1
|
Jakobi B, Vlaming P, Mulder D, Ribases M, Richarte V, Ramos-Quiroga JA, Tendolkar I, van Eijndhoven P, Vrijsen JN, Buitelaar J, Franke B, Hoogman M, Bloemendaal M, Arias-Vasquez A. The gut-microbiome in adult Attention-deficit/hyperactivity disorder - A Meta-analysis. Eur Neuropsychopharmacol 2024; 88:21-29. [PMID: 39121711 DOI: 10.1016/j.euroneuro.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 08/12/2024]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental condition that persists into adulthood in the majority of individuals. While the gut-microbiome seems to be relevant for ADHD, the few publications on gut-microbial alterations in ADHD are inconsistent, in the investigated phenotypes, sequencing method/region, preprocessing, statistical approaches, and findings. To identify gut-microbiome alterations in adult ADHD, robust across studies and statistical approaches, we harmonized bioinformatic pipelines and analyses of raw 16S rRNA sequencing data from four adult ADHD case-control studies (NADHD=312, NNoADHD=305). We investigated diversity and differential abundance of selected genera (logistic regression and ANOVA-like Differential Expression tool), corrected for age and sex, and meta-analyzed the study results. Converging results were investigated for association with hyperactive/impulsive and inattentive symptoms across all participants. Beta diversity was associated with ADHD diagnosis but showed significant heterogeneity between cohorts, despite harmonized analyses. Several genera were robustly associated with adult ADHD; e.g., Ruminococcus_torques_group (LogOdds=0.17, pfdr=4.42 × 10-2), which was more abundant in adults with ADHD, and Eubacterium_xylanophilum_group (LogOdds= -0.12, pfdr=6.9 × 10-3), which was less abundant in ADHD. Ruminococcus_torques_group was further associated with hyperactivity/impulsivity symptoms and Eisenbergiella with inattention and hyperactivity/impulsivity (pfdr<0.05). The literature points towards a role of these genera in inflammatory processes. Irreproducible results in the field of gut-microbiota research, due to between study heterogeneity and small sample sizes, stress the need for meta-analytic approaches and large sample sizes. While we robustly identified genera associated with adult ADHD, that might overall be considered beneficial or risk-conferring, functional studies are needed to shed light on these properties.
Collapse
Affiliation(s)
- Babette Jakobi
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Priscilla Vlaming
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands; Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Danique Mulder
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Marta Ribases
- Department of Mental Health, Hospital Univeristari Vall d'Hebron, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain; Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Vanesa Richarte
- Department of Mental Health, Hospital Univeristari Vall d'Hebron, Spain
| | | | - Indira Tendolkar
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Philip van Eijndhoven
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Janna N Vrijsen
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Jan Buitelaar
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Martine Hoogman
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Mirjam Bloemendaal
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Alejandro Arias-Vasquez
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
2
|
Nanda S, Lamot B, Guarino N, Usler E, Chugani DC, Dutta A, Chow HM. Atypical gut microbiota composition in a mouse model of developmental stuttering. Sci Rep 2024; 14:23457. [PMID: 39379558 PMCID: PMC11461706 DOI: 10.1038/s41598-024-74766-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
Developmental stuttering is a complex neurodevelopmental disorder characterized by disfluent speech. It has been associated with mutations in genes involved in lysosomal enzyme trafficking. Mice with mutations in one such gene, Gnptab, exhibit atypical vocalizations analogous to stuttering in humans. This mouse model has enabled the study of various molecular mechanisms related to the disorder. Simultaneously, an increasing number of reports have suggested the role of gut microbiota in altered brain function and development in neurological disorders. In this study, we compared gut microbiota profiles from Gnptab mutant mice to wildtype control mice. Microbiome analysis demonstrated a distinct microbiota profile in Gnptab mutant mice. The most significant alteration was an increased relative abundance of Akkermansia, a genus of mucin degrading bacteria, which has previously been associated with multiple neurological disorders. Moreover, the altered microbiota profile of these mice was predicted to result in differences in abundance of several metabolic pathways, including short chain fatty acid and lipopolysaccharide synthesis. These pathways may play a role in the onset, progression and persistence of developmental stuttering. This is the first study to show a potential link between developmental stuttering and changes in the gut microbiota, laying the groundwork for a new research direction.
Collapse
Affiliation(s)
- Sayan Nanda
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, 19716, USA.
| | - Bryan Lamot
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Nicole Guarino
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, 19716, USA
| | - Evan Usler
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, 19716, USA
| | - Diane C Chugani
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, 19716, USA
| | - Aditya Dutta
- Departments of Animal and Food Sciences, Biological Sciences, Medical and Molecular Sciences, Microbiology Graduate Program, University of Delaware, Newark, DE, 19716, USA.
| | - Ho Ming Chow
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
3
|
Nakhal MM, Yassin LK, Alyaqoubi R, Saeed S, Alderei A, Alhammadi A, Alshehhi M, Almehairbi A, Al Houqani S, BaniYas S, Qanadilo H, Ali BR, Shehab S, Statsenko Y, Meribout S, Sadek B, Akour A, Hamad MIK. The Microbiota-Gut-Brain Axis and Neurological Disorders: A Comprehensive Review. Life (Basel) 2024; 14:1234. [PMID: 39459534 PMCID: PMC11508655 DOI: 10.3390/life14101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Microbes have inhabited the earth for hundreds of millions of years longer than humans. The microbiota-gut-brain axis (MGBA) represents a bidirectional communication pathway. These communications occur between the central nervous system (CNS), the enteric nervous system (ENS), and the emotional and cognitive centres of the brain. The field of research on the gut-brain axis has grown significantly during the past two decades. Signalling occurs between the gut microbiota and the brain through the neural, endocrine, immune, and humoral pathways. A substantial body of evidence indicates that the MGBA plays a pivotal role in various neurological diseases. These include Alzheimer's disease (AD), autism spectrum disorder (ASD), Rett syndrome, attention deficit hyperactivity disorder (ADHD), non-Alzheimer's neurodegeneration and dementias, fronto-temporal lobe dementia (FTLD), Wilson-Konovalov disease (WD), multisystem atrophy (MSA), Huntington's chorea (HC), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), temporal lobe epilepsy (TLE), depression, and schizophrenia (SCZ). Furthermore, the bidirectional correlation between therapeutics and the gut-brain axis will be discussed. Conversely, the mood of delivery, exercise, psychotropic agents, stress, and neurologic drugs can influence the MGBA. By understanding the MGBA, it may be possible to facilitate research into microbial-based interventions and therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Mohammed M. Nakhal
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Lidya K. Yassin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Rana Alyaqoubi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Sara Saeed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Alreem Alderei
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Alya Alhammadi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Mirah Alshehhi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Afra Almehairbi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Shaikha Al Houqani
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Shamsa BaniYas
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Haia Qanadilo
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Yauhen Statsenko
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Neuroscience Platform, ASPIRE Precision Medicine Institute in Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sarah Meribout
- Internal Medicine Department, Maimonides Medical Center, New York, NY 11219, USA;
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Bo Box 15551, United Arab Emirates; (B.S.); (A.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 1551, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Bo Box 15551, United Arab Emirates; (B.S.); (A.A.)
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| |
Collapse
|
4
|
Visternicu M, Rarinca V, Burlui V, Halitchi G, Ciobică A, Singeap AM, Dobrin R, Mavroudis I, Trifan A. Investigating the Impact of Nutrition and Oxidative Stress on Attention Deficit Hyperactivity Disorder. Nutrients 2024; 16:3113. [PMID: 39339712 PMCID: PMC11435085 DOI: 10.3390/nu16183113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Attention deficit hyperactivity disorder (ADHD) is the most common childhood-onset neurodevelopmental disorder, characterized by difficulty maintaining attention, impulsivity, and hyperactivity. While the cause of this disorder is still unclear, recent studies have stated that heredity is important in the development of ADHD. This is linked to a few comorbidities, including depression, criminal behavior, and anxiety. Although genetic factors influence ADHD symptoms, there are also non-genetic factors, one of which is oxidative stress (OS), which plays a role in the pathogenesis and symptoms of ADHD. This review aims to explore the role of OS in ADHD and its connection to antioxidant enzyme levels, as well as the gut-brain axis (GBA), focusing on diet and its influence on ADHD symptoms, particularly in adults with comorbid conditions. Methods: The literature search included the main available databases (e.g., Science Direct, PubMed, and Google Scholar). Articles in the English language were taken into consideration and our screening was conducted based on several words such as "ADHD", "oxidative stress", "diet", "gut-brain axis", and "gut microbiota." The review focused on studies examining the link between oxidative stress and ADHD, the role of the gut-brain axis, and the potential impact of dietary interventions. Results: Oxidative stress plays a critical role in the development and manifestation of ADHD symptoms. Studies have shown that individuals with ADHD exhibit reduced levels of key antioxidant enzymes, including glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD), as well as a diminished total antioxidant status (TOS) compared to healthy controls. Additionally, there is evidence of a close bidirectional interaction between the nervous system and gut microbiota, mediated by the gut-brain axis. This relationship suggests that dietary interventions targeting gut health may influence ADHD symptoms and related comorbidities. Conclusions: Oxidative stress and the gut-brain axis are key factors in the pathogenesis of ADHD, particularly in adults with comorbid conditions. A better understanding of these mechanisms could lead to more targeted treatments, including dietary interventions, to mitigate ADHD symptoms. Further research is required to explore the therapeutic potential of modulating oxidative stress and gut microbiota in the management of ADHD.
Collapse
Affiliation(s)
- Malina Visternicu
- Faculty of Biology, "Alexandru Ioan Cuza" University of Iași, Carol I Avenue, No. 20A, 700505 Iași, Romania
- "Ioan Haulica" Institute, Apollonia University, Pacurari Street 11, 700511 Iași, Romania
| | - Viorica Rarinca
- "Ioan Haulica" Institute, Apollonia University, Pacurari Street 11, 700511 Iași, Romania
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iași, Carol I Avenue, No. 20A, 700505 Iași, Romania
- Doctoral School of Geosciences, Faculty of Geography and Geology, "Alexandru Ioan Cuza" University of Iași, Carol I Avenue, No. 20A, 700505 Iași, Romania
| | - Vasile Burlui
- "Ioan Haulica" Institute, Apollonia University, Pacurari Street 11, 700511 Iași, Romania
| | - Gabriela Halitchi
- "Ioan Haulica" Institute, Apollonia University, Pacurari Street 11, 700511 Iași, Romania
| | - Alin Ciobică
- "Ioan Haulica" Institute, Apollonia University, Pacurari Street 11, 700511 Iași, Romania
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iași, Carol I Avenue, No. 20A, 700505 Iași, Romania
- CENEMED Platform for Interdisciplinary Research, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, University Street No. 16, 700115 Iași, Romania
- Academy of Romanian Scientists, No. 54, Independence Street, Sector 5, 050094 Bucharest, Romania
| | - Ana-Maria Singeap
- Department of Gastroenterology, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, University Street No. 16, 700115 Iași, Romania
- Institute of Gastroenterology and Hepatology, "St. Spiridon" University Hospital, 700115 Iași, Romania
| | - Romeo Dobrin
- Institute of Psychiatry "Socola", 36 Bucium Street, 700282 Iași, Romania
- Department of Psychiatry, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, University Street No. 16, 700115 Iași, Romania
| | - Ioannis Mavroudis
- Department of Neurology, Leeds Teaching Hospitals, NHS Trust, Leeds LS2 9JT, UK
- Faculty of Medicine, Leeds University, Leeds LS2 9JT, UK
| | - Anca Trifan
- Department of Gastroenterology, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, University Street No. 16, 700115 Iași, Romania
- Institute of Gastroenterology and Hepatology, "St. Spiridon" University Hospital, 700115 Iași, Romania
| |
Collapse
|
5
|
Cocean AM, Vodnar DC. Exploring the gut-brain Axis: Potential therapeutic impact of Psychobiotics on mental health. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111073. [PMID: 38914414 DOI: 10.1016/j.pnpbp.2024.111073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/18/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
One of the most challenging and controversial issues in microbiome research is related to gut microbial metabolism and neuropsychological disorders. Psychobiotics affect human behavior and central nervous system processes via the gut-brain axis, involving neuronal, immune, and metabolic pathways. They have therapeutic potential in the treatment of several neurodegenerative and neurodevelopmental disorders such as depression, anxiety, autism, attention deficit hyperactivity disorder, Alzheimer's disease, Parkinson's disease, schizophrenia, Huntington's disease, anorexia nervosa, and multiple sclerosis. However, the mechanisms underlying the interaction between psychobiotics and the abovementioned diseases need further exploration. This review focuses on the relationship between gut microbiota and its impact on neurological and neurodegenerative disorders, examining the potential of psychobiotics as a preventive and therapeutic approach, summarising recent research on the gut-brain axis and the potential beneficial effects of psychobiotics, highlighting the need for further research and investigation in this area.
Collapse
Affiliation(s)
- Ana-Maria Cocean
- Department of Food Science and Technology, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Department of Food Science and Technology, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, Cluj-Napoca, Romania.
| |
Collapse
|
6
|
Weyns AS, Ahannach S, Van Rillaer T, De Bruyne T, Lebeer S, Hermans N. Enhancing pediatric attention-deficit hyperactivity disorder treatment: exploring the gut microbiota effects of French maritime pine bark extract and methylphenidate intervention. Front Nutr 2024; 11:1422253. [PMID: 39257605 PMCID: PMC11385872 DOI: 10.3389/fnut.2024.1422253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/26/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction The pathogenesis of Attention-Deficit Hyperactivity Disorder (ADHD) is thought to be multifactorial, with a potential role for the bidirectional communication between the gut microbiome and brain development and function. Since the "golden-standard" medication therapy with methylphenidate (MPH) is linked to multiple adverse effects, there is a need for alternative treatment options such as dietary polyphenols. These secondary plant metabolites exert antioxidant and anti-inflammatory effects, but much less is known about their impact on the gut microbiota. Since polyphenols are believed to modulate gut microbial composition, interventions might be advantageous in ADHD therapy. Therefore, intervention studies with polyphenols in ADHD therapy investigating the gut microbial composition are highly relevant. Methods Besides the primary research questions addressed previously, this study explored a potential prebiotic effect of the polyphenol-rich French Maritime Pine Bark Extract (PBE) compared to MPH and a placebo in pediatric ADHD patients by studying their impact on the gut microbiota via amplicon sequencing of the full length 16S rRNA gene ribosomal subunit (V1-V9). Results One interesting finding was the high relative abundance of Bifidobacteria among all patients in our study cohort. Moreover, our study has identified that treatment (placebo, MPH and PBE) explains 3.94% of the variation in distribution of microbial taxa (adjusted p-value of 0.011). Discussion Our small sample size (placebo: n = 10; PBE: n = 13 and MPH: n = 14) did not allow to observe clear prebiotic effects in the patients treated with PBE. Notwithstanding this limitation, subtle changes were noticeable and some limited compositional changes could be observed. Clinical Trial Registration doi: 10.1186/S13063-017-1879-6.
Collapse
Affiliation(s)
- Anne-Sophie Weyns
- Natural Products and Food Research and Analysis - Pharmaceutical Technology (NatuRA-PT), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Ahannach
- Laboratorium of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Tim Van Rillaer
- Laboratorium of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Tess De Bruyne
- Natural Products and Food Research and Analysis - Pharmaceutical Technology (NatuRA-PT), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Laboratorium of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Nina Hermans
- Natural Products and Food Research and Analysis - Pharmaceutical Technology (NatuRA-PT), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
7
|
Karaivazoglou K, Aggeletopoulou I, Triantos C. The Contribution of the Brain-Gut Axis to the Human Reward System. Biomedicines 2024; 12:1861. [PMID: 39200325 PMCID: PMC11351993 DOI: 10.3390/biomedicines12081861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The human reward network consists of interconnected brain regions that process stimuli associated with satisfaction and modulate pleasure-seeking behaviors. Impairments in reward processing have been implicated in several medical and psychiatric conditions, and there is a growing interest in disentangling the underlying pathophysiological mechanisms. The brain-gut axis plays a regulatory role in several higher-order neurophysiological pathways, including reward processing. In this context, the aim of the current review was to critically appraise research findings on the contribution of the brain-gut axis to the human reward system. Enteric neuropeptides, which are implicated in the regulation of hunger and satiety, such as ghrelin, PYY3-36, and glucagon-like peptide 1 (GLP-1), have been associated with the processing of food-related, alcohol-related, and other non-food-related rewards, maintaining a delicate balance between the body's homeostatic and hedonic needs. Furthermore, intestinal microbiota and their metabolites have been linked to differences in the architecture and activation of brain reward areas in obese patients and patients with attention deficit and hyperactivity disorder. Likewise, bariatric surgery reduces hedonic eating by altering the composition of gut microbiota. Although existing findings need further corroboration, they provide valuable information on the pathophysiology of reward-processing impairments and delineate a novel framework for potential therapeutic interventions.
Collapse
Affiliation(s)
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece;
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece;
| |
Collapse
|
8
|
Wang LJ, Tsai CS, Chou WJ, Kuo HC, Huang YH, Lee SY, Dai HY, Yang CY, Li CJ, Yeh YT. Add-On Bifidobacterium Bifidum Supplement in Children with Attention-Deficit/Hyperactivity Disorder: A 12-Week Randomized Double-Blind Placebo-Controlled Clinical Trial. Nutrients 2024; 16:2260. [PMID: 39064703 PMCID: PMC11279422 DOI: 10.3390/nu16142260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
We conducted a 12-week randomized double-blind placebo-controlled clinical trial to investigate the potential impact of Bifidobacterium bifidum (Bf-688) supplementation on attention-deficit/hyperactivity disorder (ADHD). Children with ADHD who were already receiving a stable dose of methylphenidate (MPH) treatment were enrolled and were randomly assigned to two groups: one receiving add-on Bf-688 (daily bacterial count of 5 × 109 CFUs) (n = 51) and the other receiving a placebo (n = 51). All participants underwent assessments using Conners' Continuous Performance Test (CPT) and Conners' Continuous Auditory Test of Attention (CATA). Additionally, fecal samples were collected at the beginning of the trial (week 0) and at the endpoint (week 12). Remarkably, the group receiving Bf-688 supplementation, but not the placebo group, exhibited significant improvements in omission errors in CPT as well as Hit reaction time in both CPT and CATA. Gut microbiome analysis revealed a significant increase in the Firmicutes to Bacteroidetes ratio (F/B ratio) only in the Bf-688 group. Furthermore, we identified significant negative correlations between N-Glycan biosynthesis and Hit reaction time in both CPT and CATA. Our results demonstrate that the probiotic Bf-688 supplement can enhance neuropsychological performance in children with ADHD, possibly by altering the composition of the gut microbiota, ultimately leading to reduced N-Glycan biosynthesis.
Collapse
Affiliation(s)
- Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (L.-J.W.); (C.-S.T.); (W.-J.C.); (C.-J.L.)
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Ching-Shu Tsai
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (L.-J.W.); (C.-S.T.); (W.-J.C.); (C.-J.L.)
| | - Wen-Jiun Chou
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (L.-J.W.); (C.-S.T.); (W.-J.C.); (C.-J.L.)
| | - Ho-Chang Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (H.-C.K.); (Y.-H.H.)
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Ying-Hsien Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (H.-C.K.); (Y.-H.H.)
| | - Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
- Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Hong-Ying Dai
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung 83102, Taiwan;
| | - Chia-Yu Yang
- Department of Microbiology and Immunology/Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan;
| | - Chia-Jung Li
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (L.-J.W.); (C.-S.T.); (W.-J.C.); (C.-J.L.)
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung 83102, Taiwan;
| |
Collapse
|
9
|
Panpetch J, Kiatrungrit K, Tuntipopipat S, Tangphatsornruang S, Mhuantong W, Chongviriyaphan N. Gut Microbiota and Clinical Manifestations in Thai Pediatric Patients with Attention-Deficit Hyperactivity Disorder. J Pers Med 2024; 14:739. [PMID: 39063993 PMCID: PMC11277806 DOI: 10.3390/jpm14070739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder potentially linked to gut dysbiosis. This comparative cross-sectional study profiled the gut microbiota in 24 treatment-naïve Thai children diagnosed with ADHD and 24 healthy ones matched by age and gender (median age: 7 years). Fecal microbial compositions were genetically analyzed using 16s rRNA gene amplicon sequencing. The study findings indicated no statistically significant differences in microbial diversity between groups, although Firmicutes and Actinobacteria appeared dominant in both groups. Moreover, ADHD patients exhibited enrichment in Alloprevotella, CAG-352, Succinivibrio, and Acidaminococcus genera, while healthy controls had higher levels of Megamonas, Enterobacter, Eubacterium hallii, and Negativibacillus genera. Spearman correlation analysis demonstrated a significant positive association between CAG-352 and inattention and hyperactivity/impulsivity scores, whereas the Eubacterium hallii group and Megamonas exhibited negative correlations with these symptomatology domains. Beta-carotene intake was associated with the Eubacterium hallii group and Succinivibrio: likewise, vitamin B2 intake was associated with Alloprevotella. Additional research should aim to elucidate the underlying mechanisms influencing clinical biomarkers that signify alterations in specific gut microbiome profiles linked to ADHD.
Collapse
Affiliation(s)
- Jittraporn Panpetch
- Doctoral Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok 10400, Thailand;
| | - Komsan Kiatrungrit
- Department of Psychiatry, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | | | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Paholyothin Rd., Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand; (S.T.); (W.M.)
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Paholyothin Rd., Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand; (S.T.); (W.M.)
| | - Nalinee Chongviriyaphan
- Division of Nutrition, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
10
|
Liang X, Huang X, Cheng Y, Wang Z, Song Y, Shu Q, Xie N. A comprehensive Mendelian randomization study highlights the relationship between psychiatric disorders and non-tumor gastrointestinal diseases. Front Genet 2024; 15:1392518. [PMID: 38803545 PMCID: PMC11129081 DOI: 10.3389/fgene.2024.1392518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Objective Previous observational studies revealed the potential correlation between psychiatric disorders (PDs) and non-tumor gastrointestinal diseases (NTGDs). However, their causation remains unclear. Methods We explored the causal relationship between PDs and NTGDs through bidirectional two-sample Mendelian randomization (MR) study. Large-scale genome-wide association study (GWAS) summary statistics and bidirectional two-sample MR study were used to assess the causality between PDs and NTGDs. Multiple sensitivity analyses were used to identify the robustness of our results. Results We found that major depression was causally associated with increased risk of gastric ulcer (OR: 1.812, 95% CI: 1.320-2.487, p < 0.001) and irritable bowel syndrome (OR: 1.645, 95% CI: 1.291-2.097, p < 0.001). Meanwhile, genetically predicted gastroesophageal reflux disease contributed to the increased risk of anxiety disorders (OR: 1.425, 95% CI: 1.295-1.568, p < 0.001), and ulcerative colitis was related to increased risk of attention deficit/hyperactivity disorder (OR: 1.042, 95% CI: 1.008-1.078, p = 0.0157). Conclusion Our study provided MR evidence to support the close causality and identify the specific direction between eight PDs and eight common NTGDs. Experimental studies to further examine the causality, underlying mechanism, and therapeutic potential of PDs and NTGDs are required.
Collapse
Affiliation(s)
- Xiru Liang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xindi Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yutong Cheng
- Department of Gastroenterology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ziwei Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yahua Song
- Department of Gastroenterology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qiuai Shu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ning Xie
- Department of Gastroenterology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
11
|
Li HB, Xu ML, Xia WJ, Dong YY, Peng B, Su Q, Wang XM, Yu JY, Gao YN, Wu JZ, Xu MY, Yang JB, Dai ZM, Chen L, Li Y, Bai J. Antihypertensive treatment during pregnancy induces long-term changes in gut microbiota and the behaviors of the attention deficit hyperactivity disorder offspring. Toxicol Appl Pharmacol 2024; 486:116946. [PMID: 38679241 DOI: 10.1016/j.taap.2024.116946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
The pathogenesis of attention-deficit/hyperactivity disorder (ADHD) has not been fully elucidated. Gestational hypertension could double the probability of ADHD in the offspring, while the initial bacterial communication between the mother and offspring has been associated with psychiatric disorders. Thus, we hypothesize that antihypertensive treatment during pregnancy may abate the impairments in neurodevelopment of the offspring. To test this hypothesis, we chose Captopril and Labetalol, to apply to pregnant spontaneously hypertensive rat (SHR) dams and examined the outcomes in the male offspring. Our data demonstrated that maternal treatment with Captopril and Labetalol had long-lasting changes in gut microbiota and behavioral alterations, including decreased hyperactivity and increased curiosity, spatial learning and memory in the male offspring. Increased diversity and composition were identified, and some ADHD related bacteria were found to have the same change in the gut microbiota of both the dam and offspring after the treatments. LC-MS/MS and immunohistochemistry assays suggested elevated expression of brain derived neurotrophic factor (BDNF) and dopamine in the prefrontal cortex and striatum of offspring exposed to Captopril/ Labetalol, which may account for the improvement of the offspring's psychiatric functions. Therefore, our results support the beneficial long-term effects of the intervention of gestational hypertension in the prevention of ADHD.
Collapse
Affiliation(s)
- Hong-Bao Li
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Meng-Lu Xu
- Department of Nephrology, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, China
| | - Wen-Jie Xia
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Yuan-Yuan Dong
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Bo Peng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Qing Su
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Xiao-Min Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Jia-Yue Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Ya-Nan Gao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Jun-Zhe Wu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Meng-Yue Xu
- Department of Anesthesiology, Center for Brian Science, The Second Clinical College of Shaanxi University of Chinese Medicine, Xian'yang 712000, China
| | - Jin-Bao Yang
- Department of Cardiac Surgery, Xi'an International Medical Center Hospital, Xi'an 710075, China
| | - Zhi-Ming Dai
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Lei Chen
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ying Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China.
| | - Juan Bai
- Department of Anesthesiology, Center for Brian Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
12
|
Solberg BS, Kvalvik LG, Instanes JT, Hartman CA, Klungsøyr K, Li L, Larsson H, Magnus P, Njølstad PR, Johansson S, Andreassen OA, Bakken NR, Bekkhus M, Austerberry C, Smajlagic D, Havdahl A, Corfield EC, Haavik J, Gjestad R, Zayats T. Maternal Fiber Intake During Pregnancy and Development of Attention-Deficit/Hyperactivity Disorder Symptoms Across Childhood: The Norwegian Mother, Father, and Child Cohort Study. Biol Psychiatry 2024; 95:839-848. [PMID: 38142720 DOI: 10.1016/j.biopsych.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Epidemiological studies suggest that maternal diet quality during pregnancy may influence the risk of neurodevelopmental disorders in offspring. Here, we investigated associations between maternal intake of dietary fiber and attention-deficit/hyperactivity disorder (ADHD) symptoms in early childhood. METHODS We used longitudinal data of up to 21,852 mother-father-child trios (49.2% female offspring) from MoBa (the Norwegian Mother, Father, and Child Cohort Study). The relationships between maternal fiber intake during pregnancy and offspring ADHD symptoms at ages 3, 5, and 8 years were examined using 1) multivariate regression (overall levels of ADHD symptoms), 2) latent class analysis (subclasses of ADHD symptoms by sex at each age), and 3) latent growth curves (longitudinal change in offspring ADHD symptoms). Covariates were ADHD polygenic scores in child and parents, total energy intake and energy-adjusted sugar intake, parental ages at birth of the child, and sociodemographic factors. RESULTS Higher maternal prenatal fiber intake was associated with lower offspring ADHD symptom scores at all ages (Bage3 = -0.14 [95% CI, -0.18 to -0.10]; Bage5 = -0.14 [95% CI, -0.19 to -0.09]; Bage8 = -0.14 [95% CI, -0.20 to -0.09]). Of the derived low/middle/high subclasses of ADHD symptoms, fiber was associated with lower risk of belonging to the middle subclass for boys and girls and to the high subclass for girls only (middle: odds ratioboys 0.91 [95% CI, 0.86 to 0.97]/odds ratiogirls 0.86 [95% CI, 0.81 to 0.91]; high: odds ratiogirls 0.82 [95% CI, 0.72 to 0.94]). Maternal fiber intake and rate of change in child ADHD symptoms across ages were not associated. CONCLUSIONS Low prenatal maternal fiber intake may increase symptom levels of ADHD in offspring during childhood, independently of genetic predisposition to ADHD, unhealthy dietary exposures, and sociodemographic factors.
Collapse
Affiliation(s)
- Berit Skretting Solberg
- Department of Biomedicine, University of Bergen, Norway; Child and Adolescent Psychiatric Outpatient Unit, Hospital Betanien, Bergen, Norway.
| | | | | | - Catharina A Hartman
- Interdisciplinary Center Psychiatry and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Kari Klungsøyr
- Department of Global Public Health and Primary Care, University of Bergen, Norway; Division of Mental and Physical Health, Norwegian Institute of Public Health, Bergen, Norway
| | - Lin Li
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Pål Rasmus Njølstad
- Department of Clinical Science, Mohn Center for Diabetes Precision Medicine, University of Bergen, Bergen, Norway; Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stefan Johansson
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiciton, Oslo University Hospital, Oslo, Norway
| | - Nora Refsum Bakken
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mona Bekkhus
- Promenta Research Centre, Department of Psychology, University of Oslo, Oslo, Norway
| | - Chloe Austerberry
- Centre for Family Research, University of Cambridge, Cambridge, United Kingdom; Research Department of Clinical, Educational and Health Psychology, University College London, London, United Kingdom
| | - Dinka Smajlagic
- Promenta Research Centre, Department of Psychology, University of Oslo, Oslo, Norway
| | - Alexandra Havdahl
- Promenta Research Centre, Department of Psychology, University of Oslo, Oslo, Norway; Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway; Nic Waals Institute, Lovisenberg Diakonale Hospital, Oslo, Norway
| | - Elizabeth C Corfield
- Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway; Nic Waals Institute, Lovisenberg Diakonale Hospital, Oslo, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Norway; Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Psychiatry, Research Department, Haukeland University Hospital, Bergen, Norway
| | - Rolf Gjestad
- Department of Psychiatry, Research Department, Haukeland University Hospital, Bergen, Norway; Center for Crisis Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway; Centre for Research and Education in Forensic Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Tetyana Zayats
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
13
|
Garre-Morata L, de Haro T, Villén RG, Fernández-López ML, Escames G, Molina-Carballo A, Acuña-Castroviejo D. Changes in Cortisol and in Oxidative/Nitrosative Stress Indicators after ADHD Treatment. Antioxidants (Basel) 2024; 13:92. [PMID: 38247516 PMCID: PMC10812591 DOI: 10.3390/antiox13010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Although ADHD is one of the most prevalent diseases during childhood, we still do not know its precise origin; oxidative/nitrosative stress and the hypothalamic-pituitary-adrenal axis are suggested contributors. Methylphenidate, among others, is the main drug used in ADHD patients, but its effects on relevant markers and structures remain unclear. This study, involving 59 patients diagnosed with ADHD according to DSM-5 criteria, aimed to assess changes in cortisol levels (using cortisol awakening response, CAR) and oxidative/nitrosative status with the treatment. Blood samples before and 3 months after treatment with methylphenidate were used to measure oxidative and inflammatory markers, as well as the endogenous antioxidant activity, while saliva samples tracked cortisol awakening response (CAR). The results showed a treatment-related improvement in the redox profile, with the reduction in advanced oxidation protein products (AOPP), lipid peroxidation (LPO), and nitrite plus nitrate (NOx) levels, and the increase in the enzymatic activities of glutathione reductase (GRd) and catalase (CAT). Moreover, the area under the curve (AUC) of CAR increased significantly, indicating increased reactivity of the HPA axis. These results support, for the first time, the involvement of the endogenous antioxidant system in the pathophysiology of ADHD.
Collapse
Affiliation(s)
- Laura Garre-Morata
- UGC of Laboratorios Clínicos, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain; (L.G.-M.); (T.d.H.)
| | - Tomás de Haro
- UGC of Laboratorios Clínicos, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain; (L.G.-M.); (T.d.H.)
- Ibs.Granada, 18016 Granada, Spain; (M.L.F.-L.); (G.E.)
| | | | - María Luisa Fernández-López
- Ibs.Granada, 18016 Granada, Spain; (M.L.F.-L.); (G.E.)
- UGC of Pediatrics, San Cecilio University Hospital, 18016 Granada, Spain;
| | - Germaine Escames
- Ibs.Granada, 18016 Granada, Spain; (M.L.F.-L.); (G.E.)
- Ibs.CIBERfes, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable, 18016 Granada, Spain
- Centro de Investigación Biomédica, Departamento de Fisiología, Facultad de Medicina, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
| | - Antonio Molina-Carballo
- Ibs.Granada, 18016 Granada, Spain; (M.L.F.-L.); (G.E.)
- UGC of Pediatrics, San Cecilio University Hospital, 18016 Granada, Spain;
- Department of Pediatrics, Medicine Faculty, University of Granada, 18071 Granada, Spain
| | - Darío Acuña-Castroviejo
- UGC of Laboratorios Clínicos, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain; (L.G.-M.); (T.d.H.)
- Ibs.Granada, 18016 Granada, Spain; (M.L.F.-L.); (G.E.)
- Ibs.CIBERfes, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable, 18016 Granada, Spain
- Centro de Investigación Biomédica, Departamento de Fisiología, Facultad de Medicina, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
| |
Collapse
|
14
|
Vernier CL, Nguyen LA, Gernat T, Ahmed AC, Chen Z, Robinson GE. Gut microbiota contribute to variations in honey bee foraging intensity. THE ISME JOURNAL 2024; 18:wrae030. [PMID: 38412118 PMCID: PMC11008687 DOI: 10.1093/ismejo/wrae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/17/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
Gut microbiomes are increasingly recognized for mediating diverse biological aspects of their hosts, including complex behavioral phenotypes. Although many studies have reported that experimental disruptions to the gut microbial community result in atypical host behavior, studies that address how gut microbes contribute to adaptive behavioral trait variation are rare. Eusocial insects represent a powerful model to test this, because of their simple gut microbiota and complex division of labor characterized by colony-level variation in behavioral phenotypes. Although previous studies report correlational differences in gut microbial community associated with division of labor, here, we provide evidence that gut microbes play a causal role in defining differences in foraging behavior between European honey bees (Apis mellifera). We found that gut microbial community structure differed between hive-based nurse bees and bees that leave the hive to forage for floral resources. These differences were associated with variation in the abundance of individual microbes, including Bifidobacterium asteroides, Bombilactobacillus mellis, and Lactobacillus melliventris. Manipulations of colony demography and individual foraging experience suggested that differences in gut microbial community composition were associated with task experience. Moreover, single-microbe inoculations with B. asteroides, B. mellis, and L. melliventris caused effects on foraging intensity. These results demonstrate that gut microbes contribute to division of labor in a social insect, and support a role of gut microbes in modulating host behavioral trait variation.
Collapse
Affiliation(s)
- Cassondra L Vernier
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Lan Anh Nguyen
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Tim Gernat
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Amy Cash Ahmed
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Zhenqing Chen
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Gene E Robinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61810, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| |
Collapse
|
15
|
Jakobi B, Vlaming P, Mulder D, Ribases M, Richarte V, Ramos-Quiroga JA, Tendolkar I, van Eijndhoven P, Vrijsen JN, Buitelaar J, Franke B, Hoogman M, Bloemendaal M, Arias-Vasquez A. The gut-microbiome in adult Attention-deficit/hyperactivity disorder - A Meta-analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.18.23300126. [PMID: 38196604 PMCID: PMC10775329 DOI: 10.1101/2023.12.18.23300126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental condition that persists into adulthood in the majority of individuals. While the gut-microbiome seems to be relevant for ADHD, the few publications on gut-microbial alterations in ADHD are inconsistent, in the investigated phenotypes, sequencing method/region, preprocessing, statistical approaches, and findings. To identify gut-microbiome alterations in adult ADHD, robust across studies and statistical approaches, we harmonized bioinformatic pipelines and analyses of raw 16S rRNA sequencing data from four adult ADHD case-control studies (N ADHD =312, N NoADHD =305). We investigated diversity and differential abundance of selected genera (logistic regression and ANOVA-like Differential Expression tool), corrected for age and sex, and meta-analyzed the study results. Converging results were investigated for association with hyperactive/impulsive and inattentive symptoms across all participants. Beta diversity was associated with ADHD diagnosis but showed significant heterogeneity between cohorts, despite harmonized analyses. Several genera were robustly associated with adult ADHD; e.g., Ruminococcus_torques_group (LogOdds=0.17, p fdr =4.42×10 -2 ), which was more abundant in adults with ADHD, and Eubacterium_xylanophilum_group (LogOdds= -0.12, p fdr =6.9 x 10 -3 ), which was less abundant in ADHD. Ruminococcus_torques_group was further associated with hyperactivity/impulsivity symptoms and Eisenbergiella with inattention and hyperactivity/impulsivity (p fdr <0.05). The literature points towards a role of these genera in inflammatory processes. Irreproducible results in the field of gut-microbiota research, due to between study heterogeneity and small sample sizes, stress the need for meta-analytic approaches and large sample sizes. While we robustly identified genera associated with adult ADHD, that might overall be considered beneficial or risk-conferring, functional studies are needed to shed light on these properties.
Collapse
|
16
|
Lin CK, Tseng YC, Hsu HY, Tsai TH, Huang KH. Association between early-life antibiotics use and the risk of attention-deficit/hyperactivity disorder: A real-world evidence study. Early Hum Dev 2023; 187:105897. [PMID: 37922778 DOI: 10.1016/j.earlhumdev.2023.105897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder. Recently, children using antibiotics showed an increased incidence of neurodevelopmental disorders. AIMS The purpose of this study was to investigate the association between antibiotics use and the risk of ADHD in children. STUDY DESIGN Population-based retrospective cohort study. SUBJECTS The Taiwan National Health Insurance Research Database was used to collect data of children. Prevalence of antibiotics use was analyzed in the children (age, <2 years) included in this study. There were 1,601,689 children included in this study between 2004 and 2012. OUTCOME MEASURES The risk of developing ADHD was estimated using the Cox proportional hazards model. RESULTS 71.25 % of children used at least one antibiotic, and the mean follow-up period was 7.07 years. After controlling for other related influencing factors, children who used antibiotics had a 1.12 times higher risk of ADHD than those who did not. The risk of ADHD increased through the use of penicillin and cephalosporin regardless of the duration of antibiotics use. CONCLUSIONS Antibiotics use in children-especially penicillin and cephalosporin-was associated with a higher risk of ADHD.
Collapse
Affiliation(s)
- Chih-Kang Lin
- Department of Pharmacy, Cheng Ching General Hospital, Taichung 400620, Taiwan
| | - Ya-Chun Tseng
- Department of Pediatrics, Cheng Ching General Hospital, Taichung 400620, Taiwan
| | - Hsing-Yu Hsu
- Department of Pharmacy, China Medical University Hospital, Taichung 404327, Taiwan
| | - Tung-Han Tsai
- Department of Health Services Administration, China Medical University, Taichung 406040, Taiwan
| | - Kuang-Hua Huang
- Department of Health Services Administration, China Medical University, Taichung 406040, Taiwan.
| |
Collapse
|
17
|
Wang Q, Yang Q, Liu X. The microbiota-gut-brain axis and neurodevelopmental disorders. Protein Cell 2023; 14:762-775. [PMID: 37166201 PMCID: PMC10599644 DOI: 10.1093/procel/pwad026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023] Open
Abstract
The gut microbiota has been found to interact with the brain through the microbiota-gut-brain axis, regulating various physiological processes. In recent years, the impacts of the gut microbiota on neurodevelopment through this axis have been increasingly appreciated. The gut microbiota is commonly considered to regulate neurodevelopment through three pathways, the immune pathway, the neuronal pathway, and the endocrine/systemic pathway, with overlaps and crosstalks in between. Accumulating studies have identified the role of the microbiota-gut-brain axis in neurodevelopmental disorders including autism spectrum disorder, attention deficit hyperactivity disorder, and Rett Syndrome. Numerous researchers have examined the physiological and pathophysiological mechanisms influenced by the gut microbiota in neurodevelopmental disorders (NDDs). This review aims to provide a comprehensive overview of advancements in research pertaining to the microbiota-gut-brain axis in NDDs. Furthermore, we analyzed both the current state of research progress and discuss future perspectives in this field.
Collapse
Affiliation(s)
- Qinwen Wang
- State Key Laboratory of Reproductive Medicine and offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Qianyue Yang
- State Key Laboratory of Reproductive Medicine and offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Xingyin Liu
- State Key Laboratory of Reproductive Medicine and offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
- Department of Microbiota Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
18
|
Pedroza Matute S, Iyavoo S. Exploring the gut microbiota: lifestyle choices, disease associations, and personal genomics. Front Nutr 2023; 10:1225120. [PMID: 37867494 PMCID: PMC10585655 DOI: 10.3389/fnut.2023.1225120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
The gut microbiota is a rich and dynamic ecosystem that actively interacts with the human body, playing a significant role in the state of health and disease of the host. Diet, exercise, mental health, and other factors have exhibited the ability to influence the gut bacterial composition, leading to changes that can prevent and improve, or favor and worsen, both intestinal and extra-intestinal conditions. Altered gut microbial states, or 'dysbiosis', associated with conditions and diseases are often characterized by shifts in bacterial abundance and diversity, including an impaired Firmicutes to Bacteroidetes ratio. By understanding the effect of lifestyle on the gut microbiota, personalized advice can be generated to suit each individual profile and foster the adoption of lifestyle changes that can both prevent and ameliorate dysbiosis. The delivery of effective and reliable advice, however, depends not only on the available research and current understanding of the topic, but also on the methods used to assess individuals and to discover the associations, which can introduce bias at multiple stages. The aim of this review is to summarize how human gut microbial variability is defined and what lifestyle choices and diseases have shown association with gut bacterial composition. Furthermore, popular methods to investigate the human gut microbiota are outlined, with a focus on the possible bias caused by the lack of use of standardized methods. Finally, an overview of the current state of personalized advice based on gut microbiota testing is presented, underlining its power and limitations.
Collapse
Affiliation(s)
| | - Sasitaran Iyavoo
- Nkaarco Diagnostics Limited, Norwich, United Kingdom
- School of Chemistry, College of Health and Science, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
19
|
Xiao L, Liu S, Wu Y, Huang Y, Tao S, Liu Y, Tang Y, Xie M, Ma Q, Yin Y, Dai M, Zhang M, Llamocca E, Gui H, Wang Q. The interactions between host genome and gut microbiome increase the risk of psychiatric disorders: Mendelian randomization and biological annotation. Brain Behav Immun 2023; 113:389-400. [PMID: 37557965 PMCID: PMC11258998 DOI: 10.1016/j.bbi.2023.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/23/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND The correlation between human gut microbiota and psychiatric diseases has long been recognized. Based on the heritability of the microbiome, genome-wide association studies on human genome and gut microbiome (mbGWAS) have revealed important host-microbiome interactions. However, establishing causal relationships between specific gut microbiome features and psychological conditions remains challenging due to insufficient sample sizes of previous studies of mbGWAS. METHODS Cross-cohort meta-analysis (via METAL) and multi-trait analysis (via MTAG) were used to enhance the statistical power of mbGWAS for identifying genetic variants and genes. Using two large mbGWAS studies (7,738 and 5,959 participants respectively) and12 disease-specific studies from the Psychiatric Genomics Consortium (PGC), we performed bidirectional two-sample mendelian randomization (MR) analyses between microbial features and psychiatric diseases (up to 500,199 individuals). Additionally, we conducted downstream gene- and gene-set-based analyses to investigate the shared biology linking gut microbiota and psychiatric diseases. RESULTS METAL and MTAG conducted in mbGWAS could boost power for gene prioritization and MR analysis. Increases in the number of lead SNPs and mapped genes were witnessed in 13/15 species and 5/10 genera after using METAL, and MTAG analysis gained an increase in sample size equivalent to expanding the original samples from 7% to 63%. Following METAL use, we identified a positive association between Bacteroides faecis and ADHD (OR, 1.09; 95 %CI, 1.02-1.16; P = 0.008). Bacteroides eggerthii and Bacteroides thetaiotaomicron were observed to be positively associated with PTSD (OR, 1.11; 95 %CI, 1.03-1.20; P = 0.007; OR, 1.11; 95 %CI, 1.01-1.23; P = 0.03). These findings remained stable across statistical models and sensitivity analyses. No genetic liabilities to psychiatric diseases may alter the abundance of gut microorganisms.Using biological annotation, we identified that those genes contributing to microbiomes (e.g., GRIN2A and RBFOX1) are expressed and enriched in human brain tissues. CONCLUSIONS Our statistical genetics strategy helps to enhance the power of mbGWAS, and our genetic findings offer new insights into biological pleiotropy and causal relationship between microbiota and psychiatric diseases.
Collapse
Affiliation(s)
- Liling Xiao
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Siyi Liu
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Yulu Wu
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Yunqi Huang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Shiwan Tao
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Yunjia Liu
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Yiguo Tang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Min Xie
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Qianshu Ma
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Yubing Yin
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Minhan Dai
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Mengting Zhang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Elyse Llamocca
- Center for Health Policy and Health Services Research, Henry Ford Health, Detroit, MI, USA
| | - Hongsheng Gui
- Center for Health Policy and Health Services Research, Henry Ford Health, Detroit, MI, USA; Behavioral Health Services and Psychiatry Research, Henry Ford Health, Detroit, MI, USA.
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China.
| |
Collapse
|
20
|
Yu G, Liu Z, Wu X, Becker B, Zhang K, Fan H, Peng S, Kuang N, Kang J, Dong G, Zhao XM, Schumann G, Feng J, Sahakian BJ, Robbins TW, Palaniyappan L, Zhang J. Common and disorder-specific cortical thickness alterations in internalizing, externalizing and thought disorders during early adolescence: an Adolescent Brain and Cognitive Development study. J Psychiatry Neurosci 2023; 48:E345-E356. [PMID: 37673436 PMCID: PMC10495167 DOI: 10.1503/jpn.220202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/13/2023] [Accepted: 05/17/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND A growing body of neuroimaging studies has reported common neural abnormalities among mental disorders in adults. However, it is unclear whether the distinct disorder-specific mechanisms operate during adolescence despite the overlap among disorders. METHODS We studied a large cohort of more than 11 000 preadolescent (age 9-10 yr) children from the Adolescent Brain and Cognitive Development cohort. We adopted a regrouping approach to compare cortical thickness (CT) alterations and longitudinal changes between healthy controls (n = 4041) and externalizing (n = 1182), internalizing (n = 1959) and thought disorder (n = 347) groups. Genome-wide association study (GWAS) was performed on regional CT across 4468 unrelated European youth. RESULTS Youth with externalizing or internalizing disorders exhibited increased regional CT compared with controls. Externalizing (p = 8 × 10-4, Cohen d = 0.10) and internalizing disorders (p = 2 × 10-3, Cohen d = 0.08) shared thicker CT in the left pars opercularis. The somatosensory and the primary auditory cortex were uniquely affected in externalizing disorders, whereas the primary motor cortex and higher-order visual association areas were uniquely affected in internalizing disorders. Only youth with externalizing disorders showed decelerated cortical thinning from age 10-12 years. The GWAS found 59 genome-wide significant associated genetic variants across these regions. Cortical thickness in common regions was associated with glutamatergic neurons, while internalizing-specific regional CT was associated with astrocytes, oligodendrocyte progenitor cells and GABAergic neurons. LIMITATIONS The sample size of the GWAS was relatively small. CONCLUSION Our study provides strong evidence for the presence of specificity in CT, developmental trajectories and underlying genetic underpinnings among externalizing and internalizing disorders during early adolescence. Our results support the neurobiological validity of the regrouping approach that could supplement the use of a dimensional approach in future clinical practice.
Collapse
Affiliation(s)
- Gechang Yu
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Zhaowen Liu
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Xinran Wu
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Benjamin Becker
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Kai Zhang
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Huaxin Fan
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Songjun Peng
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Nanyu Kuang
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Jujiao Kang
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Guiying Dong
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Xing-Ming Zhao
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Gunter Schumann
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Jianfeng Feng
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Barbara J Sahakian
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Trevor W Robbins
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Lena Palaniyappan
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Jie Zhang
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| |
Collapse
|
21
|
Panchal H, Athalye-Jape G, Rao S, Patole S. Growth and neuro-developmental outcomes of probiotic supplemented preterm infants-a systematic review and meta-analysis. Eur J Clin Nutr 2023; 77:855-871. [PMID: 36788356 PMCID: PMC10473962 DOI: 10.1038/s41430-023-01270-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/16/2023]
Abstract
Gut dysbiosis is associated with sepsis and necrotizing enterocolitis in preterm infants, which can adversely affect long-term growth and neurodevelopment. We aimed to synthesise evidence for the effect of probiotic supplementation on growth and neurodevelopmental outcomes in preterm infants. MEDLINE, EMBASE, EMCARE, Cochrane CENTRAL, and grey literature were searched in February 2022. Only randomized controlled trials (RCTs) were included. Meta-analysis was performed using random effects model. Effect sizes were expressed as standardized mean difference (SMD), mean difference (MD) or risk ratio (RR) and their corresponding 95% confidence intervals (CI). Risk of Bias (ROB) was assessed using the ROB-2 tool. Certainty of Evidence (CoE) was summarized using GRADE guidelines. Thirty RCTs (n = 4817) were included. Meta-analysis showed that probiotic supplementation was associated with better short-term weight gain [SMD 0.24 (95%CI 0.04, 0.44); 22 RCTs (n = 3721); p = 0.02; I2 = 88%; CoE: low]. However, length [SMD 0.12 (95%CI -0.13, 0.36); 7 RCTs, (n = 899); p = 0.35; I2 = 69%; CoE: low] and head circumference [SMD 0.09 (95%CI -0.15, 0.34); 8 RCTs (n = 1132); p = 0.46; I2 = 76%; CoE: low] were similar between the probiotic and placebo groups. Probiotic supplementation had no effect on neurodevelopmental impairment [RR 0.91 (95%CI 0.76, 1.08); 5 RCTs (n = 1556); p = 0.27; I2 = 0%; CoE: low]. Probiotic supplementation was associated with better short-term weight gain, but did not affect length, head circumference, long-term growth, and neurodevelopmental outcomes of preterm infants. Adequately powered RCTs are needed in this area. Prospero Registration: CRD42020064992.
Collapse
Affiliation(s)
- Harshad Panchal
- Neonatal Directorate, King Edward Memorial Hospital for Women, Perth, WA, Australia
| | - Gayatri Athalye-Jape
- Neonatal Directorate, King Edward Memorial Hospital for Women, Perth, WA, Australia.
- School of Medicine, University of Western Australia, Perth, WA, Australia.
| | - Shripada Rao
- School of Medicine, University of Western Australia, Perth, WA, Australia
- Neonatal Directorate, Perth Children's Hospital, Perth, WA, Australia
| | - Sanjay Patole
- Neonatal Directorate, King Edward Memorial Hospital for Women, Perth, WA, Australia
- School of Medicine, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
22
|
Cickovski T, Mathee K, Aguirre G, Tatke G, Hermida A, Narasimhan G, Stollstorff M. Attention Deficit Hyperactivity Disorder (ADHD) and the gut microbiome: An ecological perspective. PLoS One 2023; 18:e0273890. [PMID: 37594987 PMCID: PMC10437823 DOI: 10.1371/journal.pone.0273890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/08/2023] [Indexed: 08/20/2023] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is an increasingly prevalent neuropsychiatric disorder characterized by hyperactivity, inattention, and impulsivity. Symptoms emerge from underlying deficiencies in neurocircuitry, and recent research has suggested a role played by the gut microbiome. The gut microbiome is an ecosystem of interdependent taxa involved in an exponentially complex web of interactions, plus host gene and reaction pathways, some of which involve neurotransmitters with roles in ADHD neurocircuitry. Studies have analyzed the ADHD gut microbiome using macroscale metrics such as diversity and differential abundance, and have proposed several taxa as elevated or reduced in ADHD compared to Control. Few studies have delved into the complex underlying dynamics ultimately responsible for the emergence of such metrics, leaving a largely incomplete, sometimes contradictory, and ultimately inconclusive picture. We aim to help complete this picture by venturing beyond taxa abundances and into taxa relationships (i.e. cooperation and competition), using a publicly available gut microbiome dataset (targeted 16S, v3-4 region, qPCR) from an observational, case-control study of 30 Control (15 female, 15 male) and 28 ADHD (15 female, 13 male) undergraduate students. We first perform the same macroscale analyses prevalent in ADHD gut microbiome literature (diversity, differential abundance, and composition) to observe the degree of correspondence, or any new trends. We then estimate two-way ecological relationships by producing Control and ADHD Microbial Co-occurrence Networks (MCNs), using SparCC correlations (p ≤ 0.01). We perform community detection to find clusters of taxa estimated to mutually cooperate along with their centroids, and centrality calculations to estimate taxa most vital to overall gut ecology. We finally summarize our results, providing conjectures on how they can guide future experiments, some methods for improving our experiments, and general implications for the field.
Collapse
Affiliation(s)
- Trevor Cickovski
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, FL, United States of America
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL United States of America
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States of America
| | - Gloria Aguirre
- Department of Biological Sciences, College of Arts, Sciences and Education, Florida International University, Miami, FL, United States of America
| | - Gorakh Tatke
- Department of Biological Sciences, College of Arts, Sciences and Education, Florida International University, Miami, FL, United States of America
| | - Alejandro Hermida
- Cognitive Neuroscience Laboratory, Department of Psychology, Florida International University, Miami, FL, United States of America
| | - Giri Narasimhan
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, FL, United States of America
| | - Melanie Stollstorff
- Cognitive Neuroscience Laboratory, Department of Psychology, Florida International University, Miami, FL, United States of America
| |
Collapse
|
23
|
Cho YJ, Shin B, Lee SH, Park S, Kim YK, Kim JJ, Kim E. Altered Urine Microbiome in Male Children and Adolescents with Attention-Deficit Hyperactivity Disorder. Microorganisms 2023; 11:2063. [PMID: 37630623 PMCID: PMC10458914 DOI: 10.3390/microorganisms11082063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
While interest in developing the human microbiome as a biomarker for attention-deficit hyperactivity disorder (ADHD) is increasing, there has been limited exploration in utilizing urine samples. In this study, we analysed urine microbiome profiles by extracting 16S ribosomal DNA from purified bacteria-derived extracellular membrane vesicles obtained from urine samples. Sequencing libraries were constructed by amplifying V3-V4 hypervariable regions sequenced using Illumina MiSeq. Profiles of male Korean children and adolescents with ADHD (n = 33) were compared with healthy sex-matched controls (n = 39). Statistically controlling for age, we found decreased alpha diversity in the urine bacteria of the ADHD group, as evidenced by reduced Shannon and Simpson indices (p < 0.05), and significant differences in beta diversity between the two groups (p < 0.001). The phyla Firmicutes and Actinobacteriota, as well as the genera Ralstonia and Afipia, were relatively more abundant in the ADHD group. The phylum Proteobacteria and the genera Corynebacterium and Peptoniphilus were more abundant in the control group. Notably, the genus Afipia exhibited significant correlations with the Child Behavior Checklist Attention Problems score and DSM-oriented ADHD subscale. This study is the first to propose the urine microbiome as a potential biomarker for pediatric ADHD.
Collapse
Affiliation(s)
- Yoon Jae Cho
- Department of Psychiatry, College of Medicine, Yonsei University, Seoul 06273, Republic of Korea
| | - Bokyoung Shin
- Department of Psychiatry, College of Medicine, Yonsei University, Seoul 06273, Republic of Korea
| | - Sung-Ha Lee
- Center for Happiness Studies, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangmin Park
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 08826, Republic of Korea
| | | | - Jae-Jin Kim
- Department of Psychiatry, College of Medicine, Yonsei University, Seoul 06273, Republic of Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Eunjoo Kim
- Department of Psychiatry, College of Medicine, Yonsei University, Seoul 06273, Republic of Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| |
Collapse
|
24
|
Cassidy-Bushrow AE, Sitarik AR, Johnson CC, Johnson-Hooper TM, Kassem Z, Levin AM, Lynch SV, Ownby DR, Phillips JM, Yong GJM, Wegienka G, Straughen JK. Early-life gut microbiota and attention deficit hyperactivity disorder in preadolescents. Pediatr Res 2023; 93:2051-2060. [PMID: 35440767 PMCID: PMC9582043 DOI: 10.1038/s41390-022-02051-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Gut microbiota maturation coincides with nervous system development. Cross-sectional data suggest gut microbiota of individuals with and without attention deficit hyperactivity disorder (ADHD) differs. We hypothesized that infant gut microbiota composition is associated with later ADHD development in our on-going birth cohort study, WHEALS. METHODS Gut microbiota was profiled using 16S ribosomal RNA and the internal transcribed spacer region 2 (ITS2) sequencing in stool samples from 1 month and 6 months of age. ADHD was defined by parent-reported or medical record doctor diagnosis at age 10. RESULTS A total of 314 children had gut microbiota and ADHD data; 59 (18.8%) had ADHD. After covariate adjustment, bacterial phylogenetic diversity (p = 0.017) and bacterial composition (unweighted UniFrac p = 0.006, R2 = 0.9%) at age 6 months were associated with development of ADHD. At 1 month of age, 18 bacterial and 3 fungal OTUs were associated with ADHD development. At 6 months of age, 51 bacterial OTUs were associated with ADHD; 14 of the order Lactobacillales. Three fungal OTUs at 6 months of age were associated with ADHD development. CONCLUSIONS Infant gut microbiota is associated with ADHD development in pre-adolescents. Further studies replicating these findings and evaluating potential mechanisms of the association are needed. IMPACT Cross-sectional studies suggest that the gut microbiota of individuals with and without ADHD differs. We found evidence that the bacterial gut microbiota of infants at 1 month and 6 months of age is associated with ADHD at age 10 years. We also found novel evidence that the fungal gut microbiota in infancy (ages 1 month and 6 months) is associated with ADHD at age 10 years. This study addresses a gap in the literature in providing longitudinal evidence for an association of the infant gut microbiota with later ADHD development.
Collapse
Affiliation(s)
- Andrea E Cassidy-Bushrow
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA.
- Center for Urban Responses to Environmental Stressors, Wayne State University, Detroit, MI, USA.
| | | | - Christine Cole Johnson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
- Center for Urban Responses to Environmental Stressors, Wayne State University, Detroit, MI, USA
| | - Tisa M Johnson-Hooper
- Department of Pediatrics, Henry Ford Hospital, Detroit, MI, USA
- Center for Autism and Developmental Disabilities, Henry Ford Hospital, Detroit, MI, USA
| | - Zeinab Kassem
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | - Albert M Levin
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | - Susan V Lynch
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Dennis R Ownby
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Augusta University, Augusta, GA, USA
| | - Jannel M Phillips
- Center for Autism and Developmental Disabilities, Henry Ford Hospital, Detroit, MI, USA
- Department of Psychiatry and Behavioral Health Services, Division of Neuropsychology, Henry Ford Hospital, Detroit, MI, USA
| | - Germaine J M Yong
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Ganesa Wegienka
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
- Center for Urban Responses to Environmental Stressors, Wayne State University, Detroit, MI, USA
| | - Jennifer K Straughen
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
- Center for Urban Responses to Environmental Stressors, Wayne State University, Detroit, MI, USA
| |
Collapse
|
25
|
Bicknell B, Liebert A, Borody T, Herkes G, McLachlan C, Kiat H. Neurodegenerative and Neurodevelopmental Diseases and the Gut-Brain Axis: The Potential of Therapeutic Targeting of the Microbiome. Int J Mol Sci 2023; 24:9577. [PMID: 37298527 PMCID: PMC10253993 DOI: 10.3390/ijms24119577] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The human gut microbiome contains the largest number of bacteria in the body and has the potential to greatly influence metabolism, not only locally but also systemically. There is an established link between a healthy, balanced, and diverse microbiome and overall health. When the gut microbiome becomes unbalanced (dysbiosis) through dietary changes, medication use, lifestyle choices, environmental factors, and ageing, this has a profound effect on our health and is linked to many diseases, including lifestyle diseases, metabolic diseases, inflammatory diseases, and neurological diseases. While this link in humans is largely an association of dysbiosis with disease, in animal models, a causative link can be demonstrated. The link between the gut and the brain is particularly important in maintaining brain health, with a strong association between dysbiosis in the gut and neurodegenerative and neurodevelopmental diseases. This link suggests not only that the gut microbiota composition can be used to make an early diagnosis of neurodegenerative and neurodevelopmental diseases but also that modifying the gut microbiome to influence the microbiome-gut-brain axis might present a therapeutic target for diseases that have proved intractable, with the aim of altering the trajectory of neurodegenerative and neurodevelopmental diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, autism spectrum disorder, and attention-deficit hyperactivity disorder, among others. There is also a microbiome-gut-brain link to other potentially reversible neurological diseases, such as migraine, post-operative cognitive dysfunction, and long COVID, which might be considered models of therapy for neurodegenerative disease. The role of traditional methods in altering the microbiome, as well as newer, more novel treatments such as faecal microbiome transplants and photobiomodulation, are discussed.
Collapse
Affiliation(s)
- Brian Bicknell
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
| | - Ann Liebert
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
- Department of Governance and Research, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia;
| | - Thomas Borody
- Centre for Digestive Diseases, Five Dock, NSW 2046, Australia;
| | - Geoffrey Herkes
- Department of Governance and Research, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia;
| | - Craig McLachlan
- Centre for Healthy Futures, Torrens University Australia, Ultimo, NSW 2007, Australia;
| | - Hosen Kiat
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
- Centre for Healthy Futures, Torrens University Australia, Ultimo, NSW 2007, Australia;
- Macquarie Medical School, Macquarie University, Macquarie Park, NSW 2109, Australia
- ANU College of Health and Medicine, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
26
|
Taş E, Ülgen KO. Understanding the ADHD-Gut Axis by Metabolic Network Analysis. Metabolites 2023; 13:592. [PMID: 37233633 PMCID: PMC10223614 DOI: 10.3390/metabo13050592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder diagnosed with hyperactivity, impulsivity, and a lack of attention inconsistent with the patient's development level. The fact that people with ADHD frequently experience gastrointestinal (GI) dysfunction highlights the possibility that the gut microbiome may play a role in this condition. The proposed research aims to determine a biomarker for ADHD by reconstructing a model of the gut-microbial community. Genome-scale metabolic models (GEM) considering the relationship between gene-protein-reaction associations are used to simulate metabolic activities in organisms of gut. The production rates of dopamine and serotonin precursors and the key short chain fatty acids which affect the health status are determined under three diets (Western, Atkins', Vegan) and compared with those of healthy people. Elasticities are calculated to understand the sensitivity of exchange fluxes to changes in diet and bacterial abundance at the species level. The presence of Bacillota (genus Coprococcus and Subdoligranulum), Actinobacteria (genus Collinsella), Bacteroidetes (genus Bacteroides), and Bacteroidota (genus Alistipes) may be possible gut microbiota indicators of ADHD. This type of modeling approach taking microbial genome-environment interactions into account helps us understand the gastrointestinal mechanisms behind ADHD, and establish a path to improve the quality of life of ADHD patients.
Collapse
Affiliation(s)
| | - Kutlu O. Ülgen
- Department of Chemical Engineering, Bogazici University, Istanbul 34342, Turkey;
| |
Collapse
|
27
|
Russell D, Arnold LE. Complementary and Integrative Treatments for Attention-Deficit/Hyperactivity Disorder in Youth. Child Adolesc Psychiatr Clin N Am 2023; 32:173-192. [PMID: 37147036 DOI: 10.1016/j.chc.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
First-line psychopharmacologic and psychosocial treatments for attention-deficit/hyperactivity disorder in children are effective but limited by tolerability and accessibility problems. Many complementary and integrative strategies have been investigated as alternative or adjunctive treatments for the disorder, and the literature has progressed to meta-analyses for several. Although heterogeneity of study methods and risk of bias pervades the literature, we conclude that Omega-3 supplementation, dietary restriction of artificial food colorings, and physical activity can be considered evidence-based. Additionally, meditation, yoga, and sleep hygiene are safe, partially effective, cost effective and sensible adjunctive treatment strategies.
Collapse
Affiliation(s)
- Douglas Russell
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, c/o Seattle Children's Hospital, OA.5.154 PO Box 5371, Seattle, WA 98145-5005, USA.
| | - L Eugene Arnold
- Department of Psychiatry and Behavioral Health, The Ohio State University College of Medicine, 395E McCampbell Hall, 1581 Dodd Drive, Columbus, OH 43210, USA
| |
Collapse
|
28
|
Xu X, Zhuo L, Zhang L, Peng H, Lyu Y, Sun H, Zhai Y, Luo D, Wang X, Li X, Li L, Zhang Y, Ma X, Wang Q, Li Y. Dexmedetomidine alleviates host ADHD-like behaviors by reshaping the gut microbiota and reducing gut-brain inflammation. Psychiatry Res 2023; 323:115172. [PMID: 36958092 DOI: 10.1016/j.psychres.2023.115172] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent psychiatric disorders that affects children and even continues into adulthood. Dexmedetomidine (DEX), a short-term sedative, can selectively activate the α2-adrenoceptor. Treatment with α2-adrenergic agonists in patients with ADHD is becoming increasingly common. However, the therapeutic potential of DEX for the treatment of ADHD is unknown. Here, we evaluated the effect of DEX on ADHD-like behavior in spontaneously hypertensive rats (SHRs), a widely used animal model of ADHD. DEX treatment ameliorated hyperactivity and spatial working memory deficits and normalized θ electroencephalogram (EEG) rhythms in SHRs. We also found that DEX treatment altered the gut microbiota composition and promoted the enrichment of beneficial gut bacterial genera associated with anti-inflammatory effects in SHRs. The gut pathological scores and permeability and the level of inflammation observed in the gut and brain were remarkably improved after DEX administration. Moreover, transplantation of fecal microbiota from DEX-treated SHRs produced effects that mimicked the therapeutic effects of DEX administration. Therefore, DEX is a promising treatment for ADHD that functions by reshaping the composition of the gut microbiota and reducing inflammation in the gut and brain.
Collapse
Affiliation(s)
- Xiangzhao Xu
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Anesthesiology, The People's Hospital of Nanchuan, Chongqing 408400, China
| | - Lixia Zhuo
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Linjuan Zhang
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Huan Peng
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yixuan Lyu
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Huan Sun
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yifang Zhai
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Danlei Luo
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiaodan Wang
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xinyang Li
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Liya Li
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ying Zhang
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiancang Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qiang Wang
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yan Li
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
29
|
Zhao M, Meng Y, Cao B, Tong J, Liu X, Yan H, Yang H, Han H, Liang X, Chen H. A bibliometric analysis of studies on gut microbiota in attention-deficit and hyperactivity disorder from 2012 to 2021. Front Microbiol 2023; 14:1055804. [PMID: 37007507 PMCID: PMC10050751 DOI: 10.3389/fmicb.2023.1055804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
BackgroundAn increasing number of studies have focused on the role of gut microbiota in the treatment of ADHD, but its related molecular mechanisms are not yet clear, and there is still room for development of studies targeting this area. This study analyzes publications from 2012 to 2021 in a comprehensive and multi-faceted visualization, with the aim of grasping the existing research profile and guiding scholars to make more in-depth studies.MethodsThe 1,677 articles and 298 review articles on gut microbiota in ADHD were retrieved from the Web of Science Core Collection. CiteSpace, VOSviewer, Microsoft Excel 2019, Scimago Graphica, Bibliometrix and Pajek metrics software were used for visualization and analysis of the included literature.ResultsOn August 3, 2022, a total of 1975 English-language articles on gut microbiota in ADHD were retrieved from Web of Science Core Collection (WoSCC) from January 2012 to December 2021, with a steady upward trend in the number of articles published in this field over the decade. The top three countries in terms of the number of articles published are the United States, China, and Spain. Meanwhile, CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS CSIC, UNIV OF CALIFORNIA SYSTEM, and UDICE FRENCH RESEARCH UNIV have made significant contributions in this field. In the analysis of the published journals, PLoS One was not only the first in terms of number of articles published but also the most cited. Wang J was the most prolific author and CAPORASO JG ranked first in terms of co-cited authors. In addition, “Diet rapidly and reproducibly alters the human gut microbiome,” published by David LA et al., has the highest citation frequency in this field. The most frequently occurring keyword was “gut microbiota.”ConclusionThe results of this paper clarify the current status of research on gut microbiota in ADHD. Based on the research on the mechanism of gut microbiota in other diseases, there is reason to believe that the exploration of gut microbiota in ADHD must be increasingly mature. And the study speculates that future research may focus on “nutrition supplements,” “lipid metabolism,” and “gut brain axis.” It is imperative to promote a closer international cooperation among scholars in this field.
Collapse
Affiliation(s)
- Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hopsital, Central South University, Changsha, Hunan, China
| | - Yang Meng
- Department of Pediatrics, The Third Xiangya Hopsital, Central South University, Changsha, Hunan, China
| | - Buzi Cao
- Department of Pediatrics, The Third Xiangya Hopsital, Central South University, Changsha, Hunan, China
- Medical School, Hunan Normal University, Changsha, China
| | - Jianbin Tong
- Department of Anesthesiology, The Third Xiangya Hopsital, Central South University, Changsha, Hunan, China
- Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hopsital, Central South University, Changsha, Hunan, China
| | - Xiaoying Liu
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hao Yan
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hanqi Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Houzhi Han
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiaobing Liang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Chen
- Department of Clinical Laboratory, The Third Xiangya Hopsital, Central South University, Changsha, Hunan, China
- *Correspondence: Hui Chen,
| |
Collapse
|
30
|
Yang LL, Stiernborg M, Skott E, Xu J, Wu Y, Landberg R, Arefin S, Kublickiene K, Millischer V, Nilsson IAK, Schalling M, Giacobini M, Lavebratt C. Effects of a Synbiotic on Plasma Immune Activity Markers and Short-Chain Fatty Acids in Children and Adults with ADHD-A Randomized Controlled Trial. Nutrients 2023; 15:1293. [PMID: 36904292 PMCID: PMC10004766 DOI: 10.3390/nu15051293] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Synbiotic 2000, a pre + probiotic, reduced comorbid autistic traits and emotion dysregulation in attention deficit hyperactivity disorder (ADHD) patients. Immune activity and bacteria-derived short-chain fatty acids (SCFAs) are microbiota-gut-brain axis mediators. The aim was to investigate Synbiotic 2000 effects on plasma levels of immune activity markers and SCFAs in children and adults with ADHD. ADHD patients (n = 182) completed the 9-week intervention with Synbiotic 2000 or placebo and 156 provided blood samples. Healthy adult controls (n = 57) provided baseline samples. At baseline, adults with ADHD had higher pro-inflammatory sICAM-1 and sVCAM-1 and lower SCFA levels than controls. Children with ADHD had higher baseline sICAM-1, sVCAM-1, IL-12/IL-23p40, IL-2Rα, and lower formic, acetic, and propionic acid levels than adults with ADHD. sICAM-1, sVCAM-1, and propionic acid levels were more abnormal in children on medication. Synbiotic 2000, compared to placebo, reduced IL-12/IL-23p40 and sICAM-1 and increased propionic acid levels in children on medication. SCFAs correlated negatively with sICAM-1 and sVCAM-1. Preliminary human aortic smooth-muscle-cell experiments indicated that SCFAs protected against IL-1β-induced ICAM-1 expression. These findings suggest that treatment with Synbiotic 2000 reduces IL12/IL-23p40 and sICAM-1 and increases propionic acid levels in children with ADHD. Propionic acid, together with formic and acetic acid, may contribute to the lowering of the higher-than-normal sICAM-1 levels.
Collapse
Affiliation(s)
- Liu L. Yang
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Miranda Stiernborg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - Elin Skott
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
- PRIMA Child and Adult Psychiatry Stockholm AB, 163 74 Rinkeby, Sweden
| | - Jingjing Xu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - Yujiao Wu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Samsul Arefin
- Division of Renal Medicine, Department of Clinical Science, Intervention & Technology, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention & Technology, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Vincent Millischer
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Ida A. K. Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - MaiBritt Giacobini
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
- PRIMA Child and Adult Psychiatry Stockholm AB, 163 74 Rinkeby, Sweden
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| |
Collapse
|
31
|
Panchal SK, Brown L. Potential Benefits of Anthocyanins in Chronic Disorders of the Central Nervous System. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010080. [PMID: 36615279 PMCID: PMC9822395 DOI: 10.3390/molecules28010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Anthocyanins have been shown to be effective in chronic diseases because of their antioxidant and anti-inflammatory effects together with changes in the gut microbiota and modulation of neuropeptides such as insulin-like growth factor-1. This review will examine whether these mechanisms may be effective to moderate the symptoms of disorders of the central nervous system in humans, including schizophrenia, Parkinson's disease, Alzheimer's disease, autism spectrum disorder, depression, anxiety, attention-deficit hyperactivity disorder and epilepsy. Thus, anthocyanins from fruits and berries should be considered as complementary interventions to improve these chronic disorders.
Collapse
Affiliation(s)
- Sunil K. Panchal
- School of Science, Western Sydney University, Richmond, NSW 2753, Australia
| | - Lindsay Brown
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
- Correspondence: ; Tel.: +61-433-062-123
| |
Collapse
|
32
|
Diamanti T, Prete R, Battista N, Corsetti A, De Jaco A. Exposure to Antibiotics and Neurodevelopmental Disorders: Could Probiotics Modulate the Gut-Brain Axis? Antibiotics (Basel) 2022; 11:1767. [PMID: 36551423 PMCID: PMC9774196 DOI: 10.3390/antibiotics11121767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
In order to develop properly, the brain requires the intricate interconnection of genetic factors and pre-and postnatal environmental events. The gut-brain axis has recently raised considerable interest for its involvement in regulating the development and functioning of the brain. Consequently, alterations in the gut microbiota composition, due to antibiotic administration, could favor the onset of neurodevelopmental disorders. Literature data suggest that the modulation of gut microbiota is often altered in individuals affected by neurodevelopmental disorders. It has been shown in animal studies that metabolites released by an imbalanced gut-brain axis, leads to alterations in brain function and deficits in social behavior. Here, we report the potential effects of antibiotic administration, before and after birth, in relation to the risk of developing neurodevelopmental disorders. We also review the potential role of probiotics in treating gastrointestinal disorders associated with gut dysbiosis after antibiotic administration, and their possible effect in ameliorating neurodevelopmental disorder symptoms.
Collapse
Affiliation(s)
- Tamara Diamanti
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, 00185 Rome, Italy
| | - Roberta Prete
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Natalia Battista
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Aldo Corsetti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Antonella De Jaco
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
33
|
Lower plasma concentrations of short-chain fatty acids (SCFAs) in patients with ADHD. J Psychiatr Res 2022; 156:36-43. [PMID: 36228390 DOI: 10.1016/j.jpsychires.2022.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/21/2022] [Accepted: 09/23/2022] [Indexed: 01/20/2023]
Abstract
Short-chain fatty acids (SCFAs), produced during bacterial fermentation, have been shown to be mediators in the microbiota-gut-brain axis. This axis has been proposed to influence psychiatric symptoms seen in attention deficit hyperactivity disorder (ADHD). However, there is no report of plasma SCFA concentrations in ADHD. The aim of this study was to explore the plasma concentrations of SCFAs in children and adults with ADHD and the possible factors that could influence those levels. We collected data on age group, sex, serum vitamin D levels, delivery mode, body mass index, diet, medication and blood samples from 233 ADHD patients and 36 family-related healthy controls. The concentrations of SCFAs and the intermediary metabolite succinic acid, were measured using liquid chromatography-mass spectrometry. Adults with ADHD had lower plasma concentrations of formic, acetic, propionic and succinic acid than their healthy family members. When adjusting for SCFA-influential factors among those with ADHD, children had lower concentrations of formic, propionic and isovaleric acid than adults, and those who had more antibiotic medications during the last 2 years had lower concentrations of formic, propionic and succinic acid. When adjusting for antibiotic medication, we found that among children, those currently on stimulant medication had lower acetic and propionic acid levels, and adults with ADHD had lower formic and propionic acid concentrations than adult healthy family members. In all, our findings show lower-than-normal plasma concentrations of SCFAs in ADHD explained in-part by antibiotic medication, age and stimulant medication. Whether or not this is of clinical significance is yet to be explored.
Collapse
|
34
|
Peng L, Hu G, Yao Q, Wu J, He Z, Law BYK, Hu G, Zhou X, Du J, Wu A, Yu L. Microglia autophagy in ischemic stroke: A double-edged sword. Front Immunol 2022; 13:1013311. [PMID: 36466850 PMCID: PMC9708732 DOI: 10.3389/fimmu.2022.1013311] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/25/2022] [Indexed: 08/14/2023] Open
Abstract
Ischemic stroke (IS) is one of the major types of cerebrovascular diseases causing neurological morbidity and mortality worldwide. In the pathophysiological process of IS, microglia play a beneficial role in tissue repair. However, it could also cause cellular damage, consequently leading to cell death. Inflammation is characterized by the activation of microglia, and increasing evidence showed that autophagy interacts with inflammation through regulating correlative mediators and signaling pathways. In this paper, we summarized the beneficial and harmful effects of microglia in IS. In addition, we discussed the interplay between microglia autophagy and ischemic inflammation, as along with its application in the treatment of IS. We believe this could help to provide the theoretical references for further study into IS and treatments in the future.
Collapse
Affiliation(s)
- Li Peng
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Medicine Imaging, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Guangqiang Hu
- Department of Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Qianfang Yao
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Ziyang He
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Guishan Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaogang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Junrong Du
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Medicine Imaging, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
35
|
Knez R, Stevanovic D, Fernell E, Gillberg C. Orexin/Hypocretin System Dysfunction in ESSENCE (Early Symptomatic Syndromes Eliciting Neurodevelopmental Clinical Examinations). Neuropsychiatr Dis Treat 2022; 18:2683-2702. [PMID: 36411777 PMCID: PMC9675327 DOI: 10.2147/ndt.s358373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Early Symptomatic Syndromes Eliciting Neurodevelopmental Clinical Examinations (ESSENCE) is an umbrella term covering a wide range of neurodevelopmental difficulties and disorders. Thus, ESSENCE includes attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and other neurodevelopmental disorders (NDDs) and difficulties, with a variety of symptoms in cognitive, motor, sensory, social, arousal, regulatory, emotional, and behavioral developmental domains, frequently co-occurring and likely having partly common neurobiological substrates. The ESSENCE concept is a clinical paradigm that promotes organizing NDDs in everyday clinical practice according to their coexistence, symptom dimensions overlapping, and treatment possibilities. Despite increased knowledge regarding NDDs, the neurobiological mechanisms that underlie them and other ESSENCE-related problems, are not well understood. With its wide range of neural circuits and interactions with numerous neurotransmitters, the orexin/hypocretin system (Orx-S) is possibly associated with a variety of neurocognitive, psychobiological, neuroendocrine, and physiological functions and behaviors. Dysfunction of Orx-S has been implicated in various psychiatric and neurological disorders. This article provides an overview of Orx-S dysfunctions' possible involvement in the development, presentation, and maintenance of ESSENCE. We provide a focused review of current research evidence linking orexin neuropeptides with specific clinical NDDs symptoms, mostly in ADHD and ASD, within the Research Domain Criteria (RDoC) framework. We propose that Orx-S dysfunction might have an important role in some of these neurodevelopmental symptom domains, such as arousal, wakefulness, sleep, motor and sensory processing, mood and emotional regulation, fear processing, reward, feeding, attention, executive functions, and sociability. Our perspective is presented from a clinical point of view. Further, more thorough systematic reviews are needed as well as planning of extensive new research into the Orx-S's role in ESSENCE, especially considering RDoC elements.
Collapse
Affiliation(s)
- Rajna Knez
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Skaraborg Hospital, Skövde, Sweden
- School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Dejan Stevanovic
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elisabeth Fernell
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christopher Gillberg
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
36
|
Shirvani-Rad S, Ejtahed HS, Ettehad Marvasti F, Taghavi M, Sharifi F, Arzaghi SM, Larijani B. The Role of Gut Microbiota-Brain Axis in Pathophysiology of ADHD: A Systematic Review. J Atten Disord 2022; 26:1698-1710. [PMID: 35048732 DOI: 10.1177/10870547211073474] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The main goal of this systematic review is to summarize evidences regarding alterations of microbial composition in ADHD cases and uncover underlying mechanisms. METHODS A comprehensive search was conducted on PubMed, Web of Science, and Scopus databases up to March 2021. All the observational studies including case-control, cross-sectional, and cohorts investigating the correlations between the gut microbiota and ADHD in both adults and children were included. RESULTS We found eight eligible studies. Enterococcus, Bifidobacterium, and Odoribacter were increased which may lead to impaired dopamine related functions in CNS. Moreover, decrease of Faecalibacterium frequency in ADHD could result in higher permeability and crossing of inflammatory cytokines. Regarding the short chain fatty acids-producing bacteria, Ruminococcaceae family decreased and Bacteroides uniformis and Bacteroides ovatus species increased. CONCLUSION Gut microbiota correlation with ADHD and its underlying mechanisms could open new windows for developing novel therapies of ADHD by manipulating microbiota.
Collapse
Affiliation(s)
- Salman Shirvani-Rad
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Ettehad Marvasti
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - MinaSadat Taghavi
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Sharifi
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Masoud Arzaghi
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Hooi SL, Dwiyanto J, Rasiti H, Toh KY, Wong RKM, Lee JWJ. A case report of improvement on ADHD symptoms after fecal microbiota transplantation with gut microbiome profiling pre- and post-procedure. Curr Med Res Opin 2022; 38:1977-1982. [PMID: 36164761 DOI: 10.1080/03007995.2022.2129232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Recent studies demonstrate the association of the gut microbiome in regulating interactions between the central nervous system and intestinal function. Individuals with attention-deficit hyperactivity disorder (ADHD) have been shown to have unique gut microbial signature, with depletion of beneficial commensal microbes. Fecal microbiota transplant (FMT) restores the imbalanced gut microbiome and may replete missing microbes to increase production of hormones and neurotransmitters regulating human behavior and cognition. RESEARCH DESIGN & METHODS Here, we present an interesting case of a 22-year-old woman treated with FMT primarily to treat recurrent Clostridioides difficile infection, which coincidentally alleviated her ADHD symptoms. We also present the pre- and post-FMT gut microbiota profiles conducted using shotgun metagenomic sequencing on the patient's fecal samples to thereby highlight potential microbial-associated mechanisms associated with the relief of ADHD symptoms. RESULTS & CONCLUSIONS Our case report provides preliminary evidence regarding the use of FMT in a patient with C. difficile and ADHD. We speculate that gut microbiome modulation, in particular the gain or loss of specific microbial species and pathways involving the metabolism of SCFAs, tryptophan and GABA, may merit further exploration as a potential therapeutic strategy for ADHD.
Collapse
Affiliation(s)
| | - Jacky Dwiyanto
- School of Science, Monash University Malaysia, Selangor, Malaysia
| | | | | | - Reuben Kong Min Wong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Gastroenterology, gutCARE, Singapore
| | - Jonathan Wei Jie Lee
- Data Science, AMILI Pte. Ltd., Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Gastroenterology and Hepatology, National University Hospital, Singapore, University Medical Cluster, Singapore
| |
Collapse
|
38
|
Pinto S, Correia-de-Sá T, Sampaio-Maia B, Vasconcelos C, Moreira P, Ferreira-Gomes J. Eating Patterns and Dietary Interventions in ADHD: A Narrative Review. Nutrients 2022; 14:nu14204332. [PMID: 36297016 PMCID: PMC9608000 DOI: 10.3390/nu14204332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common neurodevelopmental disorders in childhood, affecting ~7% of children and adolescents. Given its adverse health outcomes and high healthcare and societal costs, other treatment options beyond pharmacotherapy have been explored. Case-control studies have shown that dietary patterns may influence the risk of ADHD, and specific dietary interventions have been proposed as coadjuvant treatments in this disorder. These include nutritional supplements, gut microbiome-targeted interventions with biotics, and elimination diets. The purpose of this review is to examine which dietary patterns are most associated with ADHD and to summarize the existing evidence for the clinical use of dietary interventions. The literature showed that non-healthy dietary patterns were positively associated with ADHD, whereas healthy patterns were negatively associated. As for nutritional supplements, only vitamin D and vitamin D + magnesium appeared to improve ADHD symptoms when baseline levels of vitamin D were insufficient/deficient. Regarding biotics, evidence was only found for Lactobacillus rhamnosus GG and for multi-species probiotic supplementation. Elimination diets have scarce evidence and lead to nutritional deficiencies, so caution is advised. Overall, more robust scientific evidence is required for these dietary interventions to be implemented as part of ADHD therapy.
Collapse
Affiliation(s)
- Sofia Pinto
- Faculty of Nutrition and Food Sciences, University of Porto, 4150-180 Porto, Portugal
| | - Teresa Correia-de-Sá
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- INEB—Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- i3S—Institute for Research & Innovation in Health, University of Porto, 4200-135 Porto, Portugal
| | - Benedita Sampaio-Maia
- INEB—Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- i3S—Institute for Research & Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal
| | - Carla Vasconcelos
- Faculty of Nutrition and Food Sciences, University of Porto, 4150-180 Porto, Portugal
- Nutrition Service, University Hospital Center of São João, 4200-319 Porto, Portugal
| | - Pedro Moreira
- Faculty of Nutrition and Food Sciences, University of Porto, 4150-180 Porto, Portugal
- EPIUnit, Institute of Public Health, University of Porto, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-225-074-320
| | - Joana Ferreira-Gomes
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- i3S—Institute for Research & Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- IBMC—Institute for Molecular and Cell Biology, University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
39
|
Góralczyk-Bińkowska A, Szmajda-Krygier D, Kozłowska E. The Microbiota-Gut-Brain Axis in Psychiatric Disorders. Int J Mol Sci 2022; 23:11245. [PMID: 36232548 PMCID: PMC9570195 DOI: 10.3390/ijms231911245] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/10/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Modulating the gut microbiome and its influence on human health is the subject of intense research. The gut microbiota could be associated not only with gastroenterological diseases but also with psychiatric disorders. The importance of factors such as stress, mode of delivery, the role of probiotics, circadian clock system, diet, and occupational and environmental exposure in the relationship between the gut microbiota and brain function through bidirectional communication, described as "the microbiome-gut-brain axis", is especially underlined. In this review, we discuss the link between the intestinal microbiome and the brain and host response involving different pathways between the intestinal microbiota and the nervous system (e.g., neurotransmitters, endocrine system, immunological mechanisms, or bacterial metabolites). We review the microbiota alterations and their results in the development of psychiatric disorders, including major depressive disorder (MDD), schizophrenia (SCZ), bipolar disorder (BD), autism spectrum disorder (ASD), and attention-deficit hyperactivity disorder (ADHD).
Collapse
Affiliation(s)
- Aleksandra Góralczyk-Bińkowska
- Department of Microbiology and Experimental Immunology, MOLecoLAB: Lodz Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Mazowiecka 5 Street, 92-215 Lodz, Poland
| | - Dagmara Szmajda-Krygier
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1 Street, 90-151 Lodz, Poland
| | - Elżbieta Kozłowska
- Department of Microbiology and Experimental Immunology, MOLecoLAB: Lodz Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Mazowiecka 5 Street, 92-215 Lodz, Poland
| |
Collapse
|
40
|
Minich DM, Henning M, Darley C, Fahoum M, Schuler CB, Frame J. Is Melatonin the "Next Vitamin D"?: A Review of Emerging Science, Clinical Uses, Safety, and Dietary Supplements. Nutrients 2022; 14:3934. [PMID: 36235587 PMCID: PMC9571539 DOI: 10.3390/nu14193934] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Melatonin has become a popular dietary supplement, most known as a chronobiotic, and for establishing healthy sleep. Research over the last decade into cancer, Alzheimer's disease, multiple sclerosis, fertility, PCOS, and many other conditions, combined with the COVID-19 pandemic, has led to greater awareness of melatonin because of its ability to act as a potent antioxidant, immune-active agent, and mitochondrial regulator. There are distinct similarities between melatonin and vitamin D in the depth and breadth of their impact on health. Both act as hormones, affect multiple systems through their immune-modulating, anti-inflammatory functions, are found in the skin, and are responsive to sunlight and darkness. In fact, there may be similarities between the widespread concern about vitamin D deficiency as a "sunlight deficiency" and reduced melatonin secretion as a result of "darkness deficiency" from overexposure to artificial blue light. The trend toward greater use of melatonin supplements has resulted in concern about its safety, especially higher doses, long-term use, and application in certain populations (e.g., children). This review aims to evaluate the recent data on melatonin's mechanisms, its clinical uses beyond sleep, safety concerns, and a thorough summary of therapeutic considerations concerning dietary supplementation, including the different formats available (animal, synthetic, and phytomelatonin), dosing, timing, contraindications, and nutrient combinations.
Collapse
Affiliation(s)
- Deanna M. Minich
- Department of Human Nutrition and Functional Medicine, University of Western States, Portland, OR 97213, USA
| | - Melanie Henning
- Department of Sports and Performance Psychology, University of the Rockies, Denver, CO 80202, USA
| | - Catherine Darley
- College of Naturopathic Medicine, National University of Natural Medicine, Portland, OR 97201, USA
| | - Mona Fahoum
- School of Naturopathic Medicine, Bastyr University, Kenmore, WA 98028, USA
| | - Corey B. Schuler
- School of Nutrition, Sonoran University of Health Sciences, Tempe, AZ 85282, USA
- Department of Online Education, Northeast College of Health Sciences, Seneca Falls, NY 13148, USA
| | - James Frame
- Natural Health International Pty., Ltd., Sydney, NSW 2000, Australia
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA
| |
Collapse
|
41
|
The Potential Role of m6A in the Regulation of TBI-Induced BGA Dysfunction. Antioxidants (Basel) 2022; 11:antiox11081521. [PMID: 36009239 PMCID: PMC9405408 DOI: 10.3390/antiox11081521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
The brain–gut axis (BGA) is an important bidirectional communication pathway for the development, progress and interaction of many diseases between the brain and gut, but the mechanisms remain unclear, especially the post-transcriptional regulation of BGA after traumatic brain injury (TBI). RNA methylation is one of the most important modifications in post-transcriptional regulation. N6-methyladenosine (m6A), as the most abundant post-transcriptional modification of mRNA in eukaryotes, has recently been identified and characterized in both the brain and gut. The purpose of this review is to describe the pathophysiological changes in BGA after TBI, and then investigate the post-transcriptional bidirectional regulation mechanisms of TBI-induced BGA dysfunction. Here, we mainly focus on the characteristics of m6A RNA methylation in the post-TBI BGA, highlight the possible regulatory mechanisms of m6A modification in TBI-induced BGA dysfunction, and finally discuss the outcome of considering m6A as a therapeutic target to improve the recovery of the brain and gut dysfunction caused by TBI.
Collapse
|
42
|
Laue HE, Karagas MR, Coker MO, Bellinger DC, Baker ER, Korrick SA, Madan JC. Sex-specific relationships of the infant microbiome and early-childhood behavioral outcomes. Pediatr Res 2022; 92:580-591. [PMID: 34732816 PMCID: PMC9065210 DOI: 10.1038/s41390-021-01785-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND A link between the gut microbiome and behavior is hypothesized, but most previous studies are cross-sectional or in animal models. The modifying role of host sex is poorly characterized. We aimed to identify sex-specific prospective associations between the early-life gut microbiome and preschool-age neurobehavior. METHODS In a prospective cohort, gut microbiome diversity and taxa were estimated with 16S rRNA sequencing at 6 weeks, 1 year, and 2 years. Species and gene pathways were inferred from metagenomic sequencing at 6 weeks and 1 year. When subjects were 3 years old, parents completed the Behavioral Assessment System for Children, second edition (BASC-2). A total of 260 children contributed 523 16S rRNA and 234 metagenomics samples to analysis. Models adjusted for sociodemographic characteristics. RESULTS Higher diversity at 6 weeks was associated with better internalizing problems among boys, but not girls [βBoys = -1.86 points/SD Shannon diversity; 95% CI (-3.29, -0.42), pBoys = 0.01, βGirls = 0.22 (-1.43, 1.87), pGirls = 0.8, pinteraction = 0.06]. Among other taxa-specific associations, Bifidobacterium at 6 weeks was associated with Adaptive Skills scores in a sex-specific manner. We observed relationships between functional features and BASC-2 scores, including vitamin B6 biosynthesis pathways and better Depression scores. CONCLUSIONS This study advances our understanding of microbe-host interactions with implications for childhood behavioral health. IMPACT This is one of the first studies to examine the early-life microbiome and neurobehavior, and the first to examine prospective sex-specific associations. Infant and early-childhood microbiomes relate to neurobehavior including anxiety, depression, hyperactivity, and social behaviors in a time- and sex-specific manner. Our findings suggest future studies should evaluate whether host sex impacts the relationship between the gut microbiome and behavioral health outcomes.
Collapse
Affiliation(s)
- Hannah E Laue
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA.
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Modupe O Coker
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- School of Dental Medicine, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - David C Bellinger
- Department of Neurology, Harvard Medical School and Boston Children's Hospital, Boston, MA, USA
| | - Emily R Baker
- Department of Obstetrics and Gynecology, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Susan A Korrick
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Juliette C Madan
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Departments of Pediatrics and Psychiatry, Children's Hospital at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
43
|
Otten K, Keller L, Puiu AA, Herpertz-Dahlmann B, Seitz J, Kohn N, Edgar JC, Wagels L, Konrad K. Pre- and postnatal antibiotic exposure and risk of developing attention deficit hyperactivity disorder-A systematic review and meta-analysis combining evidence from human and animal studies. Neurosci Biobehav Rev 2022; 140:104776. [PMID: 35842009 DOI: 10.1016/j.neubiorev.2022.104776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/10/2022] [Indexed: 11/26/2022]
Abstract
This study investigated the effects of early antibiotic exposure on ADHD risk by (1) integrating meta-analytical evidence from human observational studies examining the association between prenatal or early postnatal antibiotic exposure on the risk of developing ADHD; and (2) reviewing evidence from experimental animal studies on the effects of early antibiotic exposure on behavior. Sixteen human studies and five rodent studies were reviewed. A quantitative meta-analysis with 10 human studies indicated an increased risk for ADHD after prenatal antibiotic exposure (summary effect estimate Hazard Ratio (HR) 1.23, 95% CI 1.09-1.38; N = 2,398,475 subjects) but not after postnatal exposure within the first two years of life (summary effect estimate HR 1.12, 95% CI 0.95-1.32; N = 1,863,867 subjects). The rodent literature suggested that peri-natal antibiotic exposure has effects on social behavior, anxiety and aggression, alongside changes in gut microbial composition. Human and rodent findings thus suggest prenatal antibiotic exposure as a possible risk factor for ADHD, and suggest that an early disruption of the gut microbiome by antibiotics may interfere with neurodevelopment.
Collapse
Affiliation(s)
- Katharina Otten
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Lara Keller
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine, RWTH University Aachen, Aachen, Germany
| | - Andrei A Puiu
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Beate Herpertz-Dahlmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine, RWTH University Aachen, Aachen, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine, RWTH University Aachen, Aachen, Germany
| | - Nils Kohn
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - J Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lisa Wagels
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Institute of Neuroscience and Medicine 10, Research Centre Jülich, Germany
| | - Kerstin Konrad
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), RWTH Aachen & Research Centre Jülich, 52428 Jülich, Germany
| |
Collapse
|
44
|
Noori T, Sahebgharani M, Sureda A, Sobarzo-Sanchez E, Fakhri S, Shirooie S. Targeting PI3K by Natural Products: A Potential Therapeutic Strategy for Attention-deficit Hyperactivity Disorder. Curr Neuropharmacol 2022; 20:1564-1578. [PMID: 35043762 PMCID: PMC9881086 DOI: 10.2174/1570159x20666220119125040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/02/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022] Open
Abstract
Attention-Deficit Hyperactivity Disorder (ADHD) is a highly prevalent childhood psychiatric disorder. In general, a child with ADHD has significant attention problems with difficulty concentrating on a subject and is generally associated with impulsivity and excessive activity. The etiology of ADHD in most patients is unknown, although it is considered to be a multifactorial disease caused by a combination of genetics and environmental factors. Diverse factors, such as the existence of mental, nutritional, or general health problems during childhood, as well as smoking and alcohol drinking during pregnancy, are related to an increased risk of ADHD. Behavioral and psychological characteristics of ADHD include anxiety, mood disorders, behavioral disorders, language disorders, and learning disabilities. These symptoms affect individuals, families, and communities, negatively altering educational and social results, strained parent-child relationships, and increased use of health services. ADHD may be associated with deficits in inhibitory frontostriatal noradrenergic neurons on lower striatal structures that are predominantly driven by dopaminergic neurons. Phosphoinositide 3-kinases (PI3Ks) are a conserved family of lipid kinases that control a number of cellular processes, including cell proliferation, differentiation, migration, insulin metabolism, and apoptosis. Since PI3K plays an important role in controlling the noradrenergic neuron, it opens up new insights into research on ADHD and other developmental brain diseases. This review presents evidence for the potential usefulness of PI3K and its modulators as a potential treatment for ADHD.
Collapse
Affiliation(s)
- Tayebeh Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mousa Sahebgharani
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, Palma de MallorcaE-07122, Balearic Islands, Spain;,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Eduardo Sobarzo-Sanchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile;,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago, Spain
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran;,Address correspondence to this author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; E-mail:
| |
Collapse
|
45
|
The Influence of Lactobacillus paracasei HII01 Supplementation on Performance in Attention (Go/No-Go) Tasks and Quinolinic Acid and 5-Hydroxyindoleacetic Acid Levels in Thai Children—A Preliminary Study. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cognitive development is defined as the capacity of a child to think, reason, and use language, which are all vital to their overall growth. Attention deficit/hyperactivity disorder (ADHD) is the most common neurodevelopmental disorder. Though several factors are associated with the incidence of ADHD, gut microbiota and gut homeostasis play critical roles in it. Gut dysbiosis and altered gut homeostasis are linked to several physical and psychological complications that affect gut–brain communication (the gut–brain axis). Probiotics, live microorganisms that confer a health benefit to the host when administered in adequate amounts, are considered therapeutic supplements that can be used to manage mental and cognitive disorders. Intervention with probiotics can improve the gut microbial ecosystem and the gut–brain axis, thereby improving cognitive function. We hypothesized that the supplementation of Lactobacillus paracasei HII01 might reduce the risk of the development of neuropsychiatric disorders; thus, we evaluated the efficacy of L. paracasei HII01 on the attention state of healthy children and the changes in representative neuroinflammatory markers. Ten healthy Thai children were supplemented with 109 CFU of L. paracasei HII01 for 12 weeks. Go/no-go tasks were undertaken to assess changes in attention state. Alterations in brain waves were measured by electroencephalographic (EEG)/event-related potential (ERP) recordings. The levels of quinolinic acid (QA, a metabolite of tryptophan) and 5-hydroxyindoleacetic acid (5-HIAA, a metabolite of serotonin) were determined in the urine at baseline and after 12 weeks of probiotic intervention. The levels of QA and 5-HIAA significantly decreased and increased, respectively. The QA/5-HIAA ratio also decreased significantly. Go/No-go tasks revealed that the percentages of go accuracy and go error increased and decreased significantly, respectively. EEG/ERP recordings showed that theta, alpha, and beta waves were substantially altered at the 12th week of study compared to baseline values. The results suggested that L. paracasei HII01 might improve the gut microbiota and oscillate the brain function, which sustained the attention state of the subjects. These preliminary findings require further detailed study to confirm the role of L. paracasei HII01 in the improvement in the attention of healthy children.
Collapse
|
46
|
Liu X, Vigorito M, Huang W, Khan MAS, Chang SL. The Impact of Alcohol-Induced Dysbiosis on Diseases and Disorders of the Central Nervous System. J Neuroimmune Pharmacol 2022; 17:131-151. [PMID: 34843074 DOI: 10.1007/s11481-021-10033-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/11/2021] [Indexed: 12/29/2022]
Abstract
The human digestive tract contains a diverse and abundant microbiota that is important for health. Excessive alcohol use can disrupt the balance of these microbes (known as dysbiosis), leading to elevated blood endotoxin levels and systemic inflammation. Using QIAGEN Ingenuity Pathway Analysis (IPA) bioinformatics tool, we have confirmed that peripheral endotoxin (lipopolysaccharide) mediates various cytokines to enhance the neuroinflammation signaling pathway. The literature has identified alcohol-mediated neuroinflammation as a possible risk factor for the onset and progression of neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), and psychiatric disorders such as addiction to alcohol and other drugs. In this review, we discuss alcohol-use-induced dysbiosis in the gut and other body parts as a causal factor in the progression of Central Nervous System (CNS) diseases including neurodegenerative disease and possibly alcohol use disorder.
Collapse
Affiliation(s)
- Xiangqian Liu
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. China
| | - Michael Vigorito
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA
- Department of Psychology, Seton Hall University, South Orange, NJ, 07079, USA
| | - Wenfei Huang
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, 07079, USA
| | - Mohammed A S Khan
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, MA, 02114, USA.
| | - Sulie L Chang
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA.
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, 07079, USA.
| |
Collapse
|
47
|
Dash S, Syed YA, Khan MR. Understanding the Role of the Gut Microbiome in Brain Development and Its Association With Neurodevelopmental Psychiatric Disorders. Front Cell Dev Biol 2022; 10:880544. [PMID: 35493075 PMCID: PMC9048050 DOI: 10.3389/fcell.2022.880544] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome has a tremendous influence on human physiology, including the nervous system. During fetal development, the initial colonization of the microbiome coincides with the development of the nervous system in a timely, coordinated manner. Emerging studies suggest an active involvement of the microbiome and its metabolic by-products in regulating early brain development. However, any disruption during this early developmental process can negatively impact brain functionality, leading to a range of neurodevelopment and neuropsychiatric disorders (NPD). In this review, we summarize recent evidence as to how the gut microbiome can influence the process of early human brain development and its association with major neurodevelopmental psychiatric disorders such as autism spectrum disorders, attention-deficit hyperactivity disorder, and schizophrenia. Further, we discuss how gut microbiome alterations can also play a role in inducing drug resistance in the affected individuals. We propose a model that establishes a direct link of microbiome dysbiosis with the exacerbated inflammatory state, leading to functional brain deficits associated with NPD. Based on the existing research, we discuss a framework whereby early diet intervention can boost mental wellness in the affected subjects and call for further research for a better understanding of mechanisms that govern the gut-brain axis may lead to novel approaches to the study of the pathophysiology and treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Somarani Dash
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Yasir Ahmed Syed
- School of Biosciences and Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cardiff, United Kingdom
| | - Mojibur R. Khan
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
- *Correspondence: Mojibur R. Khan,
| |
Collapse
|
48
|
Gut microbiota and plasma cytokine levels in patients with attention-deficit/hyperactivity disorder. Transl Psychiatry 2022; 12:76. [PMID: 35197458 PMCID: PMC8866486 DOI: 10.1038/s41398-022-01844-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common childhood mental disorder with undetermined pathophysiological mechanisms. The gut microbiota and immunological dysfunction may influence brain functions and social behaviours. In the current study, we aimed to explore the correlation of gut microbiome imbalance and inflammation in the pathophysiology of ADHD. Forty-one children with ADHD and thirty-nine healthy-control (HC) individuals were recruited. Faecal samples from all participants were collected and submitted for 16 S rRNA V3-V4 amplicon microbiome sequencing analysis. The plasma levels of 10 cytokines, including TNF-α, IL-6, IL-1β, IL-2, IL-10, IL-13, IL-17A, IFN-α2, IFN-γ, and MCP-1, were determined using a custom-made sandwich enzyme-linked immunosorbent assay (ELISA) developed by Luminex Flowmetrix. There was no significant difference between the ADHD and HC groups in species diversity in the faeces, as determined with α-diversity and β-diversity analysis. In the ADHD group, three differentially abundant taxonomic clades at the genus level were observed, namely Agathobacter, Anaerostipes, and Lachnospiraceae. Top differentially abundant bacteria and representative biological pathways were identified in children with ADHD using linear discriminant analysis (LDA) effect size (LEfSe), and the phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis, respectively. The plasma levels of TNF-α were significantly lower in children with ADHD than in HCs. Within the ADHD group, the levels of TNF-α were negatively correlated with ADHD symptoms and diversity of the gut microbiome. Our study provides new insights into the association between gut microbiome dysbiosis and immune dysregulation, which may contribute to the pathophysiology of ADHD.
Collapse
|
49
|
Wang LJ, Yang CY, Kuo HC, Chou WJ, Tsai CS, Lee SY. Effect of Bifidobacterium bifidum on Clinical Characteristics and Gut Microbiota in Attention-Deficit/Hyperactivity Disorder. J Pers Med 2022; 12:jpm12020227. [PMID: 35207715 PMCID: PMC8877879 DOI: 10.3390/jpm12020227] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 01/04/2023] Open
Abstract
This study aimed to examine whether probiotics supplements using Bifidobacterium bifidum (Bf-688) can improve clinical characteristics and gut microbiomes among patients with attention-deficit/hyperactivity disorder (ADHD). This open-label, single-arm trial consisted of 30 children aged 4–16 years who met the criteria for ADHD diagnosis. Each subject took Bf-688, with one sachet in the morning and one in the evening (daily bacteria count 5 × 109 CFUs), for 8 weeks. Patients’ clinical symptoms were assessed using the Swanson, Nolan, and Pelham Rating Scale (SNAP-IV). We collected stool samples at the baseline, the 8th week, and the 12th week for gut microbiota examination. During the 8-week Bf-688 supplement period, patients’ inattention symptoms and hyperactivity/impulsive symptoms improved, and their weights and BMIs increased. For gut microbiota, the Firmicutes to Bacteroidetes ratio (F/B ratio) decreased significantly. LEfSe analysis revealed that Firmicutes significantly decreased while Proteobacteria significantly increased during the 8-week treatment period. After Bf-688 was discontinued for 4 weeks (12 weeks from baseline), Bacteroidota significantly decreased and Shigella significantly increased. The probiotic Bf-688 supplement was associated with an improvement of clinical symptoms and with weight gain among ADHD children. Furthermore, gut microbiota composition was significantly altered by the Bf-688 supplement. A future randomized control trial is warranted to verify these findings.
Collapse
Affiliation(s)
- Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Kaohsiung 83301, Taiwan; (W.-J.C.); (C.-S.T.)
- Correspondence: ; Tel.: +886-7-7317123 (ext. 8753); Fax: +886-7-7326817
| | - Chia-Yu Yang
- Department of Microbiology and Immunology, Molecular Medicine Research Center, Chang Gung University, Taoyuan 83301, Taiwan;
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Linkou 33332, Taiwan
| | - Ho-Chang Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Kaohsiung 83301, Taiwan;
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Wen-Jiun Chou
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Kaohsiung 83301, Taiwan; (W.-J.C.); (C.-S.T.)
| | - Ching-Shu Tsai
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Kaohsiung 83301, Taiwan; (W.-J.C.); (C.-S.T.)
| | - Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung 83301, Taiwan
| |
Collapse
|
50
|
Tang K, Hao W, Mo X, Chen Y, Guo X, He L, Wang B, Wang J, Ma Q, Deng L, Chen J. Analysis of the therapeutic effect of Dimu Ningshen (TCM formula) on attention deficit hyperactivity disorder based on gut microbiota and serum metabolomics. BMC Complement Med Ther 2022; 22:24. [PMID: 35078472 PMCID: PMC8790860 DOI: 10.1186/s12906-022-03512-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/13/2022] [Indexed: 01/15/2023] Open
Abstract
Abstract
Background
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder diagnosed during adolescence and adulthood. Assessment of the long-term risks of the current drugs for ADHD treatment has been insufficient, and little is known concerning the long-term therapeutic effects of psychostimulants. Commercially available traditional Chinese medicine compound oral preparations [e.g., Dimu Ningshen (DMNS)] have been widely used in the clinical treatment of ADHD, but their influence on the interaction between gut microbes and potential metabolomes remains inconclusive.
Methods
We used a series of behavioral experiments to evaluate the behavioral effects of DMNS on adolescent and adult ADHD rats and used 16S rDNA sequencing of gut microbes and nontarget metabolomics to evaluate the potential pathogenesis of ADHD and explore the biological mechanism of DMNS in ADHD treatment.
Results
For the first time, DMNS was shown to reduce the excessive activity of adult and adolescent ADHD rats and improve the attention deficit of adult ADHD rats. DMNS improved the structural composition of the ADHD gut microbiota and reduced the abundance of Ruminococcaceae_NK4A214_group, Ruminococcus_2, and Eubacterium_nodatum_group. Simultaneously, DMNS increased the circulating levels of peripheral monoamine neurotransmitter precursors (e.g., phenylalanine) and reduced the circulating levels of peripheral fatty acid amides (e.g., oleamide). Finally, the changes in the ADHD serum metabolites were strongly correlated with the gut microbiota.
Conclusion
DMNS has a good effect in treating ADHD, and it may exert this effect by regulating the gut microbiota and affecting metabolites in the peripheral circulation.
Collapse
|