1
|
Alirezaee A, Mirmoghtadaei M, Heydarlou H, Akbarian A, Alizadeh Z. Interferon therapy in alpha and Delta variants of SARS-CoV-2: The dichotomy between laboratory success and clinical realities. Cytokine 2025; 186:156829. [PMID: 39693873 DOI: 10.1016/j.cyto.2024.156829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
The COVID-19 pandemic has caused significant morbidity and mortality worldwide. The emergence of the Alpha and Delta variants of SARS-CoV-2 has led to a renewed interest in using interferon therapy as a potential treatment option. Interferons are a group of signaling proteins produced by host cells in response to viral infections. They play a critical role in the innate immune response to viral infections by inducing an antiviral state in infected and neighboring cells. Interferon therapy has shown promise as a potential treatment option for COVID-19. In this review paper, we review the current knowledge regarding interferon therapy in the context of the Alpha and Delta variants of SARS-CoV-2 and discuss the challenges that must be overcome to translate laboratory findings into effective clinical treatments.
Collapse
Affiliation(s)
- Atefe Alirezaee
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Mirmoghtadaei
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Heydarlou
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Asiye Akbarian
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Alizadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Zhou X, Wu Y, Zhu Z, Lu C, Zhang C, Zeng L, Xie F, Zhang L, Zhou F. Mucosal immune response in biology, disease prevention and treatment. Signal Transduct Target Ther 2025; 10:7. [PMID: 39774607 PMCID: PMC11707400 DOI: 10.1038/s41392-024-02043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/05/2024] [Accepted: 10/27/2024] [Indexed: 01/11/2025] Open
Abstract
The mucosal immune system, as the most extensive peripheral immune network, serves as the frontline defense against a myriad of microbial and dietary antigens. It is crucial in preventing pathogen invasion and establishing immune tolerance. A comprehensive understanding of mucosal immunity is essential for developing treatments that can effectively target diseases at their entry points, thereby minimizing the overall impact on the body. Despite its importance, our knowledge of mucosal immunity remains incomplete, necessitating further research. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the critical role of mucosal immunity in disease prevention and treatment. This systematic review focuses on the dynamic interactions between mucosa-associated lymphoid structures and related diseases. We delve into the basic structures and functions of these lymphoid tissues during disease processes and explore the intricate regulatory networks and mechanisms involved. Additionally, we summarize novel therapies and clinical research advances in the prevention of mucosal immunity-related diseases. The review also addresses the challenges in developing mucosal vaccines, which aim to induce specific immune responses while maintaining tolerance to non-pathogenic microbes. Innovative therapies, such as nanoparticle vaccines and inhalable antibodies, show promise in enhancing mucosal immunity and offer potential for improved disease prevention and treatment.
Collapse
Affiliation(s)
- Xiaoxue Zhou
- School of Medicine, Hangzhou City University, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuchen Wu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhipeng Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chu Lu
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chunwu Zhang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linghui Zeng
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
3
|
Gentili V, Schiuma G, Dilliraj LN, Beltrami S, Rizzo S, Lara D, Giovannini PP, Marti M, Bortolotti D, Trapella C, Narducci M, Rizzo R. DAG-MAG-ΒHB: A Novel Ketone Diester Modulates NLRP3 Inflammasome Activation in Microglial Cells in Response to Beta-Amyloid and Low Glucose AD-like Conditions. Nutrients 2024; 17:149. [PMID: 39796582 PMCID: PMC11722608 DOI: 10.3390/nu17010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND A neuroinflammatory disease such as Alzheimer's disease, presents a significant challenge in neurotherapeutics, particularly due to the complex etiology and allostatic factors, referred to as CNS stressors, that accelerate the development and progression of the disease. These CNS stressors include cerebral hypo-glucose metabolism, hyperinsulinemia, mitochondrial dysfunction, oxidative stress, impairment of neuronal autophagy, hypoxic insults and neuroinflammation. This study aims to explore the efficacy and safety of DAG-MAG-ΒHB, a novel ketone diester, in mitigating these risk factors by sustaining therapeutic ketosis, independent of conventional metabolic pathways. METHODS We evaluated the intestinal absorption of DAG-MAG-ΒHB and the metabolic impact in human microglial cells. Utilizing the HMC3 human microglia cell line, we examined the compound's effect on cellular viability, Acetyl-CoA and ATP levels, and key metabolic enzymes under hypoglycemia. Additionally, we assessed the impact of DAG-AG-ΒHB on inflammasome activation, mitochondrial activity, ROS levels, inflammation and phagocytic rates. RESULTS DAG-MAG-ΒHB showed a high rate of intestinal absorption and no cytotoxic effect. In vitro, DAG-MAG-ΒHB enhanced cell viability, preserved morphological integrity, and maintained elevated Acetyl-CoA and ATP levels under hypoglycemic conditions. DAG-MAG-ΒHB increased the activity of BDH1 and SCOT, indicating ATP production via a ketolytic pathway. DAG-MAG-ΒHB showed remarkable resilience against low glucose condition by inhibiting NLRP3 inflammasome activation. CONCLUSIONS In summary, DAG-MAG-ΒHB emerges as a promising treatment for neuroinflammatory conditions. It enhances cellular health under varying metabolic states and exhibits neuroprotective properties against low glucose conditions. These attributes indicate its potential as an effective component in managing neuroinflammatory diseases, addressing their complex progression.
Collapse
Affiliation(s)
- Valentina Gentili
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.G.); (G.S.); (S.B.); (S.R.); (D.L.); (D.B.); (M.N.)
| | - Giovanna Schiuma
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.G.); (G.S.); (S.B.); (S.R.); (D.L.); (D.B.); (M.N.)
| | - Latha Nagamani Dilliraj
- Department of Chemical, Pharmaceutical, Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.N.D.); (P.P.G.); (C.T.)
| | - Silvia Beltrami
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.G.); (G.S.); (S.B.); (S.R.); (D.L.); (D.B.); (M.N.)
| | - Sabrina Rizzo
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.G.); (G.S.); (S.B.); (S.R.); (D.L.); (D.B.); (M.N.)
| | - Djidjell Lara
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.G.); (G.S.); (S.B.); (S.R.); (D.L.); (D.B.); (M.N.)
| | - Pier Paolo Giovannini
- Department of Chemical, Pharmaceutical, Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.N.D.); (P.P.G.); (C.T.)
| | - Matteo Marti
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Daria Bortolotti
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.G.); (G.S.); (S.B.); (S.R.); (D.L.); (D.B.); (M.N.)
| | - Claudio Trapella
- Department of Chemical, Pharmaceutical, Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.N.D.); (P.P.G.); (C.T.)
| | - Marco Narducci
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.G.); (G.S.); (S.B.); (S.R.); (D.L.); (D.B.); (M.N.)
- Management Department, Temple University, Japan Campus, Tokyo 154-0004, Japan
| | - Roberta Rizzo
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.G.); (G.S.); (S.B.); (S.R.); (D.L.); (D.B.); (M.N.)
| |
Collapse
|
4
|
Bisht P, Gallagher MD, Barrasa MI, Boucau J, Harding A, Déjosez M, Godoy-Parejo C, Bisher ME, de Nola G, Lytton-Jean AKR, Gehrke L, Zwaka TP, Jaenisch R. Abortive infection of bat fibroblasts with SARS-CoV-2. Proc Natl Acad Sci U S A 2024; 121:e2406773121. [PMID: 39401365 PMCID: PMC11513954 DOI: 10.1073/pnas.2406773121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/22/2024] [Indexed: 10/30/2024] Open
Abstract
Bats are tolerant to highly pathogenic viruses such as Marburg, Ebola, and Nipah, suggesting the presence of a unique immune tolerance toward viral infection. Here, we compared severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of human and bat (Rhinolophus ferrumequinum) pluripotent cells and fibroblasts. Since bat cells do not express an angiotensin-converting enzyme 2 (ACE2) receptor that allows virus infection, we transduced the human ACE2 (hA) receptor into the cells and found that transduced cells can be infected with SARS-CoV-2. Compared to human embryonic stem cells-hA, infected bat induced Pluripotent Stem Cells (iPSCs)-hA produced about a 100-fold lower level of infectious virus and displayed lower toxicity. In contrast, bat embryonic fibroblast-hA produced no infectious virus while being infectable and synthesizing viral RNA and proteins, suggesting abortive infection. Indeed, electron microscopy failed to detect virus-like particles in infected bat fibroblasts in contrast to bat iPSCs or human cells, consistent with the latter producing infectious viruses. This suggests that bat somatic but not pluripotent cells have an effective mechanism to control virus replication. Consistent with previous results by others, we find that bat cells have a constitutively activated innate immune system, which might limit SARS-CoV-2 infection compared to human cells.
Collapse
Affiliation(s)
- Punam Bisht
- Whitehead Institute for Biomedical Research, Cambridge, MA02142
| | | | | | - Julie Boucau
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA02139
| | - Alfred Harding
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Marion Déjosez
- Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem CellInstitute, Icahn School of Medicine at Mount Sinai, New York, NY10502
| | - Carlos Godoy-Parejo
- Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem CellInstitute, Icahn School of Medicine at Mount Sinai, New York, NY10502
| | - Margaret E. Bisher
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Giovanni de Nola
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Abigail K. R. Lytton-Jean
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Lee Gehrke
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Thomas P. Zwaka
- Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem CellInstitute, Icahn School of Medicine at Mount Sinai, New York, NY10502
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
5
|
Avdonin PP, Blinova MS, Serkova AA, Komleva LA, Avdonin PV. Immunity and Coagulation in COVID-19. Int J Mol Sci 2024; 25:11267. [PMID: 39457048 PMCID: PMC11508857 DOI: 10.3390/ijms252011267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Discovered in late 2019, the SARS-CoV-2 coronavirus has caused the largest pandemic of the 21st century, claiming more than seven million lives. In most cases, the COVID-19 disease caused by the SARS-CoV-2 virus is relatively mild and affects only the upper respiratory tract; it most often manifests itself with fever, chills, cough, and sore throat, but also has less-common mild symptoms. In most cases, patients do not require hospitalization, and fully recover. However, in some cases, infection with the SARS-CoV-2 virus leads to the development of a severe form of COVID-19, which is characterized by the development of life-threatening complications affecting not only the lungs, but also other organs and systems. In particular, various forms of thrombotic complications are common among patients with a severe form of COVID-19. The mechanisms for the development of thrombotic complications in COVID-19 remain unclear. Accumulated data indicate that the pathogenesis of severe COVID-19 is based on disruptions in the functioning of various innate immune systems. The key role in the primary response to a viral infection is assigned to two systems. These are the pattern recognition receptors, primarily members of the toll-like receptor (TLR) family, and the complement system. Both systems are the first to engage in the fight against the virus and launch a whole range of mechanisms aimed at its rapid elimination. Normally, their joint activity leads to the destruction of the pathogen and recovery. However, disruptions in the functioning of these innate immune systems in COVID-19 can cause the development of an excessive inflammatory response that is dangerous for the body. In turn, excessive inflammation entails activation of and damage to the vascular endothelium, as well as the development of the hypercoagulable state observed in patients seriously ill with COVID-19. Activation of the endothelium and hypercoagulation lead to the development of thrombosis and, as a result, damage to organs and tissues. Immune-mediated thrombotic complications are termed "immunothrombosis". In this review, we discuss in detail the features of immunothrombosis associated with SARS-CoV-2 infection and its potential underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (P.P.A.)
| |
Collapse
|
6
|
Cardenas EI, Robertson J, Misaghian S, Brown J, Wang M, Stengelin M, Sigal G, Wohlstadter J, Gisslén M, Lindén A. Systemic increase in IL-26 is associated with severe COVID-19 and comorbid obstructive lung disease. Front Immunol 2024; 15:1434186. [PMID: 39430762 PMCID: PMC11486738 DOI: 10.3389/fimmu.2024.1434186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
Background IL-26 is a key mediator of pulmonary host defense given its abundant expression in human airways and its established antibacterial properties. Moreover, recent studies indicate that IL-26 can also inhibit viral replication. Along these lines, we have previously reported an increase in the plasma concentration of IL-26 among patients with acute COVID-19 that is linked to harmful hyperinflammation. Nevertheless, it is still unclear whether this systemic increase in IL-26 relates to disease severity, sex, comorbidities, viral load, or the innate immune response in acute COVID-19. Methods IL-26 was quantified using ELISA in plasma samples from a large cohort of well-characterized patients with acute COVID-19 (n=178) and healthy controls (n=30). The plasma concentrations of SARS-CoV-2 nucleocapsid and spike protein, as well as those of IFN-α2a, IFN-β, and IFN-γ, were determined using electrochemiluminescence immunoassay. The concentration of double-stranded DNA was determined using fluorometry. Results The plasma concentration of IL-26 was increased in patients with severe/critical COVID-19, particularly among males and patients with comorbid obstructive lung disease. Moreover, the concentration of IL-26 displayed positive correlations with length of hospital stay, as well as with systemic markers of viral load, antiviral immunity, and extracellular DNA. Conclusions Systemic IL-26 is involved in severe COVID-19, especially in males and patients with comorbid obstructive lung disease. These findings argue that systemic IL-26 has pathogenic and antiviral relevance, as well as biomarker potential.
Collapse
Affiliation(s)
- Eduardo I. Cardenas
- Division of Lung and Airway Research, Institute of Environmental Medicine, and the Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Ear, Nose and Throat Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Robertson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Jermaine Brown
- Meso Scale Diagnostics, LLC., Rockville, MD, United States
| | - Mingyue Wang
- Meso Scale Diagnostics, LLC., Rockville, MD, United States
| | | | - George Sigal
- Meso Scale Diagnostics, LLC., Rockville, MD, United States
| | | | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Public Health Agency of Sweden, Stockholm, Sweden
| | - Anders Lindén
- Division of Lung and Airway Research, Institute of Environmental Medicine, and the Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska Severe COPD Center, Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Pejler G, Zhao XO, Fagerström E, Paivandy A. Blockade of endolysosomal acidification suppresses TLR3-mediated proinflammatory signaling in airway epithelial cells. J Allergy Clin Immunol 2024; 154:940-951. [PMID: 38906273 DOI: 10.1016/j.jaci.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Endolysosomal compartments are acidic and contain low pH-dependent proteases, and these conditions are exploited by respiratory viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus, for escaping into the cytosol. Moreover, endolysosomes contain various pattern recognition receptors (PRRs), which respond to virus-derived pathogen-associated molecular patterns (PAMPs) by production of proinflammatory cytokines/chemokines. However, excessive proinflammatory responses can lead to a potentially lethal cytokine storm. OBJECTIVES Here we investigated the endosomal PRR expression profile in primary human small airway epithelial cells (HSAECs), and whether blockade of endolysosomal acidification affects their cytokine/chemokine production after challenge with virus-derived stimulants. METHODS HSAECs were exposed to stimulants mimicking virus-derived PAMPs, either in the absence or presence of compounds causing blockade of endolysosomal acidification, followed by measurement of cytokine expression and release. RESULTS We show that Toll-like receptor 3 (TLR3) is the major endosomal PRR expressed by HSAECs, and that TLR3 expression is strongly induced by TLR3 agonists, but not by a range of other PRR agonists. We also demonstrate that TLR3 engagement with its agonists elicits a robust proinflammatory cytokine/chemokine response, which is profoundly suppressed through blockade of endolysosomal acidification, by bafilomycin A1, monensin, or niclosamide. Using TLR3 reporter cells, it was confirmed that TLR3 signaling is strongly induced by Poly(I:C) and that blockade of endolysosomal acidification efficiently blocked TLR3 signaling. Finally, we show that blockade of endolysosomal acidification causes a reduction in the levels of TLR3 mRNA and protein. CONCLUSIONS These findings show that blockade of endolysosomal acidification suppresses TLR3-dependent cytokine and chemokine production in HSAECs.
Collapse
Affiliation(s)
- Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Xinran O Zhao
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ella Fagerström
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Aida Paivandy
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
8
|
Gentili V, Beltrami S, Cuffaro D, Cianci G, Maini G, Rizzo R, Macchia M, Rossello A, Bortolotti D, Nuti E. JG26 attenuates ADAM17 metalloproteinase-mediated ACE2 receptor processing and SARS-CoV-2 infection in vitro. Pharmacol Rep 2024:10.1007/s43440-024-00650-0. [PMID: 39292373 DOI: 10.1007/s43440-024-00650-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND ADAM17 is a metalloprotease implicated in the proteolysis of angiotensin-converting enzyme 2 (ACE2), known to play a critical role in the entry and spread of SARS-CoV-2. In this context, ADAM17 results as a potential novel target for controlling SARS-CoV-2 infection. METHODS In this study, we investigated the impact on ACE2 surface expression and the antiviral efficacy against SARS-CoV-2 infection of the selective ADAM17 inhibitor JG26 and its dimeric (compound 1) and glycoconjugate (compound 2) derivatives using Calu-3 human lung cells. RESULTS None of the compounds exhibited cytotoxic effects on Calu-3 cells up to a concentration of 25 µM. Treatment with JG26 resulted in partial inhibition of both ACE2 receptor shedding and SARS-CoV-2 infection, followed by compound 1. CONCLUSION JG26, an ADAM17 inhibitor, demonstrated promising antiviral activity against SARS-CoV-2 infection, likely attributed to reduced sACE2 availability, thus limiting viral dissemination.
Collapse
Affiliation(s)
- Valentina Gentili
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy
| | - Silvia Beltrami
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy
| | - Doretta Cuffaro
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, 56126, Italy
| | - Giorgia Cianci
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy
| | - Gloria Maini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy
- Clinical Research Center, LTTA, University of Ferrara, Ferrara, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, 56126, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, 56126, Italy
| | - Daria Bortolotti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy.
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, 56126, Italy.
| |
Collapse
|
9
|
Song Y, Lu J, Qin P, Chen H, Chen L. Interferon-I modulation and natural products: Unraveling mechanisms and therapeutic potential in severe COVID-19. Cytokine Growth Factor Rev 2024:S1359-6101(24)00066-2. [PMID: 39261232 DOI: 10.1016/j.cytogfr.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to pose a significant global public health threat, particularly to older adults, pregnant women, and individuals with underlying chronic conditions. Dysregulated immune responses to SARS-CoV-2 infection are believed to contribute to the progression of COVID-19 in severe cases. Previous studies indicates that a deficiency in type I interferon (IFN-I) immunity accounts for approximately 15 %-20 % of patients with severe pneumonia caused by COVID-19, highlighting the potential therapeutic importance of modulating IFN-I signals. Natural products and their derivatives, due to their structural diversity and novel scaffolds, play a crucial role in drug discovery. Some of these natural products targeting IFN-I have demonstrated applications in infectious diseases and inflammatory conditions. However, the immunomodulatory potential of IFN-I in critical COVID-19 pneumonia and the natural compounds regulating the related signal pathway remain not fully understood. In this review, we offer a comprehensive assessment of the association between IFN-I and severe COVID-19, exploring its mechanisms and integrating information on natural compounds effective for IFN-I regulation. Focusing on the primary targets of IFN-I, we also summarize the regulatory mechanisms of natural products, their impact on IFNs, and their therapeutic roles in viral infections. Collectively, by synthesizing these findings, our goal is to provide a valuable reference for future research and to inspire innovative treatment strategies for COVID-19.
Collapse
Affiliation(s)
- Yuheng Song
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Pengcheng Qin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Henan University, Kaifeng 475001, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 200032, China
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
10
|
Tabatabaei FS, Shafeghat M, Azimi A, Akrami A, Rezaei N. Endosomal Toll-Like Receptors intermediate negative impacts of viral diseases, autoimmune diseases, and inflammatory immune responses on the cardiovascular system. Expert Rev Clin Immunol 2024:1-13. [PMID: 39137281 DOI: 10.1080/1744666x.2024.2392815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/17/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION Cardiovascular disease (CVD) is the leading cause of morbidity globally, with chronic inflammation as a key modifiable risk factor. Toll-like receptors (TLRs), pivotal components of the innate immune system, including TLR-3, -7, -8, and -9 within endosomes, trigger intracellular cascades, leading to inflammatory cytokine production by various cell types, contributing to systemic inflammation and atherosclerosis. Recent research highlights the role of endosomal TLRs in recognizing self-derived nucleic acids during sterile inflammation, implicated in autoimmune conditions like myocarditis. AREAS COVERED This review explores the impact of endosomal TLRs on viral infections, autoimmunity, and inflammatory responses, shedding light on their intricate involvement in cardiovascular health and disease by examining literature on TLR-mediated mechanisms and their roles in CVD pathophysiology. EXPERT OPINION Removal of endosomal TLRs mitigates myocardial damage and immune reactions, applicable in myocardial injury. Targeting TLRs with agonists enhances innate immunity against fatal viruses, lowering viral loads and mortality. Prophylactic TLR agonist administration upregulates TLRs, protecting against fatal viruses and improving survival. TLRs play a complex role in CVDs like atherosclerosis and myocarditis, with therapeutic potential in modulating TLR reactions for cardiovascular health.
Collapse
Affiliation(s)
- Fatemeh Sadat Tabatabaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Melika Shafeghat
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirali Azimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashley Akrami
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
11
|
Yu Q, Zhou X, Kapini R, Arsecularatne A, Song W, Li C, Liu Y, Ren J, Münch G, Liu J, Chang D. Cytokine Storm in COVID-19: Insight into Pathological Mechanisms and Therapeutic Benefits of Chinese Herbal Medicines. MEDICINES (BASEL, SWITZERLAND) 2024; 11:14. [PMID: 39051370 PMCID: PMC11270433 DOI: 10.3390/medicines11070014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/20/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Cytokine storm (CS) is the main driver of SARS-CoV-2-induced acute respiratory distress syndrome (ARDS) in severe coronavirus disease-19 (COVID-19). The pathological mechanisms of CS are quite complex and involve multiple critical molecular targets that turn self-limited and mild COVID-19 into a severe and life-threatening concern. At present, vaccines are strongly recommended as safe and effective treatments for preventing serious illness or death from COVID-19. However, effective treatment options are still lacking for people who are at the most risk or hospitalized with severe disease. Chinese herbal medicines have been shown to improve the clinical outcomes of mild to severe COVID-19 as an adjunct therapy, particular preventing the development of mild to severe ARDS. This review illustrates in detail the pathogenesis of CS-involved ARDS and its associated key molecular targets, cytokines and signalling pathways. The therapeutic targets were identified particularly in relation to the turning points of the development of COVID-19, from mild symptoms to severe ARDS. Preclinical and clinical studies were reviewed for the effects of Chinese herbal medicines together with conventional therapies in reducing ARDS symptoms and addressing critical therapeutic targets associated with CS. Multiple herbal formulations, herbal extracts and single bioactive phytochemicals with or without conventional therapies demonstrated strong anti-CS effects through multiple mechanisms. However, evidence from larger, well-designed clinical trials is lacking and their detailed mechanisms of action are yet to be well elucidated. More research is warranted to further evaluate the therapeutic value of Chinese herbal medicine for CS in COVID-19-induced ARDS.
Collapse
Affiliation(s)
- Qingyuan Yu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Q.Y.); (W.S.); (J.R.)
- Xiyuan Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
| | - Rotina Kapini
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Anthony Arsecularatne
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Wenting Song
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Q.Y.); (W.S.); (J.R.)
| | - Chunguang Li
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
| | - Yang Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
| | - Junguo Ren
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Q.Y.); (W.S.); (J.R.)
| | - Gerald Münch
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Jianxun Liu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Q.Y.); (W.S.); (J.R.)
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
| |
Collapse
|
12
|
Williams BD, Ferede D, Abdelaal HFM, Berube BJ, Podell BK, Larsen SE, Baldwin SL, Coler RN. Protective interplay: Mycobacterium tuberculosis diminishes SARS-CoV-2 severity through innate immune priming. Front Immunol 2024; 15:1424374. [PMID: 38966641 PMCID: PMC11222399 DOI: 10.3389/fimmu.2024.1424374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
At the beginning of the COVID-19 pandemic those with underlying chronic lung conditions, including tuberculosis (TB), were hypothesized to be at higher risk of severe COVID-19 disease. However, there is inconclusive clinical and preclinical data to confirm the specific risk SARS-CoV-2 poses for the millions of individuals infected with Mycobacterium tuberculosis (M.tb). We and others have found that compared to singly infected mice, mice co-infected with M.tb and SARS-CoV-2 leads to reduced SARS-CoV-2 severity compared to mice infected with SARS-CoV-2 alone. Consequently, there is a large interest in identifying the molecular mechanisms responsible for the reduced SARS-CoV-2 infection severity observed in M.tb and SARS-CoV-2 co-infection. To address this, we conducted a comprehensive characterization of a co-infection model and performed mechanistic in vitro modeling to dynamically assess how the innate immune response induced by M.tb restricts viral replication. Our study has successfully identified several cytokines that induce the upregulation of anti-viral genes in lung epithelial cells, thereby providing protection prior to challenge with SARS-CoV-2. In conclusion, our study offers a comprehensive understanding of the key pathways induced by an existing bacterial infection that effectively restricts SARS-CoV-2 activity and identifies candidate therapeutic targets for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Brittany D. Williams
- Department of Global Health, University of Washington, Seattle, WA, United States
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
| | - Debora Ferede
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
| | - Hazem F. M. Abdelaal
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
| | - Bryan J. Berube
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
- HDT Bio Corp, Seattle, WA, United States
| | - Brendan K. Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Sasha E. Larsen
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
| | - Susan L. Baldwin
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
| | - Rhea N. Coler
- Department of Global Health, University of Washington, Seattle, WA, United States
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
13
|
Arefinia N, Banafi P, Zarezadeh MA, Mousawi HS, Yaghobi R, Farokhnia M, Sarvari J. TLR3, TLR7, and TLR8 genes expression datasets in COVID-19 patients: Influences of the disease severity and gender. Data Brief 2024; 54:110498. [PMID: 38868379 PMCID: PMC11166686 DOI: 10.1016/j.dib.2024.110498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024] Open
Abstract
The prognosis of COVID-19 could influence by innate immune sensors such as toll-like receptors (TLRs). The purpose of this data was to investigate TLR3, 7, and 8 expression levels in COVID-19 patients and their relationship to outcome of disease. 75 confirm COVID-19 were included sequentially and separated into three groups: mild, severe, and critical. Peripheral blood mononuclear cells were isolated from the whole blood, and RNA was then extracted. The qRT-PCR technique was used to examine the expression of TLR3, TLR7, and TLR8 genes. The patients average ages were 52.69 ± 1.9 and 13 of the 25 individuals in each group were male. TLR3 (p < 0.001), TLR7 (p < 0.001), and TLR8 (p < 0.001) expression levels were considerably greater in COVID-19 patients compared to the control group. The findings also showed that individuals with critical and severe COVID-19 disease had significantly greater TLR7 and TLR8 gene expression levels than patients in mild stage of disease (p < 0.05). The data showed a significant difference (p = 0.01) in the TLR3 transcript levels between critical and mild COVID-19 patients. Furthermore, male severe (p = 0.02) and critical (p = 0.008) patients had significantly higher TLR8 expression levels than female patients in terms of gender. TLR3 (p = 0.2) and TLR7 (p = 0.08) transcripts were more elevated in males than females, but not significantly.
Collapse
Affiliation(s)
- Nasir Arefinia
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Parsa Banafi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Amin Zarezadeh
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hawra Shah Mousawi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Yaghobi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Farokhnia
- Department of Internal Medicine, Faculty of Medicine, Afzalipour Hospital, Kerman University of Medical School, Kerman, Iran
| | - Jamal Sarvari
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Malireddi RKS, Sharma BR, Kanneganti TD. Innate Immunity in Protection and Pathogenesis During Coronavirus Infections and COVID-19. Annu Rev Immunol 2024; 42:615-645. [PMID: 38941608 PMCID: PMC11373870 DOI: 10.1146/annurev-immunol-083122-043545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
The COVID-19 pandemic was caused by the recently emerged β-coronavirus SARS-CoV-2. SARS-CoV-2 has had a catastrophic impact, resulting in nearly 7 million fatalities worldwide to date. The innate immune system is the first line of defense against infections, including the detection and response to SARS-CoV-2. Here, we discuss the innate immune mechanisms that sense coronaviruses, with a focus on SARS-CoV-2 infection and how these protective responses can become detrimental in severe cases of COVID-19, contributing to cytokine storm, inflammation, long-COVID, and other complications. We also highlight the complex cross talk among cytokines and the cellular components of the innate immune system, which can aid in viral clearance but also contribute to inflammatory cell death, cytokine storm, and organ damage in severe COVID-19 pathogenesis. Furthermore, we discuss how SARS-CoV-2 evades key protective innate immune mechanisms to enhance its virulence and pathogenicity, as well as how innate immunity can be therapeutically targeted as part of the vaccination and treatment strategy. Overall, we highlight how a comprehensive understanding of innate immune mechanisms has been crucial in the fight against SARS-CoV-2 infections and the development of novel host-directed immunotherapeutic strategies for various diseases.
Collapse
Affiliation(s)
- R K Subbarao Malireddi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| | - Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| | | |
Collapse
|
15
|
Viox EG, Bosinger SE, Douek DC, Schreiber G, Paiardini M. Harnessing the power of IFN for therapeutic approaches to COVID-19. J Virol 2024; 98:e0120423. [PMID: 38651899 PMCID: PMC11092331 DOI: 10.1128/jvi.01204-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Interferons (IFNs) are essential for defense against viral infections but also drive recruitment of inflammatory cells to sites of infection, a key feature of severe COVID-19. Here, we explore the complexity of the IFN response in COVID-19, examine the effects of manipulating IFN on SARS-CoV-2 viral replication and pathogenesis, and highlight pre-clinical and clinical studies evaluating the therapeutic efficacy of IFN in limiting COVID-19 severity.
Collapse
Affiliation(s)
- Elise G. Viox
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Emory NPRC Genomics Core Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Valdés-López JF, Hernández-Sarmiento LJ, Tamayo-Molina YS, Velilla-Hernández PA, Rodenhuis-Zybert IA, Urcuqui-Inchima S. Interleukin 27, like interferons, activates JAK-STAT signaling and promotes pro-inflammatory and antiviral states that interfere with dengue and chikungunya viruses replication in human macrophages. Front Immunol 2024; 15:1385473. [PMID: 38720890 PMCID: PMC11076713 DOI: 10.3389/fimmu.2024.1385473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Interferons (IFNs) are a family of cytokines that activate the JAK-STAT signaling pathway to induce an antiviral state in cells. Interleukin 27 (IL-27) is a member of the IL-6 and/or IL-12 family that elicits both pro- and anti-inflammatory responses. Recent studies have reported that IL-27 also induces a robust antiviral response against diverse viruses, both in vitro and in vivo, suggesting that IFNs and IL-27 share many similarities at the functional level. However, it is still unknown how similar or different IFN- and IL-27-dependent signaling pathways are. To address this question, we conducted a comparative analysis of the transcriptomic profiles of human monocyte-derived macrophages (MDMs) exposed to IL-27 and those exposed to recombinant human IFN-α, IFN-γ, and IFN-λ. We utilized bioinformatics approaches to identify common differentially expressed genes between the different transcriptomes. To verify the accuracy of this approach, we used RT-qPCR, ELISA, flow cytometry, and microarrays data. We found that IFNs and IL-27 induce transcriptional changes in several genes, including those involved in JAK-STAT signaling, and induce shared pro-inflammatory and antiviral pathways in MDMs, leading to the common and unique expression of inflammatory factors and IFN-stimulated genes (ISGs)Importantly, the ability of IL-27 to induce those responses is independent of IFN induction and cellular lineage. Additionally, functional analysis demonstrated that like IFNs, IL-27-mediated response reduced chikungunya and dengue viruses replication in MDMs. In summary, IL-27 exhibits properties similar to those of all three types of human IFN, including the ability to stimulate a protective antiviral response. Given this similarity, we propose that IL-27 could be classified as a distinct type of IFN, possibly categorized as IFN-pi (IFN-π), the type V IFN (IFN-V).
Collapse
Affiliation(s)
- Juan Felipe Valdés-López
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | | | - Y. S. Tamayo-Molina
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | | | - Izabela A. Rodenhuis-Zybert
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
17
|
Luong QXT, Hoang PT, Lee Y, Ayun RQ, Na K, Park S, Lin C, Ho PT, Lee TK, Lee S. An RNA-hydrolyzing recombinant minibody prevents both influenza A virus and coronavirus in co-infection models. Sci Rep 2024; 14:8472. [PMID: 38605110 PMCID: PMC11009316 DOI: 10.1038/s41598-024-52810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/23/2024] [Indexed: 04/13/2024] Open
Abstract
With the lifting of COVID-19 non-pharmaceutical interventions, the resurgence of common viral respiratory infections was recorded in several countries worldwide. It facilitates viral co-infection, further burdens the already over-stretched healthcare systems. Racing to find co-infection-associated efficacy therapeutic agents need to be rapidly established. However, it has encountered numerous challenges that necessitate careful investigation. Here, we introduce a potential recombinant minibody-associated treatment, 3D8 single chain variable fragment (scFv), which has been developed as a broad-spectrum antiviral drug that acts via its nucleic acid catalytic and cell penetration abilities. In this research, we demonstrated that 3D8 scFv exerted antiviral activity simultaneously against both influenza A viruses (IAVs) and coronaviruses in three established co-infection models comprising two types of coronaviruses [beta coronavirus-human coronavirus OC43 (hCoV-OC43) and alpha coronavirus-porcine epidemic diarrhea virus (PEDV)] in Vero E6 cells, two IAVs [A/Puerto Rico/8/1934 H1N1 (H1N1/PR8) and A/X-31 (H3N2/X-31)] in MDCK cells, and a combination of coronavirus and IAV (hCoV-OC43 and adapted-H1N1) in Vero E6 cells by a statistically significant reduction in viral gene expression, proteins level, and approximately around 85%, 65%, and 80% of the progeny of 'hCoV-OC43-PEDV', 'H1N1/PR8-H3N2/X-31', and 'hCoV-OC43-adapted-H1N1', respectively, were decimated in the presence of 3D8 scFv. Taken together, we propose that 3D8 scFv is a promising broad-spectrum drug for treatment against RNA viruses in co-infection.
Collapse
Affiliation(s)
- Quynh Xuan Thi Luong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Korea
| | - Phuong Thi Hoang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Korea
| | - Yongjun Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Korea
| | | | - Kyungho Na
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Korea
| | - Seonhyeon Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Korea
| | - Chengmin Lin
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Korea
| | - Phuong Thi Ho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Korea
| | - Taek-Kyun Lee
- Ecological Risk Research Department, Korea Institute of Ocean Science & Technology, Geoje, 53201, Korea.
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
18
|
Steiner S, Kratzel A, Barut GT, Lang RM, Aguiar Moreira E, Thomann L, Kelly JN, Thiel V. SARS-CoV-2 biology and host interactions. Nat Rev Microbiol 2024; 22:206-225. [PMID: 38225365 DOI: 10.1038/s41579-023-01003-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 01/17/2024]
Abstract
The zoonotic emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the ensuing coronavirus disease 2019 (COVID-19) pandemic have profoundly affected our society. The rapid spread and continuous evolution of new SARS-CoV-2 variants continue to threaten global public health. Recent scientific advances have dissected many of the molecular and cellular mechanisms involved in coronavirus infections, and large-scale screens have uncovered novel host-cell factors that are vitally important for the virus life cycle. In this Review, we provide an updated summary of the SARS-CoV-2 life cycle, gene function and virus-host interactions, including recent landmark findings on general aspects of coronavirus biology and newly discovered host factors necessary for virus replication.
Collapse
Affiliation(s)
- Silvio Steiner
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Annika Kratzel
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - G Tuba Barut
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Reto M Lang
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Etori Aguiar Moreira
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Lisa Thomann
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jenna N Kelly
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center, Jena, Germany
| | - Volker Thiel
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland.
- European Virus Bioinformatics Center, Jena, Germany.
| |
Collapse
|
19
|
Sun YK, Wang C, Lin PQ, Hu L, Ye J, Gao ZG, Lin R, Li HM, Shu Q, Huang LS, Tan LH. Severe pediatric COVID-19: a review from the clinical and immunopathophysiological perspectives. World J Pediatr 2024; 20:307-324. [PMID: 38321331 PMCID: PMC11052880 DOI: 10.1007/s12519-023-00790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/14/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) tends to have mild presentations in children. However, severe and critical cases do arise in the pediatric population with debilitating systemic impacts and can be fatal at times, meriting further attention from clinicians. Meanwhile, the intricate interactions between the pathogen virulence factors and host defense mechanisms are believed to play indispensable roles in severe COVID-19 pathophysiology but remain incompletely understood. DATA SOURCES A comprehensive literature review was conducted for pertinent publications by reviewers independently using the PubMed, Embase, and Wanfang databases. Searched keywords included "COVID-19 in children", "severe pediatric COVID-19", and "critical illness in children with COVID-19". RESULTS Risks of developing severe COVID-19 in children escalate with increasing numbers of co-morbidities and an unvaccinated status. Acute respiratory distress stress and necrotizing pneumonia are prominent pulmonary manifestations, while various forms of cardiovascular and neurological involvement may also be seen. Multiple immunological processes are implicated in the host response to COVID-19 including the type I interferon and inflammasome pathways, whose dysregulation in severe and critical diseases translates into adverse clinical manifestations. Multisystem inflammatory syndrome in children (MIS-C), a potentially life-threatening immune-mediated condition chronologically associated with COVID-19 exposure, denotes another scientific and clinical conundrum that exemplifies the complexity of pediatric immunity. Despite the considerable dissimilarities between the pediatric and adult immune systems, clinical trials dedicated to children are lacking and current management recommendations are largely adapted from adult guidelines. CONCLUSIONS Severe pediatric COVID-19 can affect multiple organ systems. The dysregulated immune pathways in severe COVID-19 shape the disease course, epitomize the vast functional diversity of the pediatric immune system and highlight the immunophenotypical differences between children and adults. Consequently, further research may be warranted to adequately address them in pediatric-specific clinical practice guidelines.
Collapse
Affiliation(s)
- Yi-Kan Sun
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, China
| | - Can Wang
- Surgical Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Pei-Quan Lin
- Surgical Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Lei Hu
- Surgical Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Jing Ye
- Surgical Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Zhi-Gang Gao
- Department of General Surgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Ru Lin
- Department of Cardiopulmonary and Extracorporeal Life Support, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Hao-Min Li
- Clinical Data Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Qiang Shu
- Department of Cardiac Surgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Li-Su Huang
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
- Department of Infectious Diseases, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| | - Lin-Hua Tan
- Surgical Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
20
|
Cadore NA, Lord VO, Recamonde-Mendoza M, Kowalski TW, Vianna FSL. Meta-analysis of Transcriptomic Data from Lung Autopsy and Cellular Models of SARS-CoV-2 Infection. Biochem Genet 2024; 62:892-914. [PMID: 37486510 DOI: 10.1007/s10528-023-10453-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Severe COVID-19 is a systemic disorder involving excessive inflammatory response, metabolic dysfunction, multi-organ damage, and several clinical features. Here, we performed a transcriptome meta-analysis investigating genes and molecular mechanisms related to COVID-19 severity and outcomes. First, transcriptomic data of cellular models of SARS-CoV-2 infection were compiled to understand the first response to the infection. Then, transcriptomic data from lung autopsies of patients deceased due to COVID-19 were compiled to analyze altered genes of damaged lung tissue. These analyses were followed by functional enrichment analyses and gene-phenotype association. A biological network was constructed using the disturbed genes in the lung autopsy meta-analysis. Central genes were defined considering closeness and betweenness centrality degrees. A sub-network phenotype-gene interaction analysis was performed. The meta-analysis of cellular models found genes mainly associated with cytokine signaling and other pathogen response pathways. The meta-analysis of lung autopsy tissue found genes associated with coagulopathy, lung fibrosis, multi-organ damage, and long COVID-19. Only genes DNAH9 and FAM216B were found perturbed in both meta-analyses. BLNK, FABP4, GRIA1, ATF3, TREM2, TPPP, TPPP3, FOS, ALB, JUNB, LMNA, ADRB2, PPARG, TNNC1, and EGR1 were identified as central elements among perturbed genes in lung autopsy and were found associated with several clinical features of severe COVID-19. Central elements were suggested as interesting targets to investigate the relation with features of COVID-19 severity, such as coagulopathy, lung fibrosis, and organ damage.
Collapse
Affiliation(s)
- Nathan Araujo Cadore
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Post-Graduation Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Vinicius Oliveira Lord
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Centro Universitário CESUCA, Cachoeirinha, Brazil
| | - Mariana Recamonde-Mendoza
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Institute of Informatics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Thayne Woycinck Kowalski
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Post-Graduation Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Centro Universitário CESUCA, Cachoeirinha, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Fernanda Sales Luiz Vianna
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
- Post-Graduation Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
21
|
Chomel L, Vogt M, Demiselle J, Le Borgne P, Tschirhart M, Morandeau V, Merdji H, Miguet L, Helms J, Meziani F, Mauvieux L. TLRs1-10 Protein Expression in Circulating Human White Blood Cells during Bacterial and COVID-19 Infections. J Innate Immun 2024; 16:216-225. [PMID: 38461810 PMCID: PMC11001289 DOI: 10.1159/000536593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/31/2024] [Indexed: 03/12/2024] Open
Abstract
INTRODUCTION Toll-like receptors play crucial roles in the sepsis-induced systemic inflammatory response. Septic shock mortality correlates with overexpression of neutrophilic TLR2 and TLR9, while the role of TLR4 overexpression remains a debate. In addition, TLRs are involved in the pathogenesis of viral infections such as COVID-19, where the single-stranded RNA of SARS-CoV-2 is recognized by TLR7 and TLR8, and the spike protein activates TLR4. METHODS In this study, we conducted a comprehensive analysis of TLRs 1-10 expressions in white blood cells from 71 patients with bacterial and viral infections. Patients were divided into 4 groups based on disease type and severity (sepsis, septic shock, moderate, and severe COVID-19) and compared to 7 healthy volunteers. RESULTS We observed a significant reduction in the expression of TLR4 and its co-receptor CD14 in septic shock neutrophils compared to the control group (p < 0.001). Severe COVID-19 patients exhibited a significant increase in TLR3 and TLR7 levels in neutrophils compared to controls (p < 0.05). Septic shock patients also showed a similar increase in TLR7 in neutrophils along with elevated intermediate monocytes (CD14+CD16+) compared to the control group (p < 0.005 and p < 0.001, respectively). However, TLR expression remained unchanged in lymphocytes. CONCLUSION This study provides further insights into the mechanisms of TLR activation in various infectious conditions. Additional analysis is needed to assess their correlation with patient outcome and to evaluate the impact of TLR-pathway modulation during septic shock and severe COVID-19.
Collapse
Affiliation(s)
- Louise Chomel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France,
| | - Mathieu Vogt
- CNRS UPR3572, IBMC, University of Strasbourg, Strasbourg, France
| | - Julien Demiselle
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
- Departement of Intensive Care (Service de Médecine Intensive - Réanimation), Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Pierrick Le Borgne
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
- Service de Réanimation Médicale, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Marine Tschirhart
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
| | - Valentin Morandeau
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
| | - Hamid Merdji
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
- Departement of Intensive Care (Service de Médecine Intensive - Réanimation), Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Laurent Miguet
- CNRS UPR3572, IBMC, University of Strasbourg, Strasbourg, France
- Laboratoire d'Hématologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Julie Helms
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
- Departement of Intensive Care (Service de Médecine Intensive - Réanimation), Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Ferhat Meziani
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
- Departement of Intensive Care (Service de Médecine Intensive - Réanimation), Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Laurent Mauvieux
- CNRS UPR3572, IBMC, University of Strasbourg, Strasbourg, France
- Laboratoire d'Hématologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
22
|
Tecalco-Cruz AC, Medina-Abreu KH, Oropeza-Martínez E, Zepeda-Cervantes J, Vázquez-Macías A, Macías-Silva M. Deregulation of interferon-gamma receptor 1 expression and its implications for lung adenocarcinoma progression. World J Clin Oncol 2024; 15:195-207. [PMID: 38455133 PMCID: PMC10915940 DOI: 10.5306/wjco.v15.i2.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/05/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Interferon-gamma (IFN-γ) plays a dual role in cancer; it is both a pro- and an antitumorigenic cytokine, depending on the type of cancer. The deregulation of the IFN-γ canonic pathway is associated with several disorders, including vulnerability to viral infections, inflammation, and cancer progression. In particular, the interplay between lung adenocarcinoma (LUAD) and viral infections appears to exist in association with the deregulation of IFN-γ signaling. In this mini-review, we investigated the status of the IFN-γ signaling pathway and the expression level of its components in LUAD. Interestingly, a reduction in IFNGR1 expression seems to be associated with LUAD progression, affecting defenses against viruses such as severe acute respiratory syndrome coronavirus 2. In addition, alterations in the expression of IFNGR1 may inhibit the antiproliferative action of IFN-γ signaling in LUAD.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX 03100, Mexico
| | - Karen H Medina-Abreu
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX 03100, Mexico
| | | | - Jesus Zepeda-Cervantes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
| | - Aleida Vázquez-Macías
- Colegio de Ciencias y Humanidades, Universidad Autónoma de la Ciudad de México, CDMX 03100, Mexico
| | - Marina Macías-Silva
- Instituo de Fisiología Celular, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
| |
Collapse
|
23
|
Chanda D, Del Rivero T, Ghimire R, More S, Mitrani MI, Bellio MA, Channappanavar R. Acellular Human Amniotic Fluid-Derived Extracellular Vesicles as Novel Anti-Inflammatory Therapeutics against SARS-CoV-2 Infection. Viruses 2024; 16:273. [PMID: 38400048 PMCID: PMC10892347 DOI: 10.3390/v16020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The ongoing COVID-19 pandemic caused by SARS-CoV-2 is associated with acute respiratory distress syndrome (ARDS) and fatal pneumonia. Excessive inflammation caused by SARS-CoV-2 is the key driver of ARDS and lethal disease. Several FDA-approved drugs that suppress virus replication are in clinical use. However, despite strong evidence for the role of virus-induced inflammation in severe COVID-19, no effective anti-inflammatory drug is available to control fatal inflammation as well as efficiently clear the virus. Therefore, there is an urgent need to identify biologically derived immunomodulators that suppress inflammation and promote antiviral immunity. In this study, we evaluated acellular human amniotic fluid (acAF) containing extracellular vesicles (hAF-EVs) as a potential non-toxic and safe biologic for immunomodulation during COVID-19. Our in vitro results showed that acAF significantly reduced inflammatory cytokine production in TLR2/4/7 and SARS-CoV-2 structural protein-stimulated mouse macrophages. Importantly, an intraperitoneal administration of acAF reduced morbidity and mortality in SARS-CoV-2-infected mice. A detailed examination of SARS-CoV-2-infected lungs revealed that the increased protection in acAF-treated mice was associated with reduced viral titers and levels of inflammatory myeloid cell infiltration. Collectively, our results identify a novel biologic that has potential to suppress excessive inflammation and enhance survival following SARS-CoV-2 infection, highlighting the translational potential of acAF against COVID-19.
Collapse
Affiliation(s)
- Debarati Chanda
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (D.C.); (R.G.); (S.M.)
| | - Tania Del Rivero
- Organicell Regenerative Medicine, Davie, FL 33314, USA; (T.D.R.); (M.I.M.)
| | - Roshan Ghimire
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (D.C.); (R.G.); (S.M.)
| | - Sunil More
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (D.C.); (R.G.); (S.M.)
| | - Maria Ines Mitrani
- Organicell Regenerative Medicine, Davie, FL 33314, USA; (T.D.R.); (M.I.M.)
| | - Michael A. Bellio
- Organicell Regenerative Medicine, Davie, FL 33314, USA; (T.D.R.); (M.I.M.)
| | - Rudragouda Channappanavar
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (D.C.); (R.G.); (S.M.)
| |
Collapse
|
24
|
Manfrini N, Notarbartolo S, Grifantini R, Pesce E. SARS-CoV-2: A Glance at the Innate Immune Response Elicited by Infection and Vaccination. Antibodies (Basel) 2024; 13:13. [PMID: 38390874 PMCID: PMC10885122 DOI: 10.3390/antib13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/13/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to almost seven million deaths worldwide. SARS-CoV-2 causes infection through respiratory transmission and can occur either without any symptoms or with clinical manifestations which can be mild, severe or, in some cases, even fatal. Innate immunity provides the initial defense against the virus by sensing pathogen-associated molecular patterns and triggering signaling pathways that activate the antiviral and inflammatory responses, which limit viral replication and help the identification and removal of infected cells. However, temporally dysregulated and excessive activation of the innate immune response is deleterious for the host and associates with severe COVID-19. In addition to its defensive role, innate immunity is pivotal in priming the adaptive immune response and polarizing its effector function. This capacity is relevant in the context of both SARS-CoV-2 natural infection and COVID-19 vaccination. Here, we provide an overview of the current knowledge of the innate immune responses to SARS-CoV-2 infection and vaccination.
Collapse
Affiliation(s)
- Nicola Manfrini
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milan, Italy
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Samuele Notarbartolo
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Renata Grifantini
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milan, Italy
- CheckmAb Srl, 20122 Milan, Italy
| | - Elisa Pesce
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
25
|
Baroni M, Beltrami S, Schiuma G, Ferraresi P, Rizzo S, Passaro A, Molina JMS, Rizzo R, Di Luca D, Bortolotti D. In Situ Endothelial SARS-CoV-2 Presence and PROS1 Plasma Levels Alteration in SARS-CoV-2-Associated Coagulopathies. Life (Basel) 2024; 14:237. [PMID: 38398746 PMCID: PMC10890393 DOI: 10.3390/life14020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Coagulation decompensation is one of the complications most frequently encountered in COVID-19 patients with a poor prognosis or long-COVID syndrome, possibly due to the persistence of SARS-CoV-2 infection in the cardiovascular system. To date, the mechanism underlying the alteration of the coagulation cascade in COVID-19 patients remains misunderstood and the anticoagulant protein S (PROS1) has been described as a potential risk factor for complications related to COVID-19, due to PLpro SARS-CoV-2 enzyme proteolysis. METHODS Biopsies and blood samples were collected from SARS-CoV-2 positive and negative swab test subjects with coagulopathies (peripheral arterial thrombosis), and SARS-CoV-2 presence, ACE2 and CD147 expression, and plasmatic levels of PROS1 were evaluated. RESULTS We reported a significant decrease of plasmatic PROS1 in the coagulopathic SARS-CoV-2 swab positive cohort, in association with SARS-CoV-2 in situ infection and CD147 peculiar expression. These data suggested that SARS-CoV-2 associated thrombotic/ischemic events might involve PROS1 cleavage by viral PLpro directly in the site of infection, leading to the loss of its anticoagulant function. CONCLUSIONS Based on this evidence, the identification of predisposing factors, such as CD147 increased expression, and the use of PLpro inhibitors to preserve PROS1 function, might be useful for COVID-19 coagulopathies management.
Collapse
Affiliation(s)
- Marcello Baroni
- Department of Life Sciences and Biotechnology (SVEB), University of Ferrara, 44121 Ferrara, Italy; (M.B.); (P.F.)
| | - Silvia Beltrami
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (G.S.); (S.R.); (J.M.S.M.); (D.B.)
| | - Giovanna Schiuma
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (G.S.); (S.R.); (J.M.S.M.); (D.B.)
| | - Paolo Ferraresi
- Department of Life Sciences and Biotechnology (SVEB), University of Ferrara, 44121 Ferrara, Italy; (M.B.); (P.F.)
| | - Sabrina Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (G.S.); (S.R.); (J.M.S.M.); (D.B.)
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Juana Maria Sanz Molina
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (G.S.); (S.R.); (J.M.S.M.); (D.B.)
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (G.S.); (S.R.); (J.M.S.M.); (D.B.)
| | - Dario Di Luca
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Daria Bortolotti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (G.S.); (S.R.); (J.M.S.M.); (D.B.)
| |
Collapse
|
26
|
Le Bert N, Samandari T. Silent battles: immune responses in asymptomatic SARS-CoV-2 infection. Cell Mol Immunol 2024; 21:159-170. [PMID: 38221577 PMCID: PMC10805869 DOI: 10.1038/s41423-024-01127-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/16/2024] Open
Abstract
SARS-CoV-2 infections manifest with a broad spectrum of presentations, ranging from asymptomatic infections to severe pneumonia and fatal outcomes. This review centers on asymptomatic infections, a widely reported phenomenon that has substantially contributed to the rapid spread of the pandemic. In such asymptomatic infections, we focus on the role of innate, humoral, and cellular immunity. Notably, asymptomatic infections are characterized by an early and robust innate immune response, particularly a swift type 1 IFN reaction, alongside a rapid and broad induction of SARS-CoV-2-specific T cells. Often, antibody levels tend to be lower or undetectable after asymptomatic infections, suggesting that the rapid control of viral replication by innate and cellular responses might impede the full triggering of humoral immunity. Even if antibody levels are present in the early convalescent phase, they wane rapidly below serological detection limits, particularly following asymptomatic infection. Consequently, prevalence studies reliant solely on serological assays likely underestimate the extent of community exposure to the virus.
Collapse
Affiliation(s)
- Nina Le Bert
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| | - Taraz Samandari
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
27
|
Noh HE, Rha MS. Mucosal Immunity against SARS-CoV-2 in the Respiratory Tract. Pathogens 2024; 13:113. [PMID: 38392851 PMCID: PMC10892713 DOI: 10.3390/pathogens13020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The respiratory tract, the first-line defense, is constantly exposed to inhaled allergens, pollutants, and pathogens such as respiratory viruses. Emerging evidence has demonstrated that the coordination of innate and adaptive immune responses in the respiratory tract plays a crucial role in the protection against invading respiratory pathogens. Therefore, a better understanding of mucosal immunity in the airways is critical for the development of novel therapeutics and next-generation vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory viruses. Since the coronavirus disease 2019 pandemic, our knowledge of mucosal immune responses in the airways has expanded. In this review, we describe the latest knowledge regarding the key components of the mucosal immune system in the respiratory tract. In addition, we summarize the host immune responses in the upper and lower airways following SARS-CoV-2 infection and vaccination, and discuss the impact of allergic airway inflammation on mucosal immune responses against SARS-CoV-2.
Collapse
Affiliation(s)
- Hae-Eun Noh
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Min-Seok Rha
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
28
|
Rath S, Jema JP, Kesavan K, Mallick S, Pradhan J, Chainy GBN, Nayak D, Kaushik S, Dandapat J. Arsenic album 30C exhibits crystalline nano structure of arsenic trioxide and modulates innate immune markers in murine macrophage cell lines. Sci Rep 2024; 14:745. [PMID: 38185726 PMCID: PMC10772077 DOI: 10.1038/s41598-024-51319-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024] Open
Abstract
Macrophages are associated with innate immune response and M1-polarized macrophages exhibit pro-inflammatory functions. Nanoparticles of natural or synthetic compounds are potential triggers of innate immunity. As2O3 is the major component of the homeopathic drug, Arsenic album 30C.This has been claimed to have immune-boosting activities, however, has not been validated experimentally. Here we elucidated the underlying mechanism of Ars. alb 30C-mediated immune priming in murine macrophage cell line. Transmission Electron Microscopy (TEM) and X-ray diffraction (XRD) used for the structural analysis of the drug reveals the presence of crystalline As2O3 nanoparticles of cubic structure. Similarly, signatures of M1-macrophage polarization were observed by surface enhanced Raman scattering (SERS) in RAW 264.7 cells with concomitant over expression of M1 cell surface marker, CD80 and transcription factor, NF-κB, respectively. We also observed a significant increase in pro-inflammatory cytokines like iNOS, TNF-α, IL-6, and COX-2 expression with unaltered ROS and apoptosis in drug-treated cells. Enhanced expression of Toll-like receptors 3 and 7 were observed both in transcriptional and translational levels after the drug treatment. In sum, our findings for the first time indicated the presence of crystalline As2O3 cubic nanostructure in Ars. alb 30C which facilitates modulation of innate immunity by activating macrophage polarization.
Collapse
Affiliation(s)
- Suvasmita Rath
- Centre of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| | - Jyoti Prava Jema
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| | - Kamali Kesavan
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, India
| | - Sagar Mallick
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, India
| | - Jyotsnarani Pradhan
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| | | | - Debadatta Nayak
- Central Council for Research in Homeopathy, New Delhi, India
| | - Subhash Kaushik
- Central Council for Research in Homeopathy, New Delhi, India
| | - Jagneshwar Dandapat
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India.
- Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar, Odisha, 751004, India.
| |
Collapse
|
29
|
Yao J, Sterling K, Wang Z, Zhang Y, Song W. The role of inflammasomes in human diseases and their potential as therapeutic targets. Signal Transduct Target Ther 2024; 9:10. [PMID: 38177104 PMCID: PMC10766654 DOI: 10.1038/s41392-023-01687-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 09/18/2023] [Accepted: 10/13/2023] [Indexed: 01/06/2024] Open
Abstract
Inflammasomes are large protein complexes that play a major role in sensing inflammatory signals and triggering the innate immune response. Each inflammasome complex has three major components: an upstream sensor molecule that is connected to a downstream effector protein such as caspase-1 through the adapter protein ASC. Inflammasome formation typically occurs in response to infectious agents or cellular damage. The active inflammasome then triggers caspase-1 activation, followed by the secretion of pro-inflammatory cytokines and pyroptotic cell death. Aberrant inflammasome activation and activity contribute to the development of diabetes, cancer, and several cardiovascular and neurodegenerative disorders. As a result, recent research has increasingly focused on investigating the mechanisms that regulate inflammasome assembly and activation, as well as the potential of targeting inflammasomes to treat various diseases. Multiple clinical trials are currently underway to evaluate the therapeutic potential of several distinct inflammasome-targeting therapies. Therefore, understanding how different inflammasomes contribute to disease pathology may have significant implications for developing novel therapeutic strategies. In this article, we provide a summary of the biological and pathological roles of inflammasomes in health and disease. We also highlight key evidence that suggests targeting inflammasomes could be a novel strategy for developing new disease-modifying therapies that may be effective in several conditions.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Zhejiang Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and The Affiliated Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
30
|
Xie H, Chen D, Feng Y, Mo F, Liu L, Xing J, Xiao W, Gong Y, Tang S, Tan Z, Liang G, Zhao S, Yin W, Huang J. Evaluation of the TLR3 involvement during Schistosoma japonicum-induced pathology. BMC Immunol 2024; 25:2. [PMID: 38172683 PMCID: PMC10765740 DOI: 10.1186/s12865-023-00586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Despite the functions of TLRs in the parasitic infections have been extensively reported, few studies have addressed the role of TLR3 in the immune response to Schistosoma japonicum infections. The aim of this study was to investigate the properties of TLR3 in the liver of C57BL/6 mice infected by S. japonicum. METHODS The production of TLR3+ cells in CD4+T cells (CD4+CD3+), CD8+T cells (CD8+CD3+), γδT cells (γδTCR+CD3+), NKT cells (NK1.1+CD3+), B cells (CD19+CD3-), NK (NK1.1-CD3+) cells, MDSC (CD11b+Gr1+), macrophages (CD11b+F4/80+), DCs (CD11c+CD11b+) and neutrophils (CD11b+ Ly6g+) were assessed by flow cytometry. Sections of the liver were examined by haematoxylin and eosin staining in order to measure the area of granulomas. Hematological parameters including white blood cell (WBC), red blood cell (RBC), platelet (PLT) and hemoglobin (HGB) were analyzed. The levels of ALT and AST in the serum were measured using biochemical kits. The relative titers of anti-SEA IgG and anti-SEA IgM in the serum were measured by enzyme-linked immunosorbent assay (ELISA). CD25, CD69, CD314 and CD94 molecules were detected by flow cytometry. RESULTS Flow cytometry results showed that the expression of TLR3 increased significantly after S. japonicum infection (P < 0.05). Hepatic myeloid and lymphoid cells could express TLR3, and the percentages of TLR3-expressing MDSC, macrophages and neutrophils were increased after infection. Knocking out TLR3 ameliorated the damage and decreased infiltration of inflammatory cells in infected C57BL/6 mouse livers.,The number of WBC was significantly reduced in TLR3 KO-infected mice compared to WT-infected mice (P < 0.01), but the levels of RBC, platelet and HGB were significantly increased in KO infected mice. Moreover, the relative titers of anti-SEA IgG and anti-SEA IgM in the serum of infected KO mice were statistically decreased compared with the infected WT mice. We also compared the activation-associated molecules expression between S.japonicum-infected WT and TLR3 KO mice. CONCLUSIONS Taken together, our data indicated that TLR3 played potential roles in the context of S. japonicum infection and it may accelerate the progression of S. japonicum-associated liver pathology.
Collapse
Affiliation(s)
- Hongyan Xie
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Dianhui Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yuanfa Feng
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Feng Mo
- Department of Infectious Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Lin Liu
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Junmin Xing
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wei Xiao
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yumei Gong
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shanni Tang
- Department of Infectious Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Zhengrong Tan
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Guikuan Liang
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shan Zhao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Weiguo Yin
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| | - Jun Huang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China.
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China.
| |
Collapse
|
31
|
Yue YX, Huang SS, Weng YZ, Lu Y, Jia BB, Yang ZX. Nobiletin Regulates Polyinosinic-polycytidylic Acid-induced Inflammation in Macrophages Partially via the PPAR-γ Signaling Pathway. Curr Pharm Des 2024; 30:2937-2946. [PMID: 39129280 DOI: 10.2174/0113816128311596240723113624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Macrophage dysregulation is a common pathogenic feature of viruses that provides extensive targets for antiviral therapy. Nobiletin, a polymethoxylated flavonoid found in citrus fruits, has a multitude of effects. METHODS We investigated the effect of nobiletin on polyinosinic-polycytidylic acid (poly(I:C))-induced inflammation in RAW264.7 cells. RESULTS Nobiletin inhibited the production of poly(I:C)-induced inflammatory factors, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, and CXCL10. High-throughput sequencing revealed that nobiletin inhibited the expression of TNF-α, IL-6, and CXCL10 and promoted the expression of CD206, Chil3, and Vcam1. In the Kyoto Encyclopedia of Genes and Genomes enrichment analyses, the upregulated differential genes were significantly enriched in the peroxisome proliferator-activated receptor (PPAR) signaling pathway. The PPAR-γ inhibitor T0070907 significantly reversed the inhibitory effects of nobiletin on IL-6 and CXCL10 but had no significant effect on TNF-α secretion. CONCLUSION Thus, nobiletin regulated poly(I:C)-induced inflammatory responses in RAW264.7 cells partially via the PPAR-γ signaling pathway.
Collapse
Affiliation(s)
- Ying-Xing Yue
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Shan-Shan Huang
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Ying-Zheng Weng
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Yan Lu
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Bing-Bing Jia
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Zhou-Xin Yang
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
32
|
Silva MJA, Vieira MCDS, Souza AB, dos Santos EC, Marcelino BDR, Casseb SMM, Lima KVB, Lima LNGC. Analysis of associations between the TLR3 SNPs rs3775291 and rs3775290 and COVID-19 in a cohort of professionals of Belém-PA, Brazil. Front Cell Infect Microbiol 2023; 13:1320701. [PMID: 38173795 PMCID: PMC10763251 DOI: 10.3389/fcimb.2023.1320701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The objective of this article was to verify associations between the SNPs rs3775291 (Cytosine [C]>Thymine [T]) and rs3775290 (C>T) of TLR3 in professionals from Health Institutions (HI) who worked during the first pandemic wave and COVID-19. A case-control study was carried out with workers from HI in Belém-PA, Brazil, divided into symptomatology groups (Asymptomatic-AS, n=91; and Symptomatic-SI, n=121), and severity groups, classified by Chest CT scan (symptomatic with lung involvement - SCP, n=34; symptomatic without lung involvement - SSP, n=8). Genotyping was performed by Sanger sequencing and statistical analysis was performed using the SPSS program. In the analysis of SNP rs3775291, the homozygous recessive genotype (T/T) was not found and the frequency of the mutant allele (T) was less than 2% in the cohort. For the rs3775290 SNP, the frequency of the mutant allele (T) was greater than 42% in the cohort. No significant associations were found for these SNPs in this cohort (N= 212 individuals). The scientific community and physicians can use these facts to find new methods of managing COVID-19.
Collapse
Affiliation(s)
- Marcos Jessé Abrahão Silva
- Molecular Biology Laboratory, Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | | | - Alex Brito Souza
- Molecular Biology Laboratory, Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | - Everaldina Cordeiro dos Santos
- Molecular Biology Laboratory, Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | - Beatriz dos Reis Marcelino
- Molecular Biology Laboratory, Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | | | - Karla Valéria Batista Lima
- Molecular Biology Laboratory, Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | | |
Collapse
|
33
|
Kim J, Qiao F, Singh AK, Won J, Singh I. Efficacies of S-nitrosoglutathione (GSNO) and GSNO reductase inhibitor in SARS-CoV-2 spike protein induced acute lung disease in mice. Front Pharmacol 2023; 14:1304697. [PMID: 38143504 PMCID: PMC10748393 DOI: 10.3389/fphar.2023.1304697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which initially surfaced in late 2019, often triggers severe pulmonary complications, encompassing various disease mechanisms such as intense lung inflammation, vascular dysfunction, and pulmonary embolism. Currently, however, there's no drug addressing all these mechanisms simultaneously. This study explored the multi-targeting potential of S-nitrosoglutathione (GSNO) and N6022, an inhibitor of GSNO reductase (GSNOR) on markers of inflammatory, vascular, and thrombotic diseases related to COVID-19-induced acute lung disease. For this, acute lung disease was induced in C57BL/6 mice through intranasal administration of recombinant SARS-CoV-2 spike protein S1 domain (SP-S1). The mice exhibited fever, body weight loss, and increased blood levels and lung expression of proinflammatory cytokines (e.g., TNF-α and IL-6) as well as increased vascular inflammation mediated by ICAM-1 and VCAM-1 and lung infiltration by immune cells (e.g., neutrophils, monocytes, and activated cytotoxic and helper T cells). Further, the mice exhibited increased lung hyperpermeability (lung Evans blue extravasation) leading to lung edema development as well as elevated blood coagulation factors (e.g., fibrinogen, thrombin, activated platelets, and von Willebrand factor) and lung fibrin deposition. Similar to the patients with COVID-19, male mice showed more severe disease than female mice, along with higher GSNOR expression in the lungs. Optimization of GSNO by treatment with exogenous GSNO or inhibition of GSNOR by N6022 (or GSNO knockout) protects against SP-S1-induced lung diseases in both genders. These findings provide evidence for the potential efficacies of GSNO and GSNOR inhibitors in addressing the multi-mechanistic nature of SARS-CoV-2 SP-associated acute-lung disease.
Collapse
Affiliation(s)
- Judong Kim
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Fei Qiao
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Avtar K. Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
- Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, United States
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
- Research Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, United States
| |
Collapse
|
34
|
Olímpio F, Andreata-Santos R, Rosa PC, Santos W, Oliveira C, Aimbire F. Lactobacillus rhamnosus Restores Antiviral Signaling and Attenuates Cytokines Secretion from Human Bronchial Epithelial Cells Exposed to Cigarette Smoke and Infected with SARS-CoV-2. Probiotics Antimicrob Proteins 2023; 15:1513-1528. [PMID: 36346611 PMCID: PMC9643982 DOI: 10.1007/s12602-022-09998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
Individuals with chronic obstructive pulmonary disease (COPD) are more susceptible to exacerbation crisis triggered by secondary lung infections due to the dysfunction of antiviral signaling, principally via suppression of IFN-γ. Although the probiotic is known for controlling pulmonary inflammation in COPD, the influence of the Lactobacillus rhamnosus (Lr) on antiviral signaling in bronchial epithelium exposed to cigarette smoke extract (CSE) and viruses, remains unknown. Thus, the present study investigated the Lr effect on the antiviral signaling and the secretion of inflammatory mediators from bronchial epithelial cells (16HBE cells) exposed to CSE and SARS-CoV-2. The 16HBE cells were cultured, treated with Lr, stimulated with CSE, and infected with SARS-CoV-2. The cellular viability was evaluated using the MTT assay and cytotoxicity measured by lactate dehydrogenase (LDH) activity. The viral load, TLR2, TLR3, TLR4, TLR7, TLR8, MAVS, MyD88, and TRIF were quantified using specific PCR. The pro-inflammatory mediators were measured by a multiplex biometric immunoassay, and angiotensin converting enzyme 2 (ACE2) activity, NF-κB, RIG-I, MAD5, and IRF3 were measured using specific ELISA kits. Lr decreased viral load, ACE2, pro-inflammatory mediators, TLR2, TLR4, NF-κB, TLR3, TLR7, and TLR8 as well as TRIF and MyD88 expression in CSE and SARS-CoV-2 -exposed 16HBE cells. Otherwise, RIG-I, MAD5, IRF3, IFN-γ, and the MAVS expression were restored in 16HBE cells exposed to CSE and SARS-CoV-2 and treated with Lr. Lr induces antiviral signaling associated to IFN-γ secreting viral sensors and attenuates cytokine storm associated to NF-κB in bronchial epithelial cells, supporting its emerging role in prevention of COPD exacerbation.
Collapse
Affiliation(s)
- Fabiana Olímpio
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720 - 2° Andar, Vila Clementino, São Paulo, SP, 04039-002, Brazil
- Department of Science and Technology, Lab. Immunopharmacology, Federal University of São Paulo (UNIFESP), Rua Talim, 330, Vila Nair, São José dos Campos, SP, 12231-280, Brazil
| | - Robert Andreata-Santos
- Department of Microbiology, Immunology, and Parasitology, Lab. Retrovirology, Federal University of São Paulo, Rua Botucatu 862 - 6° Andar, Vila Clementino, São Paulo, SP, 04023-062, Brazil
| | - Paloma Cristina Rosa
- Department of Science and Technology, Lab. Immunopharmacology, Federal University of São Paulo (UNIFESP), Rua Talim, 330, Vila Nair, São José dos Campos, SP, 12231-280, Brazil
| | - Wellington Santos
- Nucleus of Research in Biotechnology - State University of Piaui, Teresina, PI, CEP, 64003-120, Brazil
| | - Carlos Oliveira
- Department of Science and Technology, Postgraduate Program in Biomedical Engineering, Federal University of São Paulo (UNIFESP), Rua Talim, 330, Vila Nair, São José dos Campos, SP, 12231-280, Brazil
| | - Flavio Aimbire
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720 - 2° Andar, Vila Clementino, São Paulo, SP, 04039-002, Brazil.
- Department of Science and Technology, Lab. Immunopharmacology, Federal University of São Paulo (UNIFESP), Rua Talim, 330, Vila Nair, São José dos Campos, SP, 12231-280, Brazil.
| |
Collapse
|
35
|
Erdogan MA, Turk M, Doganay GD, Sever IH, Ozkul B, Sogut I, Eroglu E, Uyanikgil Y, Erbas O. Prenatal SARS-CoV-2 Spike Protein Exposure Induces Autism-Like Neurobehavioral Changes in Male Neonatal Rats. J Neuroimmune Pharmacol 2023; 18:573-591. [PMID: 37889404 DOI: 10.1007/s11481-023-10089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
Recent research on placental, embryo, and brain organoids suggests that the COVID-19 virus may potentially affect embryonic organs, including the brain. Given the established link between SARS-CoV-2 spike protein and neuroinflammation, we sought to investigate the effects of exposure to this protein during pregnancy. We divided pregnant rats into three groups: Group 1 received a 1 ml/kg saline solution, Group 2 received 150 μg/kg adjuvant aluminum hydroxide (AAH), and Group 3 received 40 μg/kg spike protein + 150 μg/kg AAH at 10 and 14 days of gestation. On postnatal day 21 (P21), we randomly separated 60 littermates (10 male-female) into control, AAH-exposed, and spike protein-exposed groups. At P50, we conducted behavioral analyses on these mature animals and performed MR spectroscopy. Subsequently, all animals were sacrificed, and their brains were subject to biochemical and histological analysis. Our findings indicate that male rats exposed to the spike protein displayed a higher rate of impaired performance on behavioral studies, including the three-chamber social test, passive avoidance learning analysis, open field test, rotarod test, and novelty-induced cultivation behavior, indicative of autistic symptoms. Exposure to the spike protein (male) induced gliosis and neuronal cell death in the CA1-CA3 regions of the hippocampus and cerebellum. The spike protein-exposed male rats exhibited significantly greater levels of malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α), interleukin-17 (IL-17), nuclear factor kappa B (NF-κB), and lactate and lower levels of brain-derived neurotrophic factor (BDNF) than the control group. Our study suggests a potential association between prenatal exposure to COVID-19 spike protein and neurodevelopmental problems, such as ASD. These findings highlight the importance of further research into the potential effects of the COVID-19 virus on embryonic and fetal development and the potential long-term consequences for neurodevelopment.
Collapse
Affiliation(s)
- Mumin Alper Erdogan
- Faculty of Medicine, Department of Physiology, Izmir Katip Celebi University, Izmir, Turkey.
| | - Miray Turk
- Graduate School, Department of Molecular Biology-Genetics and Biotechnology, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Gizem Dinler Doganay
- Graduate School, Department of Molecular Biology-Genetics and Biotechnology, Istanbul Technical University, 34469, Istanbul, Turkey
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Ibrahim Halil Sever
- Faculty of Medicine, Department of Radiology, Demiroğlu Bilim University, Istanbul, Turkey
| | - Bahattin Ozkul
- School of Medicine, Department of Radiology, Istanbul Atlas University, Istanbul, Turkey
| | - Ibrahim Sogut
- Faculty of Medicine, Department of Biochemistry, Demiroğlu Bilim University, Istanbul, Turkey
| | - Ebru Eroglu
- Faculty of Medicine, Department of Histology and Embryology, Ege University, Izmir, Turkey
| | - Yigit Uyanikgil
- Faculty of Medicine, Department of Histology and Embryology, Ege University, Izmir, Turkey
| | - Oytun Erbas
- Faculty of Medicine, Department of Physiology, Demiroğlu Bilim University, Istanbul, Turkey
| |
Collapse
|
36
|
Marchesi E, Gentili V, Bortolotti D, Preti L, Marchetti P, Cristofori V, Fantinati A, Rizzo R, Trapella C, Perrone D, Navacchia ML. Dihydroartemisinin-Ursodeoxycholic Bile Acid Hybrids in the Fight against SARS-CoV-2. ACS OMEGA 2023; 8:45078-45087. [PMID: 38046338 PMCID: PMC10688034 DOI: 10.1021/acsomega.3c07034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 12/05/2023]
Abstract
Here, we propose the molecular hybridization of dihydroartemisinin (DHA) and ursodeoxycholic bile acid (UDCA), approved drugs, for the preparation of antiviral agents against SARS-CoV-2. DHA and UDCA were selected on the basis of their recently demonstrated in vitro activity against SARS-CoV-2. A selection of DHA-UDCA-based hybrids obtained by varying the nature of the linkage and the bile acid conjugation point as well as unconjugated DHA and UDCA were tested in vitro for cytotoxicity and anti-SARS-CoV-2 activity on Vero E6 and Calu-3 human lung cells. The hybrid DHA-t-UDCMe, obtained by conjugation via click chemistry on a gram scale, was identified as a potential candidate for SARS-CoV-2 infection treatment due to significant reduction of viral replication, possibly involving ACE2 downregulation, no cytotoxicity, and chemical stability.
Collapse
Affiliation(s)
- Elena Marchesi
- Department
of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Valentina Gentili
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Daria Bortolotti
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Lorenzo Preti
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Marchetti
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Virginia Cristofori
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Anna Fantinati
- Department
of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Roberta Rizzo
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Claudio Trapella
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Daniela Perrone
- Department
of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Maria Luisa Navacchia
- Institute
for Organic Synthesis and Photoreactivity (ISOF), National Research
Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| |
Collapse
|
37
|
Smyth JS, Truong JK, Rao A, Lin R, Foulke-Abel J, Adorini L, Donowitz M, Dawson PA, Keely SJ. Farnesoid X receptor enhances epithelial ACE2 expression and inhibits virally induced IL-6 secretion: implications for intestinal symptoms of SARS-CoV-2. Am J Physiol Gastrointest Liver Physiol 2023; 325:G446-G452. [PMID: 37697930 PMCID: PMC10887846 DOI: 10.1152/ajpgi.00099.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
Intestinal inflammation and diarrhea are often associated with SARS-CoV-2 infection. The angiotensin converting enzyme 2 (ACE2) receptor plays a key role in SARS-CoV-2 pathogenesis, facilitating entry of the virus into epithelial cells, while also regulating mucosal inflammatory responses. Here, we investigated roles for the nuclear bile acid receptor farnesoid X receptor (FXR) in regulating ACE2 expression and virally mediated inflammatory responses in intestinal epithelia. Human colonic or ileal enteroids and cultured T84 and Caco-2 monolayers were treated with the FXR agonists, obeticholic acid (OCA) or GW4064, or infected with live SARS-CoV-2 (2019-nCoV/USA_WA1/2020). Changes in mRNA, protein, or secreted cytokines were measured by qPCR, Western blotting, and ELISA. Treatment of undifferentiated colonic or ileal enteroids with OCA increased ACE2 mRNA by 2.1 ± 0.4-fold (n = 3; P = 0.08) and 2.3 ± 0.2-fold (n = 3; P < 0.05), respectively. In contrast, ACE2 expression in differentiated enteroids was not significantly altered. FXR activation in cultured epithelial monolayers also upregulated ACE2 mRNA, accompanied by increases in ACE2 expression and secretion. Further experiments revealed FXR activation to inhibit IL-6 release from both Caco-2 cells infected with SARS-CoV-2 and T84 cells treated with the viral mimic, polyinosinic:polycytidylic acid, by 46 ± 12% (n = 3, P < 0.05) and 35 ± 6% (n = 8; P < 0.01), respectively. By virtue of its ability to modulate epithelial ACE2 expression and inhibit virus-mediated proinflammatory cytokine release, FXR represents a promising target for the development of new approaches to prevent intestinal manifestations of SARS-CoV-2.NEW & NOTEWORTHY Activation of the nuclear bile acid receptor, farnesoid X receptor (FXR), specifically upregulates ACE2 expression in undifferentiated colonic epithelial cells and inhibits virus-induced proinflammatory cytokine release. By virtue of these actions FXR represents a promising target for the development of new approaches to prevent intestinal manifestations of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jessica S Smyth
- School of Pharmacy and Biomolecular Sciences, The Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Jennifer K Truong
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Anuradha Rao
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Ruxian Lin
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Jennifer Foulke-Abel
- Gastroenterology Division, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Luciano Adorini
- Intercept Pharmaceuticals, San Diego, California, United States
| | - Mark Donowitz
- Gastroenterology Division, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Paul A Dawson
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Stephen J Keely
- School of Pharmacy and Biomolecular Sciences, The Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
38
|
Berentschot JC, Drexhage HA, Aynekulu Mersha DG, Wijkhuijs AJM, GeurtsvanKessel CH, Koopmans MPG, Voermans JJC, Hendriks RW, Nagtzaam NMA, de Bie M, Heijenbrok-Kal MH, Bek LM, Ribbers GM, van den Berg-Emons RJG, Aerts JGJV, Dik WA, Hellemons ME. Immunological profiling in long COVID: overall low grade inflammation and T-lymphocyte senescence and increased monocyte activation correlating with increasing fatigue severity. Front Immunol 2023; 14:1254899. [PMID: 37881427 PMCID: PMC10597688 DOI: 10.3389/fimmu.2023.1254899] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/14/2023] [Indexed: 10/27/2023] Open
Abstract
Background Many patients with SARS-CoV-2 infection develop long COVID with fatigue as one of the most disabling symptoms. We performed clinical and immune profiling of fatigued and non-fatigued long COVID patients and age- and sex-matched healthy controls (HCs). Methods Long COVID symptoms were assessed using patient-reported outcome measures, including the fatigue assessment scale (FAS, scores ≥22 denote fatigue), and followed up to one year after hospital discharge. We assessed inflammation-related genes in circulating monocytes, serum levels of inflammation-regulating cytokines, and leukocyte and lymphocyte subsets, including major monocyte subsets and senescent T-lymphocytes, at 3-6 months post-discharge. Results We included 37 fatigued and 36 non-fatigued long COVID patients and 42 HCs. Fatigued long COVID patients represented a more severe clinical profile than non-fatigued patients, with many concurrent symptoms (median 9 [IQR 5.0-10.0] vs 3 [1.0-5.0] symptoms, p<0.001), and signs of cognitive failure (41%) and depression (>24%). Immune abnormalities that were found in the entire group of long COVID patients were low grade inflammation (increased inflammatory gene expression in monocytes, increased serum pro-inflammatory cytokines) and signs of T-lymphocyte senescence (increased exhausted CD8+ TEMRA-lymphocytes). Immune profiles did not significantly differ between fatigued and non-fatigued long COVID groups. However, the severity of fatigue (total FAS score) significantly correlated with increases of intermediate and non-classical monocytes, upregulated gene levels of CCL2, CCL7, and SERPINB2 in monocytes, increases in serum Galectin-9, and higher CD8+ T-lymphocyte counts. Conclusion Long COVID with fatigue is associated with many concurrent and persistent symptoms lasting up to one year after hospitalization. Increased fatigue severity associated with stronger signs of monocyte activation in long COVID patients and potentially point in the direction of monocyte-endothelial interaction. These abnormalities were present against a background of immune abnormalities common to the entire group of long COVID patients.
Collapse
Affiliation(s)
- Julia C. Berentschot
- Department of Respiratory Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Hemmo A. Drexhage
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | | | | | - Marion P. G. Koopmans
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jolanda J. C. Voermans
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rudi W. Hendriks
- Department of Respiratory Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nicole M. A. Nagtzaam
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Maaike de Bie
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Majanka H. Heijenbrok-Kal
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Rijndam Rehabilitation, Rotterdam, Netherlands
| | - L. Martine Bek
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Gerard M. Ribbers
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Rijndam Rehabilitation, Rotterdam, Netherlands
| | | | - Joachim G. J. V. Aerts
- Department of Respiratory Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Willem A. Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Merel E. Hellemons
- Department of Respiratory Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
39
|
Martínez-Gómez LE, Martinez-Armenta C, Medina-Luna D, Ordoñez-Sánchez ML, Tusie-Luna T, Ortega-Peña S, Herrera-López B, Suarez-Ahedo C, Jimenez-Gutierrez GE, Hidalgo-Bravo A, Vázquez-Cárdenas P, Vidal-Vázquez RP, Ramírez-Hinojosa JP, Martinez Matsumoto PM, Vargas-Alarcón G, Posadas-Sánchez R, Fragoso JM, Martínez-Ruiz FDJ, Zayago-Angeles DM, Mata-Miranda MM, Vázquez-Zapién GJ, Martínez-Cuazitl A, Andrade-Alvarado J, Granados J, Ramos-Tavera L, Camacho-Rea MDC, Segura-Kato Y, Rodríguez-Pérez JM, Coronado-Zarco R, Franco-Cendejas R, López-Jácome LE, Magaña JJ, Vela-Amieva M, Pineda C, Martínez-Nava GA, López-Reyes A. Implication of myddosome complex genetic variants in outcome severity of COVID-19 patients. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:939-950. [PMID: 37365052 PMCID: PMC10273757 DOI: 10.1016/j.jmii.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/31/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND/PURPOSE(S) During a viral infection, the immune response is mediated by the toll-like receptors and myeloid differentiation Factor 88 (MyD88) that play an important role sensing infections such as SARS-CoV-2 which has claimed the lives of more than 6.8 million people around the world. METHODS We carried out a cross-sectional with a population of 618 SARS-CoV-2-positive unvaccinated subjects and further classified based on severity: 22% were mild, 34% were severe, 26% were critical, and 18% were deceased. Toll Like Receptor 7 (TLR7) single-nucleotide polymorphisms (rs3853839, rs179008, rs179009, and rs2302267) and MyD88 (rs7744) were genotyped using TaqMan OpenArray. The association of polymorphisms with disease outcomes was performed by logistic regression analysis adjusted by covariates. RESULTS A significant association of rs3853839 and rs7744 of the TLR7 and MyD88 genes, respectively, was found with COVID-19 severity. The G/G genotype of the rs3853839 TLR7 was associated with the critical outcome showing an Odd Ratio = 1.98 (95% IC = 1.04-3.77). The results highlighted an association of the G allele of MyD88 gene with severe, critical and deceased outcomes. Furthermore, in the dominant model (AG + GG vs. AA), we observed an Odd Ratio = 1.70 (95% CI = 1.02-2.86) with severe, Odd Ratio = 1.82 (95% CI = 1.04-3.21) with critical, and Odd Ratio = 2.44 (95% CI = 1.21-4.9) with deceased outcomes. CONCLUSION To our knowledge this work represents an innovative report that highlights the significant association of TLR7 and MyD88 gene polymorphisms with COVID-19 outcomes and the possible implication of the MyD88 variant with D-dimer and IFN-α concentrations.
Collapse
Affiliation(s)
- Laura E Martínez-Gómez
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Carlos Martinez-Armenta
- Graduate Program in Experimental Biology, Dirección de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México, Mexico.
| | - Daniel Medina-Luna
- Microbiology & Immunology Department, Dalhousie University, Halifax, B3H4R2, Nova Scotia, Canada.
| | - María Luisa Ordoñez-Sánchez
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico.
| | - Tere Tusie-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico; Instituto de Investigaciones Biomédicas Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Silvestre Ortega-Peña
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Brígida Herrera-López
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Carlos Suarez-Ahedo
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Guadalupe Elizabeth Jimenez-Gutierrez
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Alberto Hidalgo-Bravo
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Paola Vázquez-Cárdenas
- Centro de Innovación Médica Aplicada, Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico.
| | - Rosa P Vidal-Vázquez
- Centro de Innovación Médica Aplicada, Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico.
| | - Juan P Ramírez-Hinojosa
- Centro de Innovación Médica Aplicada, Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico.
| | | | - Gilberto Vargas-Alarcón
- Departamento de Biología Molecular y Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico.
| | - Rosalinda Posadas-Sánchez
- Departamento de Biología Molecular y Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico.
| | - José-Manuel Fragoso
- Departamento de Biología Molecular y Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico.
| | | | | | - Mónica Maribel Mata-Miranda
- Laboratorio de Biología Celular y Tisular, Laboratorio de Embriología, Escuela Médico Militar, Universidad del Ejército y Fuerza Aérea, Ciudad de México, Mexico.
| | - Gustavo Jesús Vázquez-Zapién
- Laboratorio de Biología Celular y Tisular, Laboratorio de Embriología, Escuela Médico Militar, Universidad del Ejército y Fuerza Aérea, Ciudad de México, Mexico.
| | - Adriana Martínez-Cuazitl
- Laboratorio de Biología Celular y Tisular, Laboratorio de Embriología, Escuela Médico Militar, Universidad del Ejército y Fuerza Aérea, Ciudad de México, Mexico.
| | - Javier Andrade-Alvarado
- Servicio de Cirugía General, Hospital Central Norte Petróleos Mexicanos (PEMEX), Estado de México, Mexico.
| | - Julio Granados
- Departamento de Inmunogenética, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaría de Salud, Mexico City, Mexico.
| | - Luis Ramos-Tavera
- Departamento de Inmunogenética, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaría de Salud, Mexico City, Mexico.
| | - María Del Carmen Camacho-Rea
- Departamento de Nutrición Animal, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaría de Salud, Mexico City, Mexico
| | - Yayoi Segura-Kato
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico.
| | - José Manuel Rodríguez-Pérez
- Departamento de Biología Molecular y Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico.
| | - Roberto Coronado-Zarco
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Rafael Franco-Cendejas
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Luis Esau López-Jácome
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Jonathan J Magaña
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Marcela Vela-Amieva
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Secretaria de Salud, Ciudad de México, Mexico.
| | - Carlos Pineda
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Gabriela Angélica Martínez-Nava
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Alberto López-Reyes
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| |
Collapse
|
40
|
Mahmoud IS, Jarrar YB, Febrimarsa. Modulation of IRAK enzymes as a therapeutic strategy against SARS-CoV-2 induced cytokine storm. Clin Exp Med 2023; 23:2909-2923. [PMID: 37061574 PMCID: PMC10105542 DOI: 10.1007/s10238-023-01064-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/02/2023] [Indexed: 04/17/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the current pandemic coronavirus disease 2019 (COVID-19). Dysregulated and excessive production of cytokines and chemokines, known as cytokine storm, is frequently seen in patients with severe COVID-19 disease and it can provoke a severe systematic inflammation in the patients. The IL-1R/TLRs/IRAKs signaling network is a key pathway in immune cells that plays a central role in regulating innate immunity and inflammatory responses via stimulating the expression and production of various proinflammatory molecules including cytokines. Modulation of IRAKs activity has been proposed to be a promising strategy in the treatment of inflammatory disorders. In this review, we highlight the biochemical properties of IRAKs and their role in regulating inflammatory molecular signaling pathways and discuss the potential targeting of IRAKs to suppress the SARS-CoV-2-induced cytokine storm in COVID-19 patients.
Collapse
Affiliation(s)
- Ismail Sami Mahmoud
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan.
| | - Yazun Bashir Jarrar
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, As-Salt, Jordan
| | - Febrimarsa
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Republic of Ireland
| |
Collapse
|
41
|
Perrotta C, Fenizia C, Carnovale C, Pozzi M, Trabattoni D, Cervia D, Clementi E. Updated Considerations for the Immunopharmacological Aspects of the "Talented mRNA Vaccines". Vaccines (Basel) 2023; 11:1481. [PMID: 37766157 PMCID: PMC10534931 DOI: 10.3390/vaccines11091481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Messenger RNA (mRNA) vaccines belong to a new class of medications, RNA therapeutics, including both coding and non-coding RNAs. The use of mRNA as a therapy is based on the biological role of mRNA itself, namely its translation into a functional protein. The goal of mRNA vaccines is to produce a specific antigen in cells to elicit an immune response that might be prophylactic or therapeutic. The potential of mRNA as vaccine has been envisaged for years but its efficacy has been clearly demonstrated with the approval of COVID-19 vaccines in 2021. Since then, mRNA vaccines have been in the pipeline for diseases that are still untreatable. There are many advantages of mRNA vaccines over traditional vaccines, including easy and cost-effective production, high safety, and high-level antigen expression. However, the nature of mRNA itself and some technical issues pose challenges associated with the vaccines' development and use. Here we review the immunological and pharmacological features of mRNA vaccines by discussing their pharmacokinetics, mechanisms of action, and safety, with a particular attention on the advantages and challenges related to their administration. Furthermore, we present an overview of the areas of application and the clinical trials that utilize a mRNA vaccine as a treatment.
Collapse
Affiliation(s)
- Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
| | - Claudio Fenizia
- Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milano, Italy;
| | - Carla Carnovale
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
| | - Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy;
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy;
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
- Scientific Institute IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy;
| |
Collapse
|
42
|
Rojas M, Herrán M, Ramírez-Santana C, Leung PSC, Anaya JM, Ridgway WM, Gershwin ME. Molecular mimicry and autoimmunity in the time of COVID-19. J Autoimmun 2023; 139:103070. [PMID: 37390745 PMCID: PMC10258587 DOI: 10.1016/j.jaut.2023.103070] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 07/02/2023]
Abstract
Infectious diseases are commonly implicated as potential initiators of autoimmune diseases (ADs) and represent the most commonly known factor in the development of autoimmunity in susceptible individuals. Epidemiological data and animal studies on multiple ADs suggest that molecular mimicry is one of the likely mechanisms for the loss of peripheral tolerance and the development of clinical disease. Besides molecular mimicry, other mechanisms such as defects in central tolerance, nonspecific bystander activation, epitope-determinant spreading, and/or constant antigenic stimuli, may also contribute for breach of tolerance and to the development of ADs. Linear peptide homology is not the only mechanism by which molecular mimicry is established. Peptide modeling (i.e., 3D structure), molecular docking analyses, and affinity estimation for HLAs are emerging as critical strategies when studying the links of molecular mimicry in the development of autoimmunity. In the current pandemic, several reports have confirmed an influence of SARS-CoV-2 on subsequent autoimmunity. Bioinformatic and experimental evidence support the potential role of molecular mimicry. Peptide dimensional analysis requires more research and will be increasingly important for designing and distributing vaccines and better understanding the role of environmental factors related to autoimmunity.
Collapse
Affiliation(s)
- Manuel Rojas
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA; Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.
| | - María Herrán
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Juan-Manuel Anaya
- Health Research and Innovation Center at Coosalud, Cartagena, 130001, Colombia
| | - William M Ridgway
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
43
|
Yu MZ, Wang NN, Zhu JQ, Lin YX. The clinical progress and challenges of mRNA vaccines. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1894. [PMID: 37096256 DOI: 10.1002/wnan.1894] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023]
Abstract
Owing to the breakthroughs in the prevention and control of the COVID-19 pandemic, messenger RNA (mRNA)-based vaccines have emerged as promising alternatives to conventional vaccine approaches for infectious disease prevention and anticancer treatments. Advantages of mRNA vaccines include flexibility in designing and manipulating antigens of interest, scalability in rapid response to new variants, ability to induce both humoral and cell-mediated immune responses, and ease of industrialization. This review article presents the latest advances and innovations in mRNA-based vaccines and their clinical translations in the prevention and treatment of infectious diseases or cancers. We also highlight various nanoparticle delivery platforms that contribute to their success in clinical translation. Current challenges related to mRNA immunogenicity, stability, and in vivo delivery and the strategies for addressing them are also discussed. Finally, we provide our perspectives on future considerations and opportunities for applying mRNA vaccines to fight against major infectious diseases and cancers. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Meng-Zhen Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Nan-Nan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Jia-Qing Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
| | - Yao-Xin Lin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| |
Collapse
|
44
|
Gasparello J, Marzaro G, Papi C, Gentili V, Rizzo R, Zurlo M, Scapoli C, Finotti A, Gambari R. Effects of Sulforaphane on SARS‑CoV‑2 infection and NF‑κB dependent expression of genes involved in the COVID‑19 'cytokine storm'. Int J Mol Med 2023; 52:76. [PMID: 37477130 PMCID: PMC10555481 DOI: 10.3892/ijmm.2023.5279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/09/2023] [Indexed: 07/22/2023] Open
Abstract
Since its spread at the beginning of 2020, the coronavirus disease 2019 (COVID‑19) pandemic represents one of the major health problems. Despite the approval, testing, and worldwide distribution of anti‑severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) vaccines, the development of specific antiviral agents targeting the SARS‑CoV‑2 life cycle with high efficiency, and/or interfering with the associated 'cytokine storm', is highly required. A recent study, conducted by the authors' group indicated that sulforaphane (SFN) inhibits the expression of IL‑6 and IL‑8 genes induced by the treatment of IB3‑1 bronchial cells with a recombinant spike protein of SARS‑CoV‑2. In the present study, the ability of SFN to inhibit SARS‑CoV‑2 replication and the expression of pro‑inflammatory genes encoding proteins of the COVID‑19 'cytokine storm' was evaluated. SARS‑CoV‑2 replication was assessed in bronchial epithelial Calu‑3 cells. Moreover, SARS‑CoV‑2 replication and expression of pro‑inflammatory genes was evaluated by reverse transcription quantitative droplet digital PCR. The effects on the expression levels of NF‑κB were assessed by western blotting. Molecular dynamics simulations of NF‑kB/SFN interactions were conducted with Gromacs 2021.1 software under the Martini 2 CG force field. Computational studies indicated that i) SFN was stably bound with the NF‑κB monomer; ii) a ternary NF‑kB/SFN/DNA complex was formed; iii) the SFN interacted with both the protein and the nucleic acid molecules modifying the binding mode of the latter, and impairing the full interaction between the NF‑κB protein and the DNA molecule. This finally stabilized the inactive complex. Molecular studies demonstrated that SFN i) inhibits the SARS‑CoV‑2 replication in infected Calu‑3 cells, decreasing the production of the N‑protein coding RNA sequences, ii) decreased NF‑κB content in SARS‑CoV‑2 infected cells and inhibited the expression of NF‑kB‑dependent IL‑1β and IL‑8 gene expression. The data obtained in the present study demonstrated inhibitory effects of SFN on the SARS‑CoV‑2 life cycle and on the expression levels of the pro‑inflammatory genes, sustaining the possible use of SFN in the management of patients with COVID‑19.
Collapse
Affiliation(s)
- Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, I-35131 Padova
| | - Chiara Papi
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara
| | - Valentina Gentili
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Roberta Rizzo
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Matteo Zurlo
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara
| | - Chiara Scapoli
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara
| |
Collapse
|
45
|
Bergeron HC, Hansen MR, Tripp RA. Interferons-Implications in the Immune Response to Respiratory Viruses. Microorganisms 2023; 11:2179. [PMID: 37764023 PMCID: PMC10535750 DOI: 10.3390/microorganisms11092179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Interferons (IFN) are an assemblage of signaling proteins made and released by various host cells in response to stimuli, including viruses. Respiratory syncytial virus (RSV), influenza virus, and SARS-CoV-2 are major causes of respiratory disease that induce or antagonize IFN responses depending on various factors. In this review, the role and function of type I, II, and III IFN responses to respiratory virus infections are considered. In addition, the role of the viral proteins in modifying anti-viral immunity is noted, as are the specific IFN responses that underly the correlates of immunity and protection from disease.
Collapse
Affiliation(s)
| | | | - Ralph A. Tripp
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30605, USA; (H.C.B.); (M.R.H.)
| |
Collapse
|
46
|
Naushad SM, Mandadapu G, Ramaiah MJ, Almajhdi FN, Hussain T. The role of TLR7 agonists in modulating COVID-19 severity in subjects with loss-of-function TLR7 variants. Sci Rep 2023; 13:13078. [PMID: 37567916 PMCID: PMC10421879 DOI: 10.1038/s41598-023-40114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
We investigate the mechanism associated with the severity of COVID-19 in men with TLR7 mutation. Men with loss-of-function (LOF) mutations in TLR7 had severe COVID-19. LOF mutations in TLR7 increased the risk of critical COVID by 16.00-fold (95% confidence interval 2.40-106.73). The deleterious mutations affect the binding of SARS-CoV2 RNA (- 328.66 ± 26.03 vs. - 354.08 ± 27.70, p = 0.03) and MYD88 (β: 40.279, p = 0.003) to TLR7 resulting in the disruption of TLR7-MyD88-TIRAP complex. In certain hypofunctional variants and all neutral/benign variants, there is no disruption of TLR7-MyD88-TIRAP complex and four TLR7 agonists showed binding affinity comparable to that of wild protein. N-acetylcysteine (NAC) also showed a higher binding affinity for the LOF variants (p = 0.03). To conclude, TLR7 LOF mutations increase the risk of critical COVID-19 due to loss of viral RNA sensing ability and disrupted MyD88 signaling. Majority of hypofunctional and neutral variants of TLR7 are capable of carrying MyD88 signaling by binding to different TLR7 agonists and NAC.
Collapse
Affiliation(s)
- Shaik Mohammad Naushad
- Yoda LifeLine Diagnostics Pvt Ltd, 6-3-862/A, Lal Bungalow Add on, Ameerpet, Hyderabad, 500016, India.
| | | | | | - Fahad N Almajhdi
- COVID-19 Virus Research Chair, Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Tajamul Hussain
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
47
|
Yang MY, Zheng MH, Meng XT, Ma LW, Liang HY, Fan HY. Role of toll-like receptors in the pathogenesis of COVID-19: Current and future perspectives. Scand J Immunol 2023; 98:e13275. [PMID: 38441378 DOI: 10.1111/sji.13275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 03/07/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic underlines a persistent threat of respiratory tract infectious diseases and warrants preparedness for a rapid response. At present, COVID-19 has had a serious social impact and imposed a heavy global burden on public health. The exact pathogenesis of COVID-19 has not been fully elucidated. Since the outbreak of COVID-19, a renewed attention has been brought to Toll-like receptors (TLRs). Available data and new findings have demonstrated that the interaction of human TLRs and SARS-CoV-2 is a vital mediator of COVID-19 immunopathogenesis. TLRs such as TLR2, 4, 7 and 8 are potentially important in viral combat and activation of immunity in patients with COVID-19. Therapeutics targeting TLRs are currently considered promising options against the pandemic. A number of TLR-targeting immunotherapeutics are now being investigated in preclinical studies and different phases of clinical trials. In addition, innovative vaccines based on TLRs under development could be a promising approach for building a new generation of vaccines to solve the current challenges. In this review, we summarize recent progress in the role of TLRs in COVID-19, focusing the new candidate drugs targeting TLRs, the current technology and potential paths forward for employing TLR agonists as vaccine adjuvants.
Collapse
Affiliation(s)
- Ming-Yan Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Mei-Hua Zheng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Xiang-Ting Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Le-Wei Ma
- Ruikang Pharmaceutical Group Co. Ltd., Yantai, China
| | - Hai-Yue Liang
- Yantai Center for Food and Drug Control, Yantai, China
| | - Hua-Ying Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
48
|
Zhang X, Liu L, Wang F, Li H, Fan J, Xie J, Jiao Y, Han Z, Ma D. Pathogenicity and innate immune responses induced by fowl adenovirus serotype 8b in specific pathogen-free chicken. Poult Sci 2023; 102:102846. [PMID: 37354616 PMCID: PMC10404781 DOI: 10.1016/j.psj.2023.102846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/26/2023] Open
Abstract
Fowl adenovirus serotype 8b (FAdV-8b), as causative agent of inclusion body hepatitis (IBH), poses a great threat to the poultry industry. Considering the importance of innate immune response in host against viral infections, we investigated pathogenicity of a FAdV-8b strain HLJ/151129 in 1-mo-old specific pathogen-free (SPF) chickens and immune responses of host to FAdV-8b infection in this study. The results demonstrated that no obvious clinical signs were observed in infected birds. Neither mobility nor mortality was observed in both FAdV-8b infected and control chickens, as well. However, hepatic necrosis and a small amount of inflammatory cell infiltration were observed by pathological analysis. Viral load was detected in bursa of Fabricius, cecal tonsils, liver, heart, spleen, Harderian glands, and thymus. Virus shedding and viremia generated as early as 3 days postinfection (dpi) (9/10) and reached the peak at 7 dpi (10/10). In addition, the infected birds had developed FAdV-specific antibodies at 7 dpi, and the antibody titers reached the peak at 14 dpi. Furthermore, the results demonstrated that the mRNA expression levels of most of toll-like receptors (TLRs), most of avian β-defensins (AvBDs), and cytokines [interleukin (IL)-2, IL-6, and interferon (IFN)-γ], were significantly upregulated in most tissues at early phases of FAdV-8b infection, especially in liver and spleen. In contrast, FAdV-8b infection results in downregulation of TLR4, TLR5, and TLR21 expressions in some tissues of infected chickens. In addition, FAdV-8b infection upregulated myeloid differentiation factor 88 (MyD88), nuclear factor-kappa B (NF-κB) p65, and TIR-domain-containing adapter inducing interferon-β (TRIF) expression in some tissues, while decreased NF-κBp65 and TRIF in spleen at both 72 hpi and 21 dpi. Taken together, these results confirmed that FAdV-8b could replicate in all investigated tissues of infected birds, and then, result in production of FAdV-specific antibody titers. Meanwhile, the FAdV-8b infection induces strong innate immune responses at early stage in chickens, which may associate with the viral pathogenesis.
Collapse
Affiliation(s)
- Xiaona Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Liangliang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Fangfang Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Huixin Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Jiahui Fan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Jingjing Xie
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yaru Jiao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Zongxi Han
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Deying Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
49
|
Guo TJF, Singhera GK, Leung JM, Dorscheid DR. Airway Epithelial-Derived Immune Mediators in COVID-19. Viruses 2023; 15:1655. [PMID: 37631998 PMCID: PMC10458661 DOI: 10.3390/v15081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
The airway epithelium, which lines the conducting airways, is central to the defense of the lungs against inhaled particulate matter and pathogens such as SARS-CoV-2, the virus that causes COVID-19. Recognition of pathogens results in the activation of an innate and intermediate immune response which involves the release of cytokines and chemokines by the airway epithelium. This response can inhibit further viral invasion and influence adaptive immunity. However, severe COVID-19 is characterized by a hyper-inflammatory response which can give rise to clinical presentations including lung injury and lead to acute respiratory distress syndrome, viral pneumonia, coagulopathy, and multi-system organ failure. In response to SARS-CoV-2 infection, the airway epithelium can mount a maladaptive immune response which can delay viral clearance, perpetuate excessive inflammation, and contribute to the pathogenesis of severe COVID-19. In this article, we will review the barrier and immune functions of the airway epithelium, how SARS-CoV-2 can interact with the epithelium, and epithelial-derived cytokines and chemokines and their roles in COVID-19 and as biomarkers. Finally, we will discuss these immune mediators and their potential as therapeutic targets in COVID-19.
Collapse
Affiliation(s)
- Tony J. F. Guo
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
| | - Gurpreet K. Singhera
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Medicine, University of British Columbia, 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| | - Janice M. Leung
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Medicine, University of British Columbia, 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| | - Delbert R. Dorscheid
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Medicine, University of British Columbia, 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
50
|
Labach DS, Kohio HP, Tse EA, Paparisto E, Friesen NJ, Pankovich J, Bazett M, Barr SD. The Metallodrug BOLD-100 Is a Potent Inhibitor of SARS-CoV-2 Replication and Has Broad-Acting Antiviral Activity. Biomolecules 2023; 13:1095. [PMID: 37509131 PMCID: PMC10377621 DOI: 10.3390/biom13071095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The COVID-19 pandemic has highlighted an urgent need to discover and test new drugs to treat patients. Metal-based drugs are known to interact with DNA and/or a variety of proteins such as enzymes and transcription factors, some of which have been shown to exhibit anticancer and antimicrobial effects. BOLD-100 (sodium trans-[tetrachlorobis(1H-indazole)ruthenate(III)]dihydrate) is a novel ruthenium-based drug currently being evaluated in a Phase 1b/2a clinical trial for the treatment of advanced gastrointestinal cancer. Given that metal-based drugs are known to exhibit antimicrobial activities, we asked if BOLD-100 exhibits antiviral activity towards SARS-CoV-2. We demonstrated that BOLD-100 potently inhibits SARS-CoV-2 replication and cytopathic effects in vitro. An RNA sequencing analysis showed that BOLD-100 inhibits virus-induced transcriptional changes in infected cells. In addition, we showed that the antiviral activity of BOLD-100 is not specific for SARS-CoV-2, but also inhibits the replication of the evolutionarily divergent viruses Human Immunodeficiency Virus type 1 and Human Adenovirus type 5. This study identifies BOLD-100 as a potentially novel broad-acting antiviral drug.
Collapse
Affiliation(s)
- Daniel S Labach
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| | - Hinissan P Kohio
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| | - Edwin A Tse
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| | - Ermela Paparisto
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| | - Nicole J Friesen
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| | - Jim Pankovich
- Bold Therapeutics Inc., 422 Richards St, Suite 170, Vancouver, BC V6N 2Z4, Canada
| | - Mark Bazett
- Bold Therapeutics Inc., 422 Richards St, Suite 170, Vancouver, BC V6N 2Z4, Canada
| | - Stephen D Barr
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| |
Collapse
|