1
|
Adebayo OL, Agu VA, Idowu GA, Ezejiaku BC, Atunnise AK. The Role of Vitamin C on ATPases Activities in Monosodium Glutamate-Induced Oxidative Stress in Rat Striatum and Cerebellum. Neurotox Res 2024; 42:40. [PMID: 39212807 DOI: 10.1007/s12640-024-00719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/04/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Monosodium glutamate (MSG) is a silent excitotoxin used as a flavour enhancer but exerts serious health hazards to consumers. MSG plays a role in neuronal function as the dominant excitatory neurotransmitter. It is transferred into the blood and ultimately increases brain glutamate levels, causing functional disruptions notably via oxidative stress. The study evaluated the toxic effect of high consumption of MSG and the modulatory role of vitamin C on ATPase activities in the striatum and cerebellum of male Wistar rats for five weeks. Rats were grouped into four (A-D): group A was fed with rat's show only; Group B was fed with diet containing 15% MSG; Group C was treated with vitamin C (200 mg/kg b.wgt orally in 0.9% saline solution) only for 3 weeks; and group D rats were fed with MSG and vitamin C. The findings show that MSG does not affect body and cerebellum weights but increases striatal weight. MSG increases the malondialdehyde (MDA) level and significantly decreases catalase (CAT) and superoxide dismutase (SOD) activities and glutathione (GSH) levels. MSG significantly impaired striatal and cerebellar ATPases activities (Na+/K+-, Ca2+-, Mg2+- and total ATPases). Vitamin C treatment abolishes MSG-induced oxidative stress and improves ATPase activities. The findings show that vitamin C has beneficial effects in improving the functions of membrane-bound ATPases against MSG toxicity in rat's striatum and cerebellum.
Collapse
Affiliation(s)
- Olusegun L Adebayo
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria.
| | - Vivian A Agu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Grace A Idowu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Blessing C Ezejiaku
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Adeleke K Atunnise
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| |
Collapse
|
2
|
Matin M, Joshi T, Wang D, Tzvetkov NT, Matin FB, Wierzbicka A, Jóźwik A, Horbańczuk JO, Atanasov AG. Effects of Ginger ( Zingiber officinale) on the Hallmarks of Aging. Biomolecules 2024; 14:940. [PMID: 39199328 PMCID: PMC11352747 DOI: 10.3390/biom14080940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Ginger (Zingiber officinale Roscoe) is broadly used as a traditional remedy and food ingredient, and numerous preclinical and clinical studies have demonstrated health benefits in a range of age-related disorders. Moreover, longevity-promoting effects have been demonstrated in several (preclinical) research models. With this work, we aimed to comprehensively review the reported effects of ginger and its bioactive constituents on the twelve established hallmarks of aging, with the ultimate goal of gaining a deeper understanding of the potential for future interventions in the area of longevity-extension and counteracting of aging-related diseases. The reviewed literature supports the favorable effects of ginger and some of its constituents on all twelve hallmarks of aging, with a particularly high number of animal research studies indicating counteraction of nutrient-sensing dysregulations, mitochondrial dysfunction, chronic inflammation, and dysbiosis. On this background, validation in human clinical trials is still insufficient or is entirely missing, with the exception of some studies indicating positive effects on deregulated nutrient-sensing, chronic inflammation, and dysbiosis. Thus, the existing body of literature clearly supports the potential of ginger to be further studied in clinical trials as a supplement for the promotion of both lifespan and health span.
Collapse
Affiliation(s)
- Maima Matin
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Bhimtal, Kumaun University, Nainital 263002, India;
| | - Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada;
| | - Nikolay T. Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Farhan Bin Matin
- Department of Pharmacy, East West University, Aftabnagar, Dhaka 1212, Bangladesh;
| | - Agnieszka Wierzbicka
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Artur Jóźwik
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| |
Collapse
|
3
|
Abdelhamid WG, Mowaad NA, Asaad GF, Galal AF, Mohammed SS, Mostafa OE, Sadek DR, Elkhateb LA. The potential protective effect of Camellia Sinensis in mitigating monosodium glutamate-induced neurotoxicity: biochemical and histological study in male albino rats. Metab Brain Dis 2024; 39:953-966. [PMID: 38869783 PMCID: PMC11233344 DOI: 10.1007/s11011-024-01365-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
Monosodium glutamate (MSG) is the sodium compound derived from glutamic acid. Excessive daily ingestion of MSG leads to elevated amounts of glutamic acid in the bloodstream, which can be detrimental to brain structures. Camellia sinensis, often known as green tea (GT), is a rich source of essential hexogen antioxidants that are necessary for the body. Thirty-two adult male albino rats were divided into four groups (n = 8). Group 1 served as a control -ve group. Group 2 was given GT (1.5 ml/rat/day). Group 3 was given MSG (600 mg/kg/day). Group 4 was given MSG (600 mg/kg/day) and GT (1.5 ml/rat/day). All treatments were given orally for 28 days. MSG administration resulted in significant neurotoxicity in rats that was revealed by the significant reduction of serum concentration of glutathione peroxidase (GPx) and nitric oxide (NO), and the significant elevation of total antioxidant capacity (TAC) accompanied by the significant reduction of levels of serum monoamines (dopamine, serotonin, and norepinephrine) and histological changes in the hippocampus area CA1, dentate gyrus, and cerebellar cortex and positive immunohistochemical staining of glial fibrillary acidic proteins (GFAP) and calretinin. Administration of GT with MSG counteracted the MSG-mediated oxidative stress by significantly increasing serum concentrations of GPX and NO and significantly decreasing concentrations of TAC. Furthermore, GT significantly increased levels of serum monoamines (dopamine, serotonin, and norepinephrine). Moreover, it ameliorated the histological changes, GFAP, and calretinin immunostaining in brain tissues. It is envisaged that GT will serve as a viable protective choice for the inclusion of the neurotoxicity treatment procedure.
Collapse
Affiliation(s)
- Walaa G Abdelhamid
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Noha A Mowaad
- Narcotics, Ergogenics and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Gihan F Asaad
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt.
| | - Asmaa F Galal
- Narcotics, Ergogenics and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Sarah S Mohammed
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Olfat E Mostafa
- Biochemistry Department, Poison Control Center, Ain Shams University Hospitals, Cairo, Egypt
| | - Doaa R Sadek
- Histology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Lobna A Elkhateb
- Histology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Asejeje FO, Abiola MA, Adeyemo OA, Ogunro OB, Ajayi AM. Exogenous monosodium glutamate exacerbates lipopolysaccharide-induced neurobehavioral deficits, oxidative damage, neuroinflammation, and cholinergic dysfunction in rat brain. Neurosci Lett 2024; 825:137710. [PMID: 38432355 DOI: 10.1016/j.neulet.2024.137710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Extensive experimental evidence points to neuroinflammation and oxidative stress as major pathogenic events that initiate and drive the neurodegenerative process. Monosodium glutamate (MSG) is a widely used food additive in processed foods known for its umami taste-enhancing properties. However, concerns about its potential adverse effects on the brain have been raised. Thus, the present study investigated the impact of MSG on lipopolysaccharide (LPS)-induced neurotoxicity in rat brains. Wistar rats weighing between 180 g and 200 g were randomly allocated into four groups: control (received distilled water), MSG (received 1.5 g/kg/day), LPS (received 250 µg/kg/day), and LPS + MSG (received LPS, 250 µg/kg, and MSG, 1.5 g/kg). LPS was administered intraperitoneally for 7 days while MSG was administered orally for 14 days. Our results showed that MSG exacerbated LPS-induced impairment in locomotor and exploratory activities in rats. Similarly, MSG exacerbated LPS-induced oxidative stress as evidenced by increased levels of malondialdehyde (MDA) with a concomitant decrease in levels of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione-s-transferase (GST) in the brain tissue. In addition, MSG potentiated LPS-induced neuroinflammation, as indicated by increased levels of pro-inflammatory cytokines such as interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) as well as myeloperoxidase (MPO) and nitric oxide (NO) in the brain. Moreover, MSG aggravated LPS-induced cholinergic dysfunction, as demonstrated by increased activity of acetylcholinesterase (AChE) in the brain. Further, we found a large number of degenerative neurons widespread in hippocampal CA1, CA3 regions, cerebellum, and cortex according to H&E staining. Taken together, our findings suggest that MSG aggravates LPS-induced neurobehavioral deficits, oxidative stress, neuroinflammation, cholinergic dysfunction, and neurodegeneration in rat brains.
Collapse
Affiliation(s)
- Folake Olubukola Asejeje
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria.
| | - Michael Abayomi Abiola
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Oluwatobi Adewumi Adeyemo
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | | | - Abayomi Mayowa Ajayi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
5
|
Kesherwani R, Bhoumik S, Kumar R, Rizvi SI. Monosodium Glutamate Even at Low Dose May Affect Oxidative Stress, Inflammation and Neurodegeneration in Rats. Indian J Clin Biochem 2024; 39:101-109. [PMID: 38223009 PMCID: PMC10784434 DOI: 10.1007/s12291-022-01077-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022]
Abstract
Monosodium glutamate (MSG) is a widely used flavour enhancer. A daily intake of MSG at high dosage (2000-4000 mg/kg body weight) is reported to be toxic to humans and experimental animals. The present study aims to investigate the toxic effect of oral administration of MSG at low concentrations (30 and 100 mg/kg body weight) by evaluating biochemical parameters of oxidative stress and inflammation in blood; expression of neuroinflammatory gene and histopathological changes in brain on male Wistar rats. The administration of MSG significantly increases serum level of fasting glucose, insulin, triglycerides, total cholesterol, low-density lipoprotein and decrease level of high-density lipoprotein. Significant low level of FRAP, GSH, SOD, CAT and higher level of MDA, PCO, AOPP, PMRS, NO, CRP, IL-6, TNF-α confirms substantial oxidative stress followed by inflammation after 100 mg MSG treatment. RT-PCR figure shows significant expression of neuroinflammatory gene IL-6 and TNF-α and histopathological examination revealed severe neurodegeneration in hippocampus (CA1 and CA3) and cerebral cortex region of brain at 100 mg MSG treatment. Our result provides evidence that MSG administration at 30 mg does not impose toxicity, however at 100 mg/kg body weight, which is considered a low dose, there is significant toxic effects and may be detrimental to health.
Collapse
Affiliation(s)
- Rashmi Kesherwani
- Department of Biochemistry, University of Allahabad, Allahabad, 211002 India
| | - Sukanya Bhoumik
- Department of Biochemistry, University of Allahabad, Allahabad, 211002 India
| | - Raushan Kumar
- Department of Biochemistry, University of Allahabad, Allahabad, 211002 India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad, 211002 India
| |
Collapse
|
6
|
Wang J, Akbari A, Chardahcherik M, Wu J. Ginger (Zingiber Officinale Roscoe) ameliorates ethanol-induced cognitive impairment by modulating NMDA and GABA-A receptors in rat hippocampus. Metab Brain Dis 2024; 39:67-76. [PMID: 37966694 DOI: 10.1007/s11011-023-01301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/24/2023] [Indexed: 11/16/2023]
Abstract
Brain damage caused by ethanol abuse may lead to permanent damage, including severe dementia. The aim of this study was to investigate the effects of ginger powder on ethanol-induced cognitive disorders by examining oxidative damage and inflammation status, and the gene expression of N-methyl-D-aspartate (NMDA) and γ-Aminobutyric acid (GABA)-A receptors in the hippocampus of male rats. 24 adult male Sprague-Dawley rats were allocated randomly to four groups as follows control, ethanol (4g/kg/day, by gavage), ginger (1g/kg/day, by gavage), and ginger-ethanol. At the end of the study, memory and learning were evaluated by the shuttle box test. Moreover, to explore mechanisms involved in ethanol-induced cognitive impairment and the protective effect of ginger, the expression of Nuclear factor kappa B (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), NMDA receptor, and GABA-A receptor was measured along with inflammatory and oxidative biomarkers in the hippocampus tissue. The results showed that ethanol could induce cognitive impairment in the ethanol group, while pretreatment with ginger could reverse it. The gene expression of the NF-κB/ Tumor necrosis factor (TNF)-α/Interleukin (IL)-1β pathway and NMDA and GABA-A receptors significantly increased in the ethanol group compared to the control group. While pretreatment with ginger could significantly improve ethanol-induced cognitive impairment through these pathways in the ginger-ethanol group compared to the ethanol group (P < 0.05). It can be concluded that ginger powder could ameliorate ethanol-induced cognitive impairment by modulating the expression of NMDA and GABA-A receptors and inhibiting oxidative damage and the NF-κB/TNF-α/IL-1β pathway in the rat hippocampus.
Collapse
Affiliation(s)
- Jiaojiao Wang
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, 750000, China
| | - Abolfazl Akbari
- Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Marjan Chardahcherik
- Department of Biochemistry, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Jun Wu
- Department of Internal Medicine, Xi'an Yanta Qiangsen Meilin Hospital, Xi'an, 710000, China.
| |
Collapse
|
7
|
El-Hashash SA, El-Sakhawy MA, Eldamaty HS, Alqasem AA. Experimental evidence of the neurotoxic effect of monosodium glutamate in adult female Sprague Dawley rats: The potential protective role of Zingiber officinale Rosc. rhizomes. Saudi J Biol Sci 2023; 30:103824. [PMID: 37869363 PMCID: PMC10587751 DOI: 10.1016/j.sjbs.2023.103824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/19/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023] Open
Abstract
Strategies to prevent the health abnormalities associated with the extensive use of MSG (monosodium glutamate) as a flavoring booster are badly needed. The current study was conducted to investigate oxidative stress, inflammation, and abnormal lipid profile as the main risk factors of neurotoxicity in MSG-exposed female albino rats. Besides, the effect of concurrent consumption of Zingiber officinale rhizomes powder was studied at low doses. Twenty rats (total) were split into 4 separate groups. The 1st group was a negative control group (without any treatment), while the others received 6 mg MSG/kg. The 2nd group was left untreated, whereas the 3rd and 4th groups were given a regular laboratory diet that included ginger rhizome powder supplements (GRP, 0.5 & 1%, respectively) for six weeks. In brain tissue homogenates, exposure to MSG caused a significant depletion of gamma-aminobutyric acid (GABA) and total protein levels, while triglycerides and cholesterol contents were significantly elevated. Moreover, a noteworthy upsurge in oxidative load and inflammation markers was also noticed associated with a marked reduction of antioxidant levels, which histopathological staining verified further. The rat diet formulated with GRP, with a dose-dependent effect, resulted in increased GABA and total protein contents and attenuated inflammation, oxidative stress, abnormal lipid profile, and marked histological changes in cerebral cortical neurons of MSG-administered animals. Therefore, this study reveals that GRP shields rats against the neurotoxicity that MSG causes. The anti-inflammatory as well as antioxidant, and lipid-normalizing properties of rhizomes of ginger may be accountable for their observed neuroprotective action.
Collapse
Affiliation(s)
- Samah A. El-Hashash
- Department of Nutrition and Food Science, Faculty of Home Economics, Al-Azhar University, Nawag, Tanta City, P.O. Box 31732, Egypt
| | - Mohamed A. El-Sakhawy
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo, Egypt
| | - Hanan S.E. Eldamaty
- Department of Nutrition and Food Science, Faculty of Home Economics, Al-Azhar University, Nawag, Tanta City, P.O. Box 31732, Egypt
| | - Abdullah A. Alqasem
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
8
|
Al-Dmour RH, Al-Tawarah NM, Mwafi N, Alkhataybeh BM, Khleifat KM, Tarawneh A, Satari AO, Alkharabsheh SM, Albustanji L. Enhancement of hippocampal-dependent spatial memory by Ashwagandha ( Withania somnifera) characterized by activation of NMDA receptors against monosodium glutamate-induced neurotoxicity in rats. Int J Neurosci 2023:1-9. [PMID: 37659008 DOI: 10.1080/00207454.2023.2255372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND AND AIM Monosodium glutamate (MSG) is used in food-additives, and the Food and Drug Administration has placed it under intense scrutiny following several reports that it causes glutamate neurotoxicity. Ashwagandha (ASH) roots are traditionally used for memory enhancement. This study aimed to evaluate the nootropic activity of ASH as well as its therapeutic anti-amnesic activity against MSG-induced hippocampal-dependent spatial memory impairment and hippocampal-NMDAR modulation. METHOD A total of 36 rats were divided equally into six groups (n = 6 in each group); the rats in the normal and negative groups were administered daily doses of normal saline and MSG (300 mg/kg), respectively, for 21 days. Two nootropic groups were administered ASH at 300 and 500 mg/kg o.p., respectively, for 21 days. Two other treatment groups were administered daily doses of MSG 300 mg/kg o.p. as well as 300 mg/kg and 500 mg/kg o.p. of ASH for 21 days. The rats' spatial memory was assessed for five days using the MWM. Additionally, NMDAR were measured quantitatively by immunohistochemistry. RESULTS We found that the rats in the nootropic groups showed significantly enhanced nootropic activity characterized by improved hippocampal-dependent spatial memory, as well as increases in the level of NMDAR in the Cornu Ammonis 1 region of their hippocampus. Moreover, we elucidated the therapeutic potential of ASH to protect against the depression of spatial memory caused by MSG-induced neurotoxicity. CONCLUSION Further, we elucidated a strong correlation between NMDAR-positive cells in the hippocampus and enhancement of spatial learning induced by long-term administration of ASH as well as a strong correlation between NMDAR positive cells in the hippocampus and depression of spatial learning induced by long-term administration of ASH and MSG.
Collapse
Affiliation(s)
- Rawand H Al-Dmour
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Mutah University, Al-Karak, Jordan
| | - Nafe M Al-Tawarah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Mutah University, Al-Karak, Jordan
| | - Nesrin Mwafi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Mutah University, Al-Karak
| | - Banan M Alkhataybeh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Mutah University, Al-Karak, Jordan
| | - Khaled M Khleifat
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Mutah University, Al-Karak, Jordan
| | - Amjad Tarawneh
- Pediatric Department, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | - Anas O Satari
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Mutah University, Al-Karak
| | - Sahem M Alkharabsheh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Mutah University, Al-Karak, Jordan
| | - Layla Albustanji
- Departement of Biology, Faculty of Sciences, Mutah University, Al-Karak, Jordan
| |
Collapse
|
9
|
Hashemi SS, Mohammadi AA, Rajabi SS, Sanati P, Rafati A, Kian M, Zarei Z. Preparation and evaluation of a polycaprolactone/chitosan/propolis fibrous nanocomposite scaffold as a tissue engineering skin substitute. BIOIMPACTS : BI 2023; 13:275-287. [PMID: 37645024 PMCID: PMC10460768 DOI: 10.34172/bi.2023.26317] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 08/31/2023]
Abstract
Introduction Recently, the application of nanofibrous mats for dressing skin wounds has received great attention. In this study, we aimed to fabricate and characterize an electrospun nanofibrous mat containing polycaprolactone (PCL), chitosan (CTS), and propolis for use as a tissue-engineered skin substitute. Methods Raw propolis was extracted, and its phenolic and flavonoid contents were measured. The physiochemical and biological properties of the fabricated mats, including PCL, PCL/CTS, and PCL/CTS/Propolis were evaluated by scanning electron microscopy (SEM), atomic force microscopy (AFM), mechanical analysis, swelling and degradation behaviors, contact angle measurement, cell attachment, DAPI staining, and MTT assay. On the other hand, the drug release pattern of propolis from the PCL/CTS/Propolis scaffold was determined. A deep second-degree burn wound model was induced in rats to investigate wound healing using macroscopical and histopathological evaluations. Results The results revealed that the propolis extract contained high amounts of phenolic and flavonoid compounds. The fabricated scaffold had suitable physicochemical and mechanical properties. Uniform, bead-free, and well-branched fibers were observed in SEM images of mats. AFM analysis indicated that the addition of CTS and propolis to PCL elevated the surface roughness. MTT results revealed that the electrospun PCL/CTS/Propolis mat was biocompatible. The presence of fibroblast cells on the PCL/CTS/Propolis mats was confirmed by DAPI staining and SEM images. Also, propolis was sustainably released from the PCL/CTS/Propolis mat. The animal study revealed that addition of propolis significantly improved wound healing. Conclusion The nanofibrous PCL/CTS/Propolis mat can be applied as a tissue-engineered skin substitute for healing cutaneous wounds, such as burn wounds.
Collapse
Affiliation(s)
- Seyedeh-Sara Hashemi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Ali Akbar Mohammadi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Seyedeh-Somayeh Rajabi
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Parisa Sanati
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Iran National Elite Foundation, Tehran, Iran
| | - Alireza Rafati
- Division of Pharmacology and Pharmaceutical Chemistry, Sarvestan Branch, Islamic Azad University, Sarvestan, Fars, Iran
| | - Mehdi Kian
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Zahra Zarei
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| |
Collapse
|
10
|
Hassan AS, Hofni A, Abourehab MAS, Abdel-Rahman IAM. Ginger Extract-Loaded Transethosomes for Effective Transdermal Permeation and Anti-Inflammation in Rat Model. Int J Nanomedicine 2023; 18:1259-1280. [PMID: 36945254 PMCID: PMC10024879 DOI: 10.2147/ijn.s400604] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/21/2023] [Indexed: 03/15/2023] Open
Abstract
Introduction Ginger extract (GE) has sparked great interest due to its numerous biological benefits. However, it suffers from limited skin permeability, which challenges its transdermal application. The target of the current work was to develop transethosomes as a potential nanovehicle to achieve enhanced transdermal delivery of GE through the skin. Methods GE-loaded transethosomes were prepared by cold injection using different edge activators. The fabricated nanovesicles were evaluated for particle size, ζ-potential, encapsulation efficiency, and in vitro drug release. The selected formulation was then laden into the hydrogel system and evaluated for ex vivo permeability and in vivo anti-inflammatory activity in a carrageenan-induced rat-paw edema model. Results The selected formulation comprised of sodium deoxycholate exhibited particle size of 188.3±7.66 nm, ζ-potential of -38.6±0.08 mV, and encapsulation efficiency of 91.0%±0.24%. The developed transethosomal hydrogel containing hydroxypropyl methylcellulose was homogeneous, pseudoplastic, and demonstrated sustained drug release. Furthermore, it exhibited improved flux (12.61±0.45 μg.cm2/second), apparent skin permeability (2.43±0.008×10-6 cm/second), and skin deposition compared to free GE hydrogel. In vivo testing and histopathological examination revealed that the GE transethosomal hydrogel exhibited significant inhibition of edema swelling compared to free GE hydrogel and ketoprofen gel. The animals that were treated with ginger transethosome hydrogel showed a significant decrement in reactive oxygen species and prostaglandin E2 compared to untreated animals. Conclusion Transethosomes might be a promising new vehicle for GE for effective skin permeation and anti-inflammation. To the best of our knowledge, this work is the first utilization of transethosomes laden into hydrogel as a novel transdermal delivery system of GE.
Collapse
Affiliation(s)
- Abeer S Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Amal Hofni
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Mohammed A S Abourehab
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| | - Iman A M Abdel-Rahman
- Department of Pharmacognosy, Faculty of Pharmacy, South Valley University, Qena, Egypt
| |
Collapse
|
11
|
Mabrouk DM, El Makawy AI, Ahmed KA, Ramadan MF, Ibrahim FM. Topiramate potential neurotoxicity and mitigating role of ginger oil in mice brain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87184-87199. [PMID: 35802336 DOI: 10.1007/s11356-022-21878-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Topiramate has multiple pharmacological mechanisms that are efficient in treating epilepsy and migraine. Ginger has been established to have gingerols and shogaols that cause migraine relief. Moreover, Topiramate has many off-label uses. Thus, it was necessary to explore the possible neurotoxicity of Topiramate and the role of ginger oil in attenuating the Topiramate neurotoxicity. Male albino mice were orally gavaged with Topiramate, ginger oil (400 mg/kg), and Topiramate plus ginger oil with the same pattern for 28 days. Oxidative stress markers, acetylcholinesterase (AchE), gamma-aminobutyric acid (GABA), and tumor necrosis factor-alpha (TNF-α) were examined. Histopathological examination, immunohistochemical glial fibrillary acidic protein (GFAP), and Bax expression analysis were detected. The GABAAR subunits, Gabra1, Gabra3, and Gabra5 expression, were assessed by RT-qPCR. The investigation showed that Topiramate raised oxidative stress markers levels, neurotransmitters, TNF-α, and diminished glutathione (GSH). In addition, Topiramate exhibited various neuropathological alterations, strong Bax, and GFAP immune-reactivity in the cerebral cortex. At the same time, the results indicated that ginger oil had no neurotoxicity. The effect of Topiramate plus ginger oil alleviated the changes induced by Topiramate in the tested parameters. Both Topiramate and ginger oil upregulated the mRNA expression of gabra1 and gabra3, while their interaction markedly downregulated them. Therefore, it could be concluded that the Topiramate overdose could cause neurotoxicity, but the interaction with ginger oil may reduce Topiramate-induced neurotoxicity and should be taken in parallel.
Collapse
Affiliation(s)
- Dalia M Mabrouk
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Aida I El Makawy
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, P.O. 12211, Giza, Egypt
| | - Mohamed Fawzy Ramadan
- Clinical Nutrition Department, College of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 7067, Makkah, 21955, Saudi Arabia.
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt.
| | - Faten M Ibrahim
- Medicinal and Aromatic Plants Research Department, National Research Centre, 33 El Bohouth St., Dokki, P.O.12622, Giza, Egypt
| |
Collapse
|
12
|
Im H, Ju IG, Kim JH, Lee S, Oh MS. Trichosanthis Semen and Zingiberis Rhizoma Mixture Ameliorates Lipopolysaccharide-Induced Memory Dysfunction by Inhibiting Neuroinflammation. Int J Mol Sci 2022; 23:ijms232214015. [PMID: 36430493 PMCID: PMC9692726 DOI: 10.3390/ijms232214015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Neuroinflammation, a key pathological contributor to various neurodegenerative diseases, is mediated by microglial activation and subsequent secretion of inflammatory cytokines via the mitogen-activated protein kinase (MAPK) signaling pathway. Moreover, neuroinflammation leads to synaptic loss and memory impairment. This study investigated the inhibitory effects of PNP001, a mixture of Trichosanthis Semen and Zingiberis Rhizoma in a ratio of 3:1, on neuroinflammation and neurological deficits induced by lipopolysaccharide (LPS). For the in vitro study, PNP001 was administered in LPS-stimulated BV2 microglial cells, and reduced the pro-inflammatory mediators, such as nitric oxide, inducible nitric oxide synthase, and cyclooxygenase-2 by downregulating MAPK signaling. For the in vivo study, ICR mice were orally administered PNP001 for 18 consecutive days, and concurrently treated with LPS (1 mg/kg, i.p.) for 10 days, beginning on the 4th day of PNP001 administration. The remarkably decreased number of activated microglial cells and increased expression of pre- and post-synaptic proteins were observed more in the hippocampus of the PNP001 administered groups than in the LPS-treated group. Furthermore, daily PNP001 administration significantly attenuated long-term memory decline compared with the LPS-treated group. Our study demonstrated that PNP001 inhibits LPS-induced neuroinflammation and its associated memory dysfunction by alleviating microglial activation and synaptic loss.
Collapse
Affiliation(s)
- Hyeri Im
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - In Gyoung Ju
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul 02447, Korea
| | - Jin Hee Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Seungmin Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Myung Sook Oh
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul 02447, Korea
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-9436; Fax: +82-2-963-9436
| |
Collapse
|
13
|
El-kady AM, Al-Megrin WAI, Abdel-Rahman IAM, Sayed E, Alshehri EA, Wakid MH, Baakdah FM, Mohamed K, Elshazly H, Alobaid HM, Qahl SH, Elshabrawy HA, Younis SS. Ginger Is a Potential Therapeutic for Chronic Toxoplasmosis. Pathogens 2022; 11:pathogens11070798. [PMID: 35890042 PMCID: PMC9315699 DOI: 10.3390/pathogens11070798] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/02/2022] [Accepted: 07/10/2022] [Indexed: 12/10/2022] Open
Abstract
Background:Toxoplasma gondii (T. gondii) is an opportunistic parasite that causes serious diseases in humans, particularly immunocompromised individuals and pregnant women. To date, there are limited numbers of therapeutics for chronic toxoplasmosis which necessitate the discovery of effective and safe therapeutics. In the present study, we aimed to evaluate the antitoxoplasmosis potential of ginger extract in mice with experimentally induced chronic toxoplasmosis. Results: Treatment with ginger extract significantly reduced cysts count in the brains of T. gondii-infected mice with a marked alleviation of edema and inflammation, and a reversal of neuronal injury. Moreover, ginger extract treatment reduced inflammation in liver and lungs and protected hepatocytes from infection-induced degeneration. Consistently, apoptosis was significantly mitigated in the brains of ginger extract-treated mice compared to infected untreated animals or spiramycin-treated animals. Methods: Four groups of Swiss albino mice (10 mice each) were used. The first group was not infected, whereas 3 groups were infected with Me49 T. gondii strains. One infected group remained untreated (infected untreated), whereas the other two infected groups were treated with either ginger extract (250 mg/kg) or spiramycin (positive control; 100 mg/kg), respectively. The therapeutic potential of ginger extract was evaluated by calculation of the parasite burden in infected animals, and examination of the infected tissues for reduced pathologic changes. Conclusions: Our results showed for the first time that ginger extract exhibited marked therapeutic effects in mice with chronic T. gondii infection which indicates that it can be used as a safe and effective treatment for chronic toxoplasmosis.
Collapse
Affiliation(s)
- Asmaa M. El-kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena 83523, Egypt
- Correspondence: Correspondence: (A.M.E.-k.); (H.A.E.)
| | - Wafa Abdullah I. Al-Megrin
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Iman A. M. Abdel-Rahman
- Department of Pharmacognosy, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt;
| | - Eman Sayed
- Department of Parasitology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Eman Abdullah Alshehri
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia; (E.A.A.); (H.M.A.)
| | - Majed H. Wakid
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.W.); (F.M.B.)
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fadi M. Baakdah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.W.); (F.M.B.)
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khalil Mohamed
- Department of Epidemiology, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Mecca 21961, Saudi Arabia;
| | - Hayam Elshazly
- Department of Biology, Faculty of Sciences -Scientific Departments, Qassim University, Buraidah, Qassim 52571, Saudi Arabia;
- Department of Zoology, Faculty of Science, Beni Suef University, Beni Suef 62521, Egypt
| | - Hussah M. Alobaid
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia; (E.A.A.); (H.M.A.)
| | - Safa H. Qahl
- Department of Biology, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
- Correspondence: Correspondence: (A.M.E.-k.); (H.A.E.)
| | - Salwa S. Younis
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt;
| |
Collapse
|
14
|
AL-Nasser MN, Mellor IR, Carter WG. Is L-Glutamate Toxic to Neurons and Thereby Contributes to Neuronal Loss and Neurodegeneration? A Systematic Review. Brain Sci 2022; 12:577. [PMID: 35624964 PMCID: PMC9139234 DOI: 10.3390/brainsci12050577] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
L-glutamate (L-Glu) is a nonessential amino acid, but an extensively utilised excitatory neurotransmitter with critical roles in normal brain function. Aberrant accumulation of L-Glu has been linked to neurotoxicity and neurodegeneration. To investigate this further, we systematically reviewed the literature to evaluate the effects of L-Glu on neuronal viability linked to the pathogenesis and/or progression of neurodegenerative diseases (NDDs). A search in PubMed, Medline, Embase, and Web of Science Core Collection was conducted to retrieve studies that investigated an association between L-Glu and pathology for five NDDs: Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). Together, 4060 studies were identified, of which 71 met eligibility criteria. Despite several inadequacies, including small sample size, employment of supraphysiological concentrations, and a range of administration routes, it was concluded that exposure to L-Glu in vitro or in vivo has multiple pathogenic mechanisms that influence neuronal viability. These mechanisms include oxidative stress, reduced antioxidant defence, neuroinflammation, altered neurotransmitter levels, protein accumulations, excitotoxicity, mitochondrial dysfunction, intracellular calcium level changes, and effects on neuronal histology, cognitive function, and animal behaviour. This implies that clinical and epidemiological studies are required to assess the potential neuronal harm arising from excessive intake of exogenous L-Glu.
Collapse
Affiliation(s)
- Maryam N. AL-Nasser
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| | - Ian R. Mellor
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Wayne G. Carter
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| |
Collapse
|
15
|
Maciel JIHN, Zazula MF, Rodrigues DFS, De Toni Boaro C, Boaretto ML, de Andrade BZ, Schneider SCS, Naliwaiko K, Torrejais MM, Costa RM, de Fátima Chasko Ribeiro L, Bertolini GRF. Whole-Body Vibration Promotes Skeletal Muscle Restructuring and Reduced Obesogenic Effect of MSG in Wistar Rats. Appl Biochem Biotechnol 2022; 194:3594-3608. [PMID: 35460454 DOI: 10.1007/s12010-022-03923-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 11/02/2022]
Abstract
The negative changes of obesity to the locomotor system are a major concern in the current scenario, where obesity and metabolic syndrome are recurrent in Western societies. A physical exercise is an important tool as a way to rehabilitate obesity, highlighting whole-body vibration, as it is an easy-access modality with few restrictions. In this sense, we sought to evaluate the effect of whole-body vibration on the extensor digitorum longus muscle on a monosodium glutamate-induced obesity model. The main findings of the present study are related to the ability of the treatment with vibration to reduce the obesogenic characteristics and slow down the dyslipidemic condition of the animals. Likewise, the vibration promoted by the vibrating platform was essential in the recovery of the muscle structure, as well as the recovery of the muscle's oxidative capacity, initially compromised by obesity.
Collapse
Affiliation(s)
- Jhyslayne Ignácia Hoff Nunes Maciel
- Laboratório de Estudo das Lesões e Recursos Fisioterapêuticos, Universidade Estadual do Oeste do Paraná (Unioeste), Universitária St, 2069, Zip code: 85819110 , Paraná, Cascavel, Brasil
| | - Matheus Felipe Zazula
- Laboratório de Plasticidade Morfofuncional, Departamento de Biologia Celular, Universidade Federal do Paraná, Curitiba, Paraná, Brasil
| | | | | | - Mariana Laís Boaretto
- Laboratório de Estudo das Lesões e Recursos Fisioterapêuticos, Universidade Estadual do Oeste do Paraná (Unioeste), Universitária St, 2069, Zip code: 85819110 , Paraná, Cascavel, Brasil
| | | | - Sara Cristina Sagae Schneider
- Laboratório de Estudo das Lesões e Recursos Fisioterapêuticos, Universidade Estadual do Oeste do Paraná (Unioeste), Universitária St, 2069, Zip code: 85819110 , Paraná, Cascavel, Brasil
| | - Katya Naliwaiko
- Laboratório de Plasticidade Morfofuncional, Departamento de Biologia Celular, Universidade Federal do Paraná, Curitiba, Paraná, Brasil
| | | | - Rose Meire Costa
- Laboratório de Biologia Estrutural e Funcional, Unioeste, Cascavel, Paraná, Brasil
| | | | - Gladson Ricardo Flor Bertolini
- Laboratório de Estudo das Lesões e Recursos Fisioterapêuticos, Universidade Estadual do Oeste do Paraná (Unioeste), Universitária St, 2069, Zip code: 85819110 , Paraná, Cascavel, Brasil.
| |
Collapse
|
16
|
Eteng OE, Moses CA, Ugwor EI, Enobong JE, Akamo AJ, Adeleke U, Iwara A, Ubana E. Effects of sub-acute exposure to Sudan IV-adulterated palm oil on hematology-related parameters in male albino rats. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2059743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ofem E. Eteng
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | - Ceaser A. Moses
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | - Emmanuel I. Ugwor
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | - Joe E. Enobong
- Department of Biochemistry, University of Calabar, Calabar, Nigeria
| | - Adio J. Akamo
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | - Usman Adeleke
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | - Arikpo Iwara
- Department of Biochemistry, University of Calabar, Calabar, Nigeria
| | - Eyong Ubana
- Department of Biochemistry, University of Calabar, Calabar, Nigeria
| |
Collapse
|
17
|
John R, Abolaji AO, Adedara AO, Ajayi AM, Aderibigbe AO, Umukoro S. Jobelyn® extends the life span and improves motor function in Drosophila melanogaster exposed to lipopolysaccharide via augmentation of antioxidant status. Metab Brain Dis 2022; 37:1031-1040. [PMID: 35156155 DOI: 10.1007/s11011-022-00919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
Abstract
Jobelyn® (JB), a dietary supplement, derived from polyphenol-rich leaf sheath of Sorghum bicolor, has been reported to attenuate sensorimotor deficits and oxidative stress evoked by complete Freund-adjuvant in mice. This present study evaluated its effects on the life span, motor function and changes in oxidative stress parameters as well as acetylcholinesterase activity in Drosophila melanogaster exposed to lipopolysaccharide (LPS). The flies (50 per vial), in 5 replicates were fed with LPS (250 μg/kg diet) alone or in combination with JB (0.25-1.0 mg/kg diet) daily for 7 days. The mortality rate and motor function were evaluated on day 7. The flies were afterwards processed for determination of oxidative stress parameters and acetylcholinesterase activity. The effects of JB (0.25-1.0 mg/g diet) on the longevity of Drosophila was also investigated wherein the flies were monitored daily for mortality throughout their lifespan. The flies exposed to LPS (250 μg/kg diet) had reduced life span and elevated oxidative stress when compared with control. However, JB (0.25 and 1.0 mg/kg diet) improved the motor function and also reduced the mortality rate of the flies exposed to LPS. It also restored the cellular antioxidant status and reduced acetylcholinesterase activity, accumulation of hydrogen peroxide as well as nitric oxide in Drosophila fed with LPS. JB also extended the longevity of the flies relative to control. The findings that JB improves motor function and extended the lifespan of Drosophila flies by boosting the antioxidant status and cholinergic function, suggest it might be helpful in delaying the onset of neuropsychiatric illnesses associated with the aging processes.
Collapse
Affiliation(s)
- Ruth John
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Sango-Ojo Road, Ibadan, Oyo State, Nigeria
| | - Amos Olalekan Abolaji
- Drosophila Laboratory, Drug Metabolism and Molecular Toxicology Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Adeola Oluwatosin Adedara
- Drosophila Laboratory, Drug Metabolism and Molecular Toxicology Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Abayomi Mayowa Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Sango-Ojo Road, Ibadan, Oyo State, Nigeria
| | - Adegbuyi Oladele Aderibigbe
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Sango-Ojo Road, Ibadan, Oyo State, Nigeria
| | - Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Sango-Ojo Road, Ibadan, Oyo State, Nigeria.
| |
Collapse
|
18
|
Arcusa R, Villaño D, Marhuenda J, Cano M, Cerdà B, Zafrilla P. Potential Role of Ginger (Zingiber officinale Roscoe) in the Prevention of Neurodegenerative Diseases. Front Nutr 2022; 9:809621. [PMID: 35369082 PMCID: PMC8971783 DOI: 10.3389/fnut.2022.809621] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/15/2022] [Indexed: 12/30/2022] Open
Abstract
Ginger is composed of multiple bioactive compounds, including 6-gingerol, 6-shogaol, 10-gingerol, gingerdiones, gingerdiols, paradols, 6-dehydrogingerols, 5-acetoxy-6-gingerol, 3,5-diacetoxy-6-gingerdiol, and 12-gingerol, that contribute to its recognized biological activities. Among them, the major active compounds are 6-shogaol and 6-gingerol. Scientific evidence supports the beneficial properties of ginger, including antioxidant and anti-inflammatory capacities and in contrast, a specific and less studied bioactivity is the possible neuroprotective effect. The increase in life expectancy has raised the incidence of neurodegenerative diseases (NDs), which present common neuropathological features as increased oxidative stress, neuroinflammation and protein misfolding. The structure-activity relationships of ginger phytochemicals show that ginger can be a candidate to treat NDs by targeting different ligand sites. Its bioactive compounds may improve neurological symptoms and pathological conditions by modulating cell death or cell survival signaling molecules. The cognitive enhancing effects of ginger might be partly explained via alteration of both the monoamine and the cholinergic systems in various brain areas. Moreover, ginger decreases the production of inflammatory related factors. The aim of the present review is to summarize the effects of ginger in the prevention of major neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and multiple sclerosis.
Collapse
|
19
|
Afzal M, Kazmi I, Quazi AM, Khan SA, Zafar A, Al-Abbasi FA, Imam F, Alharbi KS, Alzarea SI, Yadav N. 6-Shogaol Attenuates Traumatic Brain Injury-Induced Anxiety/Depression-like Behavior via Inhibition of Oxidative Stress-Influenced Expressions of Inflammatory Mediators TNF-α, IL-1β, and BDNF: Insight into the Mechanism. ACS OMEGA 2022; 7:140-148. [PMID: 35036685 PMCID: PMC8756802 DOI: 10.1021/acsomega.1c04155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Anxiety and depression are among the major traumatic brain injury-induced psychiatric disorders in survivors. The present study was undertaken to investigate the beneficial effects of 6-Shogaol against depression-like behavior and anxiety, induced by traumatic brain injury (TBI), in mice. The mice were administered either fluoxetine, vehicle, or three different doses (10, 20 and 30 mg/kg/day, i.p.) of 6-Shogaol after 10 days of impact-accelerated TBI. The treatment was continued for 14 consecutive days. Elevated plus maze test, marble burying test, staircase test, and social interaction test were employed to investigate the effect of 6-Shogaol on anxiety-like behavior. The impact of treatment on depression-like behavior was assessed using hyper-emotionality behavior or open-field exploration test. The expressions of brain-derived neurotrophic factor (BDNF), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and malondialdehyde (MDA) levels in brain tissue and brain water were measured to elucidate possible mechanisms involved. 6-Shogaol treatment (higher dose) was able to attenuate anxiety/depression-like behaviors in mice with TBI. 6-Shogaol treatment also altered MDA formation and expressions of TNF-α and IL-1β that act as major inflammation-inducing cytokines in brain tissue. Additionally, brain BDNF levels were also affected by 6-Shogaol treatment. Although the lower dose of 6-Shogaol was able to rectify inflammation and BDNF expression in brain tissue, it was unable to improve anxiety/depression-like behaviors. 6-Shogaol treatment produced beneficial effects for TBI-induced anxiety/depression-like behaviors in mice, which could be attributed to the reduction of lipid peroxidation, inflammation, and enhanced BDNF expression.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Sakaka, Aljouf-72341, Saudi Arabia
| | - Imran Kazmi
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Shah Alam Khan
- Department
of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, Mascat-130, Oman
| | - Ameeduzzafar Zafar
- Department
of Pharmaceutics, College of Pharmacy, Jouf
University, Sakaka, Aljouf-72341, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Faisal Imam
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Saad Alharbi
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Sakaka, Aljouf-72341, Saudi Arabia
| | - Sami I. Alzarea
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Sakaka, Aljouf-72341, Saudi Arabia
| | - Neelam Yadav
- Central
Council for Research in Ayurvedic Science, New Delhi 110058, India
| |
Collapse
|
20
|
HAO S, CHO BO, WANG F, SHIN JY, SHIN DJ, JANG SI. Zingiber officinale attenuates neuroinflammation in LPS-stimulated mouse microglia by AKT/STAT3, MAPK, and NF-κB signaling. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.104221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Suping HAO
- Jeonju University, Korea; Xingtai University, China
| | | | | | | | | | - Seon Il JANG
- Jeonju University, Korea; Ato Q&A Co., LTD, Korea
| |
Collapse
|
21
|
Kochmar M. MY, Golosh JV, Hetsko OI. EFFECT OF MONOSODIUM GLUTAMATE ON ORGANS OF THE DIGESTIVE SYSTEM IN HUMANS AND RATS. BULLETIN OF PROBLEMS BIOLOGY AND MEDICINE 2022. [DOI: 10.29254/2077-4214-2022-3-166-58-69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Jafarzadeh A, Jafarzadeh S, Nemati M. Therapeutic potential of ginger against COVID-19: Is there enough evidence? JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2021. [PMCID: PMC8492833 DOI: 10.1016/j.jtcms.2021.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In addition to the respiratory system, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strikes other systems, including the digestive, circulatory, urogenital, and even the central nervous system, as its receptor angiotensin-converting enzyme 2 (ACE2) is expressed in various organs, such as lungs, intestine, heart, esophagus, kidneys, bladder, testis, liver, and brain. Different mechanisms, in particular, massive virus replication, extensive apoptosis and necrosis of the lung-related epithelial and endothelial cells, vascular leakage, hyper-inflammatory responses, overproduction of pro-inflammatory mediators, cytokine storm, oxidative stress, downregulation of ACE2, and impairment of the renin-angiotensin system contribute to the COVID-19 pathogenesis. Currently, COVID-19 is a global pandemic with no specific anti-viral treatment. The favorable capabilities of the ginger were indicated in patients suffering from osteoarthritis, neurodegenerative disorders, rheumatoid arthritis, type 2 diabetes, respiratory distress, liver diseases and primary dysmenorrheal. Ginger or its compounds exhibited strong anti-inflammatory and anti-oxidative influences in numerous animal models. This review provides evidence regarding the potential effects of ginger against SARS-CoV-2 infection and highlights its antiviral, anti-inflammatory, antioxidative, and immunomodulatory impacts in an attempt to consider this plant as an alternative therapeutic agent for COVID-19 treatment.
Collapse
|
23
|
Astaxanthin Mitigates Thiacloprid-Induced Liver Injury and Immunotoxicity in Male Rats. Mar Drugs 2021; 19:md19090525. [PMID: 34564187 PMCID: PMC8467938 DOI: 10.3390/md19090525] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
Thiacloprid (TCP) is a widely used neonicotinoid insecticide with a probable toxic hazard to animals and human beings. This hazard has intensified the demand for natural compounds to alleviate the expected toxic insults. This study aimed at determining whether astaxanthin (ASX) could mitigate the hepatotoxic effect of TCP and diminish its suppressive effect on immune responses in rats. Animals received TCP by gavage at 62.1 mg/kg (1/10th LD50) with or without ASX at 40 mg/kg for 60 days. Intoxicated rats showed modulation of serum transaminases and protein profiles. The hemagglutination antibody titer to sheep red blood cells (SRBC) and the number of plaque-forming cells in the spleen were reduced. The cell-mediated immunity and phagocytosis were suppressed, while serum interleukins IL-1β, IL-6, and IL-10 were elevated. Additionally, malondialdehyde, nitric oxide, and 8-hydroxy-2'-deoxyguanosine levels were increased in the liver, spleen, and thymus, with depletion of glutathione and suppression of superoxide dismutase and catalase activities. The expressions of inducible nitric oxide synthase and the high mobility group box protein 1 genes were upregulated with histomorphological alterations in the aforementioned organs. Cotreatment with ASX markedly ameliorated the toxic effects of TCP, and all markers showed a regression trend towards control values. Collectively, our data suggest that the protective effects of ASX on the liver and immune system of TCP-treated animals depend upon improving the antioxidant status and relieving the inflammatory response, and thus it may be used as a promising therapeutic agent to provide superior hepato- and immunoprotection.
Collapse
|
24
|
Zulhendri F, Perera CO, Tandean S. Can Propolis Be a Useful Adjuvant in Brain and Neurological Disorders and Injuries? A Systematic Scoping Review of the Latest Experimental Evidence. Biomedicines 2021; 9:1227. [PMID: 34572413 PMCID: PMC8470086 DOI: 10.3390/biomedicines9091227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022] Open
Abstract
Propolis has been used therapeutically for centuries. In recent years, research has demonstrated its efficacy as a potential raw material for pharmaceuticals and nutraceuticals. The aim of the present scoping review is to examine the latest experimental evidence regarding the potential use of propolis in protecting the brain and treating neurological disorders and injuries. A systematic scoping review methodology was implemented. Identification of the research themes and knowledge gap was performed. After applying the exclusion criteria, a total of 66 research publications were identified and retrieved from Scopus, Web of Science, Pubmed, and Google Scholar. Several key themes where propolis is potentially useful were subsequently identified, namely detoxification, neuroinflammation, ischemia/ischemia-reperfusion injury/traumatic brain injury, Alzheimer's disease, Parkinson's disease, and epilepsy models, depression, cytotoxicity, cognitive improvement, regenerative medicine, brain infection, and adverse effects. In conclusion, propolis is shown to have protective and therapeutic benefits in alleviating symptoms of brain and neurological disorders and injuries, demonstrated by various in vitro studies, animal models, and human clinical trials. Further clinical research into this area is needed.
Collapse
Affiliation(s)
| | - Conrad O Perera
- Food Science Program, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland CBD, Auckland 1010, New Zealand
| | - Steven Tandean
- Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan 20222, Sumatera Utara, Indonesia
| |
Collapse
|
25
|
Tatli Seven P, Seven I, Karakus S, Iflazoglu Mutlu S, Ozer Kaya S, Arkali G, Ilgar M, Tan E, Sahin YM, Ismik D, Kilislioglu A. The in-vivo assessment of Turkish propolis and its nano form on testicular damage induced by cisplatin. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2021; 19:451-459. [PMID: 34417154 DOI: 10.1016/j.joim.2021.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/03/2021] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Chemotherapeutic drugs, such as cisplatin (CP), which are associated with oxidative stress and apoptosis, may adversely affect the reproductive system. This study tests whether administration of propolis and nano-propolis (NP) can alleviate oxidative stress and apoptosis in rats with testicular damage induced by CP. METHODS In this study, polymeric nanoparticles including propolis were synthesized with a green sonication method and characterized using Fourier transform-infrared spectroscopy, Brunauer-Emmett-Teller, and wet scanning transmission electron microscopy techniques. In total, 56 rats were divided into the following seven groups: control, CP, propolis, NP-10, CP + propolis, CP + NP-10, and CP + NP-30. Propolis (100 mg/kg), NP-10 (10 mg/kg), and NP-30 (30 mg/kg) treatments were administered by gavage daily for 21 d, and CP (3 mg/kg) was administered intraperitoneally in a single dose. After the experiment, oxidative stress parameters, namely, malondialdehyde (MDA), glutathione (GSH), glutathione peroxidase (GPx), and catalase (CAT), and apoptotic pathways including B cell leukemia/lymphoma-2 protein (Bcl-2) and Bcl-2-associated X protein (Bax) were measured in testicular tissues. Furthermore, sperm quality and weights of the testis, epididymis, right cauda epididymis, seminal vesicles and prostate were evaluated. RESULTS Propolis and NP (especially NP-30) were able to preserve oxidative balance (decreased MDA levels and increased GSH, CAT, and GPx activities) and activate apoptotic pathways (decreased Bax and increased Bcl-2) in the testes of CP-treated rats. Sperm motility in the control, CP, and CP + NP-30 groups were 60%, 48.75%, and 78%, respectively (P < 0.001). Especially, NP-30 application completely corrected the deterioration in sperm features induced by CP. CONCLUSION The results show that propolis and NP treatments mitigated the side effects of CP on spermatogenic activity, antioxidant situation, and apoptosis in rats.
Collapse
Affiliation(s)
- Pinar Tatli Seven
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Fırat University, Elazig 23119, Turkey.
| | - Ismail Seven
- Department of Plant and Animal Production, Vocation School of Sivrice, Fırat University, Elazig 23119, Turkey
| | - Selcan Karakus
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey
| | - Seda Iflazoglu Mutlu
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Fırat University, Elazig 23119, Turkey
| | - Seyma Ozer Kaya
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazig 23119, Turkey
| | - Gozde Arkali
- Department of Physiology, Faculty of Veterinary Medicine, Fırat University, Elazig 23119, Turkey
| | - Merve Ilgar
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey
| | - Ezgi Tan
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey
| | - Yesim Muge Sahin
- Istanbul Arel University, ArelPOTKAM (Polymer Technologies and Composite Application and Research Center), Istanbul 34537, Turkey; Department of Biomedical Engineering, Faculty of Engineering and Architecture, Istanbul Arel University, Istanbul 34537, Turkey
| | - Deniz Ismik
- Istanbul Arel University, ArelPOTKAM (Polymer Technologies and Composite Application and Research Center), Istanbul 34537, Turkey
| | - Ayben Kilislioglu
- Department of Electrical Electronics Engineering, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul 34083, Turkey
| |
Collapse
|
26
|
Gürgen SG, Sayın O, Çeti̇n F, Sarsmaz HY, Yazıcı GN, Umur N, Yücel AT. The Effect of Monosodium Glutamate on Neuronal Signaling Molecules in the Hippocampus and the Neuroprotective Effects of Omega-3 Fatty Acids. ACS Chem Neurosci 2021; 12:3028-3037. [PMID: 34328736 DOI: 10.1021/acschemneuro.1c00308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Monosodium glutamate (MSG) is a flavoring substance added to many ready-to-eat foods and has known neurotoxic effects. This study was performed in order to examine the potential toxic effect of MSG on neurons in various regions of the hippocampus in prepubertal rats. It also investigated the protective effect of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on brain-derived neurotropic factor (BDNF), n-methyl-d-aspartate receptor (NMDA-R), and neuropeptide-Y (NPY) expression in the brain, using immunohistochemical and biochemical methods. Six female prepubertal Wistar albino rats were used in each group. Group 1, the control group, received 0.9% saline solution subcutaneously (sc) on days 1, 3, 5, 7, and 9. Group 2 received 4 mg/g MSG sc on days 1, 3, 5, 7, and 9. Group 3 received MSG + EPA (4 mg/g sc on days 1, 3, 5, 7, and 9. Oral 300 mg/kg for 9 d), while Group 4 received MSG + DHA (4 mg/g sc on days 1, 3, 5, 7, and 9 and 300 mg/kg orally for 9 d, respectively). At the end of the ninth day the hippocampal regions of the brain were removed and either fixed for immunohistochemical staining or stored at -80 °C for biochemical parameter investigation. BDNF, NMDA-R, and NPY expression results were evaluated using immunohistochemistry and an enzyme-linked immunosorbent assay. According to our findings, neurons in the control group hippocampal CA1 and DG regions exhibited strong BDNF, NPY, and NMDA-R reactions, while an expression in both regions decreased in the MSG group (p < 0.00). However, in the MSG-EPA and MSG-DHA groups, BDNF, NPY, and NMDA-R immunoreactions in neurons in the same region were similar to those of the control group (p = 0.00). No significant difference was observed in terms of expression in hippocampal neurons between the MSG-EPA and MSG-DHA groups (p > 0.00). In conclusion, since MSG caused a decrease in BDNF, NMDA-R, and NPY neural signaling molecules in the CA1 and DG regions of the hippocampus of prepubertal rats compared to the control group, care is required over the consumption of MSG, since it may affect memory-related neurons in these age groups. In addition, we concluded that the use of omega-3 fatty acids such as EPA and DHA in addition to MSG may protect against the neurotoxic effects of MSG.
Collapse
Affiliation(s)
- Seren Gülşen Gürgen
- Department of Histology and Embryology, School of Vocational Health Service, Manisa Celal Bayar University, Manisa 45140, Turkey
| | - Oya Sayın
- Department of Biochemistry, School of Vocational Health Service, Dokuz Eylul University, İzmir 35330, Turkey
| | - Ferihan Çeti̇n
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul 34700, Turkey
| | - Hayrunnisa Yeşil Sarsmaz
- Department of Histology and Embryology, Faculty of Health Science, Manisa Celal Bayar University, Manisa 45140, Turkey
| | - Gülce Naz Yazıcı
- Department of Histology and Embryology, Faculty of Medicine, Erzincan University, Erzincan 24100, Turkey
| | - Nurcan Umur
- Department of Molecular Biology, School of Vocational Health Service, Manisa Celal Bayar University, Manisa 45140, Turkey
| | - Ayşe Tuç Yücel
- Department of Anatomy, School of Vocational Health Service, Manisa Celal Bayar University, Manisa 45140, Turkey
| |
Collapse
|
27
|
Gawel K, Kukula-Koch W, Banono NS, Nieoczym D, Targowska-Duda KM, Czernicka L, Parada-Turska J, Esguerra CV. 6-Gingerol, a Major Constituent of Zingiber officinale Rhizoma, Exerts Anticonvulsant Activity in the Pentylenetetrazole-Induced Seizure Model in Larval Zebrafish. Int J Mol Sci 2021; 22:7745. [PMID: 34299361 PMCID: PMC8305044 DOI: 10.3390/ijms22147745] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/28/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Zingiber officinale is one of the most frequently used medicinal herbs in Asia. Using rodent seizure models, it was previously shown that Zingiber officinale hydroethanolic extract exerts antiseizure activity, but the active constituents responsible for this effect have not been determined. In this paper, we demonstrated that Zingiber officinale methanolic extract exerts anticonvulsant activity in the pentylenetetrazole (PTZ)-induced hyperlocomotion assay in larval zebrafish. Next, we isolated 6-gingerol (6-GIN)-a major constituent of Zingiber officinale rhizoma. We observed that 6-GIN exerted potent dose-dependent anticonvulsant activity in the PTZ-induced hyperlocomotion seizure assay in zebrafish, which was confirmed electroencephalographically. To obtain further insight into the molecular mechanisms of 6-GIN antiseizure activity, we assessed the concentration of two neurotransmitters in zebrafish, i.e., inhibitory γ-aminobutyric acid (GABA) and excitatory glutamic acid (GLU), and their ratio after exposure to acute PTZ dose. Here, 6-GIN decreased GLU level and reduced the GLU/GABA ratio in PTZ-treated fish compared with only PTZ-bathed fish. This activity was associated with the decrease in grin2b, but not gabra1a, grin1a, gria1a, gria2a, and gria3b expression in PTZ-treated fish. Molecular docking to the human NR2B-containing N-methyl-D-aspartate (NMDA) receptor suggests that 6-GIN might act as an inhibitor and interact with the amino terminal domain, the glutamate-binding site, as well as within the ion channel of the NR2B-containing NMDA receptor. In summary, our study reveals, for the first time, the anticonvulsant activity of 6-GIN. We suggest that this effect might at least be partially mediated by restoring the balance between GABA and GLU in the epileptic brain; however, more studies are needed to prove our hypothesis.
Collapse
Affiliation(s)
- Kinga Gawel
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway; (N.S.B.); (C.V.E.)
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego Str. 8b, 20-090 Lublin, Poland
| | - Wirginia Kukula-Koch
- Chair and Department of Pharmacognosy, Medical University of Lublin, Chodzki Str. 1, 20-093 Lublin, Poland;
| | - Nancy Saana Banono
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway; (N.S.B.); (C.V.E.)
| | - Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Marie Curie-Skłodowska University, Akademicka Str. 19, 20-033 Lublin, Poland;
| | | | - Lidia Czernicka
- Chair and Department of Food and Nutrition, Medical University of Lublin, Chodzki Str. 4a, 20-093 Lublin, Poland;
| | - Jolanta Parada-Turska
- Department of Rheumatology and Connective Tissue Diseases, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Camila V. Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway; (N.S.B.); (C.V.E.)
| |
Collapse
|
28
|
Farhat F, Nofal S, Raafat EM, Eissa Ahmed AA. Akt / GSK3β / Nrf2 / HO-1 pathway activation by flurbiprofen protects the hippocampal neurons in a rat model of glutamate excitotoxicity. Neuropharmacology 2021; 196:108654. [PMID: 34119518 DOI: 10.1016/j.neuropharm.2021.108654] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 01/04/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates redox homeostasis of the cell through regulation of the antioxidant response element genes transcription. Nrf2 also regulates the antiapoptotic Bcl-2 gene. Nrf2 degradation and nuclear translocation is regulated by upstream kinases Akt and GSK3β. Glutamate excitotoxicity is a process of neuronal cells death due to excessive activation of glutamate receptors. Glutamate excitotoxicity participates in the pathophysiology of several acute and chronic neurological conditions. In addition, glutamate excitotoxicity interrupts the PI3K/Akt prosurvival pathway so GSK3β remains active. Active GSK3β increases Nrf2 degradation, decreases Nrf2 nuclear translocation and increases Nrf2 nuclear export which decreases the ARE genes transcription such as, SOD, GSH synthesis enzyme and HO-1. Also, Bcl-2 transcription decreases. Flurbiprofen is a COX inhibitor. Previous studies showed that it has a neuroprotective effect in neurodegeneration and in focal cerebral ischemia/reperfusion model. In our research we aimed to test the hypothesis that flurbiprofen may have a neuroprotective effect in a rat model of glutamate-induced excitotoxicity and this neuroprotection may occur through modulation of (Akt/GSK3β/Nrf2/HO-1) pathway. Rats were divided into 4 groups; control, MSG (2.5 g/Kg, i.p), low dose FB (5 mg/kg, i.p) and high dose FB (10 mg/kg, i.p). We found that low and high doses FB decreased COX-2, PGE2, NO and MDA and increased SOD and GSH in brain compared to MSG group. High dose was more effective than low dose. Western blotting analysis in hippocampus tissue showed that high dose FB increased p-Akt, p-GSK3β, nuclear Nrf2 and HO-1 and decreased cytosolic Nrf2 level in comparison with MSG group. Immunohistochemical analysis in hippocampus and cerebral cortex showed that high dose FB increased Bcl-2 and decreased Bax compared to MSG group. In addition, FB increased the number of intact neurons in hippocampus areas and cerebral cortex neurons and showed an anxiolytic-like action in OF and EPM tests. These findings suggest that FB has a neuroprotective effect in glutamate-induced excitotoxicity model through reduction of the glutamate excitotoxicity damage and activation of the survival pathway. These may occur due to modulation the survival pathway (Akt/GSK3β/Nrf2/HO-1) and inhibition of COX-2.
Collapse
Affiliation(s)
- Fatma Farhat
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, 11795, Egypt.
| | - Shahira Nofal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, 11795, Egypt.
| | - Eman M Raafat
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, 11795, Egypt.
| | - Amany Ali Eissa Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, 11795, Egypt.
| |
Collapse
|
29
|
Li N, Chen K, Bai J, Geng Z, Tang Y, Hou Y, Fan F, Ai X, Hu Y, Meng X, Wang X, Zhang Y. Tibetan medicine Duoxuekang ameliorates hypobaric hypoxia-induced brain injury in mice by restoration of cerebrovascular function. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113629. [PMID: 33246120 DOI: 10.1016/j.jep.2020.113629] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/01/2020] [Accepted: 11/23/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Duoxuekang (DXK, ཁྲག་འཕེལ་བདེ་བྱེད།) is a clinical experience prescription of CuoRu-Cailang, a famous Tibetan medicine master, which has effective advantages in the treatment of hypobaric hypoxia (HH)-induced brain injury. However, its underlying mechanisms remain unclear. AIM OF THE STUDY The present study was designed to investigate the effects of DXK on cerebrovascular function of HH-induced brain injury in mice. MATERIALS AND METHODS DSC-MR imaging was used to evaluate the effect of DXK on the brain blood perfusion of patients with hypoxic brain injury. HPLC analysis was used to detect the content of salidroside, gallic acid, tyrosol, corilagin, ellagic acid, isorhamnetin, quercetin and gingerol in DXK. The model of HH-induced brain injury in mice was established by an animal hypobaric and hypoxic chamber. The BABL/c mice were randomly divided into six groups: control group, model group, Hongjingtian oral liquid group (HOL, 3.3 ml/kg) and DXK groups (0.9, 1.8 and 3.6 g/kg). All mice (except the control group) were intragastrically administrated for a continuous 7 days and put into the animal hypobaric and hypoxic chamber after the last intragastric administration. Hematoxylin-eosin staining was employed to evaluate the pathological changes of brain tissue. Masson and Weigert stainings were used to detect the content of collagen fibers and elastic fibers of brain, respectively. Routine blood test and biochemical kits were used to analyze hematological parameters and oxidative stress indices. Immunofluorescence staining was applied to detect the protein levels of VEGF, CD31/vWF and α-SMA. RESULTS The results of DSC-MR imaging confirmed that DXK can increased CBV in the left temporal lobe while decreased MTT in the right frontal lobe, right temporal lobe and right occipital lobe of the brain. DXK contains salidroside, gallic acid, tyrosol, corilagin, ellagic acid, isorhamnetin, quercetin and gingerol. Compared with the model group, DXK can ameliorate the atrophy and deformation, and increase the number of pyramidal neurons in hippocampal CA3 area and cortical neurocytes. Masson and Weigert stainings results revealed that DXK can significantly increase the content of collagen fibers and elastic fibers in brain. Routine blood test results demonstrated that DXK can dramatically decrease the levels of WBC, MCH and MCHC, while increase RBC, HGB, HCT, MCV and PLT in the blood samples. Biochemical results revealed that DXK can markedly increase SOD, CAT and GSH activities, while decrease MDA activity. Immunofluorescence revealed that DXK can notably increase the protein levels of VEGF, CD31/vWF and α-SMA. CONCLUSIONS In conclusion, this study proved that DXK can ameliorate HH-induced brain injury by improving brain blood perfusion, increasing the number of collagen and elastic fibers and inhibiting oxidative stress injury. The underlying mechanisms may be involved in maintaining the integrity of cerebrovascular endothelial cells and vascular function. However, further in vivo and in vitro investigations are still needed to elucidate the mechanisms of DXK on regulating cerebral blood vessels.
Collapse
Affiliation(s)
- Ning Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ke Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jinrong Bai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zangjia Geng
- School of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Yan Tang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ya Hou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fangfang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaopeng Ai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yao Hu
- Interdisciplinary Laboratory of Exercise and Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Xianli Meng
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiaobo Wang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
30
|
Ramli N, Ali N, Hamzah S, Yatim N. Physicochemical characteristics of liposome encapsulation of stingless bees' propolis. Heliyon 2021; 7:e06649. [PMID: 33898810 PMCID: PMC8060604 DOI: 10.1016/j.heliyon.2021.e06649] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/02/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Nutraceuticals from natural sources have shown potential new leads in functional food products. Despite a broad range of health-promoting effects, these compounds are easily oxidized and unstable, making their utilization as nutraceutical ingredients limited. In this study, the encapsulated stingless bees' propolis in liposome was prepared using soy phosphatidylcholine and cholesterol by thin-film hydration technique. Three different formulations of phosphatidylcholine composition and cholesterol prepared by weight ratio was conducted to extract high propolis encapsulation. Physicochemical changes in the result of the encapsulation process are briefly discussed using scanning electron microscopy and Fourier Transform Infrared Spectroscopy. A dynamic light-scattering instrument was used to measure the hydrodynamic diameter, polydispersity index, and zeta potential. The increment of the liposomal size was observed when the concentration of extract loaded increased. In comparing three formulations, F2 (8:1 w/w) presented the best formulation as it yielded small nanoparticles of 275.9 nm with high encapsulation efficiency (66.9%). F1 (6:1 w/w) formed large particles of liposomes with 422.8 nm, while F3 (10:1 w/w) showed low encapsulation efficiency with (by) 38.7%. The liposome encapsulation will provide an effective nanocarrier system to protect and deliver the flavonoids extracted from stingless bees' propolis.
Collapse
Affiliation(s)
- N.A. Ramli
- Faculty of Chemical & Process Engineering Technology, Universiti Malaysia Pahang, 26300, Kuantan, Pahang, Malaysia
| | - N. Ali
- Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - S. Hamzah
- Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - N.I. Yatim
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
31
|
Köktürk M, Altindağ F, Ozhan G, Çalimli MH, Nas MS. Textile dyes Maxilon blue 5G and Reactive blue 203 induce acute toxicity and DNA damage during embryonic development of Danio rerio. Comp Biochem Physiol C Toxicol Pharmacol 2021; 242:108947. [PMID: 33285322 DOI: 10.1016/j.cbpc.2020.108947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022]
Abstract
Common textile dyes used in various industrial sectors are organic compounds and considered for the aquatic environment as pollutants. The textile dye industry is one of the main sectors that have serious impacts on the environment due to a large amount of wastewater released into the ecosystem. Maxilon blue 5G (MB-5G) and Reactive Blue 203 (RB-203) are widely used textile dyes. However, their potential toxicity on living organisms remains to be elucidated. Here, we investigate the acute toxicity and genotoxicity of MB-5G and RB-203 dyes using the zebrafish embryos/larvae. Embryos treated with each dye for 96 h revealed LC50 values of acute toxicity as 166.04 mg L-1 and 278.32 mg L-1 for MB-5G and RB 203, respectively. When exposed to MB-5G and RB-203 at different concentrations (1, 10, and 100 mg L-1) for 96 h, the expression of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a marker of oxidative DNA damage, significantly increased in brain tissues as compared to control. MB-5G and RB-203 resulted in common developmental abnormalities including tail malformation, microphthalmia, pericardial edema, curved body axis, and yolk sac/pericardial edemas. Moreover, at its highest dose (100 mg L-1), RB-203 caused premature hatching after 48 h, while MG-5G did not. Our results collectively reveal that the textile dyes MB-5G and RB-203 cause genotoxicity and teratogenicity during embryonic and larval development of zebrafish. Thus, it is necessary to eliminate these compounds from wastewater or reduce their concentrations to safe levels before discharging the textile industry wastewater into the environment.
Collapse
Affiliation(s)
- Mine Köktürk
- Department of Organic Farming, College of Applied Sciences, Igdir University, Igdir, Turkey
| | - Fikret Altindağ
- Department of Histology and Embryology, Medical School, Van Yüzüncü Yıl University, Van, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Mehmet Harbi Çalimli
- Department of Medical Services and Techniques, Tuzluca Vocational School, Igdır University, Igdir, Turkey.
| | - Mehmet Salih Nas
- Department of Environmental Engineering, Faculty of Engineering, Igdır University, Igdir, Turkey
| |
Collapse
|
32
|
Yousof SM, Awad YM, Mostafa EMA, Hosny MM, Anwar MM, Eldesouki RE, Badawy AE. The potential neuroprotective role of Amphora coffeaeformis algae against monosodium glutamate-induced neurotoxicity in adult albino rats. Food Funct 2021; 12:706-716. [PMID: 33337454 DOI: 10.1039/d0fo01957g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monosodium glutamate (MSG) is a neurotoxin found in most processed and infant formulas. Amphora coffeaeformis (AC) has neuroprotective properties. We investigated, for the first time, the potential neuroprotective role of AC on MSG-induced neurotoxicity in brain using a unique procedural approach. The AC extract was characterized via high performance liquid chromatography (HPLC). Animals were assigned into six groups; a control group, low dose MSG (LD-MSG), high dose MSG (HD-MSG), combined groups (LD-MSG + AC) (HD-MSG + AC) and AC only group for eight weeks. Assessment of the cognitive and mood domains was done via Barnes maze and an open field. Gene expression of Bdnf, TrkB, NMDA-B2 and mGlur5 in the hippocampus was obtained via real-time PCR. The hippocampi of the animals were assessed for structural changes. Oxidative stress was assessed in the cerebrum. The results revealed that omega-6 and β-coumaric acid represented the highest percentage among the constituents in the AC extract. The NO level was decreased in the LD-MSG + AC compared to LD-MSG. SOD was diminished in both treated groups compared to the untreated group. HD-MSG + AC exhibited an increase in the number of wrongly visited quadrants compared to the HD-MSG group. HD-MSG + AC showed decreased anxiety-like behavior compared to HD-MSG. LD-MSG + AC and AC groups revealed enhanced anxiety-like behavior. HD-MSG + AC showed under expressed NMDA-B2 and over expressed Bdnf and TrkB genes, compared to HD-MSG. LD-MSG + AC revealed under expression of Bdnf gene compared to LD-MSG. The AC group revealed under expressed TrkB gene compared to the control group. Overall, the results refer to the potential neuroprotective properties of AC alga against MSG neurotoxicity.
Collapse
Affiliation(s)
- Shimaa Mohammad Yousof
- Department of Medical Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | | | | | | | | | | | | |
Collapse
|
33
|
Talebi M, İlgün S, Ebrahimi V, Talebi M, Farkhondeh T, Ebrahimi H, Samarghandian S. Zingiber officinale ameliorates Alzheimer's disease and Cognitive Impairments: Lessons from preclinical studies. Biomed Pharmacother 2021; 133:111088. [PMID: 33378982 DOI: 10.1016/j.biopha.2020.111088] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/20/2020] [Accepted: 11/28/2020] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition mostly communal in people of advanced years accompanying various dysfunctionalities especially cognitive impairments. A number of cellular damages, such as amyloid-beta aggregation, tau protein hyperphosphorylation, some neurotransmitter imbalances, apoptosis, oxidative stress, and inflammatory responses are responsible for AD incidence. As a reason for inadequate efficacy, side effects, and pharmacokinetic problems of conventional drugs used for AD, the discovery of novel therapeutic agents with multi-targeted potential is desirable. Protective properties of phytochemicals combat numerous diseases and their vast acceptance and demand in human beings encouraged scientists to assess their effective activities. Zingiber officinale, gingerol, shogaol, and borneol were evaluated against memory impairments. Online databases including; Web of Science, Scopus, Embase, Pubmed, ProQuest, ScienceDirect, and Cochrane Library were searched until 3th February 2020. In vitro, in vivo, and clinical studies are included after screening their eligibility. Mostly interventive mechanisms such as; oxidative stress, neuroinflammation, and apoptosis are described. Correlation between the pathogenesis of AD and signaling pathways is explicated. Results and scores of cognition measurements are clarified due to in vivo studies and clinical trials. Some traditional aspects of consuming ginger in AD are also mentioned in the present review. In accumulation ginger and its components possess great potency for improving and abrogating memory dysfunctions but conducting further studies to evaluate their pharmacological and pharmaceutical aspects is required.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Selen İlgün
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey
| | - Vida Ebrahimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Talebi
- Viatris Pharmaceuticals Inc., 3300 Research Plaza, San Antonio, TX, 78235, United States; Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, United States
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran; Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Hadi Ebrahimi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
34
|
Omogbiya AI, Ben-Azu B, Eduviere AT, Eneni AEO, Nwokoye PO, Ajayi AM, Umukoro S. Monosodium glutamate induces memory and hepatic dysfunctions in mice: ameliorative role of Jobelyn ® through the augmentation of cellular antioxidant defense machineries. Toxicol Res 2020; 37:323-335. [PMID: 34295796 DOI: 10.1007/s43188-020-00068-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/21/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
This study investigated the effect of high doses of monosodium glutamate (MSG), a known food additive on hepatic, memory and locomotor functions in mice, and the ameliorative potentials of Jobelyn® (JB), a unique dietary supplement. Twenty four male Swiss mice divided into 4 groups (n = 6) were given MSG (2, 4 and 8 g/kg) or normal saline (10 mL/kg) orally for 14 days. In the intervention study, another set of 30 male Swiss mice distributed into 5 groups (n = 6) received normal saline, MSG (8 g/kg) alone or in combination with JB (5, 10 and 20 mg/kg) orally, for 14 days. Memory and locomotor functions as well as brain oxido-nitrergic stress biomarkers were then assessed in both studies. The hepatic oxido-nitrergic stress biomarkers, liver enzymes functions and histomorphology of the liver were also assessed. MSG (2, 4 and 8 g/kg) produced memory dysfunction, hyperlocomotion, increased malondialdehyde and nitrite levels accompanied by decreased antioxidant status in the brain and hepatic tissues. MSG-treated mice had increased hepatic enzyme activities (alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase) and distorted cyto-architectural integrity of the liver. These findings further suggest that MSG compromised hepatic functioning, which might also contribute to its neurotoxicity. However, JB (5, 10 and 20 mg/kg, p.o) attenuated the memory deficit, hyperlocomotion, increased oxido-nitrergic stress responses in the brain and hepatic tissues induced by MSG (8 g/kg, p.o). JB also normalized hepatic enzymes activities and histomorphological changes in MSG-treated mice. Taken together, JB mitigated MSG-induced toxicity through mechanisms relating to enhancement of cellular antioxidant-machineries and normalization of hepatic enzymatic functions.
Collapse
Affiliation(s)
- Adrian Itivere Omogbiya
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Delta State University, Abraka, Delta State Nigeria
| | - Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
- Department of Pharmacology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Rivers State Nigeria
| | - Anthony Taghogho Eduviere
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Delta State University, Abraka, Delta State Nigeria
| | - Aya-Ebi Okubo Eneni
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
| | - Prisilla O Nwokoye
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Delta State University, Abraka, Delta State Nigeria
| | - Abayomi Mayowa Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
| | - Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
| |
Collapse
|
35
|
Synthesis and Appraisal of Natural Drug-Polymer-Based Matrices Relevant to the Application of Drug-Eluting Coronary Stent Coatings. Cardiol Res Pract 2020; 2020:4073091. [PMID: 33282417 PMCID: PMC7685865 DOI: 10.1155/2020/4073091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular diseases are becoming a leading cause of death in the world, and attention is being paid to develop natural drug-based treatment to cure heart diseases. Curcumin, ginger, and magnolol are pharmaceutically active in many ways, having properties including anticoagulation, antiproliferation, anti-inflammatory, and antioxidant, and may be used to synthesis coatings for drug-eluting stents to treat cardiovascular diseases. In the present investigation, a degradable polymer with varying molecular weights was used as a drug carrier to control the degradation of polymer; three different natural drugs such as curcumin, magnolol, and ginger were used owing to their reported pharmacological properties. The results of in vitro measurements of all three natural drugs released from drug-loaded polymeric films showed an initial burst release followed by a sustained release for up to 38 days of measurement. On the other hand, different levels of hemocompatibility were observed by varying concentrations of natural drugs in human erythrocytes. As per the ASTM F756 standard, ginger having low concentration showed optimum hemocompatibility with regard to the drug-eluting stent application as compared with magnolol and curcumin concentrations, which showed suboptimal hemocompatibility and fall in the range of mild-to-severe blood toxicity category. The structure of the coating films was characterized by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) with results suggesting that there was no chemical bonding between the polymer and drug. Thus, according to this study, it can be concluded that after more detailed in vitro testing such as hemocompatibility tests and platelet adhesion testing, ginger can be a better candidate as a drug-coating material for drug-eluting stent applications.
Collapse
|
36
|
3D Propolis-Sodium Alginate Scaffolds: Influence on Structural Parameters, Release Mechanisms, Cell Cytotoxicity and Antibacterial Activity. Molecules 2020; 25:molecules25215082. [PMID: 33147742 PMCID: PMC7662765 DOI: 10.3390/molecules25215082] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
In this study, the main aim was to fabricate propolis (Ps)-containing wound dressing patches using 3D printing technology. Different combinations and structures of propolis (Ps)-incorporated sodium alginate (SA) scaffolds were developed. The morphological studies showed that the porosity of developed scaffolds was optimized when 20% (v/v) of Ps was added to the solution. The pore sizes decreased by increasing Ps concentration up to a certain level due to its adhesive properties. The mechanical, swelling-degradation (weight loss) behaviors, and Ps release kinetics were highlighted for the scaffold stability. An antimicrobial assay was employed to test and screen antimicrobial behavior of Ps against Escherichia coli and Staphylococcus aureus strains. The results show that the Ps-added scaffolds have an excellent antibacterial activity because of Ps compounds. An in vitro cytotoxicity test was also applied on the scaffold by using the extract method on the human dermal fibroblasts (HFFF2) cell line. The 3D-printed SA–Ps scaffolds are very useful structures for wound dressing applications.
Collapse
|
37
|
Abo Mansour HE, El-Batsh MM, Badawy NS, Mehanna ET, Mesbah NM, Abo-Elmatty DM. Ginger Extract Loaded into Chitosan Nanoparticles Enhances Cytotoxicity and Reduces Cardiotoxicity of Doxorubicin in Hepatocellular Carcinoma in Mice. Nutr Cancer 2020; 73:2347-2362. [PMID: 32972241 DOI: 10.1080/01635581.2020.1823436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/27/2020] [Accepted: 09/05/2020] [Indexed: 02/08/2023]
Abstract
This study aimed to investigate the impact of ginger extract (GE) loaded into chitosan nanoparticles (CNPs) in enhancing cytotoxicity and reducing cardiotoxicity of doxorubicin (DXN) in hepatocellular carcinoma (HCC) induced mice. DXN and GE were loaded into CNPs and cytotoxicity of loaded and unloaded drugs against HepG2 cells was evaluated. HCC was induced in male albino mice by injection of diethylnitrosamine (DINA). Mice were divided into eight groups (n = 15): (1) normal control, (2) DINA, (3) CNPs, (4) free DXN, (5) CNPs DXN, (6) free GE, (7) CNPs GE, and (8) CNPs DXN + CNPs GE. Both GE and DXN loaded into CNPs showed a greater decline in cell viability of HepG2 cells than the unloaded forms. GE CNPs displayed pronounced anticancer activity In Vivo through apoptosis, greater down-regulation of multidrug resistance 1, enhancement of anti-oxidant activity and depletion of vascular endothelial growth factor content in liver tissues. GE CNPs in combination with DXN CNPs showed nearly normal hepatic lobule architecture and the greatest increase in apoptotic cell count. Co-treatment group had decreased cardiac malondialdehyde, tumor necrosis factor-α and serum activity of creatine kinase and lactate dehydrogenase. Combination of GE CNPs and DXN CNPs might be a potentially effective therapeutic approach for HCC.
Collapse
Affiliation(s)
- Hend E Abo Mansour
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Shebeen El-Kom, Egypt
| | - Maha M El-Batsh
- Department of Clinical Pharmacology, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Nadia S Badawy
- Department of Histology and Cell Biology, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Eman T Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Noha M Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Dina M Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
38
|
Tatli Seven P, Seven I, Karakus S, Iflazoglu Mutlu S, Arkali G, Muge Sahin Y, Kilislioglu A. Turkish Propolis and Its Nano Form Can Ameliorate the Side Effects of Cisplatin, Which Is a Widely Used Drug in the Treatment of Cancer. PLANTS 2020; 9:plants9091075. [PMID: 32825574 PMCID: PMC7570054 DOI: 10.3390/plants9091075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023]
Abstract
This study was performed to determine the effects of chitosan-coated nano-propolis (NP), which is synthesized via a green sonochemical method, and propolis on the side effects of cisplatin (CP), which is a widely used drug in the treatment of cancer. For this aim, 56 rats were divided into seven groups, balancing their body weights (BW). The study was designed as Control, CP (3 mg/kg BW at single dose of CP as intraperitoneal, ip), Propolis (100 mg/kg BW per day of propolis by gavage), NP-10 (10 mg/kg BW of NP per day by gavage), CP + Propolis (3 mg/kg BW of CP and 100 mg/kg BW of propolis), CP + NP-10 (3 mg/kg CP and 10 mg/kg BW of NP), and CP + NP-30 (3 mg/kg BW of CP and 30 mg/kg BW of NP). Propolis and NP (especially NP-30) were preserved via biochemical parameters, oxidative stress, and activation of apoptotic pathways (anti-apoptotic protein: Bcl-2 and pro-apoptotic protein: Bax) in liver and kidney tissues in the toxicity induced by CP. The NP were more effective than propolis at a dose of 30 mg/kg BW and had the potential to ameliorate CP's negative effects while overcoming serious side effects such as liver and kidney damage.
Collapse
Affiliation(s)
- Pinar Tatli Seven
- Department of Animal Nutrition and Nutritional Diseases, Firat State University, 23119 Elazig, Turkey; (P.T.S.); (S.I.M.)
| | - Ismail Seven
- Department of Plant and Animal Production, Firat State University, 23119 Elazig, Turkey
- Correspondence: ; Tel.: +90-424-2370000
| | - Selcan Karakus
- Department of ChemistryIstanbul University-Cerrahpasa, 34320 Istanbul, Turkey; (S.K.); (A.K.)
| | - Seda Iflazoglu Mutlu
- Department of Animal Nutrition and Nutritional Diseases, Firat State University, 23119 Elazig, Turkey; (P.T.S.); (S.I.M.)
| | - Gozde Arkali
- Department of Physiology, Firat State University, 23119 Elazig, Turkey;
| | - Yesim Muge Sahin
- Department of Biomedical Engineering, Istanbul Arel University, 34320 Istanbul, Turkey;
| | - Ayben Kilislioglu
- Department of ChemistryIstanbul University-Cerrahpasa, 34320 Istanbul, Turkey; (S.K.); (A.K.)
| |
Collapse
|
39
|
Abo Mansour HE, El-Batsh MM, Badawy NS, Mehanna ET, Mesbah NM, Abo-Elmatty DM. Effect of co-treatment with doxorubicin and verapamil loaded into chitosan nanoparticles on diethylnitrosamine-induced hepatocellular carcinoma in mice. Hum Exp Toxicol 2020; 39:1528-1544. [PMID: 32519553 DOI: 10.1177/0960327120930266] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study aimed to investigate the potential role of co-treatment with doxorubicin (DOX) and verapamil (VRP) nanoparticles in experimentally induced hepatocellular carcinoma in mice and to investigate the possible mechanisms behind the potential favorable effect of the co-treatment. DOX and VRP were loaded into chitosan nanoparticles (CHNPs), and cytotoxicity of loaded and unloaded drugs against HepG2 cells was evaluated. Male albino mice were divided into eight groups (n = 15): (1) normal control, (2) diethylnitrosamine, (3) CHNPs, (4) free DOX, (5) CHNPs DOX, (6) free VRP, (7) CHNPs VRP, and (8) CHNPs DOX + CHNPs VRP. Either VRP or DOX loaded into CHNPs showed stronger growth inhibition of HepG2 cells than their free forms. DOX or VRP nanoparticles displayed pronounced anticancer activity in vivo through the decline of vascular endothelial growth factor and B cell lymphoma-2 contents in liver tissues, upregulation of antioxidant enzymes, and downregulation of multidrug resistance 1. Moreover, reduced cardiotoxicity was evident from decreased level of tumor necrosis factor-α and malondialdehyde in heart tissues coupled with decreased serum activity of creatine kinase-myocardial band and lactate dehydrogenase. Co-treatment with CHNPs DOX and CHNPs VRP showed superior results versus other treatments. Liver sections from the co-treatment group revealed the absence of necrosis, enhanced apoptosis, and nearly normal hepatic lobule architecture. Co-treatment with CHNPs DOX and CHNPs VRP revealed enhanced anticancer activity and decreased cardiotoxicity versus the corresponding free forms.
Collapse
Affiliation(s)
- H E Abo Mansour
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Shibin el Kom, Egypt
| | - M M El-Batsh
- Department of Clinical Pharmacology, Faculty of Medicine, Menoufia University, Shibin el Kom, Egypt
| | - N S Badawy
- Department of Histology and Cell Biology, Faculty of Medicine, Menoufia University, Shibin el Kom, Egypt
| | - E T Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - N M Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - D M Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
40
|
Hassan HA, El-Kholy WM, El-Sawi MRF, Galal NA, Ramadan MF. Myrtle (Myrtus communis) leaf extract suppresses hepatotoxicity induced by monosodium glutamate and acrylamide through obstructing apoptosis, DNA fragmentation, and cell cycle arrest. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23188-23198. [PMID: 32333355 DOI: 10.1007/s11356-020-08780-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
A large number of plant extracts have demonstrated to provide health benefits and mitigate several disease conditions. However, at the molecular and cellular levels, few studies have been conducted. The present work was designed to study the effect of Myrtus communis leaf extract (ME) (300 mg/kg bw) against hepatotoxicity induced by monosodium glutamate (MSG) (100 mg/kg bw), and acrylamide (ACR) (20 mg/kg bw) in male rats and determining its molecular and cellular mechanisms. The data showed that the treatment with MSG and/or ACR induced significant changes in numerous biomarkers (Bcl-2 and the programmed cell death protein-1) related to liver damage, as recorded by genotoxicity, apoptosis, and histopathological changes. On the other side, the oral administration of ME (300 mg/kg bw) improved the hepatic conditions as confirmed by the improvement in cell viability, programmed cell death, and histopathological alterations. It can be concluded that the consumption of ME might be useful for minimizing the occurred hepatotoxicity through up-regulation of the key apoptotic regulators as well as the improvement of DNA content and cell cycle restoration. Graphical abstract.
Collapse
Affiliation(s)
- Hanaa A Hassan
- Department of Biology, Faculty of Science and Art, Taibah University, Al-Ula, Saudi Arabia.
- Physiology Division, Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | - Wafaa M El-Kholy
- Physiology Division, Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mamdouh R F El-Sawi
- Physiology Division, Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Nadine A Galal
- Physiology Division, Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mohamed Fawzy Ramadan
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt.
- Deanship of Scientific Research, Umm Al-Qura University, P.O. Box 715, Makkah, Saudi Arabia.
| |
Collapse
|
41
|
Does Modification of Amalgomer with Propolis Alter Its Physicomechanical Properties? An In Vitro Study. Int J Biomater 2020; 2020:3180879. [PMID: 32454828 PMCID: PMC7238360 DOI: 10.1155/2020/3180879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/27/2020] [Accepted: 04/15/2020] [Indexed: 12/25/2022] Open
Abstract
Objective To assess if incorporating ethanolic extract of propolis into ceramic-reinforced glass ionomer (Amalgomer CR) might have an influence on its physicomechanical properties. Materials and Methods Three groups were assessed; group I: Amalgomer CR (control) and two experimental groups (II and III) of propolis added to the liquid of Amalgomer CR with 25 and 50 v/v %, respectively. Evaluation parameters were color stability, compressive strength, microhardness, and surface roughness. Representative specimens of each group were analyzed by Fourier-transform infrared spectroscopy, energy-dispersive X-ray, X-ray diffraction, and scanning electron microscopy. Analysis of variance (ANOVA) was used to compare the results, followed by a Tukey post hoc test (p < 0.05). Results Nonsignificant color change for both groups of modified Amalgomer CR. Meanwhile, the two experimental groups exhibited a significant increase in both compressive strength and microhardness. Simultaneously, there was a significant difference in roughness values among groups with the lowest roughness values exhibited by the 50 v/v % propolis concentration. Conclusions Modification of Amalgomer CR with 50 v/v % propolis may increase its mechanical properties without compromising its esthetic. Clinical Significance. Modification of Amalgomer CR by 50 v/v % propolis is supposed to be a hopeful restorative material with favorable characteristics.
Collapse
|
42
|
Hajihasani MM, Soheili V, Zirak MR, Sahebkar A, Shakeri A. Natural products as safeguards against monosodium glutamate-induced toxicity. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:416-430. [PMID: 32489556 PMCID: PMC7239414 DOI: 10.22038/ijbms.2020.43060.10123] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/04/2020] [Indexed: 12/17/2022]
Abstract
Monosodium glutamate is a sodium salt of a nonessential amino acid, L-glutamic acid, which is widely used in food industry. Glutamate plays an important role in principal brain functions including formation and stabilization of synapses, memory, cognition, learning, as well as cellular metabolism. However, ingestion of foodstuffs rich in monosodium glutamate can result in the outbreak of several health disorders such as neurotoxicity, hepatotoxicity, obesity and diabetes. The usage of medicinal plants and their natural products as a therapy against MSG used in food industry has been suggested to be protective. Calendula officinalis, Curcuma longa, Green Tea, Ginkgo biloba and vitamins are some of the main natural products with protective effect against mentioned monosodium glutamate toxicity through different mechanisms. This review provides a summary on the toxicity of monosodium glutamate and the protective effects of natural products against monosodium glutamate -induced toxicity.
Collapse
Affiliation(s)
- Mohammad Mahdi Hajihasani
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Zirak
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
43
|
Effect of gabapentin on fetal rat brain and its amelioration by ginger. Heliyon 2019; 5:e02387. [PMID: 31517117 PMCID: PMC6732712 DOI: 10.1016/j.heliyon.2019.e02387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/21/2019] [Accepted: 08/23/2019] [Indexed: 01/17/2023] Open
Abstract
Intrauterine exposure to antiepileptic drugs (AEDs) is associated with neurodevelopmental alterations causing postnatal behavioral and cognitive alterations. These disorders are associated with the interference of these AEDs with the developing cerebral cortex and hippocampal neurons. Therefore, it is crucial to identify the drugs that should be avoided during pregnancy in order to prevent AED mediated developmental alterations. The present study was conducted to investigate the effects of prenatal exposure to the antiepileptic drug gabapentin (GBP) on the rat fetal brain during the organogenesis phase and to examine the potential ameliorative effect of ginger (Zingiber officinale). Consequently, the current study addressed the developmental neural changes on the histological, immuno-histochemical and ultrastructural levels. The brain of fetuses from the GBP group showed a highly significant decrease in their weight. Histologically, the cerebral cortex and hippocampus regions of fetuses maternally injected with GBP showed layer disorganization, vacuolated neuropil and massive cell degeneration. The expression of Caspase 3 was significantly increased in the brain of GBP fetuses, unlike the expression of Bcl-2 which was significantly decreased. On the ultrastructure level, the neurons showed pyknotic and chromatolytic nuclei. The cytoplasm was rarefied with swollen organelles. Co-administration of ginger evidently ameliorated most of these effects. In conclusion, GBP administration during pregnancy could possibly affect the developing fetal brain and ginger may have ameliorating effect against the induced GBP neurotoxicity and should be taken in parallel.
Collapse
|
44
|
Khoshnevisan K, Maleki H, Samadian H, Doostan M, Khorramizadeh MR. Antibacterial and antioxidant assessment of cellulose acetate/polycaprolactone nanofibrous mats impregnated with propolis. Int J Biol Macromol 2019; 140:1260-1268. [PMID: 31472212 DOI: 10.1016/j.ijbiomac.2019.08.207] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/29/2022]
Abstract
Cellulose acetate (CA) electrospun nanofibers are one of the most practical cellulosic material which normally applied as carriers for drug delivery and wound healing systems. In this study, CA and polycaprolactone (PCL) was applied to fabricate the electrospun nanofibrous for wound dressing application. Propolis is a resin-like macromolecule produced by honeybees from the buds and diverse plants. Among many applications of this macromolecule, it has been occasionally employed directly to the skin for wound healing applications. Herein, owing to the significance of propolis, CA/PCL nanofibers were impregnated with a propolis-extracted solution to reach antibacterial and antioxidant mat. The scanning electron microscopy (SEM) images revealed that electrospinning of 10% (w/w) CA along with 14% (w/w) PCL produced excellent nanofibers compared to the resultant nanofibers. Hydrophobicity/hydrophilicity nature of CA/PCL mats was measured using water contact-angle method before and after treatment with NaOH. The nanofibrous mats exhibited a high water absorption capacity of about 400%. Antioxidant effect was measured by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay and propolis-CA/PCL presented a high antioxidant activity. Additionally, propolis-CA/PCL mats showed antibacterial activity against both the Gram-positive and Gram-negative bacteria. In conclusion, our results have confirmed that the propolis-impregnated CA/PCL mats have provided an appropriate surface for wound healing system.
Collapse
Affiliation(s)
- Kamyar Khoshnevisan
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hassan Maleki
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Samadian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Doostan
- Department of Medical Nanotechnology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Ginger ( Zingiber officinale Roscoe) in the Prevention of Ageing and Degenerative Diseases: Review of Current Evidence. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5054395. [PMID: 31531114 PMCID: PMC6721508 DOI: 10.1155/2019/5054395] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/10/2019] [Accepted: 07/24/2019] [Indexed: 12/25/2022]
Abstract
Currently, the age of the population is increasing as a result of increased life expectancy. Ageing is defined as the progressive loss of physiological integrity, which can be characterized by functional impairment and high vulnerability to various types of diseases, such as diabetes, hypertension, Alzheimer's disease (AD), Parkinson's disease (PD), and atherosclerosis. Numerous studies have reported that the presence of oxidative stress and inflammation contributes to the development of these diseases. In general, oxidative stress could induce proinflammatory cytokines and reduce cellular antioxidant capacity. Increased oxidative stress levels beyond the production of antioxidant agents cause oxidative damage to biological molecules, including DNA, protein, and carbohydrates, which affects normal cell signalling, cell growth, differentiation, and apoptosis and leads to disease pathogenesis. Since oxidative stress and inflammation contribute to these diseases, ginger (Zingiber officinale Roscoe) is one of the potential herbs that can be used to reduce the level of oxidative stress and inflammation. Ginger consists of two major active components, 6-gingerol and 6-shogaol, which are essential for preventing oxidative stress and inflammation. Thus, this paper will review the effects of ginger on ageing and degenerative diseases, including AD, PD, type 2 diabetes mellitus (DM), hypertension, and osteoarthritis.
Collapse
|
46
|
Gender-Specific Differences of Oxidative Processes in the Population of Circulating Neutrophils of Rats in a Setting of Prolonged Administration of Monosodium Glutamate. ROMANIAN JOURNAL OF DIABETES NUTRITION AND METABOLIC DISEASES 2019. [DOI: 10.2478/rjdnmd-2019-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Background and aims: Monosodium salt of glutamic acid (MSG) is one of the most common food additives. The aim of study was to assess, in gender-specific terms, how prolonged administration of MSG effects on reactive oxygen and nitrogen species formation and the apoptotic/necrotic processes in the population of rats circulating neutrophils.
Material and methods: Experimental studies were conducted on 32 mature white rats. MSG was administered intragastrical at a dose of 30 mg/kg body weight for 30 days. The analysis of cell samples to determine neutrophils with overproduction of reactive oxygen species (ROS) and signs of apoptosis\necrosis was evaluated with flow laser cytometry method. The total nitric oxide synthase (NOS) activity was determined by monitoring the rate of conversion of L-arginine into citrulline. The total quantity of NO metabolites was assessed by evaluating of nitrite and nitrate ions.
Results: We found a significant increase in generation of ROS, intensification of nitroxydergic processes, an increase in the percentage of apoptotic neutrophils and no changes in the percentage of necrotic neutrophils.
Conclusions: We observed activation of oxidative and nitroxydergic processes in rats with prolonged administration of MSG, which initiate apoptosis. In gender-specific terms, a more pronounced changes were seen in male rats.
Collapse
|
47
|
Zhang Y, Zhang L, Venkitasamy C, Pan Z, Ke H, Guo S, Wu D, Wu W, Zhao L. Potential effects of umami ingredients on human health: Pros and cons. Crit Rev Food Sci Nutr 2019; 60:2294-2302. [PMID: 31272187 DOI: 10.1080/10408398.2019.1633995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Umami taste is the most recent confirmed basic taste in addition to sour, sweet, bitter, and salty. It has been controversial because of its effects on human nutritional benefit. Based on the available literatures, this review categorized 13 positive and negative effects of umami taste on human health. On the positive side, umami taste can improve food flavor and consumption, improve nutrition intake of the elderly and patients, protect against duodenal cancer, reduce ingestion of sodium chloride, decrease consumption of fat, and improve oral functions. On the other hand, umami taste can also induce hepatotoxicity, cause asthma, induce migraine headaches, damage the nervous system, and promote obesity. Due to its novelty, there are many functions and effects of umami taste waiting to be discovered. With further investigation, more information regarding the effects of umami taste on human health will be discerned.
Collapse
Affiliation(s)
- Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Longyi Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Chandrasekar Venkitasamy
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California, USA.,Healthy Processed Foods Research Unit, Western Regional Research Center, USDA-ARS, Albany, California, USA
| | - Zhongli Pan
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California, USA.,Healthy Processed Foods Research Unit, Western Regional Research Center, USDA-ARS, Albany, California, USA
| | - Huan Ke
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Siya Guo
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Di Wu
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Wanxia Wu
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Liming Zhao
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China.,State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
48
|
Alsherbiny MA, Abd-Elsalam WH, El Badawy SA, Taher E, Fares M, Torres A, Chang D, Li CG. Ameliorative and protective effects of ginger and its main constituents against natural, chemical and radiation-induced toxicities: A comprehensive review. Food Chem Toxicol 2019; 123:72-97. [PMID: 30352300 DOI: 10.1016/j.fct.2018.10.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022]
Abstract
Fatal unintentional poisoning is widespread upon human exposure to toxic agents such as pesticides, heavy metals, environmental pollutants, bacterial and fungal toxins or even some medications and cosmetic products. In this regards, the application of the natural dietary agents as antidotes has engrossed a substantial attention. One of the ancient known traditional medicines and spices with an arsenal of metabolites of several reported health benefits is ginger. This extended literature review serves to demonstrate the protective effects and mechanisms of ginger and its phytochemicals against natural, chemical and radiation-induced toxicities. Collected data obtained from the in-vivo and in-vitro experimental studies in this overview detail the designation of the protective effects to ginger's antioxidant, anti-inflammatory, and anti-apoptotic properties. Ginger's armoury of phytochemicals exerted its protective function via different mechanisms and cell signalling pathways, including Nrf2/ARE, MAPK, NF-ƙB, Wnt/β-catenin, TGF-β1/Smad3, and ERK/CREB. The outcomes of this review could encourage further clinical trials of ginger applications in radiotherapy and chemotherapy regime for cancer treatments or its implementation to counteract the chemical toxicity induced by industrial pollutants, alcohol, smoking or administered drugs.
Collapse
Affiliation(s)
- Muhammad A Alsherbiny
- NICM Health Research Institute, Western Sydney University, Westmead, 2145, NSW, Australia; Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Wessam H Abd-Elsalam
- Department of Pharmaceutics, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Shymaa A El Badawy
- Department of Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12613, Egypt
| | - Ehab Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University (Assiut Branch), Egypt
| | - Mohamed Fares
- School of Chemistry, University of Wollongong, Wollongong, 2522, NSW, Australia
| | - Allan Torres
- Nanoscale Organisation and Dynamics Group, School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, 2145, NSW, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, 2145, NSW, Australia.
| |
Collapse
|
49
|
Yuluğ E, Türedi S, Yıldırım Ö, Yenilmez E, Aliyazıcıoğlu Y, Demir S, Özer-Yaman S, Menteşe A. Biochemical and morphological evaluation of the effects of propolis on cisplatin induced kidney damage in rats. Biotech Histochem 2018; 94:204-213. [PMID: 30512970 DOI: 10.1080/10520295.2018.1543895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cisplatin (CP) is a chemotherapeutic agent used to treat various types of cancer; nephrotoxicity is the most common adverse effect of the drug. We investigated the protective effects of propolis against CP induced kidney injury. Thirty-six male rats were divided into six equal groups: untreated control group, 50 mg/kg/day propolis group, 100 mg/kg/day propolis group, single-dose 7 mg/kg CP group, 7 mg/kg CP + 50 mg/kg/day propolis and 7 mg/kg CP + 100 mg/kg propolis. Rats were sacrificed after 14 days and kidneys were removed for histopathological and biochemical analyses. We used hematoxylin & eosin and periodic acid-Schiff staining to evaluate kidney histopathology and we used the TUNEL technique to assess apoptosis. We also measured total oxidant status (TOS), total antioxidant status (TAS), oxidative stress index (OSI), ischemia-modified albumin (IMA) and malondialdehyde (MDA) levels in tissue and blood specimens. Normal morphology was observed in the control, 50 mg/kg/day propolis and 100 mg/kg/day propolis groups by light microscopy. Degeneration of tubule cells, edema and tubule dilation were increased in the CP group compared to the control group. Degeneration of tubule cells and dilation of Bowman's spaces were decreased in the CP + 50 mg/kg/day propolis and CP + 100 mg/kg/day propolis groups compared to the CP group. Tubule dilation decreased significantly in the CP + 100 mg/kg propolis group compared to the CP group. Also, the 7 mg/kg CP group exhibited altered proximal tubule epithelial cells, loss of brush border and thickening of the parietal layer of Bowman's capsule in glomeruli and basal laminae of tubules. A normal brush border was observed in the CP + 50 mg/kg/day propolis and CP + 100 mg/kg/day groups. Serum OSI and MDA levels were increased in the CP group compared to the control group. Serum MDA levels decreased significantly in the CP + 50 mg/kg/day propolis and 100 mg/kg CP + propolis groups compared to the CP group. CP caused significant damage to kidney tissue; propolis exhibited dose-dependent prevention of tissue damage.
Collapse
Affiliation(s)
- E Yuluğ
- a Department of Histology and Embryology, Faculty of Medicine , Karadeniz Technical University , Trabzon , Turkey
| | - S Türedi
- b Department of Histology and Embryology, Faculty of Medicine , Harran University , Şanlıurfa , Turkey
| | - Ö Yıldırım
- a Department of Histology and Embryology, Faculty of Medicine , Karadeniz Technical University , Trabzon , Turkey
| | - E Yenilmez
- a Department of Histology and Embryology, Faculty of Medicine , Karadeniz Technical University , Trabzon , Turkey
| | - Y Aliyazıcıoğlu
- c Department of Medical Biochemistry, Faculty of Medicine , Karadeniz Technical University , Trabzon , Turkey
| | - S Demir
- d Department of Nutrition and Dietetics, Faculty of Health Sciences , Karadeniz Technical University , Trabzon , Turkey
| | - S Özer-Yaman
- c Department of Medical Biochemistry, Faculty of Medicine , Karadeniz Technical University , Trabzon , Turkey
| | - A Menteşe
- e Program of Medical Laboratory Techniques, Vocational School of Health Sciences , Karadeniz Technical University , Trabzon , Turkey
| |
Collapse
|
50
|
Jafarzadeh A, Nemati M. Therapeutic potentials of ginger for treatment of Multiple sclerosis: A review with emphasis on its immunomodulatory, anti-inflammatory and anti-oxidative properties. J Neuroimmunol 2018; 324:54-75. [PMID: 30243185 DOI: 10.1016/j.jneuroim.2018.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/24/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is characterized by chronic inflammatory response-induced demyelination of the neurons and degeneration of the axons within the central nervous system (CNS). A complex network of immunopathological-, inflammatory- and oxidative parameters involve in the development and advancement of MS. The anti-inflammatory, immunomodulatory and anti-oxidative characteristics of the ginger and several of its components have been indicated in some of experimental and clinical investigations. The possible therapeutic potentials of ginger and its ingredients in the treatment of MS may exert mainly through the regulation of the Th1-, Th2-, Th9-, Th17-, Th22- and Treg cell-related immune responses, down-regulation of the B cell-related immune responses, modulation of the macrophages-related responses, modulation of the production of pro- and anti-inflammatory cytokines, down-regulation of the arachidonic acid-derived mediators, interfering with the toll like receptor-related signaling pathways, suppression of the inflammasomes, down-regulation of the oxidative stress, reduction of the adhesion molecules expression, and down-regulation of the expression of the chemokines and chemokine receptors. This review aimed to provide a comprehensive knowledge regarding the immunomodulatory-, anti-inflammatory and anti-oxidative properties of ginger and its components, and highlight novel insights into the possible therapeutic potentials of this plant for treatment of MS. The review encourages more investigations to consider the therapeutic potentials of ginger and its effective components for managing of MS.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Maryam Nemati
- Department of Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|