1
|
Dinalli VP, Costa MC, Venâncio EJ, Filho JAB, Bessegatto JA, Holkem AT, Alfieri AA, da Silva CA, Oba A. Impact of Chlorella vulgaris and probiotic supplementation on performance, immunity and intestinal microbiota of broiler chickens. PLoS One 2025; 20:e0313736. [PMID: 39869566 PMCID: PMC11771937 DOI: 10.1371/journal.pone.0313736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/31/2024] [Indexed: 01/29/2025] Open
Abstract
Chlorella vulgaris has antioxidant, antimicrobial, and anti-inflammatory properties, as well as the probiotic that is important for keeping the intestinal microbiota balanced. The objective was to test the impact of supplementation with microalgae and/or probiotics on broiler chickens' performance, immunity, and intestinal microbiota. The experimental design was in randomized blocks in a 4x2 factorial scheme, with four levels of inclusion of C. vulgaris (0; 0.25; 0.50 and 1%) associated or not with a commercial probiotic with five replications of 26 chickens per experimental unit. The results showed that probiotics improved feed conversion. Probiotics increased the productivity index only at 0.25% C. vulgaris supplementation. There was a reduction in spleen weight at 42 days of age in chickens fed with probiotics, but the different treatments did not alter serum antibodies. Sampling age had a significant impact on richness addressed by the number of observed genera and diversity addressed by the Shannon index. The most abundant phylum in the chicken intestinal tract was Firmicutes followed by Bacteroidetes and Proteobacteria. Bifidobacterium spp. was found in animals receiving 1% microalgae and probiotics on day 42, suggesting that this genus has benefited from microalgae supplementation. It is concluded that the probiotic and C. vulgaris have the potential to improve performance without causing major changes in the immunity and cecal microbiota.
Collapse
Affiliation(s)
- Verena Pereira Dinalli
- Department of Animal Science, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Marcio Carvalho Costa
- Department of Biomedical Sciences, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Emerson José Venâncio
- Department of Pathological Sciences, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | | | - José Antônio Bessegatto
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Augusto Tasch Holkem
- Department of Biomedical Sciences, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Amauri Alcindo Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Caio Abercio da Silva
- Department of Animal Science, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Alexandre Oba
- Department of Animal Science, State University of Londrina (UEL), Londrina, Paraná, Brazil
| |
Collapse
|
2
|
Madacussengua O, Mendes AR, Almeida AM, Lordelo M. Effects of using microalgae in poultry diets on the production and quality of meat and eggs: a review. Br Poult Sci 2025:1-17. [PMID: 39813074 DOI: 10.1080/00071668.2024.2420330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/09/2024] [Indexed: 01/16/2025]
Abstract
1. This review was conducted to examine the nutritional composition of microalgae and their effects as a feed ingredient in poultry diets, delving into their influence on the production and quality of meat and eggs. Data collection focused on peer-reviewed scientific articles, with no limitation on the temporal horizon.2. Regarding nutritional composition, the collected papers indicated that certain microalgae species have a rich nutritional composition, with approximately 50% of their biomass composed of proteins. They contain a high concentration of EPA and DHA, important fatty acids that are found in low concentrations in conventional feedstuffs, and the presence of carotenoids such as beta-carotene.3. Incorporating microalgae into the diet of poultry can improve performance variables, such as mortality, live weight and feed conversion rate. It promotes benefits in meat and egg quality, with reduced cholesterol, increased EPA and DHA, intensified colour and higher concentration of carotenoids.
Collapse
Affiliation(s)
| | | | - A M Almeida
- LEAF- Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | | |
Collapse
|
3
|
Hamprakorn K, Maneewan B, Jantasin W, Lani MN, Moonmanee T, Panatuk J. Effect of extracted phycocyanin by-products as a synbiotic supplement on the production performance and intestinal morphology of broilers. Vet World 2025; 18:52-59. [PMID: 40041502 PMCID: PMC11873382 DOI: 10.14202/vetworld.2025.52-59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/09/2024] [Indexed: 03/06/2025] Open
Abstract
Background and Aim The extracted phycocyanin by-products retain nutritional value, including proteins, polysaccharides, and bioactive compounds, which have the potential as feed supplements in broiler production. This study aimed to evaluate the effect of by-products acquired during phycocyanin extraction, which is used as a novel synbiotic supplement, on the production performance and intestinal health of broilers in a tropical climate. Materials and Methods A total of 240 one-day-old male Ross 308 broilers were randomly distributed among five dietary treatment groups; they received a diet supplemented with a synbiotic product (probiotic [Lactobacillus johnsonii] at least 1.0 × 108 colony-forming unit/mg with prebiotic [by-product of phycocyanin extraction]) at 0.000%, 0.025%, 0.050%, 0.075%, and 0.100%. We investigated the effects of dietary synbiotic supplements on the growth performance, meat quality, intestinal morphology, and cecal bacterial population of broiler chickens aged 35 days. Results Synbiotics used as a dietary supplement did not affect the growth performance of broilers during any experimental period (p > 0.05); however, it significantly increased the redness of meat and decreased the levels of thiobarbituric acid-reactive substances on days 3 and 7 of storage (p < 0.05). Moreover, synbiotics significantly improved the height and surface area of villi in the duodenum and jejunum (p < 0.05). Conclusion The study demonstrated that dietary supplementation with 0.1% synbiotics, incorporating a by-product of phycocyanin extraction, did not significantly influence the growth performance of broiler chickens. However, it positively affected meat quality by increasing redness and reducing lipid oxidation during storage. Additionally, synbiotic supplementation significantly enhanced intestinal health by improving the villi height and surface area in the duodenum and jejunum, highlighting its potential benefits for broiler intestinal morphology and meat quality in tropical climates. Further research is recommended to explore the mechanisms underlying these effects and their implications for long-term poultry health and productivity.
Collapse
Affiliation(s)
- Kannikar Hamprakorn
- Faculty of Animal Science and Technology, Maejo University, Chiang Mai 50290, Thailand
| | - Buaream Maneewan
- Faculty of Animal Science and Technology, Maejo University, Chiang Mai 50290, Thailand
| | - Wantamas Jantasin
- Faculty of Animal Science and Technology, Maejo University, Chiang Mai 50290, Thailand
| | - Mohd Nizam Lani
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Tossapol Moonmanee
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Julakorn Panatuk
- Faculty of Animal Science and Technology, Maejo University, Chiang Mai 50290, Thailand
| |
Collapse
|
4
|
Van Nerom S, Buyse K, Van Immerseel F, Robbens J, Delezie E. Exploring Feed Digestibility and Broiler Performance in Response to Dietary Supplementation of Chlorella vulgaris. Animals (Basel) 2024; 15:65. [PMID: 39795008 PMCID: PMC11718804 DOI: 10.3390/ani15010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
This study evaluated the feed digestibility of diets including autotrophic Chlorella (C.) vulgaris in 252 male broilers (Ross 308), comparing unprocessed biomass (trial 1) and pulsed electric field (PEF) processed biomass (trial 2) at inclusion levels up to 20%. In trial 2, performance and meat color were also evaluated. Each trial included seven treatments (0%, 1%, 2%, 5%, 10%, 15%, and 20% (%w/w on dry matter (DM)) C. vulgaris) with six replicates (three birds per replicate) per treatment. Data were analyzed using linear, quadratic, and broken-line models. Control feeds without microalgae inclusion achieved a crude protein digestibility of 82.04 ± 1.42% (trial 1) and 81.63 ± 1.90% (trial 2), while feed with 20% non-processed microalgae inclusion only had a protein digestibility of 66.96 ± 1.16% (trial 1) and feed with PEF processed microalgae at 20% had a protein digestibility of 72.75 ± 0.34% (trial 2). In general, increasing inclusion levels of C. vulgaris impaired nutrient digestibility, significantly reducing crude protein, crude fat, gross energy, and crude ash digestibility (p < 0.001). Broken-line models identified critical inclusion thresholds beyond which digestibility declined significantly, i.e., at 10% for crude protein, 12.53% for crude fat, and 9.26% for gross energy in unprocessed microalgae feeds (trial 1). For PEF-processed microalgae, only a broken line fit was obtained for gross energy, with a breakpoint at 5% (trial 2). Furthermore, a significant linear decrease in body weight (BW) (p < 0.001), average daily gain (ADG) (p < 0.001), average daily feed intake (ADFI) (p = 0.006), and relative and absolute breast filet weight was observed as microalgae inclusion level increased (trial 2). Color parameters also changed significantly with increasing microalgae inclusion level: L* showed a significant linear decrease (p = 0.029), b* and a* showed a significant linear increase (p < 0.001) (trial 2). This research advances the exploration of sustainable protein alternatives, highlighting the potential of microalgae in broiler feed and the benefits of processing methods such as PEF to enhance nutrient utilization.
Collapse
Affiliation(s)
- Sofie Van Nerom
- Animal Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Merelbeke-Melle, Belgium; (K.B.); (J.R.)
- Livestock Gut Health Team (LiGHT), Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke-Melle, Belgium;
| | - Kobe Buyse
- Animal Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Merelbeke-Melle, Belgium; (K.B.); (J.R.)
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke-Melle, Belgium
| | - Filip Van Immerseel
- Livestock Gut Health Team (LiGHT), Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke-Melle, Belgium;
| | - Johan Robbens
- Animal Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Merelbeke-Melle, Belgium; (K.B.); (J.R.)
| | - Evelyne Delezie
- Animal Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Merelbeke-Melle, Belgium; (K.B.); (J.R.)
| |
Collapse
|
5
|
Yalçınkaya H, Yalçın S, Ramay MS, Onbaşılar EE, Bakır B, Elibol FKE, Yalçın S, Shehata AA, Basiouni S. Evaluation of Spirulina platensis as a Feed Additive in Low-Protein Diets of Broilers. Int J Mol Sci 2024; 26:24. [PMID: 39795890 PMCID: PMC11720351 DOI: 10.3390/ijms26010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/07/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Spirulina platensis is a natural antioxidant product that has the ability to improve the performance of poultry. Therefore, the present study aimed to evaluate the effect of using Spirulina platensis as a feed additive in broiler diets. A total of 252 daily male Ross 308 chicks were randomly assigned to six groups. There were two different protein groups: one was at the catalog protein value, and the other was reduced by 10%. Spirulina platensis at 0, 0.1, and 0.2% was added to each protein group. The trial lasted 41 days. Reducing the protein level by 10% had a negative impact on the performance of the chicks. However, Spirulina platensis supplementation had a positive effect on the feed conversion ratio, reduced the oxidative stress index in the chicks' liver and meat, increased the total antioxidant status and antioxidant enzyme activities, improved the villus height, serum IgG, and some bone parameters, and reduced the serum triglyceride concentration. The carcass yield, visceral organ weight percentages, total phenolic content, and malondialdehyde (MDA) level in the thigh meat and some serum biochemical parameters were not affected by the usage of Spirulina platensis. In conclusion, 0.1% Spirulina platensis could be a feasible feed additive in low-protein diets due to eliciting an improved performance, antioxidant status, and immune response in broilers.
Collapse
Affiliation(s)
- Hüseyin Yalçınkaya
- Department of Border Control for Animal and Animal Products, Directorate General for Food and Control, Ministry of Agriculture and Forestry, 06510 Ankara, Turkey;
| | - Sakine Yalçın
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University, 06110 Ankara, Turkey; (S.Y.); (M.S.R.)
| | - Muhammad Shazaib Ramay
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University, 06110 Ankara, Turkey; (S.Y.); (M.S.R.)
| | - Esin Ebru Onbaşılar
- Department of Animal Husbandry, Faculty of Veterinary Medicine, Ankara University, 06110 Ankara, Turkey;
| | - Buket Bakır
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Tekirdağ Namık Kemal University, 59030 Tekirdağ, Turkey;
| | - Fatma Kübra Erbay Elibol
- Department of Biomedical Engineering, Faculty of Engineering, TOBB Economics and Technology University, 06560 Ankara, Turkey;
| | - Suzan Yalçın
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Selçuk University, 42003 Konya, Turkey;
| | - Awad A. Shehata
- Department of Chemistry, TUM School of Natural Sciences, Bavarian NMR Center (BNMRZ), Structural Membrane Biochemistry, Technical University of Munich, 85748 Garching, Germany
| | - Shereen Basiouni
- Institute of Molecular Physiology, Johannes-Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
6
|
Lestingi A, Alagawany M, Di Cerbo A, Crescenzo G, Zizzadoro C. Spirulina (Arthrospira platensis) Used as Functional Feed Supplement or Alternative Protein Source: A Review of the Effects of Different Dietary Inclusion Levels on Production Performance, Health Status, and Meat Quality of Broiler Chickens. Life (Basel) 2024; 14:1537. [PMID: 39768246 PMCID: PMC11679488 DOI: 10.3390/life14121537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
The broiler industry is pivotal in meeting the growing global demand for highly nutritious animal protein foods. Hence, there is a continuous interest in identifying novel, alternative, and even unconventional feed resources that could help sustainably support chicken meat production and quality. In this view, the microalga Spirulina (Arthrospira, formerly Spirulina, platensis), due to its unique chemical composition and some ecological advantages offered by its cultivation over traditional agriculture, has attracted great attention in the poultry sector for potential application in broiler diets, either as a functional supplement or a replacer of conventional protein sources such as soybean meal. The studies conducted so far seem to have confirmed many of the initial expectations regarding the advantages that may derive from dietary Spirulina supplementation, documenting its capacity to positively influence the intestinal and general health status of broiler chickens, leading to improved or preserved productive performance (under normal or challenging conditions, respectively), as well as to increased disease resistance and survivability. Furthermore, dietary Spirulina supplementation has been shown to induce positive changes in some important traits of broiler meat quality. However, at present, the inclusion of Spirulina in broiler diet, especially but not solely in relation to the use as an alternative protein source, presents several technical and economic limitations. To increase the overall awareness around the actual usefulness and practical usability of Spirulina as a novel natural component of the broiler diet, this review paper seeks to provide a comprehensive and integrated presentation of what is currently known about this topic, highlighting critical issues that are still pending and would require further research efforts.
Collapse
Affiliation(s)
- Antonia Lestingi
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (A.L.); (G.C.); (C.Z.)
| | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig 44519, Egypt;
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Giuseppe Crescenzo
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (A.L.); (G.C.); (C.Z.)
| | - Claudia Zizzadoro
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (A.L.); (G.C.); (C.Z.)
| |
Collapse
|
7
|
Spínola MP, Mendes AR, Prates JAM. Chemical Composition, Bioactivities, and Applications of Spirulina ( Limnospira platensis) in Food, Feed, and Medicine. Foods 2024; 13:3656. [PMID: 39594071 PMCID: PMC11593816 DOI: 10.3390/foods13223656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Spirulina (Limnospira platensis) is a microalga recognised for its rich nutritional composition and diverse bioactive compounds, making it a valuable functional food, feed, and therapeutic agent. This review examines spirulina's chemical composition, including its high levels of protein, essential fatty acids, vitamins, minerals, and bioactive compounds, such as the phycocyanin pigment, polysaccharides, and carotenoids, in food, feed, and medicine. These compounds exhibit various biological activities, including antioxidant, anti-inflammatory, immunomodulatory, antiviral, anticancer, antidiabetic and lipid-lowering effects. Spirulina's potential to mitigate oxidative stress, enhance immune function, and inhibit tumour growth positions it as a promising candidate for preventing chronic diseases. Additionally, spirulina is gaining interest in the animal feed sector as a promotor of growth performance, improving immune responses and increasing resistance to diseases in livestock, poultry, and aquaculture. Despite its well-documented health benefits, future research is needed to optimize production/cultivation methods, improve its bioavailability, and validate its efficacy (dose-effect relationship) and safety through clinical trials and large-scale human trials. This review underscores the potential of spirulina to address global health and nutrition challenges, supporting its continued application in food, feed, and medicine.
Collapse
Affiliation(s)
- Maria P. Spínola
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.P.S.); (A.R.M.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Ana R. Mendes
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.P.S.); (A.R.M.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - José A. M. Prates
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.P.S.); (A.R.M.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
8
|
Martins CF, Matzapetakis M, Ribeiro DM, Kuleš J, Horvatić A, Guillemin N, Eckersall PD, Freire JPB, Almeida AM, Prates JAM. Metabolomics and proteomics insights into hepatic responses of weaned piglets to dietary Spirulina inclusion and lysozyme supplementation. BMC Vet Res 2024; 20:505. [PMID: 39506864 PMCID: PMC11539757 DOI: 10.1186/s12917-024-04339-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Studying the effect of dietary Spirulina and lysozyme supplementation on the metabolome and proteome of liver tissue contributes to understanding potential hepatic adaptations of piglets to these novel diets. This study aimed to understand the influence of including 10% Spirulina on the metabolome and proteome of piglet liver tissue. Three groups of 10 post-weaned piglets, housed in pairs, were fed for 28 days with one of three experimental diets: a cereal and soybean meal-based diet (Control), a base diet with 10% Spirulina (SP), and an SP diet supplemented with 0.01% lysozyme (SP + L). At the end of the trial, animals were sacrificed and liver tissue was collected. Metabolomics analysis (n = 10) was performed using NMR data analysed with PCA and PLS-DA. Proteomics analysis (n = 5) was conducted using a filter aided sample preparation (FASP) protocol and Tandem Mass Tag (TMT)-based quantitative approach with an Orbitrap mass spectrometer. RESULTS Growth performance showed an average daily gain reduction of 9.5% and a feed conversion ratio increase of 10.6% in groups fed Spirulina compared to the control group. Metabolomic analysis revealed no significant differences among the groups and identified 60 metabolites in the liver tissue. Proteomics analysis identified 2,560 proteins, with 132, 11, and 52 differentially expressed in the Control vs. SP, Control vs. SP + L and SP vs. SP + L comparisons, respectively. This study demonstrated that Spirulina enhances liver energy conversion efficiency, detoxification and cellular secretion. It improves hepatic metabolic efficiency through alterations in fatty acid oxidation (e.g., upregulation of enzymes like fatty acid synthase and increased acetyl-CoA levels), carbohydrate catabolism (e.g., increased glucose and glucose-6-phosphate), pyruvate metabolism (e.g., higher levels of pyruvate and phosphoenolpyruvate carboxykinase), and cellular defence mechanisms (e.g., upregulation of glutathione and metallothionein). Lysozyme supplementation mitigates some adverse effects of Spirulina, bringing physiological responses closer to control levels. This includes fewer differentially expressed proteins and improved dry matter, organic matter and energy digestibility. Lysozyme also enhances coenzyme availability, skeletal myofibril assembly, actin-mediated cell contraction, tissue regeneration and development through mesenchymal migration and nucleic acid synthesis pathways. CONCLUSIONS While Spirulina inclusion had some adverse effects on growth performance, it also enhanced hepatic metabolic efficiency by improving fatty acid oxidation, carbohydrate catabolism and cellular defence mechanisms. The addition of lysozyme further improved these benefits by reducing some of the negative impacts on growth and enhancing nutrient digestibility, tissue regeneration, and overall metabolic balance. Together, Spirulina and lysozyme demonstrate potential as functional dietary components, but further optimization is needed to fully realize their benefits without compromising growth performance.
Collapse
Affiliation(s)
- Cátia Falcão Martins
- Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, Lisbon, 1300-477, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, Av. da Universidade Técnica, Lisbon, 1300-477, Portugal
- Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisbon, 1349-017, Portugal
| | - Manolis Matzapetakis
- Instituto de Tecnologia Química E Biológica, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - David M Ribeiro
- Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisbon, 1349-017, Portugal
| | - Josipa Kuleš
- Laboratory of Proteomics, Faculty of Veterinary Medicine, Internal Diseases Clinic, University of Zagreb, Heinzelova 55, Zagreb, 10000, Croatia
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, Zagreb, 10000, Croatia
| | - Anita Horvatić
- Laboratory of Proteomics, Faculty of Veterinary Medicine, Internal Diseases Clinic, University of Zagreb, Heinzelova 55, Zagreb, 10000, Croatia
- Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Nicholas Guillemin
- Laboratory of Proteomics, Faculty of Veterinary Medicine, Internal Diseases Clinic, University of Zagreb, Heinzelova 55, Zagreb, 10000, Croatia
| | - Peter David Eckersall
- Laboratory of Proteomics, Faculty of Veterinary Medicine, Internal Diseases Clinic, University of Zagreb, Heinzelova 55, Zagreb, 10000, Croatia
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK
| | - João P B Freire
- Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisbon, 1349-017, Portugal
| | - André M Almeida
- Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisbon, 1349-017, Portugal.
| | - José A M Prates
- Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, Lisbon, 1300-477, Portugal.
- Associate Laboratory for Animal and Veterinary Sciences, Av. da Universidade Técnica, Lisbon, 1300-477, Portugal.
| |
Collapse
|
9
|
Sherif R, Nassef E, El-Kassas S, Bakr A, Hegazi E, El-Sawy H. Synergistic impact of Chlorella vulgaris, zinc oxide- and/or selenium nanoparticles dietary supplementation on broiler's growth performance, antioxidant and blood biochemistry. Trop Anim Health Prod 2024; 56:246. [PMID: 39212817 PMCID: PMC11364791 DOI: 10.1007/s11250-024-04098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
The current study explored the influence of dietary supplementation of Chlorella vulgaris dried powder (CV) with zinc-oxide-nanoparticles (ZnO-NPs), and/or selenium-nanoparticles (Se-NPs) on broilers' growth, antioxidant capacity, immune status, histological responses, and gene expression of some related genes. Several 200 one-day-old Cobb-500 male chicks were distributed into 5 groups with four replicates each. In the 1st group, birds were fed the basal diet (BD). In the 2nd, 3rd, 4th, and 5th groups, birds received the BD supplemented with CV only, CV + ZnO-NPs, CV + Se-NPs, and CV + ZnO-NPs + Se-NPs, respectively. The CV dried powder, ZnO-NPs, and Se-NPs were added to the BD at a rate of 1 g, 40 mg, and 0.3 mg/kg diet, respectively. After 6 weeks of feeding, increases in final body weights (P < 0.05), body weight gain (P < 0.05), and feed intake (P < 0.05) were linked with improvements in FCR (P < 0.05) and intestinal morphometric indices (P < 0.05), and marked up-regulations of MYOS (P < 0.05), GHR (P < 0.05), and IGF (P < 0.05) genes were established. Additionally, distinct increases in antioxidant enzyme activities of SOD (P < 0.05), and GPX (P < 0.05) with increases in the mRNA copies of their genes were measured. Moreover, slight improvement in immunity indices, WBCs count (P > 0.05), and phagocytic and lysozyme activities (P > 0.05) were found. However, distinct increases in phagocytic index (P < 0.05) and up-regulations of IL-1β and TNF, and down-regulation of IL-10 mRNA levels were reported (P < 0.05). These findings were prominent in the case of the separate supplementation of CV with ZnO-NPs or Se-NPs confirming the synergistic mechanisms of CV with ZnO-NPs or Se-NPs. Thus, the synergetic supplementation of CV with ZnO-NPs, or Se-NPs in the broiler's diet could augment their growth and antioxidant response.
Collapse
Affiliation(s)
- Rawda Sherif
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Eldsokey Nassef
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Seham El-Kassas
- Animal, Poultry, and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Abdulnasser Bakr
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Elsayed Hegazi
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Hanan El-Sawy
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|
10
|
Spínola MP, Costa MM, Tavares B, Pestana JM, Tavares JC, Martins CF, Alfaia CM, Maciel V, Carvalho DFP, Mourato MP, Lordelo MM, Prates JAM. Impact of long-term feeding a high level of Spirulina combined with enzymes on growth performance, carcass traits and meat quality in broiler chickens. Front Vet Sci 2024; 11:1451516. [PMID: 39257638 PMCID: PMC11385295 DOI: 10.3389/fvets.2024.1451516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
This study evaluates the effect of prolonged feeding with a high inclusion level of Spirulina, combined with peptidases, on broiler chicken's growth performance, digesta viscosity, carcass attributes and meat quality. The experiment involved 120 male broilers divided into 40 battery brooders, each housing 3 birds. Post 7-day acclimatisation with a corn and soybean-based diet, the birds were provided with one of four diets: a corn and soybean meal-based diet (CON), a mix incorporating 15% Spirulina (SP), a Spirulina-rich mix supplemented with 0.025% of commercial VemoZyme® P (SPV), or a Spirulina-rich mix supplemented with 0.10% of porcine pancreatin (SPP). The CON group had higher body weight and weight gain (p < 0.001) and a lower feed conversion ratio (p < 0.001) from day 7-21, compared to the Spirulina-fed groups. Spirulina-fed chickens significantly increased ileum viscosity (p < 0.05). Spirulina also elevated the weight (p < 0.05) of the duodenum and the length (p < 0.001) of the entire gastrointestinal tract compared to CON. Breast and thigh muscles from Spirulina-fed broilers displayed higher values of yellowness (b*) (p < 0.001), pigments (p < 0.05), and n-3 PUFA (p < 0.01), while n-6/n-3 ratio (p < 0.001) and α-tocopherol (p < 0.001) decreased relative to the CON. In conclusion, the introduction of a high level of Spirulina into broiler diets for an extended duration, has the potential to diminish birds' growth performance, possibly due to increased digesta viscosity. However, it does enhance the nutritional quality of the meat.
Collapse
Affiliation(s)
- Maria P Spínola
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Mónica M Costa
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Beatriz Tavares
- Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - José M Pestana
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - João C Tavares
- Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Cátia F Martins
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Associated Laboratory TERRA, Lisbon, Portugal
| | - Cristina M Alfaia
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Verena Maciel
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Daniela F P Carvalho
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Associated Laboratory TERRA, Lisbon, Portugal
| | - Miguel P Mourato
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Associated Laboratory TERRA, Lisbon, Portugal
| | - Madalena M Lordelo
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Associated Laboratory TERRA, Lisbon, Portugal
| | - José A M Prates
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| |
Collapse
|
11
|
Salahuddin M, Abdel-Wareth AAA, Stamps KG, Gray CD, Aviña AMW, Fulzele S, Lohakare J. Enhancing Laying Hens' Performance, Egg Quality, Shelf Life during Storage, and Blood Biochemistry with Spirulina platensis Supplementation. Vet Sci 2024; 11:383. [PMID: 39195837 PMCID: PMC11359869 DOI: 10.3390/vetsci11080383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Enhancing the sustainability of chicken farming involves improving health and productivity and product qualities. This study explores the influence of Spirulina platensis (SP) supplementation on the productivity, egg quality, shelf life during storage, and blood biochemistry of laying hens. A total of 192 thirty-nine-week-old White Leghorn hens were randomly divided into 4 dietary groups: a control group and 3 treatment groups receiving 2.5 g/kg, 5 g/kg, or 10 g/kg of SP, respectively. The study was conducted for six weeks with measuring feed intake, feed conversion ratio, egg production, egg quality, shelf life, and blood biochemistry. The results demonstrated significant enhancements in egg weight (p < 0.05) and egg mass (p < 0.05) in the treatment of SP groups. The SP treated hens showed significant improvements in yolk color (p < 0.05) and Haugh unit scores (p < 0.05). The SP supplementation showed a hepatoprotective effect, as indicated by significant reduction in Alanine aminotransferase (ALT) (p < 0.05) and alkaline phosphatase (ALP) (p < 0.05) levels; however, increases in total protein, albumin, and globulin levels were observed. Furthermore, the egg quality of stored eggs for 21 days linearly increased with increments in the SP levels. In conclusion, it can be speculated that adding SP at 2.5 g/kg and 5 g/kg can significantly improve the productivity of laying hens, eggs' quality, shelf life, and blood biochemistry, thereby contributing to a more sustainable and efficient chicken production.
Collapse
Affiliation(s)
- Md Salahuddin
- Poultry Center, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (M.S.); or (A.A.A.A.-W.); (K.G.S.); (C.D.G.); (A.M.W.A.)
| | - Ahmed A. A. Abdel-Wareth
- Poultry Center, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (M.S.); or (A.A.A.A.-W.); (K.G.S.); (C.D.G.); (A.M.W.A.)
- Department of Animal and Poultry Production, Faculty of Agriculture, South Valley University, Qena 83523, Egypt
| | - Kayla G. Stamps
- Poultry Center, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (M.S.); or (A.A.A.A.-W.); (K.G.S.); (C.D.G.); (A.M.W.A.)
| | - Cassandra D. Gray
- Poultry Center, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (M.S.); or (A.A.A.A.-W.); (K.G.S.); (C.D.G.); (A.M.W.A.)
| | - Adrian M. W. Aviña
- Poultry Center, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (M.S.); or (A.A.A.A.-W.); (K.G.S.); (C.D.G.); (A.M.W.A.)
| | - Sadanand Fulzele
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Jayant Lohakare
- Poultry Center, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (M.S.); or (A.A.A.A.-W.); (K.G.S.); (C.D.G.); (A.M.W.A.)
| |
Collapse
|
12
|
Zampiga M, Laghi L, Soglia F, Piscitelli R, Dayan J, Petracci M, Bonaldo A, Sirri F. Partial substitution of soybean meal with microalgae meal (Arthrospira spp. - Spirulina) in grower and finisher diets for broiler chickens: implications on performance parameters, footpad dermatitis occurrence, breast meat quality traits, amino acid digestibility and plasma metabolomics profile. Poult Sci 2024; 103:103856. [PMID: 38908124 PMCID: PMC11253657 DOI: 10.1016/j.psj.2024.103856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/24/2024] Open
Abstract
This trial was conducted to evaluate the effects of replacing soybean meal with microalgae meal (MM; Arthrospira spp.) during grower and finisher phases on productive performance, footpad dermatitis (FPD) occurrence, breast meat quality, amino acid digestibility and plasma metabolomics profile of broiler chickens. One thousand day-old Ross 308 male chicks were divided into 5 experimental groups (8 replicates, 25 birds/each): CON, fed a commercial soybean-based diet throughout the trial (0-41 d); F3 and F6, fed the CON diet up to 28 d of age and then a finisher diet (29-41 d) with either 30 or 60 g MM/kg, respectively; and GF3 and GF6, receiving CON diet until 14 d and then diets containing 30 or 60 g MM/kg from 15 to 41 d, respectively. All diets were iso-energetic and with a similar amino acid profile. Growth performances were recorded on a pen basis at the end of each feeding phase and apparent ileal amino acid digestibility was determined at 41 d. Footpad dermatitis occurrence was assessed on all processed birds, while breast and plasma samples were collected for meat quality and metabolomics analysis (proton nuclear magnetic resonance - 1H-NMR). At 41 d, CON group showed higher body weight than F6 and GF6 ones (2,541 vs. 2,412 vs. 2,384 g, respectively; P < 0.05). Overall, GF6 group exhibited the highest feed conversion ratio, while F3 did not present significant differences compared to CON (1.785 vs. 1.810 vs. 1.934 g feed/g gain, respectively for CON, F3 and GF6; P < 0.01). The occurrence and the risk of developing FPD were similar among groups. MM administration increased breast meat yellowness and reduced amino acid digestibility (P < 0.001). The 1H-NMR analysis revealed variations in the levels of some circulating metabolites, including histidine, arginine and creatine, which play important metabolic roles. Overall, these findings can contribute to expand the knowledge about the use of Arthrospira spp. as protein source in broiler diets.
Collapse
Affiliation(s)
- Marco Zampiga
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Luca Laghi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Francesca Soglia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Raffaela Piscitelli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Jonathan Dayan
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy; Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Alessio Bonaldo
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano Emilia, Bologna 40064, Italy
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy.
| |
Collapse
|
13
|
Spínola MP, Costa MM, Prates JAM. Analysing the Impact of Spirulina Intake Levels on Performance Parameters, Blood Health Markers and Carcass Traits of Broiler Chickens. Animals (Basel) 2024; 14:1964. [PMID: 38998076 PMCID: PMC11240424 DOI: 10.3390/ani14131964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
This systematic review examines the impact of varying Spirulina (Limnospira platensis) intake levels on broiler chickens, focusing on growth performance, blood health markers and carcass traits. The data revealed cumulative Spirulina intakes from 3.13 g to 521 g per bird (total feed consumed multiplied by its proportion in the diet) establish a cubic relationship between dosage and growth outcomes. Initial benefits peak and diminish with increased intake, with the optimal threshold for growth performance identified at 45 g per bird. Lower intakes between 14 g and 29 g per bird enhance blood health markers, improving lipid profiles and antioxidant capacity. Similarly, cumulative intakes of 14 g to 37 g per bird optimise meat quality, resulting in better dressing percentages, breast and thigh yields and meat tenderness while minimizing undesirable traits like abdominal fat and cooking loss. These findings underscore the importance of precisely calibrated Spirulina supplementation strategies to maximise growth, health and meat quality benefits while avoiding adverse effects at higher doses. Future research should focus on identifying optimal dosage and duration, assessing long-term implications, elucidating mechanisms of action and ensuring safety and regulatory compliance. Comparative studies with other feed additives could further establish Spirulina's effectiveness and economic viability in poultry production.
Collapse
Affiliation(s)
- Maria P Spínola
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Mónica M Costa
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - José A M Prates
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
| |
Collapse
|
14
|
Abdel Haleem MI, Khater HF, Edris SN, Taie HAA, Abdel Gawad SM, Hassan NA, El-Far AH, Magdy Y, Elbasuni SS. Bioefficacy of dietary inclusion of Nannochloropsis oculata on Eimeria spp. challenged chicks: clinical approaches, meat quality, and molecular docking. Avian Pathol 2024; 53:199-217. [PMID: 38285881 DOI: 10.1080/03079457.2024.2312133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/20/2024] [Indexed: 01/31/2024]
Abstract
Although anticoccidial drugs have been used to treat avian coccidiosis for nearly a century, resistance, bird harm, and food residues have caused health concerns. Thus, Nannochloropsis oculata was investigated as a possible coccidiosis treatment for broilers. A total of 150 1-day-old male Cobb broiler chicks were treated as follows: G1-Ng: fed a basal diet; G2-Ps: challenged with Eimeria spp. oocysts and fed basal diet; G3-Clo: challenged and fed basal diet with clopidol; G4-NOa: challenged and fed 0.1% N. oculata in diet, and G5-NOb: challenged and fed 0.2% N. oculata. Compared to G2-Ps, N. oculata in the diet significantly (P < 0.05) decreased dropping scores, lesion scores, and oocyst shedding. Without affecting breast meat colour metrics, N. oculata improved meat quality characters. At 28 days of age, birds received 0.2% N. oculata had significantly (P < 0.05) higher serum levels of MDA, T-SOD, HDL, and LDL cholesterol compared to G2-Ps. Serum AST, ALT, and urea levels were all decreased when N. oculata (0.2%) was used as opposed to G2-Ps. Histopathological alterations and the number of developmental and degenerative stages of Eimeria spp. in the intestinal epithelium were dramatically reduced by 0.2% N. oculata compared to G2-Ps. Molecular docking revealed a higher binding affinity of N. oculata for E. tenella aldolase, EtAMA1, and EtMIC3, which hindered glucose metabolism, host cell adhesion, and invasion of Eimeria. Finally, N. oculata (0.2%) can be used in broiler diets to mitigate the deleterious effects of coccidiosis.
Collapse
Affiliation(s)
- Marwa I Abdel Haleem
- Department of Avian and Rabbit Diseases, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Hanem F Khater
- Department of Parasitology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Shimaa N Edris
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Hanan A A Taie
- Plant Biochemistry Department, National Research Centre, Dokki, Egypt
| | - Samah M Abdel Gawad
- Department of Parasitology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Nibal A Hassan
- Department of Biology, Animal Reproduction Research Institute, Pathology Department, Giza, Egypt
- College of Science, Taif University, Taif, Saudi Arabia
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Yasmeen Magdy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Sawsan S Elbasuni
- Department of Avian and Rabbit Diseases, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| |
Collapse
|
15
|
Rahmatnejad E, Habibi H, Torshizi MAK, Seidavi A, Hosseinian A. Effects of the algae derivatives on performance, intestinal histomorphology, ileal microflora, and egg yolk biochemistry of laying Japanese quail. Poult Sci 2024; 103:103605. [PMID: 38471233 PMCID: PMC11067761 DOI: 10.1016/j.psj.2024.103605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
We examined the effect of the Persian Gulf algae derivates, phycocyanin (PC) and fucoidan (FUC), on production performance, egg quality, intestinal histomorphology, ileal microflora, and egg yolk biochemistry of laying Japanese quail. A total of 250 six-wk-old Japanese quails with an average body weight of 215 ± 10 g were allocated to 5 treatments, 5 replicates and 10 birds in each replicate in a completely randomized design. The treatment groups received PC (from Spirulina platensis) and FUC (from brown seaweed) in their drinking water while control groups did not. Treatment groups received PC and FUC at 20 or 40 mg/L levels (denoted as PC20, PC40, FUC20, and FUC40, respectively). All birds were fed the same diet. All treatments significantly improved the percentage of hen day egg production (HDEP) (P = 0.002), egg mass (P = 0.002), and feed conversion ratio (FCR) (P = 0.022) but no difference was noted in egg weight (EW) and feed intake (FI). Different levels of PC and FUC significantly increased the thickness of eggshells (P = 0.022); however, the weight of the digestive tract (liver, spleen, proventriculus, gizzard, and pancreas) and oviduct was not affected. Algal derivates improved the villus height (P = 0.007) and crypt depth (P = 0.007) of the duodenum, as well as, the villus height (P = 0.005) and crypt depth (P = 0.026) of the jejunum. Both algal derivates positively affected the intestinal microflora (populations of Lactobacillus (P = 0.017), Coliform (P = 0.005), and Clostridium (P = 0.000)) whereas aerobic bacteria were unaffected. Yolk cholesterol P = 0.012) and yolk malondialdehyde P = 0.050) content were significantly reduced in experimental treatments compared to the control group. In conclusion, our results showed that the treatment of laying Japanese quails with algal derivates positively affects quail performance, intestinal morphology, intestinal microflora, and yolk cholesterol and malondialdehyde. Additional studies exploring optimal dosages and mechanisms of action is warranted to fully understand the scope of the algae derivates in poultry production.
Collapse
Affiliation(s)
- Enayat Rahmatnejad
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Persian Gulf University, Bushehr, 75169, Iran
| | - Hassan Habibi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Persian Gulf University, Bushehr, 75169, Iran.
| | | | - Alireza Seidavi
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Alireza Hosseinian
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Persian Gulf University, Bushehr, 75169, Iran
| |
Collapse
|
16
|
Drobac Backović D, Tokodi N. Cyanotoxins in food: Exposure assessment and health impact. Food Res Int 2024; 184:114271. [PMID: 38609248 DOI: 10.1016/j.foodres.2024.114271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
The intricate nature of cyanotoxin exposure through food reveals a complex web of risks and uncertainties in our dietary choices. With the aim of starting to unravel this intricate nexus, a comprehensive review of 111 papers from the past two decades investigating cyanotoxin contamination in food was undertaken. It revealed a widespread occurrence of cyanotoxins in diverse food sources across 31 countries. Notably, 68% of the studies reported microcystin concentrations exceeding established Tolerable Daily Intake levels. Cyanotoxins were detected in muscles of many fish species, and while herbivorous fish exhibited the highest recorded concentration, omnivorous species displayed a higher propensity for cyanotoxin accumulation, exemplified by Oreochromis niloticus. Beyond fish, crustaceans and bivalves emerged as potent cyanotoxin accumulators. Gaps persist regarding contamination of terrestrial and exotic animals and their products, necessitating further exploration. Plant contamination under natural conditions remains underreported, yet evidence underscores irrigation-driven cyanotoxin accumulation, particularly affecting leafy vegetables. Finally, cyanobacterial-based food supplements often harbored cyanotoxins (57 % of samples were positive) warranting heightened scrutiny, especially for Aphanizomenon flos-aquae-based products. Uncertainties surround precise concentrations due to methodological variations (chemical and biochemical) and extraction limitations, along with the enigmatic fate of toxins during storage, processing, and digestion. Nonetheless, potential health consequences of cyanotoxin exposure via contaminated food include gastrointestinal and neurological disorders, organ damage (e.g. liver, kidneys, muscles), and even elevated cancer risks. While microcystins received significant attention, knowledge gaps persist regarding other cyanotoxins' accumulation, exposure, and effects, as well as combined exposure via multiple pathways. Intriguing and complex, cyanotoxin exposure through food beckons further research for our safer and healthier diets.
Collapse
Affiliation(s)
- Damjana Drobac Backović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia
| | - Nada Tokodi
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia; Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Laboratory of Metabolomics, Gronostajowa 7, Krakow 30387, Poland.
| |
Collapse
|
17
|
El-Abd NM, Hamouds RA, Saddiq AA, Al-Shaikh TM, Khusaifan TJ, Abou-El-Souod G. Effect of dietary Arthrospira platensis phycocyanin on broiler chicken growth performance, physiological status, fatty and amino acid profiles. Vet World 2024; 17:1098-1107. [PMID: 38911079 PMCID: PMC11188895 DOI: 10.14202/vetworld.2024.1098-1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/23/2024] [Indexed: 06/25/2024] Open
Abstract
Background and Aim Natural antioxidants are crucial for preserving and enhancing the health, survival, reproduction, and reproductive function of poultry. Phycocyanin (PC) is a natural blue food colorant with various health benefits. The aim of this study was to extract Arthrospira platensis phycocyanin (ApPC) from A. platensis using simple and economical methods and investigate the impact of phytocyanin supplementation on the performance and fatty and amino acid profiles of broiler chicks. Materials and Methods PC was extracted from A. platensis by freezing and thawing, and optimization conditions such as pH and temperature were applied during storage periods. A total of 270 1-week-old Ross breed broiler chicks were randomly assigned to the following three treatment groups: basal diet supplemented with 0 mg of PC/kg diet (control), basal diet supplemented with 1 g PC/kg diet (T1), and basal diet supplemented with 2 g PC/kg (T2). In a completely randomized design, three cage replicates (30 birds each) were assigned to each of the three groups. The dietary effects of ApPC on growth performance (body weight gain [BWG], body weight [BW], feed intake, feed conversion ratio, serum constituents, and antioxidant indices) in broiler chickens, free amino acids, and fatty acids in muscles were evaluated. Results Total BWG and BW increased without a significant effect on the total feed consumption. Serum levels of total proteins and albumin increased with increasing ApPC supplementation. In addition, globulin levels significantly increased. There was a significant decrease in serum total cholesterol levels among the treatments. The activity of antioxidant enzymes (superoxide dismutase, catalase, glutathione, and total antioxidant capacity) is significantly increased. In contrast, an increase in ApPC caused a significant decrease in malondialdehyde. The content and quantity of fatty acids and amino acids in the meat of broiler chicks supplemented with PC varies. Conclusion The addition of PC to broiler chicken diets enhances antioxidant activities, BW, BWG, and meets quality requirements.
Collapse
Affiliation(s)
- Niamat M. El-Abd
- Sustainable Development of Environment and its Projects Management, Environmental Studies and Research Institute, University of Sadat City, Sadat City 32897, Egypt
| | - Ragaa A. Hamouds
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
- Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt
| | - Amna A. Saddiq
- College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Turki M. Al-Shaikh
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
| | | | - Ghada Abou-El-Souod
- Department of Botany and Microbiology, Faculty of Science, Menoufia University, Shibin Al Kawm, Egypt
| |
Collapse
|
18
|
Abdel-Wareth AAA, Williams AN, Salahuddin M, Gadekar S, Lohakare J. Algae as an alternative source of protein in poultry diets for sustainable production and disease resistance: present status and future considerations. Front Vet Sci 2024; 11:1382163. [PMID: 38659457 PMCID: PMC11041637 DOI: 10.3389/fvets.2024.1382163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Integrating algae into poultry diets offers a promising avenue for enhancing nutrition, boosting sustainability efforts, and potentially stimulating disease resistance. This comprehensive review delves into the essence, diversity, chemical composition, and nutritional merits of algae, spotlighting their emergence as innovative nutrient sources and health supplements for poultry. The growing interest in algae within poultry nutrition stems from their diverse nutritional profile, boasting a rich array of proteins, lipids, amino acids, vitamins, minerals, and antioxidants, thus positioning them as valuable feed constituents. A key highlight of incorporating both macroalgae and microalgae lies in their elevated protein content, with microalgae varieties like Spirulina and Chlorella exhibiting protein levels of up to 50-70%, outperforming traditional sources like soybean meal. This premium protein source not only furnishes vital amino acids crucial for muscular development and overall health in poultry but also serves as an exceptional reservoir of omega-3 fatty acids, notably eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), presenting multiple health benefits for both poultry and consumers alike. Moreover, algae boast antioxidant properties attributed to bioactive compounds like phycocyanin and astaxanthin, mitigating oxidative stress and boosting the bird's immune response, thereby fostering robust health and disease resilience. Incorporating macroalgae and microalgae into poultry diets yields positive impacts on performance metrics. Research evidence underscores the enhancement of growth rates, feed conversion ratios, carcass quality, and meat attributes in broilers, while in layers, supplementation promotes increased egg production, superior egg quality, and increased concentrations of beneficial nutrients such as omega-3 fatty acids. Furthermore, algae hold promise for mitigating the environmental footprint of poultry production, though significant outcomes from trials remain sporadic, necessitating further research to elucidate optimal dosages and blends for different algae species in poultry diets. Standardizing the composition of algae utilized in research is imperative, paving the way for potential applications in poultry nutrition as growth stimulants and substitutes for antibiotics. Nonetheless, a deeper understanding of dosage, combination, and mechanism of action through rigorous scientific investigation is key to unlocking algae's full potential within poultry nutrition.
Collapse
Affiliation(s)
- Ahmed A. A. Abdel-Wareth
- Department of Animal and Poultry Production, Faculty of Agriculture, South Valley University, Qena, Egypt
- Poultry Center, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States
| | - Ayanna Nate Williams
- Poultry Center, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States
| | - Md Salahuddin
- Poultry Center, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States
| | - Sachin Gadekar
- Algae Center of Excellence, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States
| | - Jayant Lohakare
- Poultry Center, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States
| |
Collapse
|
19
|
Abd El-Hack ME, Majrashi KA, Fakiha KG, Roshdy M, Kamal M, Saleh RM, Khafaga AF, Othman SI, Rudayni HA, Allam AA, Moustafa M, Tellez-Isaias G, Alagawany M. Effects of varying dietary microalgae levels on performance, egg quality, fertility, and blood biochemical parameters of laying Japanese quails (Coturnix coturnix Japonica). Poult Sci 2024; 103:103454. [PMID: 38340659 PMCID: PMC10869901 DOI: 10.1016/j.psj.2024.103454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 02/12/2024] Open
Abstract
This experiment was carried out to investigate the nutritional value of Spirulina and Dunaliella (SD) combination levels (0, 0.5, 1.0, 1.5, and 2.0 g/kg) that affected the laying Japanese quail's efficiency, egg quality, fertility, and blood biological indicators. A total of 150 adult Japanese quails, aged 8 wk, were divided into 5 treatments at random, each consisting of 30 quails. There were 5 duplicates for every treatment, with 2 male and 4 female quails in each. Comparing the addition of various concentrations of a mixture of SD to the control treatment, the results showed no substantial rise in egg production, egg weight, or egg mass. When compared to the control group, final body weight (FBW) was improved with SD supplementation. The quails in control consumed more feed intake (FI) (p < 0.05), and they were different from the groups who got SD therapy in that they had a regular feed conversion ratio (FCR). The percentages of hatchability and fertility increased when SD was added to quail meals at up to 1.00 g/kg. When compared to the control quail, the quail supplemented with SD levels showed a non-significant rise in albumin%, yolk%, Haugh unit, and unit surface shell weight (USSW), as well as an increase in eggshell percentage and a drop in egg shape index (p < 0.05). Renal and hepatic enzyme functioning improved when SD was added to the diets. Additionally, lipid profile indicators were reduced by SD supplementation (except low-density lipoprotein-LDL). Moreover, compared to the control, incorporating SD led to a nonsignificant rise in immunoglobulin concentrations (IgG and IgM). In conclusion, adding SD to the diet can improve body weight, lipid profile, immunological response, and liver and kidney functions in Japanese quail.
Collapse
Affiliation(s)
| | - Kamlah A Majrashi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Khloud G Fakiha
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohamed Roshdy
- Agricultural Research Centre, Animal Production Research Institute, Poultry Breeding Department, Giza, Egypt
| | - Mahmoud Kamal
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Rasha M Saleh
- Department of Animal Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt.
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Hassan A Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia; Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211, Egypt
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha 62217, Saudi Arabia
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
20
|
Spínola MP, Alfaia CM, Costa MM, Pinto RMA, Lopes PA, Pestana JM, Tavares JC, Mendes AR, Mourato MP, Tavares B, Carvalho DFP, Martins CF, Ferreira JI, Lordelo MM, Prates JAM. Impact of high Spirulina diet, extruded or supplemented with enzymes, on blood cells, systemic metabolites, and hepatic lipid and mineral profiles of broiler chickens. Front Vet Sci 2024; 11:1342310. [PMID: 38596464 PMCID: PMC11002084 DOI: 10.3389/fvets.2024.1342310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
The impact of 15% dietary inclusion of Spirulina (Arthrospira platensis) in broiler chickens was explored, focusing on blood cellular components, systemic metabolites and hepatic lipid and mineral composition. From days 14 to 35 of age, 120 broiler chickens were divided and allocated into four dietary treatments: a standard corn and soybean meal-based diet (control), a 15% Spirulina diet, a 15% extruded Spirulina diet, and a 15% Spirulina diet super-dosed with an enzyme blend (0.20% porcine pancreatin plus 0.01% lysozyme). The haematological analysis revealed no significant deviations (p > 0.05) in blood cell counts across treatments, suggesting that high Spirulina inclusion maintains haematological balance. The systemic metabolic assessment indicated an enhanced antioxidant capacity in birds on Spirulina diets (p < 0.001), pointing toward a potential reduction in oxidative stress. However, the study noted a detrimental impact on growth performance metrics, such as final body weight and feed conversion ratio (both p < 0.001), in the Spirulina-fed treatments, with the super-dosed enzyme blend supplementation failing to alleviate these effects but with extrusion mitigating them. Regarding hepatic composition, birds on extruded Spirulina and enzyme-supplemented diets showed a notable increase in n-3 fatty acids (EPA, DPA, DHA) (p < 0.001), leading to an improved n-6/n-3 PUFA ratio (p < 0.001). Despite this positive shift, a reduction in total hepatic lipids (p = 0.003) was observed without a significant change in cholesterol levels. Our findings underscore the need for further exploration into the optimal inclusion levels, processing methods and potential enzymatic enhancements of Spirulina in broiler diets. Ultimately, this research aims to strike a balance between promoting health benefits and maintaining optimal growth performance in poultry nutrition.
Collapse
Affiliation(s)
- Maria P. Spínola
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Cristina M. Alfaia
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Mónica M. Costa
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Rui M. A. Pinto
- JCS, Laboratório de Análises Clínicas Dr. Joaquim Chaves, Avenida General Norton de Matos, Algés, Portugal
- iMED.UL, Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, Lisbon, Portugal
| | - Paula A. Lopes
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - José M. Pestana
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - João C. Tavares
- Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Ana R. Mendes
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
- Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Associated Laboratory TERRA, Lisbon, Portugal
| | - Miguel P. Mourato
- Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Associated Laboratory TERRA, Lisbon, Portugal
| | - Beatriz Tavares
- Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Daniela F. P. Carvalho
- Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Associated Laboratory TERRA, Lisbon, Portugal
| | - Cátia F. Martins
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
- Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Associated Laboratory TERRA, Lisbon, Portugal
| | - Joana I. Ferreira
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Madalena M. Lordelo
- Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Associated Laboratory TERRA, Lisbon, Portugal
| | - José A. M. Prates
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| |
Collapse
|
21
|
Spínola MP, Costa MM, Prates JAM. Effect of Cumulative Spirulina Intake on Broiler Meat Quality, Nutritional and Health-Related Attributes. Foods 2024; 13:799. [PMID: 38472912 PMCID: PMC10931167 DOI: 10.3390/foods13050799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
This work aimed to assess how different cumulative levels of Spirulina (Arthrospira platensis) intake influence individual broiler meat quality parameters, nutritional value and health-related traits. The data analysed showed varying cumulative Spirulina intake levels, ranging from 3.46 to 521 g/bird, with large changes in meat traits. The key findings indicate that Spirulina intake significantly enhances meat colour, primarily due to its rich carotenoid content. However, this enhancement shows a saturation effect at higher intake levels, where additional Spirulina does not further improve the colour. Regarding the meat nutritional profile, Spirulina increases beneficial n - 3 polyunsaturated fatty acids and reduces lipid oxidation. These effects on meat, however, are not linear and become more complex at higher microalga intake levels. Regarding meat sensory attributes, moderate Spirulina levels positively influence flavour and texture. Still, higher levels may lead to changes not universally preferred by meat consumers, highlighting the need for balanced Spirulina inclusion in diets. Optimal Spirulina cumulative intake levels must be identified to balance meat's nutritional benefits with consumer preferences. Additionally, ensuring Spirulina's purity and adherence to regulatory standards is essential for consumer safety and market access. These findings provide valuable insights for poultry nutritionists and the food industry, emphasising the necessity of a balanced approach to Spirulina's incorporation in poultry diets.
Collapse
Affiliation(s)
- Maria P. Spínola
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.P.S.); (M.M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Mónica M. Costa
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.P.S.); (M.M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - José A. M. Prates
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.P.S.); (M.M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
22
|
Alghamdi MA, Reda FM, Mahmoud HK, Bahshwan SMA, Salem HM, Alhazmi WA, Soror AFS, Mostafa NG, Attia S, Mohamed MDA, Saad AM, El-Tarabily KA, Abdelgeliel AS. The potential of Spirulina platensis to substitute antibiotics in Japanese quail diets: impacts on growth, carcass traits, antioxidant status, blood biochemical parameters, and cecal microorganisms. Poult Sci 2024; 103:103350. [PMID: 38262339 PMCID: PMC10831102 DOI: 10.1016/j.psj.2023.103350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/25/2024] Open
Abstract
The development of antibiotic-resistant microorganisms prompted the investigation of possible antibiotic substitutes. As a result, the purpose of the current study is to assess the effect of dietary Spirulina platensis extract as an antibiotic alternative on Japanese quail (Coturnix japonica) growth, antioxidant status, blood parameters, and cecal microorganisms. There was a total of 150 Japanese quails used in this study, divided equally among 5 experimental groups (10 birds per group with 3 replicates): group 1 (G1) received a basal diet without any S. platensis extract, group 2 (G2) received a basal diet supplemented with 1 mL S. platensis extract/kg, group 3 (G3) received a basal diet supplemented with 2 mL S. platensis extract/kg, group 4 (G4) received a basal diet supplemented with 3 mL S. platensis extract/kg, and group 5 (G5) received a basal diet supplemented with 4 mL S. platensis extract/kg from d 7 until d 35. The results showed that compared to the control birds in G1, Japanese quail supplemented with 4 mL of S. platensis extract/kg of diet (G5) had significantly better live body weight, body weight gain, feed intake, feed conversion ratio, digestive enzymes, blood parameters, liver and kidney functions, lipid profile, antioxidant profile, immunological parameters, and cecal microorganism's count. There were no significant changes in the percentage of carcasses, liver, and total giblets among all the 5 groups. Only gizzard percentage showed a significant increase in G2 compared to birds in G1. In addition, intestinal pH showed a significant drop in G2 and G5 compared to birds in G1. After cooking the quail meat, the juiciness and tenderness increased as S. platensis extract levels increased, whereas aroma and taste declined slightly as S. platensis extract levels increased. Furthermore, when a high concentration of S. platensis extract was used, the lightness of the meat reduced while its redness and yellowness increased. The disk diffusion assay showed that S. platensis extract had significant antibacterial activity against Staphylococcus aureus, Listeria monocytogenes, Campylobacter jejuni, and Salmonella typhi, with inhibition zones ranging from 16 to 42 mm. This activity may be attributable to the volatile chemicals in S. platensis extract, of which Geosmin and 2-methylisoborneol are the primary components. In the diet of Japanese quails, it is possible to draw the conclusion that the extract of S. platensis can be utilized as a feed additive and as an alternative to antibiotics.
Collapse
Affiliation(s)
- Mashail A Alghamdi
- Biology Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fayiz M Reda
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Hemat K Mahmoud
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Safia M A Bahshwan
- Biological Sciences Department, College of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Wafaa Ahmed Alhazmi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abel-Fattah Salah Soror
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Nadeen G Mostafa
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Sally Attia
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mazhar D A Mohamed
- Agricultural Microbiology Department, Faculty of Agriculture, Sohag University, Sohag 82524, Egypt
| | - Ahmed M Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Asmaa Sayed Abdelgeliel
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| |
Collapse
|
23
|
Rahim A, Salhi S, El Khelfaoui N, Badaoui B, Essamadi A, El Amiri B. Effect of C-phycocyanin purified from Spirulina platensis on cooled ram semen quality and in vivo fertility. Theriogenology 2024; 215:234-240. [PMID: 38100995 DOI: 10.1016/j.theriogenology.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
This research sought to purify C-phycocyanin (C-PC) from Spirulina platensis and investigate its potential in enhancing the quality parameters and in vivo fertility of ram semen subjected to cooled storage at 5 °C, when using a skim milk (SM) based semen extender. The purification process of C-PC involved cold maceration, pre-purification using chitosan and activated charcoal, followed by purification through aqueous two-phase extraction (ATPE) and ion-exchange chromatography. Afterward, fifty ejaculates were collected from 4 fertile Boujaâd rams and extended using the SM extender at 37 °C, enriched with 0 μg/mL (control), 1.2 μg/mL, 2.4 μg/mL, 3.6 μg/mL, or 4.8 μg/mL of C-PC. The diluted semen was subsequently cooled to 5 °C using a controlled cooling process, with a gradual cooling rate of approximately 0.5 °C per minute, and its quality parameters were evaluated after 0, 4, 8, and 24 h of cooling storage. Then, its fertilization ability after 4 h of cooling storage was evaluated using artificial insemination. The adopted purification process yielded a grade analytical purity of 4.06. Additionally, semen extended in SM with a 2.4 μg/mL C-PC supplement displayed significant (P < 0.0001) enhancement in total motility, progressive motility, curvilinear velocity, straight-line velocity, average path velocity, viability and lipid peroxidation of ram semen at 0, 4, 8, and 24 h of cooling storage. These improvements were observed in direct comparison to both the control group and the other C-PC concentrations. Regarding fertility rates, semen extended in SM with a 2.4 μg/mL C-PC recorded a 76 % rate, a notable increment from the 63 % observed in ewes inseminated by semen extended in SM alone, although the difference was not statistically significant (p > 0.05). These findings underscore the promising potential of C-PC as a natural supplement for enhancing semen quality, warranting further investigations.
Collapse
Affiliation(s)
- Abdellatif Rahim
- Animal Production Unit, Regional Center Agricultural Research of Settat, National Institute for Agricultural Research (INRA), Avenue Ennasr, P.O. Box 415 Rabat Principal, 10090, Rabat, Morocco; Hassan First University of Settat, Faculty of Sciences and Techniques, Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, P.O. Box 577, 26000, Settat, Morocco
| | - Saad Salhi
- Animal Production Unit, Regional Center Agricultural Research of Settat, National Institute for Agricultural Research (INRA), Avenue Ennasr, P.O. Box 415 Rabat Principal, 10090, Rabat, Morocco; Hassan First University of Settat, Faculty of Sciences and Techniques, Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, P.O. Box 577, 26000, Settat, Morocco
| | - Nora El Khelfaoui
- Animal Production Unit, Regional Center Agricultural Research of Settat, National Institute for Agricultural Research (INRA), Avenue Ennasr, P.O. Box 415 Rabat Principal, 10090, Rabat, Morocco; Namur Research Institute for Life Sciences, NARILIS, UNamur, Belgium
| | - Bouabid Badaoui
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Department of Biology, Mohammed V University in Rabat, Rabat, Morocco; African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco
| | - Abdelkhalid Essamadi
- Hassan First University of Settat, Faculty of Sciences and Techniques, Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, P.O. Box 577, 26000, Settat, Morocco
| | - Bouchra El Amiri
- Animal Production Unit, Regional Center Agricultural Research of Settat, National Institute for Agricultural Research (INRA), Avenue Ennasr, P.O. Box 415 Rabat Principal, 10090, Rabat, Morocco; African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco.
| |
Collapse
|
24
|
Mishra P, Das R, Chaudhary A, Mishra B, Jha R. Effects of microalgae, with or without xylanase supplementation, on serum immunoglobulins, cecal short-chain fatty acids, microbial diversity, and metabolic pathways of broiler chickens. Poult Sci 2024; 103:103325. [PMID: 38096670 PMCID: PMC10762467 DOI: 10.1016/j.psj.2023.103325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 01/06/2024] Open
Abstract
Modern broilers are highly susceptible to environmental and pathogenic threats, leading to gut disorders and poor nutrient utilization if not managed properly. Nutritional programming using several feedstuffs and coproducts to manage gut health has been studied. This study used microalgae as a functional compound and xylanase enzyme in broilers' diets as a strategy to manage gut health. A total of 162 one-day-old unsexed Cobb 500 broiler chicks were randomly assigned to 1 of the 3 dietary treatments: a) corn-soybean meal-based control diet (CON), b) 3% microalgae (MAG), and c) MAG with xylanase enzyme (MAG+XYN). The chicks were reared for 35 days (d) on a floor pen system maintaining standard environment conditions to evaluate the effects of microalgae, with or without xylanase supplementation, on serum immunoglobulins, cecal short-chain fatty acids (SCFA) production, cecal microbial diversity, and metabolic pathways. No significant differences were found for serum immunoglobulin and cecal SCFA among the treatment groups (P > 0.05). Relative microbial abundance at the genus level showed that MAG and MAG+XYN groups had a diverse microbial community on d 3 and d 35. However, no bacterial genus had a significant difference (P > 0.05) in their relative abundance on d 3, but 16 genera showed significant differences (P < 0.05) in their relative abundance among the dietary treatments on d 35. Most of these bacteria were SCFA-producing bacteria. Moreover, MAG and MAG+XYN-fed broilers had better responses than CON groups for metabolic pathways (D-mannose degradation, pectin degradation I and II, β-1-4-mannan degradation, tetrahydrofolate biosynthesis, glutathione biosynthesis, glutathione-peroxide redox reactions, lactate fermentation to propionate, acetate, and hydrogen, etc.) both on d 3 and d 35. The results suggest that using microalgae, with or without xylanase, had no statistical impact on serum immunoglobulins and cecal SCFA production in broilers. However, an improvement in the cecal microbial diversity and metabolic pathways, which are essential indicators of gut health and nutrient utilization, was observed. Most of the improved metabolic pathways were related to fiber utilization and oxidative stress reduction.
Collapse
Affiliation(s)
- Pravin Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Razib Das
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Ajay Chaudhary
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| |
Collapse
|
25
|
Habibi H, Rahmatnejad E, Tohidifar SS, Afshar A, Kameli A, Jafari M, Mohammadi M. Improving performance, reproduction, and immunity in laying Japanese quail with algal derivatives. Poult Sci 2024; 103:103295. [PMID: 38064886 PMCID: PMC10757023 DOI: 10.1016/j.psj.2023.103295] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 01/02/2024] Open
Abstract
We investigated the effect of the Persian Gulf algae derivatives, namely phycocyanin (PC) and fucoidan (FUC), on the performance, reproductive traits, and immune responses of laying Japanese quails. A completely randomized design was used to distribute 250 six-wk-old Japanese quails with an average body weight of 215 ± 10 g into 5 treatments, 5 replicates, and 10 birds in each replicate over a 5-wk period. Unlike the control groups, the treatment groups received drinking water supplemented with PC and FUC at concentrations of 20 or 40 mg/L, denoted as PC20, PC40, FUC20, and FUC40, respectively, while all birds were provided with identical feed. Supplemental algal derivatives notably improved hen day egg production (HDEP), egg mass, and feed conversion ratio (FCR) compared to the control group (P < 0.01). Incorporating PC and FUC had no significant effect on the weight of males' testes or the weight and length of hens' oviducts. Additionally, the experimental treatments had no impact on the chicks' hatching weight. The supplementation of PC and FUC resulted in increased fertility (P = 0.038) and hatchability (P < 0.001) rates, with the exception of fertility in the PC40 group. The effect of the experimental treatments on immune responses was largely not statistically significant, except in the case of ND. Specifically, the experimental treatments resulted in increased (P = 0.033) antibody titers against ND when compared to the control group, with the exception of FUC20. Supplemental algal derivatives significantly (P < 0.01) reduced total cholesterol, creatinine, and triglycerides (except in the case of PC20). Overall, these findings underscore the potential of algal derivatives to enhance quail performance, reproductive traits, and immune responses.
Collapse
Affiliation(s)
- Hassan Habibi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Persian Gulf University, Bushehr 75169, Iran
| | - Enayat Rahmatnejad
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Persian Gulf University, Bushehr 75169, Iran.
| | - Sayyed Sattar Tohidifar
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Shahrekord 8818634141, Shahrekord, Iran
| | - Alireza Afshar
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ali Kameli
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Jafari
- Graduated Master of Science in Medical Mycology, Kerman University of Medicine Science, Kerman, Iran
| | - Mehdi Mohammadi
- Department of Marine Biotechnology and Environment, Persian Gulf Research and Studies Center, Persian Gulf University, Bushehr, Iran
| |
Collapse
|
26
|
Abdelfatah SH, Yassin AM, Khattab MS, Abdel-Razek AS, Saad AH. Spirulina platensis as a growth booster for broiler; Insights into their nutritional, molecular, immunohistopathological, and microbiota modulating effects. BMC Vet Res 2024; 20:11. [PMID: 38183085 PMCID: PMC10768351 DOI: 10.1186/s12917-023-03858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND The present study is designed to assess the effect of adding various doses of Spirulina platensis (SP) on broiler chicken growth performance, gut health, antioxidant biomarkers, cecal microbiota, histopathology, and immunohistochemistry of inducible nitric oxide synthase (iNOS). 240 male Cobb 500 broiler chicks (1 day old) were placed into four groups (sixty birds/group), then each group was further divided into three replicates of 20 chickens each for 35 days. Birds were allocated as follows; the 1st group (G1), the control group, fed on basal diet, the 2nd group (G2): basal diet plus SP (0.1%), the 3rd group (G3): basal diet plus SP (0.3%), and the 4th group (G4): basal diet plus SP (0.5%). RESULTS Throughout the trial (d 1 to 35), SP fortification significantly increased body weight growth (BWG) and feed conversion rate (FCR) (P < 0.05). Bursa considerably increased among the immunological organs in the Spirulina-supplemented groups. Within SP-supplemented groups, there was a substantial increase in catalase activity, blood total antioxidant capacity, jejunal superoxide dismutase (SOD), and glutathione peroxidase (GPX) activity (P < 0.05). Fatty acid binding protein 2 (FABP2), one of the gut barrier health biomarkers, significantly increased in the SP-supplemented groups but the IL-1β gene did not significantly differ across the groups (P < 0.05). Different organs in the control group showed histopathological changes, while the SP-supplemented chicken showed fewer or no signs of these lesions. The control group had higher levels of iNOS expression in the gut than the SP-supplemented groups (p < 0.05). Cecal Lactobacillus count significantly elevated with increasing the rate of SP inclusion rate (p < 0.05). CONCLUSION Supplementing broiler diets with SP, particularly at 0.5%, can improve productivity and profitability by promoting weight increase, feed utilization, antioxidant status, immunity, and gastrointestinal health.
Collapse
Affiliation(s)
- Samar H Abdelfatah
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo, University, Giza, 12211, Egypt
| | - Aya M Yassin
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed S Abdel-Razek
- Microbial Chemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Center, Dokki-Giza, Egypt
| | - Adel H Saad
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| |
Collapse
|
27
|
Yi W, Huang Q, Liu Y, Fu S, Shan T. Effects of dietary multienzymes on the growth performance, digestive enzyme activity, nutrient digestibility, excreta noxious gas emission, and nutrient transporter gene expression in white feather broilers. J Anim Sci 2024; 102:skae133. [PMID: 38733150 PMCID: PMC11151916 DOI: 10.1093/jas/skae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024] Open
Abstract
Adding multienzymes to poultry feed rations is recognized as a nutritional strategy aimed at improving poultry performance and health status. Nonetheless, some literatures present an ongoing debate about the extent of multienzymes beneficial impact on poultry growth performance. This study aimed to explore the impacts of dietary multienzyme supplementation on broilers, focusing specifically on growth performance, carcass characteristics, apparent nutrient digestibility, excreta noxious gas emission, and intestinal nutrient transporter gene expression. A total of 3,200 broilers were randomly assigned to five groups (eight replicates per treatment group) and treated with the following: normal control (CON), CON + 100 g/t multienzyme (ME100), CON + 150 g/t multienzyme (ME150), CON + 200 g/t multienzyme (ME200), and CON + 250 g/t multienzyme (ME250). Supplementing with multienzymes significantly influenced the feed conversion rate (linear, P = 0.007; quadratic, P = 0.024) and the European broiler index (linear, P = 0.004; quadratic, P = 0.016) in broilers. Dietary multienzymes significantly influenced apparent metabolizable energy (quadratic, P = 0.015) and neutral detergent fiber (quadratic, P < 0.001). Moreover, multienzyme supplementation in the diet also decreased the emission of ammonia (linear, P = 0.001; quadratic, P = 0.006) and hydrogen sulfide (quadratic, P = 0.006) in the excreta. In addition, dietary multi-enzyme notably elevated (P < 0.05) the mRNA expression of nutrient transporter genes, including peptide transporter 1 (PePT1), Na-dependent neutral amino acid transporter (B0AT), glucose transporter 2 (GLUT2), and fatty acid binding protein1 (FABP1). These findings suggest that dietary supplementation with multienzymes can improve the efficiency of feed utilization, and the digestion and absorption of nutrients and reduce excreta gas emission. Furthermore, this study provides a theoretical basis for advancing the use of multienzymes in broiler production.
Collapse
Affiliation(s)
- Wuzhou Yi
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Qixin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yanjie Liu
- Jinan Bestzyme Bio-Engineering Co., Ltd, Jinan, China
| | - Shijun Fu
- Shandong Binzhou Animal Science & Veterinary Medicine Academy, Binzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| |
Collapse
|
28
|
Alagbe EO, Schulze H, Adeola O. Dietary Spirulina effects in Eimeria-challenged broiler chickens: growth performance, nutrient digestibility, intestinal morphology, serum biomarkers, and gene expression. J Anim Sci 2024; 102:skae186. [PMID: 38995102 PMCID: PMC11306789 DOI: 10.1093/jas/skae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/11/2024] [Indexed: 07/13/2024] Open
Abstract
This study investigated the growth performance, nutrient utilization, and intestinal health responses of Eimeria-challenged broiler chickens to dietary Spirulina (Arthrospira platensis). On day 1, birds were assigned to 2 diets supplemented with Spirulina (0 or 5 g/kg) in a randomized complete block design. The birds within each diet were divided into 2 Eimeria-challenge groups (challenge or no-challenge) and that resulted in a 2 × 2 factorial arrangement with 2 levels each of Spirulina and challenge on day 14. On day 15, the birds in the challenge or no-challenge groups were orally gavaged with a solution containing Eimeria oocysts or 1% PBS, respectively. Samples were collected on days 21 and 26 (6- and 11-d post-infection; dpi). Data collected from days 1 to 26 were analyzed using the MIXED procedure of SAS. Birds that were fed Spirulina-supplemented diets had increased (P < 0.05) BW gain, gain-to-feed ratio, and total tract retention nitrogen from days 14 to 21. The ileal villus perimeter and area, serum catalase, HMOX1 and SOD1 jejunal abundance were all increased (P < 0.05) in birds fed Spirulina-supplemented diets on day 21 (6 dpi). However, there was no effect on bone ash or oocyst count. From days 21 to 26, there was a tendency (P = 0.059) for a Spirulina × Challenge interaction on the BW gain of birds. Moreover, dietary Spirulina addition increased (P < 0.05) serum catalase, total antioxidant capacity, ileal villus perimeter, tibia bone ash, and the relative mRNA expression of HMOX1, SOD1, claudin 1, and TNFα in the jejunal mucosa of birds on day 26 (11 dpi). On both 6 and 11 dpi, the Eimeria challenge negatively (P < 0.05) impacted growth performance, gut morphology, and the relative mRNA expression of genes. Overall, assessing the impact of Spirulina in broilers revealed its positive antioxidant, immune-modulating, and health benefits. However, its dietary addition did not completely reverse the Eimeria-induced effects in these birds. Ultimately, this study outlines the positive properties of dietary Spirulina beyond its use in the diet of healthy broiler chickens.
Collapse
Affiliation(s)
| | - Hagen Schulze
- Livalta, an AB Agri Company, Peterborough, United Kingdom
| | - Olayiwola Adeola
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
29
|
Elzaher HAA, Ibrahim ZA, Ahmed SA, Salah AS, Osman A, Swelum AA, Suliman GM, Tellez-Isaias G, Alagawany M, Abd El-Hack ME. Growth, carcass criteria, and blood biochemical parameters of growing quails fed Arthrospira platensis as a feed additive. Poult Sci 2023; 102:103205. [PMID: 38036412 PMCID: PMC10755819 DOI: 10.1016/j.psj.2023.103205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 12/02/2023] Open
Abstract
This study investigated the impact of Arthrospira platensis (A. platensis) as a dietary supplement on growth, carcass criteria, liver and kidney function, lipid profile, and immunity of growing Japanese quails. In a 28-day experiment, 240 unsexed 7-day-old quail chicks were used. The quail chicks were divided into 4 treatment sets, each comprising 6 replicates and 10 quail chicks. Group (1) fed the basal diet with no supplements, group (2) fed the basal diet supplemented with 0.25 g A. platensis/kg diet, group (3) fed the basal diet supplemented with 0.50 g A. platensis/kg diet, and group (4) fed the basal diet supplemented with 1.00 g A. platensis/kg diet. The results of this study revealed that the birds that were fed 0.50 g. or 1.00 g A. platensis/kg diet had superior final body weights, body weight gains, feed conversion ratios, and carcass criteria compared to control, furthermore, had significant (P < 0.05) lower levels of liver enzymes and kidney function markers compared to control. Furthermore, birds fed 0.50 g or 1.00 g A. platensis/kg diet had significantly (P < 0.05) reduced cholesterol, triglycerides, and LDL cholesterol levels compared to control. Dietary supplementation of A. platensis at 0.50 and 1.00 g/kg diet significantly (P < 0.05) increased total antioxidant capacity, total immunoglobulin, and lysozyme activity levels. Using A. platensis at 0.5 or 1 g/kg diet levels during the Japanese quails' growth period can improve growth, carcass criteria, liver and kidney function, lipid profile, and immunity.
Collapse
Affiliation(s)
- Hagar A Abd Elzaher
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Zenat A Ibrahim
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Samy A Ahmed
- Animal Health Research Institute, El-Sharkia Branch, Giza, Egypt
| | - Ayman S Salah
- Department of Animal Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, New Valley University, New Valley Governorate, Egypt
| | - Ali Osman
- Agricultural Chemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Gamaleldin M Suliman
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | |
Collapse
|
30
|
Abdel-Wahab AA, Elnesr SS, Ahmad EAM, Abdel-Kader IA. Effect of dietary supplementation of Spirulina platensis powder on performance, some serum biochemistry, digestive enzymes, microbial content, antioxidant parameters and immune responses of growing Japanese quail. Anim Biotechnol 2023; 34:4869-4877. [PMID: 37067444 DOI: 10.1080/10495398.2023.2200462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
This study was performed to examine the influences of Spirulina platensis powder (SPP) on growth performance, physiological status, blood biochemistry, and intestinal microbial population in quail. 240-10-days old Japanese quail chicks were distributed into five groups. Each group had four replicate pens with 12 birds each. The first group received a basal diet (control group). Groups from two to five received the basal diet with SPP at levels of 1.5, 3.0, 4.5, and 6.0% as dietary ingredients, respectively. Results clarified significantly higher live body weight and body weight gain (p < 0.001) with significant enhancements (p < 0.001) in feed conversion values for groups that received SPP levels, especially 4.5% compared with the control and other groups. Birds fed on a diet containing SPP had significantly higher amylase, trypsin and lipase levels (p < 0.001) than the control. Intestinal Lactobacillus sp. was significantly increased, and Escherichia coli and Salamonella populations were significantly decreased by dietary SPP levels (p < 0.001). Liver function, total lipid profile, antioxidant parameters and immune response were significantly affected by SPP levels compared with the control (p < 0.001). In conclusion, the inclusion of SPP until 4.5% in quail diets could improve the growth performance, intestinal microbial population and serum biochemical constituents of growing quail.
Collapse
Affiliation(s)
- A A Abdel-Wahab
- Department of Poultry Production, Fayoum University, Fayoum, Egypt
| | - Shaaban S Elnesr
- Department of Poultry Production, Fayoum University, Fayoum, Egypt
| | - Enas A M Ahmad
- Animal and Poultry Production Department, Beni Suef University, Beni Suef, Egypt
| | - I A Abdel-Kader
- Department of Poultry Production, Fayoum University, Fayoum, Egypt
| |
Collapse
|
31
|
Attia YA, Hassan RA, Addeo NF, Bovera F, Alhotan RA, Al-qurashi AD, Al-Baadani HH, Al-Banoby MA, Khafaga AF, Eisenreich W, Shehata AA, Basiouni S. Effects of Spirulina platensis and/or Allium sativum on Antioxidant Status, Immune Response, Gut Morphology, and Intestinal Lactobacilli and Coliforms of Heat-Stressed Broiler Chicken. Vet Sci 2023; 10:678. [PMID: 38133229 PMCID: PMC10747519 DOI: 10.3390/vetsci10120678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
This study aims to evaluate the effectiveness of the dietary addition of Spirulina platensis (SP) and/or garlic powder (GP) on heat-stressed broiler chickens. For this purpose, 600 Ross-308 broiler chicks were allocated at 22 days of age into five groups (G1-G5), each comprising six groups of 20 birds each. Chickens kept in G1 (negative control) were fed a basal diet and raised at 26 ± 1 °C. Chickens kept in G2 to G5 were exposed to periodic heat stress (35 ± 1 °C for 9 h/day) from 22 to 35 days old. Chickens in G2 (positive control) were provided a basal diet, while G3, G4, and G5 were fed a basal diet enriched with SP (1 g/kg diet), GP (200 mg/kg diet), or SP/GP (1 g SP/kg + 200 mg GP/kg diet), respectively. The assessment parameters included the chickens' performance, malondialdehyde and total antioxidant capacity, blood biochemistry, intestinal morphology, and modulation of lactobacilli and total coliforms in the intestinal microbiota. Our findings demonstrated that supplementing heat-stressed chickens with SP and/or GP significantly mitigated the negative effects on the European production efficiency index (EPEF), survival rate, cholesterol profile, and oxidative stress markers. Chickens supplemented with GP and/or SP exhibited significantly better EPEF and survivability rates. Heat stress had a significant impact on both the gut structure and gut microbiota. However, SP and/or GP supplementation improved the gut morphology, significantly increased the intestinal lactobacilli, and reduced the coliform contents. It was also found that the simultaneous feeding of SP and GP led to even higher recovery levels with improved lipid metabolites, immunity, and oxidative status. Overall, supplementing chickens with SP and/or GP can alleviate the negative effects of heat stress.
Collapse
Affiliation(s)
- Youssef A. Attia
- Sustainable Agriculture Production Research Group, Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Reda A. Hassan
- Department of Poultry Nutrition, Animal Production Institute, Agricultural Research Center, Dokki, Giza 3751310, Egypt;
| | - Nicola Francesco Addeo
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Via F. Delpino 1, 80137 Napoli, Italy; (N.F.A.); (F.B.)
| | - Fulvia Bovera
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Via F. Delpino 1, 80137 Napoli, Italy; (N.F.A.); (F.B.)
| | - Rashed A. Alhotan
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.A.); (H.H.A.-B.)
| | - Adel D. Al-qurashi
- Sustainable Agriculture Production Research Group, Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Hani H. Al-Baadani
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.A.); (H.H.A.-B.)
| | | | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21521, Egypt
| | - Wolfgang Eisenreich
- Department of Chemistry, TUM School of Natural Sciences, Bavarian NMR Center (BNMRZ), Structural Membrane Biochemistry, Technical University of Munich, 85748 Garching, Germany;
| | - Awad A. Shehata
- Department of Chemistry, TUM School of Natural Sciences, Bavarian NMR Center (BNMRZ), Structural Membrane Biochemistry, Technical University of Munich, 85748 Garching, Germany;
| | - Shereen Basiouni
- Clinical Pathology Department, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Egypt
- Cilia Cell Biology, Institute of Molecular Physiology, Johannes-Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
32
|
El-Ratel IT, Elbasuny ME, El-Nagar HA, Abdel-Khalek AKE, El-Raghi AA, El Basuini MF, El-Kholy KH, Fouda SF. The synergistic impact of Spirulina and selenium nanoparticles mitigates the adverse effects of heat stress on the physiology of rabbits bucks. PLoS One 2023; 18:e0287644. [PMID: 37437098 DOI: 10.1371/journal.pone.0287644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/12/2023] [Indexed: 07/14/2023] Open
Abstract
Heat stress has a detrimental effect on animal fertility, particularly testicular functions, including reduced sperm output and quality, which causes an economic loss in the production of rabbits. The present trial investigated the efficacy of dietary Spirulina (SP) (Arthrospira platensis), selenium nanoparticles (SeNPs), and their combination (SP-SeNPs) on semen quality, haemato-biochemical, oxidative stress, immunity, and sperm quality of heat-stressed (HS) rabbit bucks. Sixty mature bucks (APRI line) were distributed into 6 groups of ten replicates under controlled conditions. Bucks in the 1st group (control-NC) were kept under normal conditions (11-22°C; 40-45% RH% = relative humidity), while the 2nd group (control-HS) was kept under heat stress conditions (32±0.50°C; 60-66% RH %). The control groups were fed a commercial pelleted diet and the other four heat-stressed groups were fed a commercial pelleted diet with 1 g SP, 25 mg SeNPs, 1 g SP+25 mg SeNPs, and 1 g SP+50 mg SeNPs per kg diet, respectively. The dietary inclusion of SP, SeNPs, and their combinations significantly increased hemoglobin, platelets, total serum protein, high-density lipoproteins, glutathione, glutathione peroxidase, superoxide dismutase, and seminal plasma testosterone while decreased triglycerides, total cholesterol, urea, creatinine, and malondialdehyde compared with the control-HS. Red blood cells, packed cell volume, serum albumin, and testosterone significantly increased, while SeNPs, SP+SeNPs25, and SP+SeNPs50 significantly decreased low-density lipoproteins, aspartate, and alanine amino transferees. Total antioxidant capacity substantially increased in serum and seminal plasma, while seminal plasma malondialdehyde decreased in 25 or 50 mg of SeNPs+SP/kg groups. All supplements significantly improved libido, sperm livability, concentration, intact acrosome, membrane integrity, total output in fresh semen, and sperm quality in cryopreserved semen. SP-SeNPs50 had higher synergistic effect than SP-SeNPs25 on most different variables studied. In conclusion, the dietary inclusion of SP plus SeNPs50 has a synergistic effect and is considered a suitable dietary supplement for improving reproductive efficiency, health, oxidative stress, and immunity of bucks in the breeding strategy under hot climates.
Collapse
Affiliation(s)
- Ibrahim T El-Ratel
- Department of Animal, Poultry and Fish Production, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Mawada E Elbasuny
- Department of Animal, Poultry and Fish Production, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Hamdy A El-Nagar
- Department of Biotechnology Research, Animal Production Research Institute, Agricultural Research Center, Giza, Egypt
| | | | - Ali A El-Raghi
- Department of Animal, Poultry and Fish Production, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Mohammed Fouad El Basuini
- Department of Animal Production, Faculty of Agriculture, Tanta University, Tanta, Egypt
- Faculty of Desert Agriculture, King Salman International University, South Sinai, Egypt
| | - Khaled H El-Kholy
- Department of Animal, Poultry and Fish Production, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Sara F Fouda
- Department of Poultry Production, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| |
Collapse
|
33
|
Khalilnia F, Mottaghitalab M, Mohiti M, Seighalani R. Effects of dietary supplementation of probiotic and Spirulina platensis microalgae powder on growth performance immune response, carcass characteristics, gastrointestinal microflora and meat quality in broilers chick. Vet Med Sci 2023. [PMID: 37156247 DOI: 10.1002/vms3.1154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/06/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND With the potential development of human pathogenic bacteria resistant to antibiotics, the use of antibiotics as growth promoter in poultry production was banned in different countries, and it has forced the poultry industry to consider 'Biologically safer' alternatives to antibiotics, among which the probiotics and microalgae can be mentioned. OBJECTIVE Present study aimed to compare Spirulina platensis microalgae in combination with a native probiotic as an alternative to antibiotics. METHODS 336 male broiler chicks were allotted into 7 treatments and 4 repetitions in a completely randomised design to evaluate chick's performance and immune response to different treatment based on indexes as feed intake, weight gain, feed conversion ratio, humoral immunity, carcass characteristics, thigh and breast pH, intestinal morphology and microbial population. European production efficiency coefficient was also reported. RESULTS No significant difference was appeared in the pH of thigh and breast meat (p > 0.05). Supplementation of diets with SP0.3 revealed better villi height, villi length to crypt depth ratio and villi surface. With significant difference (p < 0.05), the highest and lowest colonies of Lactobacillus and E. coli were recorded for PR0.5 SP0.3 treatments. CONCLUSIONS Supplementation of broilers diets either with probiotic prepared from the microorganism isolated of native birds (1 g/kg) or S. platensis (0.2 g/kg) alone and their combination (0.3 g/kg of S. platensis in combination with 0.5 g/kg of native probiotic) are promising and can be a good alternative to antibiotics, lead to progress of broiler's performance.
Collapse
Affiliation(s)
- Fatemeh Khalilnia
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, Rasht, Guilan, Iran
| | - Majid Mottaghitalab
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, Rasht, Guilan, Iran
| | - Maziar Mohiti
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, Rasht, Guilan, Iran
| | - Ramin Seighalani
- Animal Biotechnology Research Institute, Agricultural Biotechnology Research Institute of Iran (ABRII), Alborz, Karaj, Iran
| |
Collapse
|
34
|
Alaqil AA, Abbas AO. The Effects of Dietary Spirulina platensisis on Physiological Responses of Broiler Chickens Exposed to Endotoxin Stress. Animals (Basel) 2023; 13:ani13030363. [PMID: 36766252 PMCID: PMC9913456 DOI: 10.3390/ani13030363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/25/2022] [Accepted: 01/12/2023] [Indexed: 01/24/2023] Open
Abstract
This study was proposed to highlight the impact of dietary Spirulina platensis (SP) supplementation in alleviating the deterioration effect of Escherichia coli (EC) on the growth performance, redox biomarkers, immune reaction, and hindgut microbial counts and acidosis in broiler chickens. Four hundred Cobb500, one-day-old, broiler chickens were deposited in battery cages (10 chicks per cage). The chicks were distributed into totally randomized 2 × 2 factorial treatments (10 replicate cages per treatment) from the day 22 to the day 42 of age. Birds of two of the groups were fed on a basal diet without SP supplementation (-SP groups), while birds of the other two groups were fed on a basal diet supplemented with 10 g/kg SP (+SP groups). At day 36th of age, birds in one of the -SP and +SP groups were challenged by an intraperitoneal (i.p.) injection with 107 CFU/bird EC (O157:H7 strain) in 0.5 mL sterilized saline (+EC groups), whereas the other non-challenged groups were i.p. injected with 0.5 mL saline only (-EC groups). The current study results indicated that the boilers challenged with EC had a significant (p < 0.05) lower performance, poor antioxidant activity, immunosuppression, and higher numbers of pathogenic bacteria in the intestine when compared with the non-challenged birds. Dietary SP inclusion enhanced (p < 0.05) broiler growth, antioxidant activity, immune response, and intestinal beneficial bacteria and acidosis. Moreover, SP alleviated the reduction in all these parameters after exposure to EC infection. Therefore, diets containing 10 g/kg SP could be used as a promising approach to maximize broilers' production and support their health, particularly when challenged with EC infection.
Collapse
Affiliation(s)
- Abdulaziz A. Alaqil
- Department of Animal and Fish Production, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ahmed O. Abbas
- Department of Animal and Fish Production, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Animal Production, Faculty of Agriculture, Cairo University, 7 Gamma St., Giza 12613, Egypt
- Correspondence:
| |
Collapse
|
35
|
El-Shall NA, Jiang S, Farag MR, Azzam M, Al-Abdullatif AA, Alhotan R, Dhama K, Hassan FU, Alagawany M. Potential of Spirulina platensis as a feed supplement for poultry to enhance growth performance and immune modulation. Front Immunol 2023; 14:1072787. [PMID: 36798131 PMCID: PMC9927202 DOI: 10.3389/fimmu.2023.1072787] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/06/2023] [Indexed: 02/01/2023] Open
Abstract
Increase in drug resistance as well as ineffective immunization efforts against various pathogens (viruses, bacteria and fungi) pose a significant threat to the poultry industry. Spirulina is one of the most widely used natural ingredients which is becoming popular as a nutritional supplement in humans, animals, poultry and aquaculture. It contains protein, vitamins, minerals, fatty acids, pigments, and essential amino acids. Moreover, it also has considerable quantities of unique natural antioxidants including polyphenols, carotenoids, and phycocyanin. Dietary supplementation of Spirulina can beneficially affect gut microbial population, serum biochemical parameters, and growth performance of chicken. Additionally, it contains polyphenolic contents having antibacterial effects. Spirulina extracts might inhibit bacterial motility, invasion, biofilm formation, and quorum sensing in addition to acting directly on the bacterium by weakening and making the bacterial cell walls more porous, subsequently resulting in cytoplasmic content leakage. Additionally, Spirulina has shown antiviral activities against certain common human or animal viruses and this capability can be considered to exhibit potential benefits against avian viruses also. Spirulan, a calcium-rich internal polysaccharide of Spirulina, is potentially responsible for its antiviral effect through inhibiting the entry of several viruses into the host cells, boosting the production of nitric oxide in macrophages, and stimulating the generation of cytokines. Comparatively a greater emphasis has been given to the immune modulatory effects of Spirulina as a feed additive in chicken which might boost disease resistance and improve survival and growth rates, particularly under stress conditions. This manuscript reviews biological activities and immune-stimulating properties of Spirulina and its potential use as a dietary supplement in poultry to enhance growth, gut health and disease resistance.
Collapse
Affiliation(s)
- Nahed A El-Shall
- Department Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, El-Beheira, Egypt
| | - Shouqun Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, Guangdong, China
| | - Mayada R Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mahmoud Azzam
- Department of Animal Production College of Food & Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.,Poultry Production Department, Agriculture Faculty, Mansoura University, Mansoura, Egypt
| | - Abdulaziz A Al-Abdullatif
- Department of Animal Production College of Food & Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Rashed Alhotan
- Department of Animal Production College of Food & Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, Indian Council of Agricultural Recearch-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Faiz-Ul Hassan
- Institute of animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig, Egypt
| |
Collapse
|
36
|
Abd El-Hack ME, Abdel-Moneim AME, Shehata AM, Mesalam NM, Salem HM, El-Saadony MT, El-Tarabily KA. Microalgae applications in poultry feed. HANDBOOK OF FOOD AND FEED FROM MICROALGAE 2023:435-450. [DOI: 10.1016/b978-0-323-99196-4.00008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
37
|
Effect of Dietary Microalgae ( Spirulina platensis) on Growth Performance, Ingestive Behavior, Hemato-Biochemical Parameters, and Economic Efficiency of Fayoumi Broilers. Life (Basel) 2022; 12:life12111892. [PMID: 36431027 PMCID: PMC9694510 DOI: 10.3390/life12111892] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
This study was conducted to evaluate the effect of dietary supplementation with Spirulina platensis (SP) on the productive performance, carcass characteristics, behavior, blood serum metabolites, hematological indices, and economic efficiency of Fayoumi broiler chickens for a 56-day. In total, 120 one-day-old broiler chicks were randomly distributed among four dietary treatments with three replicates (n = 10/group) for 8 weeks. The dietary treatments were a control basal diet without SP and the same basal diets supplemented with 0.25, 0.5, or 1.0% SP. Birds fed 1% Spirulina-supplemented diets recorded significantly (p < 0.05) higher body weight, weight gain, and feed conversion ratio and less overall feed intake and feeding behavior than those in the control group. No significant changes (p > 0.05) were recorded in the dressing percentage or the relative weights of internal organs among the different experimental groups, except for the thymus. Diets containing 0.5 or 1.0% SP saw an increase (p < 0.05) in serum total protein and globulin and a reduction (p < 0.05) in serum cholesterol concentration. The lymphocyte percentage in birds fed SP diets was significantly (p < 0.05) higher than in birds fed the control diet. These results suggest that adding SP up to 1% to the broiler diets could positively affect some important blood biochemical parameters, enhance their immunity response, and improve their growth performance. However, from an economic point of view, supplementation with 0.25% of SP is recommended for Fayoumi broiler chickens.
Collapse
|
38
|
Cheng YC, Kim SW. Use of Microorganisms as Nutritional and Functional Feedstuffs for Nursery Pigs and Broilers. Animals (Basel) 2022; 12:3141. [PMID: 36428369 PMCID: PMC9686830 DOI: 10.3390/ani12223141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The objectives of this review paper are to introduce the structures and composition of various microorganisms, to show some applications of single cells as alternative protein supplements or energy feeds in swine and poultry diets, and to discuss the functional effects of microorganisms as feed additives on the growth performance and intestinal health of nursery pigs and broilers. Microorganisms, including bacteria, yeasts, and microalgae, have been commonly supplemented in animal diets because they are cost-effective, stable, and have quantitative production that provides nutritional and functional benefits to pigs and broilers. Microorganisms could be alternative antibiotics to enhance intestinal health due to bioactive components from cell wall components, which interact with receptors on epithelial and immune cells. In addition, bioactive components could be digested by intestinal microbiota to produce short-chain fatty acids and enhance energy utilization. Otherwise, microorganisms such as single-cell protein (SCP) and single-cell oils (SCOs) are sustainable and economic choices to replace conventional protein supplements and energy feeds. Supplementing microorganisms as feedstuffs and feed additives improved the average daily gain by 1.83%, the daily feed intake by 0.24%, and the feed efficiency by 1.46% in pigs and broilers. Based on the properties of each microorganism, traditional protein supplements, energy feeds, and functional feed additives could be replaced by microorganisms, which have shown benefits to animal's growth and health. Therefore, specific microorganisms could be promising alternatives as nutritional and functional feedstuffs in animal diets.
Collapse
Affiliation(s)
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
39
|
Dietary intake of Spirulina platensis alters HSP70 gene expression profiles in the brain of rats in an experimental model of mixed stress. J Genet 2022. [DOI: 10.1007/s12041-022-01388-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
40
|
Effect of Dietary Blue-Green Microalgae Inclusion as a Replacement to Soybean Meal on Laying Hens' Performance, Egg Quality, Plasma Metabolites, and Hematology. Animals (Basel) 2022; 12:ani12202816. [PMID: 36290201 PMCID: PMC9597824 DOI: 10.3390/ani12202816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
Spirulina platensisis (SP) is a blue-green microalgae with a high value for animal and poultry nutrition. The study employed 250 40-week-old, HY-Line W-36 commercial laying hens. The layers received one of five experimental diet substitutes in five groups for 10 consecutive weeks (five replicates of 10 hens each group); a soybean-corn basal diet formulation without SP (Control group) or the soybean partially substituted with 3% SP, 6% SP, 9% SP, and 12% SP (for the remaining four groups). The results showed that dietary SP treatment significantly (p < 0.05) improved the productive performance, egg quality, blood metabolites, and hematological parameters of laying hens. In addition, there were linear and quadratic effects for increasing the levels of SP inclusion into the layer diets; however, the highest values of most parameters were observed when using 9% SP (90 g/kg of the layer diets). Furthermore, the results showed that 4.7% of the soybean meal ingredient in the layer diet could be replaced by 1% of SP. In conclusion, the partial replacement of soybean meal by SP into layer diets could be used as a promising nutritional approach to optimize the performance of laying hens.
Collapse
|
41
|
Hypocholesterolemic, Antioxidative, and Anti-Inflammatory Effects of Dietary Spirulina platensisis Supplementation on Laying Hens Exposed to Cyclic Heat Stress. Animals (Basel) 2022; 12:ani12202759. [PMID: 36290147 PMCID: PMC9597838 DOI: 10.3390/ani12202759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
This study aimed to investigate the role of dietary Spirulina platensis (SP) supplementation in relieving the negative impacts of heat stress (HS) on the productive performance, cholesterol profile, redox status, and inflammatory cytokines of laying hens. A total of 288, 45-wk-old and 1550.7 ± 2.3 g initial body weight, HY-Line W-36 laying hens were housed in two environmental-controlled compartments. Layers were allotted to eight treatments of a two × four factorial design, with six replicates containing six birds per treatment. The temperature in one of the compartments was kept at a thermoneutral condition (24 °C group), while the temperature in the other compartment was raised to a cyclic heat stress of 35 °C from 9:00 a.m. to 5.00 p.m. (35 °C group). Layers in each compartment were fed on one of four experimental diets, containing 0%, 3%, 6%, or 9% SP (SP groups). The trial continued for five weeks. As a result of this study, exposure of laying hens to cyclic HS resulted in a significant (p < 0.05) increase in the total cholesterol (CH), low-density lipoprotein-CH, liver- and egg yolk-CH, ceruloplasmin, malondialdehyde, interleukins (IL-1β and IL-6), and tumor necrosis factor-α, and a significant (p < 0.05) decrease in the high-density lipoprotein-CH, total antioxidant capacity, and reduced glutathione levels. HS negatively (p < 0.05) affected the hen−day egg production (EP, 90.5% vs. 77.0%), egg weight (EW, 61.8 g vs. 56.8 g), feed intake (FI, 111.6 g vs. 101.5 g) and feed conversion ratio (FCR, 2.00 vs. 2.37). As SP levels increased in layer diets, a linear (p < 0.05) improvement response in most of the parameters was obtained in both HS and non-HS layers, recording the best results with 9% SP (e.g., 78.8% vs. 87.6% EP, 56.7 g vs. 61.9 g EW, 103.3 g vs. 110.2 g FI, and 2.38 vs. 2.04 FCR, in 0% vs. 9% SP, respectively). When incorporating SP into the diets of HS-layers, the negative impacts of HS were remarkably relieved (p < 0.05). Therefore, diets containing 9% SP could be used as a promising approach to improve the productive and physiological performance of laying hens, particularly under heat stress conditions.
Collapse
|
42
|
Spínola MP, Costa MM, Prates JAM. Digestive Constraints of Arthrospira platensis in Poultry and Swine Feeding. Foods 2022; 11:2984. [PMID: 36230060 PMCID: PMC9562253 DOI: 10.3390/foods11192984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/04/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
Microalgae have emerged as novel sources for monogastric animals' diets since they are rich in many nutrients, including proteins. Arthrospira platensis is particularly rich in proteins (up to 76% of dry matter), lipids, minerals and pigments. However, its rigid peptidoglycan cell wall interferes with the digestibility, bio-accessibility and bioavailability of nutrients for monogastric animals. The aim of the present study was to evaluate the digestibility, bio-accessibility, bioavailability and protein quality of nutrients from A. platensis for poultry and swine feeding, searching all the studies available in PubMed, Web of Science, Scopus and Google Scholar in June 2022 concerning this subject. Overall, digestibility values of A. platensis proteins or amino acids varying from 66.1 to 68.7% for poultry (microalgae at 1% feed) and from 75.4 to 80.6% for swine (10% feed) have been reported. Therefore, the extraction of microalgae components using mechanical or non-mechanical pre-treatments is required to promote cell disruption and improve digestibility and bio-accessibility. Although A. platensis is a promising feedstuff to support future needs, it is important to perform more investigation concerning digestibility, dietary inclusion level and possible treatments to disrupt microalga cell walls and increase bioavailability of nutrients.
Collapse
Affiliation(s)
- Maria P. Spínola
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Mónica M. Costa
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - José A. M. Prates
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
43
|
Tounsi L, Hentati F, Ben Hlima H, Barkallah M, Smaoui S, Fendri I, Michaud P, Abdelkafi S. Microalgae as feedstock for bioactive polysaccharides. Int J Biol Macromol 2022; 221:1238-1250. [PMID: 36067848 DOI: 10.1016/j.ijbiomac.2022.08.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
Due to the increase in industrial demand for new biosourced molecules (notably bioactive exopolysaccharides (EPS)), microalgae are gaining popularity because of their nutraceutical potential and benefits health. Such health effects are delivered by specific secondary metabolites, e.g., pigments, exopolysaccharides, polyunsaturated fatty acids, proteins, and glycolipids. These are suitable for the subsequent uses in cosmetic, nutraceutical, pharmaceutical, biofuels, biological waste treatment, animal feed and food fields. In this regard, a special focus has been given in this review to describe the various methods used for extraction and purification of polysaccharides. The second part of the review provides an up-to-date and comprehensive summary of parameters affecting the microalgae growth and insights to maximize the metabolic output by understanding the intricacies of algal development and polysaccharides production. In the ultimate part, the health and nutraceutical claims associated with marine algal bioactive polysaccharides, explaining their noticeable potential for biotechnological applications, are summarized and comprehensively discussed.
Collapse
Affiliation(s)
- Latifa Tounsi
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038 Sfax, Tunisia; Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Faiez Hentati
- Université de Lorraine, INRAE, Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), USC 340, Nancy F-54000, France
| | - Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038 Sfax, Tunisia
| | - Mohamed Barkallah
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038 Sfax, Tunisia
| | - Slim Smaoui
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Route Sidi Mansour Km 6 B.P. 117, 3018 Sfax, Tunisia
| | - Imen Fendri
- Laboratoire de Biotechnologie des Plantes Appliquée à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, 3038 Sfax, Tunisia
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038 Sfax, Tunisia.
| |
Collapse
|
44
|
Growth performance and physiological status evaluation of Spirulina platensis algae supplementation in broiler chicken diet. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Costa MM, Pestana JM, Carvalho P, Alfaia CM, Martins CF, Carvalho D, Mourato M, Gueifão S, Delgado I, Coelho I, Lemos JPC, Lordelo MM, Prates JAM. Effect on Broiler Production Performance and Meat Quality of Feeding Ulva lactuca Supplemented with Carbohydrases. Animals (Basel) 2022; 12:1720. [PMID: 35804618 PMCID: PMC9264772 DOI: 10.3390/ani12131720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 02/08/2023] Open
Abstract
The aim of the study was to test if feeding 15% U. lactuca to broilers, alone or combined with carbohydrases, enhanced meat nutritional quality, without compromising growth performance. One hundred and twenty 22-day-old broilers were allocated to the following diets and replicated 10 times for 14 days: (1) maize and soy-based diet (control); (2) control with 15% U. lactuca (UL); (3) UL diet with 0.005% commercial carbohydrase mixture (ULC); and (4) UL diet with 0.01% ulvan lyase (ULE). Final body weight and average daily gain decreased (p < 0.050) with the ULE diet compared with the control, but no significant differences were found for the other diets. The intestinal viscosity increased (p < 0.001) with all alga diets but was lowered (p < 0.050) in the ileum with the ULE diet, relative to UL and ULC diets. Meat lightness and redness values, off-flavours, and total carotenoids increased (p < 0.001), while yellow values, tenderness, juiciness, overall acceptability, α- and γ-tocopherol, and total lipids decreased (p < 0.001) with alga diets. The n-3 polyunsaturated fatty acids (PUFA) increased (p < 0.050), and the n-6/n-3 PUFA ratio decreased (p < 0.001) with the ULE diet. Total minerals in meat increased (p < 0.001) with alga diets, conversely to sodium and zinc (p < 0.001). Feeding 15% of U. lactuca to broilers did not impair growth but increased meat nutritional value through the accumulation of health-promoting antioxidant carotenoids, n-3 PUFA and total minerals, although reducing overall meat acceptability.
Collapse
Affiliation(s)
- Mónica M. Costa
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (M.M.C.); (J.M.P.); (C.M.A.); (C.F.M.); (J.P.C.L.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - José M. Pestana
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (M.M.C.); (J.M.P.); (C.M.A.); (C.F.M.); (J.P.C.L.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Patrícia Carvalho
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal; (P.C.); (D.C.); (M.M.); (M.M.L.)
| | - Cristina M. Alfaia
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (M.M.C.); (J.M.P.); (C.M.A.); (C.F.M.); (J.P.C.L.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Cátia F. Martins
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (M.M.C.); (J.M.P.); (C.M.A.); (C.F.M.); (J.P.C.L.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal; (P.C.); (D.C.); (M.M.); (M.M.L.)
| | - Daniela Carvalho
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal; (P.C.); (D.C.); (M.M.); (M.M.L.)
| | - Miguel Mourato
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal; (P.C.); (D.C.); (M.M.); (M.M.L.)
| | - Sandra Gueifão
- INSA—Departamento de Alimentação e Nutrição, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (S.G.); (I.D.); (I.C.)
| | - Inês Delgado
- INSA—Departamento de Alimentação e Nutrição, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (S.G.); (I.D.); (I.C.)
| | - Inês Coelho
- INSA—Departamento de Alimentação e Nutrição, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (S.G.); (I.D.); (I.C.)
| | - José P. C. Lemos
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (M.M.C.); (J.M.P.); (C.M.A.); (C.F.M.); (J.P.C.L.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Madalena M. Lordelo
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal; (P.C.); (D.C.); (M.M.); (M.M.L.)
| | - José A. M. Prates
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (M.M.C.); (J.M.P.); (C.M.A.); (C.F.M.); (J.P.C.L.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| |
Collapse
|
46
|
Kumar R, Hegde AS, Sharma K, Parmar P, Srivatsan V. Microalgae as a sustainable source of edible proteins and bioactive peptides – Current trends and future prospects. Food Res Int 2022; 157:111338. [DOI: 10.1016/j.foodres.2022.111338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/23/2022]
|
47
|
Wang J, Su L, Zhang L, Zeng J, Chen Q, Deng R, Wang Z, Kuang W, Jin X, Gui S, Xu Y, Lu X. Spirulina platensis aqueous extracts ameliorate colonic mucosal damage and modulate gut microbiota disorder in mice with ulcerative colitis by inhibiting inflammation and oxidative stress. J Zhejiang Univ Sci B 2022; 23:481-501. [PMID: 35686527 DOI: 10.1631/jzus.b2100988] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ulcerative colitis (UC) is a chronic and recurrent inflammatory bowel disease (IBD) that has become a major gastroenterologic problem during recent decades. Numerous complicating factors are involved in UC development such as oxidative stress, inflammation, and microbiota disorder. These factors exacerbate damage to the intestinal mucosal barrier. Spirulina platensis is a commercial alga with various biological activity that is widely used as a functional ingredient in food and beverage products. However, there have been few studies on the treatment of UC using S. platensis aqueous extracts (SP), and the underlying mechanism of action of SP against UC has not yet been elucidated. Herein, we aimed to investigate the modulatory effect of SP on microbiota disorders in UC mice and clarify the underlying mechanisms by which SP alleviates damage to the intestinal mucosal barrier. Dextran sulfate sodium (DSS) was used to establish a normal human colonic epithelial cell (NCM460) injury model and UC animal model. The mitochondrial membrane potential assay 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and staining with Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) and Hoechst 33258 were carried out to determine the effects of SP on the NCM460 cell injury model. Moreover, hematoxylin and eosin (H&E) staining, transmission electron microscopy (TEM), enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qPCR), western blot, and 16S ribosomal DNA (rDNA) sequencing were used to explore the effects and underlying mechanisms of action of SP on UC in C57BL/6 mice. In vitro studies showed that SP alleviated DSS-induced NCM460 cell injury. SP also significantly reduced the excessive generation of intracellular reactive oxygen species (ROS) and prevented mitochondrial membrane potential reduction after DSS challenge. In vivo studies indicated that SP administration could alleviate the severity of DSS-induced colonic mucosal damage compared with the control group. Inhibition of inflammation and oxidative stress was associated with increases in the activity of antioxidant enzymes and the expression of tight junction proteins (TJs) post-SP treatment. SP improved gut microbiota disorder mainly by increasing antioxidant enzyme activity and the expression of TJs in the colon. Our findings demonstrate that the protective effect of SP against UC is based on its inhibition of pro-inflammatory cytokine overproduction, inhibition of DSS-induced ROS production, and enhanced expression of antioxidant enzymes and TJs in the colonic mucosal barrier.
Collapse
Affiliation(s)
- Jian Wang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Liqian Su
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.,School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lun Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiali Zeng
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qingru Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Rui Deng
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ziyan Wang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weidong Kuang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shuiqing Gui
- Intensive Care Unit, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, China
| | - Yinghua Xu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing 102629, China. ,
| | - Xuemei Lu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
48
|
Elbaz AM, Ahmed AMH, Abdel-Maqsoud A, Badran AMM, Abdel-Moneim AME. Potential ameliorative role of Spirulina platensis in powdered or extract forms against cyclic heat stress in broiler chickens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45578-45588. [PMID: 35149947 PMCID: PMC9209341 DOI: 10.1007/s11356-022-19115-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/03/2022] [Indexed: 05/07/2023]
Abstract
Global warming has become intensified and widespread, threatening the world with causing acute heatwaves that adversely affect poultry production and producers' profitability. Spirulina platensis is a precious and promising mitigating strategy to combat the detrimental impacts of heat stress due to its high contents of nutrients and bioactive components. The current study was designed to compare the incorporation impact of S. platensis powder or aqueous extract on the growth and physiological responses of heat-stressed broiler chicks. Six hundred 1-day-old Ross 308 male broiler chicks were allocated into five experimental groups with six replicates of 20 chicks each. The control group fed the basal diet without additives, SPP1 and SPP2 groups fed the basal diet with 1 g/kg and 2 g/kg S. platensis powder, respectively, while SPE1 and SPE2 groups received 1 ml/L and 2 ml/L S. platensis aqueous extract in the drinking water, respectively. All birds were exposed to cyclic heat stress (34 ± 2 °C for 12 h) for three successive days a week from day 10 to day 35. In vitro analysis showed that total phenols, flavonoids, and antioxidant activity of S. platensis were remarkably decreased (P < 0.001) in the aqueous extract compared to the powder form. Body weight, weight gain, and feed conversion ratio were improved (P < 0.001) in all treated groups, while carcass yield and dressing percentage were increased only in SPP1 and SPP2. Feed and water intake and blood biochemical parameters were not affected. Both forms of S. platensis enhanced the lipid profile, redox status, and humoral immune response of heat-stressed chicks superior to the powder form. Conclusively, the powder form of S. platensis was more effective in enhancing the productivity of broilers and alleviating the negative impacts of heat stress than the aqueous extract form.
Collapse
Affiliation(s)
| | - Ayman M H Ahmed
- Poultry Production Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | | | - Aml M M Badran
- Poultry Breeding Department, Animal Production Research Institute, Agricultural Research Center, Ministry of Agriculture, Dokki, Giza, Egypt
| | | |
Collapse
|
49
|
Omar AE, Al-Khalaifah HS, Osman A, Gouda A, Shalaby SI, Roushdy EM, Abdo SA, Ali SA, Hassan AM, Amer SA. Modulating the Growth, Antioxidant Activity, and Immunoexpression of Proinflammatory Cytokines and Apoptotic Proteins in Broiler Chickens by Adding Dietary Spirulina platensis Phycocyanin. Antioxidants (Basel) 2022; 11:antiox11050991. [PMID: 35624855 PMCID: PMC9137683 DOI: 10.3390/antiox11050991] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 12/18/2022] Open
Abstract
This study investigated the dietary effect of Spirulina platensis phycocyanin (SPC) on growth performance (body weight (BW), body weight gain (BWG), feed intake (FI), feed conversion ratio (FCR)) at starter, grower, and finisher stages, intestinal histomorphology, serum biochemical parameters, inflammatory and antioxidant indices, and proinflammatory cytokines (tumor necrosis factor-α and caspase-3) immune expression in broiler chickens. In total, 250 one-day-old chicks (Ross 308 broiler) were randomly allotted to five experimental groups (5 replicates/group, 10 chicks/replicate) and fed basal diets supplemented with five levels of SPC (0, 0.25, 0.5, 0.75, and 1 g kg–1 diet) for 35 days. Compared with SPC0 treatment, different SPC levels increased the overall BW and BWG without affecting the total feed consumption. However, the FCR decreased linearly with an increase in supplementation level. The serum levels of total proteins, albumin, globulins, and growth hormone increased linearly by increasing levels of SPC supplementation. Further, SPC supplementation increased the thyroxin hormones without affecting serum glucose and leptin levels. Serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) values decreased in broilers fed SPC0.250 and SPC1 diets. Triglycerides (TG) decreased in SPC0.25-, SPC0.75-, and SPC1-treated groups. Though antioxidant enzyme activities (total antioxidant capacity, catalase, and superoxide dismutase) increased linearly and quadratically, malondialdehyde (MDA) decreased linearly by increasing the SPC level. There was no effect on serum proinflammatory cytokines IL1β levels. Immunolabelling index of caspase-3 and tumor necrosis factor-α (TNF-α) were downregulated by SPC supplementation. The intestinal histomorphology is represented by increased villus height, the villus height to crypt depth ratio, and numbers of goblet cells in different sections of the small intestine. In conclusion, SPC supplementation is beneficial in broiler chicken diets due to its growth-promoting, antioxidant, and anti-inflammatory properties.
Collapse
Affiliation(s)
- Anaam E. Omar
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Hanan S. Al-Khalaifah
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat, Kuwait City 13109, Kuwait;
| | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Ahmed Gouda
- Animal Production Department, Agricultural & Biological Research Division, National Research Center, Dokki, Cairo 11865, Egypt;
| | - Shimaa I. Shalaby
- Physiology Department, Veterinary Medicine Faculty, University of Zagazig, Zagazig 44511, Egypt;
| | - Elshimaa M. Roushdy
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Samar A. Abdo
- Biochemistry Department, Faculty of Veterinary Medicine, University of Zagazig, Zagazig 44511, Egypt;
| | - Sozan A. Ali
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Aziza M. Hassan
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Shimaa A. Amer
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
- Correspondence:
| |
Collapse
|
50
|
Frazzini S, Scaglia E, Dell’Anno M, Reggi S, Panseri S, Giromini C, Lanzoni D, Sgoifo Rossi CA, Rossi L. Antioxidant and Antimicrobial Activity of Algal and Cyanobacterial Extracts: An In Vitro Study. Antioxidants (Basel) 2022; 11:antiox11050992. [PMID: 35624856 PMCID: PMC9137800 DOI: 10.3390/antiox11050992] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022] Open
Abstract
Algae and cyanobacteria, other than their nutritional value, possess different beneficial properties, including antioxidant and antimicrobial ones. Therefore, they can be considered functional ingredients in animal feed and natural substitutes for antibiotics. The aim of this study was to evaluate the antioxidant and antimicrobial capacity against porcine O138 E. coli of Ascophyllum nodosum, Chlorella vulgaris, Lithotamnium calcareum, Schizochytrium spp. as algal species and Arthrospira platensis as cyanobacteria. The antioxidant capacity was determined by ABTS Radical Cation Decolorization Assay testing at three different concentrations (100%; 75%; 50%). The growth inhibition effect of the extracts at concentrations of 25%, 12.5%, 6%, 3% and 1.5% against porcine O138 E. coli was genetically characterized by PCR to detect the presence of major virulence factors; this was evaluated by following the microdilution bacterial growth method. The ABTS assay disclosed that Ascophyllum nodosum was the compound with the major antioxidant properties (57.75 ± 1.44 percentage of inhibition; p < 0.0001). All the extracts tested showed growth inhibition activity at a concentration of 25%. Among all extracts, A. nodosum was the most effective, showing a significant growth inhibition of E. coli; in particular, the log10 cells/mL of E. coli used as a control resulted in a significantly higher concentration of 25% and 12.5% after 4 h (8.45 ± 0.036 and 7.22 ± 0.025 log10 cells/mL, respectively; p < 0.005). This also suggests a dose-dependent relationship between the inhibitory activity and the concentration. Also, a synergistic effect was observed on antioxidant activity for the combination of Ascophyllum nodosum and Lithotamnium calcareum (p < 0.0001). Moreover, to determine if this combination could affect the viability of the IPEC-J2 cells under the normal or stress condition, the viability and membrane integrity were tested, disclosing that the combination mitigated the oxidative stress experimentally induced by increasing the cell viability. In conclusion, the results obtained highlight that the bioactive compounds of algal species are able to exert antioxidant capacity and modulate O138 E. coli growth. Also, the combination of Ascophyllum nodosum and Lithotamnium calcareum species can enhance their bioactivity, making them a promising functional feed additive and a suitable alternative to antibiotics.
Collapse
|