to this disease is cystic fibrosis (CF) in people. We hypothesized that use of a 4-8-wk course of combined oral antibiotics used in the treatment of bronchiectasis in CF patients would lead to prolonged symptomatic and computed tomography (CT) scan improvement in orangutans experiencing early signs of ORDS. Nine adult Bornean orangutans (Pongo pygmaeus, eight males, one female, 18-29 yr of age) diagnosed with early ORDS-like respiratory disease underwent CT scan before initiation of treatment. Each animal received a combined course of azithromycin (400 mg 3/wk, mean 7 mg/kg) and levofloxacin (500 mg PO q24h, mean 8.75 mg/kg) for a period of 4-8 wk. CT scan was repeated 6-14 mon after completion of antibiotic treatment. Pretreatment CT showed that six of nine animals had lower respiratory pathology (airway disease, pneumonia, or both). All six orangutans had concurrent sinusitis, mastoiditis, airsacculitis, or a combination of these conditions. Upper respiratory disease alone was observed in three animals. CT showed improvement or resolution in four of five sinusitis cases, improvement in one of two instances of mastoiditis, resolution in five of six instances of airsacculitis, improvement or resolution in six of six instance of lower airway disease (P = 0.03, 95% CI 0.54-1.0], and resolution in five of five cases of pneumonia. Resolution of pretreatment clinical signs was observed in all nine animals. Two developed signs not present at pretreatment. These results show that combination antibiotic therapy with azithromycin and levofloxacin provides improvement in clinical signs and CT evidence of ORDS-related pathology, resulting in symptom-free status in some animals for up to 33 mon.
Collapse
|
30
|
Torfs JRR, Eens M, Laméris DW, Staes N. Respiratory Disease Risk of Zoo-Housed Bonobos Is Associated with Sex and Betweenness Centrality in the Proximity Network. Animals (Basel) 2021; 11:3597. [PMID: 34944372 PMCID: PMC8698162 DOI: 10.3390/ani11123597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Infectious diseases can be considered a threat to animal welfare and are commonly spread through both direct and indirect social interactions with conspecifics. This is especially true for species with complex social lives, like primates. While several studies have investigated the impact of sociality on disease risk in primates, only a handful have focused on respiratory disease, despite it being a major cause of morbidity and mortality in both wild and captive populations and thus an important threat to primate welfare. Therefore, we examined the role of social-network position on the occurrence of respiratory disease symptoms during one winter season in a relatively large group of 20 zoo-housed bonobos with managed fission-fusion dynamics. We found that within the proximity network, symptoms were more likely to occur in individuals with higher betweenness centrality, which are individuals that form bridges between different parts of the network. Symptoms were also more likely to occur in males than in females, independent of their social-network position. Taken together, these results highlight a combined role of close proximity and sex in increased risk of attracting respiratory disease, two factors that can be taken into account for further welfare management of the species.
Collapse
Affiliation(s)
- Jonas R. R. Torfs
- Behavioral Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (M.E.); (D.W.L.); (N.S.)
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 26, 2018 Antwerp, Belgium
| | - Marcel Eens
- Behavioral Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (M.E.); (D.W.L.); (N.S.)
| | - Daan W. Laméris
- Behavioral Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (M.E.); (D.W.L.); (N.S.)
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 26, 2018 Antwerp, Belgium
| | - Nicky Staes
- Behavioral Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (M.E.); (D.W.L.); (N.S.)
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 26, 2018 Antwerp, Belgium
| |
Collapse
|
31
|
Cordey S, Laubscher F, Hartley MA, Junier T, Keitel K, Docquier M, Guex N, Iseli C, Vieille G, Le Mercier P, Gleizes A, Samaka J, Mlaganile T, Kagoro F, Masimba J, Said Z, Temba H, Elbanna GH, Tapparel C, Zanella MC, Xenarios I, Fellay J, D’Acremont V, Kaiser L. Blood virosphere in febrile Tanzanian children. Emerg Microbes Infect 2021; 10:982-993. [PMID: 33929935 PMCID: PMC8171259 DOI: 10.1080/22221751.2021.1925161] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022]
Abstract
Viral infections are the leading cause of childhood acute febrile illnesses motivating consultation in sub-Saharan Africa. The majority of causal viruses are never identified in low-resource clinical settings as such testing is either not part of routine screening or available diagnostic tools have limited ability to detect new/unexpected viral variants. An in-depth exploration of the blood virome is therefore necessary to clarify the potential viral origin of fever in children. Metagenomic next-generation sequencing is a powerful tool for such broad investigations, allowing the detection of RNA and DNA viral genomes. Here, we describe the blood virome of 816 febrile children (<5 years) presenting at outpatient departments in Dar es Salaam over one-year. We show that half of the patients (394/816) had at least one detected virus recognized as causes of human infection/disease (13.8% enteroviruses (enterovirus A, B, C, and rhinovirus A and C), 12% rotaviruses, 11% human herpesvirus type 6). Additionally, we report the detection of a large number of viruses (related to arthropod, vertebrate or mammalian viral species) not yet known to cause human infection/disease, highlighting those who should be on the radar, deserve specific attention in the febrile paediatric population and, more broadly, for surveillance of emerging pathogens.Trial registration: ClinicalTrials.gov identifier: NCT02225769.
Collapse
Affiliation(s)
- Samuel Cordey
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Florian Laubscher
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mary-Anne Hartley
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Intelligent Global Health, Machine Learning and Optimization Laboratory, EPFL, Lausanne, Switzerland
| | - Thomas Junier
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Kristina Keitel
- Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
- Department of Paediatric Emergency Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mylène Docquier
- iGE3 Genomics Platform, University of Geneva, Geneva, Switzerland
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne and EPFL, Lausanne, Switzerland
| | - Christian Iseli
- Bioinformatics Competence Center, University of Lausanne and EPFL, Lausanne, Switzerland
| | - Gael Vieille
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Anne Gleizes
- SwissProt group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | | | | | - Frank Kagoro
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | - John Masimba
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | - Zamzam Said
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | | | - Gasser H. Elbanna
- Intelligent Global Health, Machine Learning and Optimization Laboratory, EPFL, Lausanne, Switzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Marie-Celine Zanella
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ioannis Xenarios
- Health2030 Genome Center, Geneva, Switzerland
- Agora Center, University of Lausanne, Lausanne, Switzerland
| | - Jacques Fellay
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Valérie D’Acremont
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Laurent Kaiser
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva & Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
32
|
Hirsch SD, Elling CL, Bootpetch TC, Scholes MA, Hafrén L, Streubel SO, Pine HS, Wine TM, Szeremeta W, Prager JD, Einarsdottir E, Yousaf A, Baschal EE, Rehman S, Bamshad MJ, Nickerson DA, Riazuddin S, Leal SM, Ahmed ZM, Yoon PJ, Kere J, Chan KH, Mattila PS, Friedman NR, Chonmaitree T, Frank DN, Ryan AF, Santos-Cortez RLP. The role of CDHR3 in susceptibility to otitis media. J Mol Med (Berl) 2021; 99:1571-1583. [PMID: 34322716 PMCID: PMC8541908 DOI: 10.1007/s00109-021-02118-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/30/2022]
Abstract
Otitis media (OM) is common in young children and can cause hearing loss and speech, language, and developmental delays. OM has high heritability; however, little is known about OM-related molecular and genetic processes. CDHR3 was previously identified as a locus for OM susceptibility, but to date, studies have focused on how the CDHR3 p.Cys529Tyr variant increases epithelial binding of rhinovirus-C and risk for lung or sinus pathology. In order to further delineate a role for CDHR3 in OM, we performed the following: exome sequencing using DNA samples from OM-affected individuals from 257 multi-ethnic families; Sanger sequencing, logistic regression and transmission disequilibrium tests for 407 US trios or probands with OM; 16S rRNA sequencing and analysis for middle ear and nasopharyngeal samples; and single-cell RNA sequencing and differential expression analyses for mouse middle ear. From exome sequence data, we identified a novel pathogenic CDHR3 splice variant that co-segregates with OM in US and Finnish families. Additionally, a frameshift and six missense rare or low-frequency variants were identified in Finnish probands. In US probands, the CDHR3 p.Cys529Tyr variant was associated with the absence of middle ear fluid at surgery and also with increased relative abundance of Lysobacter in the nasopharynx and Streptomyces in the middle ear. Consistent with published data on airway epithelial cells and our RNA-sequence data from human middle ear tissues, Cdhr3 expression is restricted to ciliated epithelial cells of the middle ear and is downregulated after acute OM. Overall, these findings suggest a critical role for CDHR3 in OM susceptibility. KEY MESSAGES: • Novel rare or low-frequency CDHR3 variants putatively confer risk for otitis media. • Pathogenic variant CDHR3 c.1653 + 3G > A was found in nine families with otitis media. • CDHR3 p.Cys529Tyr was associated with lack of effusion and bacterial otopathogens. • Cdhr3 expression was limited to ciliated epithelial cells in mouse middle ear. • Cdhr3 was downregulated 3 h after infection of mouse middle ear.
Collapse
Affiliation(s)
- Scott D Hirsch
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus (CU-AMC), 12700 E. 19th Ave, Aurora, CO, 80045, USA
| | - Christina L Elling
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus (CU-AMC), 12700 E. 19th Ave, Aurora, CO, 80045, USA
| | - Tori C Bootpetch
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus (CU-AMC), 12700 E. 19th Ave, Aurora, CO, 80045, USA
| | - Melissa A Scholes
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus (CU-AMC), 12700 E. 19th Ave, Aurora, CO, 80045, USA
- Department of Pediatric Otolaryngology, Children's Hospital Colorado (CHCO), 13123 E. 16th Ave, Aurora, CO, 80045, USA
| | - Lena Hafrén
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Helsinki and Helsinki University Hospital, Tukholmankatu 8A, 00290, Helsinki, Finland
| | - Sven-Olrik Streubel
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus (CU-AMC), 12700 E. 19th Ave, Aurora, CO, 80045, USA
- Department of Pediatric Otolaryngology, Children's Hospital Colorado (CHCO), 13123 E. 16th Ave, Aurora, CO, 80045, USA
| | - Harold S Pine
- Department of Otolaryngology, University of Texas Medical Branch (UTMB), 301 8th St, Galveston, TX, 77550, USA
| | - Todd M Wine
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus (CU-AMC), 12700 E. 19th Ave, Aurora, CO, 80045, USA
- Department of Pediatric Otolaryngology, Children's Hospital Colorado (CHCO), 13123 E. 16th Ave, Aurora, CO, 80045, USA
| | - Wasyl Szeremeta
- Department of Otolaryngology, University of Texas Medical Branch (UTMB), 301 8th St, Galveston, TX, 77550, USA
| | - Jeremy D Prager
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus (CU-AMC), 12700 E. 19th Ave, Aurora, CO, 80045, USA
- Department of Pediatric Otolaryngology, Children's Hospital Colorado (CHCO), 13123 E. 16th Ave, Aurora, CO, 80045, USA
| | - Elisabet Einarsdottir
- Folkhälsan Institute of Genetics and Molecular Neurology Research Program, University of Helsinki, PO Box 63, Biomedicum 1, 3rd floor, Haartmaninkatu 8, 00014, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institute, 141 86, Huddinge, Stockholm, Sweden
- Science for Life Laboratory, Department of Gene Technology, KTH-Royal Institute of Technology, 171 21, Solna, Sweden
| | - Ayesha Yousaf
- Bahauddin Zakariya University, Multan, 60000, Punjab, Pakistan
| | - Erin E Baschal
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus (CU-AMC), 12700 E. 19th Ave, Aurora, CO, 80045, USA
| | - Sakina Rehman
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, University of Maryland, 670 West Baltimore St., Room 7181, Baltimore, MD, 21201, USA
| | - Michael J Bamshad
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15th Ave. NE, Seattle, WA, 98195, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15th Ave. NE, Seattle, WA, 98195, USA
| | - Saima Riazuddin
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, University of Maryland, 670 West Baltimore St., Room 7181, Baltimore, MD, 21201, USA
| | - Suzanne M Leal
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University, William Black Building, 650 West 168th St, New York, NY, 10032, USA
| | - Zubair M Ahmed
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, University of Maryland, 670 West Baltimore St., Room 7181, Baltimore, MD, 21201, USA
| | - Patricia J Yoon
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus (CU-AMC), 12700 E. 19th Ave, Aurora, CO, 80045, USA
- Department of Pediatric Otolaryngology, Children's Hospital Colorado (CHCO), 13123 E. 16th Ave, Aurora, CO, 80045, USA
| | - Juha Kere
- Folkhälsan Institute of Genetics and Molecular Neurology Research Program, University of Helsinki, PO Box 63, Biomedicum 1, 3rd floor, Haartmaninkatu 8, 00014, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institute, 141 86, Huddinge, Stockholm, Sweden
| | - Kenny H Chan
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus (CU-AMC), 12700 E. 19th Ave, Aurora, CO, 80045, USA
- Department of Pediatric Otolaryngology, Children's Hospital Colorado (CHCO), 13123 E. 16th Ave, Aurora, CO, 80045, USA
| | - Petri S Mattila
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Helsinki and Helsinki University Hospital, Tukholmankatu 8A, 00290, Helsinki, Finland
| | - Norman R Friedman
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus (CU-AMC), 12700 E. 19th Ave, Aurora, CO, 80045, USA
- Department of Pediatric Otolaryngology, Children's Hospital Colorado (CHCO), 13123 E. 16th Ave, Aurora, CO, 80045, USA
| | - Tasnee Chonmaitree
- Division of Infectious Diseases, Department of Pediatrics, UTMB, 301 8th St, Galveston, TX, 77550, USA
| | - Daniel N Frank
- Division of Infectious Diseases, Department of Medicine, School of Medicine, CU-AMC, 12700 E. 19th Ave, Aurora, CO, 80045, USA
| | - Allen F Ryan
- Division of Otolaryngology, Department of Surgery, San Diego School of Medicine and Veterans Affairs Medical Center, University of California, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Regie Lyn P Santos-Cortez
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus (CU-AMC), 12700 E. 19th Ave, Aurora, CO, 80045, USA.
- Center for Children's Surgery, CHCO, 13123 E. 16th Ave, Aurora, CO, 80045, USA.
| |
Collapse
|
33
|
Colchero F, Eckardt W, Stoinski T. Exploring the potential effect of COVID-19 on an endangered great ape. Sci Rep 2021; 11:20715. [PMID: 34675230 PMCID: PMC8531408 DOI: 10.1038/s41598-021-00061-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/05/2021] [Indexed: 11/09/2022] Open
Abstract
The current COVID-19 pandemic has created unmeasurable damages to society at a global level, from the irreplaceable loss of life, to the massive economic losses. In addition, the disease threatens further biodiversity loss. Due to their shared physiology with humans, primates, and particularly great apes, are susceptible to the disease. However, it is still uncertain how their populations would respond in case of infection. Here, we combine stochastic population and epidemiological models to simulate the range of potential effects of COVID-19 on the probability of extinction of mountain gorillas. We find that extinction is sharply driven by increases in the basic reproductive number and that the probability of extinction is greatly exacerbated if the immunity lasts less than 6 months. These results stress the need to limit exposure of the mountain gorilla population, the park personnel and visitors, as well as the potential of vaccination campaigns to extend the immunity duration.
Collapse
Affiliation(s)
- Fernando Colchero
- Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark.
- Interdisciplinary Center on Population Dynamics, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark.
| | - Winnie Eckardt
- The Dian Fossey Gorilla Fund, 800 Cherokee Ave SE, Atlanta, GA, 30315, USA
| | - Tara Stoinski
- The Dian Fossey Gorilla Fund, 800 Cherokee Ave SE, Atlanta, GA, 30315, USA
| |
Collapse
|
34
|
Morrison RE, Mushimiyimana Y, Stoinski TS, Eckardt W. Rapid transmission of respiratory infections within but not between mountain gorilla groups. Sci Rep 2021; 11:19622. [PMID: 34620899 PMCID: PMC8497490 DOI: 10.1038/s41598-021-98969-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/09/2021] [Indexed: 02/06/2023] Open
Abstract
Minimizing disease transmission between humans and wild apes and controlling outbreaks in ape populations is vital to both ape conservation and human health, but information on the transmission of real infections in wild populations is rare. We analyzed respiratory outbreaks in a subpopulation of wild mountain gorillas (Gorilla beringei beringei) between 2004 and 2020. We investigated transmission within groups during 7 outbreaks using social networks based on contact and proximity, and transmission between groups during 15 outbreaks using inter-group encounters, transfers and home range overlap. Patterns of contact and proximity within groups were highly predictable based on gorillas' age and sex. Disease transmission within groups was rapid with a median estimated basic reproductive number (R0) of 4.18 (min = 1.74, max = 9.42), and transmission was not predicted by the social network. Between groups, encounters and transfers did not appear to have enabled disease transmission and the overlap of groups' ranges did not predict concurrent outbreaks. Our findings suggest that gorilla social structure, with many strong connections within groups and weak ties between groups, may enable rapid transmission within a group once an infection is present, but limit the transmission of infections between groups.
Collapse
Affiliation(s)
- Robin E Morrison
- Dian Fossey Gorilla Fund, Musanze, Rwanda.
- Centre for Research in Animal Behavior, University of Exeter, Exeter, UK.
| | | | | | | |
Collapse
|
35
|
One Health Perspectives on New Emerging Viral Diseases in African Wild Great Apes. Pathogens 2021; 10:pathogens10101283. [PMID: 34684232 PMCID: PMC8539261 DOI: 10.3390/pathogens10101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
The most recent emerging infectious diseases originated in animals, mainly in wildlife reservoirs. Mutations and recombination events mediate pathogen jumps between host species. The close phylogenetic relationship between humans and non-human primates allows the transmission of pathogens between these species. These pathogens cause severe impacts on public health and impair the conservation of habituated or non-habituated wild-living apes. Constant exposure of great apes to human actions such as hunting, deforestation, the opening of roads, and tourism, for example, contributes to increased interaction between humans and great apes. In spite of several studies emphasizing the risks of pathogen transmission between animals and humans, outbreaks of the reverse transmission of infectious agents threatening wildlife still occur on the African continent. In this context, measures to prevent the emergence of new diseases and conservation of primate species must be based on the One Health concept; that is, they must also ensure the monitoring of the environment and involve political and social aspects. In this article, we review and discuss the anthropological aspects of the transmission of diseases between people and wild primates and discuss new anthropozoonotic diseases in great apes in Africa from studies published between 2016 and 2020. We conclude that the health of great apes also depends on monitoring the health of human populations that interact with these individuals.
Collapse
|
36
|
Gessa SJ, Rothman JM. The importance of message framing in rule compliance by visitors during wildlife tourism. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Simplicious J. Gessa
- Department of Journalism and Communication Makerere University Kampala Uganda
- Uganda Wildlife Authority Kampala Uganda
| | - Jessica M. Rothman
- Uganda Wildlife Authority Kampala Uganda
- Department of Anthropology Hunter College of the City University of New York New York New York USA
- New York Consortium in Evolutionary Primatology New York New York USA
| |
Collapse
|
37
|
Kalema-Zikusoka G, Rubanga S, Ngabirano A, Zikusoka L. Mitigating Impacts of the COVID-19 Pandemic on Gorilla Conservation: Lessons From Bwindi Impenetrable Forest, Uganda. Front Public Health 2021; 9:655175. [PMID: 34490176 PMCID: PMC8417434 DOI: 10.3389/fpubh.2021.655175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/10/2021] [Indexed: 11/21/2022] Open
Abstract
The COVID-19 pandemic, affecting all countries, with millions of cases and deaths, and economic disruptions due to lockdowns, also threatens the health and conservation of endangered mountain gorillas. For example, increased poaching due to absence of tourism income, led to the killing on 1st June 2020 of a gorilla by a hungry community member hunting duiker and bush pigs. Conservation Through Public Health (CTPH), a grassroots NGO and non-profit founded in 2003 promotes biodiversity conservation by enabling people to co-exist with wildlife through integrated programs that improve animal health, community health, and livelihoods in and around Africa's protected areas and wildlife rich habitats. Through these programs, we have helped to mitigate these impacts. CTPH worked with Uganda Wildlife Authority and other NGOs to improve great ape viewing guidelines and prevent transmission of COVID-19 between people and gorillas. Park staff, Gorilla Guardians herding gorillas from community land to the park and Village Health and Conservation Teams were trained to put on protective face masks, enforce hand hygiene and a 10-meter great ape viewing distance. To reduce the communities' need to poach, CTPH found a UK-based distributor, for its Gorilla Conservation Coffee social enterprise enabling coffee farmers to earn revenue in the absence of tourism and provided fast growing seedlings to reduce hunger in vulnerable community members. Lessons learned show the need to support non-tourism dependent community livelihoods, and more responsible tourism to the great apes, which CTPH is advocating to governments, donors and tour companies through an Africa CSO Biodiversity Alliance policy brief.
Collapse
Affiliation(s)
- Gladys Kalema-Zikusoka
- Conservation Through Public Health, Entebbe, Uganda.,Gorilla Conservation Coffee, Entebbe, Uganda
| | | | - Alex Ngabirano
- Conservation Through Public Health, Entebbe, Uganda.,Bwindi Development Network, Kanungu, Uganda
| | | |
Collapse
|
38
|
van Dijk K, Cibot M, McLennan MR. Chimpanzees (Pan troglodytes) adapt their nesting behavior after large-scale forest clearance and community decline. Am J Primatol 2021; 83:e23323. [PMID: 34455609 DOI: 10.1002/ajp.23323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/20/2021] [Accepted: 08/12/2021] [Indexed: 11/12/2022]
Abstract
Chimpanzees (Pan troglodytes) build nests at night for sleeping and occasionally during daytime for resting. Over the course of seven years, forest fragments in Bulindi, Uganda, were reduced in size by about 80% when landowners converted forest to agricultural land. However, unlike other studies on nesting behavior in response to habitat disturbance, chimpanzees at Bulindi had no opportunity to retreat into nearby undisturbed forest. To understand behavioral adaptations to forest clearance, we compared Bulindi chimpanzees' nesting characteristics before and after this period of major deforestation. After deforestation, chimpanzees built nests at lower heights in shorter trees, and reused a larger proportion of their nests. Additionally, average nest group size increased after deforestation, even though community size declined by approximately 20% over the same period. The substantial decrease in available forest habitat may have caused the chimpanzees to aggregate for nesting. However, more cohesive nesting may also have been influenced by dietary shifts (increased reliance on agricultural crops) and a need for enhanced safety with increased human encroachment. Conversely, the chimpanzees selected similar tree species for nesting after deforestation, apparently reflecting a strong preference for particular species, nested less often in exotic species, and built integrated nests (constructed using multiple trees) at a similar frequency as before fragment clearance. Chimpanzees living in unprotected habitat in Uganda, as at Bulindi, face mounting anthropogenic pressures that threaten their survival. Nevertheless, our study shows that chimpanzees can adjust their nesting behavior flexibly in response to rapid, extensive habitat change. While behavioral flexibility may enable them to cope with deforestation, at least to a certain point, the long-term survival of chimpanzees in fast-changing human-modified landscapes requires intensive conservation efforts.
Collapse
Affiliation(s)
- Kim van Dijk
- Bulindi Chimpanzee and Community Project, Hoima, Uganda.,Animal Behaviour and Cognition, Utrecht University, Utrecht, The Netherlands
| | - Marie Cibot
- Bulindi Chimpanzee and Community Project, Hoima, Uganda.,Anicoon Vétérinaires, Ploemeur, Larmor-Plage, France
| | - Matthew R McLennan
- Bulindi Chimpanzee and Community Project, Hoima, Uganda.,Department of Social Sciences, Faculty of Humanities and Social Sciences, Oxford Brookes University, Oxford, UK.,Centre for Ecology and Conservation, University of Exeter, Cornwall, UK
| |
Collapse
|
39
|
Prevalence of antibodies against human respiratory viruses potentially involving anthropozoonoses in wild bonobos. Primates 2021; 62:897-903. [PMID: 34338922 DOI: 10.1007/s10329-021-00935-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
One of the current threats to the bonobo (Pan paniscus), a highly endangered ape species only found in the Democratic Republic of the Congo, are anthropozoonoses caused by human respiratory viruses. To date, epidemiological information regarding respiratory viral infections in bonobos is limited. In this study, we examined fecal immunoglobulin A antibodies against human respiratory viruses in bonobos, which may help estimating the viral prevalence. A substantial proportion of bonobos were positive for the antiviral antibodies, including those against parainfluenza virus, respiratory syncytial virus, influenza virus, rhinovirus, and mumps virus. The prevalence of the antibodies was found to depend on the viral species and bonobo populations, suggesting that the bonobos had been exposed to these respiratory viruses. These results may indicate the need for an epidemiological evidence-based action plan for the protection of bonobos from anthropozoonoses.
Collapse
|
40
|
Sparse Evidence for Giardia intestinalis, Cryptosporidium spp. and Microsporidia Infections in Humans, Domesticated Animals and Wild Nonhuman Primates Sharing a Farm-Forest Mosaic Landscape in Western Uganda. Pathogens 2021; 10:pathogens10080933. [PMID: 34451397 PMCID: PMC8398676 DOI: 10.3390/pathogens10080933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
Zoonotic pathogen transmission is considered a leading threat to the survival of non-human primates and public health in shared landscapes. Giardia spp., Cryptosporidium spp. and Microsporidia are unicellular parasites spread by the fecal-oral route by environmentally resistant stages and can infect humans, livestock, and wildlife including non-human primates. Using immunoassay diagnostic kits and amplification/sequencing of the region of the triosephosphate isomerase, small ribosomal subunit rRNA and the internal transcribed spacer genes, we investigated Giardia, Cryptosporidium, and microsporidia infections, respectively, among humans, domesticated animals (livestock, poultry, and dogs), and wild nonhuman primates (eastern chimpanzees and black and white colobus monkeys) in Bulindi, Uganda, an area of remarkably high human-animal contact and spatial overlap. We analyzed 137 fecal samples and revealed the presence of G. intestinalis assemblage B in two human isolates, G. intestinalis assemblage E in one cow isolate, and Encephalitozoon cuniculi genotype II in two humans and one goat isolate. None of the chimpanzee and colobus monkey samples were positive for any of the screened parasites. Regular distribution of antiparasitic treatment in both humans and domestic animals in Bulindi could have reduced the occurrence of the screened parasites and decreased potential circulation of these pathogens among host species.
Collapse
|
41
|
McCarthy MS, Lester JD. Consumption of cultivated subterranean plant organs by chimpanzees in a human-dominated landscape. BEHAVIOUR 2021. [DOI: 10.1163/1568539x-bja10107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Although chimpanzees (Pan troglodytes) are ripe fruit specialists, they sometimes consume other plant parts including subterranean organs like roots and tubers. Such plant parts, which include underground storage organs (USOs), have been found to play a key role in the diets of some chimpanzee populations as well as, potentially, our hominin ancestors. We report the confirmed consumption of subterranean plant organs of three species — sweet potatoes (Ipomoea batatas), yams (Dioscorea alata) and peanuts (Arachis hypogaea), as well as unconfirmed consumption of cassava (Manihot esculenta) — by chimpanzees in a human-dominated landscape in western Uganda. These observations point toward the dietary flexibility of chimpanzees inhabiting anthropogenic landscapes, though mechanisms of novel food acquisition, particularly for subterranean fruits and tubers, are not well understood. Dietary flexibility may help chimpanzees survive as natural forest resources disappear, but simultaneously may bring them into greater conflict with their human neighbours, thereby further imperilling them.
Collapse
Affiliation(s)
- Maureen S. McCarthy
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Bulindi Chimpanzee and Community Project, Hoima, Uganda
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jack D. Lester
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Bulindi Chimpanzee and Community Project, Hoima, Uganda
| |
Collapse
|
42
|
Abstract
Over the last two decades, the viromes of our closest relatives, the African great apes (AGA), have been intensively studied. Comparative approaches have unveiled diverse evolutionary patterns, highlighting both stable host-virus associations over extended evolutionary timescales and much more recent viral emergence events. In this chapter, we summarize these findings and outline how they have shed a new light on the origins and evolution of many human-infecting viruses. We also show how this knowledge can be used to better understand the evolution of human health in relation to viral infections.
Collapse
|
43
|
Lonsdorf EV, Travis DA, Raphael J, Kamenya S, Lipende I, Mwacha D, Collins DA, Wilson M, Mjungu D, Murray C, Bakuza J, Wolf TM, Parsons MB, Deere JR, Lantz E, Kinsel MJ, Santymire R, Pintea L, Terio KA, Hahn BH, Pusey AE, Goodall J, Gillespie TR. The Gombe Ecosystem Health Project: 16 years of program evolution and lessons learned. Am J Primatol 2021; 84:e23300. [PMID: 34223656 PMCID: PMC8727649 DOI: 10.1002/ajp.23300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 12/30/2022]
Abstract
Infectious disease outbreaks pose a significant threat to the conservation of chimpanzees (Pan troglodytes) and all threatened nonhuman primates. Characterizing and mitigating these threats to support the sustainability and welfare of wild populations is of the highest priority. In an attempt to understand and mitigate the risk of disease for the chimpanzees of Gombe National Park, Tanzania, we initiated a long-term health-monitoring program in 2004. While the initial focus was to expand the ongoing behavioral research on chimpanzees to include standardized data on clinical signs of health, it soon became evident that the scope of the project would ideally include diagnostic surveillance of pathogens for all primates (including people) and domestic animals, both within and surrounding the National Park. Integration of these data, along with in-depth post-mortem examinations, have allowed us to establish baseline health indicators to inform outbreak response. Here, we describe the development and expansion of the Gombe Ecosystem Health project, review major findings from the research and summarize the challenges and lessons learned over the past 16 years. We also highlight future directions and present the opportunities and challenges that remain when implementing studies of ecosystem health in a complex, multispecies environment.
Collapse
Affiliation(s)
- Elizabeth V Lonsdorf
- Department of Psychology and Biological Foundations of Behavior Program, Franklin & Marshall College, Lancaster, Pennsylvania, USA
| | - Dominic A Travis
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Jane Raphael
- Gombe National Park, Tanzania Nationals Park, Kigoma, Tanzania
| | - Shadrack Kamenya
- Gombe Stream Research Center, The Jane Goodall Institute, Kigoma, Tanzania
| | - Iddi Lipende
- Tanzania Wildlife Research Institute, Arusha, Tanzania
| | - Dismas Mwacha
- Gombe Stream Research Center, The Jane Goodall Institute, Kigoma, Tanzania
| | - D Anthony Collins
- Gombe Stream Research Center, The Jane Goodall Institute, Kigoma, Tanzania
| | - Michael Wilson
- Departments of Anthropology and Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Deus Mjungu
- Gombe Stream Research Center, The Jane Goodall Institute, Kigoma, Tanzania
| | - Carson Murray
- Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, District of Columbia, USA
| | - Jared Bakuza
- College of Education, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Tiffany M Wolf
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Michele B Parsons
- Division of Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jessica R Deere
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Emma Lantz
- California Department of Fish and Wildlife, Rancho Cordova, California, USA
| | - Michael J Kinsel
- Zoological Pathology Program, University of Illinois, Brookfield, Illinois, USA
| | - Rachel Santymire
- Davee Center for Epidemiology and Endocrinology, Lincoln Park Zoo, Chicago, Illinois, USA
| | | | - Karen A Terio
- Zoological Pathology Program, University of Illinois, Brookfield, Illinois, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anne E Pusey
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Jane Goodall
- The Jane Goodall Institute, Vienna, Virginia, USA
| | - Thomas R Gillespie
- Departments of Environmental Sciences and Environmental Health and Program in Population Biology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
44
|
Gilardi K, Nziza J, Ssebide B, Syaluha EK, Muvunyi R, Aruho R, Shalukoma C, Seguya A, Masozera AB. Endangered mountain gorillas and COVID-19: One health lessons for prevention and preparedness during a global pandemic. Am J Primatol 2021; 84:e23291. [PMID: 34110030 DOI: 10.1002/ajp.23291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/10/2021] [Accepted: 05/22/2021] [Indexed: 11/09/2022]
Abstract
The world's 1063 mountain gorillas (Gorilla beringei beringei) live in two subpopulations at the borders of the Democratic Republic of Congo, Rwanda, and Uganda. The majority of mountain gorillas are human-habituated to facilitate tourism and research, which brings mountain gorillas into close proximity of people daily. Wild great apes are proven to be susceptible to human pathogens, including viruses that have caused fatal respiratory disease in mountain gorillas (e.g., human metapneumovirus1 ). This is the result of the close genetic relatedness of humans and gorillas as species, and the structural and genetic similarity in molecular receptors that allow viruses to infect cells2 . At the time of writing, there is no evidence that severe acute respiratory syndrome coronavirus 2, the coronavirus that causes coronavirus disease 19 (COVID-19), has infected a mountain gorilla. However, due to the significant potential for human-to-gorilla transmission, mountain gorilla range States took immediate steps to minimize the COVID-19 threat. These actions included a combination of preventive practice around gorillas and other great apes (e.g., mandatory face mask use, increased "social" minimum distancing from gorillas) as well as human public health measures (e.g., daily health/fever screenings, COVID-19 screening, and quarantines). Minimization of the COVID-19 threat also required socioeconomic decision-making and political will, as all gorilla tourism was suspended by late March 2020 and guidelines developed for tourism reopening. A consortium that collaborates and coordinates on mountain gorilla management and conservation, working within an intergovernmental institutional framework, took a multifaceted One Health approach to address the COVID-19 threat to mountain gorillas by developing a phased contingency plan for prevention and response. The aim of this paper is to describe how range States and partners achieved this collaborative planning effort, with intent that this real-world experience will inform similar actions at other great ape sites.
Collapse
Affiliation(s)
- Kirsten Gilardi
- Gorilla Doctors (MGVP, Inc.), Karen C. Drayer Wildlife Health Center, University of California Davis, Davis, California, USA
| | - Julius Nziza
- Gorilla Doctors (MGVP, Inc.), Karen C. Drayer Wildlife Health Center, University of California Davis, Davis, California, USA
| | - Benard Ssebide
- Gorilla Doctors (MGVP, Inc.), Karen C. Drayer Wildlife Health Center, University of California Davis, Davis, California, USA
| | - Eddy Kambale Syaluha
- Gorilla Doctors (MGVP, Inc.), Karen C. Drayer Wildlife Health Center, University of California Davis, Davis, California, USA
| | - Richard Muvunyi
- Department of Tourism and Conservation, Rwanda Development Board, Kigali, Rwanda
| | - Robert Aruho
- Monitoring and Research Program, Uganda Wildlife Authority, Kampala, Uganda
| | - Chantal Shalukoma
- Institute Congolais pour la Conservation de la Nature, Virunga National Park, Rumangabo, Democratic Republic of Congo
| | - Andrew Seguya
- Greater Virunga Transboundary Collaboration, Kigali, Rwanda
| | | |
Collapse
|
45
|
Behringer V, Deimel C, Stevens JMG, Kreyer M, Lee SM, Hohmann G, Fruth B, Heistermann M. Cell-Mediated Immune Ontogeny Is Affected by Sex but Not Environmental Context in a Long-Lived Primate Species. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.629094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ecoimmunology conceptualizes the role of immunity in shaping life history in a natural context. Within ecoimmunology, macroimmunology is a framework that explains the effects of habitat and spatial differences on variation in immune phenotypes across populations. Within these frameworks, immune ontogeny—the development of the immune system across an individual life span—has received little attention. Here, we investigated how immune ontogeny from birth until adulthood is affected by age, sex, and developmental environment in a long-lived primate species, the bonobo. We found a progressive, significant decline of urinary neopterin levels, a marker for the cell-mediated immune response, from birth until 5 years of age in both sexes. The overall pattern of age-related neopterin changes was sex-specific, with males having higher urinary neopterin levels than females in the first 3 years of life, and females having higher levels than males between 6 and 8 years. Environmental condition (zoo-housed vs. wild) did not influence neopterin levels, nor did age-related changes in neopterin levels differ between environments. Our data suggest that the post-natal development of cell-mediated immune ontogeny is sex-specific but does not show plasticity in response to environmental conditions in this long-lived primate species. This indicates that cell-mediated immune ontogeny in the bonobo follows a stereotypic and maybe a genetically determined pattern that is not affected by environmental differences in pathogen exposure and energy availability, but that sex is an important, yet often overlooked factor shaping patterns of immune ontogeny. Investigating the causes and consequences of variation in immunity throughout life is critical for our understanding of life-history evolution and strategies, mechanisms of sexual selection, and population dynamics with respect to pathogen susceptibility. A general description of sex-specific immune ontogeny as done here is a crucial step in this direction, particularly when it is considered in the context of a species’ ecology and evolutionary history.
Collapse
|
46
|
Gray GC, Robie ER, Studstill CJ, Nunn CL. Mitigating Future Respiratory Virus Pandemics: New Threats and Approaches to Consider. Viruses 2021; 13:637. [PMID: 33917745 PMCID: PMC8068197 DOI: 10.3390/v13040637] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Despite many recent efforts to predict and control emerging infectious disease threats to humans, we failed to anticipate the zoonotic viruses which led to pandemics in 2009 and 2020. The morbidity, mortality, and economic costs of these pandemics have been staggering. We desperately need a more targeted, cost-efficient, and sustainable strategy to detect and mitigate future zoonotic respiratory virus threats. Evidence suggests that the transition from an animal virus to a human pathogen is incremental and requires a considerable number of spillover events and considerable time before a pandemic variant emerges. This evolutionary view argues for the refocusing of public health resources on novel respiratory virus surveillance at human-animal interfaces in geographical hotspots for emerging infectious diseases. Where human-animal interface surveillance is not possible, a secondary high-yield, cost-efficient strategy is to conduct novel respiratory virus surveillance among pneumonia patients in these same hotspots. When novel pathogens are discovered, they must be quickly assessed for their human risk and, if indicated, mitigation strategies initiated. In this review, we discuss the most common respiratory virus threats, current efforts at early emerging pathogen detection, and propose and defend new molecular pathogen discovery strategies with the goal of preempting future pandemics.
Collapse
Affiliation(s)
- Gregory C. Gray
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA; (E.R.R.); (C.J.S.)
- Duke Global Health Institute, Duke University, Durham, NC 27710, USA;
- Emerging Infectious Disease Program, Duke-NUS Medical School, Singapore 169856, Singapore
- Global Health Center, Duke Kunshan University, Kunshan 215316, China
| | - Emily R. Robie
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA; (E.R.R.); (C.J.S.)
- Duke Global Health Institute, Duke University, Durham, NC 27710, USA;
| | - Caleb J. Studstill
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA; (E.R.R.); (C.J.S.)
- Duke Global Health Institute, Duke University, Durham, NC 27710, USA;
| | - Charles L. Nunn
- Duke Global Health Institute, Duke University, Durham, NC 27710, USA;
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
47
|
Ghai RR, Carpenter A, Liew AY, Martin KB, Herring MK, Gerber SI, Hall AJ, Sleeman JM, VonDobschuetz S, Behravesh CB. Animal Reservoirs and Hosts for Emerging Alphacoronaviruses and Betacoronaviruses. Emerg Infect Dis 2021; 27:1015-1022. [PMID: 33770472 PMCID: PMC8007319 DOI: 10.3201/eid2704.203945] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The ongoing global pandemic caused by coronavirus disease has once again demonstrated the role of the family Coronaviridae in causing human disease outbreaks. Because severe acute respiratory syndrome coronavirus 2 was first detected in December 2019, information on its tropism, host range, and clinical manifestations in animals is limited. Given the limited information, data from other coronaviruses might be useful for informing scientific inquiry, risk assessment, and decision-making. We reviewed endemic and emerging infections of alphacoronaviruses and betacoronaviruses in wildlife, livestock, and companion animals and provide information on the receptor use, known hosts, and clinical signs associated with each host for 15 coronaviruses detected in humans and animals. This information can be used to guide implementation of a One Health approach that involves human health, animal health, environmental, and other relevant partners in developing strategies for preparedness, response, and control to current and future coronavirus disease threats.
Collapse
|
48
|
Gray GC, Abdelgadir A. While We Endure This Pandemic, What New Respiratory Virus Threats Are We Missing? Open Forum Infect Dis 2021; 8:ofab078. [PMID: 33778092 PMCID: PMC7928563 DOI: 10.1093/ofid/ofab078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
In this paper, we review recent human respiratory virus epidemics, their zoonotic nature, and our current inability to identify future prepandemic threats. We propose a cost-efficient, One Health surveillance strategy that will be more efficient and more sustainable than previous efforts.
Collapse
Affiliation(s)
- Gregory C Gray
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA.,Duke Global Health Institute, Duke University, Durham, North Carolina, USA.,Global Health Research Center, Duke-Kunshan University, Kunshan, China.,Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore
| | - Anfal Abdelgadir
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA.,Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| |
Collapse
|
49
|
Owens LA, Colitti B, Hirji I, Pizarro A, Jaffe JE, Moittié S, Bishop-Lilly KA, Estrella LA, Voegtly LJ, Kuhn JH, Suen G, Deblois CL, Dunn CD, Juan-Sallés C, Goldberg TL. A Sarcina bacterium linked to lethal disease in sanctuary chimpanzees in Sierra Leone. Nat Commun 2021; 12:763. [PMID: 33536429 PMCID: PMC7859188 DOI: 10.1038/s41467-021-21012-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
Human and animal infections with bacteria of the genus Sarcina (family Clostridiaceae) are associated with gastric dilation and emphysematous gastritis. However, the potential roles of sarcinae as commensals or pathogens remain unclear. Here, we investigate a lethal disease of unknown etiology that affects sanctuary chimpanzees (Pan troglodytes verus) in Sierra Leone. The disease, which we have named "epizootic neurologic and gastroenteric syndrome" (ENGS), is characterized by neurologic and gastrointestinal signs and results in death of the animals, even after medical treatment. Using a case-control study design, we show that ENGS is strongly associated with Sarcina infection. The microorganism is distinct from Sarcina ventriculi and other known members of its genus, based on bacterial morphology and growth characteristics. Whole-genome sequencing confirms this distinction and reveals the presence of genetic features that may account for the unusual virulence of the bacterium. Therefore, we propose that this organism be considered the representative of a new species, named "Candidatus Sarcina troglodytae". Our results suggest that a heretofore unrecognized complex of related sarcinae likely exists, some of which may be highly virulent. However, the potential role of "Ca. S. troglodytae" in the etiology of ENGS, alone or in combination with other factors, remains a topic for future research.
Collapse
Affiliation(s)
- Leah A Owens
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Barbara Colitti
- Department of Veterinary Science, University of Torino, Torino, Italy
| | - Ismail Hirji
- Tacugama Chimpanzee Sanctuary, Freetown, Sierra Leone
| | | | - Jenny E Jaffe
- Tai Chimpanzee Project, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - Sophie Moittié
- School of Veterinary Medicine and Sciences, University of Nottingham Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK
- Twycross Zoo, Atherstone, UK
| | - Kimberly A Bishop-Lilly
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center, Fort Detrick, MD, USA
| | - Luis A Estrella
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center, Fort Detrick, MD, USA
| | - Logan J Voegtly
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center, Fort Detrick, MD, USA
- Leidos, Reston, VI, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD, USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Courtney L Deblois
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christopher D Dunn
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Tony L Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
50
|
Glasser DB, Goldberg TL, Guma N, Balyesiima G, Agaba H, Gessa SJ, Rothman JM. Opportunities for respiratory disease transmission from people to chimpanzees at an East African tourism site. Am J Primatol 2021; 83:e23228. [PMID: 33400317 PMCID: PMC7883129 DOI: 10.1002/ajp.23228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/18/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
Respiratory illnesses, including COVID-19, present a serious threat to endangered wild chimpanzee (Pan troglodytes) populations. In some parts of sub-Saharan Africa, chimpanzee tracking is a popular tourism activity, offering visitors a chance to view apes in their natural habitats. Chimpanzee tourism is an important source of revenue and thus benefits conservation; however, chimpanzee tracking may also increase the risk of disease transmission from people to chimpanzees directly (e.g., via aerosol transmission) or indirectly (e.g., through the environment or via fomites). This study assessed how tourist behaviors might facilitate respiratory disease transmission at a chimpanzee tracking site in Kibale National Park, Uganda. We observed tourists, guides, and student interns from the time they entered the forest to view the chimpanzees until they left the forest and noted behaviors related to disease transmission. Common behaviors included coughing, sneezing, and urinating, which respectively occurred during 88.1%, 65.4%, and 36.6% of excursions. Per excursion, individuals touched their faces an average of 125.84 ± 34.45 times and touched large tree trunks or branches (which chimpanzees might subsequently touch) an average of 230.14 ± 108.66 times. These results show that many pathways exist by which pathogens might move from humans to chimpanzees in the context of tourism. Guidelines for minimizing the risk of such transmission should consider tourist behavior and the full range of modes by which pathogen transmission might occur between tourists and chimpanzees.
Collapse
Affiliation(s)
- Darcey B. Glasser
- Department of Psychology, Animal Behavior and ConservationHunter College of the City University of New YorkNew York CityNew YorkUSA
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | | | | | | | - Jessica M. Rothman
- Uganda Wildlife AuthorityKampalaUganda
- Department of AnthropologyHunter College of the City University of New YorkNew York CityNew YorkUSA
- New York Consortium in Evolutionary PrimatologyNew York CityNew YorkUSA
| |
Collapse
|