1
|
Giancáspero-Inostroza F, Burgos-Jara C, Sepúlveda C, Haichelis D, Meneses-Valdés R, Orizola-Cáceres I, Cerda-Kohler H. Cycling Isokinetic Peak Force Explains Maximal Aerobic Power and Physiological Thresholds but Not Cycling Economy in Trained Triathletes. J Funct Morphol Kinesiol 2024; 9:273. [PMID: 39728257 DOI: 10.3390/jfmk9040273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
Background: Assessments of muscle strength help prescribe and monitor training loads in cyclists (e.g., triathletes). Some methods include repetition maximum, joint isokinetic tests, and indirect estimates. However, their specificity for cycling's dynamic force application and competitive cadences is lacking. This study aims to determine the influence of the cycling isokinetic peak force (cIPF) at different cadences on aerobic performance-related variables in trained triathletes. Methods: Eleven trained male athletes (33 ± 9.8 years, 173.1 ± 5.0 cm height, 73.9 ± 6.8 kg body mass, and ≥5 years of triathlon experience) were recruited. Maximal oxygen consumption (VO2 max), ventilatory thresholds (i.e., VT1 and VT2), and cIPF were assessed. cIPF testing involved 10 s sprints at varied cadences with 4 min rest intervals. Pedaling cadences were set at low (60 rpm), moderate (80 and 100 rpm), and high (120 and 140 rpm) cadences. A regression model approach identified cIPF related to aerobic performance. Results: IPF at 80 and 120 rpm explained 49% of the variability in power output at VT1, 55% of the variability in power output at VT2, 65% of the variability in power output at maximal aerobic power (MAP), and 39% of the variability in VO2 max. The cycling economy was not explained by cIPF. Conclusions: This study highlights the significance of cIPF, particularly at moderate to high cadences, as a determinant of aerobic-related variables in trained triathletes. Cycling cIPF should be tested to understand an athlete's profile during crank cycling, informing better practice for training specificity and ultimately supporting athletes in achieving optimal performance outcomes in competitive cycling events.
Collapse
Affiliation(s)
- Felipe Giancáspero-Inostroza
- Unidad de Fisiología del Ejercicio, Centro de Innovación, Clínica MEDS, Santiago 7550615, Chile
- Magister en Ciencias de la Salud y el Deporte, Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago 7501015, Chile
| | - Carlos Burgos-Jara
- Unidad de Fisiología del Ejercicio, Centro de Innovación, Clínica MEDS, Santiago 7550615, Chile
| | - Carlos Sepúlveda
- Unidad de Fisiología del Ejercicio, Centro de Innovación, Clínica MEDS, Santiago 7550615, Chile
| | - Danni Haichelis
- Unidad de Fisiología del Ejercicio, Centro de Innovación, Clínica MEDS, Santiago 7550615, Chile
- Unidad de Ciencias Aplicadas al Deporte, Instituto Nacional de Deportes, Santiago 7750332, Chile
| | - Roberto Meneses-Valdés
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, 2100 Copenhagen, Denmark
| | - Ignacio Orizola-Cáceres
- Unidad de Fisiología del Ejercicio, Centro de Innovación, Clínica MEDS, Santiago 7550615, Chile
| | - Hugo Cerda-Kohler
- Unidad de Fisiología del Ejercicio, Centro de Innovación, Clínica MEDS, Santiago 7550615, Chile
- Departamento de Educación Física, Deporte y Recreación, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago 7750332, Chile
- Laboratory of Psychophysiology and Performance in Sports and Combats, Postgraduate Program in Physical Education, School of Physical Education and Sport, Federal University of Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
| |
Collapse
|
2
|
Bıçakçı B, Cięszczyk P, Humińska-Lisowska K. Genetic Determinants of Endurance: A Narrative Review on Elite Athlete Status and Performance. Int J Mol Sci 2024; 25:13041. [PMID: 39684752 DOI: 10.3390/ijms252313041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
This narrative review explores the relationship between genetics and elite endurance athletes, summarizes the current literature, highlights some novel findings, and provides a physiological basis for understanding the mechanistic effects of genetics in sport. Key genetic markers include ACTN3 R577X (muscle fiber composition), ACE I/D (cardiovascular efficiency), and polymorphisms in PPARA, VEGFA, and ADRB2, influencing energy metabolism, angiogenesis, and cardiovascular function. This review underscores the benefits of a multi-omics approach to better understand the complex interactions between genetic polymorphisms and physiological traits. It also addresses long-standing issues such as small sample sizes in studies and the heterogeneity in heritability estimates influenced by factors like sex. Understanding the mechanistic relationship between genetics and endurance performance can lead to personalized training strategies, injury prevention, and improved health outcomes. Future studies should focus on standardized classification of sports, replication studies involving diverse populations, and establishing solid physiological associations between polymorphisms and endurance traits to advance the field of sports genetics.
Collapse
Affiliation(s)
- Barkın Bıçakçı
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdańsk, Poland
| | - Paweł Cięszczyk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdańsk, Poland
| | - Kinga Humińska-Lisowska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdańsk, Poland
| |
Collapse
|
3
|
Van Hooren B, Aagaard P, Blazevich AJ. Optimizing Resistance Training for Sprint and Endurance Athletes: Balancing Positive and Negative Adaptations. Sports Med 2024; 54:3019-3050. [PMID: 39373864 PMCID: PMC11608172 DOI: 10.1007/s40279-024-02110-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 10/08/2024]
Abstract
Resistance training (RT) triggers diverse morphological and physiological adaptations that are broadly considered beneficial for performance enhancement as well as injury risk reduction. Some athletes and coaches therefore engage in, or prescribe, substantial amounts of RT under the assumption that continued increments in maximal strength capacity and/or muscle mass will lead to improved sports performance. In contrast, others employ minimal or no RT under the assumption that RT may impair endurance or sprint performances. However, the morphological and physiological adaptations by which RT might impair physical performance, the likelihood of these being evoked, and the training program specifications that might promote such impairments, remain largely undefined. Here, we discuss how selected adaptations to RT may enhance or impair speed and endurance performances while also addressing the RT program variables under which these adaptations are likely to occur. Specifically, we argue that while some myofibrillar (muscle) hypertrophy can be beneficial for increasing maximum strength, substantial hypertrophy can lead to macro- and microscopic adaptations such as increases in body (or limb) mass and internal moment arms that might, under some conditions, impair both sprint and endurance performances. Further, we discuss how changes in muscle architecture, fiber typology, microscopic muscle structure, and intra- and intermuscular coordination with RT may maximize speed at the expense of endurance, or maximize strength at the expense of speed. The beneficial effect of RT for sprint and endurance sports can be further improved by considering the adaptive trade-offs and practical implications discussed in this review.
Collapse
Affiliation(s)
- Bas Van Hooren
- Department of Nutrition and Movement Sciences, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Universiteitssingel 50, Maastricht, NL, 6229 ER, The Netherlands.
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
4
|
Bedrač L, Deutsch L, Terzić S, Červek M, Šelb J, Ašič U, Verstraeten LMG, Kuščer E, Cvetko F. Towards Precision Sports Nutrition for Endurance Athletes: A Scoping Review of Application of Omics and Wearables Technologies. Nutrients 2024; 16:3943. [PMID: 39599728 PMCID: PMC11597302 DOI: 10.3390/nu16223943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Endurance athletes require tailored nutrition strategies to optimize performance, recovery, and training adaptations. While traditional sports nutrition guidelines provide a foundational framework, individual variability in metabolic responses underscores the need for precision nutrition, informed by genetic, biological, and environmental factors. This scoping review evaluates the application of systems biology-driven sports nutrition for endurance athletes, focusing on 'omics' and wearable technologies. METHODS A scoping review of the literature was conducted in PubMed, Scopus, and Web of Science in accordance with the PRISMA-ScR checklist. Research questions, search strategies, and eligibility criteria were guided by the Population-Concept-Context framework with the following inclusion criteria: original research in English, involving endurance athletes, systems biology approaches, and nutritional interventions or continuous glucose monitoring (CGM). RESULTS Fifty-two studies were included, with distance runners as the most studied cohort. Eleven studies used metagenomics, eleven CGM, ten nutrigenetics, ten metabolomics, seven multi-omics, one proteomics, one epigenomics, and one lipidomics. Over half (n = 31; 60%) were randomized controlled trials (RCTs) with generally high methodological quality. CONCLUSIONS Most studies were proof-of-concept investigations aimed at assessing biomarkers; however, the evidence linking these biomarkers to performance, recovery, and long-term health outcomes in endurance athletes remains insufficient. Future research should focus on well-powered replicated crossover RCTs, multivariate N-of-1 clinical trials, 360-degree systems-wide approaches, and the validation of genetic impacts on nutritional interventions to refine dietary guidelines.
Collapse
Affiliation(s)
- Leon Bedrač
- The NU B.V., J.H. Oortweg 21, 2333 CH Leiden, The Netherlands; (L.D.); (S.T.); (M.Č.); (J.Š.); (U.A.); (L.M.G.V.); (E.K.); (F.C.)
| | - Leon Deutsch
- The NU B.V., J.H. Oortweg 21, 2333 CH Leiden, The Netherlands; (L.D.); (S.T.); (M.Č.); (J.Š.); (U.A.); (L.M.G.V.); (E.K.); (F.C.)
| | - Sanja Terzić
- The NU B.V., J.H. Oortweg 21, 2333 CH Leiden, The Netherlands; (L.D.); (S.T.); (M.Č.); (J.Š.); (U.A.); (L.M.G.V.); (E.K.); (F.C.)
| | - Matej Červek
- The NU B.V., J.H. Oortweg 21, 2333 CH Leiden, The Netherlands; (L.D.); (S.T.); (M.Č.); (J.Š.); (U.A.); (L.M.G.V.); (E.K.); (F.C.)
| | - Julij Šelb
- The NU B.V., J.H. Oortweg 21, 2333 CH Leiden, The Netherlands; (L.D.); (S.T.); (M.Č.); (J.Š.); (U.A.); (L.M.G.V.); (E.K.); (F.C.)
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik 36, 4204 Golnik, Slovenia
| | - Urška Ašič
- The NU B.V., J.H. Oortweg 21, 2333 CH Leiden, The Netherlands; (L.D.); (S.T.); (M.Č.); (J.Š.); (U.A.); (L.M.G.V.); (E.K.); (F.C.)
| | - Laure M. G. Verstraeten
- The NU B.V., J.H. Oortweg 21, 2333 CH Leiden, The Netherlands; (L.D.); (S.T.); (M.Č.); (J.Š.); (U.A.); (L.M.G.V.); (E.K.); (F.C.)
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Enej Kuščer
- The NU B.V., J.H. Oortweg 21, 2333 CH Leiden, The Netherlands; (L.D.); (S.T.); (M.Č.); (J.Š.); (U.A.); (L.M.G.V.); (E.K.); (F.C.)
| | - Filip Cvetko
- The NU B.V., J.H. Oortweg 21, 2333 CH Leiden, The Netherlands; (L.D.); (S.T.); (M.Č.); (J.Š.); (U.A.); (L.M.G.V.); (E.K.); (F.C.)
| |
Collapse
|
5
|
Van de Casteele F, Van Thienen R, Horwath O, Apró W, Van der Stede T, Moberg M, Lievens E, Derave W. Does one biopsy cut it? Revisiting human muscle fiber type composition variability using repeated biopsies in the vastus lateralis and gastrocnemius medialis. J Appl Physiol (1985) 2024; 137:1341-1353. [PMID: 39359186 DOI: 10.1152/japplphysiol.00394.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/06/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024] Open
Abstract
Human skeletal muscle fiber type composition varies greatly along the muscle, so one biopsy may not accurately represent the whole muscle. Recommendations on the number of biopsies and fiber counts using immunohistochemistry and whether these findings can be extrapolated to other muscles are lacking. We assessed fiber type composition in the vastus lateralis and gastrocnemius medialis muscles of 40 individuals. Per muscle, we took four biopsy samples from one incision, collecting two samples each from a proximally and distally directed needle. Based on another dataset involving 10 vastus lateralis biopsies per participant (n = 7), we calculated 95% limits of agreement for subsets of biopsies and fiber counts compared with the 10-biopsy average. Average absolute differences in type I fiber proportions between proximal and distal, and between within-needle samples were 6.9 and 4.5 percentage points in the vastus lateralis, and 5.5 and 4.4 percentage points in the gastrocnemius medialis, respectively. The 95% limits of agreement narrowed to ±10 percentage points when 200 fibers from at least three biopsies were analyzed, with minimal improvements with greater fiber counts. Type I fiber proportions in the vastus lateralis and gastrocnemius medialis showed a moderate positive association (r2 = 0.22; P = 0.006; at least 200 fibers in each of three to four samples per muscle). In conclusion, three biopsies with a minimum of 200 counted fibers are required to estimate the vastus lateralis fiber type composition within ±10 percentage points. Even when using these standards, researchers should be cautious when extrapolating muscle fiber type proportions from one muscle to another.NEW & NOTEWORTHY Fiber type composition is equally variable in muscle biopsy samples taken from one incision as from multiple incisions. Hence, we propose two biopsies from a single incision-needles directed proximally and distally, and each rotated 180° for cutting a second sample-as a more feasible, less invasive alternative to three biopsies from as many incisions. In addition, we identified the gastrocnemius medialis as a slow-twitch muscle with an average of 64.7% slow fibers.
Collapse
Affiliation(s)
| | - Ruud Van Thienen
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Oscar Horwath
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - William Apró
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Thibaux Van der Stede
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Marcus Moberg
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Eline Lievens
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Mølmen KS, Almquist NW, Skattebo Ø. Effects of Exercise Training on Mitochondrial and Capillary Growth in Human Skeletal Muscle: A Systematic Review and Meta-Regression. Sports Med 2024:10.1007/s40279-024-02120-2. [PMID: 39390310 DOI: 10.1007/s40279-024-02120-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Skeletal muscle mitochondria and capillaries are crucial for aerobic fitness, and suppressed levels are associated with chronic and age-related diseases. Currently, evidence-based exercise training recommendations to enhance these characteristics are limited. It is essential to explore how factors, such as fitness level, age, sex, and disease affect mitochondrial and capillary adaptations to different exercise stimuli. OBJECTIVES The main aim of this study was to compare the effects of low- or moderate intensity continuous endurance training (ET), high-intensity interval or continuous training (HIT), and sprint interval training (SIT) on changes in skeletal muscle mitochondrial content and capillarization. Secondarily, the effects on maximal oxygen consumption (VO2max), muscle fiber cross-sectional area, and fiber type proportion were investigated. METHODS A systematic literature search was conducted in PubMed, Web of Science, and SPORTDiscus databases, with no data restrictions, up to 2 February 2022. Exercise training intervention studies of ET, HIT, and SIT were included if they had baseline and follow-up measures of at least one marker of mitochondrial content or capillarization. In total, data from 5973 participants in 353 and 131 research articles were included for the mitochondrial and capillary quantitative synthesis of this review, respectively. Additionally, measures of VO2max, muscle fiber cross-sectional area, and fiber type proportion were extracted from these studies. RESULTS After adjusting for relevant covariates, such as training frequency, number of intervention weeks, and initial fitness level, percentage increases in mitochondrial content in response to exercise training increased to a similar extent with ET (23 ± 5%), HIT (27 ± 5%), and SIT (27 ± 7%) (P > 0.138), and were not influenced by age, sex, menopause, disease, or the amount of muscle mass engaged. Higher training frequencies (6 > 4 > 2 sessions/week) were associated with larger increases in mitochondrial content. Per total hour of exercise, SIT was ~ 2.3 times more efficient in increasing mitochondrial content than HIT and ~ 3.9 times more efficient than ET, while HIT was ~ 1.7 times more efficient than ET. Capillaries per fiber increased similarly with ET (15 ± 3%), HIT (13 ± 4%) and SIT (10 ± 11%) (P = 0.556) after adjustments for number of intervention weeks and initial fitness level. Capillaries per mm2 only increased after ET (13 ± 3%) and HIT (7 ± 4%), with increases being larger after ET compared with HIT and SIT (P < 0.05). This difference coincided with increases in fiber cross-sectional area after ET (6.5 ± 3.5%), HIT (8.9 ± 4.9%), and SIT (11.9 ± 15.1%). Gains in capillarization occurred primarily in the early stages of training (< 4 weeks) and were only observed in untrained to moderately trained participants. The proportion of type I muscle fibers remained unaltered by exercise training (P > 0.116), but ET and SIT exhibited opposing effects (P = 0.041). VO2max increased similarly with ET, HIT, and SIT, although HIT showed a tendency for greater improvement compared with both ET and SIT (P = 0.082), while SIT displayed the largest increase per hour of exercise. Higher training frequencies (6 > 4 > 2 sessions/week) were associated with larger increases in VO2max. Women displayed greater percentage gains in VO2max compared with men (P = 0.008). Generally, lower initial fitness levels were associated with greater percentage improvements in mitochondrial content, capillarization, and VO2max. SIT was particularly effective in improving mitochondrial content and VO2max in the early stages of training, while ET and HIT showed slower but steady improvements over a greater number of training weeks. CONCLUSIONS The magnitude of change in mitochondrial content, capillarization, and VO2max to exercise training is largely determined by the initial fitness level, with greater changes observed in individuals with lower initial fitness. The ability to adapt to exercise training is maintained throughout life, irrespective of sex and presence of disease. While training load (volume × intensity) is a suitable predictor of changes in mitochondrial content and VO2max, this relationship is less clear for capillary adaptations.
Collapse
Affiliation(s)
- Knut Sindre Mølmen
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, P.O. Box. 422, 2604, Lillehammer, Norway.
| | - Nicki Winfield Almquist
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Øyvind Skattebo
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
7
|
Locatelli G, Stangel M, Rooks D, Boesch J, Pierrel E, Summermatter S. The therapeutic potential of exercise for improving mobility in multiple sclerosis. Front Physiol 2024; 15:1477431. [PMID: 39345788 PMCID: PMC11427913 DOI: 10.3389/fphys.2024.1477431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease characterized by inflammation and demyelination in the central nervous system (CNS) with subsequent axonal and neuronal degeneration. These changes are associated with a broad range of symptoms including skeletal muscle dysfunction. Importantly, musculoskeletal impairments manifest in various ways, compromise the quality of life and often precede the later development of mobility disability. As current standard disease modifying therapies for MS predominantly act on neuroinflammation, practitioners and patients face an unmet medical need for adjunct therapies specifically targeting skeletal muscle function. This review is intended to detail the nature of the skeletal muscle dysfunctions common in people with MS (pwMS), describe underlying intramuscular alterations and outline evidence-based therapeutic approaches. Particularly, we discuss the emerging role of aerobic and resistance exercise for reducing the perception of fatigue and increasing muscle strength in pwMS. By integrating the most recent literature, we conclude that both exercise interventions should ideally be implemented as early as possible as they can address MS-specific muscle impairments. Aerobic exercise is particularly beneficial for pwMS suffering from fatigue and metabolic impairments, while resistance training efficiently counters muscle weakness and improves the perception of fatigue. Thus, these lifestyle interventions or possible pharmacological mimetics have the potential for improving the general well-being and delaying the functional declines that are relevant to mobility.
Collapse
Affiliation(s)
- Giuseppe Locatelli
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Martin Stangel
- Translational Medicine, Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Daniel Rooks
- Translational Medicine, Biomedical Research, Novartis Pharma AG, Cambridge, MA, United States
| | - Julian Boesch
- Diseases of Aging and Regenerative Medicine, Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Eliane Pierrel
- Diseases of Aging and Regenerative Medicine, Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Serge Summermatter
- Diseases of Aging and Regenerative Medicine, Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
8
|
Jones AM. The fourth dimension: physiological resilience as an independent determinant of endurance exercise performance. J Physiol 2024; 602:4113-4128. [PMID: 37606604 DOI: 10.1113/jp284205] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023] Open
Abstract
Endurance exercise performance is known to be closely associated with the three physiological pillars of maximal O2 uptake (V ̇ O 2 max $\dot{V}_{{\rm O}_{2}{\rm max}}$ ), economy or efficiency during submaximal exercise, and the fractional utilisation ofV ̇ O 2 max $\dot{V}_{{\rm O}_{2}{\rm max}}$ (linked to metabolic/lactate threshold phenomena). However, while 'start line' values of these variables are collectively useful in predicting performance in endurance events such as the marathon, it is not widely appreciated that these variables are not static but are prone to significant deterioration as fatiguing endurance exercise proceeds. For example, the 'critical power' (CP), which is a composite of the highest achievable steady-state oxidative metabolic rate and efficiency (O2 cost per watt), may fall by an average of 10% following 2 h of heavy intensity cycle exercise. Even more striking is that the extent of this deterioration displays appreciable inter-individual variability, with changes in CP ranging from <1% to ∼32%. The mechanistic basis for such differences in fatigue resistance or 'physiological resilience' are not resolved. However, resilience may be important in explaining superlative endurance performance and it has implications for the physiological evaluation of athletes and the design of interventions to enhance performance. This article presents new information concerning the dynamic plasticity of the three 'traditional' physiological variables and argues that physiological resilience should be considered as an additional component, or fourth dimension, in models of endurance exercise performance.
Collapse
Affiliation(s)
- Andrew M Jones
- Department of Public Health and Sport Sciences, University of Exeter Medical School, St Luke's Campus, Exeter, UK
| |
Collapse
|
9
|
Ma F, He J, Wang Y. Blood flow restriction combined with resistance training on muscle strength and thickness improvement in young adults: a systematic review, meta-analysis, and meta-regression. Front Physiol 2024; 15:1379605. [PMID: 39189029 PMCID: PMC11345148 DOI: 10.3389/fphys.2024.1379605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
Background High-intensity resistance training is known to be the most effective method for enhancing muscle strength and thickness, but it carries potential injury risks. Blood flow restriction (BFR) combined with resistance training has been proposed as a safer alternative method for improving muscle strength and thickness. Methods A meta-analysis was conducted, including 20 studies from five databases that met the inclusion criteria, to assess the efficacy of BFR combined with resistance training compared to traditional resistance training (NOBFR). The analysis focused on changes in muscle strength and thickness. Subgroup analysis and meta-regression were performed to explore the effects of tourniquet width and pressure. Results The findings showed that BFR combined with resistance training is comparable to traditional resistance training in enhancing muscle strength [0.11, 95%CI: (-0.08 to 0.29), I 2 = 0%] and muscle thickness [-0.07, 95% CI: (-0.25 to 0.12), I 2 = 0%]. Subgroup analysis indicated no significant differences in muscle strength (P = 0.66) and thickness (P = 0.87) between low-intensity BFR training and other intensity levels. Meta-regression suggested that tourniquet width and pressure might affect intervention outcomes, although the effects were not statistically significant (P > 0.05). Conclusion BFR combined with resistance training offers a viable alternative to high-intensity resistance training with reduced injury risks. We recommend interventions of 2-3 sessions per week at 20%-40% of 1 RM, using a wider cuff and applying an arterial occlusion pressure of 50%-80% to potentially enhance muscle strength and thickness. It is also recommended to release tourniquet pressure during rest intervals to alleviate discomfort. This protocol effectively improves muscle strength with minimal cardiac workload and reduced risk of adverse events. Systematic Review Registration [https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023495465], identifier [CRD42023495465].
Collapse
Affiliation(s)
| | | | - Yan Wang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
10
|
Pattamaprapanont P, Cooney EM, MacDonald TL, Paulo JA, Pan H, Dreyfuss JM, Lessard SJ. Matrisome proteomics reveals novel mediators of muscle remodeling with aerobic exercise training. Matrix Biol Plus 2024; 23:100159. [PMID: 39220302 PMCID: PMC11363848 DOI: 10.1016/j.mbplus.2024.100159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Skeletal muscle has a unique ability to remodel in response to stimuli such as contraction and aerobic exercise training. Phenotypic changes in muscle that occur with training such as a switch to a more oxidative fiber type, and increased capillary density contribute to the well-known health benefits of aerobic exercise. The muscle matrisome likely plays an important role in muscle remodeling with exercise. However, due to technical limitations in studying muscle ECM proteins, which are highly insoluble, little is known about the muscle matrisome and how it contributes to muscle remodeling. Here, we utilized two-fraction methodology to extract muscle proteins, combined with multiplexed tandem mass tag proteomic technology to identify 161 unique ECM proteins in mouse skeletal muscle. In addition, we demonstrate that aerobic exercise training induces remodeling of a significant proportion of the muscle matrisome. We performed follow-up experiments to validate exercise-regulated ECM targets in a separate cohort of mice using Western blotting and immunofluorescence imaging. Our data demonstrate that changes in several key ECM targets are strongly associated with muscle remodeling processes such as increased capillary density in mice. We also identify LOXL1 as a novel muscle ECM target associated with aerobic capacity in humans. In addition, publically available data and databases were used for in silico modeling to determine the likely cellular sources of exercise-induced ECM remodeling targets and identify ECM interaction networks. This work greatly enhances our understanding of ECM content and function in skeletal muscle and demonstrates an important role for ECM remodeling in the adaptive response to exercise. The raw MS data have been deposited to the ProteomeXchange with identifier PXD053003.
Collapse
Affiliation(s)
| | | | - Tara L. MacDonald
- Research Division, Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hui Pan
- Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Jonathan M. Dreyfuss
- Research Division, Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sarah J. Lessard
- Research Division, Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Silva Oliveira P, Boppre G, Fonseca H. Comparison of Polarized Versus Other Types of Endurance Training Intensity Distribution on Athletes' Endurance Performance: A Systematic Review with Meta-analysis. Sports Med 2024; 54:2071-2095. [PMID: 38717713 PMCID: PMC11329428 DOI: 10.1007/s40279-024-02034-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Polarized training intensity distribution (POL) was recently suggested to be superior to other training intensity distribution (TID) regimens for endurance performance improvement. OBJECTIVE We aimed to systematically review and meta-analyze evidence comparing POL to other TIDs on endurance performance. METHODS PRISMA guidelines were followed. The protocol was registered at PROSPERO (CRD42022365117). PubMed, Scopus, and Web of Science were searched up to 20 October 2022 for studies in adults and young adults for ≥ 4 weeks comparing POL with other TID interventions regarding VO2peak, time-trial (TT), time to exhaustion (TTE) or speed or power at the second ventilatory or lactate threshold (V/P at VT2/LT2). Risk of bias was assessed with RoB-2 and ROBINS-I. Certainty of evidence was assessed with GRADE. Results were analyzed by random effects meta-analysis using standardized mean differences. RESULTS Seventeen studies met the inclusion criteria (n = 437 subjects). Pooled effect estimates suggest POL superiority for improving VO2peak (SMD = 0.24 [95% CI 0.01, 0.48]; z = 2.02 (p = 0.040); 11 studies, n = 284; I2 = 0%; high certainty of evidence). Superiority, however, only occurred in shorter interventions (< 12 weeks) (SMD = 0.40 [95% CI 0.08, 0.71; z = 2.49 (p = 0.01); n = 163; I2 = 0%) and for highly trained athletes (SMD = 0.46 [95% CI 0.10, 0.82]; z = 2.51 (p = 0.01); n = 125; I2 = 0%). The remaining endurance performance surrogates were similarly affected by POL and other TIDs: TT (SMD = - 0.01 [95% CI -0.28, 0.25]; z = - 0.10 (p = 0.92); n = 221; I2 = 0%), TTE (SMD = 0.30 [95% CI - 0.20, 0.79]; z = 1.18 (p = 0.24); n = 66; I2 = 0%) and V/P VT2/LT2 (SMD = 0.04 [95% CI -0.21, 0.29]; z = 0.32 (p = 0.75); n = 253; I2 = 0%). Risk of bias for randomized controlled trials was rated as of some concern and for non-randomized controlled trials as low risk of bias (two studies) and some concerns (one study). CONCLUSIONS POL is superior to other TIDs for improving VO2peak, particularly in shorter duration interventions and highly trained athletes. However, the effect of POL was similar to that of other TIDs on the remaining surrogates of endurance performance. The results suggest that POL more effectively improves aerobic power but is similar to other TIDs for improving aerobic capacity.
Collapse
Affiliation(s)
- Pedro Silva Oliveira
- Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Rua Dr. Plácido Costa, 91, 4200-450, Porto, Portugal.
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal.
| | - Giorjines Boppre
- Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Rua Dr. Plácido Costa, 91, 4200-450, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Nucleus of Research in Human Movement Science, University Adventista, 3780000, Chillan, Chile
| | - Hélder Fonseca
- Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Rua Dr. Plácido Costa, 91, 4200-450, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| |
Collapse
|
12
|
de Haan M, van der Zwaard S, Schreven S, Beek PJ, Jaspers RT. Determining V̇O 2max in competitive swimmers: Comparing the validity and reliability of cycling, arm cranking, ergometer swimming, and tethered swimming. J Sci Med Sport 2024; 27:499-506. [PMID: 38643061 DOI: 10.1016/j.jsams.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/22/2024]
Abstract
OBJECTIVES This study aims to identify the optimal method for determining V̇O2max in competitive swimmers in terms of validity and test-retest reliability. DESIGN Controlled experiment. METHODS Twenty competitive swimmers performed four maximal incremental exercise tests: cycling, arm cranking, ergometer swimming, and tethered swimming. Gas analysis was conducted to estimate V̇O2max. Validity was assessed in terms of the amount of variance of the performance on a 1500-m time trial explained by the estimated V̇O2max . Test-retest reliability was evaluated using the intraclass correlation coefficient (ICC). RESULTS V̇O2max obtained from tethered swimming, ergometer swimming, and cycling explained a similar amount of variance of the 1500-m performance (R2 = 0.64, 0.64 and 0.65, respectively). However, ergometer swimming yielded significantly lower V̇O2max estimates (40.54 ± 6.55 ml/kg/min) than tethered swimming (54.40 ± 6.21 ml/kg/min) and cycling (54.39 ± 5.63 ml/kg/min). Arm cranking resulted in both a lower explained variance (R2 = 0.41) and a significantly lower V̇O2max (43.14 ± 7.81 ml/kg/min). Tethered swimming showed good reliability (ICC = 0.81). CONCLUSIONS Bicycle and tethered swimming tests demonstrated high validity with comparable V̇O2max estimates, explaining a large proportion of differences in endurance performance. Choosing between these two methods involves a trade-off between a higher practical applicability and reliability of the bicycle test and the more sport-specific nature of the tethered swimming test.
Collapse
Affiliation(s)
- Michel de Haan
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Netherlands. https://twitter.com/Md_Haan
| | - Stephan van der Zwaard
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Netherlands; Department of Cardiology, Amsterdam University Medical Center, University of Amsterdam, Netherlands
| | | | - Peter J Beek
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Netherlands
| | - Richard T Jaspers
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Netherlands.
| |
Collapse
|
13
|
Maurin J, Labossière S, Pomerleau-Fontaine L, Boudreault V, Brassard S, Dion J, Durand-Bush N, Parent S, Soulard A. Personal risk factors and types of sport associated with drive for thinness and drive for muscularity in NextGen athletes. Front Nutr 2024; 11:1392064. [PMID: 38915858 PMCID: PMC11194407 DOI: 10.3389/fnut.2024.1392064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction Professional and student-athletes are at risk of developing symptoms of eating disorders (ED), including drive for thinness and muscularity due to personal risk factors (e.g., low self-esteem) and sport-specific characteristics (e.g., sport requirements). However, limited studies have focused on ED symptoms among NextGen athletes (identified in Canada as élite or relève) who compete at the provincial, national, and international levels but are not yet part of national teams. As such, they have access to fewer financial resources and support from their sport federations, which can create additional stress for these athletes. The present study aimed to identify personal risk factors and types of sports associated with (a) drive for thinness and (b) drive for muscularity in NextGen athletes. Methods These athletes (n = 254) aged between 14 and 25 years old completed an online questionnaire. Perfectionism, self-esteem in sport, drive for thinness, and drive for muscularity were, respectively, assessed by the Multidimensional Inventory of Perfectionism in Sport, the Sport State Self-Esteem Scale, the Eating Attitude Test-26, and the Drive for Muscularity Scale. Other personal risk factor (e.g., athletic status) were measured using in-house questions. Each personal risk factor was included in two multiple linear regressions, respectively, to determine which factors were most associated with drive for thinness and drive for muscularity. Results Analyses revealed that perfectionist aspirations during training were linked to a stronger desire for thinness. In addition, not being in school or not having a job were also linked to a stronger desire for thinness. Several variables were found to be associated with a greater desire for muscularity: being a male athlete, playing team sport, weight category sport or endurance sport (as opposed to esthetic sport), having elite status, being less satisfied with one's current sporting performance and having higher perfectionist aspirations during training. Discussion This study offers initial insights into the factors influencing EDs among NextGen athletes, which provides a foundation for deeper exploration and the creation or modification of targeted interventions. These findings can guide sport organizations in creating guidelines and programs to better support the next generation of national athletes (e.g., create programs to help athletes maintain investments outside).
Collapse
Affiliation(s)
- Juliette Maurin
- Department of Psychology, Faculty of Humanities, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sophie Labossière
- Research Chair in Security and Integrity in Sport, Université Laval, Quebec City, QC, Canada
- Department of Physical Education, Faculty of Education, Université Laval, Quebec City, QC, Canada
- Department of Psychoeducation, Faculty of Education, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lara Pomerleau-Fontaine
- Research Chair in Security and Integrity in Sport, Université Laval, Quebec City, QC, Canada
- Faculty of Human Kinetics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Sophie Brassard
- Faculty of Human Kinetics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jacinthe Dion
- Department of Psychology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Natalie Durand-Bush
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Sylvie Parent
- Research Chair in Security and Integrity in Sport, Université Laval, Quebec City, QC, Canada
- Department of Physical Education, Faculty of Education, Université Laval, Quebec City, QC, Canada
- International Research Network on Violence and Integrity in Sport (IRNOVIS), Antwerp, Belgium
- Interdisciplinary Research Center on Intimate Relationship Problem and Sexual Abuse (CRIPCAS), Montreal, QC, Canada
- Équipe Violence Sexuelle et Santé (ÉVISSA), Université du Québec à Montréal, Montreal, QC, Canada
| | - Amélie Soulard
- Faculty of Human Kinetics, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
14
|
Yan L, Chen Z, Zhang X, Han Q, Zhu J, Wang Q, Zhao Z. Themes and trends in marathon performance research: a comprehensive bibliometric analysis from 2009 to 2023. Front Physiol 2024; 15:1388565. [PMID: 38798878 PMCID: PMC11116898 DOI: 10.3389/fphys.2024.1388565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/11/2024] [Indexed: 05/29/2024] Open
Abstract
Background: When marathon runners break the 2-h barrier at the finishing line, it attracts global attention. This study is aimed to conduct a bibliometric analysis of publications in the field of marathon running, analyze relevant research contributors, and visualize the historical trends of marathon performance research over the past 15 years. Methods: On 8 December 2023, we extracted high-quality publication data from the Web of Science Core Collection spanning from 1 January 2009 to 30 November 2023. We conducted bibliometric analysis and research history visualization using the R language packages biblioshiny, VOSviewer, and CiteSpace. Results: A total of 1,057 studies were published by 3,947 authors from 1,566 institutions across 63 countries/regions. USA has the highest publication and citation volume, while, the University of Zurich being the most prolific research institution. Keywords analysis revealed several hotspots in marathon research over the past 3 years: (1) physiology of the elite marathon runners, (2) elite marathon training intensity and pacing strategies, (3) nutritional strategies for elite marathon runners, (4) age and sex differences in marathon performance, (5) recovery of inflammatory response and muscle damage. Conclusion: This study presents the first comprehensive bibliometric analysis of marathon performance research over the past 15 years. It unveils the key contributors to marathon performance research, visually represents the historical developments in the field, and highlights the recent topical frontiers. The findings of this study will guide future research by identifying potential hotspots and frontiers.
Collapse
Affiliation(s)
- Liping Yan
- Institute of Medical Information, Chinese Academy of Medical Sciences, Beijing, China
| | - Ziyan Chen
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xue Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Qi Han
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing, China
- Key Lab of Sports Nutrition, General Administration of Sport of China, Beijing, China
| | - Jingyi Zhu
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing, China
- Key Lab of Sports Nutrition, General Administration of Sport of China, Beijing, China
| | - Qirong Wang
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing, China
- Key Lab of Sports Nutrition, General Administration of Sport of China, Beijing, China
| | - Zhiguang Zhao
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing, China
- Key Lab of Sports Nutrition, General Administration of Sport of China, Beijing, China
| |
Collapse
|
15
|
Venckunas T, Satas A, Brazaitis M, Eimantas N, Sipaviciene S, Kamandulis S. Near-InfraRed Spectroscopy Provides a Reproducible Estimate of Muscle Aerobic Capacity, but Not Whole-Body Aerobic Power. SENSORS (BASEL, SWITZERLAND) 2024; 24:2277. [PMID: 38610488 PMCID: PMC11014184 DOI: 10.3390/s24072277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/21/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024]
Abstract
Near-infrared spectroscopy (NIRS) during repeated limb occlusions is a noninvasive tool for assessing muscle oxidative capacity. However, the method's reliability and validity remain under investigation. This study aimed to determine the reliability of the NIRS-derived mitochondrial power of the musculus vastus lateralis and its correlation with whole-body (cycling) aerobic power (V̇O2 peak). Eleven healthy active men (28 ± 10 y) twice (2 days apart) underwent repeated arterial occlusions to induce changes in muscle oxygen delivery after 15 s of electrical muscle stimulation. The muscle oxygen consumption (mV̇O2) recovery time and rate (k) constants were calculated from the NIRS O2Hb signal. We assessed the reliability (coefficient of variation and intraclass coefficient of correlation [ICC]) and equivalency (t-test) between visits. The results showed high reproducibility for the mV̇O2 recovery time constant (ICC = 0.859) and moderate reproducibility for the k value (ICC = 0.674), with no significant differences between visits (p > 0.05). NIRS-derived k did not correlate with the V̇O2 peak relative to body mass (r = 0.441, p = 0.17) or the absolute V̇O2 peak (r = 0.366, p = 0.26). In conclusion, NIRS provides a reproducible estimate of muscle mitochondrial power, which, however, was not correlated with whole-body aerobic capacity in the current study, suggesting that even if somewhat overlapping, not the same set of factors underpin these distinct indices of aerobic capacity at the different (peripheral and whole-body systemic) levels.
Collapse
Affiliation(s)
- Tomas Venckunas
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Andrius Satas
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Marius Brazaitis
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Nerijus Eimantas
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Saule Sipaviciene
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Sigitas Kamandulis
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| |
Collapse
|
16
|
D'Alleva M, Giovanelli N, Graniero F, Billat VL, Fiori F, Marinoni M, Parpinel M, Lazzer S. Effects of 24-week Polarized Training vs. Threshold Training in Obese Male Adults. Int J Sports Med 2024; 45:282-291. [PMID: 37402392 DOI: 10.1055/a-2123-0851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
The combination of high volume of moderate-intensity continuous training with a low volume of high-intensity interval training improved body composition and physical capacities in individuals with obesity. However, polarized training (POL) has never been used in adult men with obesity. Thus, the purpose of this study was to investigate changes in body composition and physical capacities induced by a 24-week POL or threshold (THR) program in obese male adults. Twenty male patients (mean age 39.8±6.3 yrs; mean body mass index [BMI] 31.6±2.7 kg∙m-2) participated in this study (n: 10 POL, n: 10 THR). After 24-week, body mass (BM) and fat mass (FM) decreased by -3.20±3.10 kg (P<0.05) and -3.80±2.80 kg (P<0.05), respectively, similarly in both groups. Maximal oxygen uptake ( ̇VO2max) and ̇VO2 at respiratory compensation point (RCP) increased in the POL group (+8.5±12.2 and+9.0±17.0%, P<0.05) and in the THR group (+4.24±8.64 and+4.0±6.70%, P<0.05), as well ̇VO2 at gas exchange threshold (GET) increased similarly in both groups (+12.8±12.0%, P<0.05). POL and THR were equally effective in improving body composition and physical capacities in obese subjects. Future studies are needed to determine whether adherence to the training program can be improved by adding a running competition compared with a group without competition at the end of the training program.
Collapse
Affiliation(s)
- Mattia D'Alleva
- Deparment of Medicine, University of Udine, Udine, Italy
- School of Sport Sciences, University of Udine, Udine, Italy
| | - Nicola Giovanelli
- Deparment of Medicine, University of Udine, Udine, Italy
- School of Sport Sciences, University of Udine, Udine, Italy
| | - Francesco Graniero
- Physical Exercise Prescription Center, Azienda sanitaria universitaria Friuli Centrale, Gemona del Friuli, Italy
| | | | - Federica Fiori
- Deparment of Medicine, University of Udine, Udine, Italy
| | | | - Maria Parpinel
- Deparment of Medicine, University of Udine, Udine, Italy
| | - Stefano Lazzer
- Deparment of Medicine, University of Udine, Udine, Italy
- School of Sport Sciences, University of Udine, Udine, Italy
| |
Collapse
|
17
|
Tice AL, Gordon BS, Fletcher E, McNeill AG, Laskin GR, Laudato JA, Rossetti ML, Koutakis P, Steiner JL. Effects of chronic alcohol intoxication on aerobic exercise-induced adaptations in female mice. J Appl Physiol (1985) 2024; 136:721-738. [PMID: 38357729 DOI: 10.1152/japplphysiol.00599.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
Chronic alcohol intoxication decreases muscle strength/function and causes mitochondrial dysfunction. Aerobic exercise training improves mitochondrial oxidative capacity and increases muscle mass and strength. Presently, the impact of chronic alcohol on aerobic exercise-induced adaptations was investigated. Female C57BL/6Hsd mice were randomly assigned to one of four groups: control sedentary (CON SED; n = 26), alcohol sedentary (ETOH SED; n = 27), control exercise (CON EX; n = 28), and alcohol exercise (ETOH EX; n = 25). Exercise mice had running wheel access for 2 h a day, 7 days a week. All mice were fed either control or an alcohol-containing liquid diet. Grip strength testing and EchoMRI were performed before and after the interventions. After 6 wk, hindlimb muscles were collected for molecular analyses. A subset of mice performed a treadmill run to fatigue (RTF), then abstained from alcohol for 2 wk and repeated the RTF. Alcohol decreased lean mass and forelimb grip strength compared with control-fed mice. Alcohol blunted the exercise-induced increase in muscle mass (plantaris and soleus), type IIa fiber percentage in the plantaris, and run time to fatigue. Mitochondrial markers (Citrate synthase activity and Complex I-IV, COXIV and Cytochrome C protein expression) were increased with exercise regardless of ETOH in the gastrocnemius but not tibialis anterior muscle. Two weeks of alcohol abstinence improved RTF time in ETOH EX but not in ETOH SED. These data suggest that alcohol impairs some exercise-induced adaptations in skeletal muscle, but not all were negatively affected, indicating that exercise may be a beneficial behavior even while consuming alcohol.NEW & NOTEWORTHY Alcohol consumption during an aerobic exercise training period prevented training-induced increases in run to fatigue time and grip strength. Cessation of alcohol allowed for recovery of endurance performance within 2 wk. The worsened exercise performance after alcohol was unrelated to impairments in markers of mitochondrial health. Therefore, some adaptations to exercise training are impaired with alcohol use (endurance performance, muscle growth, and strength), while others remain mostly unaffected (mitochondrial health).
Collapse
Affiliation(s)
- Abigail L Tice
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Bradley S Gordon
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, Florida, United States
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, United States
| | - Emma Fletcher
- Department of Biology, Baylor University, Waco, Texas, United States
| | - Addison G McNeill
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Grant R Laskin
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Joseph A Laudato
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Michael L Rossetti
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | | | - Jennifer L Steiner
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, Florida, United States
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
18
|
Huiberts RO, Wüst RCI, van der Zwaard S. Concurrent Strength and Endurance Training: A Systematic Review and Meta-Analysis on the Impact of Sex and Training Status. Sports Med 2024; 54:485-503. [PMID: 37847373 PMCID: PMC10933151 DOI: 10.1007/s40279-023-01943-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Many sports require maximal strength and endurance performance. Concurrent strength and endurance training can lead to suboptimal training adaptations. However, how adaptations differ between males and females is currently unknown. Additionally, current training status may affect training adaptations. OBJECTIVE We aimed to assess sex-specific differences in adaptations in strength, power, muscle hypertrophy, and maximal oxygen consumption ( V ˙ O2max) to concurrent strength and endurance training in healthy adults. Second, we investigated how training adaptations are influenced by strength and endurance training status. METHODS A systematic review and meta-analysis was conducted according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, and a Cochrane risk of bias was evaluated. ISI Web of science, PubMed/MEDLINE, and SPORTDiscus databases were searched using the following inclusion criteria: healthy adults aged 18-50 years, intervention period of ≥ 4 weeks, and outcome measures were defined as upper- and lower-body strength, power, hypertrophy, and/or V ˙ O2max. A meta-analysis was performed using a random-effects model and reported in standardized mean differences. RESULTS In total, 59 studies with 1346 participants were included. Concurrent training showed blunted lower-body strength adaptations in males, but not in females (male: - 0.43, 95% confidence interval [- 0.64 to - 0.22], female: 0.08 [- 0.34 to 0.49], group difference: P = 0.03). No sex differences were observed for changes in upper-body strength (P = 0.67), power (P = 0.37), or V ˙ O2max (P = 0.13). Data on muscle hypertrophy were insufficient to draw any conclusions. For training status, untrained but not trained or highly trained endurance athletes displayed lower V ˙ O2max gains with concurrent training (P = 0.04). For other outcomes, no differences were found between untrained and trained individuals, both for strength and endurance training status. CONCLUSIONS Concurrent training results in small interference for lower-body strength adaptations in males, but not in females. Untrained, but not trained or highly trained endurance athletes demonstrated impaired improvements in V ˙ O2max following concurrent training. More studies on females and highly strength-trained and endurance-trained athletes are warranted. CLINICAL TRIAL REGISTRATION PROSPERO: CRD42022370894.
Collapse
Affiliation(s)
- Raven O Huiberts
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Rob C I Wüst
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Stephan van der Zwaard
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.
- Department of Cardiology, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Reinpõld K, Rannama I, Port K. Agreement between Ventilatory Thresholds and Bilaterally Measured Vastus Lateralis Muscle Oxygen Saturation Breakpoints in Trained Cyclists: Effects of Age and Performance. Sports (Basel) 2024; 12:40. [PMID: 38393260 PMCID: PMC10892087 DOI: 10.3390/sports12020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
This study focused on comparing metabolic thresholds derived from local muscle oxygen saturation (SmO2) signals, obtained using near-infrared spectroscopy (NIRS), with global pulmonary ventilation rates measured at the mouth. It was conducted among various Age Groups within a well-trained cyclist population. Additionally, the study examined how cycling performance characteristics impact the discrepancies between ventilatory thresholds (VTs) and SmO2 breakpoints (BPs). METHODS Junior (n = 18) and Senior (n = 15) cyclists underwent incremental cycling tests to assess their aerobic performance and to determine aerobic (AeT) and anaerobic (AnT) threshold characteristics through pulmonary gas exchange and changes in linearity of the vastus lateralis (VL) muscle SmO2 signals. We compared the relative power (Pkg) at ventilatory thresholds (VTs) and breakpoints (BPs) for the nondominant (ND), dominant (DO), and bilaterally averaged (Avr) SmO2 during the agreement analysis. Additionally, a 30 s sprint test was performed to estimate anaerobic performance capabilities and to assess the cyclists' phenotype, defined as the ratio of P@VT2 to the highest 5 s sprint power. RESULTS The Pkg@BP for Avr SmO2 had higher agreement with VT values than ND and DO. Avr SmO2 Pkg@BP1 was lower (p < 0.05) than Pkg@VT1 (mean bias: 0.12 ± 0.29 W/kg; Limits of Agreement (LOA): -0.45 to 0.68 W/kg; R2 = 0.72) and mainly among Seniors (0.21 ± 0.22 W/kg; LOA: -0.22 to 0.63 W/kg); there was no difference (p > 0.05) between Avr Pkg@BP2 and Pkg@VT2 (0.03 ± 0.22 W/kg; LOA: -0.40 to 0.45 W/kg; R2 = 0.86). The bias between two methods correlated significantly with the phenotype (r = -0.385 and r = -0.515 for AeT and AnT, respectively). CONCLUSIONS Two breakpoints can be defined in the NIRS-captured SmO2 signal of VL, but the agreement between the two methods at the individual level was too low for interchangeable usage of those methods in the practical training process. Older cyclists generally exhibited earlier thresholds in muscle oxygenation signals compared to systemic responses, unlike younger cyclists who showed greater variability and no significant differences in this regard in bias values between the two threshold evaluation methods with no significant difference between methods. More sprinter-type cyclists tended to have systemic VT thresholds earlier than local NIRS-derived thresholds than athletes with relatively higher aerobic abilities.
Collapse
Affiliation(s)
- Karmen Reinpõld
- School of Natural Sciences and Health, University of Tallinn, 10120 Tallinn, Estonia; (I.R.); (K.P.)
| | | | | |
Collapse
|
20
|
Klawitter LA, Hackney KJ, Christensen BK, Hamm JM, Hanson M, McGrath R. Using Electronic Handgrip Dynamometry and Accelerometry to Examine Multiple Aspects of Handgrip Function in Master Endurance Athletes: A Pilot Study. J Strength Cond Res 2023; 37:1777-1782. [PMID: 37616535 DOI: 10.1519/jsc.0000000000004459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/19/2022] [Indexed: 08/26/2023]
Abstract
ABSTRACT Klawitter, LA, Hackney, KJ, Christensen, BK, Hamm, JM, Hanson, M, and McGrath, R. Using electronic handgrip dynamometry and accelerometry to examine multiple aspects of handgrip function in master endurance athletes: A Pilot Study. J Strength Cond Res 37(9): 1777-1782, 2023-Electronic handgrip dynamometry and accelerometry may provide novel opportunities to comprehensively measure muscle function for human performance, especially for master athletes. This investigation sought to determine the multivariate relationships between maximal strength, asymmetry, rate of force development, fatigability, submaximal force control, bimanual coordination, and neuromuscular steadiness to derive one or more handgrip principal components in master-aged endurance athletes. We included n = 31 cyclists and triathletes aged 35-70 years. Maximal strength, asymmetry, rate of force development, fatigability, submaximal force control, bimanual coordination, and neuromuscular steadiness were measured twice on each hand using electronic handgrip dynamometry and accelerometry. The highest performing measures were included in the analyses. A principal component analysis was conducted to derive a new collection of uncorrelated variables from the collected handgrip measurements. Principal components with eigenvalues >1.0 were kept, and individual measures with a factor loading of |>0.40| were retained in each principal component. There were 3 principal components retained with eigenvalues of 2.46, 1.31, and 1.17. The first principal component, "robust strength," contained maximal strength, rate of force development, submaximal force control, and neuromuscular steadiness. The second principal component, "bilateral synergy," contained asymmetry and bimanual coordination, whereas the third principal component, "muscle conditioning," contained fatigability. Principal components 1, 2, and 3 explained 44.0, 31.6, and 24.4% of the variance, respectively. Different dimensions of muscle function emerged from our findings, suggesting the potential of a muscle function battery. Further research examining how these measures are associated with appropriate human performance metrics and lower extremity correlates is warranted.
Collapse
Affiliation(s)
- Lukus A Klawitter
- Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, Fargo, North Dakota
- School of Health and Human Performance, Northern Michigan University, Marquette, Michigan
| | - Kyle J Hackney
- Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, Fargo, North Dakota
| | - Bryan K Christensen
- Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, Fargo, North Dakota
| | - Jeremy M Hamm
- Department of Psychology, North Dakota State University, Fargo, North Dakota
| | - Matt Hanson
- Matt Hanson Racing, Castle Rock, Colorado; and
| | - Ryan McGrath
- Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, Fargo, North Dakota
- Fargo VA Healthcare System, Fargo, North Dakota
| |
Collapse
|
21
|
Lichti J, Maggioni MA, Balcerek B, Becker PN, Labes R, Gunga HC, Fähling M, Steinach M. The relevance of body composition assessment for the rating of perceived exertion in trained and untrained women and men. Front Physiol 2023; 14:1188802. [PMID: 37593237 PMCID: PMC10431604 DOI: 10.3389/fphys.2023.1188802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/30/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction: Mechanic power output (MPO) and oxygen consumption (VO2) reflect endurance capacity and are often stated relative to body mass (BM) but less often per skeletal muscle mass (SMM). Rating of perceived exertion (RPE) has previously shown conflicting results between sexes at submaximal intensities. Individual body composition, however, largely differs due to sex and training status. It was the aim of this study to evaluate RPE of untrained and trained individuals of both sexes considering body composition and to estimate whether RPE could be improved as a tool to determine endurance capacity. Methods: The study included 34 untrained adults (age 26.18 ± 6.34 years, 18 women) and 29 endurance trained (age 27.86 ± 5.19, 14 women) who were measured for body composition (InBody 770, InBody Europe B.V., Germany) and tested on a treadmill (Pulsar, H/P/Cosmos, Germany) for aerobic capacity (Metalyzer 3B, Cortex Biophysik GmbH, Germany) in an all-out exercise test applying the Bruce-protocol. VO2, MPO, heart rate (HR), and RPE were obtained at each exercise stage. VO2 and MPO were calculated per BM and SMM. RPE values were correlated with absolute VO2 and MPO, as well as relative to BM, and SMM. HR values and the parameters' standardized values served for comparison to standard procedures. Results: VO2 and MPO were higher in men compared to women and in trained compared to untrained participants. No differences between groups and sexes exist when VO2 and MPO were calculated per BM. When calculated per SMM, VO2 and MPO indicate opposite results already at low intensity stages of exercise test. RPE values had highest correlation with MPO per SMM (R2 = 0.8345) compared to absolute MPO (R2 = 0.7609), or MPO per BM (R2 = 0.8176). Agreement between RPE and MPO per SMM was greater than between RPE and HR (p = 0.008). Conclusion: Although RPE represents a subjective value at first glance, it was shown that RPE constitutes a valuable tool to estimate endurance capacity, which can be further enhanced if individual body composition is considered. Furthermore, MPO and VO2 should be considered relative to SMM. These findings might help to avoid over-exertion, especially among untrained people, by adjusting the training intensity for each subject according to the individual strain evaluated in an exercise test based on individual body composition.
Collapse
Affiliation(s)
- Julia Lichti
- Charité—Universitätsmedizin Berlin, Institute of Translational Physiology, Berlin, Germany
- Charité—Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Martina Anna Maggioni
- Charité—Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milan, Italy
| | - Björn Balcerek
- Charité—Universitätsmedizin Berlin, Institute of Translational Physiology, Berlin, Germany
| | - Philipp Nils Becker
- Charité—Universitätsmedizin Berlin, Institute of Translational Physiology, Berlin, Germany
| | - Robert Labes
- Charité—Universitätsmedizin Berlin, Institute of Translational Physiology, Berlin, Germany
| | - Hanns-Christian Gunga
- Charité—Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Michael Fähling
- Charité—Universitätsmedizin Berlin, Institute of Translational Physiology, Berlin, Germany
| | - Mathias Steinach
- Charité—Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| |
Collapse
|
22
|
Hovorka M, Simon D, Leo P, Prinz B, Nimmerichter A. Alterations in aerobic fitness and muscle deoxygenation during ramp incremental exercise in trained youth cyclists: a ~3-year longitudinal study. J Sports Sci 2023; 41:121-131. [PMID: 37037676 DOI: 10.1080/02640414.2023.2200565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Alterations of aerobic fitness and muscle deoxygenation during a ramp incremental exercise test (GXT) were assessed on two occasions within a time-frame of 2.9 ± 0.1y in competitive youth cyclists. Nine cyclists (age, 14.5 ± 1.1y; peak oxygen uptake (V˙O2peak), 62.6 ± 4.2 mL.min-1.kg-1) participated in this investigation. V˙O2peak, the gas exchange threshold (GET) and the respiratory compensation point (RCP), as well as the muscle deoxygenation response pattern were determined during a GXT using open circuit spirometry and near-infrared spectroscopy, respectively. T-tests and Pearson's correlations were used to assess effects of time on the dependent variables and relationships between changes of parameter estimates of aerobic fitness and the muscle deoxygenation response, respectively. Workrate and metabolic rate at GET (33 ± 20 and 42 ± 23%) and RCP (36 ± 20 and 40 ± 22%), and V˙O2peak (30 ± 18%) significantly increased throughout the study (P < 0.05). The muscle deoxygenation response showed a significant rightward shift from occasion one to two (P < 0.05). Alterations in the workrate/metabolic rate at RCP, and V˙O2peak, were correlated with alterations of the muscle deoxygenation response (R = 0.71-0.89, P < 0.05). Together, this is thought to indicate a superior muscle perfusion within the tissue of interrogation at the same metabolic rate on occasion two vs. one, which partially contributed to the improved aerobic fitness in the cyclists herein.
Collapse
Affiliation(s)
- Matthias Hovorka
- Training and Sports Sciences, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria
- Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
- Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
| | - Dieter Simon
- Training and Sports Sciences, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria
| | - Peter Leo
- Training and Sports Sciences, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria
- Department of Sports Science, University of Innsbruck, Innsbruck, Austria
| | - Bernhard Prinz
- Training and Sports Sciences, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria
| | - Alfred Nimmerichter
- Training and Sports Sciences, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria
- Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Gambardella J, Fiordelisi A, Cerasuolo FA, Buonaiuto A, Avvisato R, Viti A, Sommella E, Merciai F, Salviati E, Campiglia P, D’Argenio V, Parisi S, Bianco A, Spinelli L, Di Vaia E, Cuocolo A, Pisani A, Riccio E, Di Risi T, Ciccarelli M, Santulli G, Sorriento D, Iaccarino G. Experimental evidence and clinical implications of Warburg effect in the skeletal muscle of Fabry disease. iScience 2023; 26:106074. [PMID: 36879801 PMCID: PMC9984560 DOI: 10.1016/j.isci.2023.106074] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/19/2022] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
Skeletal muscle (SM) pain and fatigue are common in Fabry disease (FD). Here, we undertook the investigation of the energetic mechanisms related to FD-SM phenotype. A reduced tolerance to aerobic activity and lactate accumulation occurred in FD-mice and patients. Accordingly, in murine FD-SM we detected an increase in fast/glycolytic fibers, mirrored by glycolysis upregulation. In FD-patients, we confirmed a high glycolytic rate and the underutilization of lipids as fuel. In the quest for a tentative mechanism, we found HIF-1 upregulated in FD-mice and patients. This finding goes with miR-17 upregulation that is responsible for metabolic remodeling and HIF-1 accumulation. Accordingly, miR-17 antagomir inhibited HIF-1 accumulation, reverting the metabolic-remodeling in FD-cells. Our findings unveil a Warburg effect in FD, an anaerobic-glycolytic switch under normoxia induced by miR-17-mediated HIF-1 upregulation. Exercise-intolerance, blood-lactate increase, and the underlying miR-17/HIF-1 pathway may become useful therapeutic targets and diagnostic/monitoring tools in FD.
Collapse
Affiliation(s)
- Jessica Gambardella
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
- Interdepartmental Center of Research on Hypertension and Related Conditions (CIRIAPA), Federico II University, Naples, Italy
| | - Antonella Fiordelisi
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | | | - Antonietta Buonaiuto
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Roberta Avvisato
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Alessandro Viti
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | | | | | | | | | - Valeria D’Argenio
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Rome, Italy
- CEINGE- Advanced Biotechnologies, Naples, Italy
| | - Silvia Parisi
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Antonio Bianco
- Interdepartmental Center of Research on Hypertension and Related Conditions (CIRIAPA), Federico II University, Naples, Italy
| | - Letizia Spinelli
- Interdepartmental Center of Research on Hypertension and Related Conditions (CIRIAPA), Federico II University, Naples, Italy
| | - Eugenio Di Vaia
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Antonio Pisani
- Department of Public Health, Federico II University, Naples, Italy
| | - Eleonora Riccio
- Department of Public Health, Federico II University, Naples, Italy
| | | | - Michele Ciccarelli
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY, USA
| | - Daniela Sorriento
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
- Interdepartmental Center of Research on Hypertension and Related Conditions (CIRIAPA), Federico II University, Naples, Italy
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
- Interdepartmental Center of Research on Hypertension and Related Conditions (CIRIAPA), Federico II University, Naples, Italy
| |
Collapse
|
24
|
Jacobs N, Mos D, Bloemers FW, van der Laarse WJ, Jaspers RT, van der Zwaard S. Low myoglobin concentration in skeletal muscle of elite cyclists is associated with low mRNA expression levels. Eur J Appl Physiol 2023:10.1007/s00421-023-05161-z. [PMID: 36877252 DOI: 10.1007/s00421-023-05161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/14/2023] [Indexed: 03/07/2023]
Abstract
Myoglobin is essential for oxygen transport to the muscle fibers. However, measurements of myoglobin (Mb) protein concentrations within individual human muscle fibers are scarce. Recent observations have revealed surprisingly low Mb concentrations in elite cyclists, however it remains unclear whether this relates to Mb translation, transcription and/or myonuclear content. The aim was to compare Mb concentration, Mb messenger RNA (mRNA) expression levels and myonuclear content within muscle fibers of these elite cyclists with those of physically-active controls. Muscle biopsies were obtained from m. vastus lateralis in 29 cyclists and 20 physically-active subjects. Mb concentration was determined by peroxidase staining for both type I and type II fibers, Mb mRNA expression level was determined by quantitative PCR and myonuclear domain size (MDS) was obtained by immunofluorescence staining. Average Mb concentrations (mean ± SD: 0.38 ± 0.04 mM vs. 0.48 ± 0.19 mM; P = 0.014) and Mb mRNA expression levels (0.067 ± 0.019 vs. 0.088 ± 0.027; P = 0.002) were lower in cyclists compared to controls. In contrast, MDS and total RNA per mg muscle were not different between groups. Interestingly, in cyclists compared to controls, Mb concentration was only lower for type I fibers (P < 0.001), but not for type II fibers (P > 0.05). In conclusion, the lower Mb concentration in muscle fibers of elite cyclists is partly explained by lower Mb mRNA expression levels per myonucleus and not by a lower myonuclear content. It remains to be determined whether cyclists may benefit from strategies that upregulate Mb mRNA expression levels, particularly in type I fibers, to enhance their oxygen supply.
Collapse
Affiliation(s)
- Nina Jacobs
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Laboratory for Myology, Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Daniek Mos
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Laboratory for Myology, Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frank W Bloemers
- Department for Trauma Surgery, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Richard T Jaspers
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Laboratory for Myology, Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Stephan van der Zwaard
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
- Laboratory for Myology, Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Casado A, Foster C, Bakken M, Tjelta LI. Does Lactate-Guided Threshold Interval Training within a High-Volume Low-Intensity Approach Represent the "Next Step" in the Evolution of Distance Running Training? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3782. [PMID: 36900796 PMCID: PMC10000870 DOI: 10.3390/ijerph20053782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The aim of the present study was to describe a novel training model based on lactate-guided threshold interval training (LGTIT) within a high-volume, low-intensity approach, which characterizes the training pattern in some world-class middle- and long-distance runners and to review the potential physiological mechanisms explaining its effectiveness. This training model consists of performing three to four LGTIT sessions and one VO2max intensity session weekly. In addition, low intensity running is performed up to an overall volume of 150-180 km/week. During LGTIT sessions, the training pace is dictated by a blood lactate concentration target (i.e., internal rather than external training load), typically ranging from 2 to 4.5 mmol·L-1, measured every one to three repetitions. That intensity may allow for a more rapid recovery through a lower central and peripheral fatigue between high-intensity sessions compared with that of greater intensities and, therefore, a greater weekly volume of these specific workouts. The interval character of LGTIT allows for the achievement of high absolute training speeds and, thus, maximizing the number of motor units recruited, despite a relatively low metabolic intensity (i.e., threshold zone). This model may increase the mitochondrial proliferation through the optimization of both calcium and adenosine monophosphate activated protein kinase (AMPK) signaling pathways.
Collapse
Affiliation(s)
- Arturo Casado
- Center for Sport Studies, Rey Juan Carlos University, 28933 Madrid, Spain
| | - Carl Foster
- Department of Exercise and Sport Science, University of Wisconsin-LaCrosse, La Crosse, WI 54601, USA
| | | | - Leif Inge Tjelta
- Departament of Education and Sports Science, University of Stavanger, 4021 Stavanger, Norway
| |
Collapse
|
26
|
Penichet-Tomas A, Jimenez-Olmedo JM, Pueo B, Olaya-Cuartero J. Physiological and Mechanical Responses to a Graded Exercise Test in Traditional Rowing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3664. [PMID: 36834359 PMCID: PMC9964125 DOI: 10.3390/ijerph20043664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Maximum oxygen consumption and maximum power output are critical measures for training prescription in endurance sports such as rowing. The objective of this investigation was twofold: to compare the physiological and mechanical responses of female and male traditional rowers during a graded exercise test and to establish reference values in this specific rowing modality that have not yet been documented, unlike in Olympic rowing. Twenty-one highly trained/national level rowers participated in the study: 11 female (age: 30.1 ± 10.6 years, height: 167.3 ± 5.0 cm, body mass: 61.9 ± 4.9 kg) and 10 males (age: 33.5 ± 6.6 years, height: 180.8 ± 6.9 cm, body mass: 74.4 ± 6.9 kg). Significant differences (p < 0.05) were found in rowing performance between sexes, with a very large effect size (d = 7.2). The peak power output for the female rowers was 180.9 ± 11.4 W and 287.0 ± 17.7 W for the male rowers. The female rowers reached a VO2max of 51.2 ± 6.6 mL/kg/min at a mean of 174.5 ± 12.9 W, while the males' VO2max was 62.1 ± 4.7 mL/kg/min at a mean of 280.0 ± 20.5 W. These differences in VO2max and maximal aerobic capacity were significant (p < 0.05), with a large (d = 1.9) and very large (d = 6.2) effect size, respectively. A moderate association between VO2max, and rowing performance expressed in watts per kilogram of muscle mass was observed in the female rowers (r = 0.40, p = 0.228). For the male rowers, the correlation between VO2max and relative peak power output in watts per kilogram of body mass was strong (r = 0.68; p = 0.031). This study highlights the differences in the kinetics of ventilatory and mechanical parameters between female and male rowers and the importance of these differences for specific physical preparation in traditional rowing.
Collapse
Affiliation(s)
| | - Jose M. Jimenez-Olmedo
- Research Group in Health, Physical Activity, and Sports Technology (Health-Tech), Faculty of Education, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | | | | |
Collapse
|
27
|
Van Hooren B, Lepers R. A physiological comparison of the new-over 70 years of age-marathon record holder and his predecessor: A case report. Front Physiol 2023; 14:1122315. [PMID: 36860525 PMCID: PMC9969103 DOI: 10.3389/fphys.2023.1122315] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Purpose: This study assessed the body composition, cardiorespiratory fitness, fiber type and mitochondrial function, and training characteristics of a 71-year-old runner who broke the world record marathon of the men's 70-74 age category and held several other world records. The values were compared to those of the previous world-record holder. Methods: Body fat percentage was assessed using air-displacement plethysmography. V ˙ O 2 max , running economy, and maximum heart rate were measured during treadmill running. Muscle fiber typology and mitochondrial function were evaluated using a muscle biopsy. Results: Body fat percentage was 13.5%, V ˙ O 2 max was 46.6 ml kg-1 min-1, and maximum heartrate was 160 beats∙min-1. At the marathon pace (14.5 km h-1), his running economy was 170.5 ml kg-1 km-1. The gas exchange threshold and respiratory compensation point occurred at 75.7% and 93.9% of the V ˙ O 2 max , i.e., 13 km h-1 and 15 km h-1, respectively. The oxygen uptake at the marathon pace corresponded to 88.5% of V ˙ O 2 max . Vastus lateralis fiber content was 90.3% type I and 9.7% type II. Average distance was 139 km∙w-1 in the year prior to the record. Conclusion: The 71-year-old world-record holder marathon showed a relatively similar V ˙ O 2 max , lower percentage of V ˙ O 2 max at marathon pace, but a substantially better running economy than his predecessor. The better running economy may result from an almost double weekly training volume compared to the predecessor and a high type I fiber content. He trained every day in the last ∼1.5 years and achieved international performance in his age group category with a small (<5% per decade) age-related decline in marathon performance.
Collapse
Affiliation(s)
- Bas Van Hooren
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Department of Nutrition and Movement Sciences, Maastricht, Netherlands,*Correspondence: Bas Van Hooren,
| | - Romuald Lepers
- INSERM UMR1093, Cognition Action et Plasticité Sensorimotrice, Faculty of Sport Sciences, University of Bourgogne, Dijon, France
| |
Collapse
|
28
|
Quadriceps Muscle Morphology Is an Important Determinant of Maximal Isometric and Crank Torques of Cyclists. Sports (Basel) 2023; 11:sports11020022. [PMID: 36828307 PMCID: PMC9958782 DOI: 10.3390/sports11020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023] Open
Abstract
The aim of this study was to determine if quadriceps morphology [muscle volume (MV); cross-sectional area (CSA)], vastus lateralis (VL) muscle architecture, and muscle quality [echo intensity (ECHO)] can explain differences in knee extensor maximal voluntary isometric contraction (MVIC), crank torque (CT) and time-to-exhaustion (TTE) in trained cyclists. Twenty male competitive cyclists performed a maximal incremental ramp to determine their maximal power output (POMAX). Muscle morphology (MV; CSA), muscle architecture of VL and muscle quality (ECHO) of both quadriceps muscles were assessed. Subsequently, cyclists performed three MVICs of both knee extensor muscles and finally performed a TTE test at POMAX with CT measurement during TTE. Stepwise multiple regression results revealed right quadriceps MV determined right MVIC (31%) and CT (33%). Left MV determined CT (24%); and left VL fascicle length (VL-FL) determined MVIC (64%). However, quadriceps morphological variables do not explain differences in TTE. No significant differences were observed between left and right quadriceps muscle morphology (p > 0.05). The findings emphasize that quadriceps MV is an important determinant of knee extensor MVIC and CT but does not explain differences in TTE at POMAX. Furthermore, quadriceps morphological variables were similar between the left and right quadriceps in competitive cyclists.
Collapse
|
29
|
Fajloun Z, Abi Khattar Z, Kovacic H, Legros C, Sabatier JM. Why do Athletes Develop Very Severe or Fatal Forms of COVID after Intense Exercise Following SARS-CoV-2 Infection or Anti-COVID Vaccination? Infect Disord Drug Targets 2023; 23:e110123212563. [PMID: 36631923 DOI: 10.2174/1871526523666230111104355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023]
Affiliation(s)
- Ziad Fajloun
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon
| | - Ziad Abi Khattar
- Laboratory of Georesources, Geosciences, and Environment (L2GE), Microbiology/Tox-Ecotoxicology Team, Faculty of Sciences 2, Lebanese University, Campus Fanar, Jdeidet El-Matn, Beirut, P.O. Box 90656, Lebanon
- CNRS, INP, Inst Neurophysiopathol, Aix- Marseille Univ, Marseille 13385, France
| | - Hervé Kovacic
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13385 Marseille, France
| | - Christian Legros
- INSERM, CNRS, MITOVASC, Univ Angers, Team 2 CarMe, SFR ICAT, Angers 49000, France
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix- Marseille Univ, Marseille 13385, France
| |
Collapse
|
30
|
Spragg J, Leo P, Swart J. The Relationship between Physiological Characteristics and Durability in Male Professional Cyclists. Med Sci Sports Exerc 2023; 55:133-140. [PMID: 35977108 DOI: 10.1249/mss.0000000000003024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to determine if durability can be predicted from laboratory measures in a professional cycling population. METHODS Data were collected from 10 professional cyclists (age = 19.2 ± 0.8 yr, body mass = 70.4 ± 5.5 kg, height = 182.9 ± 4.0 cm, body mass index = 21.0 ± 1.3 kg·m -2 , V̇O 2max = 74.4 ± 4.8 mL·kg -1 ·min -1 , critical power [CP] = 5.6 ± 0.6 W·kg -1 , W' = 23.7 ± 5.4 kJ). Participants completed a laboratory test and a CP test on two occasions. The second occasion was preceded by a novel fatiguing protocol, which consisted of five bouts of 8-min of exercise at 105%-110% of CP. CP in a fatigued state was expressed as a percentage of the fresh CP and coined delta CP (∆CP). The Pearson product correlation analysis was conducted to determine the relationship between laboratory-based measures and ∆CP. RESULTS Significant positive relationships were found between ∆CP and relative peak power output ( r = 0.891, P < 0.001), relative maximum oxygen uptake ( r = 0.835, P = 0.003), relative power output at the second ventilatory threshold ( r = 0.738, P = 0.015), power output at the first ventilatory threshold ( r = 0.748, P = 0.013) and relative power output at the first ventilatory threshold ( r = 0.826, P = 0.003), gross efficiency at 300 W ( r = 0.869, P = 0.001), and at 200 W ( r = 0.792, P = 0.006). Significant negative relationships were found between ∆CP and carbohydrate oxidation at 200 W ( r = -0.702, P = 0.024). A multiple linear regression demonstrated that ∆CP can be predicted from laboratory measures ( R2 = 0.96-0.98, P < 0.001). CONCLUSIONS These findings demonstrate the physiological determinants of durability in a professional cycling population.
Collapse
Affiliation(s)
- James Spragg
- HPALS, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, SOUTH AFRICA
| | - Peter Leo
- Department of Sport Science, Division of Performance Physiology and Prevention, University of Innsbruck, Innsbruck, AUSTRIA
| | - Jeroen Swart
- HPALS, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, SOUTH AFRICA
| |
Collapse
|
31
|
Cerda-Kohler H, Haichelis D, Reuquén P, Miarka B, Homer M, Zapata-Gómez D, Aedo-Muñoz E. Training at moderate altitude improves submaximal but not maximal performance-related parameters in elite rowers. Front Physiol 2022; 13:931325. [PMID: 36311238 PMCID: PMC9614325 DOI: 10.3389/fphys.2022.931325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Maximal oxygen consumption (V̇O2max), physiological thresholds, and hemoglobin mass are strong predictors of endurance performance. High values of V̇O2max, maximal aerobic power (MAP), and power output at anaerobic thresholds are key variables in elite rowers. Endurance athletes often use altitude training as a strategy to improve performance. However, no clear evidence exists that training at natural altitude enhances sea-level performance in elite rowers. This study aimed to evaluate the effect of altitude training on rowing-performance parameters at sea level. The study was conducted on eleven rowers (Six females, five males) from the Chilean National Team during a 3-week moderate altitude training (∼2,900 m. a.s.l.) under the live high-train high (LHTH) model. It included a rowing ergometer maximal incremental test and blood analysis (pre and post-altitude). Gas exchange analysis was performed to measure V̇O2max, ventilatory thresholds (VTs) and rowing economy/efficiency (ECR/GE%). LHTL training improves performance-related variables at sea level (V̇Emax: 3.3% (95% CI, 1.2–5.5); hemoglobin concentration ([Hb]): 4.3% (95% CI, 1.7–6.9); hematocrit (%): 4.5% (95% CI, 0.9–8.2); RBC (red blood cells) count: 5.3% (95% CI, 2.3–8.2); power at VT2: 6.9% (95% CI, 1.7–12.1), V̇EVT2: 6.4% (95% CI, 0.4–12.4); power at VT1: 7.3% (95% CI, 1.3–13.3), V̇EVT1: 8.7% (95% CI, 1.6–15.8)) and economy/efficiency-related variables (ECRVT2: 5.3% (95% CI, −0.6 to −10.0); GE(%): 5.8% (95% CI, 0.8–10.7)). The LHTH training decreased breathing economy at MAP (−2.8% (95% CI, 0.1–5.6)), pVT2 (−9.3% (95% CI, −5.9 to −12.7)), and pVT1 (−9.3% (95% CI, −4.1 to −14.4)). Non-significant changes were found for V̇O2max and MAP. This study describes the effects of a 3-week moderate altitude (LHTH training) on performance and economy/efficiency-related variables in elite rowers, suggesting that it is an excellent option to induce positive adaptations related to endurance performance.
Collapse
Affiliation(s)
- Hugo Cerda-Kohler
- Escuela de Ciencias del Deporte y Actividad Física, Facultad de Salud, Universidad Santo Tomás, Santiago, Chile
- Departamento de Educación Física, eporte y Recreación, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
- Laboratory of Psychophysiology and Performance in Sports and Combats, Postgraduate Program in Physical Education, School of Physical Education and Sport, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Unidad de Fisiología del Ejercicio, Centro de Innovación, Clínica MEDS, Santiago, Chile
| | - Danni Haichelis
- Unidad de Fisiología del Ejercicio, Centro de Innovación, Clínica MEDS, Santiago, Chile
- Unidad de Ciencias Aplicadas al Deporte, Instituto Nacional de Deportes, Santiago, Chile
| | - Patricia Reuquén
- Unidad de Ciencias Aplicadas al Deporte, Instituto Nacional de Deportes, Santiago, Chile
- Escuela de Ciencias de la Actividad Física, el Deporte y la Salud, Universidad de Santiago de Chile, Santiago, Chile
- Laboratorio de Ciencias de la Actividad Física, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Bianca Miarka
- Laboratory of Psychophysiology and Performance in Sports and Combats, Postgraduate Program in Physical Education, School of Physical Education and Sport, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mark Homer
- School of Human and Social Sciences, Buckinghamshire New University, Buckinghamshire, United Kingdom
| | - Daniel Zapata-Gómez
- Unidad de Ciencias Aplicadas al Deporte, Instituto Nacional de Deportes, Santiago, Chile
| | - Esteban Aedo-Muñoz
- Laboratory of Psychophysiology and Performance in Sports and Combats, Postgraduate Program in Physical Education, School of Physical Education and Sport, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Unidad de Ciencias Aplicadas al Deporte, Instituto Nacional de Deportes, Santiago, Chile
- Escuela de Ciencias de la Actividad Física, el Deporte y la Salud, Universidad de Santiago de Chile, Santiago, Chile
- *Correspondence: Esteban Aedo-Muñoz,
| |
Collapse
|
32
|
Liu Y, Christensen PM, Hellsten Y, Gliemann L. Effects of Exercise Training Intensity and Duration on Skeletal Muscle Capillarization in Healthy Subjects: A Meta-analysis. Med Sci Sports Exerc 2022; 54:1714-1728. [PMID: 35522254 DOI: 10.1249/mss.0000000000002955] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to investigate the effect of intensity and duration of continuous and interval exercise training on capillarization in skeletal muscle of healthy adults. METHODS PubMed and Web of Science were searched from inception to June 2021. Eligibility criteria for studies were endurance exercise training >2 wk in healthy adults, and the capillary to fiber ratio (C:F) and/or capillary density (CD) reported. Meta-analyses were performed, and subsequent subgroup analyses were conducted by the characteristics of participants and training scheme. RESULTS Fifty-seven trials from 38 studies were included (10%/90%, athletic/sedentary). C:F was measured in 391 subjects from 47 trials, whereas CD was measured in 428 subjects from 50 trials. Exercise training increased C:F (mean difference, 0.33 (95% confidence interval, 0.30-0.37)) with low heterogeneity ( I2 = 45.08%) and CD (mean difference, 49.8 (36.9-62.6) capillaries per millimeter squared) with moderate heterogeneity ( I2 = 68.82%). Compared with low-intensity training (<50% of maximal oxygen consumption (V̇O 2max )), 21% higher relative change in C:F was observed after continuous moderate-intensity training (50%-80% of V̇O 2max ) and 54% higher change after interval training with high intensity (80%-100% of V̇O 2max ) in sedentary subjects. The magnitude of capillary growth was not dependent on training intervention duration. In already trained subjects, no additional increase in capillarization was observed with various types of training. CONCLUSIONS In sedentary subjects, continuous moderate-intensity training and interval training with high intensity lead to increases in capillarization, whereas low-intensity training has less effect. Within the time frame studied, no effect on capillarization was established regarding training duration in sedentary subjects. The meta-analysis highlights the need for further studies in athlete groups to discern if increased capillarization can be obtained, and if so, which combination is optimal (time vs intensity).
Collapse
Affiliation(s)
| | | | - Ylva Hellsten
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, DENMARK
| | - Lasse Gliemann
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, DENMARK
| |
Collapse
|
33
|
Ankle-Brachial Index and Arterial Stiffness, Modulate the Exertional Capacity of High-Frequency Training Athletes. J Cardiovasc Dev Dis 2022; 9:jcdd9090312. [PMID: 36135457 PMCID: PMC9506274 DOI: 10.3390/jcdd9090312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Ankle-brachial index and arterial stiffness are associated with leg function in the elderly and in patients with peripheral arterial disease. Little is known about the meaning of these parameters in young and trained subjects and how they are related to physical performance. The main objective was to evaluate the mediating role of arterial stiffness and ankle-brachial index in physical performance. In a cross-sectional, case-control study, 240 male athletes were consecutively enrolled from the Laboratory of Cardiology and Sports Medicine, “G. d’Annunzio” University (Italy). All the subjects underwent the examination protocol for the annual medical evaluation for sport participation. Soccer (football) players compared to runners showed a lower level of ankle-brachial index, higher arterial stiffness, and lower systolic and diastolic blood pressure. In the treadmill stress test, soccer players compared to runners showed a greater maximal aerobic capacity. Differences in cardiovascular performance between soccer players and runners were mediated by better arterial stiffness and low level of ankle-brachial index; the estimated effect was 0.11 ± 0.05 and 0.24 ± 0.06, respectively. Vigorous strength training drops blood pressure and increases arterial stiffness. Taken together, our findings would seem to suggest that ABI and CAVI could be used as markers for athletes’ performance.
Collapse
|
34
|
Alejo LB, Montalvo-Pérez A, Valenzuela PL, Revuelta C, Ozcoidi LM, de la Calle V, Mateo-March M, Lucia A, Santalla A, Barranco-Gil D. Comparative analysis of endurance, strength and body composition indicators in professional, under-23 and junior cyclists. Front Physiol 2022; 13:945552. [PMID: 35991188 PMCID: PMC9388719 DOI: 10.3389/fphys.2022.945552] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: To compare endurance, strength and body composition indicators between cyclists of three different competition age categories. Methods: Fifty-one male road cyclists classified as either junior (n = 13, age 16.4 ± 0.5 years), under-23 [(U23), n = 24, 19.2 ± 1.3 years] or professional (n = 14, 26.1 ± 4.8 years) were studied. Endurance (assessed through a maximal incremental test and an 8-minute time-trial), strength/power (assessed through incremental loading tests for the squat, lunge and hip thrust exercises) and body composition (assessed through dual energy X-ray absorptiometry) were determined on three different testing sessions. Results: U23 and, particularly professional, cyclists attained significantly (p < 0.05) higher values than juniors for most of the analyzed endurance indicators [time-trial performance, maximum oxygen uptake (VO2max), peak power output (PPO), respiratory compensation point (RCP), and ventilatory threshold (VT)]. Significant differences (p < 0.05) between U23 and professionals were also found for time-trial performance, PPO and VT, but not for other markers such as VO2max or RCP. Professional cyclists also showed significantly (p < 0.05) lower relative fat mass and higher muscle mass levels than U23 and, particularly, juniors. No consistent differences between age categories were found for muscle strength/power indicators. Conclusion: Endurance (particularly time-trial performance, PPO and VT) and body composition (fat and muscle mass) appear as factors that best differentiate between cyclists of different age categories, whereas no consistent differences are found for muscle strength/power. These findings might help in performance prediction and/or talent identification and may aid in guiding coaches in the design of training programs focused on improving those variables that appear more determinant.
Collapse
Affiliation(s)
- Lidia B. Alejo
- Physical Activity and Health Research Group (PaHerg), Research Institute of Hospital 12 de Octubre (imas12), Madrid, Spain
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Almudena Montalvo-Pérez
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
- *Correspondence: Almudena Montalvo-Pérez,
| | - Pedro L. Valenzuela
- Physical Activity and Health Research Group (PaHerg), Research Institute of Hospital 12 de Octubre (imas12), Madrid, Spain
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Carlos Revuelta
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | | | - Manuel Mateo-March
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
- Sport Science Department, Universidad Miguel Hernández, Elche, Spain
| | - Alejandro Lucia
- Physical Activity and Health Research Group (PaHerg), Research Institute of Hospital 12 de Octubre (imas12), Madrid, Spain
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Alfredo Santalla
- Department of Sport and Computer Science, Section of Physical Education and Sports, Faculty of Sport, Universidad Pablo de Olavide, Sevilla, Spain
| | | |
Collapse
|
35
|
Bækken LV, Holden G, Gjelstad A, Lauritzen F. Ten years of collecting hematological athlete biological passport samples—perspectives from a National Anti-doping Organization. Front Sports Act Living 2022; 4:954479. [PMID: 35928963 PMCID: PMC9343672 DOI: 10.3389/fspor.2022.954479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022] Open
Abstract
The hematological module of the Athlete Biological Passport (ABP) aims to reveal blood doping indirectly by looking at selected biomarkers of doping over time. For Anti-Doping Organizations (ADOs), the ABP is a vital tool in the fight against doping in sports through improved target testing and analysis, investigations, deterrence, and as indirect evidence for use of prohibited methods or substances. The physiological characteristics of sport disciplines is an important risk factor in the overall risk assessment and when implementing the hematological module. Sharing of experiences with implementing the hematological ABP between ADOs is key to further strengthen and extend its use. In this study, we present 10 years of experience with the hematological ABP program from the perspectives of a National ADO with special attention to sport disciplines' physiological characteristics as a potential risk factor for blood doping. Not surprisingly, most samples were collected in sport disciplines where the aerobic capacity is vital for performance. The study highlights strengths in Anti-Doping Norway's testing program but also areas that could be improved. For example, it was shown that samples were collected both in and out of season in a subset of the data material that included three popular sports in Norway (Cross-Country Skiing, Nordic Combined, and Biathlon), however, from the total data material it was clear that athletes were more likely to be tested out of competition and on certain days of the week and times of the day. The use of doping control officers with a flexible time schedule and testing outside an athlete's 60 min time-slot could help with a more even distribution during the week and day, and thus reduce the predictability of testing. In addition to promoting a discussion on testing strategies, the study can be used as a starting point for other ADOs on how to examine their own testing program.
Collapse
Affiliation(s)
- Lasse V. Bækken
- Nordic Athlete Passport Management Unit, Norwegian Doping Control Laboratory, Department of Pharmacology, Oslo University Hospital, Oslo, Norway
- *Correspondence: Lasse V. Bækken
| | - Geir Holden
- Department of Testing, Investigations and Legal, Anti-doping Norway, Oslo, Norway
| | - Astrid Gjelstad
- Science and Medicine, Anti-doping Norway, Oslo, Norway
- Section of Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway
| | | |
Collapse
|
36
|
Valenzuela PL, Mateo-March M, Muriel X, Zabala M, Lucia A, Barranco-Gil D, Millet GP, Brocherie F, Burtscher J, Burtscher M, Ryan BJ, Gioscia-Ryan RA, Perrey S, Rodrigo-Carranza V, González-Mohíno F, González-Ravé JM, Santos-Concejero J, Denadai BS, Greco CC, Casado A, Foster C, Mazzolari R, Baldrighi GN, Pastorio E, Malatesta D, Patoz A, Borrani F, Ives SJ, DeBlauw JA, Dantas de Lucas R, Borszcz FK, Fernandes Nascimento EM, Antonacci Guglielmo LG, Turnes T, Jaspers RT, van der Zwaard S, Lepers R, Louis J, Meireles A, de Souza HLR, de Oliveira GT, dos Santos MP, Arriel RA, Marocolo M, Hunter B, Meyler S, Muniz-Pumares D, Ferreira RM, Sogard AS, Carter SJ, Mickleborough TD, Saborosa GP, de Oliveira Freitas RD, Alves dos Santos PS, de Souza Ferreira JP, de Assis Manoel F, da Silva SF, Triska C, Karsten B, Sanders D, Lipksi ES, Spindler DJ, Hesselink MKC, Zacca R, Goethel MF, Pyne DB, Wood BM, Allen PE, Gabelhausen JL, Keller AM, Lige MT, Oumsang AS, Smart GL, Paris HL, Dewolf AH, Toffoli G, Martinez-Gonzalez B, Marcora SM, Terson de Paleville D, Fernandes RJ, Soares SM, Abraldes JA, Matta G, Bossi AH, McCarthy DG, Bostad W, Gibala J, Vagula M. Commentaries on Viewpoint: Using V̇o 2max as a marker of training status in athletes - can we do better? J Appl Physiol (1985) 2022; 133:148-164. [PMID: 35819399 DOI: 10.1152/japplphysiol.00224.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Pedro L Valenzuela
- Grupo de Investigación en Actividad física y Salud (PaHerg), Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Manuel Mateo-March
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain,Sport Science Department. Universidad Miguel Hernández, Elche, Spain
| | - Xabier Muriel
- Human Performance and Sports Science Laboratory, Faculty of Sport Sciences, University of Murcia, Murcia, Spain
| | - Mikel Zabala
- Department of Physical Education & Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Alejandro Lucia
- Grupo de Investigación en Actividad física y Salud (PaHerg), Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain,Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France
| | - Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Benjamin J Ryan
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | | | - Stephane Perrey
- EuroMov Digital Health in Motion, University of Montpellier, Montpellier, France
| | | | - Fernando González-Mohíno
- Sport Training Lab, University of Castilla-La Mancha, Toledo, Spain,Facultad de Ciencias de la Vida y de la Naturaleza, Universidad Nebrija, Madrid, Spain
| | | | - Jordan Santos-Concejero
- Department of Physical Education and Sport, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Benedito S Denadai
- Human Performance Laboratory, São Paulo State University, Rio Claro, Brazil
| | - Camila C Greco
- Human Performance Laboratory, São Paulo State University, Rio Claro, Brazil
| | - Arturo Casado
- Center for Sport Studies, Rey Juan Carlos University, Madrid, Spain
| | - Carl Foster
- University of Wisconsin-La Crosse, La Crosse, Wisconsin
| | - Raffaele Mazzolari
- Department of Physical Education and Sport, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giulia Nicole Baldrighi
- Department of Brain and Behavioural Sciences − Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
| | - Elisa Pastorio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Davide Malatesta
- Institute of Sport Sciences of University of Lausanne (ISSUL), University of Lausanne, Lausanne, Switzerland
| | - Aurélien Patoz
- Institute of Sport Sciences of University of Lausanne (ISSUL), University of Lausanne, Lausanne, Switzerland
| | - Fabio Borrani
- Institute of Sport Sciences of University of Lausanne (ISSUL), University of Lausanne, Lausanne, Switzerland
| | - Stephen J Ives
- Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, New York
| | - Justin A DeBlauw
- Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, New York
| | | | | | | | | | - Tiago Turnes
- Physical Effort Laboratory, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Richard T Jaspers
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands,Laboratory for Myology, Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Stephan van der Zwaard
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands,Laboratory for Myology, Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands,Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands
| | - Romuald Lepers
- INSERM UMR1093 CAPS, Faculty of Sport Sciences, University of Bourgogne Franche-Comté, Dijon, France
| | - Julien Louis
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Anderson Meireles
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Hiago L. R. de Souza
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Géssyca T de Oliveira
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Marcelo P dos Santos
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Rhaí A Arriel
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Moacir Marocolo
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - B Hunter
- Department of Psychology, Sport, and Geography, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - S Meyler
- Department of Psychology, Sport, and Geography, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - D Muniz-Pumares
- Department of Psychology, Sport, and Geography, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Renato M Ferreira
- Aquatic Activities Research Group, Department of Physical Education, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Abigail S Sogard
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana
| | - Stephen J Carter
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
| | - Timothy D Mickleborough
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana
| | - Guilherme Pereira Saborosa
- Study Group and Research in Neuromuscular Responses, University of Lavras, Lavras, Brazil,Postgraduate Program in Nutrition and Health, University of Lavras, Lavras, Brazil
| | - Raphael Dinalli de Oliveira Freitas
- Study Group and Research in Neuromuscular Responses, University of Lavras, Lavras, Brazil,Postgraduate Program in Nutrition and Health, University of Lavras, Lavras, Brazil
| | - Paula Souza Alves dos Santos
- Study Group and Research in Neuromuscular Responses, University of Lavras, Lavras, Brazil,Postgraduate Program in Nutrition and Health, University of Lavras, Lavras, Brazil
| | - João Pedro de Souza Ferreira
- Study Group and Research in Neuromuscular Responses, University of Lavras, Lavras, Brazil,Postgraduate Program in Nutrition and Health, University of Lavras, Lavras, Brazil
| | | | - Sandro Fernandes da Silva
- Study Group and Research in Neuromuscular Responses, University of Lavras, Lavras, Brazil,Postgraduate Program in Nutrition and Health, University of Lavras, Lavras, Brazil
| | - Christoph Triska
- Institute of Sport Science, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria,Leistungssport Austria, Brunn am Gebirge, Austria
| | - Bettina Karsten
- European University of Applied Sciences (EUFH), Berlin, Germany
| | - Dajo Sanders
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Elliot S Lipksi
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - David J Spindler
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Matthijs K. C. Hesselink
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Rodrigo Zacca
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto (FADEUP), Porto, Portugal,Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Márcio Fagundes Goethel
- Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, Porto, Portugal,Centre of Research, Education, Innovation, and Intervention in Sport (CIFI2D), Faculty of Sports, University of Porto, Porto, Portugal
| | - David Bruce Pyne
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, Canberra, Australia
| | - Brayden M Wood
- Exercise Physiology Laboratory, Department of Sports Medicine, Pepperdine University, Malibu, California
| | - Peyton E Allen
- Exercise Physiology Laboratory, Department of Sports Medicine, Pepperdine University, Malibu, California
| | - Jaden L Gabelhausen
- Exercise Physiology Laboratory, Department of Sports Medicine, Pepperdine University, Malibu, California
| | - Alexandra M Keller
- Exercise Physiology Laboratory, Department of Sports Medicine, Pepperdine University, Malibu, California
| | - Mast T Lige
- Exercise Physiology Laboratory, Department of Sports Medicine, Pepperdine University, Malibu, California
| | - Alicia S Oumsang
- Exercise Physiology Laboratory, Department of Sports Medicine, Pepperdine University, Malibu, California
| | - Greg L Smart
- Exercise Physiology Laboratory, Department of Sports Medicine, Pepperdine University, Malibu, California
| | - Hunter L Paris
- Exercise Physiology Laboratory, Department of Sports Medicine, Pepperdine University, Malibu, California
| | - Arthur H Dewolf
- Laboratory of Physiology and Biomechanics of Human Locomotion, Institute of Neuroscience, Université catholique de Louvain-la-Neuve, Louvain-la-Neuve, Belgium
| | - Guillaume Toffoli
- Department for Life Quality Studies, University of Bologna, Bologna, Italy
| | | | - Samuele M Marcora
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Ricardo J Fernandes
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto (FADEUP), Porto, Portugal,Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, Porto, Portugal
| | - Susana M Soares
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto (FADEUP), Porto, Portugal,Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, Porto, Portugal
| | - J. Arturo Abraldes
- Research Group MS&SPORT, Faculty of Sports Sciences, University of Murcia, Murcia, Spain
| | - Guilherme Matta
- Faculty of Science, Engineering and Social Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Arthur Henrique Bossi
- MeFit Prehabilitation Service, Medway NHS Foundation Trust, Gillingham, United Kingdom
| | - D G McCarthy
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - W Bostad
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - J Gibala
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
37
|
Foster C, Casado A, Esteve-Lanao J, Haugen T, Seiler S. Polarized Training Is Optimal for Endurance Athletes. Med Sci Sports Exerc 2022; 54:1028-1031. [PMID: 35136001 DOI: 10.1249/mss.0000000000002871] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Carl Foster
- University of Wisconsin-La Crosse, La Crosse, WI
| | - Arturo Casado
- Centre for Sport Studies, Rey Juan Carlos University, Madrid, SPAIN
| | | | | | | |
Collapse
|