1
|
Bolden M, Davis XD, Sherwood ER, Bohannon JK, Caslin HL. Weight loss-induced adipose macrophage memory improves local Staphylococcus aureus clearance in male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.03.606494. [PMID: 39211192 PMCID: PMC11361095 DOI: 10.1101/2024.08.03.606494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Different stimuli can induce innate immune memory to improve pathogen defense or worsen cardiometabolic disease. However, it is less clear if the same stimuli can induce both the protective and detrimental effects of innate immune memory. We previously showed that weight loss induces innate immune memory in adipose macrophages that correlates with worsened diabetes risk after weight regain. In this study, we investigated the effect of weight loss on macrophage cytokine production and overall survival in a mouse model of infection. Male C57Bl/6J mice were put on high-fat or low-fat diets over 18 weeks to induce weight gain or weight loss. Lean mice served as controls. All mice were then infected IV with 2.5×10^6 CFU Staphylococcus aureus . Tissues were collected from 10 mice/group at day 3 and the remaining animals were followed for survival. Weight gain mice had the highest blood neutrophils and the highest bacterial burden in the kidney. However, there was no significant difference in survival. The weight loss group had the highest plasma TNF-α and a significant reduction in bacterial burden in the adipose tissue that correlated with increased adipose macrophage cytokine production. Thus, weight loss-induced adipose macrophage memory may both improve local S.aureus clearance and worsen diabetes risk upon weight regain. Collectively, these findings support the notion that innate immune memory is an evolutionarily protective mechanism that also contributes to the development of cardiometabolic diseases.
Collapse
|
2
|
Fresquez AM, Hogan JO, Rivera P, Patterson KM, Singer K, Reynolds JM, White C. STIM1-dependent store-operated calcium entry mediates sex differences in macrophage chemotaxis and monocyte recruitment. J Biol Chem 2024; 300:107422. [PMID: 38815866 PMCID: PMC11231831 DOI: 10.1016/j.jbc.2024.107422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
Infiltration of monocyte-derived cells to sites of infection and injury is greater in males than in females, due in part, to increased chemotaxis, the process of directed cell movement toward a chemical signal. The mechanisms governing sexual dimorphism in chemotaxis are not known. We hypothesized a role for the store-operated calcium entry (SOCE) pathway in regulating chemotaxis by modulating leading and trailing edge membrane dynamics. We measured the chemotactic response of bone marrow-derived macrophages migrating toward complement component 5a (C5a). Chemotactic ability was dependent on sex and inflammatory phenotype (M0, M1, and M2), and correlated with SOCE. Notably, females exhibited a significantly lower magnitude of SOCE than males. When we knocked out the SOCE gene, stromal interaction molecule 1 (STIM1), it eliminated SOCE and equalized chemotaxis across both sexes. Analysis of membrane dynamics at the leading and trailing edges showed that STIM1 influences chemotaxis by facilitating retraction of the trailing edge. Using BTP2 to pharmacologically inhibit SOCE mirrored the effects of STIM1 knockout, demonstrating a central role of STIM/Orai-mediated calcium signaling. Importantly, by monitoring the recruitment of adoptively transferred monocytes in an in vivo model of peritonitis, we show that increased infiltration of male monocytes during infection is dependent on STIM1. These data support a model in which STIM1-dependent SOCE is necessary and sufficient for mediating the sex difference in monocyte recruitment and macrophage chemotactic ability by regulating trailing edge dynamics.
Collapse
Affiliation(s)
- Adriana M Fresquez
- Physiology & Biophysics, Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine & Science, North Chicago, Illinois, USA
| | - James O Hogan
- Physiology & Biophysics, Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine & Science, North Chicago, Illinois, USA
| | - Patricia Rivera
- Physiology & Biophysics, Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine & Science, North Chicago, Illinois, USA
| | - Kristen M Patterson
- Microbiology and Immunology, Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine & Science, North Chicago, Illinois, USA
| | - Kanakadurga Singer
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Joseph M Reynolds
- Microbiology and Immunology, Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine & Science, North Chicago, Illinois, USA
| | - Carl White
- Physiology & Biophysics, Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine & Science, North Chicago, Illinois, USA.
| |
Collapse
|
3
|
Schleh MW, Ameka M, Rodriguez A, Hasty AH. Deficiency of the hemoglobin-haptoglobin receptor, CD163, worsens insulin sensitivity in obese male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596887. [PMID: 38895370 PMCID: PMC11185572 DOI: 10.1101/2024.05.31.596887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Excessive iron accumulation in metabolic organs such as the adipose tissue, liver, and skeletal muscle is associated with increased diabetes risk. Tissue-resident macrophages serve multiple roles including managing inflammatory tone and regulating parachymal iron homeostasis; thus protecting against metabolic dysfunction upon iron overload. The scavenger receptor CD163 is uniquely present on tissue-resident macrophages, and plays a significant role in iron homeostasis by clearing extracellular hemoglobin-haptoglobin complexes, thereby limiting oxidative damage caused by free hemoglobin in metabolic tissues. We show that the absence of CD163 exacerbates glucose intolerance and insulin resistance in male mice with obesity. Additionally, loss of CD163 reduced the expression of iron regulatory genes (Tfr1, Cisd1, Slc40a1) in adipose tissue macrophages and anti-inflammatory (M2-like) bone marrow-derived macrophages (BMDMs). Further, CD163 deficiency mediated a pro-inflammatory shift and limited hemoglobin scavenging specifically in M2-like BMDMs. To this end, iron buffering was diminished in inguinal white adipose tissue (iWAT) macrophages in vivo, which culminated in iron spillover into adipocytes and CD45+CD11B- non-myeloid immune cells in iWAT. These findings show that CD163 on tissue-resident macrophages is critical for their anti-inflammatory and hemoglobin scavenging roles, and its absence results in impaired systemic insulin action in an obese setting.
Collapse
Affiliation(s)
- Michael W. Schleh
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine; Nashville, TN 37232, USA
| | - Magdalene Ameka
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine; Nashville, TN 37232, USA
| | - Alec Rodriguez
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine; Nashville, TN 37232, USA
| | - Alyssa H. Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine; Nashville, TN 37232, USA
- VA Tennessee Valley Healthcare System; Nashville, TN 37212, USA
| |
Collapse
|
4
|
Reichenbach A, O'Brien W, Duran S, Authelet KJ, Freishtat RJ, Nadler EP, Rastogi D. Immune profile of adipose tissue from youth with obesity and asthma. Pediatr Obes 2024; 19:e13078. [PMID: 37793645 DOI: 10.1111/ijpo.13078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/15/2023] [Accepted: 09/16/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Obesity is a risk factor for paediatric asthma. Obesity-mediated systemic inflammation correlates with metabolic dysregulation; both are associated with asthma burden. However, adipose tissue inflammation is not defined in obesity-related asthma. OBJECTIVE Define adipose tissue inflammation and its association with metabolic measures in paediatric obesity-related asthma. METHODS Cellular profile of stromal vascular fraction from visceral adipose tissue (VAT) from youth with obesity-related asthma (n = 14) and obesity without asthma (n = 23) was analyzed using flow cytometry and correlated with metabolic measures. RESULTS Compared to youth without asthma, VAT from youth with obesity-related asthma was enriched for leukocytes and macrophages, including M1 and dual M1M2 cells, but did not differ for CD4+ lymphocytes, and endothelial cells, their progenitors, and preadipocytes. M1 macrophage counts positively correlated with glucose, while M1M2 cells, CD4+ lymphocytes, and their subsets negatively correlated with high-density lipoprotein, in youth with obesity without asthma, but not among those with obesity-related asthma. CONCLUSIONS Enrichment of macrophage-mediated inflammation in VAT from youth with obesity-related asthma supports its role in systemic inflammation linked with asthma morbidity. Lack of correlation of VAT cells with metabolic dysregulation in youth with obesity-related asthma identifies a need to define distinguishing factors associated with VAT inflammation in obesity-related asthma.
Collapse
Affiliation(s)
- Anna Reichenbach
- Children's National Research Institute, Children's National Hospital, Washington, DC, USA
| | - Wade O'Brien
- Children's National Research Institute, Children's National Hospital, Washington, DC, USA
| | - Sarai Duran
- Children's National Research Institute, Children's National Hospital, Washington, DC, USA
| | - Kayla J Authelet
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Robert J Freishtat
- Children's National Research Institute, Children's National Hospital, Washington, DC, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Evan P Nadler
- Children's National Research Institute, Children's National Hospital, Washington, DC, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Division of Surgery, Children's National Hospital, Washington, DC, USA
| | - Deepa Rastogi
- Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
5
|
Caslin HL, Cottam MA, Betjemann AM, Mashayekhi M, Silver HJ, Hasty AH. Single cell RNA-sequencing suggests a novel lipid associated mast cell population following weight cycling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.12.566786. [PMID: 38014269 PMCID: PMC10680619 DOI: 10.1101/2023.11.12.566786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Our recent study showed weight cycled mice have increased adipose mast cells compared to obese mice by single cell RNA-sequencing. Here, we aimed to confirm and elucidate these changes. Further analysis of our dataset showed that our initial mast cell cluster could subcluster into two unique populations: one with very high expression of classical mast cell markers and another with elevated lipid handling and antigen presentation genes. This new mast cell cluster accounted for most of the mast cells in the weight cycled group although it was not possible to detect the different populations by new studies with flow cytometry or Toluidine blue staining in mice, possibly due to a downregulation in classical mast cell genes. Interestingly, a pilot study in humans did suggest the existence of two mast cell populations in subcutaneous adipose tissue from obese women that appear similar to the murine populations detected by sequencing; one of which was significantly correlated with weight variance. Together, these data suggest that weight cycling may induce a unique population of mast cells similar to lipid associated macrophages. Future studies will focus on isolation of these cells to better determine their lineage, differentiation, and functional roles.
Collapse
|
6
|
Amor C, Fernández-Maestre I, Chowdhury S, Ho YJ, Nadella S, Graham C, Carrasco SE, Nnuji-John E, Feucht J, Hinterleitner C, Barthet VJ, Boyer JA, Mezzadra R, Wereski MG, Tuveson DA, Levine RL, Jones LW, Sadelain M, Lowe SW. Prophylactic and long-lasting efficacy of senolytic CAR T cells against age-related metabolic dysfunction. RESEARCH SQUARE 2023:rs.3.rs-3385749. [PMID: 37841853 PMCID: PMC10571605 DOI: 10.21203/rs.3.rs-3385749/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Senescent cells accumulate in organisms over time because of tissue damage and impaired immune surveillance and contribute to age-related tissue decline1,2. In agreement, genetic ablation studies reveal that elimination of senescent cells from aged tissues can ameliorate various age-related pathologies, including metabolic dysfunction and decreased physical fitness3-7. While small-molecule drugs capable of eliminating senescent cells (known as 'senolytics') partially replicate these phenotypes, many have undefined mechanisms of action and all require continuous administration to be effective. As an alternative approach, we have developed a cell-based senolytic therapy based on chimeric antigen receptor (CAR) T cells targeting uPAR, a cell-surface protein upregulated on senescent cells, and previously showed these can safely and efficiently eliminate senescent cells in young animals and reverse liver fibrosis8. We now show that uPAR-positive senescent cells accumulate during physiological aging and that they can be safely targeted with senolytic CAR T cells. Treatment with anti uPAR CAR T cells ameliorates metabolic dysfunction by improving glucose tolerance and exercise capacity in physiological aging as well as in a model of metabolic syndrome. Importantly, a single administration of a low dose of these senolytic CAR T cells is sufficient to achieve long-term therapeutic and preventive effects.
Collapse
Affiliation(s)
- Corina Amor
- Cold Spring Harbor Laboratory. Cold Spring Harbor, NY, USA
| | - Inés Fernández-Maestre
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Yu-Jui Ho
- Department of Cancer Biology and Genetics. Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Courtenay Graham
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sebastian E. Carrasco
- Laboratory of Comparative Pathology. Weill Cornell Medicine, Memorial Sloan Kettering Cancer Center, and Rockefeller University, New York, NY, USA
| | - Emmanuella Nnuji-John
- Cold Spring Harbor Laboratory. Cold Spring Harbor, NY, USA
- Cold Spring Harbor School of Biological Sciences, Cold Spring Harbor, NY, USA
| | - Judith Feucht
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cluster of Excellence iFIT, University Children’s Hospital Tuebingen, Tuebingen, Germany
| | - Clemens Hinterleitner
- Department of Cancer Biology and Genetics. Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Valentin J.A. Barthet
- Department of Cancer Biology and Genetics. Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jacob A. Boyer
- Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Riccardo Mezzadra
- Department of Cancer Biology and Genetics. Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew G Wereski
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Ross L. Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Lee W Jones
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott W Lowe
- Department of Cancer Biology and Genetics. Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, USA
| |
Collapse
|
7
|
Arwood ML, Sun IH, Patel CH, Sun IM, Oh MH, Bettencourt IA, Claiborne MD, Chan-Li Y, Zhao L, Waickman AT, Mavrothalassitis O, Wen J, Aja S, Powell JD. Serendipitous Discovery of T Cell-Produced KLK1b22 as a Regulator of Systemic Metabolism. Immunohorizons 2023; 7:493-507. [PMID: 37358498 PMCID: PMC10580127 DOI: 10.4049/immunohorizons.2300016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023] Open
Abstract
In order to study mechanistic/mammalian target of rapamycin's role in T cell differentiation, we generated mice in which Rheb is selectively deleted in T cells (T-Rheb-/- C57BL/6J background). During these studies, we noted that T-Rheb-/- mice were consistently heavier but had improved glucose tolerance and insulin sensitivity as well as a marked increase in beige fat. Microarray analysis of Rheb-/- T cells revealed a marked increase in expression of kallikrein 1-related peptidase b22 (Klk1b22). Overexpression of KLK1b22 in vitro enhanced insulin receptor signaling, and systemic overexpression of KLK1b22 in C57BL/6J mice also enhances glucose tolerance. Although KLK1B22 expression was markedly elevated in the T-Rheb-/- T cells, we never observed any expression in wild-type T cells. Interestingly, in querying the mouse Immunologic Genome Project, we found that Klk1b22 expression was also increased in wild-type 129S1/SVLMJ and C3HEJ mice. Indeed, both strains of mice demonstrate exceptionally improved glucose tolerance. This prompted us to employ CRISPR-mediated knockout of KLK1b22 in 129S1/SVLMJ mice, which in fact led to reduced glucose tolerance. Overall, our studies reveal (to our knowledge) a novel role for KLK1b22 in regulating systemic metabolism and demonstrate the ability of T cell-derived KLK1b22 to regulate systemic metabolism. Notably, however, further studies have revealed that this is a serendipitous finding unrelated to Rheb.
Collapse
Affiliation(s)
- Matthew L. Arwood
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Im-Hong Sun
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Chirag H. Patel
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Im-Meng Sun
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Min-Hee Oh
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ian A. Bettencourt
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michael D. Claiborne
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yee Chan-Li
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Liang Zhao
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Adam T. Waickman
- State University of New York Upstate Medical University, Syracuse, NY
| | - Orestes Mavrothalassitis
- Department of Anesthesia, University of California, San Francisco School of Medicine, San Francisco, CA
| | - Jiayu Wen
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins Medicine, Baltimore, MD
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jonathan D. Powell
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
8
|
Boroumand P, Prescott DC, Mukherjee T, Bilan PJ, Wong M, Shen J, Tattoli I, Zhou Y, Li A, Sivasubramaniyam T, Shi N, Zhu LY, Liu Z, Robbins C, Philpott DJ, Girardin SE, Klip A. Bone marrow adipocytes drive the development of tissue invasive Ly6C high monocytes during obesity. eLife 2022; 11:65553. [PMID: 36125130 PMCID: PMC9512398 DOI: 10.7554/elife.65553] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
During obesity and high fat-diet (HFD) feeding in mice, sustained low-grade inflammation includes not only increased pro-inflammatory macrophages in the expanding adipose tissue, but also bone marrow (BM) production of invasive Ly6Chigh monocytes. As BM adiposity also accrues with HFD, we explored the relationship between the gains in BM white adipocytes and invasive Ly6Chigh monocytes by in vivo and ex vivo paradigms. We find a temporal and causal link between BM adipocyte whitening and the Ly6Chigh monocyte surge, preceding the adipose tissue macrophage rise during HFD in mice. Phenocopying this, ex vivo treatment of BM cells with conditioned media from BM adipocytes or bona fide white adipocytes favoured Ly6Chigh monocyte preponderance. Notably, Ly6Chigh skewing was preceded by monocyte metabolic reprogramming towards glycolysis, reduced oxidative potential and increased mitochondrial fission. In sum, short-term HFD changes BM cellularity, resulting in local adipocyte whitening driving a gradual increase and activation of invasive Ly6Chigh monocytes.
Collapse
Affiliation(s)
| | - David C Prescott
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Tapas Mukherjee
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Philip J Bilan
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada
| | - Michael Wong
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada
| | - Jeff Shen
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada
| | - Ivan Tattoli
- Department of Laboratory Medicine and Pathopysiology, University of Toronto, Toronto, Canada
| | - Yuhuan Zhou
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada
| | - Angela Li
- Research Institute, Toronto General Hospital, Toronto, Canada
| | | | - Nan Shi
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada
| | - Lucie Y Zhu
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada
| | - Zhi Liu
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada
| | - Clinton Robbins
- Department of Laboratory Medicine and Pathophysiology, University of Toronto, Toronto, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, Canada
| | | | - Amira Klip
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
9
|
Targeting parvalbumin promotes M2 macrophage polarization and energy expenditure in mice. Nat Commun 2022; 13:3301. [PMID: 35676256 PMCID: PMC9177846 DOI: 10.1038/s41467-022-30757-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/17/2022] [Indexed: 11/08/2022] Open
Abstract
Exercise benefits M2 macrophage polarization, energy homeostasis and protects against obesity partially through exercise-induced circulating factors. Here, by unbiased quantitative proteomics on serum samples from sedentary and exercised mice, we identify parvalbumin as a circulating factor suppressed by exercise. Parvalbumin functions as a non-competitive CSF1R antagonist to inhibit M2 macrophage activation and energy expenditure in adipose tissue. More importantly, serum concentrations of parvalbumin positively correlate with obesity in mouse and human, while treating mice with a recombinant parvalbumin blocker prevents its interaction with CSF1R and promotes M2 macrophage polarization and ameliorates diet-induced obesity. Thus, although further studies are required to assess the significance of parvalbumin in mediating the effects of exercise, our results implicate parvalbumin as a potential therapeutic strategy against obesity in mice.
Collapse
|
10
|
Cottam MA, Caslin HL, Winn NC, Hasty AH. Multiomics reveals persistence of obesity-associated immune cell phenotypes in adipose tissue during weight loss and weight regain in mice. Nat Commun 2022; 13:2950. [PMID: 35618862 PMCID: PMC9135744 DOI: 10.1038/s41467-022-30646-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 05/11/2022] [Indexed: 01/08/2023] Open
Abstract
Within adipose tissue (AT), immune cells and parenchymal cells closely interact creating a complex microenvironment. In obesity, immune cell derived inflammation contributes to insulin resistance and glucose intolerance. Diet-induced weight loss improves glucose tolerance; however, weight regain further exacerbates the impairment in glucose homeostasis observed with obesity. To interrogate the immunometabolic adaptations that occur in AT during murine weight loss and weight regain, we utilized cellular indexing of transcriptomes and epitopes by sequencing (CITEseq) in male mice. Obesity-induced imprinting of AT immune cells persisted through weight-loss and progressively worsened with weight regain, ultimately leading to impaired recovery of type 2 regulatory cells, activation of antigen presenting cells, T cell exhaustion, and enhanced lipid handling in macrophages in weight cycled mice. This work provides critical groundwork for understanding the immunological causes of weight cycling-accelerated metabolic disease. For further discovery, we provide an open-access web portal of diet-induced AT immune cell imprinting: https://hastylab.shinyapps.io/MAIseq .
Collapse
Affiliation(s)
- Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Heather L Caslin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nathan C Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- VA Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
11
|
Caslin HL, Cottam MA, Piñon JM, Boney LY, Hasty AH. Weight cycling induces innate immune memory in adipose tissue macrophages. Front Immunol 2022; 13:984859. [PMID: 36713396 PMCID: PMC9876596 DOI: 10.3389/fimmu.2022.984859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Weight loss improves obesity-associated diabetes risk. However, most individuals regain weight, which worsens the risk of developing diabetes and cardiovascular disease. We previously reported that male mice retain obesity-associated immunological changes even after weight loss, suggesting that immune cells may remember the state of obesity. Therefore, we hypothesized that cycles of weight gain and loss, otherwise known as weight cycling, can induce innate memory in adipose macrophages. Methods Bone marrow derived macrophages were primed with palmitic acid or adipose tissue conditioned media in a culture model of innate immune memory. Mice also put on low fat or high fat diets over 14-27 weeks to induce weight gain, weight loss, and weight cycling. Results Priming cells with palmitic acid or adipose tissue conditioned media from obese mice increased maximal glycolysis and oxidative phosphorylation and increased LPS-induced TNFα and IL-6 production. Palmitic acid effects were dependent on TLR4 and impaired by methyltransferase inhibition and AMPK activation. While weight loss improved glucose tolerance in mice, adipose macrophages were primed for greater activation to subsequent stimulation by LPS ex vivo as measured by cytokine production. In the model of weight cycling, adipose macrophages had elevated metabolism and secreted higher levels of basal TNFα, suggesting that weight loss can also prime macrophages for heighted activation to weight regain. Discussion Together, these data suggest that weight loss following obesity can prime adipose macrophages for enhanced inflammation upon weight regain. This innate immune memory response may contribute to worsened glucose tolerance following weight cycling.
Collapse
Affiliation(s)
- Heather L Caslin
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
| | - Jacqueline M Piñon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Likem Y Boney
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States.,Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
| |
Collapse
|
12
|
Pompura SL, Wagner A, Kitz A, LaPerche J, Yosef N, Dominguez-Villar M, Hafler DA. Oleic acid restores suppressive defects in tissue-resident FOXP3 Tregs from patients with multiple sclerosis. J Clin Invest 2021; 131:138519. [PMID: 33170805 DOI: 10.1172/jci138519] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022] Open
Abstract
FOXP3+ Tregs rely on fatty acid β-oxidation-driven (FAO-driven) oxidative phosphorylation (OXPHOS) for differentiation and function. Recent data demonstrate a role for Tregs in the maintenance of tissue homeostasis, with tissue-resident Tregs possessing tissue-specific transcriptomes. However, specific signals that establish tissue-resident Treg programs remain largely unknown. Tregs metabolically rely on FAO, and considering the lipid-rich environments of tissues, we hypothesized that environmental lipids drive Treg homeostasis. First, using human adipose tissue to model tissue residency, we identified oleic acid as the most prevalent free fatty acid. Mechanistically, oleic acid amplified Treg FAO-driven OXPHOS metabolism, creating a positive feedback mechanism that increased the expression of FOXP3 and phosphorylation of STAT5, which enhanced Treg-suppressive function. Comparing the transcriptomic program induced by oleic acid with proinflammatory arachidonic acid, we found that Tregs sorted from peripheral blood and adipose tissue of healthy donors transcriptomically resembled the Tregs treated in vitro with oleic acid, whereas Tregs from patients with multiple sclerosis (MS) more closely resembled an arachidonic acid transcriptomic profile. Finally, we found that oleic acid concentrations were reduced in patients with MS and that exposure of MS Tregs to oleic acid restored defects in their suppressive function. These data demonstrate the importance of fatty acids in regulating tissue inflammatory signals.
Collapse
Affiliation(s)
- Saige L Pompura
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Allon Wagner
- Department of Electrical Engineering and Computer Science, and the Center for Computational Biology, University of California Berkeley, Berkeley, California, USA
| | - Alexandra Kitz
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jacob LaPerche
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nir Yosef
- Department of Electrical Engineering and Computer Science, and the Center for Computational Biology, University of California Berkeley, Berkeley, California, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology (MIT) and Harvard University, Boston, Massachusetts, USA.,Chan-Zuckerberg Biohub, San Francisco, California, USA
| | - Margarita Dominguez-Villar
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA.,Faculty of Medicine, Imperial College London, London, United Kingdom
| | - David A Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA.,Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
13
|
Cox N, Crozet L, Holtman IR, Loyher PL, Lazarov T, White JB, Mass E, Stanley ER, Elemento O, Glass CK, Geissmann F. Diet-regulated production of PDGFcc by macrophages controls energy storage. Science 2021; 373:373/6550/eabe9383. [PMID: 34210853 DOI: 10.1126/science.abe9383] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 05/13/2021] [Indexed: 12/12/2022]
Abstract
The mechanisms by which macrophages regulate energy storage remain poorly understood. We identify in a genetic screen a platelet-derived growth factor (PDGF)/vascular endothelial growth factor (VEGF)-family ortholog, Pvf3, that is produced by macrophages and is required for lipid storage in fat-body cells of Drosophila larvae. Genetic and pharmacological experiments indicate that the mouse Pvf3 ortholog PDGFcc, produced by adipose tissue-resident macrophages, controls lipid storage in adipocytes in a leptin receptor- and C-C chemokine receptor type 2-independent manner. PDGFcc production is regulated by diet and acts in a paracrine manner to control lipid storage in adipose tissues of newborn and adult mice. At the organismal level upon PDGFcc blockade, excess lipids are redirected toward thermogenesis in brown fat. These data identify a macrophage-dependent mechanism, conducive to the design of pharmacological interventions, that controls energy storage in metazoans.
Collapse
Affiliation(s)
- Nehemiah Cox
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lucile Crozet
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Inge R Holtman
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, USA
| | - Pierre-Louis Loyher
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Jessica B White
- Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Elvira Mass
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Developmental Biology of the Immune System, LIMES Institute, University of Bonn, 53115 Bonn, Germany
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA.,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, USA
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. .,Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| |
Collapse
|
14
|
Liu J, Nan H, Brutkiewicz RR, Casasnovas J, Kua KL. Sex discrepancy in the reduction of mucosal-associated invariant T cells caused by obesity. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:299-309. [PMID: 33332759 PMCID: PMC7860596 DOI: 10.1002/iid3.393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/02/2020] [Accepted: 11/28/2020] [Indexed: 01/07/2023]
Abstract
Introduction Gut microbiota has been reported to contribute to obesity and the pathology of obesity‐related diseases but the underlying mechanisms are largely unknown. Mucosal‐associated invariant T (MAIT) cells are a unique subpopulation of T cells characterized by the expression of a semi‐invariant T cell receptor (TCR) α chain (Vα19 in mice; Vα7.2 in humans). The expansion and maturation of MAIT cells require the gut microbiota and antigen‐presenting molecule MR1, suggesting that MAIT cells may play a unique role in bridging gut microbiota, obesity, and obesity‐associated inflammation. Methods The levels of human MAIT cells from obese patients, as well as mouse MAIT cells from obese mouse models, were determined by flow cytometry. By comparing to controls, we analyzed the change of MAIT cells in obese subjects. Results We found obese patients had fewer circulating MAIT cells than healthy‐weight donors and the difference was more distinct in male patients. Consistently, male mice (but not female mice) have shown reduced MAIT cells in the liver and adipose tissue after a 10‐week Western diet compared to mice on a control diet. We also explored the possibility of utilizing high‐throughput technology (i.e., quantitative polymerase chain reaction [qPCR]), other than flow cytometry, to determine the expression levels of the invariant TCR of human MAIT cells. But a minimal correlation (R2 = 0.23, p = .11) was observed between qPCR and flow cytometry data. Conclusion Our study suggests that there is a sex discrepancy in the impact of obesity on MAIT cells: MAIT cells in male (but not female) humans and male mice are reduced by obesity.
Collapse
Affiliation(s)
- Jianyun Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hongmei Nan
- Department of Global Health, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana, USA.,Indiana University Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana, USA
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jose Casasnovas
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kok Lim Kua
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
15
|
Delaney KZ, Dam V, Murphy J, Morais JA, Denis R, Atlas H, Pescarus R, Garneau PY, Santosa S. A reliable, reproducible flow cytometry protocol for immune cell quantification in human adipose tissue. Anal Biochem 2020; 613:113951. [PMID: 32926866 DOI: 10.1016/j.ab.2020.113951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 01/28/2023]
Abstract
The ability to accurately identify and quantify immune cell populations within adipose tissue is important in understanding the role of immune cells in metabolic disease risk. Flow cytometry is the gold standard method for immune cell quantification. However, quantification of immune cells from adipose tissue presents a number of challenges because of the complexities of working with an oily substance and the rapid deterioration of immune cell viability before analysis can be performed. Here we present a highly reproducible flow cytometry protocol for the quantification of immune cells in human adipose tissue, which overcomes these issues.
Collapse
Affiliation(s)
- Kerri Z Delaney
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, 7141 Sherbrooke St W, Montreal, QC, H4B 1R6, Canada; Metabolism, Obesity, Nutrition Lab, PERFORM Centre, Concordia University, 7200 Sherbrooke St W, Montreal, QC, H4B 1R6, Canada; Centre de Recherche - Axe Maladies Chroniques, Centre Intégré Universitaire de Santé et de Services Sociaux Du Nord-de-l'Ile-de-Montreal, Hôpital Du Sacré-Coeur de Montreal, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
| | - Vi Dam
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, 7141 Sherbrooke St W, Montreal, QC, H4B 1R6, Canada; Metabolism, Obesity, Nutrition Lab, PERFORM Centre, Concordia University, 7200 Sherbrooke St W, Montreal, QC, H4B 1R6, Canada; Centre de Recherche - Axe Maladies Chroniques, Centre Intégré Universitaire de Santé et de Services Sociaux Du Nord-de-l'Ile-de-Montreal, Hôpital Du Sacré-Coeur de Montreal, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
| | - Jessica Murphy
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, 7141 Sherbrooke St W, Montreal, QC, H4B 1R6, Canada; Metabolism, Obesity, Nutrition Lab, PERFORM Centre, Concordia University, 7200 Sherbrooke St W, Montreal, QC, H4B 1R6, Canada; Centre de Recherche - Axe Maladies Chroniques, Centre Intégré Universitaire de Santé et de Services Sociaux Du Nord-de-l'Ile-de-Montreal, Hôpital Du Sacré-Coeur de Montreal, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
| | - José A Morais
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, 7141 Sherbrooke St W, Montreal, QC, H4B 1R6, Canada; Division of Geriatric Medicine, McGill University Health Centre - Royal Victoria Hospital, 1001, Décarie, Montreal, Québec, H4A 3J1, Canada
| | - Ronald Denis
- Departement Du Chirurgie, Hôpital Du Sacré-Coeur de Montréal, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
| | - Henri Atlas
- Departement Du Chirurgie, Hôpital Du Sacré-Coeur de Montréal, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
| | - Radu Pescarus
- Departement Du Chirurgie, Hôpital Du Sacré-Coeur de Montréal, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
| | - Pierre Y Garneau
- Departement Du Chirurgie, Hôpital Du Sacré-Coeur de Montréal, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
| | - Sylvia Santosa
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, 7141 Sherbrooke St W, Montreal, QC, H4B 1R6, Canada; Metabolism, Obesity, Nutrition Lab, PERFORM Centre, Concordia University, 7200 Sherbrooke St W, Montreal, QC, H4B 1R6, Canada; Centre de Recherche - Axe Maladies Chroniques, Centre Intégré Universitaire de Santé et de Services Sociaux Du Nord-de-l'Ile-de-Montreal, Hôpital Du Sacré-Coeur de Montreal, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada.
| |
Collapse
|
16
|
Acín-Pérez R, Iborra S, Martí-Mateos Y, Cook ECL, Conde-Garrosa R, Petcherski A, Muñoz MDM, Martínez de Mena R, Krishnan KC, Jiménez C, Bolaños JP, Laakso M, Lusis AJ, Shirihai OS, Sancho D, Enríquez JA. Fgr kinase is required for proinflammatory macrophage activation during diet-induced obesity. Nat Metab 2020; 2:974-988. [PMID: 32943786 PMCID: PMC8225238 DOI: 10.1038/s42255-020-00273-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/06/2020] [Indexed: 12/21/2022]
Abstract
Proinflammatory macrophages are key in the development of obesity. In addition, reactive oxygen species (ROS), which activate the Fgr tyrosine kinase, also contribute to obesity. Here we show that ablation of Fgr impairs proinflammatory macrophage polarization while preventing high-fat diet (HFD)-induced obesity in mice. Systemic ablation of Fgr increases lipolysis and liver fatty acid oxidation, thereby avoiding steatosis. Knockout of Fgr in bone marrow (BM)-derived cells is sufficient to protect against insulin resistance and liver steatosis following HFD feeding, while the transfer of Fgr-expressing BM-derived cells reverts protection from HFD feeding in Fgr-deficient hosts. Scavenging of mitochondrial peroxides is sufficient to prevent Fgr activation in BM-derived cells and HFD-induced obesity. Moreover, Fgr expression is higher in proinflammatory macrophages and correlates with obesity traits in both mice and humans. Thus, our findings reveal the mitochondrial ROS-Fgr kinase as a key regulatory axis in proinflammatory adipose tissue macrophage activation, diet-induced obesity, insulin resistance and liver steatosis.
Collapse
Affiliation(s)
- Rebeca Acín-Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Salvador Iborra
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, Madrid, Spain
| | | | - Emma C L Cook
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Ruth Conde-Garrosa
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Anton Petcherski
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mª Del Mar Muñoz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | | | - Concepción Jiménez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Juan Pedro Bolaños
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Aldon J Lusis
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Orian S Shirihai
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
17
|
Lee K, Moon S, Park MJ, Koh IU, Choi NH, Yu HY, Kim YJ, Kong J, Kang HG, Kim SC, Kim BJ. Integrated Analysis of Tissue-Specific Promoter Methylation and Gene Expression Profile in Complex Diseases. Int J Mol Sci 2020; 21:E5056. [PMID: 32709145 PMCID: PMC7404266 DOI: 10.3390/ijms21145056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
This study investigated whether the promoter region of DNA methylation positively or negatively regulates tissue-specific genes (TSGs) and if it correlates with disease pathophysiology. We assessed tissue specificity metrics in five human tissues, using sequencing-based approaches, including 52 whole genome bisulfite sequencing (WGBS), 52 RNA-seq, and 144 chromatin immunoprecipitation sequencing (ChIP-seq) data. A correlation analysis was performed between the gene expression and DNA methylation levels of the TSG promoter region. The TSG enrichment analyses were conducted in the gene-disease association network (DisGeNET). The epigenomic association analyses of CpGs in enriched TSG promoters were performed using 1986 Infinium MethylationEPIC array data. A correlation analysis showed significant associations between the promoter methylation and 449 TSGs' expression. A disease enrichment analysis showed that diabetes- and obesity-related diseases were high-ranked. In an epigenomic association analysis based on obesity, 62 CpGs showed statistical significance. Among them, three obesity-related CpGs were newly identified and replicated with statistical significance in independent data. In particular, a CpG (cg17075888 of PDK4), considered as potential therapeutic targets, were associated with complex diseases, including obesity and type 2 diabetes. The methylation changes in a substantial number of the TSG promoters showed a significant association with metabolic diseases. Collectively, our findings provided strong evidence of the relationship between tissue-specific patterns of epigenetic changes and metabolic diseases.
Collapse
Affiliation(s)
- Kibaick Lee
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28519, Korea; (K.L.); (S.M.); (M.-J.P.); (I.-U.K.); (N.-H.C.); (H.-Y.Y.); (Y.J.K.); (J.K.)
| | - Sanghoon Moon
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28519, Korea; (K.L.); (S.M.); (M.-J.P.); (I.-U.K.); (N.-H.C.); (H.-Y.Y.); (Y.J.K.); (J.K.)
| | - Mi-Jin Park
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28519, Korea; (K.L.); (S.M.); (M.-J.P.); (I.-U.K.); (N.-H.C.); (H.-Y.Y.); (Y.J.K.); (J.K.)
| | - In-Uk Koh
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28519, Korea; (K.L.); (S.M.); (M.-J.P.); (I.-U.K.); (N.-H.C.); (H.-Y.Y.); (Y.J.K.); (J.K.)
| | - Nak-Hyeon Choi
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28519, Korea; (K.L.); (S.M.); (M.-J.P.); (I.-U.K.); (N.-H.C.); (H.-Y.Y.); (Y.J.K.); (J.K.)
| | - Ho-Yeong Yu
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28519, Korea; (K.L.); (S.M.); (M.-J.P.); (I.-U.K.); (N.-H.C.); (H.-Y.Y.); (Y.J.K.); (J.K.)
| | - Young Jin Kim
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28519, Korea; (K.L.); (S.M.); (M.-J.P.); (I.-U.K.); (N.-H.C.); (H.-Y.Y.); (Y.J.K.); (J.K.)
| | - Jinhwa Kong
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28519, Korea; (K.L.); (S.M.); (M.-J.P.); (I.-U.K.); (N.-H.C.); (H.-Y.Y.); (Y.J.K.); (J.K.)
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Song Cheol Kim
- Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Bong-Jo Kim
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28519, Korea; (K.L.); (S.M.); (M.-J.P.); (I.-U.K.); (N.-H.C.); (H.-Y.Y.); (Y.J.K.); (J.K.)
| |
Collapse
|
18
|
Virtue AT, McCright SJ, Wright JM, Jimenez MT, Mowel WK, Kotzin JJ, Joannas L, Basavappa MG, Spencer SP, Clark ML, Eisennagel SH, Williams A, Levy M, Manne S, Henrickson SE, Wherry EJ, Thaiss CA, Elinav E, Henao-Mejia J. The gut microbiota regulates white adipose tissue inflammation and obesity via a family of microRNAs. Sci Transl Med 2020; 11:11/496/eaav1892. [PMID: 31189717 DOI: 10.1126/scitranslmed.aav1892] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/18/2018] [Accepted: 05/17/2019] [Indexed: 12/13/2022]
Abstract
The gut microbiota is a key environmental determinant of mammalian metabolism. Regulation of white adipose tissue (WAT) by the gut microbiota is a process critical to maintaining metabolic fitness, and gut dysbiosis can contribute to the development of obesity and insulin resistance (IR). However, how the gut microbiota regulates WAT function remains largely unknown. Here, we show that tryptophan-derived metabolites produced by the gut microbiota controlled the expression of the miR-181 family in white adipocytes in mice to regulate energy expenditure and insulin sensitivity. Moreover, dysregulation of the gut microbiota-miR-181 axis was required for the development of obesity, IR, and WAT inflammation in mice. Our results indicate that regulation of miR-181 in WAT by gut microbiota-derived metabolites is a central mechanism by which host metabolism is tuned in response to dietary and environmental changes. As we also found that MIR-181 expression in WAT and the plasma abundance of tryptophan-derived metabolites were dysregulated in a cohort of obese human children, the MIR-181 family may represent a potential therapeutic target to modulate WAT function in the context of obesity.
Collapse
Affiliation(s)
- Anthony T Virtue
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sam J McCright
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jasmine M Wright
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Monica T Jimenez
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Walter K Mowel
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan J Kotzin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leonel Joannas
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Megha G Basavappa
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sean P Spencer
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Megan L Clark
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Adam Williams
- Jackson Laboratory for Genomic Medicine, Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Maayan Levy
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sarah E Henrickson
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Division of Allergy Immunology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - E John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, Philadelphia, PA 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christoph A Thaiss
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Jordan S, Tung N, Casanova-Acebes M, Chang C, Cantoni C, Zhang D, Wirtz TH, Naik S, Rose SA, Brocker CN, Gainullina A, Hornburg D, Horng S, Maier BB, Cravedi P, LeRoith D, Gonzalez FJ, Meissner F, Ochando J, Rahman A, Chipuk JE, Artyomov MN, Frenette PS, Piccio L, Berres ML, Gallagher EJ, Merad M. Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell 2020; 178:1102-1114.e17. [PMID: 31442403 DOI: 10.1016/j.cell.2019.07.050] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/02/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023]
Abstract
Caloric restriction is known to improve inflammatory and autoimmune diseases. However, the mechanisms by which reduced caloric intake modulates inflammation are poorly understood. Here we show that short-term fasting reduced monocyte metabolic and inflammatory activity and drastically reduced the number of circulating monocytes. Regulation of peripheral monocyte numbers was dependent on dietary glucose and protein levels. Specifically, we found that activation of the low-energy sensor 5'-AMP-activated protein kinase (AMPK) in hepatocytes and suppression of systemic CCL2 production by peroxisome proliferator-activator receptor alpha (PPARα) reduced monocyte mobilization from the bone marrow. Importantly, we show that fasting improves chronic inflammatory diseases without compromising monocyte emergency mobilization during acute infectious inflammation and tissue repair. These results reveal that caloric intake and liver energy sensors dictate the blood and tissue immune tone and link dietary habits to inflammatory disease outcome.
Collapse
Affiliation(s)
- Stefan Jordan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| | - Navpreet Tung
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Maria Casanova-Acebes
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Christie Chang
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Claudia Cantoni
- Department of Neurology, Washington University School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Dachuan Zhang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Department of Cell Biology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, The Bronx, NY 10461, USA
| | - Theresa H Wirtz
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Shruti Naik
- Department of Pathology, and Ronald O. Perelman Department of Dermatology, NYU School of Medicine, 240 East 38(th) Street, New York, NY 10016, USA
| | - Samuel A Rose
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Chad N Brocker
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Bethesda, MD 20892, USA
| | - Anastasiia Gainullina
- Department of Pathology & Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Computer Technologies Department, ITMO University, Kronverksky 49, Saint Petersburg, Russian Federation
| | - Daniel Hornburg
- Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Sam Horng
- Department of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Barbara B Maier
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Paolo Cravedi
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Bethesda, MD 20892, USA
| | - Felix Meissner
- Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Adeeb Rahman
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Maxim N Artyomov
- Department of Pathology & Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Department of Cell Biology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, The Bronx, NY 10461, USA
| | - Laura Piccio
- Department of Neurology, Washington University School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA; Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown NSW 2050, Australia
| | - Marie-Luise Berres
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Emily J Gallagher
- Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
20
|
Mizutani K, Shirakami E, Ichishi M, Matsushima Y, Umaoka A, Okada K, Yamaguchi Y, Watanabe M, Morita E, Yamanaka K. Systemic Dermatitis Model Mice Exhibit Atrophy of Visceral Adipose Tissue and Increase Stromal Cells via Skin-Derived Inflammatory Cytokines. Int J Mol Sci 2020; 21:ijms21093367. [PMID: 32397568 PMCID: PMC7247662 DOI: 10.3390/ijms21093367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/31/2022] Open
Abstract
Adipose tissue (AT) is the largest endocrine organ, producing bioactive products called adipocytokines, which regulate several metabolic pathways, especially in inflammatory conditions. On the other hand, there is evidence that chronic inflammatory skin disease is closely associated with vascular sclerotic changes, cardiomegaly, and severe systemic amyloidosis in multiple organs. In psoriasis, a common chronic intractable inflammatory skin disease, several studies have shown that adipokine levels are associated with disease severity. Chronic skin disease is also associated with metabolic syndrome, including abnormal tissue remodeling; however, the mechanism is still unclear. We addressed this problem using keratin 14-specific caspase-1 overexpressing transgenic (KCASP1Tg) mice with severe erosive dermatitis from 8 weeks of age, followed by re-epithelization. The whole body and gonadal white AT (GWAT) weights were decreased. Each adipocyte was large in number, small in size and irregularly shaped; abundant inflammatory cells, including activated CD4+ or CD8+ T cells and toll-like receptor 4/CD11b-positive activated monocytes, infiltrated into the GWAT. We assumed that inflammatory cytokine production in skin lesions was the key factor for this lymphocyte/monocyte activation and AT dysregulation. We tested our hypothesis that the AT in a mouse dermatitis model shows an impaired thermogenesis ability due to systemic inflammation. After exposure to 4 °C, the mRNA expression of the thermogenic gene uncoupling protein 1 in adipocytes was elevated; however, the body temperature of the KCASP1Tg mice decreased rapidly, revealing an impaired thermogenesis ability of the AT due to atrophy. Tumor necrosis factor (TNF)-α, IL-1β and interferon (INF)-γ levels were significantly increased in KCASP1Tg mouse ear skin lesions. To investigate the direct effects of these cytokines, BL/6 wild mice were administered intraperitoneal TNF-α, IL-1β and INF-γ injections, which resulted in small adipocytes with abundant stromal cell infiltration, suggesting those cytokines have a synergistic effect on adipocytes. The systemic dermatitis model mice showed atrophy of AT and increased stromal cells. These findings were reproducible by the intraperitoneal administration of inflammatory cytokines whose production was increased in inflamed skin lesions.
Collapse
Affiliation(s)
- Kento Mizutani
- Department of Dermatology, Graduate School of Medicine, Mie University, Mie, Tsu 514-8507, Japan; (K.M.); (E.S.); (Y.M.); (A.U.); (K.O.)
| | - Eri Shirakami
- Department of Dermatology, Graduate School of Medicine, Mie University, Mie, Tsu 514-8507, Japan; (K.M.); (E.S.); (Y.M.); (A.U.); (K.O.)
- Department of Dermatology, Faculty of Medicine, Shimane University, Shimane, Izumo 693-8501, Japan;
| | - Masako Ichishi
- Department of Oncologic Pathology, Graduate School of Medicine, Mie University, Mie, Tsu 514-8507, Japan; (M.I.); (M.W.)
| | - Yoshiaki Matsushima
- Department of Dermatology, Graduate School of Medicine, Mie University, Mie, Tsu 514-8507, Japan; (K.M.); (E.S.); (Y.M.); (A.U.); (K.O.)
| | - Ai Umaoka
- Department of Dermatology, Graduate School of Medicine, Mie University, Mie, Tsu 514-8507, Japan; (K.M.); (E.S.); (Y.M.); (A.U.); (K.O.)
| | - Karin Okada
- Department of Dermatology, Graduate School of Medicine, Mie University, Mie, Tsu 514-8507, Japan; (K.M.); (E.S.); (Y.M.); (A.U.); (K.O.)
| | - Yukie Yamaguchi
- Department of Environmental Immuno-Dermatology, School of Medicine, Yokohama City University Graduate, Yokohama 236-0027, Japan;
| | - Masatoshi Watanabe
- Department of Oncologic Pathology, Graduate School of Medicine, Mie University, Mie, Tsu 514-8507, Japan; (M.I.); (M.W.)
| | - Eishin Morita
- Department of Dermatology, Faculty of Medicine, Shimane University, Shimane, Izumo 693-8501, Japan;
| | - Keiichi Yamanaka
- Department of Dermatology, Graduate School of Medicine, Mie University, Mie, Tsu 514-8507, Japan; (K.M.); (E.S.); (Y.M.); (A.U.); (K.O.)
- Correspondence: ; Tel.: +81-59-231-5025; Fax: +81-59-231-5206
| |
Collapse
|
21
|
|
22
|
Heizer PJ, Yang Y, Tu Y, Kim PH, Chen NY, Hu Y, Yoshinaga Y, de Jong PJ, Vergnes L, Morales JE, Li RL, Jackson N, Reue K, Young SG, Fong LG. Deficiency in ZMPSTE24 and resulting farnesyl-prelamin A accumulation only modestly affect mouse adipose tissue stores. J Lipid Res 2020; 61:413-421. [PMID: 31941672 DOI: 10.1194/jlr.ra119000593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/14/2020] [Indexed: 11/20/2022] Open
Abstract
Zinc metallopeptidase STE24 (ZMPSTE24) is essential for the conversion of farnesyl-prelamin A to mature lamin A, a key component of the nuclear lamina. In the absence of ZMPSTE24, farnesyl-prelamin A accumulates in the nucleus and exerts toxicity, causing a variety of disease phenotypes. By ∼4 months of age, both male and female Zmpste24 -/- mice manifest a near-complete loss of adipose tissue, but it has never been clear whether this phenotype is a direct consequence of farnesyl-prelamin A toxicity in adipocytes. To address this question, we generated a conditional knockout Zmpste24 allele and used it to create adipocyte-specific Zmpste24-knockout mice. To boost farnesyl-prelamin A levels, we bred in the "prelamin A-only" Lmna allele. Gene expression, immunoblotting, and immunohistochemistry experiments revealed that adipose tissue in these mice had decreased Zmpste24 expression along with strikingly increased accumulation of prelamin A. In male mice, Zmpste24 deficiency in adipocytes was accompanied by modest changes in adipose stores (an 11% decrease in body weight, a 23% decrease in body fat mass, and significantly smaller gonadal and inguinal white adipose depots). No changes in adipose stores were detected in female mice, likely because prelamin A expression in adipose tissue is lower in female mice. Zmpste24 deficiency in adipocytes did not alter the number of macrophages in adipose tissue, nor did it alter plasma levels of glucose, triglycerides, or fatty acids. We conclude that ZMPSTE24 deficiency in adipocytes, and the accompanying accumulation of farnesyl-prelamin A, reduces adipose tissue stores, but only modestly and only in male mice.
Collapse
Affiliation(s)
- Patrick J Heizer
- Departments of Medicine University of California, Los Angeles, Los Angeles, CA 90095
| | - Ye Yang
- Departments of Medicine University of California, Los Angeles, Los Angeles, CA 90095
| | - Yiping Tu
- Departments of Medicine University of California, Los Angeles, Los Angeles, CA 90095
| | - Paul H Kim
- Departments of Medicine University of California, Los Angeles, Los Angeles, CA 90095
| | - Natalie Y Chen
- Departments of Medicine University of California, Los Angeles, Los Angeles, CA 90095
| | - Yan Hu
- Departments of Medicine University of California, Los Angeles, Los Angeles, CA 90095
| | - Yuko Yoshinaga
- Children's Hospital Oakland Research Institute, Oakland, CA 94609
| | - Pieter J de Jong
- Children's Hospital Oakland Research Institute, Oakland, CA 94609
| | - Laurent Vergnes
- Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jazmin E Morales
- Departments of Medicine University of California, Los Angeles, Los Angeles, CA 90095
| | - Robert L Li
- Departments of Medicine University of California, Los Angeles, Los Angeles, CA 90095
| | - Nicholas Jackson
- Departments of Medicine University of California, Los Angeles, Los Angeles, CA 90095
| | - Karen Reue
- Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Stephen G Young
- Departments of Medicine University of California, Los Angeles, Los Angeles, CA 90095 .,Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Loren G Fong
- Departments of Medicine University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
23
|
Gohi BFCA, Liu XY, Zeng HY, Xu S, Ake KMH, Cao XJ, Zou KM, Namulondo S. Enhanced efficiency in isolation and expansion of hAMSCs via dual enzyme digestion and micro-carrier. Cell Biosci 2020; 10:2. [PMID: 31921407 PMCID: PMC6945441 DOI: 10.1186/s13578-019-0367-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 12/16/2019] [Indexed: 01/08/2023] Open
Abstract
A two-stage method of obtaining viable human amniotic stem cells (hAMSCs) in large-scale is described. First, human amniotic stem cells are isolated via dual enzyme (collagenase II and DNAase I) digestion. Next, relying on a culture of the cells from porous chitosan-based microspheres in vitro, high purity hAMSCs are obtained in large-scale. Dual enzymatic (collagenase II and DNase I) digestion provides a primary cell culture and first subculture with a lower contamination rate, higher purity and a larger number of isolated cells. The obtained hAMSCs were seeded onto chitosan microspheres (CM), gelatin-chitosan microspheres (GCM) and collagen-chitosan microspheres (CCM) to produce large numbers of hAMSCs for clinical trials. Growth activity measurement and differentiation essays of hAMSCs were realized. Within 2 weeks of culturing, GCMs achieved over 1.28 ± 0.06 × 107 hAMSCs whereas CCMs and CMs achieved 7.86 ± 0.11 × 106 and 1.98 ± 0.86 × 106 respectively within this time. In conclusion, hAMSCs showed excellent attachment and viability on GCM-chitosan microspheres, matching the hAMSCs' normal culture medium. Therefore, dual enzyme (collagenase II and DNAase I) digestion may be a more useful isolation process and culture of hAMSCs on porous GCM in vitro as an ideal environment for the large-scale expansion of highly functional hAMSCs for eventual use in stem cell-based therapy.
Collapse
Affiliation(s)
- Bi Foua Claude Alain Gohi
- Biology and Chemical Engineering School, Panzhihua University, Panzhihua, 617000 Sichuan People’s Republic of China
- Biotechnology Institute, College of Chemical Engineering, Xiangtan University, Xiangtan, 411105 Hunan People’s Republic of China
| | - Xue-Ying Liu
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Green, Zhuzhou, China
- Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, 412007 Hunan China
| | - Hong-Yan Zeng
- Biotechnology Institute, College of Chemical Engineering, Xiangtan University, Xiangtan, 411105 Hunan People’s Republic of China
| | - Sheng Xu
- Biotechnology Institute, College of Chemical Engineering, Xiangtan University, Xiangtan, 411105 Hunan People’s Republic of China
| | - Kouassi Marius Honore Ake
- Faculty of Business Administration, Laval University, Pavillon Palasis-Prince, 2325 Rue de la Terrasse, G1V 0A6 Quebec City, Canada
| | - Xiao-Ju Cao
- Biotechnology Institute, College of Chemical Engineering, Xiangtan University, Xiangtan, 411105 Hunan People’s Republic of China
| | - Kai-Min Zou
- Biotechnology Institute, College of Chemical Engineering, Xiangtan University, Xiangtan, 411105 Hunan People’s Republic of China
| | - Sheila Namulondo
- Institute of Comparative Literature and World Literature, College of Literature and Journalism, Xiangtan University, Xiangtan, 411105 Hunan People’s Republic of China
| |
Collapse
|
24
|
Liu C, Li P, Li H, Wang S, Ding L, Wang H, Ye H, Jin Y, Hou J, Fang X, Shu Q. TREM2 regulates obesity-induced insulin resistance via adipose tissue remodeling in mice of high-fat feeding. J Transl Med 2019; 17:300. [PMID: 31477129 PMCID: PMC6720981 DOI: 10.1186/s12967-019-2050-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/25/2019] [Indexed: 12/25/2022] Open
Abstract
Background Adipose tissue remodeling plays a significant role in obesity-induced insulin resistance. Published studies reported that level of trigger receptor expressed on myeloid cells 2 (TREM2) in adipose tissue is up-regulated in animal models of obesity. This study aims to investigate whether TREM2 regulates obesity-induced insulin resistance via modulating adipose tissue remodeling in mice of high-fat diet (HFD). Methods Wild-type (WT) and TREM2−/− mice were both fed with a controlled-fat diet (CFD) or HFD for 12 weeks and studied for obesity and insulin resistance. Meanwhile, epididymal adipose tissue (EAT) was examined for morphological and pathological changes to determine adipose tissue remodeling. After that, adipocyte-derived MCP-1 was measured in adipocytes, adipose tissue and circulation. Next, inflammatory cytokines were determined in adipose tissue macrophages (ATM). At last, livers were analyzed for hepatic steatosis. Results TREM2−/− mice on HFD had increased obesity and insulin resistance compared with WT counterparts. Adipose tissue from TREM2−/− mice exhibited reduced mass but greater adipocyte hypertrophy and increased adipocyte death. Besides, adipocyte-derived MCP-1 was down-regulated in TREM2−/− mice, and circulating MCP-1 level was lower than that of WT mice. Furthermore, TREM2−/− mice displayed reduced infiltration of F4/80+CD11c+ macrophages into adipose tissue, which was unable to form crown-like structures (CLS) to clean dead adipocytes and cellular contents. Also, TREM2 deficiency augmented inflammatory response of adipose tissue macrophages in HFD mice. In addition, TREM2−/− mice demonstrated more severe hepatic steatosis than WT counterparts under HFD feeding. Conclusions Trigger receptor expressed on myeloid cells 2 may function as a feedback mechanism to curb obesity-induced insulin resistance via regulating adipose tissue remodeling.
Collapse
Affiliation(s)
- Can Liu
- Cardiovascular Surgery, Children's Hospital, Zhejiang University School of Medicine, No. 3333 Binsheng Road, Hangzhou, 310052, Zhejiang, China
| | - Pinhao Li
- The First Affiliated Hospital, Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Li
- The First Affiliated Hospital, Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Sicong Wang
- The First Affiliated Hospital, Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lifeng Ding
- The First Affiliated Hospital, Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanbin Wang
- The First Affiliated Hospital, Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Ye
- The First Affiliated Hospital, Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Jin
- The First Affiliated Hospital, Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinchao Hou
- The First Affiliated Hospital, Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangming Fang
- The First Affiliated Hospital, Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Shu
- Cardiovascular Surgery, Children's Hospital, Zhejiang University School of Medicine, No. 3333 Binsheng Road, Hangzhou, 310052, Zhejiang, China.
| |
Collapse
|
25
|
Marvin J, Rhoads JP, Major AS. FcγRIIb on CD11c + cells modulates serum cholesterol and triglyceride levels and differentially affects atherosclerosis in male and female Ldlr -/- mice. Atherosclerosis 2019; 285:108-119. [PMID: 31051414 DOI: 10.1016/j.atherosclerosis.2019.04.221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Circulating levels of oxidized lipoprotein (oxLDL) correlate with myocardial infarction risk and atherosclerosis severity. Our previous study demonstrates that oxLDL immune complexes (oxLDL-ICs) can signal through FcγRs on bone marrow-derived dendritic cells (BMDCs) and enhance their activation and inflammatory cytokine secretion. While global FcγR-/- studies have shown that activating FcγRs are proatherogenic, the role of the inhibitory FcγRIIb is unclear. We sought to determine the role of DC-specific FcγRIIb in atherosclerosis. METHODS Bone marrow chimeras were generated by rescuing lethally irradiated Ldlr-/- mice with hematopoietic cells from littermate CD11c-Cre+ or CD11c-Cre-Fcgr2bfl/fl donors. Four weeks following transplant, recipients were placed on a Western diet for eight weeks. Various tissues and organs were analyzed for differences in inflammation. RESULTS Quantitation of atherosclerosis in the proximal aorta demonstrated a 58% increase in female CD11c-Cre+Fcgr2bfl/fl recipients, but a surprising 44% decrease in male recipients. Hepatic cholesterol and triglycerides were increased in female CD11c-Cre+Fcgr2bfl/fl recipients. This was associated with an increase in CD36 and MHC Class II expression on hepatic CD11c+CD11b+ DCs in female livers. In contrast, male CD11c-Cre+Fcgr2bfl/fl recipients had decreased hepatic lipids with a corresponding decrease in CD36 and MHC Class II expression on CD11c+ cells. Interestingly, both sexes of CD11c-Cre+Fcgr2bfl/fl recipients had significant decreases in serum cholesterol and TGs with corresponding decreases in liver Fasn transcripts. CONCLUSIONS The absence of FcγRIIb expression on CD11c+ cells results in sex-dependent alteration in liver inflammation influencing atherogenesis and sex-independent modulation of serum cholesterol and TGs.
Collapse
Affiliation(s)
- Jennifer Marvin
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt Medical Center, Nashville, TN, 37232, USA
| | - Jillian P Rhoads
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt Medical Center, Nashville, TN, 37232, USA
| | - Amy S Major
- Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, TN, 37212, USA; Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
26
|
Abstract
Obesity is a medical condition that impacts on all levels of society and causes numerous comorbidities, such as diabetes, cardiovascular disease, and cancer. We assessed the suitability of targeting enolase, a glycolysis pathway enzyme with multiple, secondary functions in cells, to treat obesity. Treating adipocytes with ENOblock, a novel modulator of these secondary ‘moonlighting’ functions of enolase, suppressed the adipogenic program and induced mitochondrial uncoupling. Obese animals treated with ENOblock showed a reduction in body weight and increased core body temperature. Metabolic and inflammatory parameters were improved in the liver, adipose tissue and hippocampus. The mechanism of ENOblock was identified as transcriptional repression of master regulators of lipid homeostasis (Srebp-1a and Srebp-1c), gluconeogenesis (Pck-1) and inflammation (Tnf-α and Il-6). ENOblock treatment also reduced body weight gain, lowered cumulative food intake and increased fecal lipid content in mice fed a high fat diet. Our results support the further drug development of ENOblock as a therapeutic for obesity and suggest enolase as a new target for this disorder.
Collapse
|
27
|
Ohkura T, Yoshimura T, Fujisawa M, Ohara T, Marutani R, Usami K, Matsukawa A. Spred2 Regulates High Fat Diet-Induced Adipose Tissue Inflammation, and Metabolic Abnormalities in Mice. Front Immunol 2019; 10:17. [PMID: 30723473 PMCID: PMC6349710 DOI: 10.3389/fimmu.2019.00017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic low-grade inflammation in visceral adipose tissues triggers the development of obesity-related insulin resistance, leading to the metabolic syndrome, a serious health condition with higher risk of cardiovascular disease, diabetes, and stroke. In the present study, we investigated whether Sprouty-related EVH1-domain-containing protein 2 (Spred2), a negative regulator of the Ras/Raf/ERK/MAPK pathway, plays a role in the development of high fat diet (HFD)-induced obesity, adipose tissue inflammation, metabolic abnormalities, and insulin resistance. Spred2 knockout (KO) mice, fed with HFD, exhibited an augmented body weight gain, which was associated with enhanced adipocyte hypertrophy in mesenteric white adipose tissue (mWAT) and deteriorated dyslipidemia, compared with wild-type (WT) controls. The number of infiltrating macrophages with a M1 phenotype, and the crown-like structures, composed of macrophages surrounding dead or dying adipocytes, were more abundant in Spred2 KO-mWAT compared to in WT-mWAT. Exacerbated adipose tissue inflammation in Spred2 KO mice led to aggravated insulin resistance and fatty liver disease. To analyze the mechanism(s) that caused adipose tissue inflammation, cytokine response in mWAT was investigated. Stromal vascular fraction that contained macrophages from Spred2 KO-mWAT showed elevated levels of tumor necrosis factor α (TNFα) and monocyte chemoattractant protein-1 (MCP-1/CCL2) compared with those from WT-mWAT. Upon stimulation with palmitate acid (PA), bone marrow-derived macrophages (BMDMs) derived from Spred2 KO mice secreted higher levels of TNFα and MCP-1 than those from WT mice with enhanced ERK activation. U0126, a MEK inhibitor, reduced the PA-induced cytokine response. Taken together, these results suggested that Spred2, in macrophages, negatively regulates high fat diet-induced obesity, adipose tissue inflammation, metabolic abnormalities, and insulin resistance by inhibiting the ERK/MAPK pathway. Thus, Spred2 represents a potential therapeutic tool for the prevention of insulin resistance and resultant metabolic syndrome.
Collapse
Affiliation(s)
- Takahiro Ohkura
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masayoshi Fujisawa
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Rie Marutani
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kaya Usami
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
28
|
McDonnell WJ, Koethe JR, Mallal SA, Pilkinton MA, Kirabo A, Ameka MK, Cottam MA, Hasty AH, Kennedy AJ. High CD8 T-Cell Receptor Clonality and Altered CDR3 Properties Are Associated With Elevated Isolevuglandins in Adipose Tissue During Diet-Induced Obesity. Diabetes 2018; 67:2361-2376. [PMID: 30181158 PMCID: PMC6198339 DOI: 10.2337/db18-0040] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 08/20/2018] [Indexed: 12/29/2022]
Abstract
Adipose tissue (AT) CD4+ and CD8+ T cells contribute to obesity-associated insulin resistance. Prior studies identified conserved T-cell receptor (TCR) chain families in obese AT, but the presence and clonal expansion of specific TCR sequences in obesity has not been assessed. We characterized AT and liver CD8+ and CD4+ TCR repertoires of mice fed a low-fat diet (LFD) and high-fat diet (HFD) using deep sequencing of the TCRβ chain to quantify clonal expansion, gene usage, and CDR3 sequence. In AT CD8+ T cells, HFD reduced TCR diversity, increased the prevalence of public TCR clonotypes, and selected for TCR CDR3 regions enriched in positively charged and less polarized amino acids. Although TCR repertoire alone could distinguish between LFD- and HFD-fed mice, these properties of the CDR3 region of AT CD8+ T cells from HFD-fed mice led us to examine the role of negatively charged and nonpolar isolevuglandin (isoLG) adduct-containing antigen-presenting cells within AT. IsoLG-adducted protein species were significantly higher in AT macrophages of HFD-fed mice; isoLGs were elevated in M2-polarized macrophages, promoting CD8+ T-cell activation. Our findings demonstrate that clonal TCR expansion that favors positively charged CDR3s accompanies HFD-induced obesity, which may be an antigen-driven response to isoLG accumulation in macrophages.
Collapse
Affiliation(s)
- Wyatt J McDonnell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
| | - John R Koethe
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN
- Veterans Administration Tennessee Valley Healthcare System, Nashville, TN
| | - Simon A Mallal
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Mark A Pilkinton
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN
- Veterans Administration Tennessee Valley Healthcare System, Nashville, TN
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Magdalene K Ameka
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Alyssa H Hasty
- Veterans Administration Tennessee Valley Healthcare System, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Arion J Kennedy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
29
|
Truax AD, Chen L, Tam JW, Cheng N, Guo H, Koblansky AA, Chou WC, Wilson JE, Brickey WJ, Petrucelli A, Liu R, Cooper DE, Koenigsknecht MJ, Young VB, Netea MG, Stienstra R, Sartor RB, Montgomery SA, Coleman RA, Ting JPY. The Inhibitory Innate Immune Sensor NLRP12 Maintains a Threshold against Obesity by Regulating Gut Microbiota Homeostasis. Cell Host Microbe 2018; 24:364-378.e6. [PMID: 30212649 PMCID: PMC6161752 DOI: 10.1016/j.chom.2018.08.009] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/19/2018] [Accepted: 08/03/2018] [Indexed: 12/16/2022]
Abstract
In addition to high-fat diet (HFD) and inactivity, inflammation and microbiota composition contribute to obesity. Inhibitory immune receptors, such as NLRP12, dampen inflammation and are important for resolving inflammation, but their role in obesity is unknown. We show that obesity in humans correlates with reduced expression of adipose tissue NLRP12. Similarly, Nlrp12-/- mice show increased weight gain, adipose deposition, blood glucose, NF-κB/MAPK activation, and M1-macrophage polarization. Additionally, NLRP12 is required to mitigate HFD-induced inflammasome activation. Co-housing with wild-type animals, antibiotic treatment, or germ-free condition was sufficient to restrain inflammation, obesity, and insulin tolerance in Nlrp12-/- mice, implicating the microbiota. HFD-fed Nlrp12-/- mice display dysbiosis marked by increased obesity-associated Erysipelotrichaceae, but reduced Lachnospiraceae family and the associated enzymes required for short-chain fatty acid (SCFA) synthesis. Lachnospiraceae or SCFA administration attenuates obesity, inflammation, and dysbiosis. These findings reveal that Nlrp12 reduces HFD-induced obesity by maintaining beneficial microbiota.
Collapse
Affiliation(s)
- Agnieszka D Truax
- Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - Liang Chen
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - Jason W Tam
- Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - Ning Cheng
- Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC, USA; Oral and Craniofacial Biomedicine Program, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - Hao Guo
- Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - A Alicia Koblansky
- Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - Wei-Chun Chou
- Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - Justin E Wilson
- Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - W June Brickey
- Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - Alex Petrucelli
- Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - Rongrong Liu
- Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - Daniel E Cooper
- Department of Nutrition, Gillings School of Global Public Health, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - Mark J Koenigsknecht
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Vincent B Young
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rinke Stienstra
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - R Balfour Sartor
- Center for Gastrointestinal Biology and Disease, Departments of Medicine, Microbiology, and Immunology, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie A Montgomery
- Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - Rosalind A Coleman
- Department of Nutrition, Gillings School of Global Public Health, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, UNC-Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
30
|
|
31
|
JAZF1 Inhibits Adipose Tissue Macrophages and Adipose Tissue Inflammation in Diet-Induced Diabetic Mice. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4507659. [PMID: 29765984 PMCID: PMC5885486 DOI: 10.1155/2018/4507659] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/19/2017] [Accepted: 12/28/2017] [Indexed: 12/26/2022]
Abstract
Background Juxtaposed with another zinc finger gene 1 (JAZF1) affects gluconeogenesis, insulin sensitivity, lipid metabolism, and inflammation, but its exact role in chronic inflammation remains unclear. This study aimed to examine JAZF1 overexpression in vivo on adipose tissue macrophages (ATMs). Methods Mouse models of high-fat diet- (HFD-) induced insulin resistance were induced using C57BL/6J and JAZF1-overexpressing (JAZF1-OX) mice. The mice were randomized (8–10/group) to C57BL/6J mice fed regular diet (RD) (NC group), C57BL/6J mice fed HFD (HF group), JAZF1-OX mice fed RD (NJ group), and JAZF1-OX mice fed HFD (HJ group). Adipose tissue was harvested 12 weeks later. ATMs were evaluated by flow cytometry. Inflammatory markers were evaluated by ELISA. Results JAZF1-OX mice had lower blood lipids, blood glucose, body weight, fat weight, and inflammatory markers compared with HF mice (all P < 0.05). JAZF1 overexpression decreased ATM number and secretion of proinflammatory cytokines. JAZF1 overexpression decreased total CD4+ T cells, active T cells, and memory T cells and increased Treg cells. JAZF1 overexpression downregulated IFN-γ and IL-17 levels and upregulated IL-4 levels. JAZF1 overexpression decreased MHCII, CD40, and CD86 in total ATM, CD11c+ ATM, and CD206+ ATM. Conclusions JAZF1 limits adipose tissue inflammation by limiting macrophage populations and restricting their antigen presentation function.
Collapse
|
32
|
Hepatocyte-secreted DPP4 in obesity promotes adipose inflammation and insulin resistance. Nature 2018; 555:673-677. [PMID: 29562231 DOI: 10.1038/nature26138] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 02/14/2018] [Indexed: 12/22/2022]
Abstract
Obesity-induced metabolic disease involves functional integration among several organs via circulating factors, but little is known about crosstalk between liver and visceral adipose tissue (VAT). In obesity, VAT becomes populated with inflammatory adipose tissue macrophages (ATMs). In obese humans, there is a close correlation between adipose tissue inflammation and insulin resistance, and in obese mice, blocking systemic or ATM inflammation improves insulin sensitivity. However, processes that promote pathological adipose tissue inflammation in obesity are incompletely understood. Here we show that obesity in mice stimulates hepatocytes to synthesize and secrete dipeptidyl peptidase 4 (DPP4), which acts with plasma factor Xa to inflame ATMs. Silencing expression of DPP4 in hepatocytes suppresses inflammation of VAT and insulin resistance; however, a similar effect is not seen with the orally administered DPP4 inhibitor sitagliptin. Inflammation and insulin resistance are also suppressed by silencing expression of caveolin-1 or PAR2 in ATMs; these proteins mediate the actions of DPP4 and factor Xa, respectively. Thus, hepatocyte DPP4 promotes VAT inflammation and insulin resistance in obesity, and targeting this pathway may have metabolic benefits that are distinct from those observed with oral DPP4 inhibitors.
Collapse
|
33
|
Manzoli V, Villa C, Bayer AL, Morales L, Molano RD, Torrente Y, Ricordi C, Hubbell JA, Tomei AA. Immunoisolation of murine islet allografts in vascularized sites through conformal coating with polyethylene glycol. Am J Transplant 2018; 18:590-603. [PMID: 29068143 PMCID: PMC5820142 DOI: 10.1111/ajt.14547] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/21/2017] [Accepted: 10/15/2017] [Indexed: 01/25/2023]
Abstract
Islet encapsulation may allow transplantation without immunosuppression, but thus far islets in large microcapsules transplanted in the peritoneal cavity have failed to reverse diabetes in humans. We showed that islet transplantation in confined well-vascularized sites like the epididymal fat pad (EFP) improved graft outcomes, but only conformal coated (CC) islets can be implanted in these sites in curative doses. Here, we showed that CC using polyethylene glycol (PEG) and alginate (ALG) was not immunoisolating because of its high permselectivity and strong allogeneic T cell responses. We refined the CC composition and explored PEG and islet-like extracellular matrix (Matrigel; MG) islet encapsulation (PEG MG) to improve capsule immunoisolation by decreasing its permselectivity and immunogenicity while allowing physiological islet function. Although the efficiency of diabetes reversal of allogeneic but not syngeneic CC islets was lower than that of naked islets, we showed that CC (PEG MG) islets from fully MHC-mismatched Balb/c mice supported long-term (>100 days) survival after transplantation into diabetic C57BL/6 recipients in the EFP site (750-1000 islet equivalents/mouse) in the absence of immunosuppression. Lack of immune cell penetration and T cell allogeneic priming was observed. These studies support the use of CC (PEG MG) for islet encapsulation and transplantation in clinically relevant sites without chronic immunosuppression.
Collapse
Affiliation(s)
- Vita Manzoli
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA,Department of Electronics, Information and Bioengineering – Politecnico di Milano – Italy
| | - Chiara Villa
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA,Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy,Department of Pathophysiology and Transplantation, Universitá degli Studi di Milano, Italy
| | - Allison L Bayer
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA,Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Laura Morales
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - R Damaris Molano
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yvan Torrente
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy,Department of Pathophysiology and Transplantation, Universitá degli Studi di Milano, Italy
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA,Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA,Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA,Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA,Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | | | - Alice A Tomei
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA,Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA,Department of Biomedical Engineering, University of Miami, Miami, FL, USA,Corresponding author: Alice A. Tomei, 1450 NW 10 Avenue, Miami, FL-33136, USA; Phone: +1 305-243-3469;
| |
Collapse
|
34
|
Orr JS, Kennedy AJ, Hill AA, Anderson-Baucum EK, Hubler MJ, Hasty AH. CC-chemokine receptor 7 (CCR7) deficiency alters adipose tissue leukocyte populations in mice. Physiol Rep 2018; 4:4/18/e12971. [PMID: 27655794 PMCID: PMC5037919 DOI: 10.14814/phy2.12971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/22/2016] [Indexed: 11/24/2022] Open
Abstract
The mechanism by which macrophages and other immune cells accumulate in adipose tissue (AT) has been an area of intense investigation over the past decade. Several different chemokines and their cognate receptors have been studied for their role as chemoattractants in promoting recruitment of immune cells to AT. However, it is also possible that chemoattractants known to promote clearance of immune cells from tissues to regional lymph nodes might be a critical component to overall AT immune homeostasis. In this study, we evaluated whether CCR7 influences AT macrophage (ATM) or T‐cell (ATT) accumulation. CCR7−/− and littermate wild‐type (WT) mice were placed on low‐fat diet (LFD) or high‐fat diet (HFD) for 16 weeks. CCR7 deficiency did not impact HFD‐induced weight gain, hepatic steatosis, or glucose intolerance. Although lean CCR7−/− mice had an increased proportion of alternatively activated ATMs, there were no differences in ATM accumulation or polarization between HFD‐fed CCR7−/− mice and their WT counterparts. However, CCR7 deficiency did lead to the preferential accumulation of CD8+ATT cells, which was further exacerbated by HFD feeding. Finally, expression of inflammatory cytokines/chemokines, such as Tnf, Il6, Il1β, Ccl2, and Ccl3, was equally elevated in AT by HFD feeding in CCR7−/− and WT mice, while Ifng and Il18 were elevated by HFD feeding in CCR7−/− but not in WT mice. Together, these data suggest that CCR7 plays a role in CD8+ATT cell egress, but does not influence ATM accumulation or the metabolic impact of diet‐induced obesity.
Collapse
Affiliation(s)
- Jeb S Orr
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Arion J Kennedy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Andrea A Hill
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Emily K Anderson-Baucum
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Merla J Hubler
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
35
|
Peterson KR, Flaherty DK, Hasty AH. Obesity Alters B Cell and Macrophage Populations in Brown Adipose Tissue. Obesity (Silver Spring) 2017; 25:1881-1884. [PMID: 28922564 PMCID: PMC5679082 DOI: 10.1002/oby.21982] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The prevalence of obesity continues to rise, and it is understood that regulation of white adipose tissue (WAT) function is important to systemic metabolic homeostasis. Immune cells play a central role in the maintenance of WAT, and their compositions change in number and inflammatory phenotype with the progression of obesity. Because of its energy-burning capabilities, brown adipose tissue (BAT) has become a focus of obesity research. Although novel studies have focused on the function of brown adipocytes in thermogenesis, the tissue as a whole has not been immunologically characterized. METHODS BAT immune cell populations were analyzed by flow cytometry and immunohistochemistry in mice with diet-induced obesity (3, 8, or 16 weeks of diet) and in aged mice (1, 6-7, and 10-15 months). RESULTS The data confirmed the presence of macrophages and eosinophils, as previously reported, and showed that 20% to 30% of the immune cells in BAT were B cells. The number of B cells and eosinophils increased with diet-induced obesity, whereas macrophages decreased. There was no change in number of any immune cell quantified with age. CONCLUSIONS These studies reveal a novel finding of B220 + B cells in BAT and show that BAT immune cell populations change in response to diet-induced obesity.
Collapse
Affiliation(s)
- Kristin R. Peterson
- Department of Molecular Physiology and Biophysics Vanderbilt University School of Medicine, Nashville, Tennessee 37232
- Department of Pharmacology Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - David K. Flaherty
- Flow Cytometry Shared Resource Vanderbilt Vaccine Center, Nashville, Tennessee 37232
| | - Alyssa H. Hasty
- Department of Molecular Physiology and Biophysics Vanderbilt University School of Medicine, Nashville, Tennessee 37232
- Department of Veteran Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee 37212
- Correspondence should be addressed to: Alyssa H. Hasty, PhD, Room 702 Light Hall, Nashville, TN 37232-0615, Phone: 615-322-5177, Fax: 615-322-8973,
| |
Collapse
|
36
|
Roselli M, Devirgiliis C, Zinno P, Guantario B, Finamore A, Rami R, Perozzi G. Impact of supplementation with a food-derived microbial community on obesity-associated inflammation and gut microbiota composition. GENES AND NUTRITION 2017; 12:25. [PMID: 29043005 PMCID: PMC5628415 DOI: 10.1186/s12263-017-0583-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/13/2017] [Indexed: 02/07/2023]
Abstract
Background Obesity is a complex pathology associated with dysbiosis, metabolic alterations, and low-grade chronic inflammation promoted by immune cells, infiltrating and populating the adipose tissue. Probiotic supplementation was suggested to be capable of counteracting obesity-associated immune and microbial alterations, based on its proven immunomodulatory activity and positive effect on gut microbial balance. Traditional fermented foods represent a natural source of live microbes, including environmental strains with probiotic features, which could transiently colonise the gut. The aim of our work was to evaluate the impact of supplementation with a complex foodborne bacterial consortium on obesity-associated inflammation and gut microbiota composition in a mouse model. Methods C57BL/6J mice fed a 45% high fat diet (HFD) for 90 days were supplemented with a mixture of foodborne lactic acid bacteria derived from the traditional fermented dairy product “Mozzarella di Bufala Campana” (MBC) or with the commercial probiotic GG strain of Lactobacillus rhamnosus (LGG). Inflammation was assessed in epididymal white adipose tissue (WAT) following HFD. Faecal microbiota composition was studied by next-generation sequencing. Results Significant reduction of epididymal WAT weight was observed in MBC-treated, as compared to LGG and control, animals. Serum metabolic profiling showed correspondingly reduced levels of triglycerides and higher levels of HDL cholesterol, as well as a trend toward reduction of LDL-cholesterol levels. Analysis of the principal leucocyte subpopulations in epididymal WAT revealed increased regulatory T cells and CD4+ cells in MBC microbiota-supplemented mice, as well as decreased macrophage and CD8+ cell numbers, suggesting anti-inflammatory effects. These results were associated with lower levels of pro-inflammatory cytokines and chemokines in WAT explants. Faecal bacterial profiling demonstrated increased Firmicutes/Bacteroidetes ratio in all mice groups following HFD. Conclusions Taken together, these results indicate a protective effect of MBC microbiota supplementation toward HFD-induced fat accumulation and triglyceride and cholesterol levels, as well as inflammation, suggesting a stronger effect of a mixed microbial consortium vs single-strain probiotic supplementation. The immunomodulatory activity exerted by the MBC microbiota could be due to synergistic interactions within the microbial consortium, highlighting the important role of dietary microbes with yet uncharacterised probiotic effect. Electronic supplementary material The online version of this article (10.1186/s12263-017-0583-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marianna Roselli
- Food and Nutrition Research Centre, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy
| | - Chiara Devirgiliis
- Food and Nutrition Research Centre, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy
| | - Paola Zinno
- Food and Nutrition Research Centre, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy
| | - Barbara Guantario
- Food and Nutrition Research Centre, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy
| | - Alberto Finamore
- Food and Nutrition Research Centre, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy
| | - Rita Rami
- Food and Nutrition Research Centre, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy
| | - Giuditta Perozzi
- Food and Nutrition Research Centre, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy
| |
Collapse
|
37
|
Chen X, Zhang D, Chen X, Meng G, Zheng Q, Mai W, Wu Y, Ye L, Wang L. Oral administration of visceral adipose tissue antigens ameliorates metabolic disorders in mice and elevates visceral adipose tissue-resident CD4 +CD25 +Foxp3 + regulatory T cells. Vaccine 2017; 35:4612-4620. [PMID: 28736203 DOI: 10.1016/j.vaccine.2017.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 06/09/2017] [Accepted: 07/03/2017] [Indexed: 01/12/2023]
Abstract
Obesity and type 2 diabetes are linked with chronic, low-grade inflammation in visceral adipose tissue (VAT). A unique population of VAT-resident CD4+Foxp3+ Tregs plays a crucial role in regulating VAT inflammation and metabolic homeostasis. VAT-resident Tregs display a highly restricted TCR repertoire, suggesting they recognize certain autoantigen(s) in VAT. A dramatic reduction of VAT-resident Tregs has been shown to closely correlate with obesity-related VAT chronic inflammation and metabolic disorders. Oral tolerance strategy may modulate inflammatory response to autoantigens by several mechanisms including induction of autoantigen-specific Tregs. Here, we explored the effects and cellular mechanism of oral administration of VAT pooled antigens on high-fat diet (HFD)-induced metabolic disorders in mice. Indeed, we found that oral treatment of VAT mixture antigens effectively inhibited gain in body weight and fat mass, ameliorated serum lipid parameters, and improved insulin sensitivity in HFD mice. This strategy was shown to significantly restore HFD-induced decrease of VAT-resident Tregs, accompanied by a hampered M2-type to M1-type macrophages phenotypic switch as well as decreased CD8+ T cells infiltration in VAT. Thus, oral administration of VAT antigens may be a novel and safe strategy against obesity and its related metabolic disorders.
Collapse
Affiliation(s)
- Xiangyu Chen
- Institute of Immunology PLA & Department of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Dali Zhang
- Institute of Immunology PLA & Department of Immunology, Third Military Medical University, Chongqing 400038, China; Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xiaoling Chen
- Institute of Immunology PLA & Department of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Gang Meng
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Qian Zheng
- Function Center, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Wenli Mai
- Function Center, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Yuzhang Wu
- Institute of Immunology PLA & Department of Immunology, Third Military Medical University, Chongqing 400038, China.
| | - Lilin Ye
- Institute of Immunology PLA & Department of Immunology, Third Military Medical University, Chongqing 400038, China.
| | - Li Wang
- Institute of Immunology PLA & Department of Immunology, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
38
|
Sidibeh CO, Pereira MJ, Lau Börjesson J, Kamble PG, Skrtic S, Katsogiannos P, Sundbom M, Svensson MK, Eriksson JW. Role of cannabinoid receptor 1 in human adipose tissue for lipolysis regulation and insulin resistance. Endocrine 2017; 55:839-852. [PMID: 27858284 PMCID: PMC5316391 DOI: 10.1007/s12020-016-1172-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/03/2016] [Indexed: 12/31/2022]
Abstract
We recently showed that the peripheral cannabinoid receptor type 1 (CNR1) gene is upregulated by the synthetic glucocorticoid dexamethasone. CNR1 is highly expressed in the central nervous system and has been a drug target for the treatment of obesity. Here we explore the role of peripheral CNR1 in states of insulin resistance in human adipose tissue. Subcutaneous adipose tissue was obtained from well-controlled type 2 diabetes subjects and controls. Subcutaneous adipose tissue gene expression levels of CNR1 and endocannabinoid synthesizing and degrading enzymes were assessed. Furthermore, paired human subcutaneous adipose tissue and omental adipose tissue from non-diabetic volunteers undergoing kidney donation or bariatric surgery, was incubated with or without dexamethasone. Subcutaneous adipose tissue obtained from volunteers through needle biopsy was incubated with or without dexamethasone and in the presence or absence of the CNR1-specific antagonist AM281. CNR1 gene and protein expression, lipolysis and glucose uptake were evaluated. Subcutaneous adipose tissue CNR1 gene expression levels were 2-fold elevated in type 2 diabetes subjects compared with control subjects. Additionally, gene expression levels of CNR1 and endocannabinoid-regulating enzymes from both groups correlated with markers of insulin resistance. Dexamethasone increased CNR1 expression dose-dependently in subcutaneous adipose tissue and omental adipose tissue by up to 25-fold. Dexamethasone pre-treatment of subcutaneous adipose tissue increased lipolysis rate and reduced glucose uptake. Co-incubation with the CNR1 antagonist AM281 prevented the stimulatory effect on lipolysis, but had no effect on glucose uptake. CNR1 is upregulated in states of type 2 diabetes and insulin resistance. Furthermore, CNR1 is involved in glucocorticoid-regulated lipolysis. Peripheral CNR1 could be an interesting drug target in type 2 diabetes and dyslipidemia.
Collapse
Affiliation(s)
- Cherno O Sidibeh
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Prasad G Kamble
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Stanko Skrtic
- AstraZeneca R&D, Mölndal, Sweden
- Department of Endocrinology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Magnus Sundbom
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Maria K Svensson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
39
|
Kim BS, Tilstam PV, Hwang SS, Simons D, Schulte W, Leng L, Sauler M, Ganse B, Averdunk L, Kopp R, Stoppe C, Bernhagen J, Pallua N, Bucala R. D-dopachrome tautomerase in adipose tissue inflammation and wound repair. J Cell Mol Med 2016; 21:35-45. [PMID: 27605340 PMCID: PMC5192814 DOI: 10.1111/jcmm.12936] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/23/2016] [Indexed: 12/31/2022] Open
Abstract
D-dopachrome tautomerase (D-DT/MIF-2) is a member of the macrophage migration inhibitory factor (MIF) cytokine superfamily, and a close structural homolog of MIF. MIF and D-DT have been reported to be involved in obesity, but there is little known about the regulation of D-DT in adipose tissue inflammation and wound healing. Subcutaneous adipose tissue was collected from 54 healthy donors and 28 donors with acutely inflamed wounds undergoing wound debridement. In addition, epididymal fat pads of mice were injected with lipopolysaccharide to study receptor expression and cell migration in vivo. D-DT protein levels and mRNA expression were significantly decreased in subcutaneous adipose tissue adjacent to acutely inflamed wounds. D-DT improved fibroblast viability and increased proliferation in vitro. While D-DT alone did not have a significant effect on in vitro fibroblast wound healing, simultaneous addition of neutralizing MIF antibody resulted in a significant improvement of fibroblast wound healing. Interestingly, expression of the MIF and D-DT receptor CD74 was down-regulated while the MIF receptors CXCR2 and CXCR4 were up-regulated primarily on macrophages indicating that the MIF-CXCR2/4 axis may promote recruitment of inflammatory cells into adipose tissue. Our results describe a reciprocal role of D-DT to MIF in inflamed adipose tissue, and indicate that D-DT may be beneficial in wound repair by improving fibroblast survival and proliferation.
Collapse
Affiliation(s)
- Bong-Sung Kim
- Department of Plastic and Reconstructive Surgery, Hand Surgery - Burn Center, RWTH Aachen University, Aachen, Germany.,Section of Rheumatology, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Pathricia V Tilstam
- Section of Rheumatology, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Soo Seok Hwang
- Department of Immunology, Yale University School of Medicine, New Haven, CT, USA
| | - David Simons
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wibke Schulte
- Section of Rheumatology, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Lin Leng
- Section of Rheumatology, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Maor Sauler
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Bergita Ganse
- Department of Orthopedic Trauma Surgery, RWTH Aachen University, Aachen, Germany
| | - Luisa Averdunk
- Department of Intensive Care Medicine, RWTH Aachen University, Aachen, Germany
| | - Rüdger Kopp
- Department of Intensive Care Medicine, RWTH Aachen University, Aachen, Germany
| | - Christian Stoppe
- Department of Intensive Care Medicine, RWTH Aachen University, Aachen, Germany
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Norbert Pallua
- Department of Plastic and Reconstructive Surgery, Hand Surgery - Burn Center, RWTH Aachen University, Aachen, Germany
| | - Richard Bucala
- Section of Rheumatology, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
40
|
Vogel CF, Chang WW, Kado S, McCulloh K, Vogel H, Wu D, Haarmann-Stemmann T, Yang G, Leung PS, Matsumura F, Gershwin ME. Transgenic Overexpression of Aryl Hydrocarbon Receptor Repressor (AhRR) and AhR-Mediated Induction of CYP1A1, Cytokines, and Acute Toxicity. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1071-1083. [PMID: 26862745 PMCID: PMC4937866 DOI: 10.1289/ehp.1510194] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/03/2015] [Accepted: 01/13/2016] [Indexed: 05/30/2023]
Abstract
BACKGROUND The aryl hydrocarbon receptor repressor (AhRR) is known to repress aryl hydrocarbon receptor (AhR) signaling, but very little is known regarding the role of the AhRR in vivo. OBJECTIVE This study tested the role of AhRR in vivo in AhRR overexpressing mice on molecular and toxic end points mediated through a prototypical AhR ligand. METHODS We generated AhRR-transgenic mice (AhRR Tg) based on the genetic background of C57BL/6J wild type (wt) mice. We tested the effect of the prototypical AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the expression of cytochrome P450 (CYP)1A1 and cytokines in various tissues of mice. We next analyzed the infiltration of immune cells in adipose tissue of mice after treatment with TCDD using flow cytometry. RESULTS AhRR Tg mice express significantly higher levels of AhRR compared to wt mice. Activation of AhR by TCDD caused a significant increase of the inflammatory cytokines Interleukin (IL)-1β, IL-6 and IL-10, and CXCL chemokines in white epididymal adipose tissue from both wt and AhRR Tg mice. However, the expression of IL-1β, CXCL2 and CXCL3 were significantly lower in AhRR Tg versus wt mice following TCDD treatment. Exposure to TCDD caused a rapid accumulation of neutrophils and macrophages in white adipose tissue of wt and AhRR Tg mice. Furthermore we found that male AhRR Tg mice were protected from high-dose TCDD-induced lethality associated with a reduced inflammatory response and liver damage as indicated by lower levels of TCDD-induced alanine aminotransferase and hepatic triglycerides. Females from both wt and AhRR Tg mice were less sensitive than male mice to acute toxicity induced by TCDD. CONCLUSION In conclusion, the current study identifies AhRR as a previously uncharacterized regulator of specific inflammatory cytokines, which may protect from acute toxicity induced by TCDD. CITATION Vogel CF, Chang WL, Kado S, McCulloh K, Vogel H, Wu D, Haarmann-Stemmann T, Yang GX, Leung PS, Matsumura F, Gershwin ME. 2016. Transgenic overexpression of aryl hydrocarbon receptor repressor (AhRR) and AhR-mediated induction of CYP1A1, cytokines, and acute toxicity. Environ Health Perspect 124:1071-1083; http://dx.doi.org/10.1289/ehp.1510194.
Collapse
Affiliation(s)
| | - W.L. William Chang
- Center for Comparative Medicine, University of California, Davis, Davis, California, USA
| | | | | | | | - Dalei Wu
- Center for Health and the Environment,
| | | | - GuoXiang Yang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, California, USA
| | - Patrick S.C. Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, California, USA
| | - Fumio Matsumura
- Department of Environmental Toxicology,
- Center for Health and the Environment,
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, California, USA
| |
Collapse
|
41
|
Morris DL, Evans-Molina C. Metabolic dysfunction and adipose tissue macrophages: is there more to glean from studying the lean?: Comment on "Adipose tissue infiltration in normal-weight subjects and its impact on metabolic function" by Moreno-Indias et al. Transl Res 2016; 172:1-5. [PMID: 26963742 PMCID: PMC4866879 DOI: 10.1016/j.trsl.2016.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 02/18/2016] [Indexed: 02/06/2023]
Affiliation(s)
- David L Morris
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Ind 46202, USA.
| | - Carmella Evans-Molina
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Ind 46202, USA; The Roudebush VA Medical Center, Indianapolis, Ind 46202, USA; The Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Ind 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Ind 46202, USA; Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Ind 46202, USA.
| |
Collapse
|
42
|
Valero-Muñoz M, Li S, Wilson RM, Hulsmans M, Aprahamian T, Fuster JJ, Nahrendorf M, Scherer PE, Sam F. Heart Failure With Preserved Ejection Fraction Induces Beiging in Adipose Tissue. Circ Heart Fail 2016; 9:e002724. [PMID: 26721917 DOI: 10.1161/circheartfailure.115.002724] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Despite the increasing prevalence of heart failure with preserved ejection fraction (HFpEF) in humans, there are no evidence-based therapies for HFpEF. Clinical studies suggest a relationship between obesity-associated dysfunctional adipose tissue (AT) and HFpEF. However, an apparent obesity paradox exists in some HF populations with a higher body mass index. We sought to determine whether HFpEF exerted effects on AT and investigated the involved mechanisms. METHODS AND RESULTS Mice underwent d-aldosterone infusion, uninephrectomy, and were given 1% saline for 4 weeks. HFpEF mice developed hypertension, left ventricular hypertrophy, and diastolic dysfunction and had higher myocardial natriuretic peptide expression. Although body weights were similar in HFpEF and sham-operated mice, white AT was significantly smaller in HFpEF than in sham (epididymal AT, 7.59 versus 10.67 mg/g; inguinal AT, 6.34 versus 8.38 mg/g). These changes were associated with smaller adipocyte size and increased beiging markers (ucp-1, cidea, and eva) in white AT. Similar findings were seen in HFpEF induced by transverse aortic constriction. Increased activation of natriuretic peptide signaling was seen in white AT of HFpEF mice. The ratio of the signaling receptor, natriuretic peptide receptor type A, to the clearance receptor, nprc, was increased as was p38 mitogen-activated protein kinase activation. However, HFpEF mice failed to regulate body temperature during cold temperature exposure. In HFpEF, despite a larger brown AT mass (5.96 versus 4.50 mg/g), brown AT showed reduced activity with decreased uncoupling protein 1 (ucp-1), cell death-inducing DFFA-like effector a (cidea), and epithelial V-like antigen (eva) expression and decreased expression of lipolytic enzymes (hormone-sensitive lipase, lipoprotein lipase, and fatty acid binding protein 4) versus sham. CONCLUSIONS These findings show that HFpEF is associated with beiging in white AT and with dysfunctional brown AT.
Collapse
Affiliation(s)
- María Valero-Muñoz
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., S.L., R.M.W., T.A., J.J.F., F.S.); Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (M.H., M.N.); Departments of Internal Medicine and Cell Biology, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (P.E.S.); and Cardiovascular Section (F.S.) and Evans Department of Internal Medicine (T.A., F.S.), Boston University School of Medicine, MA
| | - Shanpeng Li
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., S.L., R.M.W., T.A., J.J.F., F.S.); Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (M.H., M.N.); Departments of Internal Medicine and Cell Biology, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (P.E.S.); and Cardiovascular Section (F.S.) and Evans Department of Internal Medicine (T.A., F.S.), Boston University School of Medicine, MA
| | - Richard M Wilson
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., S.L., R.M.W., T.A., J.J.F., F.S.); Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (M.H., M.N.); Departments of Internal Medicine and Cell Biology, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (P.E.S.); and Cardiovascular Section (F.S.) and Evans Department of Internal Medicine (T.A., F.S.), Boston University School of Medicine, MA
| | - Maarten Hulsmans
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., S.L., R.M.W., T.A., J.J.F., F.S.); Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (M.H., M.N.); Departments of Internal Medicine and Cell Biology, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (P.E.S.); and Cardiovascular Section (F.S.) and Evans Department of Internal Medicine (T.A., F.S.), Boston University School of Medicine, MA
| | - Tamar Aprahamian
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., S.L., R.M.W., T.A., J.J.F., F.S.); Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (M.H., M.N.); Departments of Internal Medicine and Cell Biology, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (P.E.S.); and Cardiovascular Section (F.S.) and Evans Department of Internal Medicine (T.A., F.S.), Boston University School of Medicine, MA
| | - José J Fuster
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., S.L., R.M.W., T.A., J.J.F., F.S.); Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (M.H., M.N.); Departments of Internal Medicine and Cell Biology, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (P.E.S.); and Cardiovascular Section (F.S.) and Evans Department of Internal Medicine (T.A., F.S.), Boston University School of Medicine, MA
| | - Matthias Nahrendorf
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., S.L., R.M.W., T.A., J.J.F., F.S.); Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (M.H., M.N.); Departments of Internal Medicine and Cell Biology, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (P.E.S.); and Cardiovascular Section (F.S.) and Evans Department of Internal Medicine (T.A., F.S.), Boston University School of Medicine, MA
| | - Philipp E Scherer
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., S.L., R.M.W., T.A., J.J.F., F.S.); Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (M.H., M.N.); Departments of Internal Medicine and Cell Biology, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (P.E.S.); and Cardiovascular Section (F.S.) and Evans Department of Internal Medicine (T.A., F.S.), Boston University School of Medicine, MA
| | - Flora Sam
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., S.L., R.M.W., T.A., J.J.F., F.S.); Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (M.H., M.N.); Departments of Internal Medicine and Cell Biology, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (P.E.S.); and Cardiovascular Section (F.S.) and Evans Department of Internal Medicine (T.A., F.S.), Boston University School of Medicine, MA.
| |
Collapse
|
43
|
Sun W, Uchida K, Suzuki Y, Zhou Y, Kim M, Takayama Y, Takahashi N, Goto T, Wakabayashi S, Kawada T, Iwata Y, Tominaga M. Lack of TRPV2 impairs thermogenesis in mouse brown adipose tissue. EMBO Rep 2016; 17:383-99. [PMID: 26882545 DOI: 10.15252/embr.201540819] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 01/13/2016] [Indexed: 11/09/2022] Open
Abstract
Brown adipose tissue (BAT), a major site for mammalian non-shivering thermogenesis, could be a target for prevention and treatment of human obesity. Transient receptor potential vanilloid 2 (TRPV2), a Ca(2+)-permeable non-selective cation channel, plays vital roles in the regulation of various cellular functions. Here, we show that TRPV2 is expressed in brown adipocytes and that mRNA levels of thermogenic genes are reduced in both cultured brown adipocytes and BAT from TRPV2 knockout (TRPV2KO) mice. The induction of thermogenic genes in response to β-adrenergic receptor stimulation is also decreased in TRPV2KO brown adipocytes and suppressed by reduced intracellular Ca(2+) concentrations in wild-type brown adipocytes. In addition, TRPV2KO mice have more white adipose tissue and larger brown adipocytes and show cold intolerance, and lower BAT temperature increases in response to β-adrenergic receptor stimulation. Furthermore, TRPV2KO mice have increased body weight and fat upon high-fat-diet treatment. Based on these findings, we conclude that TRPV2 has a role in BAT thermogenesis and could be a target for human obesity therapy.
Collapse
Affiliation(s)
- Wuping Sun
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), Okazaki, Japan Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Kunitoshi Uchida
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), Okazaki, Japan Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Yoshiro Suzuki
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), Okazaki, Japan Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Yiming Zhou
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), Okazaki, Japan
| | - Minji Kim
- Division of Food Science and Biotechnology, Graduate School of Agriculture Kyoto University, Uji, Japan
| | - Yasunori Takayama
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), Okazaki, Japan Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Nobuyuki Takahashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture Kyoto University, Uji, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture Kyoto University, Uji, Japan
| | - Shigeo Wakabayashi
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Teruo Kawada
- Division of Food Science and Biotechnology, Graduate School of Agriculture Kyoto University, Uji, Japan
| | - Yuko Iwata
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), Okazaki, Japan Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| |
Collapse
|
44
|
Velmurugan GV, Huang H, Sun H, Candela J, Jaiswal MK, Beaman KD, Yamashita M, Prakriya M, White C. Depletion of H2S during obesity enhances store-operated Ca2+ entry in adipose tissue macrophages to increase cytokine production. Sci Signal 2015; 8:ra128. [PMID: 26671149 DOI: 10.1126/scisignal.aac7135] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The increased production of proinflammatory cytokines by adipose tissue macrophages (ATMs) contributes to chronic, low-level inflammation during obesity. We found that obesity in mice reduced the bioavailability of the gaseous signaling molecule hydrogen sulfide (H2S). Steady-state, intracellular concentrations of H2S were lower in ATMs isolated from mice with diet-induced obesity than in ATMs from lean mice. In addition, the intracellular concentration of H2S in the macrophage cell line RAW264.7 was reduced during an acute inflammatory response evoked by the microbial product lipopolysaccharide (LPS). Reduced intracellular concentrations of H2S led to increased Ca(2+) influx through the store-operated Ca(2+) entry (SOCE) pathway, which was prevented by the exogenous H2S donor GYY4137. Furthermore, GYY4137 inhibited the Orai3 channel, a key component of the SOCE machinery. The enhanced production of proinflammatory cytokines by RAW264.7 cells and ATMs from obese mice was reduced by exogenous H2S or by inhibition of SOCE. Together, these data suggest that the depletion of macrophage H2S that occurs during acute (LPS-induced) or chronic (obesity) inflammation increases SOCE through disinhibition of Orai3 and promotes the production of proinflammatory cytokines.
Collapse
Affiliation(s)
- Gopal V Velmurugan
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Huiya Huang
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Hongbin Sun
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Joseph Candela
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Mukesh K Jaiswal
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Kenneth D Beaman
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Megumi Yamashita
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Murali Prakriya
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Carl White
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| |
Collapse
|
45
|
Kim Y, Wang W, Okla M, Kang I, Moreau R, Chung S. Suppression of NLRP3 inflammasome by γ-tocotrienol ameliorates type 2 diabetes. J Lipid Res 2015; 57:66-76. [PMID: 26628639 DOI: 10.1194/jlr.m062828] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Indexed: 12/14/2022] Open
Abstract
The Nod-like receptor 3 (NLRP3) inflammasome is an intracellular sensor that sets off the innate immune system in response to microbial-derived and endogenous metabolic danger signals. We previously reported that γ-tocotrienol (γT3) attenuated adipose tissue inflammation and insulin resistance in diet-induced obesity, but the underlying mechanism remained elusive. Here, we investigated the effects of γT3 on NLRP3 inflammasome activation and attendant consequences on type 2 diabetes. γT3 repressed inflammasome activation, caspase-1 cleavage, and interleukin (IL) 1β secretion in murine macrophages, implicating the inhibition of NLRP3 inflammasome in the anti-inflammatory and antipyroptotic properties of γT3. Furthermore, supplementation of leptin-receptor KO mice with γT3 attenuated immune cell infiltration into adipose tissue, decreased circulating IL-18 levels, preserved pancreatic β-cells, and improved insulin sensitivity. Mechanistically, γT3 regulated the NLRP3 inflammasome via a two-pronged mechanism: 1) the induction of A20/TNF-α interacting protein 3 leading to the inhibition of the TNF receptor-associated factor 6/nuclear factor κB pathway and 2) the activation of AMP-activated protein kinase/autophagy axis leading to the attenuation of caspase-1 cleavage. Collectively, we demonstrated, for the first time, that γT3 inhibits the NLRP3 inflammasome thereby delaying the progression of type 2 diabetes. This study also provides an insight into the novel therapeutic values of γT3 for treating NLRP3 inflammasome-associated chronic diseases.
Collapse
Affiliation(s)
- Yongeun Kim
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Wei Wang
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Meshail Okla
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Inhae Kang
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Regis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Soonkyu Chung
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| |
Collapse
|
46
|
Bolus WR, Gutierrez DA, Kennedy AJ, Anderson-Baucum EK, Hasty AH. CCR2 deficiency leads to increased eosinophils, alternative macrophage activation, and type 2 cytokine expression in adipose tissue. J Leukoc Biol 2015; 98:467-77. [PMID: 25934927 DOI: 10.1189/jlb.3hi0115-018r] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/25/2015] [Indexed: 12/25/2022] Open
Abstract
Adipose tissue (AT) inflammation during obesity is mediated by immune cells and closely correlates with systemic insulin resistance. In lean AT, eosinophils are present in low but significant numbers and capable of promoting alternative macrophage activation in an IL-4/IL-13-dependent manner. In WT mice, obesity causes the proportion of AT eosinophils to decline, concomitant with inflammation and classical activation of AT macrophages. In this study, we show that CCR2 deficiency leads to increased eosinophil accumulation in AT. Furthermore, in contrast to WT mice, the increase in eosinophils in CCR2(-/-) AT is sustained and even amplified during obesity. Interestingly, a significant portion of eosinophils is found in CLSs in AT of obese CCR2(-/-) mice, which is the first time eosinophils have been shown to localize to these inflammatory hot spots. CCR2(-/-) bone marrow precursors displayed increased expression of various key eosinophil genes during in vitro differentiation to eosinophils, suggesting a potentially altered eosinophil phenotype in the absence of CCR2. In addition, the proportion of eosinophils in AT positively correlated with local expression of Il5, a potent eosinophil stimulator. The increase in eosinophils in CCR2(-/-) mice was detected in all white fat pads analyzed and in the peritoneal cavity but not in bone marrow, blood, spleen, or liver. In AT of CCR2(-/-) mice, an increased eosinophil number positively correlated with M2-like macrophages, expression of the Treg marker Foxp3, and type 2 cytokines, Il4, Il5, and Il13. This is the first study to link CCR2 function with regulation of AT eosinophil accumulation.
Collapse
Affiliation(s)
- W Reid Bolus
- *Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; and Veterans Affairs Tennessee Valley Healthcare System, Nashville Tennessee, USA
| | - Dario A Gutierrez
- *Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; and Veterans Affairs Tennessee Valley Healthcare System, Nashville Tennessee, USA
| | - Arion J Kennedy
- *Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; and Veterans Affairs Tennessee Valley Healthcare System, Nashville Tennessee, USA
| | - Emily K Anderson-Baucum
- *Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; and Veterans Affairs Tennessee Valley Healthcare System, Nashville Tennessee, USA
| | - Alyssa H Hasty
- *Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; and Veterans Affairs Tennessee Valley Healthcare System, Nashville Tennessee, USA
| |
Collapse
|
47
|
Orr JS, Kennedy A, Anderson-Baucum EK, Webb CD, Fordahl SC, Erikson KM, Zhang Y, Etzerodt A, Moestrup SK, Hasty AH. Obesity alters adipose tissue macrophage iron content and tissue iron distribution. Diabetes 2014; 63:421-32. [PMID: 24130337 PMCID: PMC3900546 DOI: 10.2337/db13-0213] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adipose tissue (AT) expansion is accompanied by the infiltration and accumulation of AT macrophages (ATMs), as well as a shift in ATM polarization. Several studies have implicated recruited M1 ATMs in the metabolic consequences of obesity; however, little is known regarding the role of alternatively activated resident M2 ATMs in AT homeostasis or how their function is altered in obesity. Herein, we report the discovery of a population of alternatively activated ATMs with elevated cellular iron content and an iron-recycling gene expression profile. These iron-rich ATMs are referred to as MFe(hi), and the remaining ATMs are referred to as MFe(lo). In lean mice, ~25% of the ATMs are MFe(hi); this percentage decreases in obesity owing to the recruitment of MFe(lo) macrophages. Similar to MFe(lo) cells, MFe(hi) ATMs undergo an inflammatory shift in obesity. In vivo, obesity reduces the iron content of MFe(hi) ATMs and the gene expression of iron importers as well as the iron exporter, ferroportin, suggesting an impaired ability to handle iron. In vitro, exposure of primary peritoneal macrophages to saturated fatty acids also alters iron metabolism gene expression. Finally, the impaired MFe(hi) iron handling coincides with adipocyte iron overload in obese mice. In conclusion, in obesity, iron distribution is altered both at the cellular and tissue levels, with AT playing a predominant role in this change. An increased availability of fatty acids during obesity may contribute to the observed changes in MFe(hi) ATM phenotype and their reduced capacity to handle iron.
Collapse
Affiliation(s)
- Jeb S. Orr
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Arion Kennedy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Emily K. Anderson-Baucum
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Corey D. Webb
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Steve C. Fordahl
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC
| | - Keith M. Erikson
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC
| | - Yaofang Zhang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Alyssa H. Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
- Corresponding author: Alyssa H. Hasty,
| |
Collapse
|
48
|
Kennedy A, Webb CD, Hill AA, Gruen ML, Jackson LG, Hasty AH. Loss of CCR5 results in glucose intolerance in diet-induced obese mice. Am J Physiol Endocrinol Metab 2013; 305:E897-906. [PMID: 23941876 PMCID: PMC3798705 DOI: 10.1152/ajpendo.00177.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Macrophage and T cell infiltration into metabolic tissues contributes to obesity-associated inflammation and insulin resistance (IR). C-C chemokine receptor 5 (CCR5), expressed on macrophages and T cells, plays a critical role in the recruitment and activation of proinflammatory M1 and TH1 immune cells to tissues and is elevated in adipose tissue (AT) and liver of obese humans and mice. Thus, we hypothesized that deficiency of CCR5 would protect against diet-induced inflammation and IR. CCR5-deficient (CCR5(-/-)) mice and C57BL/6 (WT) controls were fed 10% low-fat (LF) or 60% high-fat (HF) diets for 16 wk. HF feeding increased adiposity, blood glucose, and plasma insulin levels equally in both genotypes. Opposing our hypothesis, HF-fed CCR5(-/-) mice were significantly more glucose intolerant than WT mice. In AT, there was a significant reduction in the M1-associated gene CD11c, whereas M2 associated genes were not different between genotypes. In addition, HF feeding caused a twofold increase in CD4(+) T cells in the AT of CCR5(-/-) compared with WT mice. In liver and muscle, no differences in immune cell infiltration or inflammatory cytokine expression were detected. However, in AT and muscle, there was a mild reduction in insulin-induced phosphorylation of AKT and IRβ in CCR5(-/-) compared with WT mice. These findings suggest that whereas CCR5 plays a minor role in regulating immune cell infiltration and inflammation in metabolic tissues, deficiency of CCR5 impairs systemic glucose tolerance as well as AT and muscle insulin signaling.
Collapse
Affiliation(s)
- Arion Kennedy
- Vanderbilt University School of Medicine, Department of Molecular Physiology and Biophysics, Nashville, Tennessee
| | | | | | | | | | | |
Collapse
|