1
|
Yang L, Xing W, Shi Y, Hu M, Li B, Hu Y, Zhang G. Stress-induced NLRP3 inflammasome activation and myelin alterations in the hippocampus of PTSD rats. Neuroscience 2024; 555:156-166. [PMID: 39043314 DOI: 10.1016/j.neuroscience.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Inflammatory and myelin changes may contribute to the pathophysiology of post-traumatic stress disorder (PTSD). The NOD-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3), a brain inflammasome, is activated in the hippocampus of mice with PTSD. In other psychiatric disorders, NLRP3 expression has been associated with axonal myelination and demyelination. However, the association between NLRP3 and myelin in rats with PTSD remains unclear. Therefore, this study aims to investigate the relationship between the NLRP3 inflammasome and myelin in the hippocampus of rats with PTSD. A rat model of post-traumatic stress disorder was established using the single-prolonged stress (SPS) approach. Hippocampal tissues were collected for the detection of NLRP3 inflammasome-associated proteins and myelin basic protein at 3, 7, and 14 days after SPS. To further explore the relationship between NLRP3 and myelin, the NLRP3-specific inhibitor MCC950 was administered intraperitoneally to rats starting 72 h before SPS, and then alterations in NLRP3 inflammasome-associated proteins and myelin were observed in the PTSD and control groups. We found that NLRP3 and downstream related proteins were activated in the hippocampus of rats 3 days after SPS, and the myelin content in the hippocampus increased after SPS stress. MCC950 reduced the expression of NLRP3-related pathway proteins, improved anxiety behaviour and spatial learning memory impairment, and inhibited the increase in myelin content in the hippocampal region of rats after SPS. In conclusion the study indicates that NLRP3 has a significant role in the hippocampal region of rats with PTSD. Inhibition of the NLRP3 inflammasome could be a potential target for treating PTSD.
Collapse
Affiliation(s)
- Luodong Yang
- First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Wenlong Xing
- First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Yan Shi
- Shihezi University, Shihezi, China
| | - Min Hu
- First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Bin Li
- Shihezi University, Shihezi, China
| | - Yuanyuan Hu
- First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Guiqing Zhang
- First Affiliated Hospital of Shihezi University, Shihezi, China.
| |
Collapse
|
2
|
Monti K, Conkright MW, Eagle SR, Lawrence DW, Dretsch LM. The role of nutrition in mild traumatic brain injury rehabilitation for service members and veterans. NeuroRehabilitation 2024:NRE230241. [PMID: 39269857 DOI: 10.3233/nre-230241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
BACKGROUND Veterans Affairs and the Department of Defense (DOD) acknowledge that nutrition may be a modifier of mild traumatic brain injury (TBI) sequelae. Military clinicians are considering nutritional supplements and dietary interventions when managing patients with mild TBI. Therefore, clinicians should be familiar with the current evidence for nutritional interventions in mild TBI and special considerations related to the military lifestyle. OBJECTIVE This narrative review aims to summarize the existing evidence surrounding the role of special diets and select nutrients in mild TBI outcomes, gut microbiota changes, and special considerations for Service members and Veterans recovering from mild TBI. METHODS We conducted a literature review in PubMed and Google Scholar limited to nutritional interventions and nine topics with primary focus on mild TBI, although we included some articles related to moderate-to-severe TBI where relevant: 1) ketogenic diet, 2) Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet, 3) omega-3 fatty acids, 4) creatine, 5) vitamin D, 6) weight management, 7) gut microbiota, 8) caffeine, and 9) alcohol. We summarized key findings and safety factors where appropriate for each intervention. We also identified nutritional supplement safety and operational rations considerations and areas in need of further research. RESULTS Preclinical studies and early human trials suggest that the specific nutrients and diets discussed in the current article may offer neuroprotection or benefit during mild TBI rehabilitation. Omega-3 fatty acids, creatine, and vitamin D are generally safe when taken within recommended guidelines. CONCLUSION More evidence is needed to support nutritional recommendations for enhancing neuroprotection and mitigating mild TBI symptoms in humans. The DOD's Warfighter Nutrition Guide recommends a whole food diet rich in antioxidants, phytonutrients, omega-3 fatty acids, micronutrients, probiotics, and fiber to optimize long-term health and performance.
Collapse
Affiliation(s)
- Katrina Monti
- Traumatic Brain Injury Center of Excellence, Silver Spring, MD, USA
- CICONIX LLC, Annapolis, MD, USA
- Madigan Army Medical Center, Joint Base Lewis-McChord, Tacoma, WA, USA
| | - Maj William Conkright
- Madigan Army Medical Center, Joint Base Lewis-McChord, Tacoma, WA, USA
- Army - Baylor Graduate Program in Nutrition, Joint Base San Antonio, San Antonio, TX, USA
| | - Shawn R Eagle
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David W Lawrence
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ltc Michael Dretsch
- U.S. Army Medical Research Directorate-West, Joint Base Lewis-McChord, Tacoma, WA, USA
| |
Collapse
|
3
|
Li P, Liu L, Liu S, Lu Z, Halushka PV, Sidles SJ, LaRue AC, Wang Z, Fan H. FLI1 in PBMCs contributes to elevated inflammation in combat-related posttraumatic stress disorder. Front Psychiatry 2024; 15:1436690. [PMID: 39140108 PMCID: PMC11320135 DOI: 10.3389/fpsyt.2024.1436690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/05/2024] [Indexed: 08/15/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating psychiatric condition with significant public health implications that arise following exposure to traumatic events. Recent studies highlight the involvement of immune dysregulation in PTSD, characterized by elevated inflammatory markers. However, the precise mechanisms underlying this immune imbalance remain unclear. Previous research has implicated friend leukemia virus integration 1 (FLI1), an erythroblast transformation-specific (ETS) transcription factor, in inflammatory responses in sepsis and Alzheimer's disease. Elevated FLI1 levels in peripheral blood mononuclear cells (PBMCs) have been linked to lupus severity. Yet, FLI1's role in PTSD-related inflammation remains unexplored. In our study, PBMCs were collected from Veterans with and without PTSD. We found significantly increased FLI1 expression in PBMCs from PTSD-afflicted Veterans, particularly in CD4+ T cells, with no notable changes in CD8+ T cells. Stimulation with LPS led to heightened FLI1 expression and elevated levels of inflammatory cytokines IL-6 and IFNγ in PTSD PBMCs compared to controls. Knockdown of FLI1 using Gapmers in PTSD PBMCs resulted in a marked reduction in inflammatory cytokine levels, restoring them to control group levels. Additionally, co-culturing PBMCs from both control and PTSD Veterans with the human brain microglia cell line HMC3 revealed increased inflammatory mediator levels in HMC3. Remarkably, HMC3 cells co-cultured with PTSD PBMCs treated with FLI1 Gapmers exhibited significantly lower inflammatory mediator levels compared to control Gapmer-treated PTSD PBMCs. These findings suggest that suppressing FLI1 may rebalance immune activity in PBMCs and mitigate microglial activation in the brain. Such insights could provide novel therapeutic strategies for PTSD.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
- Research Service, Ralph H. Johnson Department of Veterans Affairs Health Care System, Charleston, SC, United States
| | - Liu Liu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Shufeng Liu
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Zhongyang Lu
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Perry V. Halushka
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Department of Pharmacology, Medical University of South Carolina, Charleston, SC, United States
| | - Sara J. Sidles
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
- Research Service, Ralph H. Johnson Department of Veterans Affairs Health Care System, Charleston, SC, United States
| | - Amanda C. LaRue
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
- Research Service, Ralph H. Johnson Department of Veterans Affairs Health Care System, Charleston, SC, United States
| | - Zhewu Wang
- Research Service, Ralph H. Johnson Department of Veterans Affairs Health Care System, Charleston, SC, United States
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
4
|
Ensink JBM, Henneman P, Venema A, Zantvoord JB, den Kelder RO, Mannens MMAM, Lindauer RJL. Distinct saliva DNA methylation profiles in relation to treatment outcome in youth with posttraumatic stress disorder. Transl Psychiatry 2024; 14:309. [PMID: 39060246 PMCID: PMC11282249 DOI: 10.1038/s41398-024-02892-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 07/28/2024] Open
Abstract
In youth with posttraumatic stress disorder (PTSD) non-response rates after treatment are often high. Epigenetic mechanisms such as DNA methylation (DNAm) have previously been linked to PTSD pathogenesis, additionally DNAm may affect response to (psychological) therapies. Besides investigating the direct link between DNAm and treatment response, it might be helpful to investigate the link between DNAm and previously associated biological mechanisms with treatment outcome. Thereby gaining a deeper molecular understanding of how psychotherapy (reflecting a change in the environment) relates to epigenetic changes and the adaptability of individuals. To date, limited research is done in clinical samples and no studies have been conducted in youth. Therefore we conducted a study in a Dutch cohort of youth with and without PTSD (n = 87, age 8-18 years). We examined the cross-sectional and longitudinal changes of saliva-based genome-wide DNA methylation (DNAm) levels, and salivary cortisol secretion. The last might reflect possible abbreviations on the hypothalamic-pituitary- adrenal (HPA) axis. The HPA-axis is previously linked to DNAm and the development and recovery of PTSD. Youth were treated with 8 sessions of either Eye Movement Reprocessing Therapy (EMDR) or Trauma Focused Cognitive behavioral Therapy (TF-CBT). Our epigenome wide approach showed distinct methylation between treatment responders and non-responders on C18orf63 gene post-treatment. This genomic region is related to the PAX5 gene, involved in neurodevelopment and inflammation response. Additionally, our targeted approach indicated that there were longitudinal DNAm changes in successfully treated youth at the CRHR2 gene. Methylation at this gene was further correlated with cortisol secretion pre- and post-treatment. Awaiting replication, findings of this first study in youth point to molecular pathways involved in stress response and neuroplasticity to be associated with treatment response.
Collapse
Affiliation(s)
- Judith B M Ensink
- Levvel, Academic Center for Child and Adolescent Psychiatry, Amsterdam, The Netherlands.
- Department of Child and Adolescent Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health, Amsterdam, The Netherlands.
- Amsterdam UMC, Department of Human Genetics, Genome Diagnostics laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands.
| | - Peter Henneman
- Amsterdam UMC, Department of Human Genetics, Genome Diagnostics laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Andrea Venema
- Amsterdam UMC, Department of Human Genetics, Genome Diagnostics laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Jasper B Zantvoord
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Public Health, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Rosanne Op den Kelder
- Levvel, Academic Center for Child and Adolescent Psychiatry, Amsterdam, The Netherlands
- Research Institute of Child Development and Education, Amsterdam, The Netherlands, Amsterdam UMC, University of, Amsterdam, The Netherlands
| | - Marcel M A M Mannens
- Amsterdam UMC, Department of Human Genetics, Genome Diagnostics laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Ramón J L Lindauer
- Levvel, Academic Center for Child and Adolescent Psychiatry, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Ellis R, Sinnott S, Karam K, Assefa A, Osborne M, Seligowski A. Impact of cognitive behavioural therapy on neural, inflammatory, & autonomic markers in a sample with PTSD and cardiovascular risk: protocol for a pilot randomised controlled trial. Eur J Psychotraumatol 2024; 15:2378618. [PMID: 39045795 PMCID: PMC11271075 DOI: 10.1080/20008066.2024.2378618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024] Open
Abstract
Background: Individuals with posttraumatic stress disorder (PTSD) are at heightened risk for cardiovascular disease (CVD) compared to the general population. Inflammation and autonomic dysfunction are candidate mechanisms of CVD risk in PTSD; however, these mechanisms have not been well-characterised in the PTSD-CVD link. Further, these mechanisms may operate through altered stress-related neural activity (SNA). Yet, it remains unknown if changes in PTSD are associated with changes in CVD risk mechanisms.Objective: This manuscript describes the design and procedures of a pilot randomised controlled trial to assess the impact of a first-line treatment for PTSD (Cognitive Processing Therapy; CPT) versus waitlist control on mechanisms of CVD risk. Further, this study will test the hypothesis that CPT reduces CVD risk through its effects on inflammation and autonomic function and that these changes are driven by changes in SNA.Methods: Adults with PTSD and CVD risk (N = 30) will be randomised to CPT or waitlist control. Participants complete two laboratory visits (baseline and post-treatment) that include surveys, brain and peripheral imaging via 18F-fluorodeoxyglucose positron emission tomography (FDG-PET), and resting measures of autonomic function. Primary outcomes include arterial inflammation and heart rate variability. Secondary outcomes include leukopoiesis (bone marrow uptake), heart rate, and blood pressure. The indirect effects of PTSD treatment on changes in inflammation and autonomic function through SNA will also be examined.Conclusions: This study seeks to characterise candidate neuroimmune mechanisms of the PTSD-CVD link to identify treatment targets and develop personalised interventions to reduce CVD events in PTSD populations.Trial registration: ClinicalTrials.gov identifier: NCT06429293..
Collapse
Affiliation(s)
- Robyn Ellis
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Sinead Sinnott
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Krystel Karam
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Alula Assefa
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Osborne
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Antonia Seligowski
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Millot F, Endomba FT, Forestier N. Light Therapy in Post-Traumatic Stress Disorder: A Systematic Review of Interventional Studies. J Clin Med 2024; 13:3926. [PMID: 38999491 PMCID: PMC11242885 DOI: 10.3390/jcm13133926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Due to limitations in treatment strategies for post-traumatic stress disorders (PTSD), therapeutic options such as light therapy (LT) have garnered some interest in recent years. We aimed to review the effectiveness of LT in patients with PTSD. Methods: Using PubMed, PsycINFO, Web of Science, the Cochrane database, ClinicalTrials.gov, and PTSDpubs, we systematically searched for papers assessing the effect of LT in PTSD. We evaluated the risk of bias of included studies using the Cochrane handbook, and synthesized our findings following the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines (PRISMA 2020). Results: From 140 initial papers, we included four randomized controlled trials (RCTs) and one single-arm study. The study sample size ranged between 15 and 82, the mean age (standard deviation) varied between 31.4 (8.8) and 44.9 (11.8) years, and LT was applied for four or six weeks. The risk of bias was low in three studies, and of some concern in the two other trials. Most studies reported no significant differences between LT and placebo regarding effects on subjective (sleep quality and insomnia severity) and objective sleep parameters. LT was associated with a significant improvement in PTSD symptom severity in the single-arm study and two RCTs, as well as a greater retention of extinction learning. Results on depression and anxiety were discrepant. Conclusions: This review revealed that relevant studies are scarce, with promising findings concerning PTSD symptoms, but inconsistencies for the other parameters. Further research projects are needed to better explore this topic.
Collapse
Affiliation(s)
- Florian Millot
- Psychiatry Internship Program, University of Burgundy, Dijon, France
| | - Francky Teddy Endomba
- Service de Psychiatrie Adultes, Centre Hospitalier Universitaire, Dijon, France
- INSERM LNC UMR1231, University of Burgundy, Dijon, France
| | - Nathalie Forestier
- Service de Psychiatrie Adultes, Centre Hospitalier Universitaire, Dijon, France
| |
Collapse
|
7
|
Davis LL, Hamner MB. Post-traumatic stress disorder: the role of the amygdala and potential therapeutic interventions - a review. Front Psychiatry 2024; 15:1356563. [PMID: 38903645 PMCID: PMC11187309 DOI: 10.3389/fpsyt.2024.1356563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Post-traumatic stress disorder (PTSD) is a psychiatric disorder triggered by exposure to a life-threatening or sexually violent traumatic event, and is characterized by symptoms involving intrusive re-experiencing, persistent avoidance of associated stimuli, emotional and cognitive disturbances, and hyperarousal for long periods after the trauma has occurred. These debilitating symptoms induce occupational and social impairments that contribute to a significant clinical burden for PTSD patients, and substantial socioeconomic costs, reaching approximately $20,000 dollars per individual with PTSD each year in the US. Despite increased translational research focus in the field of PTSD, the development of novel, effective pharmacotherapies for its treatment remains an important unmet clinical need. Observations In this review, we summarize the evidence implicating dysfunctional activity of the amygdala in the pathophysiology of PTSD. We identify the transient receptor potential canonical (TRPC) ion channels as promising drug targets given their distribution in the amygdala, and evidence from animal studies demonstrating their role in fear response modulation. We discuss the evidence-based pharmacotherapy and psychotherapy treatment approaches for PTSD. Discussion In view of the prevalence and economic burden associated with PTSD, further investigation is warranted into novel treatment approaches based on our knowledge of the involvement of brain circuitry and the role of the amygdala in PTSD, as well as the potential added value of combined pharmacotherapy and psychotherapy to better manage PTSD symptoms.
Collapse
Affiliation(s)
- Lori L. Davis
- Mental Health Service, Birmingham VA Health Care System, Birmingham, AL, United States
- Department of Psychiatry, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, United States
- Department of Psychiatry, University of Alabama College of Community Health Science, Tuscaloosa, AL, United States
| | - Mark B. Hamner
- Department of Veterans Affairs, Ralph H. Johnson VA Medical Center, Charleston, SC, United States
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
8
|
Rinne GR, Carroll JE, Guardino CM, Shalowitz MU, Ramey SL, Schetter CD. Parental Preconception Posttraumatic Stress Symptoms and Maternal Prenatal Inflammation Prospectively Predict Shorter Telomere Length in Children. Psychosom Med 2024; 86:410-421. [PMID: 37594236 PMCID: PMC10879462 DOI: 10.1097/psy.0000000000001241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
OBJECTIVE Parental trauma exposure and trauma-related distress can increase the risk of adverse health outcomes in offspring, but the pathways implicated in intergenerational transmission are not fully explicated. Accelerated biological aging may be one mechanism underlying less favorable health in trauma-exposed individuals and their offspring. This study examines the associations of preconception maternal and paternal posttraumatic stress disorder (PTSD) symptoms with child telomere length, and maternal prenatal C-reactive protein (CRP) as a biological mechanism. METHODS Mothers ( n = 127) and a subset of the fathers ( n = 84) reported on PTSD symptoms before conception. Mothers provided blood spots in the second and third trimesters that were assayed for CRP. At age 4 years, children provided buccal cells for measurement of telomere length. Models adjusted for parental age, socioeconomic status, maternal prepregnancy body mass index, child biological sex, and child age. RESULTS Mothers' PTSD symptoms were significantly associated with shorter child telomere length ( β = -0.22, SE = 0.10, p = .023). Fathers' PTSD symptoms were also inversely associated with child telomere length ( β = -0.21, SE = 0.11), although nonsignificant ( p = .065). There was no significant indirect effect of mothers' PTSD symptoms on child telomere length through CRP in pregnancy, but higher second-trimester CRP was significantly associated with shorter child telomere length ( β = -0.35, SE = 0.18, p = .048). CONCLUSIONS Maternal symptoms of PTSD before conception and second-trimester inflammation were associated with shorter telomere length in offspring in early childhood, independent of covariates. Findings indicate that intergenerational transmission of parental trauma may occur in part through accelerated biological aging processes and provide further evidence that prenatal proinflammatory processes program child telomere length.Open Science Framework Preregistration:https://osf.io/7c2d5/?view_only=cd0fb81f48db4b8f9c59fc8bb7b0ef97 .
Collapse
Affiliation(s)
| | - Judith E. Carroll
- Cousins Center for Psychoneuroimmunology, University of California, Los Angeles
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
- David Geffen School of Medicine, University of California, Los Angeles
| | | | | | - Sharon Landesman Ramey
- Fralin Biomedical Research Institute. Virginia Polytechnic Institute and State University
| | | |
Collapse
|
9
|
Balan I, Boero G, Chéry SL, McFarland MH, Lopez AG, Morrow AL. Neuroactive Steroids, Toll-like Receptors, and Neuroimmune Regulation: Insights into Their Impact on Neuropsychiatric Disorders. Life (Basel) 2024; 14:582. [PMID: 38792602 PMCID: PMC11122352 DOI: 10.3390/life14050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Pregnane neuroactive steroids, notably allopregnanolone and pregnenolone, exhibit efficacy in mitigating inflammatory signals triggered by toll-like receptor (TLR) activation, thus attenuating the production of inflammatory factors. Clinical studies highlight their therapeutic potential, particularly in conditions like postpartum depression (PPD), where the FDA-approved compound brexanolone, an intravenous formulation of allopregnanolone, effectively suppresses TLR-mediated inflammatory pathways, predicting symptom improvement. Additionally, pregnane neurosteroids exhibit trophic and anti-inflammatory properties, stimulating the production of vital trophic proteins and anti-inflammatory factors. Androstane neuroactive steroids, including estrogens and androgens, along with dehydroepiandrosterone (DHEA), display diverse effects on TLR expression and activation. Notably, androstenediol (ADIOL), an androstane neurosteroid, emerges as a potent anti-inflammatory agent, promising for therapeutic interventions. The dysregulation of immune responses via TLR signaling alongside reduced levels of endogenous neurosteroids significantly contributes to symptom severity across various neuropsychiatric disorders. Neuroactive steroids, such as allopregnanolone, demonstrate efficacy in alleviating symptoms of various neuropsychiatric disorders and modulating neuroimmune responses, offering potential intervention avenues. This review emphasizes the significant therapeutic potential of neuroactive steroids in modulating TLR signaling pathways, particularly in addressing inflammatory processes associated with neuropsychiatric disorders. It advances our understanding of the complex interplay between neuroactive steroids and immune responses, paving the way for personalized treatment strategies tailored to individual needs and providing insights for future research aimed at unraveling the intricacies of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Irina Balan
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Giorgia Boero
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA;
| | - Samantha Lucenell Chéry
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Neuroscience Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Minna H. McFarland
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Neuroscience Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alejandro G. Lopez
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Hasan HM, Alkass SY, Persike DS. Post-traumatic Stress Disorder: The Influence of the Environmental Context and Analysis of Oxidative Stress and Inflammatory and Glycemic Markers in Women Living in Kurdistan Regional Government-Iraq. Cureus 2024; 16:e56661. [PMID: 38646205 PMCID: PMC11032698 DOI: 10.7759/cureus.56661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Background Internally displaced persons (IDP) camps are still home to a large number of female survivors of the Yazidi genocide carried out in Iraq in 2014 by the Islamic organization known as the Islamic State of Iraq and Syria (ISIS). Many of these women suffer from a persistent form of post-traumatic stress disorder (PTSD), which can last for many years. On the other hand, little is known about the intricate etiology of PTSD. Objectives In this observational cross-sectional study, the biochemical parameters, including inflammatory and oxidative stress (OXS) markers, were evaluated in two groups: the case group (women with newly diagnosed PTSD) and the control group (apparently healthy women). Furthermore, how the environment impacts the biochemical and OXS parameters of people not diagnosed with PTSD but living in IDP camps was also analyzed. Materials and methods The PTSD group (n=55, age=30.0 years) was made up of women survivors of genocide-related events living in IDP camps in the Kurdistan region of Iraq. The studied parameters in the PTSD group have been compared to two healthy control groups: (1) internal control group (n=55, age=28.1 years): healthy women living inside the IDP camps; and (2) external control group (n=55, age=28.3 years): healthy women living outside the IDP camps. The diagnosis of PTSD was conducted using a validated Kurdish version of the PTSD Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) (PCL-5) scale. Blood samples were collected to determine the level of glycated hemoglobin (HbA1c) and the concentrations of fasting serum glucose (FSG), C-reactive protein (CRP), ceruloplasmin (CP), 8-hydroxydeoxyguanosine (8-OHdG), glutathione (GSH), malondialdehyde (MDA), protein carbonyls (PC), and catalase (CAT) activity. Results Women with PTSD presented increased values of FSG (4.41%, p<0.05), HbA1c (4.74%, p<0.05), and CRP (114.29%, p<0.05), as well as increased levels of 8-OHdG (185.97%, p<0.001), CP (27.08%, p<0.001), MDA (141.97%, p<0.001), and PC (63.01%, p<0.001), besides increased CAT activity (121.5%, p<0.001), when compared with the control groups. A significant reduction of GSH (-20.33%, p<0.05) was observed in PTSD patients as compared to the external control group. In relation to the internal control group, women diagnosed with PTSD presented significantly increased levels of FSG (3.88%, p<0.05), HbA1c (2.83%, p<0.05), CRP (77.97%, p<0.05), and PC (41.3%, p<0.05), as well as increased levels of 8-OHdG (118.84%, p<0.001), CP (22.72%, p<0.001), MDA (90.67%, p<0.001), and CAT activity (55.31%, p<0.001). Healthy individuals residing in IDP camps, compared with external healthy control, presented significantly elevated levels of 8-OHdG (30.68%, p<0.001), MDA (26.91%, p<0.001), PC (15.37%, p<0.001), and CAT activity (42.62%, p<0.001). Conclusion Our findings indicate that PTSD significantly influences glycemic, inflammatory, oxidant, and antioxidant parameters, as evidenced by increased levels of FSG, HbA1C, CRP, PC, MDA, 8-OHdG, and CP, as well as increased CAT activity and a reduced GSH concentration in the PTSD group in comparison to the external control group. Additionally, our results suggest that the environmental context in IDP camps by itself can potentially affect oxidant and antioxidant parameters, as evidenced by the increased concentrations of 8-OHdG, MDA, and PC and increased CAT activity found in individuals not diagnosed with PTSD but living inside the camps.
Collapse
Affiliation(s)
- Husni M Hasan
- Department of Medicinal Chemistry, Department of Chemistry, College of Pharmacy, College of Science, University of Duhok, Duhok, IRQ
| | - Suad Y Alkass
- Department of Medicinal Chemistry, College of Pharmacy, University of Duhok, Duhok, IRQ
| | - Daniele S Persike
- Department of Medicinal Chemistry, College of Pharmacy, University of Duhok, Duhok, IRQ
| |
Collapse
|
11
|
Seligowski AV, Grewal SS, Abohashem S, Zureigat H, Qamar I, Aldosoky W, Gharios C, Hanlon E, Alani O, Bollepalli SC, Armoundas A, Fayad ZA, Shin LM, Osborne MT, Tawakol A. PTSD increases risk for major adverse cardiovascular events through neural and cardio-inflammatory pathways. Brain Behav Immun 2024; 117:149-154. [PMID: 38218349 PMCID: PMC10932910 DOI: 10.1016/j.bbi.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024] Open
Abstract
While posttraumatic stress disorder (PTSD) is known to associate with an elevated risk for major adverse cardiovascular events (MACE), few studies have examined mechanisms underlying this link. Recent studies have demonstrated that neuro-immune mechanisms, (manifested by heightened stress-associated neural activity (SNA), autonomic nervous system activity, and inflammation), link common stress syndromes to MACE. However, it is unknown if neuro-immune mechanisms similarly link PTSD to MACE. The current study aimed to test the hypothesis that upregulated neuro-immune mechanisms increase MACE risk among individuals with PTSD. This study included N = 118,827 participants from a large hospital-based biobank. Demographic, diagnostic, and medical history data collected from the biobank. SNA (n = 1,520), heart rate variability (HRV; [n = 11,463]), and high sensitivity C-reactive protein (hs-CRP; [n = 15,164]) were obtained for a subset of participants. PTSD predicted MACE after adjusting for traditional MACE risk factors (hazard ratio (HR) [95 % confidence interval (CI)] = 1.317 [1.098, 1.580], β = 0.276, p = 0.003). The PTSD-to-MACE association was mediated by SNA (CI = 0.005, 0.133, p < 0.05), HRV (CI = 0.024, 0.056, p < 0.05), and hs-CRP (CI = 0.010, 0.040, p < 0.05). This study provides evidence that neuro-immune pathways may play important roles in the mechanisms linking PTSD to MACE. Future studies are needed to determine if these markers are relevant targets for PTSD treatment and if improvements in SNA, HRV, and hs-CRP associate with reduced MACE risk in this patient population.
Collapse
Affiliation(s)
- Antonia V Seligowski
- Deparment of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Simran S Grewal
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shady Abohashem
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hadil Zureigat
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Iqra Qamar
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wesam Aldosoky
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Charbel Gharios
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Erin Hanlon
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Omar Alani
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Antonis Armoundas
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA; Broad Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lisa M Shin
- Deparment of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Psychology, Tufts University, Medford, MA, USA
| | - Michael T Osborne
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ahmed Tawakol
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Bhatt S, Anitha K, Chellappan DK, Mukherjee D, Shilpi S, Suttee A, Gupta G, Singh TG, Dua K. Targeting inflammatory signaling in obsessive compulsive disorder: a promising approach. Metab Brain Dis 2024; 39:335-346. [PMID: 37950815 DOI: 10.1007/s11011-023-01314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/23/2023] [Indexed: 11/13/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder. Approximately, around 2% to 3% percent of the general population experience symptoms of OCD over the course of their lifetime. OCD can lead to economic burden, poor quality of life, and disability. The characteristic features exhibited generally in OCD are continuous intrusive thoughts and periodic ritualized behaviours. Variations in genes, pathological function of Cortico-Striato-Thalamo-Cortical (CSTC) circuits and dysregulation in the synaptic conduction have been the major factors involved in the pathological progression of OCD. However, the basic mechanisms still largely unknown. Current therapies for OCD largely target monoaminergic neurotransmitters (NTs) in specific dopaminergic and serotonergic circuits. However, such therapies have limited efficacy and tolerability. Drug resistance has been one of the important reasons reported to critically influence the effectiveness of the available drugs. Inflammation has been a crucial factor which is believed to have a significant importance in OCD progression. A significant number of proinflammatory cytokines have been reportedly amplified in patients with OCD. Mechanisms of drug treatment involve attenuation of the symptoms via modulation of inflammatory signalling pathways, modification in brain structure, and synaptic plasticity. Hence, targeting inflammatory signaling may be considered as a suitable approach in the treatment of OCD. The present review focuses mainly on the significant findings from the animal and human studies conducted in this area, that targets inflammatory signaling in neurological conditions. In addition, it also focusses on the therapeutic approaches that target OCD via modification of the inflammatory signaling pathways.
Collapse
Affiliation(s)
- Shvetank Bhatt
- School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, 411038, India.
| | - Kuttiappan Anitha
- Department of Pharmacology, School of Pharmacy & Technology Management (SPTM), SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Shirpur, 425405, Maharashtra, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Dhrubojyoti Mukherjee
- Department of Pharmaceutics, School of Pharmacy & Technology Management (SPTM), SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Shirpur, Maharashtra, 425405, India
| | - Satish Shilpi
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Ashish Suttee
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Saveetha Nagar, Thandalam, Kanchipuram - Chennai Rd, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, 302017, India
| | | | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
13
|
Zaretsky TG, Jagodnik KM, Barsic R, Antonio JH, Bonanno PA, MacLeod C, Pierce C, Carney H, Morrison MT, Saylor C, Danias G, Lepow L, Yehuda R. The Psychedelic Future of Post-Traumatic Stress Disorder Treatment. Curr Neuropharmacol 2024; 22:636-735. [PMID: 38284341 PMCID: PMC10845102 DOI: 10.2174/1570159x22666231027111147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 01/30/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a mental health condition that can occur following exposure to a traumatic experience. An estimated 12 million U.S. adults are presently affected by this disorder. Current treatments include psychological therapies (e.g., exposure-based interventions) and pharmacological treatments (e.g., selective serotonin reuptake inhibitors (SSRIs)). However, a significant proportion of patients receiving standard-of-care therapies for PTSD remain symptomatic, and new approaches for this and other trauma-related mental health conditions are greatly needed. Psychedelic compounds that alter cognition, perception, and mood are currently being examined for their efficacy in treating PTSD despite their current status as Drug Enforcement Administration (DEA)- scheduled substances. Initial clinical trials have demonstrated the potential value of psychedelicassisted therapy to treat PTSD and other psychiatric disorders. In this comprehensive review, we summarize the state of the science of PTSD clinical care, including current treatments and their shortcomings. We review clinical studies of psychedelic interventions to treat PTSD, trauma-related disorders, and common comorbidities. The classic psychedelics psilocybin, lysergic acid diethylamide (LSD), and N,N-dimethyltryptamine (DMT) and DMT-containing ayahuasca, as well as the entactogen 3,4-methylenedioxymethamphetamine (MDMA) and the dissociative anesthetic ketamine, are reviewed. For each drug, we present the history of use, psychological and somatic effects, pharmacology, and safety profile. The rationale and proposed mechanisms for use in treating PTSD and traumarelated disorders are discussed. This review concludes with an in-depth consideration of future directions for the psychiatric applications of psychedelics to maximize therapeutic benefit and minimize risk in individuals and communities impacted by trauma-related conditions.
Collapse
Affiliation(s)
- Tamar Glatman Zaretsky
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathleen M. Jagodnik
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Barsic
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Josimar Hernandez Antonio
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip A. Bonanno
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carolyn MacLeod
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charlotte Pierce
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hunter Carney
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Morgan T. Morrison
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles Saylor
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George Danias
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren Lepow
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Yehuda
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
14
|
Khan N, Iqra Tanveer Khan S, Joti S, Malik J, Faraz M, Ashraf A. Association of Cardiovascular Diseases With Post-Traumatic Stress Disorder: An Updated Review. Cardiol Rev 2023:00045415-990000000-00174. [PMID: 37966219 DOI: 10.1097/crd.0000000000000628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The intricate relationship between post-traumatic stress disorder (PTSD) and cardiovascular disease (CVD) has garnered increasing attention due to its bidirectional impact and potential for significant health consequences. Epidemiological evidence suggests that PTSD may serve as a risk factor for incident CVD, while acute CVD events can trigger PTSD, subsequently increasing the risk of recurrent cardiovascular events. This dynamic interplay is characterized by the human stress response, disrupted behavioral and lifestyle factors, and potential physiological mechanisms. Notably, the immediate aftermath of a cardiovascular event presents a critical window for intervention, offering the possibility of preventing the development of PTSD and its associated physiological and behavioral sequelae. However, while candidate mechanisms linking PTSD and CVD have been identified, determining which mechanisms are most amenable to intervention remains a challenge. This article emphasizes the urgency of addressing key unanswered questions in this domain. Despite an evolving understanding of the association between PTSD and CVD, causal relationships remain to be firmly established. Comprehensive investigations into the intricate interplay of behavioral and biological mechanisms are essential for identifying precise targets for intervention. Innovations in research methodologies, including the exploration of PTSD symptom dynamics and their impact on cardiovascular function, hold the potential for identifying crucial intervention points. Drawing parallels from prior challenges in translating identified risk factors into effective interventions, the field must prioritize systematic investigations and early-phase intervention trials. By doing so, researchers and clinicians can potentially develop strategies to mitigate CVD risk in the context of PTSD and improve both cardiovascular and mental health outcomes.
Collapse
Affiliation(s)
- Naqeeb Khan
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan
| | | | | | | | | | | |
Collapse
|
15
|
Muhie S, Gautam A, Misganaw B, Yang R, Mellon SH, Hoke A, Flory J, Daigle B, Swift K, Hood L, Doyle FJ, Wolkowitz OM, Marmar CR, Ressler K, Yehuda R, Hammamieh R, Jett M. Integrated analysis of proteomics, epigenomics and metabolomics data revealed divergent pathway activation patterns in the recent versus chronic post-traumatic stress disorder. Brain Behav Immun 2023; 113:303-316. [PMID: 37516387 DOI: 10.1016/j.bbi.2023.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/16/2023] [Accepted: 07/22/2023] [Indexed: 07/31/2023] Open
Abstract
Metabolomics, proteomics and DNA methylome assays, when done in tandem from the same blood sample and analyzed together, offer an opportunity to evaluate the molecular basis of post-traumatic stress disorder (PTSD) course and pathogenesis. We performed separate metabolomics, proteomics, and DNA methylome assays on blood samples from two well-characterized cohorts of 159 active duty male participants with relatively recent onset PTSD (<1.5 years) and 300 male veterans with chronic PTSD (>7 years). Analyses of the multi-omics datasets from these two independent cohorts were used to identify convergent and distinct molecular profiles that might constitute potential signatures of severity and progression of PTSD and its comorbid conditions. Molecular signatures indicative of homeostatic processes such as signaling and metabolic pathways involved in cellular remodeling, neurogenesis, molecular safeguards against oxidative stress, metabolism of polyunsaturated fatty acids, regulation of normal immune response, post-transcriptional regulation, cellular maintenance and markers of longevity were significantly activated in the active duty participants with recent PTSD. In contrast, we observed significantly altered multimodal molecular signatures associated with chronic inflammation, neurodegeneration, cardiovascular and metabolic disorders, and cellular attritions in the veterans with chronic PTSD. Activation status of signaling and metabolic pathways at the early and late timepoints of PTSD demonstrated the differential molecular changes related to homeostatic processes at its recent and multi-system syndromes at its chronic phase. Molecular alterations in the recent PTSD seem to indicate some sort of recalibration or compensatory response, possibly directed in mitigating the pathological trajectory of the disorder.
Collapse
Affiliation(s)
- Seid Muhie
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; The Geneva Foundation, Silver Spring, MD 20910, USA.
| | - Aarti Gautam
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Burook Misganaw
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Vysnova Inc. Landover, MD 20785, USA
| | - Ruoting Yang
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Synthia H Mellon
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Allison Hoke
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Janine Flory
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY 10468, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10468, USA
| | - Bernie Daigle
- Departments of Biological Sciences and Computer Science, The University of Memphis, Memphis, TN 38152, USA
| | - Kevin Swift
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Francis J Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02134, USA
| | - Owen M Wolkowitz
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143, USA
| | - Charles R Marmar
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kerry Ressler
- McLean Hospital, Belmont, MA 02478, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Rachel Yehuda
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY 10468, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10468, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Marti Jett
- US Army Medical Research and Development Command, HQ, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| |
Collapse
|
16
|
Mrakic-Sposta S, Vezzoli A, Garetto G, Paganini M, Camporesi E, Giacon TA, Dellanoce C, Agrimi J, Bosco G. Hyperbaric Oxygen Therapy Counters Oxidative Stress/Inflammation-Driven Symptoms in Long COVID-19 Patients: Preliminary Outcomes. Metabolites 2023; 13:1032. [PMID: 37887357 PMCID: PMC10608857 DOI: 10.3390/metabo13101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Long COVID-19 patients show systemic inflammation and persistent symptoms such as fatigue and malaise, profoundly affecting their quality of life. Since improving oxygenation can oppose inflammation at multiple tissue levels, we hypothesized that hyperbaric oxygen therapy (HBOT) could arrest inflammation progression and thus relieve symptoms of COVID-19. We evaluated oxy-inflammation biomarkers in long COVID-19 subjects treated with HBOT and monitored with non-invasive methods. Five subjects (two athletes and three patients with other comorbidities) were assigned to receive HBOT: 100% inspired O2 at 2.4 ATA in a multiplace hyperbaric chamber for 90 min (three athletes: 15 HBOT × 5 days/wk for 3 weeks; two patients affected by Idiopathic Sudden Sensorineural Hearing Loss: 30 HBOT × 5 days/wk for 6 weeks; and one patient with osteomyelitis: 30 HBOT × 5 days/wk for week for 6 weeks and, after a 30-day break, followed by a second cycle of 20 HBOT). Using saliva and/or urine samples, reactive oxygen species (ROS), antioxidant capacity, cytokines, lipids peroxidation, DNA damage, and renal status were assessed at T1_pre (basal level) and at T2_pre (basal level after treatment), and the results showed attenuated ROS production, lipid peroxidation, DNA damage, NO metabolites, and inflammation biomarker levels, especially in the athletes post-treatment. Thus, HBOT may represent an alternative non-invasive method for treating long COVID-19-induced long-lasting manifestations of oxy-inflammation.
Collapse
Affiliation(s)
- Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20162 Milan, Italy;
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20162 Milan, Italy;
| | | | - Matteo Paganini
- Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy; (M.P.); (E.C.); (T.A.G.); (J.A.); (G.B.)
| | - Enrico Camporesi
- Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy; (M.P.); (E.C.); (T.A.G.); (J.A.); (G.B.)
| | - Tommaso Antonio Giacon
- Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy; (M.P.); (E.C.); (T.A.G.); (J.A.); (G.B.)
| | - Cinzia Dellanoce
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20162 Milan, Italy;
| | - Jacopo Agrimi
- Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy; (M.P.); (E.C.); (T.A.G.); (J.A.); (G.B.)
| | - Gerardo Bosco
- Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy; (M.P.); (E.C.); (T.A.G.); (J.A.); (G.B.)
| |
Collapse
|
17
|
Womersley JS, du Plessis M, Greene MC, van den Heuwel LL, Kinyanda E, Seedat S. Advances in the molecular neurobiology of posttraumatic stress disorder from global contexts: A systematic review of longitudinal studies. Glob Ment Health (Camb) 2023; 10:e62. [PMID: 37854422 PMCID: PMC10579657 DOI: 10.1017/gmh.2023.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/25/2023] [Accepted: 08/24/2023] [Indexed: 10/20/2023] Open
Abstract
Trauma exposure is prevalent globally and is a defining event for the development of posttraumatic stress disorder (PTSD), characterised by intrusive thoughts, avoidance behaviours, hypervigilance and negative alterations in cognition and mood. Exposure to trauma elicits a range of physiological responses which can interact with environmental factors to confer relative risk or resilience for PTSD. This systematic review summarises the findings of longitudinal studies examining biological correlates predictive of PTSD symptomology. Databases (Pubmed, Scopus and Web of Science) were systematically searched using relevant keywords for studies published between 1 January 2021 and 31 December 2022. English language studies were included if they were original research manuscripts or meta-analyses of cohort investigations that assessed longitudinal relationships between one or more molecular-level measures and either PTSD status or symptoms. Eighteen of the 1,042 records identified were included. Studies primarily included military veterans/personnel, individuals admitted to hospitals after acute traumatic injury, and women exposed to interpersonal violence or rape. Genomic, inflammation and endocrine measures were the most commonly assessed molecular markers and highlighted processes related to inflammation, stress responding, and learning and memory. Quality assessments were done using the Systematic Appraisal of Quality in Observational Research, and the majority of studies were rated as being of high quality, with the remainder of moderate quality. Studies were predominantly conducted in upper-income countries. Those performed in low- and middle-income countries were not broadly representative in terms of demographic, trauma type and geographic profiles, with three out of the four studies conducted assessing only female participants, rape exposure and South Africa, respectively. They also did not generate multimodal data or use machine learning or multilevel modelling, potentially reflecting greater resource limitations in LMICs. Research examining molecular contributions to PTSD does not adequately reflect the global burden of the disorder.
Collapse
Affiliation(s)
- Jacqueline S Womersley
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Extramural Unit, Stellenbosch University, Cape Town, South Africa
| | - Morne du Plessis
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Extramural Unit, Stellenbosch University, Cape Town, South Africa
| | - M Claire Greene
- Program on Forced Migration and Health, Heilbrunn Department of Population and Family Health, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Leigh L van den Heuwel
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Extramural Unit, Stellenbosch University, Cape Town, South Africa
| | - Eugene Kinyanda
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- Department of Psychiatry, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Soraya Seedat
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Extramural Unit, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
18
|
Lushchak O, Orru M, Strilbytska O, Berezovskyi V, Cherkas A, Storey KB, Bayliak M. Metabolic and immune dysfunctions in post-traumatic stress disorder: what can we learn from animal models? EXCLI JOURNAL 2023; 22:928-945. [PMID: 38023568 PMCID: PMC10630527 DOI: 10.17179/excli2023-6391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/29/2023] [Indexed: 12/01/2023]
Abstract
Highly stressful experiences such as terrorist attacks, domestic and sexual violence may lead to persistent pathological symptoms such as those seen in posttraumatic stress disorder (PTSD). There is growing evidence of multiple metabolic and immune disorders underlying the etiology and maintenance of PTSD. However, changes in the functioning of various systems and organs associated with PTSD are not well understood. Studies of reliable animal models is one of the effective scientific tools that can be used to gain insight into the role of metabolism and immunity in the comorbidity associated with PTSD. Since much progress has been made using animal models to understand mechanisms of PTSD, we summarized metabolic and immune dysfunction in mice and humans to compare certain outcomes associated with PTSD. The systemic effects of PTSD include chronic activation of the sympathetic nervous system (psycho-emotional stress), that leads to impairment of the function of the immune system, increased release of stress hormones, and metabolic changes. We discuss PTSD as a multisystem disease with its neurological, immunological, and metabolic components.
Collapse
Affiliation(s)
- Oleh Lushchak
- Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| | - Marco Orru
- Precarpathian National University, Ivano-Frankivsk, Ukraine
| | | | | | - Andriy Cherkas
- Research and Development University, Ivano-Frankivsk, Ukraine
| | | | - Maria Bayliak
- Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
19
|
Kumsta R, Zang JCS, Hummel EM, Müller S, Moser DA, Herpertz S, Kessler H. Treatment-associated mRNA co-expression changes in monocytes of patients with posttraumatic stress disorder. Front Psychiatry 2023; 14:1181321. [PMID: 37426106 PMCID: PMC10326517 DOI: 10.3389/fpsyt.2023.1181321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/05/2023] [Indexed: 07/11/2023] Open
Abstract
PTSD is a prevalent mental disorder that results from exposure to extreme and stressful life events and comes at high costs for both the individual and society. Therapeutic treatment presents the best way to deal with PTSD-the mechanisms underlying change after treatment, however, remain poorly understood. While stress and immune associated gene expression changes have been associated with PTSD development, studies investigating treatment effects at the molecular level so far tended to focus on DNA methylation. Here we use gene-network analysis on whole-transcriptome RNA-Seq data isolated from CD14+ monocytes of female PTSD patients (N = 51) to study pre-treatment signatures of therapy response and therapy-related changes at the level of gene expression. Patients who exhibited significant symptom improvement after therapy showed higher baseline expression in two modules involved in inflammatory processes (including notable examples IL1R2 and FKBP5) and blood coagulation. After therapy, expression of an inflammatory module was increased, and expression of a wound healing module was decreased. This supports findings reporting an association between PTSD and dysregulations of the inflammatory and the hemostatic system and mark both as potentially treatment sensitive.
Collapse
Affiliation(s)
- Robert Kumsta
- Department of Genetic Psychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
- Department of Behavioural and Cognitive Sciences, Laboratory for Stress and Gene-Environment Interplay, University of Luxemburg, Esch-sur-Alzette, Luxemburg
| | - Johannes C. S. Zang
- Department of Genetic Psychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Elisabeth M. Hummel
- Department of Genetic Psychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Svenja Müller
- Department of Genetic Psychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Dirk A. Moser
- Department of Genetic Psychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Stephan Herpertz
- Department of Psychosomatic Medicine and Psychotherapy, LWL-University Hospital Ruhr-University Bochum, Bochum, Germany
| | - Henrik Kessler
- Department of Psychosomatic Medicine and Psychotherapy, LWL-University Hospital Ruhr-University Bochum, Bochum, Germany
- Department of Psychosomatic Medicine and Psychotherapy, Fulda Hospital, University Medicine Marburg Campus Fulda, Fulda, Germany
| |
Collapse
|
20
|
Torres-Rodríguez O, Rivera-Escobales Y, Castillo-Ocampo Y, Velazquez B, Colón M, Porter JT. Purinergic P2X7 receptor-mediated inflammation precedes PTSD-related behaviors in rats. Brain Behav Immun 2023; 110:107-118. [PMID: 36822379 PMCID: PMC10106407 DOI: 10.1016/j.bbi.2023.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/25/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
Clinical evidence has linked increased peripheral pro-inflammatory cytokines with post-traumatic stress disorder (PTSD) symptoms. However, whether inflammation contributes to or is a consequence of PTSD is still unclear. Previous research shows that stress can activate purinergic P2X7 receptors (P2X7Rs) on microglia to induce inflammation and behavioral changes. In this investigation, we examined whether P2X7Rs contribute to the development of PTSD-like behaviors induced by single prolonged stress (SPS) exposure in rats. Consistent with the literature, exposing adult male and female rats to SPS produced a PTSD-like phenotype of impaired fear extinction and extinction of cue-induced center avoidance one week after exposure. Next, we examined if inflammation precedes the behavioral manifestations. Three days after SPS exposure, increased inflammatory cytokines were found in the blood and hippocampal microglia showed increased expression of the P2X7R, IL-1β, and TNF-α, suggesting increased peripheral and central inflammation before the onset of impaired fear extinction. In addition, SPS-exposed animals with impaired fear extinction recall also had more Iba1-positive microglia expressing the P2X7R in the ventral hippocampus. To determine whether P2X7Rs contribute to the PTSD-related behaviors induced by SPS exposure, we gave ICV infusions of the P2X7R antagonist, A-438079, for one week starting the day of SPS exposure. Blocking P2X7Rs prevented the SPS-induced impaired fear extinction and extinction of cue-induced center avoidance in male and female rats, suggesting that SPS activates P2X7Rs which increase inflammation to produce a PTSD-like phenotype.
Collapse
Affiliation(s)
- Orlando Torres-Rodríguez
- Dept of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico, 00732
| | - Yesenia Rivera-Escobales
- Dept of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico, 00732
| | - Yesenia Castillo-Ocampo
- Dept of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico, 00732
| | - Bethzaly Velazquez
- Dept of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico, 00732
| | - María Colón
- Dept of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico, 00732
| | - James T Porter
- Dept of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico, 00732.
| |
Collapse
|
21
|
Nilaweera D, Phyo AZZ, Teshale AB, Htun HL, Wrigglesworth J, Gurvich C, Freak-Poli R, Ryan J. Lifetime posttraumatic stress disorder as a predictor of mortality: a systematic review and meta-analysis. BMC Psychiatry 2023; 23:229. [PMID: 37032341 PMCID: PMC10084620 DOI: 10.1186/s12888-023-04716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/24/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Posttraumatic Stress Disorder (PTSD) could potentially increase the risk of mortality, and there is a need for a meta-analysis to quantify this association. This study aims to determine the extent to which PTSD is a predictor of mortality. METHODS EMBASE, MEDLINE, and PsycINFO were searched systematically on 12th February 2020, with updated searches conducted in July 2021, and December 2022 (PROSPERO CRD42019142971). Studies involving community-dwelling participants with a diagnosis of PTSD or PTSD symptoms, and a comparator group of individuals without PTSD, and which assessed mortality risk, were included. A random-effects meta-analysis was conducted on studies reporting Odds Ratio (OR), Hazard Ratio (HR), and Risk Ratio (RR), and subgroup analysis was also performed by age, sex, type of trauma experienced, PTSD diagnosis, and cause of death. RESULTS A total of 30 eligible studies of mostly good methodological quality were identified, with a total of more than 2.1 million participants with PTSD. The majority of studies involved male-dominated, veteran populations. PTSD was associated with a 47% (95% CI: 1.06-2.04) greater risk of mortality across six studies that reported OR/RR, and a 32% increased risk across 18 studies which reported time to death (HR: 1.32, 95% CI: 1.10-1.59). There was very high study heterogeneity (I2 > 94%) and this was not explained by the prespecified subgroup analysis. CONCLUSION PTSD is associated with increased mortality risk, however further research is required amongst civilians, involving women, and in individuals from underdeveloped countries.
Collapse
Affiliation(s)
- Dinuli Nilaweera
- School of Public Health and Preventive Medicine, Monash University, Level 5, Melbourne, VIC, 3004, Australia
| | - Aung Zaw Zaw Phyo
- School of Public Health and Preventive Medicine, Monash University, Level 5, Melbourne, VIC, 3004, Australia
| | - Achamyeleh Birhanu Teshale
- School of Public Health and Preventive Medicine, Monash University, Level 5, Melbourne, VIC, 3004, Australia
| | - Htet Lin Htun
- School of Public Health and Preventive Medicine, Monash University, Level 5, Melbourne, VIC, 3004, Australia
| | - Jo Wrigglesworth
- School of Public Health and Preventive Medicine, Monash University, Level 5, Melbourne, VIC, 3004, Australia
| | - Caroline Gurvich
- Department of Psychiatry, Central Clinical School, Alfred Hospital and Monash University, Melbourne, VIC, 2004, Australia
| | - Rosanne Freak-Poli
- School of Public Health and Preventive Medicine, Monash University, Level 5, Melbourne, VIC, 3004, Australia
| | - Joanne Ryan
- School of Public Health and Preventive Medicine, Monash University, Level 5, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
22
|
Singewald N, Sartori SB, Reif A, Holmes A. Alleviating anxiety and taming trauma: Novel pharmacotherapeutics for anxiety disorders and posttraumatic stress disorder. Neuropharmacology 2023; 226:109418. [PMID: 36623804 PMCID: PMC10372846 DOI: 10.1016/j.neuropharm.2023.109418] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/30/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Psychiatric disorders associated with psychological trauma, stress and anxiety are a highly prevalent and increasing cause of morbidity worldwide. Current therapeutic approaches, including medication, are effective in alleviating symptoms of anxiety disorders and posttraumatic stress disorder (PTSD), at least in some individuals, but have unwanted side-effects and do not resolve underlying pathophysiology. After a period of stagnation, there is renewed enthusiasm from public, academic and commercial parties in designing and developing drug treatments for these disorders. Here, we aim to provide a snapshot of the current state of this field that is written for neuropharmacologists, but also practicing clinicians and the interested lay-reader. After introducing currently available drug treatments, we summarize recent/ongoing clinical assessment of novel medicines for anxiety and PTSD, grouped according to primary neurochemical targets and their potential to produce acute and/or enduring therapeutic effects. The evaluation of putative treatments targeting monoamine (including psychedelics), GABA, glutamate, cannabinoid, cholinergic and neuropeptide systems, amongst others, are discussed. We emphasize the importance of designing and clinically assessing new medications based on a firm understanding of the underlying neurobiology stemming from the rapid advances being made in neuroscience. This includes harnessing neuroplasticity to bring about lasting beneficial changes in the brain rather than - as many current medications do - produce a transient attenuation of symptoms, as exemplified by combining psychotropic/cognitive enhancing drugs with psychotherapeutic approaches. We conclude by noting some of the other emerging trends in this promising new phase of drug development.
Collapse
Affiliation(s)
- Nicolas Singewald
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria.
| | - Simone B Sartori
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| |
Collapse
|
23
|
Screening for PTSD and TBI in Veterans using Routine Clinical Laboratory Blood Tests. Transl Psychiatry 2023; 13:64. [PMID: 36810280 PMCID: PMC9944218 DOI: 10.1038/s41398-022-02298-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 02/24/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a mental disorder diagnosed by clinical interviews, self-report measures and neuropsychological testing. Traumatic brain injury (TBI) can have neuropsychiatric symptoms similar to PTSD. Diagnosing PTSD and TBI is challenging and more so for providers lacking specialized training facing time pressures in primary care and other general medical settings. Diagnosis relies heavily on patient self-report and patients frequently under-report or over-report their symptoms due to stigma or seeking compensation. We aimed to create objective diagnostic screening tests utilizing Clinical Laboratory Improvement Amendments (CLIA) blood tests available in most clinical settings. CLIA blood test results were ascertained in 475 male veterans with and without PTSD and TBI following warzone exposure in Iraq or Afghanistan. Using random forest (RF) methods, four classification models were derived to predict PTSD and TBI status. CLIA features were selected utilizing a stepwise forward variable selection RF procedure. The AUC, accuracy, sensitivity, and specificity were 0.730, 0.706, 0.659, and 0.715, respectively for differentiating PTSD and healthy controls (HC), 0.704, 0.677, 0.671, and 0.681 for TBI vs. HC, 0.739, 0.742, 0.635, and 0.766 for PTSD comorbid with TBI vs HC, and 0.726, 0.723, 0.636, and 0.747 for PTSD vs. TBI. Comorbid alcohol abuse, major depressive disorder, and BMI are not confounders in these RF models. Markers of glucose metabolism and inflammation are among the most significant CLIA features in our models. Routine CLIA blood tests have the potential for discriminating PTSD and TBI cases from healthy controls and from each other. These findings hold promise for the development of accessible and low-cost biomarker tests as screening measures for PTSD and TBI in primary care and specialty settings.
Collapse
|
24
|
Zhu W, Li Y, Ma X, Yang H, Wang Z, Shi R, Shi W, Cong B. Bibliometric analysis of post-traumatic stress disorder in forensic medicine: Research trends, hot spots, and prospects. Front Psychol 2023; 13:1074999. [PMID: 36726521 PMCID: PMC9884826 DOI: 10.3389/fpsyg.2022.1074999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/22/2022] [Indexed: 01/17/2023] Open
Abstract
Background Post-traumatic stress disorder (PTSD) has various risk factors, complex pathogenesis, and diverse symptoms, and is often comorbid with other injuries and diseases, making forensic diagnosis difficult. Methods To explore the current research status and trends of PTSD, we used the Web of Science Core Collection databases to screen PTSD-related literature published between 2010 and 2021 and CiteSpace to perform bibliometric analysis. Results In recent years, PTSD-related research has grown steadily. The countries and institutions with the most research results were the United States and England, and King's College London and Boston University, respectively. Publications were identified from 2,821 different journals, including 13 forensic-related journals, but the journal distribution was relatively scattered and there was a lack of professional core journals. Keyword co-occurrence and clustering identified many hot topics; "rat model," "mental health," and "satisfaction" were the topics most likely to have a clear effect on future research. Analysis extracted nine turning points from the literature that suggested that neural network centers, the hypothalamic-pituitary-adrenal axis, and biomarkers were new research directions. It was found that COVID-19 can cause severe psychological stress and induce PTSD, but the relationship needs further study. The literature on stress response areas and biomarkers has gradually increased over time, but specific systemic neural brain circuits and biomarkers remain to be determined. Conclusion There is a need to expand the collection of different types of biological tissue samples from patients with different backgrounds, screen PTSD biomarkers and molecular targets using multi-omics and molecular biology techniques, and establish PTSD-related molecular networks. This may promote a systematic understanding of the abnormal activation of neural circuits in patients with PTSD and help to establish a personalized, accurate, and objective forensic diagnostic standard.
Collapse
|
25
|
Lushchak O, Strilbytska O, Koliada A, Storey KB. An orchestrating role of mitochondria in the origin and development of post-traumatic stress disorder. Front Physiol 2023; 13:1094076. [PMID: 36703926 PMCID: PMC9871262 DOI: 10.3389/fphys.2022.1094076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is one of the most discussed and actively researched areas in medicine, psychiatry, neurophysiology, biochemistry and rehabilitation over the last decades. Multiple causes can trigger post-traumatic stress disorder. Humans subjected to violence, participants in hostilities, victims of terrorist attacks, physical or psychological persecution, witnessing scenes of cruelty, survival of natural disasters, and more, can strongly affect both children and adults. Pathological features of post-traumatic stress disorder that are manifested at molecular, cellular and whole-organism levels must be clearly understood for successful diagnosis, management, and minimizing of long-term outcomes associated with post-traumatic stress disorder. This article summarizes existing data on different post-traumatic stress disorder causes and symptoms, as well as effects on homeostasis, genetic instability, behavior, neurohumoral balance, and personal psychic stability. In particular, we highlight a key role of mitochondria and oxidative stress development in the severity and treatment of post-traumatic stress disorder. Excessive or prolonged exposure to traumatic factors can cause irreversible mitochondrial damage, leading to cell death. This review underlines the exceptional importance of data integration about the mechanisms and functions of the mitochondrial stress response to develop a three-dimensional picture of post-traumatic stress disorder pathophysiology and develop a comprehensive, universal, multifaceted, and effective strategy of managing or treatment post-traumatic stress disorder.
Collapse
Affiliation(s)
- Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine,Research and Development University, Ivano-Frankivsk, Ukraine,*Correspondence: Oleh Lushchak,
| | - Olha Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Alexander Koliada
- Institute of Food Biotechnology and Genomics, NAS of Ukraine, Kyiv, Ukraine
| | | |
Collapse
|
26
|
Torres-Rodriguez O, Ortiz-Nazario E, Rivera-Escobales Y, Velazquez B, Colón M, Porter JT. Sex-dependent effects of microglial reduction on impaired fear extinction induced by single prolonged stress. Front Behav Neurosci 2023; 16:1014767. [PMID: 36699653 PMCID: PMC9868263 DOI: 10.3389/fnbeh.2022.1014767] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Single prolonged stress (SPS) is a preclinical rodent model for studying post-traumatic stress disorder (PTSD)-like behaviors. Previously we found that increased expression of the microglial marker Iba-1 in the ventral hippocampus after SPS exposure was associated with impaired fear extinction, suggesting that microglial activity contributed to the SPS-induced behavioral changes. To test this, we examined whether reducing microglia with the colony-stimulating factor 1 receptor blocker, PLX3397, in the diet would prevent the SPS-induced extinction impairment. Male rats exposed to SPS showed enhanced fear acquisition and impaired fear extinction memory. Adding PLX3397 to the diet prevented these behavioral changes. In contrast, PLX3397 did not prevent SPS from impairing fear extinction memory in the female rats. Despite the sex-dependent behavioral effects, we found a reduced number and area fraction of Iba-1+ microglia in both male and female rats suggesting that PLX3397 had similar effects on microglia in both sexes. Altogether, these results suggest that microglia contribute to the behavioral changes induced by SPS in male but not female rats.
Collapse
Affiliation(s)
- Orlando Torres-Rodriguez
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Emily Ortiz-Nazario
- Department of Biomedical Sciences, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico
| | - Yesenia Rivera-Escobales
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Bethzaly Velazquez
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - María Colón
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - James T. Porter
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| |
Collapse
|
27
|
Cusack SE, Aliev F, Bustamante D, Dick DM, Amstadter AB. A statistical genetic investigation of psychiatric resilience. Eur J Psychotraumatol 2023; 14:2178762. [PMID: 37052082 PMCID: PMC9987782 DOI: 10.1080/20008066.2023.2178762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/28/2023] [Indexed: 03/06/2023] Open
Abstract
Background: Although trauma exposure (TE) is a transdiagnostic risk factor for many psychiatric disorders, not everyone who experiences TE develops a psychiatric disorder. Resilience may explain this heterogeneity; thus, it is critical to understand the etiologic underpinnings of resilience.Objective: The present study sought to examine the genetic underpinnings of psychiatric resilience using genome-wide association studies (GWAS), genome-wide complex trait analysis (GCTA), and polygenic risk score (PRS) analyses.Method: Participants were 6,634 trauma exposed college students attending a diverse, public university in the Mid Atlantic. GWAS and GCTA analyses were conducted, and using GWAS summary statistics from large genetic consortia, PRS analyses examined the shared genetic risk between resilience and various phenotypes.Results: Results demonstrate that nine single-nucleotide polymorphisms (SNPs) met the suggestive of significance threshold, heritability estimates for resilience were non-significant, and that there is genetic overlap between resilience and AD, as well as resilience and PTSD.Conclusion: Mixed findings from the present study suggest additional research to elucidate the etiological underpinnings of resilience, ideally with larger samples less biased by variables such as heterogeneity (i.e. clinical vs. population based) and population stratification. Genetic investigations of resilience have the potential to elucidate the molecular bases of stress-related psychopathology, suggesting new avenues for prevention and intervention efforts.
Collapse
Affiliation(s)
- Shannon E. Cusack
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Richmond, VA, USA
| | - Fazil Aliev
- Department of African American Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - Daniel Bustamante
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Danielle M. Dick
- Brain Health Institute, Rutgers Biomedical and Health Sciences, Rutgers University, Piscataway, NJ, USA
| | - Ananda B. Amstadter
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
28
|
El Karkafi R, Gebara T, Salem M, Kamel J, El Khoury G, Zalal M, Fakhoury M. Ketogenic Diet and Inflammation: Implications for Mood and Anxiety Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:537-554. [PMID: 36949325 DOI: 10.1007/978-981-19-7376-5_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The ketogenic diet, known as a low-carbohydrate, high-protein, and high-fat diet, drastically restrains the major source of energy for the body, forcing it to burn all excess fat through a process called ketosis-the breaking down of fat into ketone bodies. First suggested as a medical treatment for children suffering from epilepsy, this diet has gained increased popularity as a rapid weight loss strategy. Over the past few years, there have been numerous studies suggesting that the ketogenic diet may provide therapeutic effects for several psychiatric conditions such as mood- and anxiety-related disorders. However, despite significant progress in research, the mechanisms underlying its therapeutic effects remain largely unexplored and are yet to be fully elucidated. This chapter provides an in-depth overview of preclinical and clinical evidence supporting the use of a ketogenic diet in the management of mood and anxiety disorders and discusses its relationship with inflammatory processes and potential mechanisms of actions for its therapeutic effects.
Collapse
Affiliation(s)
- Roy El Karkafi
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Tammy Gebara
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Michael Salem
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Jessica Kamel
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Ghinwa El Khoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Marilynn Zalal
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Marc Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
29
|
Sbisa AM, Madden K, Toben C, McFarlane AC, Dell L, Lawrence-Wood E. Potential peripheral biomarkers associated with the emergence and presence of posttraumatic stress disorder symptomatology: A systematic review. Psychoneuroendocrinology 2023; 147:105954. [PMID: 36308820 DOI: 10.1016/j.psyneuen.2022.105954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Evidence suggests posttraumatic stress disorder (PTSD) involves an interplay between psychological manifestations and biological systems. Biological markers of PTSD could assist in identifying individuals with underlying dysregulation and increased risk; however, accurate and reliable biomarkers are yet to be identified. METHODS A systematic review following the PRISMA guidelines was conducted. Databases included EMBASE, MEDLINE, and Cochrane Central. Studies from a comprehensive 2015 review (Schmidt et al., 2015) and English language papers published subsequently (between 2014 and May 2022) were included. Forty-eight studies were eligible. RESULTS Alterations in neuroendocrine and immune markers were most commonly associated with PTSD symptoms. Evidence indicates PTSD symptoms are associated with hypothalamic-pituitary-adrenal axis dysfunction as represented by low basal cortisol, a dysregulated immune system, characterized by an elevated pro-inflammatory state, and metabolic dysfunction. However, a considerable number of studies neglected to measure sex or prior trauma, which have the potential to affect the biological outcomes of posttraumatic stress symptoms. Mixed findings are indicative of the complexity and heterogeneity of PTSD and suggest the relationship between allostatic load, biological markers, and PTSD remain largely undefined. CONCLUSIONS In addition to prospective research design and long-term follow up, it is imperative future research includes covariates sex, prior trauma, and adverse childhood experiences. Future research should include exploration of biological correlates specific to PTSD symptom domains to determine whether underlying processes differ with symptom expression, in addition to subclinical presentation of posttraumatic stress symptoms, which would allow for greater understanding of biomarkers associated with disorder risk and assist in untangling directionality.
Collapse
Affiliation(s)
- Alyssa M Sbisa
- Phoenix Australia - Centre for Posttraumatic Mental Health, Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Kelsey Madden
- Phoenix Australia - Centre for Posttraumatic Mental Health, Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia
| | - Catherine Toben
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | | | - Lisa Dell
- Phoenix Australia - Centre for Posttraumatic Mental Health, Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ellie Lawrence-Wood
- Phoenix Australia - Centre for Posttraumatic Mental Health, Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
30
|
Pivac N, Vuic B, Sagud M, Nedic Erjavec G, Nikolac Perkovic M, Konjevod M, Tudor L, Svob Strac D, Uzun S, Kozumplik O, Uzun S, Mimica N. PTSD, Immune System, and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:225-262. [PMID: 36949313 DOI: 10.1007/978-981-19-7376-5_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a severe trauma and stress-related disorder associated with different somatic comorbidities, especially cardiovascular and metabolic disorders, and with chronic low-grade inflammation. Altered balance of the hypothalamic-pituitary-adrenal (HPA) axis, cytokines and chemokines, C-reactive protein, oxidative stress markers, kynurenine pathways, and gut microbiota might be involved in the alterations of certain brain regions regulating fear conditioning and memory processes, that are all altered in PTSD. In addition to the HPA axis, the gut microbiota maintains the balance and interaction of the immune, CNS, and endocrine pathways forming the gut-brain axis. Disbalance in the HPA axis, gut-brain axis, oxidative stress pathways and kynurenine pathways, altered immune signaling and disrupted homeostasis, as well as the association of the PTSD with the inflammation and disrupted cognition support the search for novel strategies for treatment of PTSD. Besides potential anti-inflammatory treatment, dietary interventions or the use of beneficial bacteria, such as probiotics, can potentially improve the composition and the function of the bacterial community in the gut. Therefore, bacterial supplements and controlled dietary changes, with exercise, might have beneficial effects on the psychological and cognitive functions in patients with PTSD. These new treatments should be aimed to attenuate inflammatory processes and consequently to reduce PTSD symptoms but also to improve cognition and reduce cardio-metabolic disorders associated so frequently with PTSD.
Collapse
Affiliation(s)
- Nela Pivac
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia.
| | - Barbara Vuic
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marina Sagud
- Department of Psychiatry, University Hospital Center Zagreb, Zagreb, Croatia
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Matea Nikolac Perkovic
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marcela Konjevod
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Lucija Tudor
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Dubravka Svob Strac
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Suzana Uzun
- University of Zagreb School of Medicine, Zagreb, Croatia
- University Psychiatric Hospital Vrapce, Zagreb, Croatia
| | | | - Sandra Uzun
- Department for Anesthesiology, Reanimatology, and Intensive Care, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ninoslav Mimica
- University of Zagreb School of Medicine, Zagreb, Croatia
- University Psychiatric Hospital Vrapce, Zagreb, Croatia
| |
Collapse
|
31
|
Parekh SV, Adams LO, Barkell GA, Lysle DT. MDMA administration attenuates hippocampal IL-β immunoreactivity and subsequent stress-enhanced fear learning: An animal model of PTSD. Brain Behav Immun Health 2022; 26:100542. [DOI: 10.1016/j.bbih.2022.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022] Open
|
32
|
Honig MG, Del Mar NA, Moore BM, Reiner A. Raloxifene Mitigates Emotional Deficits after Mild Traumatic Brain Injury in Mice. Neurotrauma Rep 2022; 3:534-544. [DOI: 10.1089/neur.2022.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Marcia G. Honig
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Nobel A. Del Mar
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Bob M. Moore
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
33
|
Kéri S. Trauma and Remembering: From Neuronal Circuits to Molecules. Life (Basel) 2022; 12:1707. [PMID: 36362862 PMCID: PMC9699199 DOI: 10.3390/life12111707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 08/10/2023] Open
Abstract
Individuals with posttraumatic stress disorder (PTSD) experience intrusions of vivid traumatic memories, heightened arousal, and display avoidance behavior. Disorders in identity, emotion regulation, and interpersonal relationships are also common. The cornerstone of PTSD is altered learning, memory, and remembering, regulated by a complex neuronal and molecular network. We propose that the essential feature of successful treatment is the modification of engrams in their unstable state during retrieval. During psychedelic psychotherapy, engrams may show a pronounced instability, which enhances modification. In this narrative review, we outline the clinical characteristics of PTSD, its multifaceted neuroanatomy, and the molecular pathways that regulate memory destabilization and reconsolidation. We propose that psychedelics, acting by serotonin-glutamate interactions, destabilize trauma-related engrams and open the door to change them during psychotherapy.
Collapse
Affiliation(s)
- Szabolcs Kéri
- Department of Cognitive Science, Budapest University of Technology and Economics, 1111 Budapest, Hungary; ; Tel.: +36-1463-1273
- National Institute of Mental Health, Neurology, and Neurosurgery, 1145 Budapest, Hungary
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
34
|
Seligowski AV, Webber TK, Marvar PJ, Ressler KJ, Philip NS. Involvement of the brain-heart axis in the link between PTSD and cardiovascular disease. Depress Anxiety 2022; 39:663-674. [PMID: 35708302 PMCID: PMC9588548 DOI: 10.1002/da.23271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/22/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) has long been associated with a heightened risk of cardiovascular disease (CVD). A number of mechanisms have been implicated to underlie this brain-heart axis relationship, such as altered functioning of the autonomic nervous system and increased systemic inflammation. While neural alterations have repeatedly been observed in PTSD, they are rarely considered in the PTSD-CVD link. The brain-heart axis is a pathway connecting frontal and limbic brain regions to the brainstem and periphery via the autonomic nervous system and it may be a promising model for understanding CVD risk in PTSD given its overlap with PTSD neural deficits. We first provide a summary of the primary mechanisms implicated in the association between PTSD and CVD. We then review the brain-heart axis and its relevance to PTSD, as well as findings from PTSD trials demonstrating that a number of PTSD treatments have effects on areas of the brain-heart axis. Finally, we discuss sex considerations in the PTSD-CVD link. A critical next step in this study is to determine if PTSD treatments that affect the brain-heart axis (e.g., brain stimulation that improves autonomic function) also reduce the risk of CVD.
Collapse
Affiliation(s)
- Antonia V. Seligowski
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | | | | | - Kerry J. Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Noah S. Philip
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School, of Brown University, Providence, RI, USA
| |
Collapse
|
35
|
Shiner B, Huybrechts K, Gui J, Rozema L, Forehand J, Watts BV, Jiang T, Hoyt JE, Esteves J, Schnurr PP, Ray K, Gradus JL. Comparative Effectiveness of Direct-Acting Antivirals for Posttraumatic Stress Disorder in Veterans Affairs Patients With Hepatitis C Virus Infection. Am J Epidemiol 2022; 191:1614-1625. [PMID: 35689641 PMCID: PMC9989349 DOI: 10.1093/aje/kwac104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/26/2022] [Accepted: 06/08/2022] [Indexed: 01/29/2023] Open
Abstract
We recently conducted an exploratory study that indicated that several direct-acting antivirals (DAAs), highly effective medications for hepatitis C virus (HCV) infection, were also associated with improvement in posttraumatic stress disorder (PTSD) among a national cohort of US Department of Veterans Affairs (VA) patients treated between October 1, 1999, and September 30, 2019. Limiting the same cohort to patients with PTSD and HCV, we compared the associations of individual DAAs with PTSD symptom improvement using propensity score weighting. After identifying patients who had available baseline and endpoint PTSD symptom data as measured with the PTSD Checklist (PCL), we compared changes over the 8-12 weeks of DAA treatment. The DAAs most prescribed in conjunction with PCL measurement were glecaprevir/pibrentasvir (GLE/PIB; n = 54), sofosbuvir/velpatasvir (SOF/VEL; n = 54), and ledipasvir/sofosbuvir (LDV/SOF; n = 145). GLE/PIB was superior to LDV/SOF, with a mean difference in improvement of 7.3 points on the PCL (95% confidence interval (CI): 1.1, 13.6). The mean differences in improvement on the PCL were smaller between GLE/PIB and SOF/VEL (3.0, 95% CI: -6.3, 12.2) and between SOF/VEL and LDV/SOF (4.4, 95% CI: -2.4, 11.2). While almost all patients were cured of HCV (92.5%) regardless of the agent received, PTSD outcomes were superior for those receiving GLE/PIB compared with those receiving LDV/SOF, indicating that GLE/PIB may merit further investigation as a potential PTSD treatment.
Collapse
Affiliation(s)
- Brian Shiner
- Correspondence to Dr. Brian Shiner, VA Medical Center, 215 N. Main Street, White River Junction, VT 05009 (e-mail: )
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tanaka M, Szabó Á, Spekker E, Polyák H, Tóth F, Vécsei L. Mitochondrial Impairment: A Common Motif in Neuropsychiatric Presentation? The Link to the Tryptophan-Kynurenine Metabolic System. Cells 2022; 11:2607. [PMID: 36010683 PMCID: PMC9406499 DOI: 10.3390/cells11162607] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 02/07/2023] Open
Abstract
Nearly half a century has passed since the discovery of cytoplasmic inheritance of human chloramphenicol resistance. The inheritance was then revealed to take place maternally by mitochondrial DNA (mtDNA). Later, a number of mutations in mtDNA were identified as a cause of severe inheritable metabolic diseases with neurological manifestation, and the impairment of mitochondrial functions has been probed in the pathogenesis of a wide range of illnesses including neurodegenerative diseases. Recently, a growing number of preclinical studies have revealed that animal behaviors are influenced by the impairment of mitochondrial functions and possibly by the loss of mitochondrial stress resilience. Indeed, as high as 54% of patients with one of the most common primary mitochondrial diseases, mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome, present psychiatric symptoms including cognitive impairment, mood disorder, anxiety, and psychosis. Mitochondria are multifunctional organelles which produce cellular energy and play a major role in other cellular functions including homeostasis, cellular signaling, and gene expression, among others. Mitochondrial functions are observed to be compromised and to become less resilient under continuous stress. Meanwhile, stress and inflammation have been linked to the activation of the tryptophan (Trp)-kynurenine (KYN) metabolic system, which observably contributes to the development of pathological conditions including neurological and psychiatric disorders. This review discusses the functions of mitochondria and the Trp-KYN system, the interaction of the Trp-KYN system with mitochondria, and the current understanding of the involvement of mitochondria and the Trp-KYN system in preclinical and clinical studies of major neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Masaru Tanaka
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Eleonóra Spekker
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Helga Polyák
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Fanni Tóth
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - László Vécsei
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
37
|
Voigt RM, Zalta AK, Raeisi S, Zhang L, Brown JM, Forsyth CB, Boley RA, Held P, Pollack MH, Keshavarzian A. Abnormal intestinal milieu in posttraumatic stress disorder is not impacted by treatment that improves symptoms. Am J Physiol Gastrointest Liver Physiol 2022; 323:G61-G70. [PMID: 35638693 PMCID: PMC9291416 DOI: 10.1152/ajpgi.00066.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a psychiatric disorder, resulting from exposure to traumatic events. Current recommended first-line interventions for the treatment of PTSD include evidence-based psychotherapies, such as cognitive processing therapy (CPT). Psychotherapies are effective for reducing PTSD symptoms, but approximately two-thirds of veterans continue to meet diagnostic criteria for PTSD after treatment, suggesting there is an incomplete understanding of what factors sustain PTSD. The intestine can influence the brain and this study evaluated intestinal readouts in subjects with PTSD. Serum samples from controls without PTSD (n = 40) from the Duke INTRuST Program were compared with serum samples from veterans with PTSD (n = 40) recruited from the Road Home Program at Rush University Medical Center. Assessments included microbial metabolites, intestinal barrier, and intestinal epithelial cell function. In addition, intestinal readouts were assessed in subjects with PTSD before and after a 3-wk CPT-based intensive treatment program (ITP) to understand if treatment impacts the intestine. Compared with controls, veterans with PTSD had a proinflammatory intestinal environment including lower levels of microbiota-derived metabolites, such as acetic, lactic, and succinic acid, intestinal barrier dysfunction [lipopolysaccharide (LPS) and LPS-binding protein], an increase in HMGB1, and a concurrent increase in the number of intestinal epithelial cell-derived extracellular vesicles. The ITP improved PTSD symptoms but no changes in intestinal outcomes were noted. This study confirms the intestine is abnormal in subjects with PTSD and suggests that effective treatment of PTSD does not alter intestinal readouts. Targeting beneficial changes in the intestine may be an approach to enhance existing PTSD treatments.NEW & NOTEWORTHY This study confirms an abnormal intestinal environment is present in subjects with PTSD. This study adds to what is already known by examining the intestinal barrier and evaluating the relationship between intestinal readouts and PTSD symptoms and is the first to report the impact of PTSD treatment (which improves symptoms) on intestinal readouts. This study suggests that targeting the intestine as an adjunct approach could improve the treatment of PTSD.
Collapse
Affiliation(s)
- Robin M Voigt
- Rush Center for Microbiome and Chronobiology Research, Rush University Medical Center, Chicago Illinois
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois
| | - Alyson K Zalta
- Department of Psychological Science, University of California, Irvine, California
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
| | - Shohreh Raeisi
- Rush Center for Microbiome and Chronobiology Research, Rush University Medical Center, Chicago Illinois
| | - Lijuan Zhang
- Rush Center for Microbiome and Chronobiology Research, Rush University Medical Center, Chicago Illinois
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
- Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
- Center for Microbiome and Human Health, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Christopher B Forsyth
- Rush Center for Microbiome and Chronobiology Research, Rush University Medical Center, Chicago Illinois
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois
| | - Randy A Boley
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
| | - Philip Held
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
| | - Mark H Pollack
- Department of Psychological Science, University of California, Irvine, California
| | - Ali Keshavarzian
- Rush Center for Microbiome and Chronobiology Research, Rush University Medical Center, Chicago Illinois
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois
- Department of Physiology, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
38
|
Balan I, Aurelian L, Williams KS, Campbell B, Meeker RB, Morrow AL. Inhibition of human macrophage activation via pregnane neurosteroid interactions with toll-like receptors: Sex differences and structural requirements. Front Immunol 2022; 13:940095. [PMID: 35967446 PMCID: PMC9373802 DOI: 10.3389/fimmu.2022.940095] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
We recently discovered that (3α,5α)3-hydroxypregnan-20-one (allopregnanolone) inhibits pro-inflammatory toll-like receptor (TLR) activation and cytokine/chemokine production in mouse macrophage RAW264.7 cells. The present studies evaluate neurosteroid actions upon TLR activation in human macrophages from male and female healthy donors. Buffy coat leukocytes were obtained from donors at the New York Blood Center (http://nybloodcenter.org/), and peripheral blood mononuclear cells were isolated and cultured to achieve macrophage differentiation. TLR4 and TLR7 were activated by lipopolysaccharide (LPS) or imiquimod in the presence/absence of allopregnanolone or related neurosteroids and pro-inflammatory markers were detected by ELISA or western blotting. Cultured human monocyte-derived-macrophages exhibited typical morphology, a mixed immune profile of both inflammatory and anti-inflammatory markers, with no sex difference at baseline. Allopregnanolone inhibited TLR4 activation in male and female donors, preventing LPS-induced elevations of TNF-α, MCP-1, pCREB and pSTAT1. In contrast, 3α,5α-THDOC and SGE-516 inhibited the TLR4 pathway activation in female, but not male donors. Allopregnanolone completely inhibited TLR7 activation by imiquimod, blocking IL-1-β, IL-6, pSTAT1 and pIRF7 elevations in females only. 3α,5α-THDOC and SGE-516 partially inhibited TLR7 activation, only in female donors. The results indicate that allopregnanolone inhibits TLR4 and TLR7 activation in cultured human macrophages resulting in diminished cytokine/chemokine production. Allopregnanolone inhibition of TLR4 activation was found in males and females, but inhibition of TLR7 signals exhibited specificity for female donors. 3α,5α-THDOC and SGE-516 inhibited TLR4 and TLR7 pathways only in females. These studies demonstrate anti-inflammatory effects of allopregnanolone in human macrophages for the first time and suggest that inhibition of pro-inflammatory cytokines/chemokines may contribute to its therapeutic actions.
Collapse
Affiliation(s)
- Irina Balan
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States
| | - Laure Aurelian
- Stanford University School of Medicine, Stanford, CA, United States
| | - Kimberly S. Williams
- Department of Neurology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States
| | - Brian Campbell
- Translational Sciences, Sage Therapeutics Inc., Cambridge, MA, United States
| | - Rick B. Meeker
- Department of Neurology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States
| | - A. Leslie Morrow
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States
- *Correspondence: A. Leslie Morrow,
| |
Collapse
|
39
|
Lindsey A, Ellison RL, Herrold AA, Aaronson AL, Kletzel SL, Stika MM, Guernon A, Bender Pape T. rTMS/iTBS and Cognitive Rehabilitation for Deficits Associated With TBI and PTSD: A Theoretical Framework and Review. J Neuropsychiatry Clin Neurosci 2022; 35:28-38. [PMID: 35872613 DOI: 10.1176/appi.neuropsych.21090227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rehabilitation of cognitive and psychosocial deficits resulting from traumatic brain injury (TBI) continues to be an area of concern in health care. Commonly co-occurring psychiatric disorders, such as major depressive disorder and posttraumatic stress disorder, create additional hurdles when attempting to remediate cognitive sequelae. There is increased need for procedures that will yield consistent gains indicative of recovery of function. Intermittent theta-burst stimulation (iTBS), a form of repetitive transcranial magnetic stimulation, has potential as an instrument that can be tailored to aid cognitive processes and support functional gains. The use of iTBS enables direct stimulation of desired neural systems. iTBS, performed in conjunction with behavioral interventions (e.g., cognitive rehabilitation, psychotherapy), may result in additive success in facilitating cognitive restoration and adaptation. The purpose of this theoretical review is to illustrate how the technical and physiological aspects of iTBS may enhance other forms of neurorehabilitation for individuals with TBI. Future research on combinatorial iTBS interventions has the potential to translate to other complex neuropsychiatric conditions.
Collapse
Affiliation(s)
- André Lindsey
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| | - Rachael L Ellison
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| | - Amy A Herrold
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| | - Alexandra L Aaronson
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| | - Sandra L Kletzel
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| | - Monica M Stika
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| | - Ann Guernon
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| | - Theresa Bender Pape
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| |
Collapse
|
40
|
Zhang Y, Rosen R, Reibman J, Shao Y. Posttraumatic Stress Disorder Mediates the Association between Traumatic World Trade Center Dust Cloud Exposure and Ongoing Systemic Inflammation in Community Members. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148622. [PMID: 35886474 PMCID: PMC9322679 DOI: 10.3390/ijerph19148622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
Exposure to World Trade Center (WTC) dust/fumes and traumas on 11 September 2001 has been reported as a risk factor for post-traumatic stress disorder (PTSD) and other mental/physical health symptoms in WTC-affected populations. Increased systemic inflammation and oxidative stress from the exposure and subsequent illnesses have been proposed as contributors to the underlying biological processes. Many blood-based biomarkers of systemic inflammation, including C-reactive protein (CRP), are useful for non-invasive diagnostic and monitoring of disease process, and also potential targets for therapeutic interventions. Twenty years after 9/11, however, the relationships between WTC exposure, chronic PTSD, and systemic inflammation are only beginning to be systematically investigated in the WTC-affected civilian population despite the fact that symptoms of PTSD and systemic inflammation are still common and persistent. This paper aims to address this knowledge gap, using enrollees of the WTC Environmental Health Center (EHC), a federally designated treatment and surveillance program for community members (WTC Survivors) exposed to the 9/11 terrorist attack. We conducted a mediation analysis to investigate the association between acute WTC dust cloud traumatic exposure (WDCTE) on 9/11, chronic PTSD symptoms, and levels of systemic inflammation. The data indicate that the chronic PTSD symptoms and some specific symptom clusters of PTSD significantly mediate the WDCTE on systemic inflammation, as reflected by the CRP levels. As both chronic PTSD and systemic inflammation are long-term risk factors for neurodegeneration and cognitive decline, further research on the implications of this finding is warranted.
Collapse
Affiliation(s)
- Yian Zhang
- Department of Population Health, NYU Grossman School of Medicine, 180 Madison Avenue, New York, NY 10016, USA;
- HHC World Trade Center Environmental Health Center, 462 First Avenue, New York, NY 10016, USA;
- NYU Alzheimer Disease Research Center, 145 E 32 Street, New York, NY 10016, USA
| | - Rebecca Rosen
- HHC World Trade Center Environmental Health Center, 462 First Avenue, New York, NY 10016, USA;
- Department of Psychiatry, NYU Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Joan Reibman
- HHC World Trade Center Environmental Health Center, 462 First Avenue, New York, NY 10016, USA;
- Department of Medicine, NYU Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
- Correspondence: (J.R.); (Y.S.)
| | - Yongzhao Shao
- Department of Population Health, NYU Grossman School of Medicine, 180 Madison Avenue, New York, NY 10016, USA;
- HHC World Trade Center Environmental Health Center, 462 First Avenue, New York, NY 10016, USA;
- NYU Alzheimer Disease Research Center, 145 E 32 Street, New York, NY 10016, USA
- Correspondence: (J.R.); (Y.S.)
| |
Collapse
|
41
|
Genetic and Epigenetic Association of Hepatocyte Nuclear Factor-1α with Glycosylation in Post-Traumatic Stress Disorder. Genes (Basel) 2022; 13:genes13061063. [PMID: 35741825 PMCID: PMC9223288 DOI: 10.3390/genes13061063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 01/25/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a complex trauma-related disorder, the etiology and underlying molecular mechanisms of which are still unclear and probably involve different (epi)genetic and environmental factors. Protein N-glycosylation is a common post-translational modification that has been associated with several pathophysiological states, including inflammation and PTSD. Hepatocyte nuclear factor-1α (HNF1A) is a transcriptional regulator of many genes involved in the inflammatory processes, and it has been identified as master regulator of plasma protein glycosylation. The aim of this study was to determine the association between N-glycan levels in plasma and immunoglobulin G, methylation at four CpG positions in the HNF1A gene, HNF1A antisense RNA 1 (HNF1A-AS1), rs7953249 and HNF1A rs735396 polymorphisms in a total of 555 PTSD and control subjects. We found significant association of rs7953249 and rs735396 polymorphisms, as well as HNF1A gene methylation at the CpG3 site, with highly branched, galactosylated and sialyated plasma N-glycans, mostly in patients with PTSD. HNF1A-AS1 rs7953249 polymorphism was also associated with PTSD; however, none of the polymorphisms were associated with HNF1A gene methylation. These results indicate a possible regulatory role of the investigated HNF1A polymorphisms with respect to the abundance of complex plasma N-glycans previously associated with proinflammatory response, which could contribute to the clinical manifestation of PTSD and its comorbidities.
Collapse
|
42
|
Núñez-Rios DL, Martínez-Magaña JJ, Nagamatsu ST, Andrade-Brito DE, Forero DA, Orozco-Castaño CA, Montalvo-Ortiz JL. Central and Peripheral Immune Dysregulation in Posttraumatic Stress Disorder: Convergent Multi-Omics Evidence. Biomedicines 2022; 10:biomedicines10051107. [PMID: 35625844 PMCID: PMC9138536 DOI: 10.3390/biomedicines10051107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a chronic and multifactorial disorder with a prevalence ranging between 6–10% in the general population and ~35% in individuals with high lifetime trauma exposure. Growing evidence indicates that the immune system may contribute to the etiology of PTSD, suggesting the inflammatory dysregulation as a hallmark feature of PTSD. However, the potential interplay between the central and peripheral immune system, as well as the biological mechanisms underlying this dysregulation remain poorly understood. The activation of the HPA axis after trauma exposure and the subsequent activation of the inflammatory system mediated by glucocorticoids is the most common mechanism that orchestrates an exacerbated immunological response in PTSD. Recent high-throughput analyses in peripheral and brain tissue from both humans with and animal models of PTSD have found that changes in gene regulation via epigenetic alterations may participate in the impaired inflammatory signaling in PTSD. The goal of this review is to assess the role of the inflammatory system in PTSD across tissue and species, with a particular focus on the genomics, transcriptomics, epigenomics, and proteomics domains. We conducted an integrative multi-omics approach identifying TNF (Tumor Necrosis Factor) signaling, interleukins, chemokines, Toll-like receptors and glucocorticoids among the common dysregulated pathways in both central and peripheral immune systems in PTSD and propose potential novel drug targets for PTSD treatment.
Collapse
Affiliation(s)
- Diana L. Núñez-Rios
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - José J. Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Sheila T. Nagamatsu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Diego E. Andrade-Brito
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Diego A. Forero
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 110231, Colombia; (D.A.F.); (C.A.O.-C.)
| | - Carlos A. Orozco-Castaño
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 110231, Colombia; (D.A.F.); (C.A.O.-C.)
| | - Janitza L. Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
- Correspondence: ; Tel.: +1-(203)-9325711 (ext. 7491)
| |
Collapse
|
43
|
Friend SF, Nachnani R, Powell SB, Risbrough VB. C-Reactive Protein: Marker of risk for post-traumatic stress disorder and its potential for a mechanistic role in trauma response and recovery. Eur J Neurosci 2022; 55:2297-2310. [PMID: 33131159 PMCID: PMC8087722 DOI: 10.1111/ejn.15031] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/17/2020] [Accepted: 10/06/2020] [Indexed: 01/08/2023]
Abstract
Increasing evidence indicates that inflammation plays a role in PTSD and stress disorder pathophysiology. PTSD is consistently associated with higher circulating inflammatory protein levels. Rodent models demonstrate that inflammation promotes enduring avoidance and arousal behaviors after severe stressors (e.g., predator exposure and social defeat), suggesting that inflammation may play a mechanistic role in trauma disorders. C-reactive protein (CRP) is an innate acute phase reactant produced by the liver after acute infection and chronic disease. A growing number of investigations report associations with PTSD diagnosis and elevated peripheral CRP, CRP gene mutations, and CRP gene expression changes in immune signaling pathways. CRP is reasonably established as a potential marker of PTSD and trauma exposure, but if and how it may play a mechanistic role is unclear. In this review, we discuss the current understanding of immune mechanisms in PTSD with a particular focus on the innate immune signaling factor, CRP. We found that although there is consistent evidence of an association of CRP with PTSD symptoms and risk, there is a paucity of data on how CRP might contribute to CNS inflammation in PTSD, and consequently, PTSD symptoms. We discuss potential mechanisms through which CRP could modulate enduring peripheral and CNS stress responses, along with future areas of investigation probing the role of CRP and other innate immune signaling factors in modulating trauma responses. Overall, we found that CRP likely contributes to central inflammation, but how it does so is an area for further study.
Collapse
Affiliation(s)
- Samantha F. Friend
- Veterans Affairs Center of Excellence for Stress and Mental HealthSan DiegoCAUSA,Department of PsychiatryUniversity of California San DiegoSan DiegoCAUSA
| | - Rahul Nachnani
- Department of PharmacologyPenn State College of MedicineHersheyPAUSA
| | - Susan B. Powell
- Department of PsychiatryUniversity of California San DiegoSan DiegoCAUSA,Research ServiceVA San Diego Healthcare SystemSan DiegoCAUSA
| | - Victoria B. Risbrough
- Veterans Affairs Center of Excellence for Stress and Mental HealthSan DiegoCAUSA,Department of PsychiatryUniversity of California San DiegoSan DiegoCAUSA
| |
Collapse
|
44
|
Vollbracht C, Kraft K. Oxidative Stress and Hyper-Inflammation as Major Drivers of Severe COVID-19 and Long COVID: Implications for the Benefit of High-Dose Intravenous Vitamin C. Front Pharmacol 2022; 13:899198. [PMID: 35571085 PMCID: PMC9100929 DOI: 10.3389/fphar.2022.899198] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/14/2022] [Indexed: 12/25/2022] Open
Abstract
Oxidative stress is a pivotal point in the pathophysiology of COVID-19 and presumably also in Long-COVID. Inflammation and oxidative stress are mutually reinforcing each other, thus contributing to the systemic hyperinflammatory state and coagulopathy which are cardinal pathological mechanisms of severe stages. COVID-19 patients, like other critically ill patients e.g. with pneumonia, very often show severe deficiency of the antioxidant vitamin C. So far, it has not been investigated how long this deficiency lasts or whether patients with long COVID symptoms also suffer from deficiencies. A vitamin C deficit has serious pathological consequences because vitamin C is one of the most effective antioxidants, but also co-factor of many enzymatic processes that affect the immune and nervous system, blood circulation and energy metabolism. Because of its anti-oxidative, anti-inflammatory, endothelial-restoring, and immunomodulatory effects the supportive intravenous (iv) use of supraphysiological doses has been investigated so far in 12 controlled or observational studies with altogether 1578 inpatients with COVID-19. In these studies an improved oxygenation, a decrease in inflammatory markers and a faster recovery were observed. In addition, early treatment with iv high dose vitamin C seems to reduce the risks of severe courses of the disease such as pneumonia and also mortality. Persistent inflammation, thrombosis and a dysregulated immune response (auto-immune phenomena and/or persistent viral load) seem to be major contributors to Long-COVID. Oxidative stress and inflammation are involved in the development and progression of fatigue and neuro-psychiatric symptoms in various diseases by disrupting tissue (e.g. autoantibodies), blood flow (e.g. immune thrombosis) and neurotransmitter metabolism (e.g. excitotoxicity). In oncological diseases, other viral infections and autoimmune diseases, which are often associated with fatigue, cognitive disorders, pain and depression similar to Long-COVID, iv high dose vitamin C was shown to significantly relieve these symptoms. Supportive iv vitamin C in acute COVID-19 might therefore reduce the risk of severe courses and also the development of Long-COVID.
Collapse
Affiliation(s)
- Claudia Vollbracht
- Medical Science Department, Pascoe Pharmazeutische Präparate GmbH, Giessen, Germany
| | - Karin Kraft
- Chair of Naturopathy, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
45
|
McIntosh R, Lobo JD, Carvalho N, Ironson G. Learning to forget: Hippocampal-amygdala connectivity partially mediates the effect of sexual trauma severity on verbal recall in older women undiagnosed with posttraumatic stress disorder. J Trauma Stress 2022; 35:631-643. [PMID: 35156236 PMCID: PMC11021133 DOI: 10.1002/jts.22778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/08/2022]
Abstract
Verbal learning deficits are common among sexually traumatized women who have not been formally diagnosed with posttraumatic stress disorder (PTSD). Aberrant resting-state functional connectivity (rsFC) of the amygdala and hippocampus are implicated in PTSD and verbal memory impairment. We tested rsFC between bilateral dentate gyrus (DG) and both centromedial (CM) and basolateral (BL) nuclei of the amygdala as statistical mediators for the effect of sexual trauma-related symptom severity on delayed verbal recall performance in 63 older women (age: 60-85 years) undiagnosed with PTSD. Participant data were drawn from the NKI-Rockland Study. Individuals completed a 10-min resting-state scan, Rey Auditory Verbal Learning Test (RAVLT), and the Sexual Abuse Trauma Index (SATI) from the Trauma Symptom Checklist. Z-scores indicating rsFC of DG with BL and CM amygdala seeds were evaluated in two separate mediation models. Higher SATI scores were associated with lower RAVLT after controlling for age, β = -.23, 95% CI [.48, .03], p = .039. This effect was negated upon adding a negative path from SATI to rsFC of left DG and right CM, β = -.29, 95% CI [-.52, -.02], p = .022, and a positive path from that seed pair to RAVLT List A recall, β = .28, 95% CI [.03, 0.48], p = .015. Chi-square fit indices supported partial mediation by this seed pair, p = .762. In the absence of PTSD sexual trauma symptoms partially relate to verbal learning deficits as a function of aberrant rsFC between left hippocampus DG and right amygdala CM nuclei.
Collapse
Affiliation(s)
- Roger McIntosh
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Judith D Lobo
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Nicole Carvalho
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Gail Ironson
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| |
Collapse
|
46
|
Shastry N, Sultana E, Jeffrey M, Collado F, Kibler J, DeLucia C, Fletcher MA, Klimas N, Craddock TJA. The impact of post-traumatic stress on quality of life and fatigue in women with Gulf War Illness. BMC Psychol 2022; 10:42. [PMID: 35216624 PMCID: PMC8876751 DOI: 10.1186/s40359-022-00752-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/11/2022] [Indexed: 12/01/2022] Open
Abstract
Background Gulf War Illness (GWI) is a chronic, multi-symptomatic disorder characterized by fatigue, muscle pain, cognitive problems, insomnia, rashes, and gastrointestinal issues affecting an estimated 30% of the ~ 750,000 returning military Veterans of the 1990–1991 Persian Gulf War. Female Veterans deployed to combat in this war report medical symptoms, like cognition and respiratory troubles, at twice the rate compared to non-deployed female Veterans of the same era. The heterogeneity of GWI symptom presentation complicates diagnosis as well as the identification of effective treatments. This is exacerbated by the presence of co-morbidities. Defining subgroups of the illness may help alleviate these complications. One clear grouping is along the lines of gender. Our aim is to determine if women with GWI can be further subdivided into distinct subgroups based on post-traumatic stress disorder (PTSD) symptom presentation. Methods Veterans diagnosed with GWI (n = 35) and healthy sedentary controls (n = 35) were recruited through the Miami Veterans Affairs Medical Health Center. Symptoms were assessed via the RAND short form health survey, the multidimensional fatigue inventory, and the Davidson trauma scale. Hierarchal regression modeling was performed on measures of health and fatigue with PTSD symptoms as a covariate. This was followed by univariate analyses conducted with two separate GWI groups based on a cut-point of 70 for their total Davidson trauma scale value and performing heteroscedastic t-tests across all measures. Results Based on the distinct differences found in PTSD symptomology regarding all health and trauma symptoms, two subgroups were derived within female GWI Veterans. Hierarchical regression models displayed the comorbid effects of GWI and PTSD, as both conditions had measurable impacts on quality of life and fatigue (ΔR2 = 0.08–0.672), with notable differences in mental and emotional measures. Overall, a cut point analysis indicated poorer quality of life and greater fatigue within all measures for women with GWI and PTSD symptoms in comparison to those women with GWI without PTSD symptoms and healthy controls. Conclusions Our current findings support the understanding that comorbid symptoms of GWI and PTSD subsequently result in poorer quality of life and fatigue, along with establishing the possibility of varying clinical presentations.
Collapse
Affiliation(s)
- Nandan Shastry
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.,Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Esha Sultana
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.,Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Mary Jeffrey
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.,Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL, USA.,Geriatric Research, Education, and Clinical Center, Miami Veterans Affairs Medical Center, Miami, USA
| | - Fanny Collado
- Geriatric Research, Education, and Clinical Center, Miami Veterans Affairs Medical Center, Miami, USA
| | - Jeffrey Kibler
- Department of Clinical and School Psychology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Christian DeLucia
- Department of Clinical and School Psychology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Mary Ann Fletcher
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.,Geriatric Research, Education, and Clinical Center, Miami Veterans Affairs Medical Center, Miami, USA.,Department of Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Nancy Klimas
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.,Geriatric Research, Education, and Clinical Center, Miami Veterans Affairs Medical Center, Miami, USA.,Department of Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Travis J A Craddock
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA. .,Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL, USA. .,Department of Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, USA. .,Department of Computer Science, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
47
|
Toft H, Bramness JG, Lien L. Levels of Peripheral Circulating IL-6 and IL-10 Decrease Over Time Despite High Depression Burden in PTSD Patients. Neuropsychiatr Dis Treat 2022; 18:737-747. [PMID: 35414745 PMCID: PMC8995001 DOI: 10.2147/ndt.s357797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Patients with combined depression symptoms and post-traumatic stress disorder (PTSD) often exhibit high levels of circulating inflammatory biomarkers as either a cause or consequence of their disease. We aimed to investigate how cytokines and depression symptoms develop with one-year follow-up and compare them with non-PTSD patients. METHODS The study had a longitudinal design with one-year follow-up measurements in an inpatient treatment setting at a psychiatric center in Norway. PTSD diagnoses were set using the Mini International Neuropsychiatric Interview (MINI). The first three measurements were at baseline (T0), halfway (T1) and at discharge (T2) from a 12-week main stay, followed by a final measurement one year after discharge (T3). Serum blood samples were collected on all four occasions. The Beck Depression Inventory-II (BDI-II) was administered at T0, T2 and T3. RESULTS Levels of interleukin-6 (IL-6) and interleukin-10 (IL-10) in PTSD patients were higher than in patients without PTSD at T0 (p = 0.005 and 0.042). The PTSD patients had a higher average level of IL-10 across all four measurements (B = 1.62, Standard Error (SE) = 0.78, p = 0.037). The IL-10 levels in PTSD patients declined from T0 to T3 (p = 0.039). The PTSD patients were more depressed than non-PTSD patients at T3 (p = 0.019). CONCLUSIONS The levels of IL-10 and IL-6 in PTSD patients more closely resembled the levels in non-PTSD patients at one-year follow-up, despite level of depression being unchanged in the PTSD patients. This calls into question the close relationship between level of circulating cytokines and depressive symptoms, at least in PTSD patients. Further research is needed to investigate what appears to be a complex relationship between immune markers and depression in patients with PTSD.
Collapse
Affiliation(s)
- Helge Toft
- Norwegian National Advisory Unit on Concurrent Substance Abuse and Mental Health Disorders, Innlandet Hospital Trust, Brumunddal, Norway.,Faculty of Social and Health Sciences, Inland Norway University of Applied Sciences, Elverum, Norway
| | - Jørgen G Bramness
- Norwegian National Advisory Unit on Concurrent Substance Abuse and Mental Health Disorders, Innlandet Hospital Trust, Brumunddal, Norway.,Department of Alcohol, Tobacco and Drugs, Norwegian Institute of Public Health, Oslo, Norway.,Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Lars Lien
- Norwegian National Advisory Unit on Concurrent Substance Abuse and Mental Health Disorders, Innlandet Hospital Trust, Brumunddal, Norway.,Faculty of Social and Health Sciences, Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
48
|
Oroian BA, Ciobica A, Timofte D, Stefanescu C, Serban IL. New Metabolic, Digestive, and Oxidative Stress-Related Manifestations Associated with Posttraumatic Stress Disorder. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5599265. [PMID: 34966477 PMCID: PMC8712172 DOI: 10.1155/2021/5599265] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/29/2021] [Accepted: 12/04/2021] [Indexed: 12/14/2022]
Abstract
Posttraumatic stress disorder (PTSD) represents a pressing and generally invalidating syndrome that is triggered by a terrifying or stressful experience, relying on recurrently reliving the traumatic event feelings associated to it, which is subsequently linked to ongoing activations of stress-related neurobiological pathways and is often associated with neurodegeneration. In this paper, we examine what lies beneath this disorder, reviewing evidence that connects PTSD with a wide array of mechanisms and its intertwined pathways that can lead to the decompensation of different pathologies, such as cardiovascular disease, gastrointestinal ailments, autoimmune disorders, and endocrine diseases. Also, the significance of the oxidative stress in this frame of reference is debated. Thus, knowing and identifying the main features of the distressing experience, the circumstances around it, as well as the neuropsychological and emotional characteristics of people prone to develop PTSD after going through disturbing incidents can offer an opportunity to anticipate the development of potential destructive consequences in several psychological dimensions: cognitive, affective, relational, behavioral, and somatic. We can also observe more closely the intricate connections of the disorder to other pathologies and their underlying mechanisms such as inflammation, oxidative stress, bacterial overgrowth syndrome, irritable bowel syndrome, metabolic disorders, oxytocin, and cortisol in order to understand it better and to optimize the course of treatment and its management. The complex foundation PTSD possesses is supported by the existing clinical, preclinical, and experimental data encompassed in the current review. Different biological systems and processes such as the hypothalamic-pituitary-adrenal axis, sympathetic nervous system, oxidative stress, inflammation, and microbiome suffer modifications and changes when it comes to PTSD; that is why targeted therapies exert tremendous alleviations of symptoms in patients diagnosed with this disorder. Therefore, this implies that PTSD is not restricted to the psychiatric domain and should be viewed as a systemic condition.
Collapse
Affiliation(s)
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, B dul Carol I No. 11 Iasi, Romania
| | - Daniel Timofte
- “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania
| | - Cristinel Stefanescu
- “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania
| | - Ionela Lăcrămioara Serban
- “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
49
|
Johnson E, J M, I L, R S. Asthma and posttraumatic stress disorder (PTSD): Emerging links, potential models and mechanisms. Brain Behav Immun 2021; 97:275-285. [PMID: 34107349 PMCID: PMC8453093 DOI: 10.1016/j.bbi.2021.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/16/2021] [Accepted: 06/04/2021] [Indexed: 12/31/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a highly prevalent, debilitating mental health condition. A better understanding of contributory neurobiological mechanisms will lead to effective treatments, improving quality of life for patients. Given that not all trauma-exposed individuals develop PTSD, identification of pre-trauma susceptibility factors that can modulate posttraumatic outcomes is important. Recent clinical evidence supports a strong link between inflammatory conditions and PTSD. A particularly strong association has been reported between asthma and PTSD prevalence and severity. Unlike many other PTSD-comorbid inflammatory conditions, asthma often develops in children, sensitizing them to subsequent posttraumatic pathology throughout their lifetime. Currently, there is a significant need to understand the neurobiology, shared mechanisms, and inflammatory mediators that may contribute to comorbid asthma and PTSD. Here, we provide a translational perspective of asthma and PTSD risk and comorbidity, focusing on clinical associations, relevant rodent paradigms and potential mechanisms that may translate asthma-associated inflammation to PTSD development.
Collapse
Affiliation(s)
- Emily Johnson
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati OH, 45220,Neuroscience Graduate Program, University of Cincinnati, Cincinnati OH, 45220
| | - McAlees J
- Division of Immunobiology, Children’s Hospital Medical Center, Cincinnati OH, 45220
| | - Lewkowich I
- Division of Immunobiology, Children’s Hospital Medical Center, Cincinnati OH, 45220,Department of Pediatrics, University of Cincinnati, Cincinnati OH, 45220
| | - Sah R
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati OH, 45220,Neuroscience Graduate Program, University of Cincinnati, Cincinnati OH, 45220,VA Medical Center, Cincinnati, OH, 45220
| |
Collapse
|
50
|
Karanikas E, Vlasidou DI. Psychologically traumatic stress inducing redox - inflammation interplay; which comes first? Pharmacol Biochem Behav 2021; 209:173254. [PMID: 34400213 DOI: 10.1016/j.pbb.2021.173254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Evidence suggests the involvement of redox and inflammation fields under conditions of psychological trauma. Factors from immunity, Hypothalamic-Adrenal-Pituitary axis, Kynurenine pathway, Dysglycemia, Glutamatergic systems as well as elements from redox mechanisms participate in a highly complex neurobiological process. Yet, little is known about their interplay. There is evidence suggesting a psychologically traumatic stress induced redox-originated inflammatory activation and vice versa. A holistic approach would suggest a parallel activation of the involved mechanisms with highly tight interdependency. The present report aims at collecting the evidence supporting either directionality of the involved mechanisms, finally suggesting a diagram depicting a synthesis of this interplay.
Collapse
Affiliation(s)
- Evangelos Karanikas
- Department of Psychiatry, 424 General Military Hospital, Thessaloniki, Greece.
| | | |
Collapse
|