1
|
Somagattu P, Chinnannan K, Yammanuru H, Reddy UK, Nimmakayala P. Selenium dynamics in plants: Uptake, transport, toxicity, and sustainable management strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175033. [PMID: 39059668 DOI: 10.1016/j.scitotenv.2024.175033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Selenium (Se) plays crucial roles in human, animal, and plant physiology, but its varied plant functions remain complex and not fully understood. While Se deficiency affects over a billion people worldwide, excessive Se levels can be toxic, presenting substantial risks to ecosystem health and public safety. The delicate balance between Se's beneficial and harmful effects necessitates a deeper understanding of its speciation dynamics and how different organisms within ecosystems respond to Se. Since humans primarily consume Se through Se-rich foods, exploring Se's behavior, uptake, and transport within agroecosystems is critical to creating effective management strategies. Traditional physicochemical methods for Se remediation are often expensive and potentially harmful to the environment, pushing the need for more sustainable solutions. In recent years, phytotechnologies have gained traction as a promising approach to Se management by harnessing plants' natural abilities to absorb, accumulate, metabolize, and volatilize Se. These strategies range from boosting Se uptake and tolerance in plants to releasing Se as less toxic volatile compounds or utilizing it as a biofortified supplement, opening up diverse possibilities for managing Se, offering sustainable pathways to improve crop nutritional quality, and protecting human health in different environmental contexts. However, closing the gaps in our understanding of Se dynamics within agricultural systems calls for a united front of interdisciplinary collaboration from biology to environmental science, agriculture, and public health, which has a crucial role to play. Phytotechnologies offer a sustainable bridge between Se deficiency and toxicity, but further research is needed to optimize these methods and explore their potential in various agricultural and environmental settings. By shedding light on Se's multifaceted roles and refining management strategies, this review contributes to developing cost-effective and eco-friendly approaches for Se management in agroecosystems. It aims to lead the way toward a healthier and more sustainable future by balancing the need to address Se deficiency and mitigate the risks of Se toxicity.
Collapse
Affiliation(s)
- Prapooja Somagattu
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Karthik Chinnannan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Hyndavi Yammanuru
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Umesh K Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA.
| |
Collapse
|
2
|
Phang LY, Mingyuan L, Mohammadi M, Tee CS, Yuswan MH, Cheng WH, Lai KS. Phytoremediation as a viable ecological and socioeconomic management strategy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50126-50141. [PMID: 39103580 DOI: 10.1007/s11356-024-34585-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/27/2024] [Indexed: 08/07/2024]
Abstract
Phytoremediation is an environmentally friendly alternative to traditional remediation technologies, notably for soil restoration and agricultural sustainability. This strategy makes use of marginal areas, incorporates biofortification processes, and expands crop alternatives. The ecological and economic benefits of phytoremediation are highlighted in this review. Native plant species provide cost-effective advantages and lower risks, while using invasive species to purify pollutants might be a potential solution to the dilemma of not removing them from the new habitat. Thus, strict management measures should be used to prevent the overgrowth of invasive species. The superior advantages of phytoremediation, including psychological and social improvements, make it a powerful tool for both successful cleanup and community well-being. Its ability to generate renewable biomass and adapt to a variety of uses strengthens its position in developing the bio-based economy. However, phytoremediation faces severe difficulties such as complex site circumstances and stakeholder doubts. Overcoming these challenges necessitates a comprehensive approach that balances economic viability, environmental protection, and community welfare. Incorporating regulatory standards such as ASTM and ISO demonstrates a commitment to long-term environmental sustainability, while also providing advice for unique nation-specific requirements. Finally, phytoremediation may contribute to a pleasant coexistence of human activity and the environment by navigating hurdles and embracing innovation.
Collapse
Affiliation(s)
- Lai-Yee Phang
- Department of Bioprocess Technology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Lim Mingyuan
- Department of Bioprocess Technology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mitra Mohammadi
- Department of Environmental Science, Kheradgerayan Motahar Institute of Higher Education, Kosar 45, Vakil Abad Boulevard, Mashhad, Iran
| | - Chong-Siang Tee
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), 31900, Kampar, Perak, Malaysia
| | - Mohd Hafis Yuswan
- Halal Products Research Institute, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, 41012, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Correa LB, da Silva JS, Zanetti MA, Cônsolo NRB, Pfrimer K, Netto AS. The Effect of a Nutritional Intervention with the Use of Biofortified Beef Meat on Selected Biochemical Parameters in Blood from Older Adults. Nutrients 2024; 16:2281. [PMID: 39064724 PMCID: PMC11280052 DOI: 10.3390/nu16142281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to investigate the effects of meat biofortified with antioxidants and canola oil on the health of older adults through blood parameters. Eighty institutionalized older persons were divided into four groups who received the following treatments: C-control meat with 46 µg/kg of meat with selenium, 3.80 g/kg of meat with vitamin E and 0.78 g/100 g of meat with conjugated linoleic acid (CLA); A-antioxidant meat with 422 µg/kg of meat with selenium, 7.65 g/kg of meat with vitamin E and 0.85 g/100 g of meat with CLA; O-oil meat with 57 µg/kg of meat with selenium, 3.98 g/kg of meat with vitamin E and 1.27 g/100 g of meat with CLA; OA-oil and antioxidant meat with 367 µg/kg of meat with selenium, 7.78 g/kg of meat with vitamin E and 1.08 g/100 g of meat with CLA. Blood samples were collected at 0, 45 and 90 days after the start of meat intake. Older adults who consumed ANT (A and AO) meat had higher concentrations of selenium (p = 0.039), vitamin E and HDL (higher concentrations of high-density lipoprotein, p = 0.048) in their blood. This study demonstrates that the consumption of Se- and vitamin E-biofortified meat increases the concentration of these metabolites in blood from older adults.
Collapse
Affiliation(s)
- Lisia Bertonha Correa
- Department of Animal Science, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (L.B.C.); (M.A.Z.)
| | - Janaina Silveira da Silva
- Department of Animal Science, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (L.B.C.); (M.A.Z.)
| | - Marcus Antonio Zanetti
- Department of Animal Science, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (L.B.C.); (M.A.Z.)
| | - Nara Regina Brandão Cônsolo
- Department of Animal Nutrition and Production, College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-900, Brazil;
| | - Karina Pfrimer
- Department of Biotechnology and Nutrition, University of Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil;
- Program of Post-Graduation Nutrition and Metabolism, Department of Health Sciences, School Medical of Ribeirão Preto, University of Sao Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto 14049-900, Brazil
| | - Arlindo Saran Netto
- Department of Animal Science, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (L.B.C.); (M.A.Z.)
| |
Collapse
|
4
|
Sunic K, Spanic V. Genetic Biofortification of Winter Wheat with Selenium (Se). PLANTS (BASEL, SWITZERLAND) 2024; 13:1816. [PMID: 38999656 PMCID: PMC11244473 DOI: 10.3390/plants13131816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Wheat is one of the three most important cereals in the world, along with rice and maize. It serves as the primary food and source of energy for about 30-40% of the world's population. However, the low levels of micronutrients in wheat grains can lead to deficiencies of those micronutrients in people whose dietary habits are mostly based on cereals such as wheat. Apart from iron (Fe) and zinc (Zn), a lack of selenium (Se) is also one of the biggest problems in the world. The essentiality of Se has been confirmed for all animals and humans, and the lack of this micronutrient can cause serious health issues. Wheat dominates the world's cereal production, so it is one of the best plants for biofortification. Due to the fact that agronomic biofortification is not an economical or environmentally acceptable approach, genetic improvement of cereals such as wheat for the enhanced content of micronutrients in the grain represents the most efficient biofortification approach.
Collapse
Affiliation(s)
| | - Valentina Spanic
- Department for Cereal Breeding and Genetics, Agricultural Institute Osijek, Južno Predgrađe 17, 31000 Osijek, Croatia;
| |
Collapse
|
5
|
Nie X, Luo D, Ma H, Wang L, Yang C, Tian X, Nie Y. Different effects of selenium speciation on selenium absorption, selenium transformation and cadmium antagonism in garlic. Food Chem 2024; 443:138460. [PMID: 38295566 DOI: 10.1016/j.foodchem.2024.138460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 02/02/2024]
Abstract
Currently, planting selenium-rich crops using inorganic selenium such as selenate and selenite is used to address human selenium deficiency problems. In this paper, besides the above two traditional inorganic selenium speciation, we chose a new organic selenium speciation of potassium selenocyanoacetate to investigate the different effects of selenium speciation on selenium absorption, selenium transformation and cadmium antagonism via foliar application. Plantingexperiments showed that the selenium content of garlic bulbs treated with organic selenium was 1.8-3.9 times higher than that of inorganic selenium. Additionally, the absorption and transformation efficiency of organic selenium in garlic was also the highest, reaching over 95 %. Importantly, it was noteworthy that the cadmium content in bulbs treated with organic selenium was significantly lower than the Chinese food safety standard (0.2 mg/kg). Hence, this study provides an efficient organic selenium speciation which is beneficial to meet human selenium requirements and ensure safe utilization of cadmium-contaminated soils.
Collapse
Affiliation(s)
- Xueyu Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430070, China
| | - Dongyue Luo
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430070, China
| | - Huifen Ma
- Wuhan Tianyuan Environmental Protection Co., Ltd., Wuhan 430090, China
| | - Longyan Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430070, China
| | - Chao Yang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430070, China
| | - Xike Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430070, China
| | - Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430070, China.
| |
Collapse
|
6
|
Farooq MR, Zhang Z, Yuan L, Liu X, Li M, Song J, Wang Z, Yin X. Characterization of Selenium Speciation in Se-Enriched Crops: Crop Selection Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3388-3396. [PMID: 38343309 DOI: 10.1021/acs.jafc.3c08116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Accurately quantifying selenium (Se) speciation and transformation in Se-enriched crops is highly significant for human health. The investigation of Se species in Se-enriched crops involves assessing the enrichment of both organic and inorganic Se species, considering their plant families and edible parts. The staple crops of rice, corn, and wheat showed no or less inorganic Se with the increase of total Se; however, potatoes expressed a proportion of selenate [Se(VI)]. In addition, the organic Se proportions in Se-enriched crops of Cruciferous, Brassicaceae, and Umbelliferae plant families were relatively lower than the proportion of inorganic Se. Concurrently, the edible parts of the Se-enriched gramineous or cereal crops enriched with organic Se and crops with fruit, stem, leaf, and root as edible parts contain the maximum percentage of organic Se with a certain proportion of inorganic Se. This study contributes to a sparse body of literature by meticulously discerning appropriate Se-enriched crop selection through a comprehensive evaluation of Se speciation and its organic and inorganic accumulation potential.
Collapse
Affiliation(s)
- Muhammad Raza Farooq
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou 239200, P. R. China
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, P. R. China
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, P. R. China
| | - Zezhou Zhang
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou 239200, P. R. China
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, P. R. China
| | - Linxi Yuan
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiaodong Liu
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Mengqi Li
- Zhejiang Institute of Geosciences, Hangzhou, Zhejiang 310000, P. R. China
| | - Jiaping Song
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou 239200, P. R. China
| | - Zhangmin Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Xuebin Yin
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, P. R. China
| |
Collapse
|
7
|
Bhadwal S, Sharma S, Singh D. Interactive effects of selenium and arsenic on phenolic constituents and antioxidant activity in rice (Oryza sativa L.). CHEMOSPHERE 2024; 350:141071. [PMID: 38160958 DOI: 10.1016/j.chemosphere.2023.141071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/26/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Arsenic (As) is a heavy toxic metalloid found in air, water and soil that adversely affects the plant growth by inducing oxidative stress in plants. Its contamination of rice is a serious problem throughout the world. Selenium (Se) is a beneficial micronutrient for plants that acts as an antioxidant at low doses and protect the plants against number of environmental stresses either by modulating the primary metabolic pathways or regulating the production of phenolic compounds. In the present investigation, effect of Se on different phenolics, enzymes related to their metabolism and antioxidative potential were studied in As stressed rice leaves. Rice plants were grown in pots containing sodium arsenate (2-10 mg As(V) kg-1 soil) and sodium selenate (0.5-1 mg Se kg-1 soil), both alone and in combination and leaf samples were analyzed for various biochemical parameters. Phenolic constituents increased in rice leaves with As(V) treatment from 2 to 5 mg kg-1 soil and leaves exposed to As(V) @ 5 mg kg-1 soil exhibited 1.7, 1.9 and 2.5 fold increase in total phenolics, o-dihydroxyphenols and flavonols, respectively at grain filling stage. Binary application of Se + As improved various phenolic constituents, FRAP, reducing power and antioxidant activities as compared to control. PAL, TAL and PPO activities increased from 1.3 to 4.6 fold in combined As + Se treatment at both the stages. Anthocyanin contents showed a decline (10.8 fold) with increasing As doses and its content improved at both the stages with maximum increase of 3.76 fold with As5+Se1 combination. Binary application of As + Se improved gallic acid, chlorogenic acid, 3-hydroxy benzoic acid and kaempferol contents than control whereas catechin and coumaric acid showed the reverse trend. Application of Se can modulate phenolic constituents in leaf and grains of rice Cv PR126 due to As stress that helped plants to adapt to excess As and resulted in improved plant growth.
Collapse
Affiliation(s)
- Sheetal Bhadwal
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141004, India.
| | - Sucheta Sharma
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141004, India
| | - Dhanwinder Singh
- Department of Soil Science, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|
8
|
Zhou B, Cao H, Wu Q, Mao K, Yang X, Su J, Zhang H. Agronomic and Genetic Strategies to Enhance Selenium Accumulation in Crops and Their Influence on Quality. Foods 2023; 12:4442. [PMID: 38137246 PMCID: PMC10742783 DOI: 10.3390/foods12244442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Selenium (Se) is an essential trace element that plays a crucial role in maintaining the health of humans, animals, and certain plants. It is extensively present throughout the Earth's crust and is absorbed by crops in the form of selenates and selenite, eventually entering the food chain. Se biofortification is an agricultural process that employs agronomic and genetic strategies. Its goal is to enhance the mechanisms of crop uptake and the accumulation of exogenous Se, resulting in the production of crops enriched with Se. This process ultimately contributes to promoting human health. Agronomic strategies in Se biofortification aim to enhance the availability of exogenous Se in crops. Concurrently, genetic strategies focus on improving a crop's capacity to uptake, transport, and accumulate Se. Early research primarily concentrated on optimizing Se biofortification methods, improving Se fertilizer efficiency, and enhancing Se content in crops. In recent years, there has been a growing realization that Se can effectively enhance crop growth and increase crop yield, thereby contributing to alleviating food shortages. Additionally, Se has been found to promote the accumulation of macro-nutrients, antioxidants, and beneficial mineral elements in crops. The supplementation of Se biofortified foods is gradually emerging as an effective approach for promoting human dietary health and alleviating hidden hunger. Therefore, in this paper, we provide a comprehensive summary of the Se biofortification conducted over the past decade, mainly focusing on Se accumulation in crops and its impact on crop quality. We discuss various Se biofortification strategies, with an emphasis on the impact of Se fertilizer strategies on crop Se accumulation and their underlying mechanisms. Furthermore, we highlight Se's role in enhancing crop quality and offer perspective on Se biofortification in crop improvement, guiding future mechanistic explorations and applications of Se biofortification.
Collapse
Affiliation(s)
- Bingqi Zhou
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; (B.Z.); (H.C.); (Q.W.); (K.M.); (X.Y.); (J.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; (B.Z.); (H.C.); (Q.W.); (K.M.); (X.Y.); (J.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; (B.Z.); (H.C.); (Q.W.); (K.M.); (X.Y.); (J.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; (B.Z.); (H.C.); (Q.W.); (K.M.); (X.Y.); (J.S.)
| | - Xuefeng Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; (B.Z.); (H.C.); (Q.W.); (K.M.); (X.Y.); (J.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junxia Su
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; (B.Z.); (H.C.); (Q.W.); (K.M.); (X.Y.); (J.S.)
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; (B.Z.); (H.C.); (Q.W.); (K.M.); (X.Y.); (J.S.)
| |
Collapse
|
9
|
Cheng C, Zhao X, Yang H, Coldea TE, Zhao H. Mechanism of selenite tolerance during barley germination: A combination of tissue selenium metabolism alterations and ascorbate-glutathione cycle modulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108189. [PMID: 37979575 DOI: 10.1016/j.plaphy.2023.108189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/16/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Selenite is widely used to increase Selenium (Se) content in cereals, however excessive selenite may be toxic to plant growth. In this study, barley was malted to elucidate the action mechanism of selenite in the generation and detoxification of oxidative toxicity. The results showed that high doses (600 μM) of selenite radically increased oxidative stress by the elevated accumulation of superoxide and malondialdehyde, leading to phenotypic symptoms of selenite-induced toxicity like stunted growth. Barley tolerates selenite through a combination of mechanisms, including altering Se distribution in barley, accelerating Se efflux, and increasing the activity of some essential antioxidant enzymes. Low doses (150 μM) of selenite improved barley biomass, respiratory rate, root vigor, and maintained the steady-state equilibrium between reactive oxygen species (ROS) and antioxidant enzyme. Selenite-induced proline may act as a biosignal to mediate the response of barley to Se stress. Furthermore, low doses of selenite increased the glutathione (GSH) and ascorbate (AsA) concentrations by mediating the ascorbate-glutathione cycle (AsA-GSH cycle). GSH intervention and dimethyl selenide volatilization appear to be the primary mechanisms of selenite tolerance in barley. Thus, results from this study will provide a better understanding of the mechanisms of selenite tolerance in crops.
Collapse
Affiliation(s)
- Chao Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiujie Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca 400372, Romania; Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China.
| |
Collapse
|
10
|
Ullah H, Lun L, Rashid A, Zada N, Chen B, Shahab A, Li P, Ali MU, Lin S, Wong MH. A critical analysis of sources, pollution, and remediation of selenium, an emerging contaminant. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1359-1389. [PMID: 35972610 PMCID: PMC9379879 DOI: 10.1007/s10653-022-01354-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/09/2022] [Indexed: 06/10/2023]
Abstract
Selenium (Se) is an essential metalloid and is categorized as emerging anthropogenic contaminant released to the environment. The rise of Se release into the environment has raised concern about its bioaccumulation, toxicity, and potential to cause serious damages to aquatic and terrestrial ecosystem. Therefore, it is extremely important to monitor Se level in environment on a regular basis. Understanding Se release, anthropogenic sources, and environmental behavior is critical for developing an effective Se containment strategy. The ongoing efforts of Se remediation have mostly emphasized monitoring and remediation as an independent topics of research. However, our paper has integrated both by explaining the attributes of monitoring on effective scale followed by a candid review of widespread technological options available with specific focus on Se removal from environmental media. Another novel approach demonstrated in the article is the presentation of an overwhelming evidence of limitations that various researchers are confronted with to overcome achieving effective remediation. Furthermore, we followed a holistic approach to discuss ways to remediate Se for cleaner environment especially related to introducing weak magnetic field for ZVI reactivity enhancement. We linked this phenomenal process to electrokinetics and presented convincing facts in support of Se remediation, which has led to emerge 'membrane technology', as another viable option for remediation. Hence, an interesting, innovative and future oriented review is presented, which will undoubtedly seek attention from global researchers.
Collapse
Affiliation(s)
- Habib Ullah
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
- Zhejiang Provincial Key Laboratory of Organic Pollutant Process and Control, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Lu Lun
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655 China
| | - Audil Rashid
- Faculty of Sciences, Department of Botany, University of Gujrat, Gujrat, 50700 Pakistan
| | - Noor Zada
- Department of Chemistry, Government Post Graduate College, Lower Dir, Timergara, 18300 Pakistan
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
- Zhejiang Provincial Key Laboratory of Organic Pollutant Process and Control, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Asfandyar Shahab
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang, 550081 China
- CAS Center for Excellence in Quaternary Science and Global Change in XI’an, Xi’an, 710061 China
| | - Muhammad Ubaid Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang, 550081 China
- CAS Center for Excellence in Quaternary Science and Global Change in XI’an, Xi’an, 710061 China
| | - Siyi Lin
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077 China
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Sun Y, Wang Z, Gong P, Yao W, Ba Q, Wang H. Review on the health-promoting effect of adequate selenium status. Front Nutr 2023; 10:1136458. [PMID: 37006921 PMCID: PMC10060562 DOI: 10.3389/fnut.2023.1136458] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Selenium is an essential microelement involved in various biological processes. Selenium deficiency increases the risk of human immunodeficiency virus infection, cancer, cardiovascular disease, and inflammatory bowel disease. Selenium possesses anti-oxidant, anti-cancer, immunomodulatory, hypoglycemic, and intestinal microbiota-regulating properties. The non-linear dose-response relationship between selenium status and health effects is U-shaped; individuals with low baseline selenium levels may benefit from supplementation, whereas those with acceptable or high selenium levels may face possible health hazards. Selenium supplementation is beneficial in various populations and conditions; however, given its small safety window, the safety of selenium supplementation is still a subject of debate. This review summarizes the current understanding of the health-promoting effects of selenium on the human body, the dietary reference intake, and evidence of the association between selenium deficiency and disease.
Collapse
Affiliation(s)
- Ying Sun
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Zhineng Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Pin Gong
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi’an, China
- Pin Gong,
| | - Wenbo Yao
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi’an, China
- Wenbo Yao,
| | - Qian Ba
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Qian Ba,
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Hui Wang,
| |
Collapse
|
12
|
Xie H, Tian X, He L, Li J, Cui L, Cong X, Tang B, Zhang Y, Guo Z, Zhou A, Chen D, Wang L, Zhao J, Yu YL, Li B, Li YF. Spatial Metallomics Reveals Preferable Accumulation of Methylated Selenium in a Single Seed of the Hyperaccumulator Cardamine violifolia†. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2658-2665. [PMID: 36695191 DOI: 10.1021/acs.jafc.2c08112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cardamine violifolia is a Se hyperaccumulator found in Enshi, China. In this study, spatial metallomics was applied to visualize the distribution and speciation of Se in a single seed of C. violifolia. It was found that Se reached 1729.89 ± 28.14 mg/kg and the main Se species were SeCys and SeMet in bulk seeds. Further in situ study on a single seed found that the methylated Se species located mostly in the episperm. This is the first visualized evidence of the in situ distribution of methylated Se species in the seeds of C. violifolia. In all, spatial metallomics finds a preferable accumulation of methylated Se species in the seed coat, which deepens the understanding of the tolerance of Se by C. violifolia. The protocol applied in this study may also be used for the understanding of the tolerance of heavy metals/metalloids in other hyperaccumulators.
Collapse
Affiliation(s)
- Hongxin Xie
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Xue Tian
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Lina He
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- College of Environmental Science and Engineering, and State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Jincheng Li
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- College of Mechanical Engineering, and National Consortium for Excellence in Metallomics, Guangxi University, Nanning 530004, Guangxi, China
| | - Liwei Cui
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi 445000, Hubei, China
| | - Bochong Tang
- Shimadzu China Innovation Center, Beijing 100020, China
| | - Yi Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Synchrotron Radiation Facility, and High Energy Photon Source, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiying Guo
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Synchrotron Radiation Facility, and High Energy Photon Source, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Aiyu Zhou
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Synchrotron Radiation Facility, and High Energy Photon Source, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Dongliang Chen
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Synchrotron Radiation Facility, and High Energy Photon Source, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liming Wang
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiating Zhao
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Liang Yu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Bai Li
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Feng Li
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Chen Z, Zhang L, Peng M, Zhu S, Wang G. Preharvest application of selenite enhances the quality of Chinese flowering cabbage during storage via regulating the ascorbate-glutathione cycle and phenylpropanoid metabolisms. Food Res Int 2023; 163:112229. [PMID: 36596157 DOI: 10.1016/j.foodres.2022.112229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
Chinese flowering cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) is a candidate of selenium (Se) accumulator, but it is not clear whether and how preharvest Se treatment affects its quality after harvest. Here, we showed that preharvest application of 100 μmol/L selenite to roots enhanced storage quality of Chinese flowering cabbage. It increased antioxidant capacity and reduced weight loss, leaf yellowing, and protein degradation after harvest. Furthermore, it increased the activities of antioxidant enzymes such as POD, CAT, GSH-Px, and GR, as well as contents of AsA, GSH, phenolics, and flavonoids during storage. Metabolome analysis revealed that phenolic acids including p-Coumaric acid, caffeic acid, and ferulic acid; flavonoids such as naringenin, eriodictyol, apigenin, quercetin, kaempferol, and their derivatives were notably increased by preharvest selenite treatment. Consistently, the total antioxidant capacity, evaluated by DPPH, ABTS, and FRAP methods, were all markedly enhanced in selenite-treated cabbage compared to the control. Transcriptomics analysis showed that the DEGs induced by selenite were significantly enriched in AsA-GSH metabolisms and phenylpropanoids biosynthesis pathways. Moreover, preharvest selenite treatment significantly up-regulated the expressions of BrGST, BrGSH-Px, BrAPX, BrASO, BrC4H, BrCOMT, BrCHS, and BrFLS during storage. These results suggest that preharvest selenite treatment enhanced quality of cabbage not only by increasing Se biological accumulation, but also through regulating AsA-GSH cycle and increasing phenolics and flavonoids synthesis after harvest. This study provides a novel insight into the effects of preharvest Se treatment on quality of Chinese flowering cabbage during storage.
Collapse
Affiliation(s)
- Zhuosheng Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ling Zhang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Miaomiao Peng
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shijiang Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Guang Wang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
14
|
Sorahinobar M, Deldari T, Nazem Bokaeei Z, Mehdinia A. Effect of zinc nanoparticles on the growth and biofortification capability of mungbean ( Vigna radiata) seedlings. Biologia (Bratisl) 2023; 78:951-960. [PMID: 36533139 PMCID: PMC9748875 DOI: 10.1007/s11756-022-01269-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022]
Abstract
Zinc insufficiency is a nutritional trouble worldwide, especially in developing countries. In the current study, an experiment was conducted to evaluate the effect of supplementation of MS media culture with different concentrations of ZnO nanoparticles (NPs) (0, 10, 20, 40, 80, and 160 ppm) on growth, nutrient uptake, and some physiological parameters of 7-days-old mung bean seedlings. ZnO NPs enhanced the Zn concentration of mung bean from 106.41 in control to more than 4600 µg/g dry weight in 80 and 160 ppm ZnO NPs treated seedlings. Our results showed that ZnO NPs in the concentration range from 10 to 20 ppm had a positive influence on growth parameters and photosynthetic pigments. Higher levels of ZnO NPs negatively affected seedling's growth by triggering oxidative stress which in turn caused enhancing antioxidative response in seedlings including polyphenol oxidase and peroxidase activity as well as phenolic compounds and anthocyanine contents. Considering the positive effects of ZnO NPs treatment on mungbean seedlings growth, micronutrents, protein and shoot phenolics content, 20 ppm is recommended as the optimal concentration for biofortification. Our findings confirm the capability of ZnO NPs in the remarkable increase of Zn content of mungbean seedlings which can be an efficient way for plant biofortification and dealing with environmental stress. Supplementary information The online version contains supplementary material available at 10.1007/s11756-022-01269-3.
Collapse
Affiliation(s)
- Mona Sorahinobar
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Tooba Deldari
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Zahra Nazem Bokaeei
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Ali Mehdinia
- Iranian National Institutes for Oceanography and Atmospheric Science, Tehran, Iran
| |
Collapse
|
15
|
Zhang B, Tan W, Zhou J, Ye L, Jia D, Li X. Physiological changes and gene responses during Ganoderma lucidum growth with selenium supplementation. PeerJ 2022; 10:e14488. [PMID: 36570003 PMCID: PMC9784338 DOI: 10.7717/peerj.14488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
Ganoderma lucidum basidiomycota is highly appreciated for its health and nutrition value. In the present study, Ganoderma lucidum was cultivated as selenium transformation carrier, and the physiological changes and gene responses by selenium supplementation were revealed through high-throughput RNA-Seq technology. As a result, selenium supplementation increased the stipe length and the cap size, but decreased the cap thickness of G. lucidum. Mineral salt supplementation could greatly promote the formation of triterpene acids and selenium in G. lucidum. The highest yield was gained in the treatment with selenium content of 200 µg/g. Subsequently, the tissues of G. lucidum at budding and mature stages in this treatment group were sampled for transcriptome analysis and compared to those of a control group without selenium supplementation. A total of 16,113 expressed genes were obtained from the transcriptome of G. lucidum, and GO-annotated unigenes were mainly involved in molecular functions and KEGG-annotated ones were highly expressed in ribosomal pathway. Furthermore, genes involved in carbon metabolism pathway were most promoted by selenium at budding stage of G. lucidum, while gene expression was the highest in the pathway of amino acid biosynthesis at mature stage of G. lucidum. Specially, selenium-related genes in G. lucidum, such as GL23172-G, GL29881-G and GL28298-G, played a regulatory role in oxidoreductase, antioxidant activity and tryptophan synthesis. The results provide a theoretical basis for further study of selenium-enriched mushrooms and aid to development of Se-enriched foodstuff and health products made from fungi.
Collapse
|
16
|
Mushtaq NU, Alghamdi KM, Saleem S, Shajar F, Tahir I, Bahieldin A, Rehman RU, Hakeem KR. Selenate and selenite transporters in proso millet: Genome extensive detection and expression studies under salt stress and selenium. FRONTIERS IN PLANT SCIENCE 2022; 13:1060154. [PMID: 36531352 PMCID: PMC9748351 DOI: 10.3389/fpls.2022.1060154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Crops are susceptible to a variety of stresses and amongst them salinity of soil is a global agronomic challenge that has a detrimental influence on crop yields, thus posing a severe danger to our food security. Therefore, it becomes imperative to examine how plants respond to salt stress, develop a tolerance that allows them to live through higher salt concentrations and choose species that can endure salt stress. From the perspective of food, security millets can be substituted to avoid hardships because of their efficiency in dealing with salt stress. Besides, this problem can also be tackled by using beneficial exogenous elements. Selenium (Se) which exists as selenate or selenite is one such cardinal element that has been reported to alleviate salt stress. The present study aimed for identification of selenate and selenite transporters in proso millet (Panicum miliaceum L.), their expression under NaCl (salt stress) and Na2SeO3 (sodium selenite)treatments. This study identified eight transporters (RLM65282.1, RLN42222.1, RLN18407.1, RLM74477.1, RLN41904.1, RLN17428.1, RLN17268.1, RLM65753.1) that have a potential role in Se uptake in proso millet. We analyzed physicochemical properties, conserved structures, sub-cellular locations, chromosome location, molecular phylogenetic analysis, promoter regions prediction, protein-protein interactions, three-dimensional structure modeling and evaluation of these transporters. The analysis revealed the chromosome location and the number of amino acids present in these transporters as RLM65282.1 (16/646); RLN42222.1 (1/543); RLN18407.1 (2/483); RLM74477.1 (15/474); RLN41904.1 (1/521); RLN17428.1 (2/522); RLN17268.1(2/537);RLM65753.1 (16/539). The sub-cellular locations revealed that all the selenite transporters are located in plasma membrane whereas among selenate transporters RLM65282.1 and RLM74477.1 are located in mitochondria and RLN42222.1 and RLN18407.1 in chloroplast. The transcriptomic studies revealed that NaCl stress decreased the expression of both selenate and selenite transporters in proso millet and the applications of exogenous 1µM Se (Na2SeO3) increased the expression of these Se transporter genes. It was also revealed that selenate shows similar behavior as sulfate, while selenite transport resembles phosphate. Thus, it can be concluded that phosphate and sulphate transporters in millets are responsible for Se uptake.
Collapse
Affiliation(s)
- Naveed Ul Mushtaq
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Khalid M. Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Seerat Saleem
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Faamiya Shajar
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Inayatullah Tahir
- Department of Botany, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Ahmad Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reiaz Ul Rehman
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Public Health, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
17
|
Pinto Irish K, Harvey MA, Harris HH, Aarts MGM, Chan CX, Erskine PD, van der Ent A. Micro-analytical and molecular approaches for understanding the distribution, biochemistry, and molecular biology of selenium in (hyperaccumulator) plants. PLANTA 2022; 257:2. [PMID: 36416988 PMCID: PMC9684236 DOI: 10.1007/s00425-022-04017-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Micro-analytical techniques to untangle Se distribution and chemical speciation in plants coupled with molecular biology analysis enable the deciphering of metabolic pathways responsible for Se tolerance and accumulation. Selenium (Se) is not essential for plants and is toxic at high concentrations. However, Se hyperaccumulator plants have evolved strategies to both tolerate and accumulate > 1000 µg Se g-1 DW in their living above-ground tissues. Given the complexity of the biochemistry of Se, various approaches have been adopted to study Se metabolism in plants. These include X-ray-based techniques for assessing distribution and chemical speciation of Se, and molecular biology techniques to identify genes implicated in Se uptake, transport, and assimilation. This review presents these techniques, synthesises the current state of knowledge on Se metabolism in plants, and highlights future directions for research into Se (hyper)accumulation and tolerance. We conclude that powerful insights may be gained from coupling information on the distribution and chemical speciation of Se to genome-scale studies to identify gene functions and molecular mechanisms that underpin Se tolerance and accumulation in these ecologically and biotechnologically important plants species. The study of Se metabolism is challenging and is a useful testbed for developing novel analytical approaches that are potentially more widely applicable to the study of the regulation of a wide range of metal(loid)s in hyperaccumulator plants.
Collapse
Affiliation(s)
- Katherine Pinto Irish
- The University of Queensland, Sustainable Minerals Institute, Centre for Mined Land Rehabilitation, Brisbane, QLD, 4072, Australia
| | - Maggie-Anne Harvey
- The University of Queensland, Sustainable Minerals Institute, Centre for Mined Land Rehabilitation, Brisbane, QLD, 4072, Australia
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, Adelaide, SA, Australia
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
| | - Cheong Xin Chan
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, QLD, 4072, Australia
| | - Peter D Erskine
- The University of Queensland, Sustainable Minerals Institute, Centre for Mined Land Rehabilitation, Brisbane, QLD, 4072, Australia
| | - Antony van der Ent
- The University of Queensland, Sustainable Minerals Institute, Centre for Mined Land Rehabilitation, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
18
|
Zhang Z, Li B, Liu Y, He L, Pang T, Chen Z, Shohag MJI, Miao X, Li X, Gu M, Wei Y. Arbuscular Mycorrhizal Fungal Inoculation Increases Organic Selenium Accumulation in Soybean ( Glycine max (Linn.) Merr.) Growing in Selenite-Spiked Soils. TOXICS 2022; 10:565. [PMID: 36287845 PMCID: PMC9610514 DOI: 10.3390/toxics10100565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Selenium (Se) is an essential trace element for humans. Arbuscular mycorrhizal fungi (AMF) play a crucial role in increasing plant micronutrient acquisition. Soybean (Glycine max (Linn.) Merr.) is a staple food for most people around the world and a source of Se. Therefore, it is necessary to study the mechanism of Se intake in soybean under the influence of AMF. In this study, the effects of fertilization with selenite and inoculation with different AMF strains (Claroideoglomus etunicatum (Ce), Funneliformis mosseae (Fm)) on the accumulation and speciation of Se in common soybean plants were discussed. We carried out a pot experiment at the soil for 90 days to investigate the impact of fertilization with selenite and inoculation with Ce and Fm on the Se fractions in soil, soybean biomass, accumulation and speciation of Se in common soybean plants. The daily dietary intake of the Se (DDI) formula was used to estimate the risk threshold of human intake of Se from soybean seeds. The results showed that combined use of both AMF and Se fertilizer could boost total Se and organic Se amounts in soyabean seeds than that of single Se application and that it could increase the proportion of available Se in soil. Soybean inoculated with Fm and grown in soil fertilized with selenite had the highest organic Se. The results suggest that AMF inoculation could promote root growth, more soil water-soluble Se and higher Se uptake. The maximum Se intake of soybean for adults was 93.15 μg/d when treated with Se fertilizer and Fm, which satisfies the needs of Se intake recommended by the WHO. Combined use of AMF inoculation and Se fertilizer increases the bioavailable Se in soil and promotes the total Se concentration and organic Se accumulation in soybean. In conclusion, AMF inoculation combined with Se fertilization can be a promising strategy for Se biofortification in soybean.
Collapse
Affiliation(s)
- Zengyu Zhang
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Bei Li
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yongxian Liu
- Guangxi Academy of Agricultural Sciences, Nanning 530004, China
| | - Lixin He
- Soil and Fertilizer Workstation of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Ting Pang
- Agricultural Service Center of Guangxi Liubei District, Liuzhou 545000, China
| | - Zongdao Chen
- Agricultural Service Center of Guangxi Liubei District, Liuzhou 545000, China
| | - Md. Jahidul Islam Shohag
- Department of Agriculture, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Xiuyan Miao
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xi Li
- College of Agriculture and Food Engineering, Baise Uninversity, Baise 533000, China
| | - Minghua Gu
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yanyan Wei
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
19
|
Xu Y, Zhang L, Wang J, Liang D, Xia H, Lv X, Deng Q, Wang X, Luo X, Liao M, Lin L. Gibberellic acid promotes selenium accumulation in Cyphomandra betacea under selenium stress. FRONTIERS IN PLANT SCIENCE 2022; 13:968768. [PMID: 36119579 PMCID: PMC9478473 DOI: 10.3389/fpls.2022.968768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The selenium (Se) deficiency is threatening the human health, and the increase of Se content in food can prevent the Se deficiency of human body. To increase the Se content in fruit trees and alleviate the Se stress to fruit trees, the effects of gibberellic acid (GA) on the growth and Se accumulation in Cyphomandra betacea under Se stress were studied. Although GA increased the biomass of C. betacea, it did not significantly affect the root/shoot ratio. The root and shoot biomass had a quadratic polynomial regression relationship with the GA concentration. Furthermore, GA increased the photosynthetic pigment content, photosynthetic parameters, and antioxidant enzyme activity of C. betacea. GA also increased the Se content in C. betacea, peaking at 300 mg/L GA. For instance, GA (300 mg/L) increased the Se contents in roots and shoots of C. betacea by 70.31 and 22.02%, respectively, compared with the control. Moreover, the root Se and shoot Se contents had a quadratic polynomial regression relationship with the GA concentration. Correlation and gray relational analyses showed that the carotenoid, chlorophyll a, and chlorophyll b contents were closely related to the Se uptake in C. betacea under the GA application. These results show that GA (300 mg/L) can promote the growth and Se uptake of C. betacea under Se stress.
Collapse
Affiliation(s)
- Yaxin Xu
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Lu Zhang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Jin Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Dong Liang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Hui Xia
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Xiulan Lv
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Qunxian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xun Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Xian Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ming’an Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lijin Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
20
|
Schiavon M, Nardi S, Pilon-Smits EAH, Dall’Acqua S. Foliar selenium fertilization alters the content of dietary phytochemicals in two rocket species. FRONTIERS IN PLANT SCIENCE 2022; 13:987935. [PMID: 36119625 PMCID: PMC9470978 DOI: 10.3389/fpls.2022.987935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Biofortification is the process that aims to enrich crops in micronutrients and valuable compounds. Selenium (Se) biofortification has particularly attracted increasing interest in recent times due to the growing number of individuals suffering from Se deficiency. Selenate and selenite are the Se forms most frequently administered to crops. In this study, Se was applied foliarly as selenate at 2.5, 5, or 10 mg per plant to two rocket species, Diplotaxis tenuifolia and Eruca sativa, grown in soil and the effects in terms of Se enrichment and content of primary and secondary metabolites were comparatively analyzed. We also compared our results with those obtained previously when selenate was supplied to the same species in hydroponics by addition to the nutrient solution. In most cases, the results were the opposite. In E. sativa, foliar Se treatment was more effective in promoting Se accumulation, sulfur (S), cysteine, and glucosinolates. No significant effect of Se was evident on total phenolic content, but there were individual phenols. Among amino acids, the content of proline was increased by Se, perhaps to counteract osmotic stress due to high Se accumulation. In D. tenuifolia, the content of S and cysteine decreased under Se treatment, but the amount of glutathione was steady, suggesting a preferred assimilation of cysteine toward the synthesis of this antioxidant. Consistent, the content of methionine and glucosinolates was reduced. The content of total phenolics was enhanced only by the low Se dosage. In both species, selenocysteine (SeCys) was identified, the content of which was higher compared to plants grown hydroponically. Concluding, most metabolic differences between rocket species were observed at high Se supplementation. Low Se foliar fertilization was effective in an enriching rocket in Se without affecting other phytochemicals. However, the Se dosages sufficient for biofortification could be even lower, as the Se concentration in rocket treated with 2.5 mg Se per plant was still very high and the edible part should not be eaten undiluted. Also, a single method of Se supplementation does not appear to be optimal for all plant species or the same species, as the metabolic responses could be very different.
Collapse
Affiliation(s)
- Michela Schiavon
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, TO, Italy
| | - Serenella Nardi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, PD, Italy
| | | | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
21
|
An analysis of the content changes in free and combinative forms of organic selenium in radish sprouts cultivated with solutions of selenoamino acids. Food Res Int 2022; 158:111558. [DOI: 10.1016/j.foodres.2022.111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022]
|
22
|
Zang H, Ma J, Wu Z, Yuan L, Lin ZQ, Zhu R, Bañuelos GS, Reiter RJ, Li M, Yin X. Synergistic Effect of Melatonin and Selenium Improves Resistance to Postharvest Gray Mold Disease of Tomato Fruit. FRONTIERS IN PLANT SCIENCE 2022; 13:903936. [PMID: 35812947 PMCID: PMC9257244 DOI: 10.3389/fpls.2022.903936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/06/2022] [Indexed: 05/23/2023]
Abstract
Melatonin (MT) is a ubiquitous hormone molecule that is commonly distributed in nature. MT not only plays an important role in animals and humans but also has extensive functions in plants. Selenium (Se) is an essential micronutrient for animals and humans, and is a beneficial element in higher plants at low concentrations. Postharvest diseases caused by fungal pathogens lead to huge economic losses worldwide. In this study, tomato fruits were treated with an optimal sodium selenite (20 mg/L) and melatonin (10 μmol/L) 2 h and were stored for 7 days at room temperature simulating shelf life, and the synergistic effects of Se and MT collectively called Se-Mel on gray mold decay in tomato fruits by Botrytis cinerea was investigated. MT did not have antifungal activity against B. cinerea in vitro, while Se significantly inhibited gray mold development caused by B. cinerea in tomatoes. However, the interaction of MT and Se showed significant inhibition of the spread and growth of the disease, showing the highest control effect of 74.05%. The combination of MT with Se treatment enhanced the disease resistance of fruits by improving the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as increasing the gene expression level of pathogenesis-related (PR) proteins. Altogether, our results indicate that the combination of MT and Se would induce the activation of antioxidant enzymes and increase the expression of PR proteins genes that might directly enhance the resistance in tomato fruit against postharvest pathogenic fungus B. cinerea.
Collapse
Affiliation(s)
- Huawei Zang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agriculture University, Hefei, China
- Key Laboratory of Functional Agriculture, Bio-Engineering Research Centre of Selenium, Suzhou Research Institute, University of Science and Technology of China, Suzhou, China
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Jiaojiao Ma
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agriculture University, Hefei, China
| | - Zhilin Wu
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agriculture University, Hefei, China
| | - Linxi Yuan
- Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Zhi-Qing Lin
- Department of Environmental Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, United States
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| | - Renbin Zhu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Gary S. Bañuelos
- San Joaquin Valley Agricultural Sciences Center, United States Department of Agriculture – Agricultural Research Service, Parlier, CA, United States
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Miao Li
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agriculture University, Hefei, China
- The Central Area of Anhui Province Station for Integrative Agriculture, Research Institute of New Rural Development, Anhui Agricultural University, Hefei, China
| | - Xuebin Yin
- Key Laboratory of Functional Agriculture, Bio-Engineering Research Centre of Selenium, Suzhou Research Institute, University of Science and Technology of China, Suzhou, China
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
23
|
Selenium Uptake by Lettuce Plants and Se Distribution in Soil Chemical Phases Affected by the Application Rate and the Presence of a Seaweed Extract-Based Biostimulant. SOIL SYSTEMS 2022. [DOI: 10.3390/soilsystems6020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
To tackle selenium (Se) malnutrition, biofortification is among the proposed strategies. A biostimulant application in soils is thought to support a plant’s growth and productivity. Biofortification with Se(VI) may lead to a leaching hazard due to the high mobility of Se(VI) in the soil environment. In this study, the effect of the application of two Se(VI) rates—5 and 10 mg kg−1 soil—and a biostimulant on the Se uptake by lettuce plants and on the Se(VI) distribution in soil fractions following the plants harvest, was investigated. Phosphorus (P) and sulfur (S) concentrations in plants were also determined. A high Se(VI) rate suppressed plant growth, leading to a significant fresh weight decrease from 12.28 to 7.55 g and from 14.6 to 2.43 g for the control and high Se(VI) without and with biostimulants, respectively. Impaired plant growth was verified by the SPAD, NDVI and NDRE measurements. The significantly highest Se concentration in plants, 325 mg kg−1, was recorded for the high Se(VI) rate in the presence of the biostimulant. Compared to controls, the low Se(VI) rate significantly decreased P and increased the S concentrations in plants. The post-harvest soil fractionation revealed that, in the presence of the biostimulant, the Se(VI) soluble fraction increased from 0.992 to 1.3 mg kg−1 at a low Se(VI) rate, and decreased from 3.T85 to 3.13 mg kg−1 at a high Se(VI) rate. Nevertheless, at a low Se(VI) rate, 3.6 and 3.1 mg kg−1 of the added Se(VI) remained in the soil in less mobile forms, in the presence or absence of the biostimulant, respectively. This study indicated that the exogenous application of Se in soil exerted dual effects on lettuce growth and Se availability, depending on the level of selenate applied.
Collapse
|
24
|
Abejón R. A Bibliometric Analysis of Research on Selenium in Drinking Water during the 1990-2021 Period: Treatment Options for Selenium Removal. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5834. [PMID: 35627373 PMCID: PMC9140891 DOI: 10.3390/ijerph19105834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023]
Abstract
A bibliometric analysis based on the Scopus database was carried out to summarize the global research related to selenium in drinking water from 1990 to 2021 and identify the quantitative characteristics of the research in this period. The results from the analysis revealed that the number of accumulated publications followed a quadratic growth, which confirmed the relevance this research topic is gaining during the last years. High research efforts have been invested to define safe selenium content in drinking water, since the insufficient or excessive intake of selenium and the corresponding effects on human health are only separated by a narrow margin. Some important research features of the four main technologies most frequently used to remove selenium from drinking water (coagulation, flocculation and precipitation followed by filtration; adsorption and ion exchange; membrane-based processes and biological treatments) were compiled in this work. Although the search of technological options to remove selenium from drinking water is less intensive than the search of solutions to reduce and eliminate the presence of other pollutants, adsorption was the alternative that has received the most attention according to the research trends during the studied period, followed by membrane technologies, while biological methods require further research efforts to promote their implementation.
Collapse
Affiliation(s)
- Ricardo Abejón
- Departamento de Ingeniería Química, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| |
Collapse
|
25
|
Song J, Liu X, Wang Z, Zhang Z, Chen Q, Lin ZQ, Yuan L, Yin X. Selenium Effect Threshold for Soil Nematodes Under Rice Biofortification. FRONTIERS IN PLANT SCIENCE 2022; 13:889459. [PMID: 35646016 PMCID: PMC9131072 DOI: 10.3389/fpls.2022.889459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Crop biofortification with inorganic selenium (Se) fertilizer is a feasible strategy to improve the health of residents in Se-deficient areas. For eco-friendly crop Se biofortification, a comprehensive understanding of the effects of Se on crop and soil nematodes is vital. In this study, a rice pot experiment was carried out to test how selenite supply (untreated control (0), 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, or 200 mg Se kg-1) in soil affected rice growth, rice Se accumulation, and soil nematode abundance and composition. The results showed that selenite supply (5-200 mg kg-1) generally increased the number of rice tillers, rice yield, and Se concentrations in rice grains. In soil under 10 mg kg-1 Se treatment, the genus composition of nematodes changed significantly compared with that in the control soil. With increased Se level (> 10 mg kg-1), soil nematode abundance decreased significantly. Correlation analysis also demonstrated the positive relationships between soil Se concentrations (total Se and bioavailable Se) with rice plant parameters (number of rice tillers, rice yield, and grain Se concentration) and negative relationships between soil Se concentrations (total Se and bioavailable Se) with soil nematode indexes (nematode abundance and relative abundance of Tobrilus). This study provides insight into balancing Se biofortification of rice and soil nematode community protection and suggests the effective concentrations for total Se (1.45 mg kg-1) and bioavailable Se (0.21 mg kg-1) to soil nematode abundances at 20% level (EC20) as soil Se thresholds. At Se concentrations below these thresholds, rice plant growth and Se accumulation in the grain will still be promoted, but the disturbance of the soil nematodes would be negligible.
Collapse
Affiliation(s)
- Jiaping Song
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Xiaodong Liu
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Zhangmin Wang
- Jiangsu Bio-Engineering Research Center for Selenium/Advanced Lab for Functional Agriculture, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, China
- Nanjing Institute for FAST/National Innovation Center for Functional Rice, Nanjing, China
| | - Zezhou Zhang
- Jiangsu Bio-Engineering Research Center for Selenium/Advanced Lab for Functional Agriculture, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, China
- Nanjing Institute for FAST/National Innovation Center for Functional Rice, Nanjing, China
| | - Qingqing Chen
- Jiangsu Bio-Engineering Research Center for Selenium/Advanced Lab for Functional Agriculture, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, China
- Nanjing Institute for FAST/National Innovation Center for Functional Rice, Nanjing, China
| | - Zhi-Qing Lin
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| | - Linxi Yuan
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Xuebin Yin
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
- Jiangsu Bio-Engineering Research Center for Selenium/Advanced Lab for Functional Agriculture, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, China
- Nanjing Institute for FAST/National Innovation Center for Functional Rice, Nanjing, China
| |
Collapse
|
26
|
Hassan MA, Hozien ST, Abdel Wahab MM, Hassan AM. Ameliorative effect of selenium yeast supplementation on the physio-pathological impacts of chronic exposure to glyphosate and or malathion in Oreochromis niloticus. BMC Vet Res 2022; 18:159. [PMID: 35501865 PMCID: PMC9063350 DOI: 10.1186/s12917-022-03261-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/18/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Pesticide exposure is thought to be a major contributor to living organism health deterioration, as evidenced by its impact on both cultured fish species and human health. Commercial fish diets are typically deficient in selenium (Se); hence, supplementation may be necessary to meet requirements during stress. Therefore, this study was conducted to investigate the protective role of selenium yeast (SY) supplementation for 60 days against the deleterious effects of glyphosate and or malathion chronic toxicity at sublethal concentrations in Oreochromis niloticus . METHODS Two hundred and ten fish were divided into seven groups (n = 30/group) as follows: G1 (negative control); G2 (2 mg L- 1 glyphosate); G3 (0.5 mg L- 1 malathion); G4 (glyphosate 1.6 mg L- 1 and malathion 0.3 mg L- 1); G5 (glyphosate 2 mg L- 1 and SY 3.3 mg kg- 1); G6 (malathion 0.5 mg L- 1 and SY 3.3 mg kg- 1); and G7 (glyphosate 1.6 mg L- 1; malathion 0.3 mg L- 1 and SY 3.3 mg kg- 1). RESULTS Results revealed significant alteration in growth performance parameters including feed intake (FI), body weight (BW), body weight gain (BWG), specific growth rate (SGR), feed conversion ratio (FCR), and protein efficiency ratio (PER). G4 has the highest documented cumulative mortalities (40%), followed by G3 (30%). Additionally, the greatest impact was documented in G4, followed by G3 and then G2 as severe anemia with significant thrombocytopenia; leukocytosis; hypoproteinemia; increased Alanine aminotransferase (ALT) and Aspartate aminotransferase (AST), urea, and creatinine, as well as malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GPx). Considering the previously mentioned parameters, selenium yeast (Saccharomyces cerevisiae) (3.3 mg kg- 1 available selenium) mitigated the negative impact of both the agrochemicals, whether exposed singly or in combination, in addition to their antioxidative action. CONCLUSIONS In conclusion, our study found that organophosphorus agrochemicals, single or combined, had negative impacts on Oreochromis niloticus regarding growth performance, biochemical and hematological changes in the serum, as well as induced oxidative damage in liver and kidney tissues. Supplementation of SY at the rate of 3.3 mg kg- 1 diet (2.36 mg kg- 1 selenomethionine and 0.94 mg organic selenium) ameliorated the fish performance and health status adversely affected by organophosphorus agrochemical intoxication.
Collapse
Affiliation(s)
- Marwa A Hassan
- Faculty of Veterinary Medicine, Department of Animal Hygiene, Zoonoses and Behaviour, Suez Canal University, Ismailia, 41522, Egypt.
| | - Samaa T Hozien
- Animal Health Research Institute, Ismailia, 41522, Egypt
| | | | - Ahmed M Hassan
- Faculty of Veterinary Medicine, Department of Animal Hygiene, Zoonoses and Behaviour, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
27
|
Matzen SL, Lobo GP, Fakra SC, Kakouridis A, Nico PS, Pallud CE. Arsenic hyperaccumulator Pteris vittata shows reduced biomass in soils with high arsenic and low nutrient availability, leading to increased arsenic leaching from soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151803. [PMID: 34808151 DOI: 10.1016/j.scitotenv.2021.151803] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Plant-soil interactions affect arsenic and nutrient availability in arsenic-contaminated soils, with implications for arsenic uptake and tolerance in plants, and leaching from soil. In 22-week column experiments, we grew the arsenic hyperaccumulating fern Pteris vittata in a coarse- and a medium-textured soil to determine the effects of phosphorus fertilization and mycorrhizal fungi inoculation on P. vittata arsenic uptake and arsenic leaching. We investigated soil arsenic speciation using synchrotron-based spectromicroscopy. Greater soil arsenic availability and lower nutrient content in the coarse-textured soil were associated with greater fern arsenic uptake, lower biomass (apparently a metabolic cost of tolerance), and arsenic leaching from soil, due to lower transpiration. P. vittata hyperaccumulated arsenic from coarse- but not medium-textured soil. Mass of plant-accumulated arsenic was 1.2 to 2.4 times greater, but aboveground biomass was 74% smaller, in ferns growing in coarse-textured soil. In the presence of ferns, mean arsenic loss by leaching was 195% greater from coarse- compared to the medium-textured soil, and lower across both soils compared to the absence of ferns. In the medium-textured soil arsenic concentrations in leachate were higher in the presence of ferns. Fern arsenic uptake was always greater than loss by leaching. Most arsenic (>66%) accumulated in P. vittata appeared of rhizosphere origin. In the medium-textured soil with more clay and higher nutrient content, successful iron scavenging increased arsenic release from soil for leaching, but transpiration curtailed leaching.
Collapse
Affiliation(s)
- S L Matzen
- Department of Environmental Science, Policy, and Management, University of California-Berkeley, 130 Mulford Hall, Berkeley, CA 94720, USA
| | - G P Lobo
- Civil and Environmental Engineering, University of California-Berkeley, 410 O'Brien Hall, Berkeley, CA 94720, USA
| | - S C Fakra
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - A Kakouridis
- Department of Environmental Science, Policy, and Management, University of California-Berkeley, 130 Mulford Hall, Berkeley, CA 94720, USA
| | - P S Nico
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - C E Pallud
- Department of Environmental Science, Policy, and Management, University of California-Berkeley, 130 Mulford Hall, Berkeley, CA 94720, USA.
| |
Collapse
|
28
|
Das S, Biswas AK. Comparative study of silicon and selenium to modulate chloroplast pigments levels, Hill activity, photosynthetic parameters and carbohydrate metabolism under arsenic stress in rice seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19508-19529. [PMID: 34719761 DOI: 10.1007/s11356-021-16836-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) in groundwater severely harms global economic development by affecting growth and productivity of agricultural crops that causes human health risk. The comparative influence of silicon (Si) and selenium (Se) to modulate pigments levels, photosynthetic parameters using LI-6400XT Portable Photosynthesis System and carbohydrate metabolism under arsenate (As-V) stress in rice cv. MTU-1010 were evaluated. As(V) stress significantly decreased chlorophyll-a (32% on an average), chlorophyll-b (58% on an average), total chlorophyll (46% on an average), fluorescence intensity (31% on an average), carotene (39% on an average), xanthophyll (33% on an average), Hill activity (47% on an average) and the photosynthetic parameters, viz. intercellular CO2 concentration (52% on an average), net photosynthesis (54% on an average), transpiration rate (36% on an average) and stomatal conductance (38% on an average) in the test seedlings. As(V) + Si treatments enhanced the stated occurrences more than As(V) + Se treatments in rice seedlings. Sugar contents, viz. reducing (85% on an average) and non-reducing sugar (61% on an average), were increased, but starch content (57% on an average) was decreased in only As(V)-treated rice seedlings. The activities of carbohydrate metabolizing enzymes were increased, while sucrose synthase activity was decreased due to As(V) toxicity in the test seedlings. Co-application of Si and As(V) as well as Se and As(V) showed ameliorative effects on sugar and starch contents along with the activities of carbohydrate metabolizing enzymes, but more potential effect was observed under combined application of Si and As(V) in rice seedlings. Thus, it is an important purpose of this paper to compare the ability of Se and Si to alleviate As(V) toxicity in rice seedlings which will be an effective approach to develop possible strategies in As-contaminated agricultural soil to improve normal growth and productivity of rice plants.
Collapse
Affiliation(s)
- Susmita Das
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Studies, Department of Botany, University of Calcutta, Kolkata, 700019, West Bengal, India
| | - Asok K Biswas
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Studies, Department of Botany, University of Calcutta, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
29
|
Hu J, Wang Z, Zhang L, Peng J, Huang T, Yang X, Jeong BR, Yang Q. Seleno-Amino Acids in Vegetables: A Review of Their Forms and Metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:804368. [PMID: 35185982 PMCID: PMC8847180 DOI: 10.3389/fpls.2022.804368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Seleno-amino acids are safe, health-promoting compounds for humans. Numerous studies have focused on the forms and metabolism of seleno-amino acids in vegetables. Based on research progress on seleno-amino acids, we provide insights into the production of selenium-enriched vegetables with high seleno-amino acids contents. To ensure safe and effective intake of selenium, several issues need to be addressed, including (1) how to improve the accumulation of seleno-amino acids and (2) how to control the total selenium and seleno-amino acids contents in vegetables. The combined use of plant factories with artificial lighting and multiple analytical technologies may help to resolve these issues. Moreover, we propose a Precise Control of Selenium Content production system, which has the potential to produce vegetables with specified amounts of selenium and high proportions of seleno-amino acids.
Collapse
Affiliation(s)
- Jiangtao Hu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Zheng Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Li Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Jie Peng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Tao Huang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Xiao Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Byoung Ryong Jeong
- Division of Applied Life Science (BK21 Four), Department of Horticulture, Graduate School of Gyeongsang National University, Jinju, South Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Qichang Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| |
Collapse
|
30
|
Yuan L, Ma ZF, Zhang M, Qin L, Yin X, Han F. Hair Se Is a Sensitive Biomarker to Monitor the Effects of Se Supplementation in Elderly. Biol Trace Elem Res 2022; 200:488-496. [PMID: 33738684 DOI: 10.1007/s12011-021-02674-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/14/2021] [Indexed: 11/24/2022]
Abstract
It is rapidly increasing to have selenium (Se) supplementation for urban elderly population in China since they are facing a widespread deficiency daily Se intake. However, until now, there is no low-cost, non-invasive, rapid, and reliable method to monitor the health improvement or risk for elderly Se-supplemented population in China. The present cross-sectional study (229 participants with older than 55 years old) performed in Beijing, China, revealed that the Se concentrations of non-supplementer users (n = 27) were 55 ± 23 μg/L in urine, 139.9 ± 102.3 μg/L in serum, and 487.6 ± 158.7 μg/kg in hair. But a significant increase on hair Se concentrations (615.4 ± 238.8 μg/kg) was observed for Se supplementer users (n = 202) (p < 0.05); there were no significant statistical differences in serum and urine between the Se-supplemented (n = 202) and Se non-supplemented groups (n = 27). This indicated the hair Se levels could be a more sensitive biomarker for Se-supplemented elderly population. Participants who consumed Se supplements for 7-12 months had the highest Se status based on hair and serum Se concentrations (p < 0.05). The present study also revealed that most elderly adults in Beijing just need to supplement 50 μg Se per day to achieve Se plateau status. Furthermore, hair Se levels were positively related with triglycerides/TG levels (p < 0.05) but not body mass index/BMI, total cholesterol/TC, and low-density lipoprotein cholesterol/LDL, implicating Se supplementation for Se sufficiency baseline in elderly population in Beijing likely posed health risk, especially on TG because of excessive Se oxidation stress. An ongoing monitoring of Se status via hair is still warranted to prevent future Se deficiency or excess in China.
Collapse
Affiliation(s)
- Linxi Yuan
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Jiangsu, 215123, Suzhou, China.
| | - Zheng Feei Ma
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Jiangsu, 215123, Suzhou, China
| | - Minming Zhang
- Key Laboratory of Functional Agriculture, Suzhou Research Institute, University of Science and Technology of China, Suzhou, 215123, Jiangsu, China
| | - Liqiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, 215123, China
| | - Xuebin Yin
- Key Laboratory of Functional Agriculture, Suzhou Research Institute, University of Science and Technology of China, Suzhou, 215123, Jiangsu, China
| | - Feng Han
- Research Centre, Soochow Setek Biotechnology Co., Ltd., Suzhou, 215123, Jiangsu, China
| |
Collapse
|
31
|
Wang Z, Huang W, Pang F. Selenium in Soil-Plant-Microbe: A Review. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:167-181. [PMID: 34617141 DOI: 10.1007/s00128-021-03386-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Selenium (Se) plays an important role in geochemistry and is an essential trace element for humans and animals. This review summarizes the transformation and accumulation of Se in the plant-soil-microbe system. As one of the important reservoirs of Se, soil is an important material basis of its entry into the food chain through plants. Soil with an appropriate amount of Se is beneficial for plant growth and plays a valuable role in a stress-resistant environment. Among the many migration and transformation pathways, the transformation of Se by microorganisms is particularly important and is the main form of Se transformation in the soil environment. In this review, the role and form transformation of Se in plants, soil, and microorganisms; the role of Se in plants; the form, input, and output of Se in soil; the absorption and transformation of Se by plants; and the role of microorganisms in Se transformation are presented. In addition to describing the migration and transformation laws of Se in the environment, this review expounds on the main directions and trends of Se research in the agricultural field as well as current gaps and difficulties in Se-related research. Overall, this reviews aims to provide necessary information and theoretical references for the development of Se-rich agriculture.
Collapse
Affiliation(s)
- Zhen Wang
- College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Wei Huang
- College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, China.
| | - Fei Pang
- College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, China.
| |
Collapse
|
32
|
Dobrowolska-Iwanek J, Zagrodzki P, Galanty A, Fołta M, Kryczyk-Kozioł J, Szlósarczyk M, Rubio PS, Saraiva de Carvalho I, Paśko P. Determination of Essential Minerals and Trace Elements in Edible Sprouts from Different Botanical Families—Application of Chemometric Analysis. Foods 2022; 11:foods11030371. [PMID: 35159521 PMCID: PMC8834360 DOI: 10.3390/foods11030371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 01/21/2023] Open
Abstract
Background: elemental deficiency may result in the malfunctioning of human organisms. Sprouts, with their attractive looks and well-established popularity, may be considered as alternative sources of elements in the diet. Moreover, the uptake of micro- and macronutrients from sprouts is better when compared to other vegetable sources. The aim of the study was to determine and compare the level of the selected essential minerals and trace elements in 25 sprouts from different botanical families, to preselect the richest species of high importance for human diets. Methods: the Cu, Zn, Mn, Fe, Mg, Ca determinations were performed using atomic absorption spectrometry with flame atomization and iodine by the colorimetric method. Results: beetroot sprouts had the highest levels of Zn, Fe, and Mg, while onion sprouts were the richest in Mn and Ca, among all of the tested sprouts. Sprouts of the Brassicaceae family were generally richer in Ca, Mg, and Zn than sprouts from the Fabaceae family. Results allow preselection of the most perspective sprouts as possible dietary sources of essential minerals and trace elements. For rucola, leeks, onions, and beetroot sprouts, the data on minerals and trace element compositions were performed for the first time.
Collapse
Affiliation(s)
- Justyna Dobrowolska-Iwanek
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.D.-I.); (P.Z.); (M.F.); (J.K.-K.)
| | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.D.-I.); (P.Z.); (M.F.); (J.K.-K.)
| | - Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland;
| | - Maria Fołta
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.D.-I.); (P.Z.); (M.F.); (J.K.-K.)
| | - Jadwiga Kryczyk-Kozioł
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.D.-I.); (P.Z.); (M.F.); (J.K.-K.)
| | - Marek Szlósarczyk
- Department of Inorganic and Analytical Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland;
| | - Pol Salvans Rubio
- Faculty of Pharmacy and Food Science, University of Barcelona, Diagonal Campus, Joan XXIII 27-31, 08-028 Barcelona, Spain;
| | - Isabel Saraiva de Carvalho
- Mediterranean Institute for Agriculture, Environment and Development, University of Algarve, 8005-139 Faro, Portugal;
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.D.-I.); (P.Z.); (M.F.); (J.K.-K.)
- Correspondence: ; Tel.: +48-126-205-670
| |
Collapse
|
33
|
Yang H, Yang X, Ning Z, Kwon SY, Li ML, Tack FMG, Kwon EE, Rinklebe J, Yin R. The beneficial and hazardous effects of selenium on the health of the soil-plant-human system: An overview. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126876. [PMID: 34416699 DOI: 10.1016/j.jhazmat.2021.126876] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/25/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Selenium (Se), which can be both hazardous and beneficial to plants, animals and humans, plays a pivotal role in regulating soil-plant-human ecosystem functions. The biogeochemical behavior of Se and its environmental impact on the soil-plant-human system has received broad attention in the last decades. This review provides a comprehensive understanding of Se biogeochemistry in the soil-plant-human system. The speciation, transformation, bioavailability as well as the beneficial and hazardous effects of Se in the soil-plant-human system are summarized. Several important aspects in Se in the soil-plant-human system are detailed mentioned, including (1) strategies for biofortification in Se-deficient areas and phytoremediation of soil Se in seleniferous areas; (2) factors affecting Se uptake and transport by plants; (3) metabolic pathways of Se in the human body; (4) the interactions between Se and other trace elements in plant and animals, in particular, the detoxification of heavy metals by Se. Important research hotspots of Se biogeochemistry are outlined, including (1) the coupling of soil microbial activity and the Se biogeochemical cycle; (2) the molecular mechanism of Se metabolic in plants and animals; and (3) the application of Se isotopes as a biogeochemical tracer in research. This review provides up-to-date knowledge and guidelines on Se biogeochemistry research.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Guizhou Academy of Tobacco Science, 550081 Guiyang, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuefeng Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Sae Yun Kwon
- Division of Environmental Science & Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam Gu, Pohang 37673, South Korea
| | - Mi-Ling Li
- School of Marine Science and Policy, University of Delaware, Newark, DE 19716 USA
| | - Filip M G Tack
- Ghent University, Department of Green Chemistry and Technology, Ghent, Belgium
| | - Eilhann E Kwon
- Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Jörg Rinklebe
- Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
34
|
Jia X, Li J, Li S, Zhao Q, Zhang K, Tang C, Yang Y, Ma Q, Wang J, Zhao Z, Tang D, He B, Zhang J, Qin Y. Effects of dietary supplementation with different levels of selenium yeast on growth performance, carcass characteristics, antioxidant capacity, and meat quality of Tan sheep. Livest Sci 2022. [DOI: 10.1016/j.livsci.2021.104783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Bañuelos GS, Freeman JL, Arroyo IS. Selenium content and speciation differences in selenium enriched soups made from selenium biofortified plants. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Jiao S, Shi C, Liang X, Wang F, Zheng Y, Liu Z, Liu M, Hu H, Zhong S, Yin Y. Synthesis of Selenium‐Enriched Cassava Starch with Immediate Antioxidant Activity and Its Antioxidant Catalytic Mechanism. STARCH-STARKE 2021. [DOI: 10.1002/star.202100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shufei Jiao
- Qinzhou Key Laboratory of Biowaste Resources for Selenium‐enriched Functional Utilization College of Petroleum and Chemical Engineering Beibu Gulf University Qinzhou 535011 China
| | - Cheng Shi
- School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 China
| | - Xingtang Liang
- Qinzhou Key Laboratory of Biowaste Resources for Selenium‐enriched Functional Utilization College of Petroleum and Chemical Engineering Beibu Gulf University Qinzhou 535011 China
| | - Feng Wang
- Qinzhou Key Laboratory of Biowaste Resources for Selenium‐enriched Functional Utilization College of Petroleum and Chemical Engineering Beibu Gulf University Qinzhou 535011 China
| | - Yunying Zheng
- Qinzhou Key Laboratory of Biowaste Resources for Selenium‐enriched Functional Utilization College of Petroleum and Chemical Engineering Beibu Gulf University Qinzhou 535011 China
| | - Zijie Liu
- Qinzhou Key Laboratory of Biowaste Resources for Selenium‐enriched Functional Utilization College of Petroleum and Chemical Engineering Beibu Gulf University Qinzhou 535011 China
| | - Min Liu
- Qinzhou Key Laboratory of Biowaste Resources for Selenium‐enriched Functional Utilization College of Petroleum and Chemical Engineering Beibu Gulf University Qinzhou 535011 China
| | - Huayu Hu
- School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 China
| | - Shuming Zhong
- Qinzhou Key Laboratory of Biowaste Resources for Selenium‐enriched Functional Utilization College of Petroleum and Chemical Engineering Beibu Gulf University Qinzhou 535011 China
| | - Yanzhen Yin
- Qinzhou Key Laboratory of Biowaste Resources for Selenium‐enriched Functional Utilization College of Petroleum and Chemical Engineering Beibu Gulf University Qinzhou 535011 China
- School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 China
| |
Collapse
|
37
|
Liu Y, Huang S, Jiang Z, Wang Y, Zhang Z. Selenium Biofortification Modulates Plant Growth, Microelement and Heavy Metal Concentrations, Selenium Uptake, and Accumulation in Black-Grained Wheat. FRONTIERS IN PLANT SCIENCE 2021; 12:748523. [PMID: 34733304 PMCID: PMC8560013 DOI: 10.3389/fpls.2021.748523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/10/2021] [Indexed: 05/17/2023]
Abstract
In Se-deficient populations, Selenium- (Se-) enriched wheat is a source of Se supplementation, and Se content can be improved by agronomic biofortification. Thus, black-grained wheat (BGW) and white-grained wheat (WGW) (as the control) were grown in Se naturally contained soils at different concentrations (11.02, 2.21, 2.02, and 0.20 mg·kg-1). Then, a field experiment was conducted to assess agronomic performance, the concentration of microelements and heavy metals, and the uptake and distribution of Se in the BGW under the application of Se ore powder. The results showed that the grain yield and grain Se concentration of wheat respectively show a significant increase and decrease from high Se to low Se areas. Higher grain yield and crude protein content were observed in Se-rich areas. The soil application of Se ore powder increased wheat grain yield and its components (biomass, harvest index, grain number, and 1,000 kernels weight). The concentrations of Zn, Fe, Mn, total Se, and organic Se in the grains of wheat were also increased, but Cu concentration was decreased. The concentrations of Pb, As, Hg, and Cr in wheat grains were below the China food regulation limits following the soil application of Se ore powder. Compared with the control, Se ore powder treatment increased the uptake of Se in various parts of wheat plants. More Se accumulation was observed in roots following Se ore powder application, with a smaller amount in grains. In addition, compared with the control, BGW had significantly higher concentrations of Zn, Fe, and Mn and accumulated more Se in grains and shoots and less Se in roots. The results indicate that wheat grown in Se-rich areas increases its grain yield and crude protein content. The soil application of Se ore powder promotes wheat growth and grain yield. Compared with WGW, BGW accumulated more Se in grains and had a higher concentration of organic Se in grains. In conclusion, the application of Se ore powder from Ziyang as Se-enriched fertilizer could be a promising strategy for Se biofortification in the case of wheat, and BGW is the most Se-rich potential genotype.
Collapse
Affiliation(s)
- Yuxiu Liu
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Shuhua Huang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Zonghao Jiang
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Yizhao Wang
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Zhengmao Zhang
- College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
38
|
Combined foliar and soil selenium fertilizer increased the grain yield, quality, total se, and organic Se content in naked oats. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Liao X, Rao S, Yu T, Zhu Z, Yang X, Xue H, Gou Y, Cheng S, Xu F. Selenium yeast promoted the Se accumulation, nutrient quality and antioxidant system of cabbage ( Brassica oleracea var. capitata L.). PLANT SIGNALING & BEHAVIOR 2021; 16:1907042. [PMID: 33818289 PMCID: PMC8143226 DOI: 10.1080/15592324.2021.1907042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 05/31/2023]
Abstract
The application of Se yeast as a Se source to cultivate Se-rich cabbage has a significant effect on cabbage growth and quality indices. Results showed that total plant weight, head weight, and head size in cabbage were notably increased by 48.4%, 88.3%, and 25.4% under 16 mg/kg Se yeast treatment, respectively. Compare with the control, a high proportion of 3874% of Se accumulation in cabbage head was also detected in 16 mg/kg Se yeast treatment. Selenocystine (SeCys2) and Methyl-selenocysteine (MeSeCys) were the main Se speciations in the cabbage head. Application of 8 mg/kg Se yeast improved cabbage quality and antioxidant system indices, including free amino acid, soluble sugar, ascorbic acid, phenolic acid, glucosinolates, and SOD activity, which had 81.6%, 46.5%, 34.9%, 12.3%, 44.8%, 25.2% higher than that of the control, respectively. In summary, considering 8 mg/kg Se yeast as the appropriate level of Se enrichment during cabbage cultivation. These findings enhanced our understanding of the effects of Se yeast on the growth and quality of cabbage and provided new insights into Se-enrichment vegetable cultivation.
Collapse
Affiliation(s)
- Xiaoli Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Shen Rao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Tian Yu
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
- Enshi Se-Run Health Tech Development Co., Ltd, Enshi, 445000, China
| | - Zhenzhou Zhu
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - Xiaoyan Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Hua Xue
- National Selenium Rich Product Quality Supervision and Inspection Center, Enshi, Hubei, 445000, China
| | - Yuanyuan Gou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Shuiyuan Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| |
Collapse
|
40
|
Rao S, Gou Y, Yu T, Cong X, Gui J, Zhu Z, Zhang W, Liao Y, Ye J, Cheng S, Xu F. Effects of selenate on Se, flavonoid, and glucosinolate in broccoli florets by combined transcriptome and metabolome analyses. Food Res Int 2021; 146:110463. [PMID: 34119247 DOI: 10.1016/j.foodres.2021.110463] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022]
Abstract
Broccoli is a nutritious vegetable popular all over the world. This study investigated the effects of different concentrations of selenate (0, 0.1, 0.2, 0.4, 0.8, and 1.6 mmol/L) on the selenium (Se), glucosinolate, and flavonoid contents of broccoli florets. Results showed that the total Se, selenomethionine, and methyl selenocysteine contents increased following selenate dosage. Interestingly, selenate treatment of 0.4 mmol/L decreased the flavonoid but increased the glucosinolate content. Metabolome analysis revealed changes in the individual contents of glucosinolates and flavonoids. Conjoint analysis of transcriptome and metabolome showed that the glucosinolate and flavonoid compounds were potentially regulated by two sulfate transporter genes (Sultr3;1 and Sultr4;2) and several cytochrome P450 genes (e.g., CYP71B21, CYP72C1, and CYP81F1). These new findings indicated that Se treatment may influence glucosinolate and flavonoid accumulation by regulating the expression of these genes. The results of this study provide some novel insights into the effects of Se on glucosinolates and flavonoids in broccoli florets and deepen our understanding of the regulatory network between some specific genes and these compounds.
Collapse
Affiliation(s)
- Shen Rao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Yuanyuan Gou
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Tian Yu
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; Enshi Se-Run Health Tech Development Co. Ltd., Enshi 445000, China.
| | - Xin Cong
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; Enshi Se-Run Health Tech Development Co. Ltd., Enshi 445000, China.
| | - Jiaying Gui
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Zhenzhou Zhu
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Shuiyuan Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; National Selenium Rich Product Quality Supervision and Inspection Center, Enshi 445000, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
41
|
Hu W, Zhao C, Hu H, Yin S. Food Sources of Selenium and Its Relationship with Chronic Diseases. Nutrients 2021; 13:nu13051739. [PMID: 34065478 PMCID: PMC8160805 DOI: 10.3390/nu13051739] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022] Open
Abstract
Selenium (Se) is an essential micronutrient for mammals, and its deficiency seriously threatens human health. A series of biofortification strategies have been developed to produce Se-enriched foods for combating Se deficiency. Although there have been some inconsistent results, extensive evidence has suggested that Se supplementation is beneficial for preventing and treating several chronic diseases. Understanding the association between Se and chronic diseases is essential for guiding clinical practice, developing effective public health policies, and ultimately counteracting health issues associated with Se deficiency. The current review will discuss the food sources of Se, biofortification strategies, metabolism and biological activities, clinical disorders and dietary reference intakes, as well as the relationship between Se and health outcomes, especially cardiovascular disease, diabetes, chronic inflammation, cancer, and fertility. Additionally, some concepts were proposed, there is a non-linear U-shaped dose-responsive relationship between Se status and health effects: subjects with a low baseline Se status can benefit from Se supplementation, while Se supplementation in populations with an adequate or high status may potentially increase the risk of some diseases. In addition, at supra-nutritional levels, methylated Se compounds exerted more promising cancer chemo-preventive efficacy in preclinical trials.
Collapse
|
42
|
Selenium Biofortification: Roles, Mechanisms, Responses and Prospects. Molecules 2021; 26:molecules26040881. [PMID: 33562416 PMCID: PMC7914768 DOI: 10.3390/molecules26040881] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022] Open
Abstract
The trace element selenium (Se) is a crucial element for many living organisms, including soil microorganisms, plants and animals, including humans. Generally, in Nature Se is taken up in the living cells of microorganisms, plants, animals and humans in several inorganic forms such as selenate, selenite, elemental Se and selenide. These forms are converted to organic forms by biological process, mostly as the two selenoamino acids selenocysteine (SeCys) and selenomethionine (SeMet). The biological systems of plants, animals and humans can fix these amino acids into Se-containing proteins by a modest replacement of methionine with SeMet. While the form SeCys is usually present in the active site of enzymes, which is essential for catalytic activity. Within human cells, organic forms of Se are significant for the accurate functioning of the immune and reproductive systems, the thyroid and the brain, and to enzyme activity within cells. Humans ingest Se through plant and animal foods rich in the element. The concentration of Se in foodstuffs depends on the presence of available forms of Se in soils and its uptake and accumulation by plants and herbivorous animals. Therefore, improving the availability of Se to plants is, therefore, a potential pathway to overcoming human Se deficiencies. Among these prospective pathways, the Se-biofortification of plants has already been established as a pioneering approach for producing Se-enriched agricultural products. To achieve this desirable aim of Se-biofortification, molecular breeding and genetic engineering in combination with novel agronomic and edaphic management approaches should be combined. This current review summarizes the roles, responses, prospects and mechanisms of Se in human nutrition. It also elaborates how biofortification is a plausible approach to resolving Se-deficiency in humans and other animals.
Collapse
|
43
|
Gupta PK, Balyan HS, Sharma S, Kumar R. Biofortification and bioavailability of Zn, Fe and Se in wheat: present status and future prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1-35. [PMID: 33136168 DOI: 10.1007/s00122-020-03709-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/13/2020] [Indexed: 05/02/2023]
Abstract
Knowledge of genetic variation, genetics, physiology/molecular basis and breeding (including biotechnological approaches) for biofortification and bioavailability for Zn, Fe and Se will help in developing nutritionally improved wheat. Biofortification of wheat cultivars for micronutrients is a priority research area for wheat geneticists and breeders. It is known that during breeding of wheat cultivars for productivity and quality, a loss of grain micronutrient contents occurred, leading to decline in nutritional quality of wheat grain. Keeping this in view, major efforts have been made during the last two decades for achieving biofortification and bioavailability of wheat grain for micronutrients including Zn, Fe and Se. The studies conducted so far included evaluation of gene pools for contents of not only grain micronutrients as above, but also for phytic acid (PA) or phytate and phytase, so that, while breeding for the micronutrients, bioavailability is also improved. For this purpose, QTL interval mapping and GWAS were carried out to identify QTLs/genes and associated markers that were subsequently used for marker-assisted selection (MAS) during breeding for biofortification. Studies have also been conducted to understand the physiology and molecular basis of biofortification, which also allowed identification of genes for uptake, transport and storage of micronutrients. Transgenics using transgenes have also been produced. The breeding efforts led to the development of at least a dozen cultivars with improved contents of grain micronutrients, although land area occupied by these biofortified cultivars is still marginal. In this review, the available information on different aspects of biofortification and bioavailability of micronutrients including Zn, Fe and Se in wheat has been reviewed for the benefit of those, who plan to start work or already conducting research in this area.
Collapse
Affiliation(s)
- P K Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India.
| | - H S Balyan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India
| | - Rahul Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India
| |
Collapse
|
44
|
Hasanuzzaman M, Bhuyan MHMB, Raza A, Hawrylak-Nowak B, Matraszek-Gawron R, Nahar K, Fujita M. Selenium Toxicity in Plants and Environment: Biogeochemistry and Remediation Possibilities. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1711. [PMID: 33291816 PMCID: PMC7762096 DOI: 10.3390/plants9121711] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is a widely distributed trace element with dual (beneficial or toxic) effects for humans, animals, and plants. The availability of Se in the soil is reliant on the structure of the parental material and the procedures succeeding to soil formation. Anthropogenic activities affect the content of Se in the environment. Although plants are the core source of Se in animal and human diet, the role of Se in plants is still debatable. A low concentration of Se can be beneficial for plant growth, development, and ecophysiology both under optimum and unfavorable environmental conditions. However, excess Se results in toxic effects, especially in Se sensitive plants, due to changing structure and function of proteins and induce oxidative/nitrosative stress, which disrupts several metabolic processes. Contrary, Se hyperaccumulators absorb and tolerate exceedingly large amounts of Se, could be potentially used to remediate, i.e., remove, transfer, stabilize, and/or detoxify Se-contaminants in the soil and groundwater. Thereby, Se-hyperaccumulators can play a dynamic role in overcoming global problem Se-inadequacy and toxicity. However, the knowledge of Se uptake and metabolism is essential for the effective phytoremediation to remove this element. Moreover, selecting the most efficient species accumulating Se is crucial for successful phytoremediation of a particular Se-contaminated area. This review emphasizes Se toxicity in plants and the environment with regards to Se biogeochemistry and phytoremediation aspects. This review follows a critical approach and stimulates thought for future research avenues.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | | | - Ali Raza
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China;
| | - Barbara Hawrylak-Nowak
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (B.H.-N.); (R.M.-G.)
| | - Renata Matraszek-Gawron
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (B.H.-N.); (R.M.-G.)
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| |
Collapse
|
45
|
Hasanuzzaman M, Bhuyan MHMB, Raza A, Hawrylak-Nowak B, Matraszek-Gawron R, Nahar K, Fujita M. Selenium Toxicity in Plants and Environment: Biogeochemistry and Remediation Possibilities. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9121711. [PMID: 33291816 DOI: 10.1016/j.envexpbot.2020.104170] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 05/22/2023]
Abstract
Selenium (Se) is a widely distributed trace element with dual (beneficial or toxic) effects for humans, animals, and plants. The availability of Se in the soil is reliant on the structure of the parental material and the procedures succeeding to soil formation. Anthropogenic activities affect the content of Se in the environment. Although plants are the core source of Se in animal and human diet, the role of Se in plants is still debatable. A low concentration of Se can be beneficial for plant growth, development, and ecophysiology both under optimum and unfavorable environmental conditions. However, excess Se results in toxic effects, especially in Se sensitive plants, due to changing structure and function of proteins and induce oxidative/nitrosative stress, which disrupts several metabolic processes. Contrary, Se hyperaccumulators absorb and tolerate exceedingly large amounts of Se, could be potentially used to remediate, i.e., remove, transfer, stabilize, and/or detoxify Se-contaminants in the soil and groundwater. Thereby, Se-hyperaccumulators can play a dynamic role in overcoming global problem Se-inadequacy and toxicity. However, the knowledge of Se uptake and metabolism is essential for the effective phytoremediation to remove this element. Moreover, selecting the most efficient species accumulating Se is crucial for successful phytoremediation of a particular Se-contaminated area. This review emphasizes Se toxicity in plants and the environment with regards to Se biogeochemistry and phytoremediation aspects. This review follows a critical approach and stimulates thought for future research avenues.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - M H M Borhannuddin Bhuyan
- Citrus Research Station, Bangladesh Agricultural Research Institute, Jaintapur, Sylhet 3156, Bangladesh
| | - Ali Raza
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China
| | - Barbara Hawrylak-Nowak
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - Renata Matraszek-Gawron
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| |
Collapse
|
46
|
Zhou X, Yang J, Kronzucker HJ, Shi W. Selenium Biofortification and Interaction With Other Elements in Plants: A Review. FRONTIERS IN PLANT SCIENCE 2020; 11:586421. [PMID: 33224171 PMCID: PMC7674621 DOI: 10.3389/fpls.2020.586421] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/16/2020] [Indexed: 05/16/2023]
Abstract
Selenium (Se) is an essential element for humans and animals and its deficiency in the diet is a global problem. Crop plants are the main source of Se for consumers. Therefore, there is much interest in understanding the factors that govern the accumulation and distribution of Se in the tissues of crop plants and the mechanisms of interaction of Se absorption and accumulation with other elements, especially with a view toward optimizing Se biofortification. An ideal crop for human consumption is rich in essential nutrient elements such as Se, while showing reduced accumulation of toxic elements in its edible parts. This review focuses on (a) summarizing the nutritional functions of Se and the current understanding of Se uptake by plant roots, translocation of Se from roots to shoots, and accumulation of Se in grains; and (b) discussing the influence of nitrogen (N), phosphorus (P), and sulfur (S) on the biofortification of Se. In addition, we discuss interactions of Se with major toxicant metals (Hg, As, and Cd) frequently present in soil. We highlight key challenges in the quest to improve Se biofortification, with a focus on both agronomic practice and human health.
Collapse
Affiliation(s)
- Xinbin Zhou
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Jing Yang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Herbert J. Kronzucker
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
47
|
Wu M, Cong X, Li M, Rao S, Liu Y, Guo J, Zhu S, Chen S, Xu F, Cheng S, Liu L, Yu T. Effects of different exogenous selenium on Se accumulation, nutrition quality, elements uptake, and antioxidant response in the hyperaccumulation plant Cardamine violifolia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111045. [PMID: 32745785 DOI: 10.1016/j.ecoenv.2020.111045] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Cardamine violifolia (Brassicaceae) is a novel selenium(Se) hyperaccumulation plant with rich nutrients, and serves as a good source of special vegetables in Enshi, China. The present study aimed to investigate the effects of the application of selenate, selenite, and Se yeast (50-800 mg/L) on the growth, Se accumulation, nutrient uptake, and antioxidant response of C. violifolia. The results showed that the Se accumulation efficiency was selenate > selenite > Se yeast, the maximum Se concentration could achieve over 7000 mg/kg, and about 90% was organic Se. The major Se speciation found was mainly SeCys2 and the proportion of various Se species were affected by the Se forms and concentrations. Besides, the plant growth, nutrition quality indexes, element uptakes, and antioxidant responses indicated that 200 mg/L selenate was optimum for C. violifolia to accumulate Se without much impacts, while to obtain more proportion of organic Se, 200 mg/L selenite might be a better choice.
Collapse
Affiliation(s)
- Meiru Wu
- Enshi Se-Run Health Tech Development Co., Ltd., Enshi, 445000, China; National R&D Center for Se-rich Agricultural Products Processing, College of Food Science and Engineering, Wuhan Polytechnic University, 7, Wuhan, 430023, China
| | - Xin Cong
- Enshi Se-Run Health Tech Development Co., Ltd., Enshi, 445000, China; National R&D Center for Se-rich Agricultural Products Processing, College of Food Science and Engineering, Wuhan Polytechnic University, 7, Wuhan, 430023, China
| | - Meng Li
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, China
| | - Shen Rao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Yuan Liu
- Beijing Key Laboratory of Diagnostic and Trace Ability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, 100013, Beijing, China
| | - Jia Guo
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, 213164, China
| | - Song Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Shaozhan Chen
- Beijing Key Laboratory of Diagnostic and Trace Ability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, 100013, Beijing, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, College of Food Science and Engineering, Wuhan Polytechnic University, 7, Wuhan, 430023, China
| | - Liping Liu
- Beijing Key Laboratory of Diagnostic and Trace Ability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, 100013, Beijing, China; School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Tian Yu
- Enshi Se-Run Health Tech Development Co., Ltd., Enshi, 445000, China; National R&D Center for Se-rich Agricultural Products Processing, College of Food Science and Engineering, Wuhan Polytechnic University, 7, Wuhan, 430023, China.
| |
Collapse
|
48
|
He R, Gao M, Shi R, Song S, Zhang Y, Su W, Liu H. The Combination of Selenium and LED Light Quality Affects Growth and Nutritional Properties of Broccoli Sprouts. Molecules 2020; 25:molecules25204788. [PMID: 33086545 PMCID: PMC7587582 DOI: 10.3390/molecules25204788] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 01/17/2023] Open
Abstract
Selenium (Se) supplement was combined with different LED light qualities to investigate mutual effects on the growth, nutritional quality, contents of glucosinolates and mineral elements in broccoli sprouts. There were five treatments: CK:1R1B1G, 1R1B1G+Se (100 μmol L−1 Na2SeO3), 1R1B+Se, 1R2B+Se, 2R1B+Se, 60 μmol m−2 s−1 PPFD, 12 h/12 h (light/dark). Sprouts under a combination of selenium and LED light quality treatment exhibited no remarkable change fresh weight, but had a shorter hypocotyl length, lower moisture content and heavier dry weight, especially with 1R2B+Se treatment. The contents of carotenoid, soluble protein, soluble sugar, vitamin C, total flavonoids, total polyphenol and contents of total glucosinolates and organic Se were dramatically improved through the combination of Se and LED light quality. Moreover, heat map and principal component analysis showed that broccoli sprouts under 1R2B+Se treatment had higher nutritional quality and health-promoting compound contents than other treatments. This suggests that the Se supplement under suitable LED lights might be beneficial to selenium-biofortified broccoli sprout production.
Collapse
|
49
|
Adsorption/Desorption Patterns of Selenium for Acid and Alkaline Soils of Xerothermic Environments. ENVIRONMENTS 2020. [DOI: 10.3390/environments7100072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Selenium adsorption/desorption behavior was examined for eight Greek top soils with different properties, aiming to describe the geochemistry of the elements in the selected soils in terms of bioavailability and contamination risk by leaching. Four soils were acid and four alkaline, and metal oxides content greatly differed between the two groups of soils. The concentrations of Se(IV) used for the performed adsorption batch experiments ranged from 1 to 50 mg/L, while the soil to solution ratio was 1 g/0.03 L. Acid soils adsorbed significantly higher amounts of the added Se(IV) than alkaline soils. Freundlich and Langmuir equations adequately described the adsorption of Se(IV) in the studied soils, and the parameters of both isotherms significantly correlated with soil properties. In particular, both KF and qm values significantly positively correlated with ammonium oxalate extractable Fe and with dithionite extractable Al and Mn, suggesting that amorphous Fe oxides and Al and Mn oxides greatly affect exogenous Se(IV) adsorption in the eight soils. These two parameters were also significantly negatively correlated with soil electrical conductivity (EC) values, indicating that increased soluble salts concentration suppresses Se(IV) adsorption. No significant relation between adsorbed Se(IV) and soil organic content was recorded. A weak salt (0.25 M KCl) was used at the same soil to solution ratio to extract the amount of the adsorbed Se(IV) that is easily exchangeable and thus highly available in the soil ecosystem. A much higher Se(IV) desorption from alkaline soils was observed, pointing to the stronger retention of added Se(IV) by the acid soils. This result implies that in acid soils surface complexes on metal oxides may have been formed restricting Se desorption.
Collapse
|
50
|
Mostofa MG, Rahman MM, Siddiqui MN, Fujita M, Tran LSP. Salicylic acid antagonizes selenium phytotoxicity in rice: selenium homeostasis, oxidative stress metabolism and methylglyoxal detoxification. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122572. [PMID: 32283381 DOI: 10.1016/j.jhazmat.2020.122572] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 05/07/2023]
Abstract
We investigated the mechanistic consequences of selenium (Se)-toxicity, and its possible mitigation using salicylic acid (SA) in rice. In comparison with control, sodium selenate-exposed 'Se1' (0.5 mM) and 'Se2' (1.0 mM) plants showed accumulation of Se by 190.63 and 288.00 % in roots, 2359.42 and 2054.35 % in leaf sheaths, and 7869.91 and 9063.72 % in leaves, respectively, resulting in severe toxicity symptoms, such as growth inhibition, chlorosis, burning of leaves, and oxidative stress. In contrast, SA addition to Se-stressed plants significantly alleviated the Se-toxicity symptoms, and radically improved shoot height (28.88 %), dry biomass (34.00 %), total chlorophyll (37.51 %), soluble sugar (17.31 %) and leaf water contents (22.31 %) in 'SA + Se2' plants over 'Se2' plants. Notably, SA maintained Se-homeostasis, and decreased 'Se2'-induced oxidative stress by enhancing ascorbate level (67.75 %) and the activities of antioxidant enzymes like superoxide dismutase (20.99 %), catalase (40.97 %), glutathione peroxidase (12.26 %), and glutathione reductase (32.58 %) relative to that in 'Se2' plants. Additionally, SA protected rice plants from the deleterious effects of methylglyoxal by stimulating the activities of glyoxalase enzymes. Furthermore, SA upregulated several genes associated with reactive oxygen species (e.g. OsCuZnSOD1, OsCATB, OsGPX1 and OsAPX2) and methylglyoxal (e.g. OsGLYI-1) detoxifications. These findings unravel a decisive role of SA in alleviating Se-phytotoxicity in rice.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Md Mezanur Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Md Nurealam Siddiqui
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - Lam-Son Phan Tran
- Plant Stress Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|