1
|
Desai SA, Patel VP, Bhosle KP, Nagare SD, Thombare KC. The tumor microenvironment: shaping cancer progression and treatment response. J Chemother 2025; 37:15-44. [PMID: 38179655 DOI: 10.1080/1120009x.2023.2300224] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The tumor microenvironment (TME) plays a crucial role in cancer progression and treatment response. It comprises a complex network of stromal cells, immune cells, extracellular matrix, and blood vessels, all of which interact with cancer cells and influence tumor behaviour. This review article provides an in-depth examination of the TME, focusing on stromal cells, blood vessels, signaling molecules, and ECM, along with commonly available therapeutic compounds that target these components. Moreover, we explore the TME as a novel strategy for discovering new anti-tumor drugs. The dynamic and adaptive nature of the TME offers opportunities for targeting specific cellular interactions and signaling pathways. We discuss emerging approaches, such as combination therapies that simultaneously target cancer cells and modulate the TME. Finally, we address the challenges and future prospects in targeting the TME. Overcoming drug resistance, improving drug delivery, and identifying new therapeutic targets within the TME are among the challenges discussed. We also highlight the potential of personalized medicine and the integration of emerging technologies, such as immunotherapy and nanotechnology, in TME-targeted therapies. This comprehensive review provides insights into the TME and its therapeutic implications. Understanding the TME's complexity and targeting its components offer promising avenues for the development of novel anti-tumor therapies and improved patient outcomes.
Collapse
Affiliation(s)
- Sharav A Desai
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Vipul P Patel
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Kunal P Bhosle
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Sandip D Nagare
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Kirti C Thombare
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| |
Collapse
|
2
|
Compagno MK, Silver CR, Cox-Holmes A, Basso KB, Bishop C, Bernstein AM, Carley A, Cazorla J, Claydon J, Crane A, Crespi C, Curley E, Dolezel T, Franck E, Heiden K, Huffstetler CM, Loeven AM, May CA, Maykut N, Narvarez A, Pacheco FA, Turner O, Fadool DA. Maternal ingestion of cannabidiol (CBD) in mice leads to sex-dependent changes in memory, anxiety, and metabolism in the adult offspring, and causes a decrease in survival to weaning age. Pharmacol Biochem Behav 2025; 247:173902. [PMID: 39481653 DOI: 10.1016/j.pbb.2024.173902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/30/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
RATIONALE The consequences of perinatal cannabidiol (CBD) exposure are severely understudied, but are important, given its widespread use and believed safety as a natural supplement. OBJECTIVE The objective of this study was to test the health, metabolic, and behavioral consequences of perinatal CBD exposure on dams and their offspring raised to adult. METHODS Primiparous female C57BL/6J mice were orally administered 100 mg/kg CBD in strawberry jam to expose offspring during gestation, lactation, or both using a cross-fostering design. Adult offspring were metabolically profiled using indirect calorimetry and intraperitoneal glucose tolerance testing. Adults were behaviorally phenotyped, video recorded, and mouse position tracked using DeepLabCut. RESULTS CBD was detected in maternal plasma using LC-MS 10-min post consumption (34.2 ± 1.7 ng/μl) and peaked within 30 min (371.0 ± 34.0 ng/μl). Fetal exposure to CBD significantly decreased survival of the pups, and decreased male postnatal development, but did not alter litter size, maternal body weight or pup birth weight. We observed many sex-dependent effects of perinatal CBD exposure. Exposure to CBD during gestation and lactation increased meal size, caloric intake, and respiratory exchange ratio for adult male offspring, while exposure during lactation decreased fasting glucose, but had no effect on clearance. Adult female offspring exposed to CBD during lactation showed increased drink size. Perinatal CBD exposure increased obsessive compulsive- and decreased anxiety-like behaviors (marble burying, light-dark box, elevated-plus maze) in female mice, decreased long-term object memory in male mice, and had no effect on attention tasks for either sex. CONCLUSIONS We conclude that orally-administered CBD during pregnancy affects behavior and metabolism in a sex-dependent manner, and mice are differentially sensitive to exposure during gestation vs. lactation, or both. Because long-term changes are observed following perinatal exposure to the drug, and exposure significantly decreases survival to weaning, more research during development is warranted.
Collapse
Affiliation(s)
| | - Claudia Rose Silver
- Interdisciplinary Medical Sciences, Florida State University, Tallahassee, FL 32306, USA.
| | - Alexis Cox-Holmes
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Caroline Bishop
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | | | - Aidan Carley
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Joshua Cazorla
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Jenna Claydon
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Ashleigh Crane
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Chloe Crespi
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Emma Curley
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Tyla Dolezel
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| | - Ezabelle Franck
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| | - Katie Heiden
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | | | - Ashley M Loeven
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Camilla Ann May
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Nicholas Maykut
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Alejandro Narvarez
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| | - Franklin A Pacheco
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Olivia Turner
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Debra Ann Fadool
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA; Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
3
|
Wainwright CL, Walsh SK. Pharmacology of Non-Psychoactive Phytocannabinoids and Their Potential for Treatment of Cardiometabolic Disease. Handb Exp Pharmacol 2025; 287:61-93. [PMID: 39235486 DOI: 10.1007/164_2024_731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The use of Cannabis sativa by humans dates back to the third millennium BC, and it has been utilized in many forms for multiple purposes, including production of fibre and rope, as food and medicine, and (perhaps most notably) for its psychoactive properties for recreational use. The discovery of Δ9-tetrahydrocannabinol (Δ9-THC) as the main psychoactive phytocannabinoid contained in cannabis by Gaoni and Mechoulam in 1964 (J Am Chem Soc 86, 1646-1647), was the first major step in cannabis research; since then the identification of the chemicals (phytocannabinoids) present in cannabis, the classification of the pharmacological targets of these compounds and the discovery that the body has its own endocannabinoid system (ECS) have highlighted the potential value of cannabis-derived compounds in the treatment of many diseases, such as neurological disorders and cancers. Although the use of Δ9-THC as a therapeutic agent is constrained by its psychoactive properties, there is growing evidence that non-psychoactive phytocannabinoids, derived from both Cannabis sativa and other plant species, as well as non-cannabinoid compounds found in Cannabis sativa, have real potential as therapeutics. This chapter will focus on the possibilities for using these compounds in the prevention and treatment of cardiovascular disease and related metabolic disturbances.
Collapse
Affiliation(s)
- Cherry L Wainwright
- Centre for Cardiometabolic Health Research, School of Pharmacy & Life Sciences, Robert Gordon University, Aberdeen, Scotland, UK.
| | - Sarah K Walsh
- Centre for Cardiometabolic Health Research, School of Pharmacy & Life Sciences, Robert Gordon University, Aberdeen, Scotland, UK
| |
Collapse
|
4
|
Jakob J, Schwerdtel F, Sidney S, Rodondi N, Pletcher MJ, Reis JP, Muniyappa R, Clair C, Tal K, Bancks MP, Rana JS, Collet TH, Auer R. Associations of cannabis use and body mass index-The Coronary Artery Risk Development in Young Adults (CARDIA) study. Eur J Intern Med 2024; 129:41-47. [PMID: 38987097 DOI: 10.1016/j.ejim.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND With increasing use of cannabis, we need to know if cannabis use and Body Mass Index (BMI) are associated. METHODS The Coronary Artery Risk Development in Young Adults Study followed Black and White adults over 30 years with assessments every 2 to 5 years in four centers in the USA. We assessed self-reported current and computed cumulative cannabis exposure at every visit, and studied associations with BMI, adjusted for relevant covariables in mixed longitudinal models. We also applied marginal structural models (MSM) accounting for the probability of having stopped cannabis over the last 5 years. RESULTS At the Year 30 visit, 1,912 (58 %) identified as women and 1,600 (48 %) as Black, mean age was 56 (SD 2) years. While 2,849 (85 %) had ever used cannabis, 479 (14 %) currently used cannabis. Overall, participants contributed to 35,882 individual visits over 30 years. In multivariable adjusted models, mean BMI was significantly lower in daily cannabis users (26.6 kg/m2, 95 %CI 26.3 to 27.0) than in participants without current use (27.7 kg/m2, 95 %CI 27.5 to 27.9, p < 0.001). Cumulative cannabis use was not associated with BMI. The MSM showed no change in BMI when stopping cannabis use over a 5-year period (β=0.2 kg/m2 total, 95 %CI -0.2 to 0.6). CONCLUSIONS Current cannabis use was associated with lower BMI, but cumulative cannabis use and cessation were not. This suggests that recreational cannabis use may not lead to clinically relevant changes in BMI and that the association between current cannabis use and lower BMI is likely due to residual confounding.
Collapse
Affiliation(s)
- Julian Jakob
- Institute of Primary Health Care (BIHAM), University of Bern, Mittelstrasse 43, Bern 3012, Switzerland; Department of Paediatrics, University Hospital Bern, Inselspital, Bern, Switzerland.
| | - Fiona Schwerdtel
- Institute of Primary Health Care (BIHAM), University of Bern, Mittelstrasse 43, Bern 3012, Switzerland
| | - Steve Sidney
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Nicolas Rodondi
- Institute of Primary Health Care (BIHAM), University of Bern, Mittelstrasse 43, Bern 3012, Switzerland; Department of General Internal Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Mark J Pletcher
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA; Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Jared P Reis
- National Heart, Lung, and Blood Institute, Bethesda, USA
| | - Ranganath Muniyappa
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, USA
| | - Carole Clair
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Kali Tal
- Institute of Primary Health Care (BIHAM), University of Bern, Mittelstrasse 43, Bern 3012, Switzerland
| | - Michael P Bancks
- Department of Epidemiology & Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jamal S Rana
- Department of Cardiology, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Tinh-Hai Collet
- Service of Endocrinology, Diabetology, Nutrition and Therapeutic Education, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland; Diabetes Centre, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Reto Auer
- Institute of Primary Health Care (BIHAM), University of Bern, Mittelstrasse 43, Bern 3012, Switzerland; Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Abuhasira R. Cannabis is probably not the best choice for weight reduction. Eur J Intern Med 2024; 129:28-29. [PMID: 39244394 DOI: 10.1016/j.ejim.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Affiliation(s)
- Ran Abuhasira
- Clinical Research Center, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
6
|
Jurga M, Jurga A, Jurga K, Kaźmierczak B, Kuśmierczyk K, Chabowski M. Cannabis-Based Phytocannabinoids: Overview, Mechanism of Action, Therapeutic Application, Production, and Affecting Environmental Factors. Int J Mol Sci 2024; 25:11258. [PMID: 39457041 PMCID: PMC11508795 DOI: 10.3390/ijms252011258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
This review provides an overview of cannabis-based phytocannabinoids, focusing on their mechanisms of action, therapeutic applications, and production processes, along with the environmental factors that affect their quality and efficacy. Phytocannabinoids such as THC (∆9-tetrahydrocannabinol), CBD (cannabidiol), CBG (cannabigerol), CBN (cannabinol), and CBC (cannabichromene) exhibit significant therapeutic potential in treating various physical and mental health conditions, including chronic pain, epilepsy, neurodegenerative diseases, skin disorders, and anxiety. The cultivation of cannabis plays a crucial role in determining cannabinoid profiles, with indoor cultivation offering more control and consistency than outdoor methods. Environmental factors such as light, water, temperature, humidity, nutrient management, CO2, and the drying method used are key to optimizing cannabinoid content in inflorescences. This review outlines the need for broader data transfer between the health industry and technological production, especially in terms of what concentration and cannabinoid ratios are effective in treatment. Such data transfer would provide cultivators with information on what environmental parameters should be manipulated to obtain the required final product.
Collapse
Affiliation(s)
- Marta Jurga
- 4th Military Teaching Hospital, 50-981 Wroclaw, Poland; (M.J.); (K.J.)
| | - Anna Jurga
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland; (A.J.); (B.K.)
| | - Kacper Jurga
- 4th Military Teaching Hospital, 50-981 Wroclaw, Poland; (M.J.); (K.J.)
| | - Bartosz Kaźmierczak
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland; (A.J.); (B.K.)
| | | | - Mariusz Chabowski
- 4th Military Teaching Hospital, 50-981 Wroclaw, Poland; (M.J.); (K.J.)
- Faculty of Medicine, Wroclaw University of Science and Technology, Hoene-Wrońskiego 13c, 58-376 Wroclaw, Poland
| |
Collapse
|
7
|
Bielawiec P, Dziemitko S, Konstantynowicz-Nowicka K, Sztolsztener K, Chabowski A, Harasim-Symbor E. Cannabigerol-A useful agent restoring the muscular phospholipids milieu in obese and insulin-resistant Wistar rats? Front Mol Biosci 2024; 11:1401558. [PMID: 38919749 PMCID: PMC11196617 DOI: 10.3389/fmolb.2024.1401558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Numerous strategies have been proposed to minimize obesity-associated health effects, among which phytocannabinoids appear to be effective and safe compounds. In particular, cannabigerol (CBG) emerges as a potent modulator of the composition of membrane phospholipids (PLs), which plays a critical role in the development of insulin resistance. Therefore, here we consider the role of CBG treatment on the composition of PLs fraction with particular emphasis on phospholipid subclasses (e.g., phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylinositol (PI)) in the red gastrocnemius muscle of Wistar rats fed the standard or high-fat, high-sucrose (HFHS) diet. The intramuscular PLs content was determined by gas-liquid chromatography and based on the composition of individual FAs, we assessed the stearoyl-CoA desaturase 1 (SCD1) index as well as the activity of n-3 and n-6 polyunsaturated fatty acids (PUFAs) pathways. Expression of various proteins engaged in the inflammatory pathway, FAs elongation, and desaturation processes was measured using Western blotting. Our research has demonstrated the important association of obesity with alterations in the composition of muscular PLs, which was significantly improved by CBG supplementation, enriching the lipid pools in n-3 PUFAs and decreasing the content of arachidonic acid (AA), which in turn influenced the activity of PUFAs pathways in various PLs subclasses. CBG also inhibited the local inflammation development and profoundly reduced the SCD1 activity. Collectively, restoring the PLs homeostasis of the myocyte membrane by CBG indicates its new potential medical application in the treatment of obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Patrycja Bielawiec
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | | | | | | | | | | |
Collapse
|
8
|
Zorba BI, Boyacıoğlu Ö, Çağlayan T, Reçber T, Nemutlu E, Eroğlu İ, Korkusuz P. CB65 and novel CB65 liposomal system suppress MG63 and Saos-2 osteosarcoma cell growth in vitro. J Liposome Res 2024; 34:274-287. [PMID: 37740901 DOI: 10.1080/08982104.2023.2262025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/06/2023] [Indexed: 09/25/2023]
Abstract
Curable approaches for primary osteosarcoma are inadequate and urge investigation of novel therapeutic formulations. Cannabinoid ligands exert antiproliferative and apoptotic effect on osteosarcoma cells via cannabinoid 2 (CB2) or transient receptor potential vanilloid type (TRPV1) receptors. In this study, we confirmed CB2 receptor expression in MG63 and Saos-2 osteosarcoma cells by qRT-PCR and flow cytometry (FCM), then reported the reduction effect of synthetic specific CB2 receptor agonist CB65 on the proliferation of osteosarcoma cells by WST-1 (water-soluble tetrazolium-1) and RTCA (real-time impedance-based proliferation). CB65 revealed an IC50 (inhibitory concentration) for MG63 and Saos-2 cells as 1.11 × 10-11 and 4.95 × 10-11 M, respectively. The specific antiproliferative effect of CB65 on osteosarcoma cells was inhibited by CB2 antagonist AM630. CB65 induced late apoptosis of MG63 and Saos-2 cells at 24 and 48 h, respectively by FCM when applied submaximal concentration. A novel CB65 liposomal system was generated by a thin film hydration method with optimal particle size (141.7 ± 0.6 nm), polydispersity index (0.451 ± 0.026), and zeta potential (-10.9 ± 0.3 mV) values. The encapsulation efficiency (EE%) of the CB65-loaded liposomal formulation was 51.12%. The CB65 and CB65-loaded liposomal formulation releasing IC50 of CB65 reduced proliferation by RTCA and invasion by scratch assay and induced late apoptosis of MG63 and Saos-2 cells, by FCM. Our results demonstrate the CB2 receptor-mediated antiproliferative and apoptotic effect of a new liposomal CB65 delivery system on osteosarcoma cells that can be used as a targeted and intelligent tool for bone tumors to ameliorate pediatric bone cancers following in vivo validation.
Collapse
Affiliation(s)
- Başak Işıl Zorba
- Graduate School of Science and Engineering, Department of Bioengineering, Hacettepe University, Ankara, Turkey
| | - Özge Boyacıoğlu
- Graduate School of Science and Engineering, Department of Bioengineering, Hacettepe University, Ankara, Turkey
- Faculty of Medicine, Department of Medical Biochemistry, Atılım University, Ankara, Turkey
| | - Tuğba Çağlayan
- Graduate School of Science and Engineering, Department of Bioengineering, Hacettepe University, Ankara, Turkey
| | - Tuba Reçber
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Ankara, Turkey
| | - Emirhan Nemutlu
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Ankara, Turkey
| | - İpek Eroğlu
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, Turkey
| | - Petek Korkusuz
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
9
|
Igwe JK, Alaribe U. Cannabis use associated with lower mortality among hospitalized Covid-19 patients using the national inpatient sample: an epidemiological study. J Cannabis Res 2024; 6:18. [PMID: 38582889 PMCID: PMC10998318 DOI: 10.1186/s42238-024-00228-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/20/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Prior reports indicate that modulation of the endocannabinoid system (ECS) may have a protective benefit for Covid-19 patients. However, associations between cannabis use (CU) or CU not in remission (active cannabis use (ACU)), and Covid-19-related outcomes among hospitalized patients is unknown. METHODS In this multicenter retrospective observational cohort analysis of adults (≥ 18 years-old) identified from 2020 National Inpatient Sample database, we utilize multivariable regression analyses and propensity score matching analysis (PSM) to analyze trends and outcomes among Covid-19-related hospitalizations with CU and without CU (N-CU) for primary outcome of interest: Covid-19-related mortality; and secondary outcomes: Covid-19-related hospitalization, mechanical ventilation (MV), and acute pulmonary embolism (PE) compared to all-cause admissions; for CU vs N-CU; and for ACU vs N-ACU. RESULTS There were 1,698,560 Covid-19-related hospitalizations which were associated with higher mortality (13.44% vs 2.53%, p ≤ 0.001) and worse secondary outcomes generally. Among all-cause hospitalizations, 1.56% of CU and 6.29% of N-CU were hospitalized with Covid-19 (p ≤ 0.001). ACU was associated with lower odds of MV, PE, and death among the Covid-19 population. On PSM, ACU(N(unweighted) = 2,382) was associated with 83.97% lower odds of death compared to others(N(unweighted) = 282,085) (2.77% vs 3.95%, respectively; aOR:0.16, [0.10-0.25], p ≤ 0.001). CONCLUSIONS These findings suggest that the ECS may represent a viable target for modulation of Covid-19. Additional studies are needed to further explore these findings.
Collapse
Affiliation(s)
- Joseph-Kevin Igwe
- Department of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - Ugo Alaribe
- Caribbean Medical University School of Medicine, 5600 N River Rd Suite 800, Rosemont, IL, 60018, USA
| |
Collapse
|
10
|
Sun C, Zhao S, Pan Z, Li J, Wang Y, Kuang H. The Role Played by Mitochondria in Polycystic Ovary Syndrome. DNA Cell Biol 2024; 43:158-174. [PMID: 38588493 DOI: 10.1089/dna.2023.0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) refers to an endocrine disorder syndrome that are correlated with multiple organs and systems. PCOS has an effect on women at all stages of their lives, and it has an incidence nearly ranging from 6% to 20% worldwide. Mitochondrial dysfunctions (e.g., oxidative stress, dynamic imbalance, and abnormal quality control system) have been identified in patients and animal models of PCOS, and the above processes may play a certain role in the development of PCOS and its associated complications. However, their specific pathogenic roles should be investigated in depth. In this review, recent studies on the mechanisms of action of mitochondrial dysfunction in PCOS and its associated clinical manifestations are summarized from the perspective of tissues and organs, and some studies on the treatment of the disease by improving mitochondrial function are reviewed to highlight key role of mitochondrial dysfunction in this syndrome.
Collapse
Affiliation(s)
- Chang Sun
- Department of Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shanshan Zhao
- Department of Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zimeng Pan
- Department of Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Li
- Department of Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yasong Wang
- Department of Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongying Kuang
- Second Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
11
|
Ward TW, Springer SD, Schantell M, John JA, Horne LK, Coutant AT, Okelberry HJ, Willett MP, Johnson HJ, Killanin AD, Heinrichs‐Graham E, Wilson TW. Regular cannabis use alters the neural dynamics serving complex motor control. Hum Brain Mapp 2023; 44:6511-6522. [PMID: 37955378 PMCID: PMC10681654 DOI: 10.1002/hbm.26527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/01/2023] [Accepted: 10/08/2023] [Indexed: 11/14/2023] Open
Abstract
Cannabis is the most widely used recreational drug in the United States and regular use has been linked to deficits in attention and memory. However, the effects of regular use on motor control are less understood, with some studies showing deficits and others indicating normal performance. Eighteen users and 23 nonusers performed a motor sequencing task during high-density magnetoencephalography (MEG). The MEG data was transformed into the time-frequency domain and beta responses (16-24 Hz) during motor planning and execution phases were imaged separately using a beamformer approach. Whole-brain maps were examined for group (cannabis user/nonuser) and time window (planning/execution) effects. As expected, there were no group differences in task performance (e.g., reaction time, accuracy, etc.). Regular cannabis users exhibited stronger beta oscillations in the contralateral primary motor cortex compared to nonusers during the execution phase of the motor sequences, but not during the motor planning phase. Similar group-by-time window interactions were observed in the left superior parietal, right inferior frontal cortices, right posterior insular cortex, and the bilateral motor cortex. We observed differences in the neural dynamics serving motor control in regular cannabis users compared to nonusers, suggesting regular users may employ compensatory processing in both primary motor and higher-order motor cortices to maintain adequate task performance. Future studies will need to examine more complex motor control tasks to ascertain whether this putative compensatory activity eventually becomes exhausted and behavioral differences emerge.
Collapse
Affiliation(s)
- Thomas W. Ward
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Seth D. Springer
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Mikki Schantell
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Jason A. John
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Lucy K. Horne
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Anna T. Coutant
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Hannah J. Okelberry
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Madelyn P. Willett
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Hallie J. Johnson
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Abraham D. Killanin
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Elizabeth Heinrichs‐Graham
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Tony W. Wilson
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
12
|
Czigle S, Nagy M, Mladěnka P, Tóth J. Pharmacokinetic and pharmacodynamic herb-drug interactions-part I. Herbal medicines of the central nervous system. PeerJ 2023; 11:e16149. [PMID: 38025741 PMCID: PMC10656908 DOI: 10.7717/peerj.16149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/30/2023] [Indexed: 12/01/2023] Open
Abstract
Unlike conventional drug substances, herbal medicines are composed of a complex of biologically active compounds. Therefore, the potential occurrence of herb-drug interactions is even more probable than for drug-drug interactions. Interactions can occur on both the pharmacokinetic and pharmacodynamic level. Herbal medicines may affect the resulting efficacy of the concomitantly used (synthetic) drugs, mainly on the pharmacokinetic level, by changing their absorption, distribution, metabolism, and excretion. Studies on the pharmacodynamic interactions of herbal medicines and conventional drugs are still very limited. This interaction level is related to the mechanism of action of different plant constituents. Herb-drug interactions can cause changes in drug levels and activities and lead to therapeutic failure and/or side effects (sometimes toxicities, even fatal). This review aims to provide a summary of recent information on the potential drug interactions involving commonly used herbal medicines that affect the central nervous system (Camellia, Valeriana, Ginkgo, Hypericum, Humulus, Cannabis) and conventional drugs. The survey databases were used to identify primary scientific publications, case reports, and secondary databases on interactions were used later on as well. Search keywords were based on plant names (botanical genera), officinal herbal drugs, herbal drug preparations, herbal drug extracts.
Collapse
Affiliation(s)
- Szilvia Czigle
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Milan Nagy
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Jaroslav Tóth
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - the OEMONOM.
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
13
|
Wiciński M, Fajkiel-Madajczyk A, Kurant Z, Gryczka K, Kurant D, Szambelan M, Malinowski B, Falkowski M, Zabrzyński J, Słupski M. The Use of Cannabidiol in Metabolic Syndrome-An Opportunity to Improve the Patient's Health or Much Ado about Nothing? J Clin Med 2023; 12:4620. [PMID: 37510734 PMCID: PMC10380672 DOI: 10.3390/jcm12144620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Cannabis-derived therapies are gaining popularity in the medical world. More and more perfect forms of cannabinoids are sought, which could be used in the treatment of many common diseases, including metabolic syndrome, whose occurrence is also increasing. The purpose of this review was to investigate the usefulness of cannabinoids, mainly cannabidiol (CBD), in individuals with obesity, impaired glucose and lipid metabolism, high blood pressure, and non-alcoholic fatty liver disease (NAFLD). We summarised the most recent research on the broad topic of cannabis-derived influence on metabolic syndrome components. Since there is a lot of work on the effects of Δ9-THC (Δ9-tetrahydrocannabinol) on metabolism and far less on cannabidiol, we felt it needed to be sorted out and summarised in this review. The research results on the use of cannabidiol in obesity are contraindicatory. When it comes to glucose homeostasis, it appears that CBD maintains it, sensitises adipose tissue to insulin, and reduces fasting glucose levels, so it seems to be a potential target in this kind of metabolic disorder, but some research results are inconclusive. CBD shows some promising results in the treatment of various lipid disorders. Some studies have proven its positive effect by decreasing LDL and increasing HDL as well. Despite their probable efficacy, CBD and its derivatives will likely remain an adjunctive treatment rather than a mainstay of therapy. Studies have also shown that CBD in patients with hypertension has positive effects, even though the hypotensive properties of cannabidiol are small. However, CBD can be used to prevent blood pressure surges, stabilise them, and have a protective effect on blood vessels. Results from preclinical studies have shown that the effect of cannabidiol on NAFLD may be potentially beneficial in the treatment of the metabolic syndrome and its components. Nevertheless, there is limited data on CBD and NAFLD in human studies. Because of the numerous confounding factors, the conclusions are unclear, and more research in this field is required.
Collapse
Affiliation(s)
- Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Anna Fajkiel-Madajczyk
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Zuzanna Kurant
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Karol Gryczka
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Dominik Kurant
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Monika Szambelan
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Bartosz Malinowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Michal Falkowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Jan Zabrzyński
- Department of Orthopedics and Traumatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Maciej Słupski
- Department of Hepatobiliary and General Surgery, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| |
Collapse
|
14
|
Ebrahimi N, Far NP, Fakhr SS, Faghihkhorasani F, Miraghel SA, Chaleshtori SR, Rezaei-Tazangi F, Beiranvand S, Baziyar P, Manavi MS, Zarrabi A, Nabavi N, Ren J, Aref AR. The endocannabinoid system, a new gatekeeper in the pharmacology of human hepatocellular carcinoma. ENVIRONMENTAL RESEARCH 2023; 228:115914. [PMID: 37062475 DOI: 10.1016/j.envres.2023.115914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/01/2023] [Accepted: 04/13/2023] [Indexed: 05/06/2023]
Abstract
Despite numerous prevention methodologies and treatment options, hepatocellular carcinoma (HCC) still remains as the third leading life-threatening cancer. It is thus pertinent to develop new treatment modality to fight this devastating carcinoma. Ample recent studies have shown the anti-inflammatory and antitumor roles of the endocannabinoid system in various forms of cancers. Preclinical studies have also confirmed that cannabinoid therapy can be an optimal regimen for cancer treatments. The endocannabinoid system is involved in many cancer-related processes, including induction of endoplasmic reticulum (ER) stress-dependent apoptosis, autophagy, PITRK and ERK signaling pathways, cell invasion, epithelial-mesenchymal transition (EMT), and cancer stem cell (CSC) phenotypes. Moreover, changes in signaling transduction of the endocannabinoid system can be a potential diagnostic and prognostic biomarker for HCC. Due to its pivotal role in lipid metabolism, the endocannabinoid system affects metabolic reprogramming as well as lipid content of exosomes. In addition, due to the importance of non-coding RNAs (ncRNAs), several studies have examined the relationship between microRNAs and the endocannabinoid system in HCC. However, HCC is a pathological condition with high heterogeneity, and therefore using the endocannabinoid system for treatment has faced many controversies. While some studies favored a role of the endocannabinoid system in carcinogenesis and tumor induction, others exhibited the anticancer potential of endocannabinoids in HCC. In this review, specific studies delineating the relationship between endocannabinoids and HCC are examined. Based on collected findings, detailed studies of the molecular mechanism of endocannabinoids as well as preclinical studies for investigating therapeutic or carcinogenic impacts in HCC cancer are strongly suggested.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Iran
| | - Nazanin Pazhouhesh Far
- Department of Microbiology,Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Siavash Seifollahy Fakhr
- Division of Biotechnology, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus, Hamar, Norway
| | | | - Seyed Ali Miraghel
- Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Italy
| | | | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sheida Beiranvand
- Department of Biotechnology, School of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, Uinversity of Mazandaran, Babolsar, Iran
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, WA, 98195, USA
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA.
| |
Collapse
|
15
|
Kowalczuk A, Marycz K, Kornicka J, Groborz S, Meissner J, Mularczyk M. Tetrahydrocannabivarin (THCV) Protects Adipose-Derived Mesenchymal Stem Cells (ASC) against Endoplasmic Reticulum Stress Development and Reduces Inflammation during Adipogenesis. Int J Mol Sci 2023; 24:ijms24087120. [PMID: 37108282 PMCID: PMC10138341 DOI: 10.3390/ijms24087120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The endoplasmic reticulum (ER) fulfills essential duties in cell physiology, and impairment of this organelle's functions is associated with a wide number of metabolic diseases. When ER stress is generated in the adipose tissue, it is observed that the metabolism and energy homeostasis of the adipocytes are altered, leading to obesity-associated metabolic disorders such as type 2 diabetes (T2D). In the present work, we aimed to evaluate the protective effects of Δ9-tetrahydrocannabivarin (THCV, a cannabinoid compound isolated from Cannabis sativa L.) against ER stress in adipose-derived mesenchymal stem cells. Our results show that pre-treatment with THCV prevents the subcellular alteration of cell components such as nuclei, F-actin, or mitochondria distribution, and restores cell migration, cell proliferation and colony-forming capacity upon ER stress. In addition, THCV partially reverts the effects that ER stress induces regarding the activation of apoptosis and the altered anti- and pro-inflammatory cytokine profile. This indicates the protective characteristics of this cannabinoid compound in the adipose tissue. Most importantly, our data demonstrate that THCV decreases the expression of genes involved in the unfolded protein response (UPR) pathway, which were upregulated upon induction of ER stress. Altogether, our study shows that the cannabinoid THCV is a promising compound that counters the harmful effects triggered by ER stress in the adipose tissue. This work paves the way for the development of new therapeutic means based on THCV and its regenerative properties to create a favorable environment for the development of healthy mature adipocyte tissue and to reduce the incidence and clinical outcome of metabolic diseases such as diabetes.
Collapse
Affiliation(s)
- Anna Kowalczuk
- National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland
| | - Krzysztof Marycz
- International Institute of Translational Medicine, Jesionowa 11, 55-114 Malin, Poland
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland
| | - Justyna Kornicka
- Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland
| | - Sylwia Groborz
- International Institute of Translational Medicine, Jesionowa 11, 55-114 Malin, Poland
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland
| | - Justyna Meissner
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland
| | - Malwina Mularczyk
- International Institute of Translational Medicine, Jesionowa 11, 55-114 Malin, Poland
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland
| |
Collapse
|
16
|
Pharmacological Treatments and Natural Biocompounds in Weight Management. Pharmaceuticals (Basel) 2023; 16:ph16020212. [PMID: 37139804 PMCID: PMC9962258 DOI: 10.3390/ph16020212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The obesity pandemic is one of society’s most urgent public health concerns. One-third of the global adult population may fall under obese or overweight by 2025, suggesting a rising demand for medical care and an exorbitant cost of healthcare expenditure in the coming years. Generally, the treatment strategy for obese patients is largely patient-centric and needs dietary, behavioral, pharmacological, and sometimes even surgical interventions. Given that obesity cases are rising in adults and children and lifestyle modifications have failed to produce the desired results, the need for medical therapy adjunct to lifestyle modifications is vital for better managing obesity. Most existing or past drugs for obesity treatment target satiety or monoamine pathways and induce a feeling of fullness in patients, while drugs such as orlistat are targeted against intestinal lipases. However, many medications targeted against neurotransmitters showed adverse events in patients, thus being withdrawn from the market. Alternatively, the combination of some drugs has been successfully tested in obesity management. However, the demand for novel, safer, and more efficacious pharmaceutical medicines for weight management does exist. The present review elucidates the current understanding of the available anti-obesity medicines of synthetic and natural origin, their main mechanisms of action, and the shortcomings associated with current weight management drugs.
Collapse
|
17
|
Migliolo L, de A. Boleti A, de O. Cardoso P, Frihling BF, e Silva P, de Moraes LRN. Adipose tissue, systematic inflammation, and neurodegenerative diseases. Neural Regen Res 2023; 18:38-46. [PMID: 35799506 PMCID: PMC9241402 DOI: 10.4103/1673-5374.343891] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
18
|
Degrave V, Vega Joubert MB, Ingaramo P, Sedan D, Andrinolo D, D’Alessandro ME, Oliva ME. Effects of Full-Spectrum Cannabis Oil with a Cannabidiol:Tetrahydrocannabinol 2:1 Ratio on the Mechanisms Involved in Hepatic Steatosis and Oxidative Stress in Rats Fed a Sucrose-Rich Diet. Med Cannabis Cannabinoids 2023; 6:170-183. [PMID: 38023489 PMCID: PMC10651182 DOI: 10.1159/000534610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction This study aimed to analyze the effects of cannabis oil (cannabidiol:tetrahydrocannabinol [CBD:THC], 2:1 ratio) on the mechanisms involved in hepatic steatosis and oxidative stress in an experimental model of metabolic syndrome (MS) induced by a sucrose-rich diet (SRD). We hypothesized that noninvasive oral cannabis oil administration improves hepatic steatosis through a lower activity of lipogenic enzymes and an increase in carnitine palmitoyltransferase-1 (CPT-1) enzyme activity involved in the mitochondrial oxidation of fatty acids. Furthermore, cannabis oil ameliorates liver oxidative stress through the regulation of the main regulatory factors involved, nuclear factor erythroid 2 (NrF2) and nuclear factor-kB (NF-κB) p65. For testing this hypothesize, a relevant experimental model of MS was induced by feeding rats with a SRD for 3 weeks. Methods Male Wistar rats were fed the following diets for 3 weeks: reference diet: standard commercial laboratory diet, SRD, and SRD + cannabis oil: noninvasive oral administration of 1 mg/kg body weight cannabis oil daily. The full-spectrum cannabis oil presents a total cannabinoid CBD:THC 2:1 ratio. Serum glucose, triglyceride, total cholesterol, HDL-cholesterol, LDL-cholesterol, uric acid, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase (AP), N-arachidonoylethanolamine or anandamide and 2-arachidonoylglycerol endocannabinoids levels, thiobarbituric acid reactive substance (TBARS) levels, and non-enzymatic antioxidant capacity (ferric ion-reducing antioxidant power [FRAP]) were evaluated. In the liver tissue: histology, nonalcoholic fatty liver disease activity score (NAS), triglycerides and cholesterol content, lipogenic enzyme activities (fatty acid synthase, acetyl-CoA carboxylase, malic enzyme, and glucose-6-phosphate dehydrogenase), enzyme related to mitochondrial fatty acid oxidation (CPT-1), reactive oxygen species, TBARS, FRAP, glutathione, catalase, glutathione peroxidase, and glutathione reductase enzyme activities. 4-hydroxynonenal, NrF2, and NF-κB p65 levels were analyzed by immunohistochemistry. Results The results showed that SRD-fed rats developed dyslipidemia, liver damage, hepatic steatosis (increase of key enzymes related to the novo fatty acid synthesis and decrease of key enzyme related to mitochondrial fatty acid oxidation), lipid peroxidation, and oxidative stress. Hepatic NrF2 expression was significantly decreased and NF-κB p65 expression was increased. Cannabis oil administration improved dyslipidemia, liver damage, hepatic steatosis, lipid peroxidation (improving enzymes involved in lipid metabolism), and oxidative stress. In the liver tissue, NrF2 expression increased, and NF-κB p65 expression was reduced. Conclusion The present study revealed new aspects of liver damage and steatosis, lipid peroxidation, and oxidative stress in dyslipidemic insulin-resistant SRD-fed rats. We demonstrated new properties and molecular mechanisms of cannabis oil (CBD:THC, 2:1 ratio) on lipotoxicity and hepatic oxidative stress in an experimental model of MS.
Collapse
Affiliation(s)
- Valentina Degrave
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Michelle Berenice Vega Joubert
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Paola Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Daniela Sedan
- Centro de Investigaciones del Medio Ambiente (CIM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Darío Andrinolo
- Centro de Investigaciones del Medio Ambiente (CIM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - María Eugenia D’Alessandro
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - María Eugenia Oliva
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| |
Collapse
|
19
|
Du R, Tang XY, Yang C, Gao WH, Gao SJ, Xiang HJ, Yang L. Marijuana use is inversely associated with liver steatosis detected by transient elastography in the general United States population in NHANES 2017-2018: A cross-sectional study. PLoS One 2023; 18:e0284859. [PMID: 37200309 DOI: 10.1371/journal.pone.0284859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/09/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND The impact of marijuana on the general population is largely unknown. The present study aimed to assess the association between marijuana use and liver steatosis and fibrosis in the general United States population utilizing data from the National Health and Nutrition Examination Survey (NHANES). METHODS This cross-sectional study was performed with data from the 2017-2018 cycle of NHANES. The target population comprised adults in the NHANES database with reliable vibration controlled transient elastography (VCTE) results. The median values of the controlled attenuation parameter (CAP) and liver stiffness measurement (LSM) were used to evaluate liver steatosis and fibrosis, respectively. After adjusting for relevant confounders, a logistic regression analysis was used to assess the association between marijuana use and liver steatosis and fibrosis. RESULTS A total of 2622 participants were included in this study. The proportions of never marijuana users, past users, and current users were 45.9%, 35.0%, and 19.1%, respectively. Compared to never marijuana users, past and current users had a lower prevalence of liver steatosis (P = 0.184 and P = 0.048, respectively). In the alcohol intake-adjusted model, current marijuana use was an independent predictor of a low prevalence of liver steatosis in people with non-heavy alcohol intake. The association between marijuana use and liver fibrosis was not significant in univariate and multivariate regression. CONCLUSION In this nationally representative sample, current marijuana use is inversely associated with steatosis. The pathophysiology is unclear and needs further study. No significant association was established between marijuana use and liver fibrosis, irrespective of past or current use.
Collapse
Affiliation(s)
- Rui Du
- Department of Ultrasound, General Hospital of Central Theater Command, Wuchangqu, Wuhan, Hubei, China
| | - Xiao-Yan Tang
- Department of Cardiology, General Hospital of Central Theater Command, Wuchangqu, Wuhan, Hubei, China
| | - Cheng Yang
- Department of Radiology, General Hospital of Central Theater Command, Wuchangqu, Wuhan, Hubei, China
| | - Wen-Hong Gao
- Department of Ultrasound, General Hospital of Central Theater Command, Wuchangqu, Wuhan, Hubei, China
| | - Shun-Ji Gao
- Department of Ultrasound, General Hospital of Central Theater Command, Wuchangqu, Wuhan, Hubei, China
| | - Hui-Juan Xiang
- Department of Ultrasound, General Hospital of Central Theater Command, Wuchangqu, Wuhan, Hubei, China
| | - Li Yang
- Department of Ultrasound, General Hospital of Central Theater Command, Wuchangqu, Wuhan, Hubei, China
| |
Collapse
|
20
|
Viczjan G, Szilagyi A, Takacs B, Ovari I, Szekeres R, Tarjanyi V, Erdei T, Teleki V, Zsuga J, Szilvassy Z, Juhasz B, Varga B, Gesztelyi R. The effect of a long-term treatment with cannabidiol-rich hemp extract oil on the adenosinergic system of the zucker diabetic fatty (ZDF) rat atrium. Front Pharmacol 2022; 13:1043275. [PMID: 36588715 PMCID: PMC9797669 DOI: 10.3389/fphar.2022.1043275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Cannabidiol (CBD), the most extensively studied non-intoxicating phytocannabinoid, has been attracting a lot of interest worldwide owing to its numerous beneficial effects. The aim of this study was to explore the effect that CBD exerts on the adenosinergic system of paced left atria isolated from obese type Zucker Diabetic Fatty (ZDF) rats, maintained on diabetogenic rat chow, received 60 mg/kg/day CBD or vehicle via gavage for 4 weeks. We found that N6-cyclopentyladenosine (CPA), a relatively stable and poorly transported A1 adenosine receptor agonist, elicited a significantly weaker response in the CBD-treated group than in the vehicle-treated one. In contrast, adenosine, a quickly metabolized and transported adenosine receptor agonist, evoked a significantly stronger response in the CBD-treated group than in the vehicle-treated counterpart (excepting its highest concentrations). These results can be explained only with the adenosine transport inhibitory property of CBD (and not with its adenosine receptor agonist activity). If all the effects of CBD are attributed to the interstitial adenosine accumulation caused by CBD in the myocardium, then a significantly increased adenosinergic activation can be assumed during the long-term oral CBD treatment, suggesting a considerably enhanced adenosinergic protection in the heart. Considering that our results may have been influenced by A1 adenosine receptor downregulation due to the chronic interstitial adenosine accumulation, an adenosinergic activation smaller than it seemed cannot be excluded, but it was above the CBD-naïve level in every case. Additionally, this is the first study offering functional evidence about the adenosine transport inhibitory action of CBD in the myocardium.
Collapse
Affiliation(s)
- Gabor Viczjan
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary,University of Debrecen, Doctoral School of Nutrition and Food Sciences, Debrecen, Hungary
| | - Anna Szilagyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Barbara Takacs
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ignac Ovari
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Reka Szekeres
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Vera Tarjanyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Erdei
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Vanda Teleki
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Zsuga
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Szilvassy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bela Juhasz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balazs Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary,*Correspondence: Rudolf Gesztelyi,
| |
Collapse
|
21
|
Barré T, Carrat F, Ramier C, Fontaine H, Di Beo V, Bureau M, Dorival C, Larrey D, Delarocque-Astagneau E, Mathurin P, Marcellin F, Petrov-Sanchez V, Cagnot C, Carrieri P, Pol S, Protopopescu C, Alric L, Pomes C, Zoulim F, Maynard M, Bai R, Hucault L, Bailly F, Raffi F, Billaud E, Boutoille D, Lefebvre M, André-Garnier E, Cales P, Hubert I, Lannes A, Lunel F, Boursier J, Asselah T, Boyer N, Giuily N, Castelnau C, Scoazec G, Pol S, Fontaine H, Rousseaud E, Vallet-Pichard A, Sogni P, de Ledinghen V, Foucher J, Hiriart JB, M’Bouyou J, Irlès-Depé M, Bourlière M, Ahmed SNS, Oules V, Tran A, Anty R, Gelsi E, Truchi R, Thabut D, Hammeche S, Moussali J, Causse X, De Dieuleveult B, Ouarani B, Labarrière D, Ganne N, Grando-Lemaire V, Nahon P, Brulé S, Ulker B, Guyader D, Jezequel C, Brener A, Laligant A, Rabot A, Renard I, Habersetzer F, Baumert TF, Doffoel M, Mutter C, Simo-Noumbissie P, Razi E, Bronowicki JP, Barraud H, Bensenane M, Nani A, Hassani-Nani S, Bernard MA, Pageaux GP, Larrey D, Meszaros M, Metivier S, Bureau C, Morales T, Peron JM, Robic MA, Decaens T, Faure M, Froissart B, Hilleret MN, Zarski JP, Riachi G, Goria O, Paris F, Montialoux H, Leroy V, Amaddeo G, Varaut A, Simoes M, Amzal R, Chazouillières O, Andreani T, Angoulevant B, Chevance A, Serfaty L, Samuel D, Antonini T, Coilly A, Duclos-Vallée JC, Tateo M, Abergel A, Reymond M, Brigitte C, Benjamin B, Muti L, Geist C, Conroy G, Riffault R, Rosa I, Barrault C, Costes L, Hagège H, Loustaud-Ratti V, Carrier P, Debette-Gratien M, Mathurin P, Lassailly G, Lemaitre E, Canva V, Dharancy S, Louvet A, Minello A, Latournerie M, Bardou M, Mouillot T, D’Alteroche L, Barbereau D, Nicolas C, Elkrief L, Jaillais A, Gournay J, Chevalier C, Archambeaud I, Habes S, Portal I, Gelu-Simeon M, Saillard E, Lafrance MJ, Catherine L, Carrat F, Chau F, Dorival C, Goderel I, Lusivika-Nzinga C, Bellance MA, Bellet J, Monfalet P, Chane-Teng J, Bijaoui S, Pannetier G, Téoulé F, Nicol J, Sebal F, Bekhti R, Cagnot C, Boston A, Nailler L, Le Meut G, Diallo A, Petrov-Sanchez V, Bourlière M, Boursier J, Carrat F, Carrieri P, Delarocque-Astagneau E, De Ledinghen V, Dorival C, Fontaine H, Fourati S, Housset C, Larrey D, Nahon P, Pageaux GP, Petrov-Sanchez V, Pol S, Bruyand M, Wittkop L, Zoulim F, Zucman-Rossi J, L’hennaff M, Sizorn M, Cagnot C. Cannabis use as a factor of lower corpulence in hepatitis C-infected patients: results from the ANRS CO22 Hepather cohort. J Cannabis Res 2022; 4:31. [PMID: 35690798 PMCID: PMC9188079 DOI: 10.1186/s42238-022-00138-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022] Open
Abstract
Background Patients with chronic hepatitis C virus (HCV) infection are at greater risk of developing metabolic disorders. Obesity is a major risk factor for these disorders, and therefore, managing body weight is crucial. Cannabis use, which is common in these patients, has been associated with lower corpulence in various populations. However, this relationship has not yet been studied in persons with chronic HCV infection. Methods Using baseline data from the French ANRS CO22 Hepather cohort, we used binary logistic and multinomial logistic regression models to test for an inverse relationship between cannabis use (former/current) and (i) central obesity (i.e., large waist circumference) and (ii) overweight and obesity (i.e., elevated body mass index (BMI)) in patients from the cohort who had chronic HCV infection. We also tested for relationships between cannabis use and both waist circumference and BMI as continuous variables, using linear regression models. Results Among the 6348 participants in the study population, 55% had central obesity, 13.7% had obesity according to their BMI, and 12.4% were current cannabis users. After multivariable adjustment, current cannabis use was associated with lower risk of central obesity (adjusted odds ratio, aOR [95% confidence interval, CI]: 0.45 [0.37–0.55]), BMI-based obesity (adjusted relative risk ratio (aRRR) [95% CI]: 0.27 [0.19–0.39]), and overweight (aRRR [95% CI]: 0.47 [0.38–0.59]). This was also true for former use, but to a lesser extent. Former and current cannabis use were inversely associated with waist circumference and BMI. Conclusions We found that former and, to a greater extent, current cannabis use were consistently associated with smaller waist circumference, lower BMI, and lower risks of overweight, obesity, and central obesity in patients with chronic HCV infection. Longitudinal studies are needed to confirm these relationships and to assess the effect of cannabis use on corpulence and liver outcomes after HCV cure. Trial registration ClinicalTrials.gov identifier: NCT01953458.
Collapse
|
22
|
Barré T, Pol S, Ramier C, Di Beo V, Carrat F, Bureau M, Bourlière M, Dorival C, Serfaty L, Asselah T, Boursier J, Marcellin F, Carrieri P, Fontaine H, Protopopescu C. Cannabis Use Is Inversely Associated with Overweight and Obesity in Hepatitis B Virus-Infected Patients (ANRS CO22 Hepather Cohort). Cannabis Cannabinoid Res 2022; 7:677-689. [PMID: 34648718 PMCID: PMC9587766 DOI: 10.1089/can.2021.0094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Chronic hepatitis B virus (HBV) infection may evolve into cirrhosis and hepatocellular carcinoma, and this progression may be accelerated by specific risk factors, including overweight and obesity. Although evidence for a protective effect of cannabis use on elevated body weight has been found for other populations, no data are available for HBV-infected patients. Aims: We aimed to identify risk factors (including cannabis use) for overweight and obesity in patients with HBV chronic infection. Methods: Using baseline data from the French ANRS CO22 Hepather cohort, we performed two separate analyses, one using "central obesity" (based on waist circumference) and the other "overweight" and "obesity" (based on body mass index) as outcomes. Logistic and multinomial regressions were used to model central obesity and overweight/obesity, respectively. Results: Among the 3706 patients in the study population, 50.8% had central obesity, 34.7% overweight, and 14.4% obesity. After multivariable adjustment, current cannabis use was associated with a 59% lower risk of central obesity compared with no lifetime use (adjusted odds ratio [95% CI]: 0.41 [0.24 to 0.70]). It was also associated with a 54% and 84% lower risk of overweight (adjusted relative risk ratio [95% CI]: 0.46 [0.27 to 0.76]) and obesity (0.16 [0.04 to 0.67]), respectively. Conclusions: Cannabis use was associated with lower risks of overweight and obesity in patients with HBV chronic infection. Future studies should test whether these potential benefits of cannabis and cannabinoid use translate into reduced liver disease progression in this high-risk population.
Collapse
Affiliation(s)
- Tangui Barré
- Aix Marseille Univ, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, ISSPAM, Marseille, France
| | - Stanislas Pol
- Université Paris Centre, Département d'Hépatologie, Hôpital Cochin, APHP, Paris, France
| | - Clémence Ramier
- Aix Marseille Univ, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, ISSPAM, Marseille, France
| | - Vincent Di Beo
- Aix Marseille Univ, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, ISSPAM, Marseille, France
| | - Fabrice Carrat
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique, Département de Santé Publique, Hôpital Saint-Antoine, APHP, Paris, France
| | - Morgane Bureau
- Aix Marseille Univ, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, ISSPAM, Marseille, France
| | - Marc Bourlière
- Aix Marseille Univ, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, ISSPAM, Marseille, France
- Hôpital St Joseph, Service d'Hépato-Gastroentérologie, Marseille, France
| | - Céline Dorival
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique, Paris, France
| | - Lawrence Serfaty
- Hepatology Department, Pôle des Pathologies Digestives, Hépatiques et de la Transplantation, Hôpital de Hautepierre-Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Tarik Asselah
- Université de Paris, Centre de recherche sur l'inflammation, INSERM UMR1149, Paris, France
- Department of Hepatology, AP-HP, Hôpital Beaujon, Clichy, France
| | - Jérôme Boursier
- Hepato-Gastroenterology Department, Angers University Hospital, Angers, France
- HIFIH Laboratory, UPRES 3859, SFR 4208, Angers University, Angers, France
| | - Fabienne Marcellin
- Aix Marseille Univ, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, ISSPAM, Marseille, France
| | - Patrizia Carrieri
- Aix Marseille Univ, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, ISSPAM, Marseille, France
| | - Hélène Fontaine
- Université Paris Centre, Département d'Hépatologie, Hôpital Cochin, APHP, Paris, France
| | - Camelia Protopopescu
- Aix Marseille Univ, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, ISSPAM, Marseille, France
| |
Collapse
|
23
|
Deeba F, Shahar Yar M, Rafi Haidar M, Sharma AK, Sharma M. Synthesis, molecular docking, and pharmacological evaluation of 5-(4-(2-(5-ethyl pyridine-2-yl) ethoxy) benzyl)-3-(phenylsulfonyl) thiazolidine-2, 4-dione against HFD-induced diabesity via interaction with the CB1 receptor. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1028-1036. [PMID: 36159331 PMCID: PMC9464343 DOI: 10.22038/ijbms.2022.65649.14443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/10/2022] [Indexed: 11/08/2022]
Abstract
Objectives CB1 antagonism arbitrates a dormant shape to the endocannabinoid system that alleviates diverse pathological incidents of diabesity. The present study pursued the synthesis and evaluation of thiazolidine derivative (BAC) having pleiotropic action on CB1R, with or without AM251 (selective antagonist of the CB1 receptor) against high-fat diet (HFD) induced diabesity in C57BL/6 mice. Materials and Methods A molecular docking study for CB1 antagonistic potential was conducted by Maestro 11.4 program (Schrodinger Inc., USA), and the thiazolidine derivative BAC was synthesized. The assessment of varied parameters including anthropometric, neurobehavioral, hyperglycemia, dyslipidemia, oxidative stress, and inflammatory cytokines was evaluated in HFD-fed animals as compared with individual and combined treatments of BAC and AM251. Results Incomparable to AM251, the treatment of BAC was reported for a significant reduction in food intake and obesity, diabetic biomarkers, lipid profile, oxidative stress, and proinflammatory cytokine release. Moreover, the BAC treatment showed no significant alteration in neurobehavioral activity, including anxiety and depression. Conclusion The preliminary in silico study suggests that BAC has a close interaction with CB1 antagonism but has no sign of neurobehavioral alteration. Simultaneously, this compound showed significant ability to ameliorate diversity by the underlying mechanisms of minimizing oxidative stress, regularizing the lipid profile, and reducing pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Farah Deeba
- Department of Pharmacology, School of Pharmaceutical Education and Research, (SPER) Jamia Hamdard, Delhi-110062, India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, (SPER) Jamia Hamdard, Delhi-110062, India
| | | | - Arun K. Sharma
- Department of Pharmacology, Amity University Haryana, Gurugram-122413, India,Corresponding authors: Manju Sharma. Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Delhi-110062, India. , Arun K. Sharma. Department of Pharmacology, Amity University Haryana, Gurugram-122413, India.
| | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, (SPER) Jamia Hamdard, Delhi-110062, India,Corresponding authors: Manju Sharma. Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Delhi-110062, India. , Arun K. Sharma. Department of Pharmacology, Amity University Haryana, Gurugram-122413, India.
| |
Collapse
|
24
|
Kim J, Reitsma J, Parsh B. CBD: Key information for nurses. Nursing 2022; 52:10-11. [PMID: 35866850 DOI: 10.1097/01.nurse.0000839812.29927.ad] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Justin Kim
- At California State University, Sacramento, Justin Kim and Jenna Reitsma are nursing students, and Bridget Parsh is a professor. Dr. Parsh is also a member of the Nursing2022 editorial board
| | | | | |
Collapse
|
25
|
Barré T, Sogni P, Zaegel-Faucher O, Wittkop L, Marcellin F, Carrieri P, Gervais A, Levier A, Rosenthal E, Salmon-Céron D, Protopopescu C. Cannabis Use as a Protective Factor Against Overweight in HIV-Hepatitis C Virus Co-Infected People (ANRS CO13 HEPAVIH Cohort). AIDS EDUCATION AND PREVENTION : OFFICIAL PUBLICATION OF THE INTERNATIONAL SOCIETY FOR AIDS EDUCATION 2022; 34:272-290. [PMID: 35994579 DOI: 10.1521/aeap.2022.34.4.272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Overweight is increasingly prevalent in people living with HIV (PLWH), and is a high risk factor for metabolic disorders in this population. PLWH co-infected with hepatitis C virus (HCV) have a higher risk of metabolic disorders than their mono-infected counterparts. The putative relationship between cannabis use and body weight found in the general population has never been documented in HIV-HCV co-infected people. We tested whether cannabis use is associated with body mass index (BMI), overweight, and underweight in HCV co-infected PLWH (N = 992). Mixed-effects linear and logistic regression models were used to study the association between cannabis use and the three outcomes over time. After multivariable adjustment, cannabis use was inversely associated with BMI. Cannabis use was associated with a lower and higher risk of overweight and underweight, respectively. Cannabis use should be assessed and taken into account in the clinical management of the HIV-HCV co-infected population.
Collapse
Affiliation(s)
- Tangui Barré
- Aix Marseille University, Inserm, IRD, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale (SESSTIM), and Institut Sciences de la Santé Publique d'Aix-Marseille (ISSPAM), Marseille, France
| | - Philippe Sogni
- Université Paris Descartes, Paris, France, INSERM U1223, Institut Pasteur, Paris, France, and Service d'Hépatologie, Hôpital Cochin, Assistance Publique - Hôpitaux de Paris, France
| | - Olivia Zaegel-Faucher
- Clinical Immuno-Hematology Department, Aix-Marseille University, and Sainte-Marguerite University Hospital, Marseille, France
| | - Linda Wittkop
- ISPED, Inserm, Bordeaux Population Health Research Center, Team MORPH3EUS, UMR 1219, CIC-EC 1401, Université de Bordeaux, Bordeaux, France, and Service D'information Médicale, CHU de Bordeaux, Pôle de Santé Publique, Bordeaux, France
| | - Fabienne Marcellin
- Aix Marseille University, Inserm, IRD, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale (SESSTIM), and Institut Sciences de la Santé Publique d'Aix-Marseille (ISSPAM), Marseille, France
| | - Patrizia Carrieri
- Aix Marseille University, Inserm, IRD, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale (SESSTIM), and Institut Sciences de la Santé Publique d'Aix-Marseille (ISSPAM), Marseille, France
| | - Anne Gervais
- Assistance Publique des Hôpitaux de Paris, Hôpital Bichat Claude Bernard, Service des Maladies Infectieuses et Tropicales, Paris, France
| | - Axel Levier
- ANRS I Emerging Infectious Diseases, Department of Clinical Research, Paris, France
| | - Eric Rosenthal
- Aix Marseille University, Inserm, IRD, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale (SESSTIM), and Institut Sciences de la Santé Publique d'Aix-Marseille (ISSPAM), Marseille, France
- ANRS I Emerging Infectious Diseases, Department of Clinical Research, Paris, France
- Université Côte d'Azur, Nice, France
| | - Dominique Salmon-Céron
- Service Maladies Infectieuses et Tropicales, AP-HP, Hôpital Cochin, Paris, France, and Université Paris Descartes, Paris, France
| | - Camelia Protopopescu
- Aix Marseille University, Inserm, IRD, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale (SESSTIM), and Institut Sciences de la Santé Publique d'Aix-Marseille (ISSPAM), Marseille, France
| |
Collapse
|
26
|
Cannabidiol and Cannabidiol Metabolites: Pharmacokinetics, Interaction with Food, and Influence on Liver Function. Nutrients 2022; 14:nu14102152. [PMID: 35631293 PMCID: PMC9144241 DOI: 10.3390/nu14102152] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022] Open
Abstract
Cannabidiol (CBD) is widely available and marketed as having therapeutic properties. Over-the-counter CBD is unregulated, many of the therapeutic claims lack scientific support, and controversy exists as to the safety of CBD-liver interaction. The study aims were to compare the pharmacokinetics of commercial CBD and CBD metabolites following the ingestion of five different CBD formulations, determine the influence of CBD on food induced thermogenesis, determine the influence of food on CBD pharmacokinetics, and determine the influence of CBD on markers of liver function. Fourteen males (body mass index ≥ 25 kg/m2) were studied in a placebo-controlled, randomized, crossover design. On five occasions, different CBD formulations were ingested (one per visit). On two additional occasions, CBD or placebo was ingested following a meal. CBD servings were standardized to 30 mg. Considerable pharmacokinetic variability existed between formulations; this pharmacokinetic variability transferred to several of the metabolites. CBD did not influence food induced thermogenesis but did favorably modify early insulin and triglyceride responses. Food appreciably altered the pharmacokinetics of CBD. Finally, CBD did not evoke physiologically relevant changes in markers of liver function. Collectively, these data suggest that consumers should be aware of the appreciable pharmacokinetic differences between commercial CBD formulations, CBD is unlikely to influence the caloric cost of eating but may prove to be of some benefit to initial metabolic responses, consuming CBD with food alters the dynamics of CBD metabolism and increases systemic availability, and low-dose CBD probably does not represent a risk to normal liver function.
Collapse
|
27
|
Ben-Cnaan E, Permyakova A, Azar S, Hirsch S, Baraghithy S, Hinden L, Tam J. The Metabolic Efficacy of a Cannabidiolic Acid (CBDA) Derivative in Treating Diet- and Genetic-Induced Obesity. Int J Mol Sci 2022; 23:ijms23105610. [PMID: 35628417 PMCID: PMC9144717 DOI: 10.3390/ijms23105610] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is a global medical problem; its common form is known as diet-induced obesity (DIO); however, there are several rare genetic disorders, such as Prader-Willi syndrome (PWS), that are also associated with obesity (genetic-induced obesity, GIO). The currently available therapeutics for treating DIO and GIO are very limited, and they result in only a partial improvement. Cannabidiolic acid (CBDA), a constituent of Cannabis sativa, gradually decarboxylates to cannabidiol (CBD). Whereas the anti-obesity properties of CBD have been reasonably identified, our knowledge of the pharmacology of CBDA is more limited due to its instability. To stabilize CBDA, a new derivative, CBDA-O-methyl ester (HU-580, EPM301), was synthesized. The therapeutic potential of EPM301 in appetite reduction, weight loss, and metabolic improvements in DIO and GIO was tested in vivo. EPM301 (40 mg/kg/d, i.p.) successfully resulted in weight loss, increased ambulation, as well as improved glycemic and lipid profiles in DIO mice. Additionally, EPM301 ameliorated DIO-induced hepatic dysfunction and steatosis. Importantly, EPM301 (20 and 40 mg/kg/d, i.p.) effectively reduced body weight and hyperphagia in a high-fat diet-fed Magel2null mouse model for PWS. In addition, when given to standard-diet-fed Magel2null mice as a preventive treatment, EPM301 completely inhibited weight gain and adiposity. Lastly, EPM301 increased the oxidation of different nutrients in each strain. All together, EPM301 ameliorated obesity and its metabolic abnormalities in both DIO and GIO. These results support the idea to further promote this synthetic CBDA derivative toward clinical evaluation in humans.
Collapse
|
28
|
Distinct Effects of Cannabidiol on Sphingolipid Metabolism in Subcutaneous and Visceral Adipose Tissues Derived from High-Fat-Diet-Fed Male Wistar Rats. Int J Mol Sci 2022; 23:ijms23105382. [PMID: 35628194 PMCID: PMC9142011 DOI: 10.3390/ijms23105382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Available data suggest that cannabidiol (CBD) may ameliorate symptoms of insulin resistance by modulating the sphingolipid concentrations in particular organs. However, it is not entirely clear whether its beneficial actions also involve adipose tissues in a state of overnutrition. The aim of the study was to evaluate the effect of CBD on sphingolipid metabolism pathways and, as a result, on the development of insulin resistance in subcutaneous (SAT) and visceral (VAT) adipose tissues of an animal model of HFD-induced insulin resistance. Our experiment was performed on Wistar rats that were fed with a high-fat diet and/or received intraperitoneal CBD injections. We showed that CBD significantly lowered the ceramide content in VAT by reducing its de novo synthesis and increasing its catabolism. However, in SAT, CBD decreased the ceramide level through the inhibition of salvage and de novo synthesis pathways. All of these changes restored adipose tissues’ sensitivity to insulin. Our study showed that CBD sensitized adipose tissue to insulin by influencing the metabolism of sphingolipids under the conditions of increased availability of fatty acids in the diet. Therefore, we believe that CBD use may be considered as a potential therapeutic strategy for treating or reducing insulin resistance, T2DM, and metabolic syndrome.
Collapse
|
29
|
Erukainure OL, Matsabisa MG, Salau VF, Olofinsan KA, Oyedemi SO, Chukwuma CI, Nde AL, Islam MS. Cannabidiol improves glucose utilization and modulates glucose-induced dysmetabolic activities in isolated rats' peripheral adipose tissues. Biomed Pharmacother 2022; 149:112863. [PMID: 35358799 DOI: 10.1016/j.biopha.2022.112863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022] Open
Abstract
Reduced glucose uptake and utilization, with concomitant lipolysis in adipose tissues has been linked to the pathogenesis of obesity and its complications. The present study investigated the effect of cannabinoid-stimulated glucose uptake on redox imbalance, glucose and lipid metabolisms, as well as cholinergic and purinergic dysfunctions in isolated rats' adipose tissues. Freshly Isolated rats' adipose tissues were incubated with glucose and different concentrations of cannabidiol for 2 h at 37 °C. The negative control consisted of incubation without cannabidiol, while normal control consisted of incubations without glucose and/or cannabidiol and Metformin served as the standard drug. Cannabidiol caused an increase in adipose-glucose uptake, with concomitant elevation of glutathione, triglyceride level, superoxide dismutase, catalase and 5'nucleoidase activities. It also caused suppression in malondialdehyde and cholesterol levels, acetylcholinesterase, ENTPDase, fructose-1,6-biphosphatase, glucose 6-phosphatase, glycogen phosphorylase, and lipase activities. In silico studies revealed a strong molecular interaction of cannabidiol with adipose triglyceride lipase, hormone-sensitive lipase, and monoglyceride lipase. These results indicate that cannabidiol-enhanced glucose uptake in adipose tissues is associated with enhanced antioxidative activities, concomitant modulation of cholinergic and purinergic dysfunctions, and improved glucose - lipid homeostasis.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Motlalepula G Matsabisa
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa.
| | - Veronica F Salau
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Kolawole A Olofinsan
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban 4000, South Africa
| | - Sunday O Oyedemi
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; Department of Pharmacology, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Chika I Chukwuma
- Center for Quality of Health and Living, Faculty of Health Sciences, Central University of Technology, Bloemfontein 9301, South Africa
| | - Adeline Lum Nde
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban 4000, South Africa
| |
Collapse
|
30
|
Puopolo T, Liu C, Ma H, Seeram NP. Inhibitory Effects of Cannabinoids on Acetylcholinesterase and Butyrylcholinesterase Enzyme Activities. Med Cannabis Cannabinoids 2022; 5:85-94. [PMID: 35702400 PMCID: PMC9149358 DOI: 10.1159/000524086] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/12/2022] [Indexed: 08/02/2023] Open
Abstract
INTRODUCTION Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are two cholinergic enzymes catalyzing the reaction of cleaving acetylcholine into acetate and choline at the neuromuscular junction. Abnormal hyperactivity of AChE and BChE can lead to cholinergic deficiency, which is associated with several neurological disorders including cognitive decline and memory impairments. Preclinical studies support that some cannabinoids including cannabidiol (CBD) and tetrahydrocannabinol (THC) may exert pharmacological effects on the cholinergic system, but it remains unclear whether cannabinoids can inhibit AChE and BChE activities. Herein, we aimed to evaluate the inhibitory effects of a panel of cannabinoids including CBD, Δ8-THC, cannabigerol (CBG), cannabigerolic acid (CBGA), cannabicitran (CBT), cannabidivarin (CBDV), cannabichromene (CBC), and cannabinol (CBN) on AChE and BChE activities. METHODS The inhibitory effects of cannabinoids on the activities of AChE and BChE enzymes were evaluated with the Ellman method using acetyl- and butyryl-thiocholines as substrates. The inhibition mechanism of cannabinoids on AChE and BChE was studied with enzyme kinetic assays including the Lineweaver-Burk and Michaelis-Menten analyses. In addition, computational-based molecular docking experiments were performed to explore the interactions between the cannabinoids and the enzyme proteins. RESULTS Cannabinoids including CBD, Δ8-THC, CBG, CBGA, CBT, CBDV, CBC, and CBN (at 200 µM) inhibited the activities of AChE and BChE by 70.8, 83.7, 92.9, 76.7, 66.0, 79.3, 13.7, and 30.5%, and by 86.8, 80.8, 93.2, 87.1, 77.0, 78.5, 27.9, and 22.0%, respectively. The inhibitory effects of these cannabinoids (with IC50 values ranging from 85.2 to >200 µM for AChE and 107.1 to >200 µM for BChE) were less potent as compared to the positive control galantamine (IC50 1.21 and 6.86 µM for AChE and BChE, respectively). In addition, CBD, as a representative cannabinoid, displayed a competitive type of inhibition on both AChE and BChE. Data from the molecular docking studies suggested that cannabinoids interacted with several amino acid residues on the enzyme proteins, which supported their overall inhibitory effects on AChE and BChE. CONCLUSION Cannabinoids showed moderate inhibitory effects on the activities of AChE and BChE enzymes, which may contribute to their modulatory effects on the cholinergic system. Further studies using cell-based and in vivo models are warranted to evaluate whether cannabinoids' neuroprotective effects are associated with their anti-cholinesterase activities.
Collapse
Affiliation(s)
- Tess Puopolo
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
| | - Chang Liu
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
| | - Navindra P. Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
31
|
Cavalheiro EKFF, Costa AB, Salla DH, da Silva MR, Mendes TF, da Silva LE, Turatti CDR, de Bitencourt RM, Rezin GT. Cannabis sativa as a Treatment for Obesity: From Anti-Inflammatory Indirect Support to a Promising Metabolic Re-Establishment Target. Cannabis Cannabinoid Res 2022; 7:135-151. [PMID: 34242511 PMCID: PMC9070748 DOI: 10.1089/can.2021.0016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Introduction: Obesity is defined as an excess of accumulation of fat that can be harmful to health. Storage of excess fat in the adipose tissue triggers an inflammatory process, which makes obesity a low-grade chronic inflammatory disease. Obesity is considered a complex and multifactorial disease; hence, no intervention strategy appears to be an ideal treatment for all individuals. Therefore, new therapeutic alternatives are often studied for the treatment of this disease. Currently, herbal medicines are gaining ground in the treatment of obesity and its comorbidities. In this context, much attention is being paid to Cannabis sativa derivatives, and their therapeutic functions are being widely studied, including in treating obesity. Objective: Highlight the pharmacological properties of Δ9-tetrahydrocannabivarin (THCV), Δ9-tetrahydrocannabidinol (THC), and cannabidiol (CBD), the predominant isolated components of Cannabis sativa, as well as its therapeutic potential in the treatment of obesity. Methods: This is a narrative review that shows the existing scientific evidence on the clinical application of Cannabis sativa as a possible treatment for obesity. Data collection was performed in the PubMed electronic database. The following word combinations were used: Cannabis and obesity, Cannabis sativa and obesity, THCV and obesity, THC and obesity, CBD and obesity, and Cannabis sativa and inflammation. Results: Evidence shows that Cannabis sativa derivatives have therapeutic potential due to their anti-inflammatory properties. In addition, people who use cannabis have a lower body mass index than those who do not, making the plant an option to reduce and reverse inflammation and comorbidities in obesity. Conclusion: It is concluded that phytocannabinoids derived from Cannabis sativa have therapeutic potential due to its anti-inflammatory, antioxidant, and neuroprotective properties, making the plant a study option to reduce and reverse inflammation and comorbidities associated with obesity.
Collapse
Affiliation(s)
| | - Ana Beatriz Costa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Daniéle Hendler Salla
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Mariella Reinol da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Talita Farias Mendes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Larissa Espindola da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Cristini da Rosa Turatti
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Rafael Mariano de Bitencourt
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
- Laboratory of Behavioral Neuroscience, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| |
Collapse
|
32
|
Fearby N, Penman S, Thanos P. Effects of Δ9-Tetrahydrocannibinol (THC) on Obesity at Different Stages of Life: A Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063174. [PMID: 35328862 PMCID: PMC8951828 DOI: 10.3390/ijerph19063174] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/04/2022] [Indexed: 12/20/2022]
Abstract
The Cannabis sativa plant has historically been used for both recreational and medical purposes. With the recent surge in recreational use of cannabis among adolescents and adults in particular, there is an increased obligation to determine the short- and long-term effects that consuming this plant may have on several aspects of the human psyche and body. The goal of this article was to examine the negative effects of obesity, and how the use of Δ9-tetrahydrocannibinol (THC) or cannabidiol (CBD) can impact rates of this global pandemic at different timepoints of life. Conflicting studies have been reported between adult and adolescents, as there are reports of THC use leading to increased weight due to elevated appetite and consumption of food, while others observed a decrease in overall body weight due to the regulation of omega-6/omega-3 endocannabinoid precursors and a decrease in energy expenditure. Studies supported a positive correlation between prenatal cannabis use and obesity rates in the children as they matured. The data did not indicate a direct connection between prenatal THC levels in cannabis and obesity rates, but that this development may occur due to prenatal THC consumption leading to low birthweight, and subsequent obesity. There are few studies using animal models that directly measure the effects that prenatal THC administration on obesity risks among offspring. Thus, this is a critical area for future studies using a developmental framework to examine potential changes in risk across development.
Collapse
Affiliation(s)
- Nathan Fearby
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14203, USA;
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY 14203, USA;
| | - Samantha Penman
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY 14203, USA;
| | - Panayotis Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY 14203, USA;
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA
- Correspondence: ; Tel.: +1-(716)-881-7520
| |
Collapse
|
33
|
Mirlohi S, Bladen C, Santiago M, Connor M. Modulation of Recombinant Human T-Type Calcium Channels by Δ 9-Tetrahydrocannabinolic Acid In Vitro. Cannabis Cannabinoid Res 2022; 7:34-45. [PMID: 33998881 PMCID: PMC8864432 DOI: 10.1089/can.2020.0134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Introduction: Low voltage-activated T-type calcium channels (T-type ICa), CaV3.1, CaV3.2, and CaV3.3, are opened by small depolarizations from the resting membrane potential in many cells and have been associated with neurological disorders, including absence epilepsy and pain. Δ9-tetrahydrocannabinol (THC) is the principal psychoactive compound in Cannabis and also directly modulates T-type ICa; however, there is no information about functional activity of most phytocannabinoids on T-type calcium channels, including Δ9-tetrahydrocannabinolic acid (THCA), the natural nonpsychoactive precursor of THC. The aim of this work was to characterize THCA effects on T-type calcium channels. Materials and Methods: We used HEK293 Flp-In-TREx cells stably expressing CaV3.1, 3.2, or 3.3. Whole-cell patch clamp recordings were made to investigate cannabinoid modulation of ICa. Results: THCA and THC inhibited the peak current amplitude CaV3.1 with pEC50s of 6.0±0.7 and 5.6±0.4, respectively. THC (1 μM) or THC produced a significant negative shift in half activation and inactivation of CaV3.1, and both drugs prolonged CaV3.1 deactivation kinetics. THCA (10 μM) inhibited CaV3.2 by 53%±4%, and both THCA and THC produced a substantial negative shift in the voltage for half inactivation and modest negative shift in half activation of CaV3.2. THC prolonged the deactivation time of CaV3.2, while THCA did not. THCA inhibited the peak current of CaV3.3 by 43%±2% (10 μM) but did not notably affect CaV3.3 channel activation or inactivation; however, THC caused significant hyperpolarizing shift in CaV3.3 steady-state inactivation. Discussion: THCA modulated T-type ICa currents in vitro, with significant modulation of kinetics and voltage dependence at low μM concentrations. This study suggests that THCA may have potential for therapeutic use in pain and epilepsy through T-type calcium channel modulation without the unwanted psychoactive effects associated with THC.
Collapse
Affiliation(s)
- Somayeh Mirlohi
- Department of Biomedical Sciences, Macquarie University, Sydney, Australia
| | - Chris Bladen
- Department of Biomedical Sciences, Macquarie University, Sydney, Australia
| | - Marina Santiago
- Department of Biomedical Sciences, Macquarie University, Sydney, Australia
| | - Mark Connor
- Department of Biomedical Sciences, Macquarie University, Sydney, Australia.,*Address correspondence to: Mark Connor, PhD, Department of Biomedical Sciences, Macquarie University, Sydney 2109, Australia,
| |
Collapse
|
34
|
Montoya-Alatriste CA, Alarcon-Aguilar FJ. Cannabis and cannabinoids as an alternative remedy in metabolic syndrome. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
35
|
Lian J, Casari I, Falasca M. Modulatory role of the endocannabinoidome in the pathophysiology of the gastrointestinal tract. Pharmacol Res 2021; 175:106025. [PMID: 34883211 DOI: 10.1016/j.phrs.2021.106025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022]
Abstract
Originating from Eastern Asia, the plant Cannabis sativa has been used for centuries as a medicinal treatment. The unwanted psychotropic effects of one of its major components, Δ9-tetrahydrocannabinol, discouraged its therapeutic employment until, recently, the discovery of cannabinoids receptors and their endogenous ligands endocannabinoids reignited the interest. The endocannabinoid system has lately been found to play an important role in the maintenance of human health, both centrally and peripherally. However, the initial idea of the endocannabinoid system structure has been quickly understood to be too simplistic and, as new receptors, mediators, and enzymes have been discovered to participate in a complex relationship, the new, more comprehensive term "expanded endocannabinoid system" or "endocannabinoidome", has taken over. The discovery of other endocannabinoid-like receptors, such as the G protein-coupled receptor 119 and G protein-coupled receptor 55, has opened the way to the development of potential therapeutic targets for the treatment of various metabolic disorders. In addition, recent findings have also provided evidence suggesting the potential therapeutic link between the endocannabinoidome and various inflammatory-based gut diseases, such as inflammatory bowel disease and cancer. This review will provide an introduction to the endocannabinoidome, focusing on its modulatory role in the gastrointestinal tract and on the interest generated by the link between gut microbiota, the endocannabinoid system and metabolic diseases such as inflammatory bowel disease, type-2 diabetes and obesity. In addition, we will look at the potential novel aspects and benefits of drugs targeting the endocannabinoid system.
Collapse
Affiliation(s)
- Jerome Lian
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Ilaria Casari
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
36
|
R C Coelho MP, de O P Leme F, A Moreira F, E M T Branco S, M Melo M, G de Melo E. Current review of hemp-based medicines in dogs. J Vet Pharmacol Ther 2021; 44:870-882. [PMID: 34605042 DOI: 10.1111/jvp.13016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/30/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
Medical use of Cannabis (or hemp) began thousands of years ago. In the 20th century, mechanisms of action were demonstrated with the discovery of its active substances, the phytocannabinoids, and its pharmacological targets, the endocannabinoid system. This system is composed of receptors, endogenous substances, and enzymes, and it participates in the modulation of physiological mechanisms in several species, including dogs. Studies indicate that changes in this system may contribute to the genesis of some diseases. Therefore, the use of substances that act on its components may help in the treatment of these diseases. The main phytocannabinoids described are Δ9- tetrahydrocannabinol (THC) and cannabidiol (CBD). In humans, the benefits of using CBD in several diseases have been demonstrated. The popularization of this type of treatment has also reached veterinary medicine, which on one hand was related to an increase in adverse event records, but on the other also allowed reports of anecdotal evidences of its effectiveness and safety in animals. Clinical studies published so far indicate that the use of CBD in dogs can be safe at given doses and can contribute to osteoarthritis and idiopathic epilepsy treatments. Clinical and pre-clinical studies and case reports were reviewed in this report to identify the main characteristics of hemp-based therapies in dogs, including its pharmacokinetics, pharmacodynamics, safety, and efficacy in the treatment of diseases.
Collapse
Affiliation(s)
- Maria Paula R C Coelho
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabiola de O P Leme
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabricio A Moreira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Stephanie E M T Branco
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marilia M Melo
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eliane G de Melo
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
37
|
de Ceglia M, Decara J, Gaetani S, Rodríguez de Fonseca F. Obesity as a Condition Determined by Food Addiction: Should Brain Endocannabinoid System Alterations Be the Cause and Its Modulation the Solution? Pharmaceuticals (Basel) 2021; 14:ph14101002. [PMID: 34681224 PMCID: PMC8538206 DOI: 10.3390/ph14101002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity is a complex disorder, and the number of people affected is growing every day. In recent years, research has confirmed the hypothesis that food addiction is a determining factor in obesity. Food addiction is a behavioral disorder characterized by disruptions in the reward system in response to hedonic eating. The endocannabinoid system (ECS) plays an important role in the central and peripheral control of food intake and reward-related behaviors. Moreover, both obesity and food addiction have been linked to impairments in the ECS function in various brain regions integrating peripheral metabolic signals and modulating appetite. For these reasons, targeting the ECS could be a valid pharmacological therapy for these pathologies. However, targeting the cannabinoid receptors with inverse agonists failed when used in clinical contexts as a consequence of the induction of affective disorders. In this context, new classes of drugs acting either on CB1 and/or CB2 receptors or on synthetic and degradation enzymes of endogenous cannabinoids are being studied. However, further investigation is necessary to find safe and effective treatments that can exert anti-obesity effects, normalizing reward-related behaviors without causing important adverse mood effects.
Collapse
Affiliation(s)
- Marialuisa de Ceglia
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, 29010 Málaga, Spain;
- Correspondence: (M.d.C.); (F.R.d.F.)
| | - Juan Decara
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, 29010 Málaga, Spain;
| | - Silvana Gaetani
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, 29010 Málaga, Spain;
- Correspondence: (M.d.C.); (F.R.d.F.)
| |
Collapse
|
38
|
Morris EM, Kitts-Morgan SE, Spangler DM, Ogunade IM, McLeod KR, Harmon DL. Alteration of the Canine Metabolome After a 3-Week Supplementation of Cannabidiol (CBD) Containing Treats: An Exploratory Study of Healthy Animals. Front Vet Sci 2021; 8:685606. [PMID: 34336977 PMCID: PMC8322615 DOI: 10.3389/fvets.2021.685606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/18/2021] [Indexed: 12/21/2022] Open
Abstract
Despite the increased interest and widespread use of cannabidiol (CBD) in humans and companion animals, much remains to be learned about its effects on health and physiology. Metabolomics is a useful tool to evaluate changes in the health status of animals and to analyze metabolic alterations caused by diet, disease, or other factors. Thus, the purpose of this investigation was to evaluate the impact of CBD supplementation on the canine plasma metabolome. Sixteen dogs (18.2 ± 3.4 kg BW) were utilized in a completely randomized design with treatments consisting of control and 4.5 mg CBD/kg BW/d. After 21 d of treatment, blood was collected ~2 h after treat consumption. Plasma collected from samples was analyzed using CIL/LC-MS-based untargeted metabolomics to analyze amine/phenol- and carbonyl-containing metabolites. Metabolites that differed - fold change (FC) ≥ 1.2 or ≤ 0.83 and false discovery ratio (FDR) ≤ 0.05 - between the two treatments were identified using a volcano plot. Biomarker analysis based on receiver operating characteristic (ROC) curves was performed to identify biomarker candidates (area under ROC ≥ 0.90) of the effects of CBD supplementation. Volcano plot analysis revealed that 32 amine/phenol-containing metabolites and five carbonyl-containing metabolites were differentially altered (FC ≥ 1.2 or ≤ 0.83, FDR ≤ 0.05) by CBD; these metabolites are involved in the metabolism of amino acids, glucose, vitamins, nucleotides, and hydroxycinnamic acid derivatives. Biomarker analysis identified 24 amine/phenol-containing metabolites and 1 carbonyl-containing metabolite as candidate biomarkers of the effects of CBD (area under ROC ≥ 0.90; P < 0.01). Results of this study indicate that 3 weeks of 4.5 mg CBD/kg BW/d supplementation altered the canine metabolome. Additional work is warranted to investigate the physiological relevance of these changes.
Collapse
Affiliation(s)
- Elizabeth M. Morris
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | | | - Dawn M. Spangler
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Ibukun M. Ogunade
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV, United States
| | - Kyle R. McLeod
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - David L. Harmon
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
39
|
Deng B, Tang X, Wang Y. Role of microRNA-129 in cancer and non-cancerous diseases (Review). Exp Ther Med 2021; 22:918. [PMID: 34335879 PMCID: PMC8290460 DOI: 10.3892/etm.2021.10350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
An increasing number of studies indicate that microRNAs (miRNAs/miRs) are involved in diverse biological signaling pathways and play important roles in the progression of various diseases, including both oncological and non-oncological diseases. These small non-coding RNAs can block translation, resulting in a low expression level of target genes. miR-129 is an miRNA that has been the focus of considerable research in recent years. A growing body of evidence shows that the miR-129 family not only functions in cancer, including osteosarcoma, nasopharyngeal carcinoma, and ovarian, prostate, lung, breast and colon cancer, but also in non-cancerous diseases, including heart failure (HF), epilepsy, Alzheimer's disease (AD), obesity, diabetes and intervertebral disc degeneration (IVDD). It is therefore necessary to summarize current research progress on the role of miR-129 in different diseases. The present review includes an updated summary of the mechanisms of the miR-129 family in oncological and non-oncological diseases. To the best of our knowledge, this is the first review focusing on the role of miR-129 in non-cancerous diseases such as obesity, HF, epilepsy, diabetes, IVDD and AD.
Collapse
Affiliation(s)
- Bingpeng Deng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xuan Tang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yong Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
40
|
Biernacki M, Brzóska MM, Markowska A, Gałażyn-Sidorczuk M, Cylwik B, Gęgotek A, Skrzydlewska E. Oxidative Stress and Its Consequences in the Blood of Rats Irradiated with UV: Protective Effect of Cannabidiol. Antioxidants (Basel) 2021; 10:antiox10060821. [PMID: 34063802 PMCID: PMC8224002 DOI: 10.3390/antiox10060821] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
UVA/UVB radiation disturbs the redox balance of skin cells, and metabolic consequences can be transferred into the blood and internal tissues, especially after chronic skin exposure to UV radiation. Therefore, the aim of this study was to evaluate the effect of cannabidiol (CBD), an antioxidant and anti-inflammatory phytocannabinoid, on oxidative stress and its consequences in the blood of nude rats whose skin was exposed to UVA/UVB radiation for 4 weeks. It was shown that CBD penetrated the blood and in UVB-irradiated rats was preferentially located in the membranes of polymorphonuclear leukocytes, which promoted reduction of ROS generation and up-regulation of antioxidant ability by increasing the activity of glutathione reductase and thioredoxin reductase, while the level of reduced glutathione decreased by UV radiation. Consequently, reduction in UV-induced lipid peroxidation, assessed as 4-hydroxynonenal (4-HNE) and 8-isoprostane (8-isoPGF2α) as well as protein modifications, estimated as 4-HNE-protein adducts and protein carbonyl groups, was observed. CBD, by countering the UV-induced down-regulation of 2-arachidonylglycerol, promoted its antioxidant/anti-inflammatory effects by reducing CB1 and increasing PPARγ receptor activation and consequently ROS and TNF-α down-regulation. The results suggest that CBD applied topically to the skin minimizes redox changes not only at the skin level, but also at the systemic level.
Collapse
Affiliation(s)
- Michał Biernacki
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222 Bialystok, Poland; (M.B.); (A.M.); (A.G.)
| | - Małgorzata Michalina Brzóska
- Department of Toxicology, Medical University of Bialystok, A. Mickiewicza 2C, 15-089 Bialystok, Poland; (M.M.B.); (M.G.-S.)
| | - Agnieszka Markowska
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222 Bialystok, Poland; (M.B.); (A.M.); (A.G.)
| | - Małgorzata Gałażyn-Sidorczuk
- Department of Toxicology, Medical University of Bialystok, A. Mickiewicza 2C, 15-089 Bialystok, Poland; (M.M.B.); (M.G.-S.)
| | - Bogdan Cylwik
- Department of Pediatric Laboratory Diagnostics, Medical University of Bialystok, J. Waszyngtona 17, 15-269 Białystok, Poland;
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222 Bialystok, Poland; (M.B.); (A.M.); (A.G.)
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222 Bialystok, Poland; (M.B.); (A.M.); (A.G.)
- Correspondence: ; Tel.: +48-857-485-708
| |
Collapse
|
41
|
Bielawiec P, Harasim-Symbor E, Sztolsztener K, Konstantynowicz-Nowicka K, Chabowski A. Attenuation of Oxidative Stress and Inflammatory Response by Chronic Cannabidiol Administration Is Associated with Improved n-6/n-3 PUFA Ratio in the White and Red Skeletal Muscle in a Rat Model of High-Fat Diet-Induced Obesity. Nutrients 2021; 13:nu13051603. [PMID: 34064937 PMCID: PMC8151284 DOI: 10.3390/nu13051603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 05/07/2021] [Indexed: 12/28/2022] Open
Abstract
The consumption of fatty acids has increased drastically, exceeding the nutritional requirements of an individual and leading to numerous metabolic disorders. Recent data indicate a growing interest in using cannabidiol (CBD) as an agent with beneficial effects in the treatment of obesity. Therefore, our aim was to investigate the influence of chronic CBD administration on the n-6/n-3 polyunsaturated fatty acids (PUFAs) ratio in different lipid fractions, inflammatory pathway and oxidative stress parameters in the white and red gastrocnemius muscle. All the designed experiments were performed on Wistar rats fed a high-fat diet (HFD) or a standard rodent diet for seven weeks and subsequently injected with CBD (10 mg/kg once daily for two weeks) or its vehicle. Lipid content and oxidative stress parameters were assessed using gas-liquid chromatography (GLC), colorimetric and/or immunoenzymatic methods, respectively. The total expression of proteins of an inflammatory pathway was measured by Western blotting. Our results revealed that fatty acids (FAs) oversupply is associated with an increasing oxidative stress and inflammatory response, which results in an excessive accumulation of FAs, especially of n-6 PUFAs, in skeletal muscles. We showed that CBD significantly improved the n-6/n-3 PUFA ratio and shifted the equilibrium towards anti-inflammatory n-3 PUFAs, particularly in the red gastrocnemius muscle. Additionally, CBD prevented generation of lipid peroxidation products and attenuated inflammatory response in both types of skeletal muscle. In summary, the results mentioned above indicate that CBD presents potential therapeutic properties with respect to the treatment of obesity and related disturbances.
Collapse
|
42
|
Functional Fine-Tuning of Metabolic Pathways by the Endocannabinoid System-Implications for Health and Disease. Int J Mol Sci 2021; 22:ijms22073661. [PMID: 33915889 PMCID: PMC8036872 DOI: 10.3390/ijms22073661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) employs a huge network of molecules (receptors, ligands, and enzymatic machinery molecules) whose interactions with other cellular networks have still not been fully elucidated. Endogenous cannabinoids are molecules with the primary function of control of multiple metabolic pathways. Maintenance of tissue and cellular homeostasis by functional fine-tuning of essential metabolic pathways is one of the key characteristics of the ECS. It is implicated in a variety of physiological and pathological states and an attractive pharmacological target yet to reach its full potential. This review will focus on the involvement of ECS in glucose and lipid metabolism, food intake regulation, immune homeostasis, respiratory health, inflammation, cancer and other physiological and pathological states will be substantiated using freely available data from open-access databases, experimental data and literature review. Future directions should envision capturing its diversity and exploiting pharmacological options beyond the classical ECS suspects (exogenous cannabinoids and cannabinoid receptor monomers) as signaling through cannabinoid receptor heteromers offers new possibilities for different biochemical outcomes in the cell.
Collapse
|
43
|
Deeba F, Kumar A, Mukherjee M, Sharma AK, Sharma M. Targeting the endocannabinoid system in diabesity: Fact or fiction? Drug Discov Today 2021; 26:1750-1758. [PMID: 33781949 DOI: 10.1016/j.drudis.2021.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/02/2020] [Accepted: 03/22/2021] [Indexed: 01/04/2023]
Abstract
'Diabesity' refers to a rising epidemic indicated by the intricate relationship between obesity and diabetes. The global prevalence of these coexisting, insidious diseases increases social and economic health burdens at a rapid pace. Numerous reports delineate the involvement of the underlying endocannabinoid (EC) signaling system through the cannabinoid-1 (CB1) receptor in the regulation of metabolism and adiposity. Conversely, EC inverse agonists can result in severe depression and suicidal thoughts through interactions with CB1/2 receptors in the brain. This review attempts to elucidate a possible mechanism for the amelioration of diabesity. Moreover, we also highlight the available targets of the CB1 receptor, which could pave the way for safe and effective therapy.
Collapse
Affiliation(s)
- Farah Deeba
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Delhi 110062, India
| | - Ashish Kumar
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Haryana 122413, India
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Sector-125 NOIDA- 201303, Gautam Buddha Nagar, U.P, India
| | - Arun K Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Haryana 122413, India.
| | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Delhi 110062, India.
| |
Collapse
|
44
|
Lee XC, Werner E, Falasca M. Molecular Mechanism of Autophagy and Its Regulation by Cannabinoids in Cancer. Cancers (Basel) 2021; 13:cancers13061211. [PMID: 33802014 PMCID: PMC7999886 DOI: 10.3390/cancers13061211] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary This review examines the complex function of autophagy in malignancy and explores its regulation by cannabinoids in different cancers. Autophagy is an important process in the maintenance of cellular homeostasis, through the degradation and recycling of cytoplasmic constituents. The action of autophagy is highly dependent on tumour stage and type and the receptors with which ligands interact. Cannabinoids are growingly being acknowledged for their anticancer activities and are known to stimulate several mechanisms such as apoptosis and autophagy. Better understanding the mechanism of action behind autophagy and its regulation by cannabinoids will allow the development of novel cancer therapeutics. Abstract Autophagy is a “self-degradation” process whereby malfunctioned cytoplasmic constituents and protein aggregates are engulfed by a vesicle called the autophagosome, and subsequently degraded by the lysosome. Autophagy plays a crucial role in sustaining protein homeostasis and can be an alternative source of energy under detrimental circumstances. Studies have demonstrated a paradoxical function for autophagy in cancer, displaying both tumour suppressive and tumour promotive roles. In early phases of tumour development autophagy promotes cancer cell death. In later phases, autophagy enables cancer cells to survive and withstand therapy. Cannabinoids, which are derivatives of the Cannabis sativa L. plant, have shown to be associated with autophagy induction in cells. There is an emerging interest in studying the signalling pathways involved in cannabinoid-induced autophagy and their potential application in anticancer therapies. In this review, the molecular mechanisms involved in the autophagy degradation process will be discussed. This review also highlights a role for autophagy in cancer progression, with cannabinoid-induced autophagy presenting a novel strategy for anticancer therapy.
Collapse
|
45
|
He J, Tan AMX, Ng SY, Rui M, Yu F. Cannabinoids modulate food preference and consumption in Drosophila melanogaster. Sci Rep 2021; 11:4709. [PMID: 33633260 PMCID: PMC7907270 DOI: 10.1038/s41598-021-84180-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/10/2021] [Indexed: 12/25/2022] Open
Abstract
Cannabinoids have an important role in regulating feeding behaviors via cannabinoid receptors in mammals. Cannabinoids also exhibit potential therapeutic functions in Drosophila melanogaster, or fruit fly that lacks cannabinoid receptors. However, it remains unclear whether cannabinoids affect food consumption and metabolism in a cannabinoid receptors-independent manner in flies. In this study, we systematically investigated pharmacological functions of various cannabinoids in modulating food preference and consumption in flies. We show that flies display preferences for consuming cannabinoids, independent of two important sensory regulators Poxn and Orco. Interestingly, phyto- and endo- cannabinoids exhibit an inhibitory effect on food intake. Unexpectedly, the non-selective CB1 receptor antagonist AM251 attenuates the suppression of food intake by endocannabinoids. Moreover, the endocannabinoid anandamide (AEA) and its metabolite inhibit food intake and promote resistance to starvation, possibly through reduced lipid metabolism. Thus, this study has provided insights into a pharmacological role of cannabinoids in feeding behaviors using an adult Drosophila model.
Collapse
Affiliation(s)
- Jianzheng He
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
| | - Alice Mei Xien Tan
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Si Yun Ng
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Menglong Rui
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Fengwei Yu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore, 117456, Singapore.
| |
Collapse
|
46
|
The endocannabinoid system. Essays Biochem 2021; 64:485-499. [PMID: 32648908 DOI: 10.1042/ebc20190086] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022]
Abstract
Thirty years ago, the discovery of a cannabinoid (CB) receptor that interacts with the psychoactive compound in Cannabis led to the identification of anandamide, an endogenous receptor ligand or endocannabinoid. Research on endocannabinoids has since exploded, and additional receptors along with their lipid mediators and signaling pathways continue to be revealed. Specifically, in humans, the release of endocannabinoids from membrane lipids occurs on demand and the signaling process is rapidly attenuated by the breakdown of the ligand suggesting a tight regulation of the endocannabinoid system (ECS). Additionally, the varying distribution of CB receptors between the central nervous system and other tissues allows for the ECS to participate in a wide range of cognitive and physiological processes. Select plant-derived 'phyto'cannabinoids such as Δ-9-tetrahydrocannabinol (Δ9-THC) bind to the CB receptors and trigger the ECS, and in the case of Δ9-THC, while it has therapeutic value, can also produce detrimental effects. Current research is aimed at the identification of additional phytocannabinoids with minimal psychotropic effects with potential for therapeutic development. Although decades of research on the ECS and its components have expanded our understanding of the mechanisms and implications of endocannabinoid signaling in mammals, it continues to evolve. Here, we provide a brief overview of the ECS and its overlap with other related lipid-mediated signaling pathways.
Collapse
|
47
|
Marsh DT, Smid SD. Cannabis Phytochemicals: A Review of Phytocannabinoid Chemistry and Bioactivity as Neuroprotective Agents. Aust J Chem 2021. [DOI: 10.1071/ch20183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
With the advent of medical cannabis usage globally, there has been a renewed interest in exploring the chemical diversity of this unique plant. Cannabis produces hundreds of unique phytocannabinoids, which not only have diverse chemical structures but also a range of cellular and molecular actions, interesting pharmacological properties, and biological actions. In addition, it produces other flavonoids, stilbenoids, and terpenes that have been variably described as conferring additional or so-called entourage effects to whole-plant extracts when used in therapeutic settings. This review explores this phytochemical diversity in relation to specific bioactivity ascribed to phytocannabinoids as neuroprotective agents. It outlines emergent evidence for the potential for selected phytocannabinoids and other cannabis phytochemicals to mitigate factors such as inflammation and oxidative stress as drivers of neurotoxicity, in addition to focusing on specific interactions with pathological misfolding proteins, such as amyloid β, associated with major forms of neurodegenerative diseases such as Alzheimer’s disease.
Collapse
|
48
|
Hunter E, Stander M, Kossmann J, Chakraborty S, Prince S, Peters S, Loedolff B. Toward the identification of a phytocannabinoid-like compound in the flowers of a South African medicinal plant (Leonotis leonurus). BMC Res Notes 2020; 13:522. [PMID: 33172494 PMCID: PMC7653773 DOI: 10.1186/s13104-020-05372-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/31/2020] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Current global trends on natural therapeutics suggest an increasing market interest toward the use and discovery of new plant-derived therapeutic compounds, often referred to as traditional medicine (TM). The Cannabis industry is currently one such focal area receiving attention, owing to the occurrence of phytocannabinoids (pCBs) which have shown promise in health-promotion and disease prevention. However, the occurrence of pCBs in other plant species are often overlooked and rarely studied. Leonotis leonurus (L.) R. Br. is endemic to South Africa with a rich history of use in TM practices amongst indigenous people and, has been recorded to induce mild psychoactive effects akin to Cannabis. While the leaves have been well-reported to contain therapeutic phytochemicals, little information exists on the flowers. Consequently, as part of a larger research venture, we targeted the flowers of L. leonurus for the identification of potential pCB or pCB-like compounds. RESULTS Flower extracts were separated and analyzed using high performance thin layer chromatography (HPTLC). A single pCB candidate was isolated from HPTLC plates and, using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), we could successfully group this compound as a fatty amide and tentatively identified as 7,10,13,16-Docosatetraenoylethanolamine (adrenoyl-EA), a known bioactive compound.
Collapse
Affiliation(s)
- E. Hunter
- Department of Genetics, Institute of Plant Biotechnology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - M. Stander
- Central Analytical Facilities, Stellenbosch University, Stellenbosch, South Africa
| | - J. Kossmann
- Department of Genetics, Institute of Plant Biotechnology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - S. Chakraborty
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - S. Prince
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - S. Peters
- Department of Genetics, Institute of Plant Biotechnology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - Bianke Loedolff
- Department of Genetics, Institute of Plant Biotechnology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|