1
|
Chen T, Dai K, Wu H. Persistent organic pollutants exposure and risk of depression: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2024; 263:120160. [PMID: 39414105 DOI: 10.1016/j.envres.2024.120160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024]
Abstract
Recently, more and more epidemiological studies have examined the impact of exposure to persistent organic pollutants (POPs) on depression, but the results are inconsistent. Thus, we conducted a systematic review and meta-analysis to better understand the effects of POPs exposure on the risk of depression in the general population. We searched PubMed, Embase, Web of Science, and Scopus databases for studies before March 20, 2024. Random-effects meta-analysis was applied to calculate pooled relative risk (OR) and 95% confidence intervals (CIs). We also assessed potential heterogeneity and publication bias across studies and conducted sensitivity analysis. A total of 26 studies were included, and the results indicated that exposure to ΣPBDEs, PBDE-47, and PBDE-99 increased the risk of depression, with OR of 1.37 (95 % CI = 1.06-1.79), 1.30 (95% CI = 1.08-1.56), 1.46 (95 % CI = 1.00-2.12) respectively. On the contrary, the exposure assessment results of PFOS showed a negative correlation with the risk of depression. There is no association between exposure to ΣPFAS, ΣPCBs, and ΣOCPs and increased risk of depression. More standardized studies and more samples are needed in the future to confirm the findings of this study. This finding could provide theoretical references for the prevention and management of depression and offer insights for the risk assessment of POPs exposure.
Collapse
Affiliation(s)
- Tao Chen
- Policy Research Center for Environment and Economy, Ministry of Ecology and Environment of the People's Republic of China, 100029, Beijing, China
| | - Kexin Dai
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Huihui Wu
- Chinese Academy of Environmental Planning, 100041, Beijing, China.
| |
Collapse
|
2
|
Cardona B, Rodgers KM, Trowbridge J, Buren H, Rudel RA. Breast Cancer-Related Chemical Exposures in Firefighters. TOXICS 2024; 12:707. [PMID: 39453127 PMCID: PMC11511222 DOI: 10.3390/toxics12100707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024]
Abstract
To fill a research gap on firefighter exposures and breast cancer risk, and guide exposure reduction, we aimed to identify firefighter occupational exposures linked to breast cancer. We conducted a systematic search and review to identify firefighter chemical exposures and then identified the subset that was associated with breast cancer. To do this, we compared the firefighter exposures with chemicals that have been shown to increase breast cancer risk in epidemiological studies or increase mammary gland tumors in experimental toxicology studies. For each exposure, we assigned a strength of evidence for the association with firefighter occupation and for the association with breast cancer risk. We identified twelve chemicals or chemical groups that were both linked to breast cancer and were firefighter occupational exposures, including polycyclic aromatic hydrocarbons, volatile aromatics, per- and polyfluoroalkyl substances, persistent organohalogens, and halogenated organophosphate flame retardants. Many of these were found at elevated levels in firefighting environments and were statistically significantly higher in firefighters after firefighting or when compared to the general population. Common exposure sources included combustion byproducts, diesel fuel and exhaust, firefighting foams, and flame retardants. Our findings highlight breast-cancer-related chemical exposures in the firefighting profession to guide equitable worker's compensation policies and exposure reduction.
Collapse
Affiliation(s)
| | - Kathryn M. Rodgers
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - Jessica Trowbridge
- Department of Obstetrics Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Heather Buren
- United Fire Service Women, San Francisco, CA 94140, USA
| | | |
Collapse
|
3
|
Li Y, Zhen X, Liu L, Zhang J, Tang J. Species-specific and habitat-dependent bioaccumulation of halogenated flame retardants in marine organisms from estuary to coastal seas. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134529. [PMID: 38723482 DOI: 10.1016/j.jhazmat.2024.134529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024]
Abstract
Halogenated flame retardants (HFRs) have attracted global attention owing to their adverse effects on ecosystems and humans. The Shandong Peninsula is the largest manufacturing base for HFRs in East Asia, yet its impacts on marine ecosystems are unclear. Seventeen HFRs were analyzed in organisms captured from the Xiaoqing River estuary, Bohai Sea (BS), Yellow Sea and Northern East China Sea to investigate the distribution and bioaccumulation of HFRs on a broad scale. The results showed a downward trend in ΣHFR concentrations from the estuary (37.7 ng/g lw on average) to Laizhou Bay (192 ng/g lw) and to coastal seas (3.13 ng/g lw). The concentrations of ΣHFRs were significantly higher in demersal fish (0.71-198 ng/g lw) and benthic invertebrates (0.81-3340 ng/g lw) than in pelagic fish (0.30-27.6 ng/g lw), reflecting a habitat dependence. The concentrations of higher-brominated homologs were greater in benthic invertebrates, whereas a greater level of lower-brominated PBDE congeners was observed in fish, suggesting different profiles between species. Furthermore, the analogue composition of HFRs in fish was similar to that in the dissolved phase of seawater, whereas the HFR pattern in benthic invertebrates was consistent with the profile in sediment. The concentrations of HFRs in organisms vary widely depending on emissions from anthropogenic activities, whereas bioaccumulation patterns are strongly influenced by species and habitat.
Collapse
Affiliation(s)
- Yanan Li
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes YICCAS, Yantai 264003, China
| | - Xiaomei Zhen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, Nanjing 210000, China; Research and Development Project of Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing 210000, China
| | - Lin Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266071, China
| | - Jian Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes YICCAS, Yantai 264003, China
| | - Jianhui Tang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes YICCAS, Yantai 264003, China; Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Marine Environmental Change and Disaster in Beibu Gulf, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China.
| |
Collapse
|
4
|
Zhang Y, Xie J, Ouyang Y, Li S, Sun Y, Tan W, Ren L, Zhou X. Adverse outcome pathways of PBDEs inducing male reproductive toxicity. ENVIRONMENTAL RESEARCH 2024; 240:117598. [PMID: 37939807 DOI: 10.1016/j.envres.2023.117598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used brominated flame retardants, they are easily released into environment and causing adverse effects to the ecosystem and human health. This review aims to summarize the research status of PBDEs-induced male reproductive toxicity and its mechanisms at various levels such as molecular/cellular, tissue/organ and individual/population. The Adverse Outcome Pathways (AOPs) diagram showed that PBDEs-induced reactive oxygen species (ROS) production, disruptions of estrogen receptor-α (ERα) and antagonism of androgen receptor (AR) were defined as critical molecular initiating events (MIEs). They caused key events (KEs) at the molecular and cellular levels, including oxidative stress, increased DNA damage, damaging mitochondria, increased glycolipid levels and apoptosis, depletion of ectoplasmic specialization and decreased Leydig cells numbers. These in turn lead to followed KEs at the tissue or organ levels, such as the impaired spermatogenesis, impaired blood-testis barrier and reduced testosterone synthesis and function. As a result, reproductive system-related adverse outcomes (AOs) were reported, such as the decreased sperm quantity or quality, shorten male anogenital distance and cryptorchidism in individual and reduced reproduction of the population. This review assembled information on the mechanisms of male reproductive toxicity induced by PBDEs, and constructed a causal mechanism relationship diagram from different levels using the an AOP framework to provide theoretical basis for ecological risk assessment and environmental management of PBDEs. The AOP framework makes it possible to develop risk management strategies based on toxicity mechanisms and support for development of Integrated Approach to Testing and Assessment (IATA) which are available for regulatory purposes.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Junhong Xie
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yixin Ouyang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Shuang Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yulin Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Weilun Tan
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Lihua Ren
- School of Nursing, Peking University, Beijing, 100191, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
5
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
6
|
Sarkar D, Midha P, Shanti SS, Singh SK. A comprehensive review on the decabromodiphenyl ether (BDE-209)-induced male reproductive toxicity: Evidences from rodent studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165938. [PMID: 37541514 DOI: 10.1016/j.scitotenv.2023.165938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), a class of brominated flame retardants (BFRs), are employed in various manufactured products to prevent fires, slow down their spread and reduce the resulting damages. Decabromodiphenyl ether (BDE-209), an example of PBDEs, accounts for approximately 82 % of the total production of PBDEs. BDE-209 is a thyroid hormone (TH)-disrupting chemical owing to its structural similarity with TH. Currently, increase in the level of BDE-209 in biological samples has become a major issue because of its widespread use. BDE-209 causes male reproductive toxicity mainly via impairment of steroidogenesis, generation of oxidative stress (OS) and interference with germ cell dynamics. Further, exposure to this chemical can affect metabolic status, sperm concentration, epigenetic regulation of various developmental genes and integrity of blood-testis barrier in murine testis. However, the possible adverse effects of BDE-209 and its mechanism of action on the male reproductive health have not yet been critically evaluated. Hence, the present review article, with the help of available literature, aims to elucidate the reproductive toxicity of BDE-209 in relation to thyroid dysfunction in rodents. Further, several crucial pathways have been also highlighted in order to strengthen our knowledge on BDE-209-induced male reproductive toxicity. Data were extracted from scientific articles available in PubMed, Web of Science, and other databases. A thorough understanding of the risk assessment of BDE-209 exposure and mechanisms of its action is crucial for greater awareness of the potential threat of this BFR to preserve male fertility.
Collapse
Affiliation(s)
- Debarshi Sarkar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Parul Midha
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Shashanka Sekhar Shanti
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Shio Kumar Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
7
|
Melching-Kollmuss S, Bothe K, Charlton A, Gangadharan B, Ghaffari R, Jacobi S, Marty S, Marxfeld HA, McInnes EF, Sauer UG, Sheets LP, Strupp C, Tinwell H, Wiemann C, Botham PA, van Ravenzwaay B. Towards a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny - Part IV: the ECETOC and CLE Proposal for a Thyroid Function-Related Neurodevelopmental Toxicity Testing and Assessment Scheme (Thyroid-NDT-TAS). Crit Rev Toxicol 2023; 53:339-371. [PMID: 37554099 DOI: 10.1080/10408444.2023.2231033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 08/10/2023]
Abstract
Following the European Commission Endocrine Disruptor Criteria, substances shall be considered as having endocrine disrupting properties if they (a) elicit adverse effects, (b) have endocrine activity, and (c) the two are linked by an endocrine mode-of-action (MoA) unless the MoA is not relevant for humans. A comprehensive, structured approach to assess whether substances meet the Endocrine Disruptor Criteria for the thyroid modality (EDC-T) is currently unavailable. Here, the European Centre for Ecotoxicology and Toxicology of Chemicals Thyroxine Task Force and CropLife Europe propose a Thyroid Function-Related Neurodevelopmental Toxicity Testing and Assessment Scheme (Thyroid-NDT-TAS). In Tier 0, before entering the Thyroid-NDT-TAS, all available in vivo, in vitro and in silico data are submitted to weight-of-evidence (WoE) evaluations to determine whether the substance of interest poses a concern for thyroid disruption. If so, Tier 1 of the Thyroid-NDT-TAS includes an initial MoA and human relevance assessment (structured by the key events of possibly relevant adverse outcome pathways) and the generation of supportive in vitro/in silico data, if relevant. Only if Tier 1 is inconclusive, Tier 2 involves higher-tier testing to generate further thyroid- and/or neurodevelopment-related data. Tier 3 includes the final MoA and human relevance assessment and an overarching WoE evaluation to draw a conclusion on whether, or not, the substance meets the EDC-T. The Thyroid-NDT-TAS is based on the state-of-the-science, and it has been developed to minimise animal testing. To make human safety assessments more accurate, it is recommended to apply the Thyroid-NDT-TAS during future regulatory assessments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Neubiberg, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Zhou Y, Fu J, Wang M, Guo Y, Yang L, Han J, Zhou B. Parental and transgenerational impairments of thyroid endocrine system in zebrafish by 2,4,6-tribromophenol. J Environ Sci (China) 2023; 124:291-299. [PMID: 36182138 DOI: 10.1016/j.jes.2021.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 06/16/2023]
Abstract
Many environmental contaminants could be transmitted from parents and generate impairments to their progeny. The 2,4,6-tribromophenol (TBP), a novel brominated flame retardant which has been frequently detected in various organisms, was supposed to be bioaccumulated and intergenerational transmitted in human beings. Previous studies revealed that TBP could disrupt thyroid endocrine system in zebrafish larvae. However, there is no available data regarding the parental and transgenerational toxicity of this contaminant. Thus, in this study adult zebrafish were exposed to environmental contaminated levels of TBP for 60 days to investigate the parental and transgenerational impairments on thyroid endocrine system. Chemical analysis verified the bioaccumulation of TBP in tested organs of parents (concentration: liver>gonads>brain) and its transmission into eggs. For adults, increased thyroid hormones, disturbed transcriptions of related genes and histopathological changes in thyroid follicles indicate obvious thyroid endocrine disruptions. Transgenerational effects are indicated by the increased thyroid hormones both in eggs (maternal source) and in developed larvae (newly synthesized), as well as disrupted transcriptional profiles of key genes in HPT axis. The overall results suggest that the accumulated TBP could be transmitted from parent to offspring and generate thyroid endocrine disruptions in both generations.
Collapse
Affiliation(s)
- Yuxi Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juanjuan Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
9
|
Mechanisms of Male Reproductive Toxicity of Polybrominated Diphenyl Ethers. Int J Mol Sci 2022; 23:ijms232214229. [PMID: 36430706 PMCID: PMC9693139 DOI: 10.3390/ijms232214229] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDE) are a group of flame retardants used in a variety of artificial materials. Despite being phased out in most industrial countries, they remain in the environment and human tissues due to their persistence, lipophilicity, and bioaccumulation. Populational and experimental studies demonstrate the male reproductive toxicity of PBDEs including increased incidence of genital malformations (hypospadias and cryptorchidism), altered weight of testes and other reproductive tissues, altered testes histology and transcriptome, decreased sperm production and sperm quality, altered epigenetic regulation of developmental genes in spermatozoa, and altered secretion of reproductive hormones. A broad range of mechanistic hypotheses of PBDE reproductive toxicity has been suggested. Among these hypotheses, oxidative stress, the disruption of estrogenic signaling, and mitochondria disruption are affected by PBDE concentrations much higher than concentrations found in human tissues, making them unlikely links between exposures and adverse reproductive outcomes in the general population. Robust evidence suggests that at environmentally relevant doses, PBDEs and their metabolites may affect male reproductive health via mechanisms including AR antagonism and the disruption of a complex network of metabolic signaling.
Collapse
|
10
|
Singh K, Verma SK, Patel P, Panda PK, Sinha A, Das B, Raina V, Suar M, Ray L. Hydoxylated β- and δ-Hexacholorocyclohexane metabolites infer influential intrinsic atomic pathways interaction to elicit oxidative stress-induced apoptosis for bio-toxicity. ENVIRONMENTAL RESEARCH 2022; 212:113496. [PMID: 35609655 DOI: 10.1016/j.envres.2022.113496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/04/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Hexachlorocyclohexane (HCH) has been recognized as an effective insecticide to protect crops against grasshoppers, cohort insects, rice insects, wireworms, and other agricultural pests and; for the control of vector-borne diseases such as malaria. It is a cyclic, saturated hydrocarbon, which primarily exists as five different stable isomers in the environment. Though the use of HCH is banned in most countries owing to its adverse effects on the environment, its metabolites still exist in soil and groundwater, because of its indiscriminate applications. In this study, a dose-dependent toxicity assay of the HCH isomers isolated from soil and water samples of different regions of Odisha, India was performed to assess the in vivo developmental effects and oxidative stress in zebrafish embryos. Toxicity analysis revealed a significant reduction in hatching and survivability rate along with morphological deformities (edema, tail malformations, spinal curvature) upon an increase in the concentration of HCH isomers; beta isomer exhibiting maximum toxicity (p < 0.05). Oxidative stress assay showed that ROS and apoptosis were highest in the fish exposed to β-2 and δ-2 isomers of HCH in comparison to the untreated one. Zebrafish proved to be a useful biological model to assess the biological effects of HCH isomers. In addition, the results suggest the implementation of precautionary measures to control the use of organochlorine compounds that can lead to a decrease in the HCH isomers in the field for a healthier environment.
Collapse
Affiliation(s)
- Khushbu Singh
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.
| | - Paritosh Patel
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Pritam Kumar Panda
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Adrija Sinha
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Biswadeep Das
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Vishakha Raina
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Lopamudra Ray
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India; School of Law, KIIT University, Bhubaneswar, 751024, India.
| |
Collapse
|
11
|
Marty MS, Sauer UG, Charlton A, Ghaffari R, Guignard D, Hallmark N, Hannas BR, Jacobi S, Marxfeld HA, Melching-Kollmuss S, Sheets LP, Urbisch D, Botham PA, van Ravenzwaay B. Towards a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny-part III: how is substance-mediated thyroid hormone imbalance in pregnant/lactating rats or their progeny related to neurodevelopmental effects? Crit Rev Toxicol 2022; 52:546-617. [PMID: 36519295 DOI: 10.1080/10408444.2022.2130166] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review investigated which patterns of thyroid- and brain-related effects are seen in rats upon gestational/lactational exposure to 14 substances causing thyroid hormone imbalance by four different modes-of-action (inhibition of thyroid peroxidase, sodium-iodide symporter and deiodinase activities, enhancement of thyroid hormone clearance) or to dietary iodine deficiency. Brain-related parameters included motor activity, cognitive function, acoustic startle response, hearing function, periventricular heterotopia, electrophysiology and brain gene expression. Specific modes-of-action were not related to specific patterns of brain-related effects. Based upon the rat data reviewed, maternal serum thyroid hormone levels do not show a causal relationship with statistically significant neurodevelopmental effects. Offspring serum thyroxine together with offspring serum triiodothyronine and thyroid stimulating hormone appear relevant to predict the likelihood for neurodevelopmental effects. Based upon the collated database, thresholds of ≥60%/≥50% offspring serum thyroxine reduction and ≥20% and statistically significant offspring serum triiodothyronine reduction indicate an increased likelihood for statistically significant neurodevelopmental effects; accuracies: 83% and 67% when excluding electrophysiology (and gene expression). Measurements of brain thyroid hormone levels are likely relevant, too. The extent of substance-mediated thyroid hormone imbalance appears more important than substance mode-of-action to predict neurodevelopmental impairment in rats. Pertinent research needs were identified, e.g. to determine whether the phenomenological offspring thyroid hormone thresholds are relevant for regulatory toxicity testing. The insight from this review shall be used to suggest a tiered testing strategy to determine whether gestational/lactational substance exposure may elicit thyroid hormone imbalance and potentially also neurodevelopmental effects.
Collapse
Affiliation(s)
| | - Ursula G Sauer
- Scientific Consultancy-Animal Welfare, Neubiberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ramhøj L, Svingen T, Mandrup K, Hass U, Lund SP, Vinggaard AM, Hougaard KS, Axelstad M. Developmental exposure to the brominated flame retardant DE-71 reduces serum thyroid hormones in rats without hypothalamic-pituitary-thyroid axis activation or neurobehavioral changes in offspring. PLoS One 2022; 17:e0271614. [PMID: 35853081 PMCID: PMC9295973 DOI: 10.1371/journal.pone.0271614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/01/2022] [Indexed: 11/19/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are legacy flame retardants for which human exposure remains ubiquitous. This is of concern since these chemicals can perturb development and cause adverse health effects. For instance, DE-71, a technical mixture of PBDEs, can induce liver toxicity as well as reproductive and developmental toxicity. DE-71 can also disrupt the thyroid hormone (TH) system which may induce developmental neurotoxicity indirectly. However, in developmental toxicity studies, it remains unclear how DE-71 exposure affects the offspring’s thyroid hormone system and if this dose-dependently relates to neurodevelopmental effects. To address this, we performed a rat toxicity study by exposing pregnant dams to DE-71 at 0, 40 or 60 mg/kg/day during perinatal development from gestational day 7 to postnatal day 16. We assessed the TH system in both dams and their offspring, as well as potential hearing and neurodevelopmental effects in prepubertal and adult offspring. DE-71 significantly reduced serum T4 and T3 levels in both dams and offspring without a concomitant upregulation of TSH, thus inducing a hypothyroxinemia-like effect. No discernible effects were observed on the offspring’s brain function when assessed in motor activity boxes and in the Morris water maze, or on offspring hearing function. Our results, together with a thorough review of the literature, suggest that DE-71 does not elicit a clear dose-dependent relationship between low serum thyroxine (T4) and effects on the rat brain in standard behavioral assays. However, low serum TH levels are in themselves believed to be detrimental to human brain development, thus we propose that we lack assays to identify developmental neurotoxicity caused by chemicals disrupting the TH system through various mechanisms.
Collapse
Affiliation(s)
- Louise Ramhøj
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
- * E-mail:
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Karen Mandrup
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ulla Hass
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Søren Peter Lund
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | | | - Karin Sørig Hougaard
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Marta Axelstad
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
13
|
Davidsen N, Ramhøj L, Lykkebo CA, Kugathas I, Poulsen R, Rosenmai AK, Evrard B, Darde TA, Axelstad M, Bahl MI, Hansen M, Chalmel F, Licht TR, Svingen T. PFOS-induced thyroid hormone system disrupted rats display organ-specific changes in their transcriptomes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119340. [PMID: 35460815 DOI: 10.1016/j.envpol.2022.119340] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a persistent anthropogenic chemical that can affect the thyroid hormone system in humans and animals. In adults, thyroid hormones (THs) are regulated by the hypothalamic-pituitary-thyroid (HPT) axis, but also by organs such as the liver and potentially the gut microbiota. PFOS and other xenobiotics can therefore disrupt the TH system at various locations and through different mechanisms. To start addressing this, we exposed adult male rats to 3 mg PFOS/kg/day for 7 days and analysed effects on multiple organs and pathways simultaneously by transcriptomics. This included four primary organs involved in TH regulation, namely hypothalamus, pituitary, thyroid, and liver. To investigate a potential role of the gut microbiota in thyroid hormone regulation, two additional groups of animals were dosed with the antibiotic vancomycin (8 mg/kg/day), either with or without PFOS. PFOS exposure decreased thyroxine (T4) and triiodothyronine (T3) without affecting thyroid stimulating hormone (TSH), resembling a state of hypothyroxinemia. PFOS exposure resulted in 50 differentially expressed genes (DEGs) in the hypothalamus, 68 DEGs in the pituitary, 71 DEGs in the thyroid, and 181 DEGs in the liver. A concomitant compromised gut microbiota did not significantly change effects of PFOS exposure. Organ-specific DEGs did not align with TH regulating genes; however, genes associated with vesicle transport and neuronal signaling were affected in the hypothalamus, and phase I and phase II metabolism in the liver. This suggests that a decrease in systemic TH levels may activate the expression of factors altering trafficking, metabolism and excretion of TH. At the transcriptional level, little evidence suggests that the pituitary or thyroid gland is involved in PFOS-induced TH system disruption.
Collapse
Affiliation(s)
- Nichlas Davidsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Louise Ramhøj
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Claus Asger Lykkebo
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Indusha Kugathas
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Rikke Poulsen
- Department of Environmental Science, Aarhus University, Roskilde, DK-4000, Denmark
| | | | - Bertrand Evrard
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | | | - Marta Axelstad
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Martin Iain Bahl
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Martin Hansen
- Department of Environmental Science, Aarhus University, Roskilde, DK-4000, Denmark
| | - Frederic Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| |
Collapse
|
14
|
Buser MC, Pohl HR, Abadin HG. Windows of sensitivity to toxic chemicals in the development of the endocrine system: an analysis of ATSDR's toxicological profile database. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:437-454. [PMID: 32495642 PMCID: PMC7714698 DOI: 10.1080/09603123.2020.1772204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
This review utilizes the robust database of literature contained in toxicological profiles developed by the Agency for Toxic Substances and Disease Registry. The aim was to use this database to identify developmental toxicity studies reporting alterations in hormone levels in the developing fetus and offspring and identify windows of sensitivity. We identified 74 oral exposure studies in rats that provided relevant information on 30 chemicals from 21 profiles. Most studies located provided information on thyroid hormones, with fewer studies on anterior pituitary, adrenal medulla, ovaries, and testes. No studies pertaining to hormones of the posterior pituitary, pancreas, or adrenal cortex were located. The results demonstrate that development of the endocrine system may be affected by exposure to environmental contaminants at many different points, including gestational and/or lactational exposure. Moreover, this review demonstrates the need for more developmental toxicity studies focused on the endocrine system and specifically alterations in hormone levels.
Collapse
Affiliation(s)
- M C Buser
- US Department of Health and Human Services, Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA, USA
| | - H R Pohl
- US Department of Health and Human Services, Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA, USA
| | - H G Abadin
- US Department of Health and Human Services, Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA, USA
| |
Collapse
|
15
|
Ramhøj L, Mandrup K, Hass U, Svingen T, Axelstad M. Developmental exposure to the DE-71 mixture of polybrominated diphenyl ether (PBDE) flame retardants induce a complex pattern of endocrine disrupting effects in rats. PeerJ 2022; 10:e12738. [PMID: 35036103 PMCID: PMC8740517 DOI: 10.7717/peerj.12738] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/13/2021] [Indexed: 01/11/2023] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are legacy compounds with continued widespread human exposure. Despite this, developmental toxicity studies of DE-71, a mixture of PBDEs, are scarce and its potential for endocrine disrupting effects in vivo is not well covered. To address this knowledge gap, we carried out a developmental exposure study with DE-71. Pregnant Wistar rat dams were exposed to 0, 40 or 60 mg/kg bodyweight/day from gestation day 7 to postnatal day 16, and both sexes were examined. Developmental exposure affected a range of reproductive toxicity endpoints. Effects were seen for both male and female anogenital distances (AGD), with exposed offspring of either sex displaying around 10% shorter AGD compared to controls. Both absolute and relative prostate weights were markedly reduced in exposed male offspring, with about 40% relative to controls. DE-71 reduced mammary gland outgrowth, especially in male offspring. These developmental in vivo effects suggest a complex effect pattern involving anti-androgenic, anti-estrogenic and maybe estrogenic mechanisms depending on tissues and developmental stages. Irrespective of the specific underlying mechanisms, these in vivo results corroborate that DE-71 causes endocrine disrupting effects and raises concern for the effects of PBDE-exposure on human reproductive health, including any potential long-term consequences of disrupted mammary gland development.
Collapse
Affiliation(s)
- Louise Ramhøj
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Karen Mandrup
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ulla Hass
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Marta Axelstad
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
16
|
Kozlova EV, Valdez MC, Denys ME, Bishay AE, Krum JM, Rabbani KM, Carrillo V, Gonzalez GM, Lampel G, Tran JD, Vazquez BM, Anchondo LM, Uddin SA, Huffman NM, Monarrez E, Olomi DS, Chinthirla BD, Hartman RE, Kodavanti PRS, Chompre G, Phillips AL, Stapleton HM, Henkelmann B, Schramm KW, Curras-Collazo MC. Persistent autism-relevant behavioral phenotype and social neuropeptide alterations in female mice offspring induced by maternal transfer of PBDE congeners in the commercial mixture DE-71. Arch Toxicol 2022; 96:335-365. [PMID: 34687351 PMCID: PMC8536480 DOI: 10.1007/s00204-021-03163-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are ubiquitous persistent organic pollutants (POPs) that are known neuroendocrine disrupting chemicals with adverse neurodevelopmental effects. PBDEs may act as risk factors for autism spectrum disorders (ASD), characterized by abnormal psychosocial functioning, although direct evidence is currently lacking. Using a translational exposure model, we tested the hypothesis that maternal transfer of a commercial mixture of PBDEs, DE-71, produces ASD-relevant behavioral and neurochemical deficits in female offspring. C57Bl6/N mouse dams (F0) were exposed to DE-71 via oral administration of 0 (VEH/CON), 0.1 (L-DE-71) or 0.4 (H-DE-71) mg/kg bw/d from 3 wk prior to gestation through end of lactation. Mass spectrometry analysis indicated in utero and lactational transfer of PBDEs (in ppb) to F1 female offspring brain tissue at postnatal day (PND) 15 which was reduced by PND 110. Neurobehavioral testing of social novelty preference (SNP) and social recognition memory (SRM) revealed that adult L-DE-71 F1 offspring display deficient short- and long-term SRM, in the absence of reduced sociability, and increased repetitive behavior. These effects were concomitant with reduced olfactory discrimination of social odors. Additionally, L-DE-71 exposure also altered short-term novel object recognition memory but not anxiety or depressive-like behavior. Moreover, F1 L-DE-71 displayed downregulated mRNA transcripts for oxytocin (Oxt) in the bed nucleus of the stria terminalis (BNST) and supraoptic nucleus, and vasopressin (Avp) in the BNST and upregulated Avp1ar in BNST, and Oxtr in the paraventricular nucleus. Our work demonstrates that developmental PBDE exposure produces ASD-relevant neurochemical, olfactory processing and behavioral phenotypes that may result from early neurodevelopmental reprogramming within central social and memory networks.
Collapse
Affiliation(s)
- Elena V Kozlova
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA, 92521, USA
| | - Matthew C Valdez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA, 92521, USA
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, 27711, USA
| | - Maximillian E Denys
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Anthony E Bishay
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Julia M Krum
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Kayhon M Rabbani
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Valeria Carrillo
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Gwendolyn M Gonzalez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Gregory Lampel
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Jasmin D Tran
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Brigitte M Vazquez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Laura M Anchondo
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Syed A Uddin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Nicole M Huffman
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Eduardo Monarrez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Duraan S Olomi
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Bhuvaneswari D Chinthirla
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Richard E Hartman
- Department of Psychology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Prasada Rao S Kodavanti
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, 27711, USA
| | - Gladys Chompre
- Biotechnology Department, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico, 00717-9997, USA
| | - Allison L Phillips
- Duke University, Nicholas School of the Environment, Durham, NC, 27710, USA
| | | | - Bernhard Henkelmann
- Helmholtz Zentrum Munchen, Molecular EXposomics (MEX), German National Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, Neuherberg, Munich, Germany
| | - Karl-Werner Schramm
- Helmholtz Zentrum Munchen, Molecular EXposomics (MEX), German National Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, Neuherberg, Munich, Germany
- Department Für Biowissenschaftliche Grundlagen, TUM, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung Und Umwelt, Weihenstephaner Steig 23, 85350, Freising, Germany
| | | |
Collapse
|
17
|
|
18
|
Gilbert ME, O'Shaughnessy KL, Thomas SE, Riutta C, Wood CR, Smith A, Oshiro WO, Ford RL, Hotchkiss MG, Hassan I, Ford JL. Thyroid Disruptors: Extrathyroidal Sites of Chemical Action and Neurodevelopmental Outcome-An Examination Using Triclosan and Perfluorohexane Sulfonate. Toxicol Sci 2021; 183:195-213. [PMID: 34460931 PMCID: PMC9038230 DOI: 10.1093/toxsci/kfab080] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Many xenobiotics are identified as potential thyroid disruptors due to their action to reduce circulating levels of thyroid hormone, most notably thyroxine (T4). Developmental neurotoxicity is a primary concern for thyroid disrupting chemicals yet correlating the impact of chemically induced changes in serum T4 to perturbed brain development remains elusive. A number of thyroid-specific neurodevelopmental assays have been proposed, based largely on the model thyroid hormone synthesis inhibitor propylthiouracil (PTU). This study examined whether thyroid disrupting chemicals acting distinct from synthesis inhibition would result in the same alterations in brain as expected with PTU. The perfluoroalkyl substance perfluorohexane sulfonate (50 mg/kg/day) and the antimicrobial Triclosan (300 mg/kg/day) were administered to pregnant rats from gestational day 6 to postnatal day (PN) 21, and a number of PTU-defined assays for neurotoxicity evaluated. Both chemicals reduced serum T4 but did not increase thyroid stimulating hormone. Both chemicals increased expression of hepatic metabolism genes, while thyroid hormone-responsive genes in the liver, thyroid gland, and brain were largely unchanged. Brain tissue T4 was reduced in newborns, but despite persistent T4 reductions in serum, had recovered in the PN6 pup brain. Neither treatment resulted in a low dose PTU-like phenotype in either brain morphology or neurobehavior, raising questions for the interpretation of serum biomarkers in regulatory toxicology. They further suggest that reliance on serum hormones as prescriptive of specific neurodevelopmental outcomes may be too simplistic and to understand thyroid-mediated neurotoxicity we must expand our thinking beyond that which follows thyroid hormone synthesis inhibition.
Collapse
Affiliation(s)
- Mary E Gilbert
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Katherine L O'Shaughnessy
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Susan E Thomas
- Oak Ridge Institute for Science Education, Oak Ridge, Tennesse 37830, USA
| | - Cal Riutta
- Oak Ridge Institute for Science Education, Oak Ridge, Tennesse 37830, USA
| | - Carmen R Wood
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Alicia Smith
- Oak Ridge Institute for Science Education, Oak Ridge, Tennesse 37830, USA
| | - Wendy O Oshiro
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Richard L Ford
- Oak Ridge Institute for Science Education, Oak Ridge, Tennesse 37830, USA
| | - Michelle Gatien Hotchkiss
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Iman Hassan
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Jermaine L Ford
- Center for Computational Toxicology and Exposure, Chemical Characterization and Exposure Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
19
|
Chesnut M, Hartung T, Hogberg H, Pamies D. Human Oligodendrocytes and Myelin In Vitro to Evaluate Developmental Neurotoxicity. Int J Mol Sci 2021; 22:7929. [PMID: 34360696 PMCID: PMC8347131 DOI: 10.3390/ijms22157929] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 01/01/2023] Open
Abstract
Neurodevelopment is uniquely sensitive to toxic insults and there are concerns that environmental chemicals are contributing to widespread subclinical developmental neurotoxicity (DNT). Increased DNT evaluation is needed due to the lack of such information for most chemicals in common use, but in vivo studies recommended in regulatory guidelines are not practical for the large-scale screening of potential DNT chemicals. It is widely acknowledged that developmental neurotoxicity is a consequence of disruptions to basic processes in neurodevelopment and that testing strategies using human cell-based in vitro systems that mimic these processes could aid in prioritizing chemicals with DNT potential. Myelination is a fundamental process in neurodevelopment that should be included in a DNT testing strategy, but there are very few in vitro models of myelination. Thus, there is a need to establish an in vitro myelination assay for DNT. Here, we summarize the routes of myelin toxicity and the known models to study this particular endpoint.
Collapse
Affiliation(s)
- Megan Chesnut
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (M.C.); (T.H.)
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (M.C.); (T.H.)
- Center for Alternatives to Animal Testing (CAAT-Europe), University of Konstanz, 78464 Konstanz, Germany
| | - Helena Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (M.C.); (T.H.)
| | - David Pamies
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (M.C.); (T.H.)
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland
| |
Collapse
|
20
|
Johanson SM, Ropstad E, Østby GC, Aleksandersen M, Zamaratskaia G, Boge GS, Halsne R, Trangerud C, Lyche JL, Berntsen HF, Zimmer KE, Verhaegen S. Perinatal exposure to a human relevant mixture of persistent organic pollutants: Effects on mammary gland development, ovarian folliculogenesis and liver in CD-1 mice. PLoS One 2021; 16:e0252954. [PMID: 34111182 PMCID: PMC8191980 DOI: 10.1371/journal.pone.0252954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/25/2021] [Indexed: 01/09/2023] Open
Abstract
The ability of persistent organic pollutants (POPs) with endocrine disrupting properties to interfere with the developing reproductive system is of increasing concern. POPs are transferred from dams to offspring and the high sensitivity of neonates to endocrine disturbances may be caused by underdeveloped systems of metabolism and excretion. The present study aimed to characterize the effect of in utero and lactational exposure to a human relevant mixture of POPs on the female mammary gland, ovarian folliculogenesis and liver function in CD-1 offspring mice. Dams were exposed to the mixture through the diet at Control, Low or High doses (representing 0x, 5000x and 100 000x human estimated daily intake levels, respectively) from weaning and throughout mating, gestation, and lactation. Perinatally exposed female offspring exhibited altered mammary gland development and a suppressed ovarian follicle maturation. Increased hepatic cytochrome P450 enzymatic activities indirectly indicated activation of nuclear receptors and potential generation of reactive products. Hepatocellular hypertrophy was observed from weaning until 30 weeks of age and could potentially lead to hepatotoxicity. Further studies should investigate the effects of human relevant mixtures of POPs on several hormones combined with female reproductive ability and liver function.
Collapse
Affiliation(s)
- Silje Modahl Johanson
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Gunn Charlotte Østby
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Mona Aleksandersen
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Galia Zamaratskaia
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gudrun Seeberg Boge
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Ruth Halsne
- Division of Laboratory Medicine, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| | - Cathrine Trangerud
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jan Ludvig Lyche
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Hanne Friis Berntsen
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
- National Institute of Occupational Health, Oslo, Norway
| | - Karin Elisabeth Zimmer
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Steven Verhaegen
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
21
|
Kam RL, Bernhardt SM, Ingman WV, Amir LH. Modern, exogenous exposures associated with altered mammary gland development: A systematic review. Early Hum Dev 2021; 156:105342. [PMID: 33711581 DOI: 10.1016/j.earlhumdev.2021.105342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Many women report low milk supply as the reason for premature breastfeeding cessation. Altered mammary gland development may impact a woman's lactation ability. OBJECTIVE This review identifies modern exogenous exposures which alter mammary gland development during embryonic life, puberty and pregnancy. METHODS A systematic review was undertaken whereby Medline, CINAHL and Embase articles published from January 1, 2005 to November 20, 2020 were searched using the keywords puberty or embry* or fetal or foetal or foetus or fetus or pregnan* or gestation* AND "mammary gland development" or "breast development" or "mammary development" or "mammary gland function" or "mammary function" or "insufficient glandular tissue" or "mammary hypoplasia" or "breast hypoplasia" or "mammary gland hypoplasia" or "tubular breast*" or "tuberous breast*" or "glandular tissue" or "breast composition" or "mammary composition" or "mammary gland composition". After initial screening of 1207 records, 60 full texts were assessed for eligibility; 6 were excluded due to lack of information about exposure or outcome, leaving 54 studies. RESULTS The review included results from 52 animal (rats and mice, monkeys, rabbits, sheep, goats pigs and cows) and 2 human studies. Various endocrine disrupting chemicals and an obesogenic diet were found to be associated with altered mammary gland morphology during key development stages. CONCLUSIONS To improve lactation outcomes, future studies need to focus on lactation as the endpoint and be conducted in a standardised manner to allow for a more significant contribution to the literature that allows for better comparison across studies.
Collapse
Affiliation(s)
- Renee L Kam
- Judith Lumley Centre, School of Nursing and Midwifery, La Trobe University, Bundoora, Victoria, Australia.
| | - Sarah M Bernhardt
- Discipline of Surgery, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Adelaide, Australia; Robinson Research Institute, Adelaide Medical School, University of Adelaide, Australia
| | - Wendy V Ingman
- Discipline of Surgery, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Adelaide, Australia; Robinson Research Institute, Adelaide Medical School, University of Adelaide, Australia
| | - Lisa H Amir
- Judith Lumley Centre, School of Nursing and Midwifery, La Trobe University, Bundoora, Victoria, Australia; Breastfeeding Service, Royal Women's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
22
|
Li Z, You M, Che X, Dai Y, Xu Y, Wang Y. Perinatal exposure to BDE-47 exacerbated autistic-like behaviors and impairments of dendritic development in a valproic acid-induced rat model of autism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:112000. [PMID: 33550075 DOI: 10.1016/j.ecoenv.2021.112000] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 05/05/2023]
Abstract
Perinatal exposure to polybrominated diphenyl ethers (PBDEs) may be a potential risk factor for autism spectrum disorders (ASD). BDE-47 is one of the most common PBDEs and poses serious health hazards on the central nervous system (CNS). However, effects of perinatal exposure to BDE-47 on social behaviors and the potential mechanisms are largely unexplored. Thus, we aimed to investigate whether BDE-47 exposure during gestation and lactation led to autistic-like behaviors in offspring rats in the present study. Valproic acid (VPA), which is widely used to establish animal model of ASD, was also adopted to induce autistic-like behaviors. A battery of tests was conducted to evaluate social and repetitive behaviors in offspring rats. We found that perinatal exposure to BDE-47 caused mild autistic-like behaviors in offspring, which were similar but less severe to those observed in pups maternally exposed to VPA. Moreover, perinatal exposure to BDE-47 aggravated the autistic-like behaviors in pups maternally exposed to VPA. Abnormal dendritic development is known to be deeply associated with autistic-like behaviors. Golgi-Cox staining was used to observe the morphological characteristics of dendrites in the prefrontal cortex of pups. We found perinatal exposure to BDE-47 reduced dendritic length and complexity of branching pattern, and spine density in the offspring prefrontal cortex, which may contribute to autistic-like behaviors observed in the present study. Perinatal exposure to BDE-47 also exacerbated the impairments of dendritic development in pups maternally exposed to VPA. Besides, our study also provided the evidence that the inhibition of BDNF-CREB signaling, a key regulator of dendritic development, may be involved in the dendritic impairments induced by perinatal exposure to BDE-47 and/or VPA, and the consequent autistic-like behaviors.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xiaoyu Che
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yufeng Dai
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yuanyuan Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
23
|
Amir S, Tzatzarakis M, Mamoulakis C, Bello JH, Eqani SAMAS, Vakonaki E, Karavitakis M, Sultan S, Tahir F, Shah STA, Tsatsakis A. Impact of organochlorine pollutants on semen parameters of infertile men in Pakistan. ENVIRONMENTAL RESEARCH 2021; 195:110832. [PMID: 33549619 DOI: 10.1016/j.envres.2021.110832] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Male infertility is a major problem with important socioeconomic consequences. It is associated with several pathological factors, including but not limited to endocrine disruption as a result of environmental pollution and the alarming decline in sperm count over the decades is indicative of involvement of many environmental and lifestyle changes around the globe. Organochlorine pollutants such as dichlorodiphenyltrichlorethanes (DDTs), polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) disrupt male reproductive system but the exact effect of environmental exposure on semen parameters in human is still not clear. This study was designed to monitor PCBs, DDTs and HCB in hair, urine and serum samples of infertile and healthy fertile men. Solid-phase microextraction gas chromatography-mass spectrometry (SPME/GC-MS) was used to monitor analytes. All tested compounds were detected, indicating recent use/persistent accumulation. Hair samples revealed no significant association with serum/urine concentrations of the analytes, while serum/urine concentrations were significantly correlated positively. Concentrations were higher in serum compared to other samples. The levels of organochlorine pollutants were higher in infertile men compared to controls with few exceptions. Among PCBs, and DDTs, PCB-153 and pp'-DDT were detected in highest concentrations, respectively. op'-DDT and pp'-DDT levels were significantly higher in infertile men compared to controls. HCB was significantly correlated negatively with sperm motility in all samples. Serum concentrations of all compounds were higher in men with defective semen parameters compared to normospermics. Serum was the best biological sample for assessing health outcomes in relation to exposure levels.
Collapse
Affiliation(s)
- Saira Amir
- Department of Biosciences, COMSATS University Islamabad, Islamabad, 45550, Pakistan
| | - Manolis Tzatzarakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete Medical School, Heraklion, Crete, Greece
| | - Jaafar Haris Bello
- Department of Biosciences, COMSATS University Islamabad, Islamabad, 45550, Pakistan
| | | | - Elena Vakonaki
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Markos Karavitakis
- Department of Urology, University General Hospital of Heraklion, University of Crete Medical School, Heraklion, Crete, Greece
| | - Sikandar Sultan
- Public Health Laboratories Division, National Institute of Health (NIH), Islamabad, Pakistan
| | - Faheem Tahir
- Public Health Laboratories Division, National Institute of Health (NIH), Islamabad, Pakistan
| | - Syed Tahir Abbas Shah
- Department of Biosciences, COMSATS University Islamabad, Islamabad, 45550, Pakistan.
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003, Heraklion, Greece.
| |
Collapse
|
24
|
Gouesse RJ, Dianati E, McDermott A, Wade MG, Hales B, Robaire B, Plante I. In Utero and Lactational Exposure to an Environmentally Relevant Mixture of Brominated Flame Retardants Induces a Premature Development of the Mammary Glands. Toxicol Sci 2021; 179:206-219. [PMID: 33252648 DOI: 10.1093/toxsci/kfaa176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In utero and prepubertal development of the mammary glands occurs minimally in a hormone independent manner until puberty where maturation of the hypothalamic-pituitary-gonadal axis drives an extensive remodeling. Nevertheless, because the immature glands contain functional hormone receptors, they are especially vulnerable to the effects of endocrine disruptors, such as brominated flame retardants (BFRs). BFRs are widespread chemicals added to household objects to reduce their flammability, and to which humans are ubiquitously exposed. We previously reported that in utero and lactational exposure to BFRs resulted in an impaired mammary gland development in peripubertal animals. Here, we assessed whether BFR-induced disruption of mammary gland development could manifest earlier in life. Dams were exposed prior to mating until pups' weaning to a BFR mixture (0, 0.06, 20, or 60 mg/kg/day) formulated according to levels found in house dust. The mammary glands of female offspring were collected at weaning. Histo-morphological analyses showed that exposure to 0.06 mg/kg/day accelerates global epithelial development as demonstrated by a significant increase in total epithelial surface area, associated with a tendency to increase of the ductal area and thickness, and of lumen area. Significant increases of the Ki67 cell proliferation index and of the early apoptotic marker cleaved caspase-9 were also observed, as well as an upward trend in the number of thyroid hormone receptor α1 positive cells. These molecular, histologic, and morphometric changes are suggestive of accelerated pubertal development. Thus, our results suggest that exposure to an environmentally relevant mixture of BFRs induces precocious development of the mammary gland.
Collapse
Affiliation(s)
| | - Elham Dianati
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec H7V 1B7, Canada
| | - Alec McDermott
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec H7V 1B7, Canada
| | - Michael G Wade
- Health Canada, Environmental Health Science and Research Bureau, Ottawa, Ontario K1A 0K9, Canada
| | - Barbara Hales
- Faculty of Medicine, Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Bernard Robaire
- Faculty of Medicine, Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada.,Faculty of Medicine, Department of Obstetrics & Gynecology, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Isabelle Plante
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec H7V 1B7, Canada
| |
Collapse
|
25
|
Criswell R, Crawford KA, Bucinca H, Romano ME. Endocrine-disrupting chemicals and breastfeeding duration: a review. Curr Opin Endocrinol Diabetes Obes 2020; 27:388-395. [PMID: 33027070 PMCID: PMC7968861 DOI: 10.1097/med.0000000000000577] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to describe epidemiologic and toxicological literature investigating how endocrine-disrupting chemicals (EDCs) affect mammary gland development and function, thereby impacting lactation duration. RECENT FINDINGS Perfluoroalkyl and polyfluoroalkyl substances appear to reduce breastfeeding duration through impaired mammary gland development, lactogenesis, and suppressed endocrine signaling. Halogenated aromatic hydrocarbons have differing associations with lactation duration, likely because of the variety of signaling pathways that they affect, pointing to the importance of complex mixtures in epidemiologic studies. Although epidemiologic literature suggests that pesticides and fungicides decrease or have no effect on lactation duration, toxicology literature suggests enhanced mammary gland development through estrogenic and/or antiandrogenic pathways. Toxicological studies suggest that phthalates may affect mammary gland development via estrogenic pathways but no association with lactation duration has been observed. Bisphenol A was associated with decreased duration of breastfeeding, likely through direct and indirect action on estrogenic pathways. SUMMARY EDCs play a role in mammary gland development, function, and lactogenesis, which can affect breastfeeding duration. Further research should explore direct mechanisms of EDCs on lactation, the significance of toxicant mixtures, and transgenerational effects of EDCs on lactation.
Collapse
Affiliation(s)
| | - Kathryn A. Crawford
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Lebanon, NH
- Environmental Studies Program, Middlebury College, Middlebury, VT
| | - Hana Bucinca
- Research and Quality Improvement Program, Action for Mothers and Children, Prishtina, Kosovo
- Department of Pharmacy, Rezonanca College of Medical Sciences, Prishtina, Kosovo
| | - Megan E. Romano
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Lebanon, NH
| |
Collapse
|
26
|
Kozlova EV, Chinthirla BD, Pérez PA, DiPatrizio NV, Argueta DA, Phillips AL, Stapleton HM, González GM, Krum JM, Carrillo V, Bishay AE, Basappa KR, Currás-Collazo MC. Maternal transfer of environmentally relevant polybrominated diphenyl ethers (PBDEs) produces a diabetic phenotype and disrupts glucoregulatory hormones and hepatic endocannabinoids in adult mouse female offspring. Sci Rep 2020; 10:18102. [PMID: 33093533 PMCID: PMC7582149 DOI: 10.1038/s41598-020-74853-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are brominated flame retardant chemicals and environmental contaminants with endocrine-disrupting properties that are associated with diabetes and metabolic syndrome in humans. However, their diabetogenic actions are not completely characterized or understood. In this study, we investigated the effects of DE-71, a commercial penta-mixture of PBDEs, on glucoregulatory parameters in a perinatal exposure model using female C57Bl/6 mice. Results from in vivo glucose and insulin tolerance tests and ex vivo analyses revealed fasting hyperglycemia, glucose intolerance, reduced sensitivity and delayed glucose clearance after insulin challenge, decreased thermogenic brown adipose tissue mass, and exaggerated hepatic endocannabinoid tone in F1 offspring exposed to 0.1 mg/kg DE-71 relative to control. DE-71 effects on F0 dams were more limited indicating that indirect exposure to developing offspring is more detrimental. Other ex vivo glycemic correlates occurred more generally in exposed F0 and F1, i.e., reduced plasma insulin and altered glucoregulatory endocrines, exaggerated sympathoadrenal activity and reduced hepatic glutamate dehydrogenase enzymatic activity. Hepatic PBDE congener analysis indicated maternal transfer of BDE-28 and -153 to F1 at a collective level of 200 ng/g lipid, in range with maximum values detected in serum of human females. Given the persistent diabetogenic phenotype, especially pronounced in female offspring after developmental exposure to environmentally relevant levels of DE-71, additional animal studies should be conducted that further characterize PBDE-induced diabetic pathophysiology and identify critical developmental time windows of susceptibility. Longitudinal human studies should also be conducted to determine the risk of long-lasting metabolic consequences after maternal transfer of PBDEs during early-life development.
Collapse
Affiliation(s)
- Elena V Kozlova
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Bhuvaneswari D Chinthirla
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Pedro A Pérez
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Donovan A Argueta
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | | | | | - Gwendolyn M González
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Julia M Krum
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Valeria Carrillo
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Anthony E Bishay
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Karthik R Basappa
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Margarita C Currás-Collazo
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
27
|
Varshavsky JR, Sen S, Robinson JF, Smith SC, Frankenfield J, Wang Y, Yeh G, Park JS, Fisher SJ, Woodruff TJ. Racial/ethnic and geographic differences in polybrominated diphenyl ether (PBDE) levels across maternal, placental, and fetal tissues during mid-gestation. Sci Rep 2020; 10:12247. [PMID: 32699379 PMCID: PMC7376153 DOI: 10.1038/s41598-020-69067-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/05/2020] [Indexed: 01/01/2023] Open
Abstract
Prenatal polybrominated diphenyl ether (PBDE) exposures are a public health concern due to their persistence and potential for reproductive and developmental harm. However, we have little information about the extent of fetal exposures during critical developmental periods and the variation in exposures for groups that may be more highly exposed, such as communities of color and lower socioeconomic status (SES). To characterize maternal-fetal PBDE exposures among potentially vulnerable groups, PBDE levels were examined in the largest sample of matched maternal serum, placenta, and fetal liver tissues during mid-gestation among a geographically, racially/ethnically, and socially diverse population of pregnant women from Northern California and the Central Valley (n = 180; 2014-16). Maternal-fetal PBDE levels were compared to population characteristics using censored Kendall's tau correlation and linear regression. PBDEs were commonly detected in all biomatrices. Before lipid adjustment, wet-weight levels of all four PBDE congeners were highest in the fetal liver (p < 0.001), whereas median PBDE levels were significantly higher in maternal serum than in the fetal liver or placenta after lipid-adjustment (p < 0.001). We also found evidence of racial/ethnic disparities in PBDE exposures (Non-Hispanic Black > Latina/Hispanic > Non-Hispanic White > Asian/Pacific Islander/Other; p < 0.01), with higher levels of BDE-100 and BDE-153 among non-Hispanic Black women compared to the referent group (Latina/Hispanic women). In addition, participants living in Fresno/South Central Valley had 34% (95% CI: - 2.4 to 84%, p = 0.07) higher wet-weight levels of BDE-47 than residents living in the San Francisco Bay Area. PBDEs are widely detected and differentially distributed in maternal-fetal compartments. Non-Hispanic Black pregnant women and women from Southern Central Valley geographical populations may be more highly exposed to PBDEs. Further research is needed to identify sources that may be contributing to differential exposures and associated health risks among these vulnerable populations.
Collapse
Affiliation(s)
- Julia R Varshavsky
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, Mailstop 0132, 550 16th Street, 7th Floor, San Francisco, CA, 94143, USA
| | - Saunak Sen
- Department of Preventive Medicine, University of Tennessee Health Science Center, 66 North Pauline St, Memphis, TN, 38163, USA
| | - Joshua F Robinson
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, Mailstop 0132, 550 16th Street, 7th Floor, San Francisco, CA, 94143, USA
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Sabrina Crispo Smith
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, 700 Heinz Ave # 200, Berkeley, CA, 94710, USA
| | - Julie Frankenfield
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, 700 Heinz Ave # 200, Berkeley, CA, 94710, USA
| | - Yunzhu Wang
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, 700 Heinz Ave # 200, Berkeley, CA, 94710, USA
| | - Greg Yeh
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, 700 Heinz Ave # 200, Berkeley, CA, 94710, USA
| | - June-Soo Park
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, 700 Heinz Ave # 200, Berkeley, CA, 94710, USA
| | - Susan J Fisher
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, Mailstop 0132, 550 16th Street, 7th Floor, San Francisco, CA, 94143, USA.
| |
Collapse
|
28
|
Alvarez-Gonzalez MY, Sánchez-Islas E, Mucio-Ramirez S, de Gortari P, Amaya MI, Kodavanti PRS, León-Olea M. Perinatal exposure to octabromodiphenyl ether mixture, DE-79, alters the vasopressinergic system in adult rats. Toxicol Appl Pharmacol 2020; 391:114914. [PMID: 32032643 DOI: 10.1016/j.taap.2020.114914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent environmental pollutants considered as neurotoxicants and endocrine disruptors with important biological effects ranging from alterations in growth, reproduction, and effects on the hypothalamus-pituitary-adrenal axis. The vasopressinergic (AVPergic) system is a known target for pentaBDEs mixture (DE-71) and the structurally similar chemicals, polychlorinated biphenyls. However, the potential adverse effects of mixtures containing octaBDE compounds, like DE-79, on the AVPergic system are still unknown. The present study aims to examine the effects of perinatal DE-79 exposure on the AVPergic system. Dams were dosed from gestational day 6 to postnatal day 21 at doses of 0 (control), 1.7 (low) or 10.2 (high) mg/kg/day, and male offspring from all doses at 3-months-old were subjected to normosmotic and hyperosmotic challenge. Male offspring where later assessed for alterations in osmoregulation (i.e. serum osmolality and systemic vasopressin release), and both vasopressin immunoreactivity (AVP-IR) and gene expression in the hypothalamic paraventricular and supraoptic nuclei. Additionally, to elucidate a possible mechanism for the effects of DE-79 on the AVPergic system, both neuronal nitric oxide synthase immunoreactivity (nNOS-IR) and mRNA expression were investigated in the same hypothalamic nuclei. The results showed that perinatal DE-79 exposure AVP-IR, mRNA expression and systemic release in adulthood under normosmotic conditions and more evidently under hyperosmotic stimulation. nNOS-IR and mRNA expression were also affected in the same nuclei. Since NO is an AVP regulator, we propose that disturbances in NO could be a mechanism underlying the AVPergic system disruption following perinatal DE-79 exposure leading to osmoregulation deficits.
Collapse
Affiliation(s)
- Mhar Y Alvarez-Gonzalez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, Ciudad de México, C.P. 14370, Mexico.
| | - Eduardo Sánchez-Islas
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, Ciudad de México, C.P. 14370, Mexico.
| | - Samuel Mucio-Ramirez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, Ciudad de México, C.P. 14370, Mexico.
| | - Patricia de Gortari
- Laboratorio de Neurofisiología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, Ciudad de México, C.P. 14370, Mexico.
| | - María I Amaya
- Laboratorio de Neurofisiología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, Ciudad de México, C.P. 14370, Mexico.
| | - Prasada Rao S Kodavanti
- Neurotoxicology Branch, Toxicity Assessment Division, NHEERL/ORD, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Martha León-Olea
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, Ciudad de México, C.P. 14370, Mexico.
| |
Collapse
|
29
|
Yan H, Hales BF. Effects of Organophosphate Ester Flame Retardants on Endochondral Ossification in Ex Vivo Murine Limb Bud Cultures. Toxicol Sci 2020; 168:420-429. [PMID: 30561715 DOI: 10.1093/toxsci/kfy301] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Phasing out the usage of polybrominated diphenyl ether (PBDE) flame retardants (FRs) in consumer products led to their widespread replacement with organophosphate ester (OPE) FRs, despite scarce safety data. PBDE exposures were associated with the suppression of endochondral ossification but little is known about the effects of OPEs on bones. Here, we used a novel ex vivo murine limb bud culture system to compare the effects of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) with those of several OPEs. Gestation day 13 embryos were collected from transgenic CD1 mice expressing fluorescent markers for the major stages of endochondral ossification: COL2A1-ECFP (chondrogenesis), COL10A1-mCherry (early osteogenesis), and COL1A1-YFP (late osteogenesis). Limbs were excised and cultured for 6 days in the presence of vehicle, BDE-47, or an OPE FR: triphenyl phosphate (TPHP), tert-butylphenyl diphenyl phosphate (BPDP), tris(methylphenyl) phosphate (TMPP), or isopropylated triphenyl phosphate (IPPP). BDE-47 (50 μM) decreased the extent of chondrogenesis in the digits and COL1A1-YFP expression in the radius and ulna relative to control. In comparison, concentrations of ≥1 μM of all 4 OPEs limited chondrogenesis; osteogenesis (both COL10A1-mCherry and COL1A1-YFP fluorescence) was markedly inhibited at concentrations ≥3 μM. The expression of Sox9, the master regulator of chondrogenesis, was altered by BDE-47, TPHP, and BPDP. BDE-47 exposure had minimal impact on the expression of Runx2 and Sp7, which drive osteogenesis, whereas TPHP and BPDP both suppressed the expression of these transcription factors. These data suggest that OPE FRs may be more detrimental to bone formation than their brominated predecessors.
Collapse
Affiliation(s)
- Han Yan
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
30
|
Huang H, Sjodin A, Chen Y, Ni X, Ma S, Yu H, Ward MH, Udelsman R, Rusiecki J, Zhang Y. Polybrominated Diphenyl Ethers, Polybrominated Biphenyls, and Risk of Papillary Thyroid Cancer: A Nested Case-Control Study. Am J Epidemiol 2020; 189:120-132. [PMID: 31742588 DOI: 10.1093/aje/kwz229] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 01/22/2023] Open
Abstract
A nested case-control study was carried out using data from the US Department of Defense cohort between 2000 and 2013 to investigate the associations of papillary thyroid cancer (PTC) with serum concentrations of polybrominated diphenyl ethers and polybrominated biphenyls. This study included 742 histologically confirmed PTC cases (in 341 women and 401 men) and 742 matched controls with prediagnostic serum samples from the Department of Defense Serum Repository. Lipid-corrected serum concentrations of 8 congeners were measured. Multivariate conditional logistic regression analyses were performed for classical PTC and follicular variant of PTC, respectively. We also examined effect modification by sex. BDE-28, a polybrominated diphenyl ether congener, was associated with significantly increased risk of classical PTC (for the third tertile vs. below the limit of detection, odds ratio = 2.09, 95% confidence interval: 1.05, 4.15; P for trend = 0.02), adjusting for other congeners, body mass index, and branch of military service. This association was observed mainly for larger classical PTC (tumor size > 10 mm), with a significantly stronger association among women than men (P for interaction = 0.004). No consistent associations were observed for other congeners, including those at higher concentrations. This study found a significantly increased risk of classical PTC associated with increasing levels of BDE-28. The risk varied by sex and tumor size.
Collapse
Affiliation(s)
- Huang Huang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut
| | - Andreas Sjodin
- Persistent Pollutants Biomonitoring Laboratory, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Yingtai Chen
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
- Yale Cancer Center, New Haven, Connecticut
- Cancer Institute and Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Ni
- Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Shuangge Ma
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut
| | - Herbert Yu
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Mary H Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Robert Udelsman
- Endocrine Neoplasia Institute, Miami Cancer Institute, Miami, Florida
| | - Jennifer Rusiecki
- and Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Department of Preventive Medicine and Biostatistics, Bethesda, Maryland
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
- Yale Cancer Center, New Haven, Connecticut
| |
Collapse
|
31
|
Ramhøj L, Hass U, Gilbert ME, Wood C, Svingen T, Usai D, Vinggaard AM, Mandrup K, Axelstad M. Evaluating thyroid hormone disruption: investigations of long-term neurodevelopmental effects in rats after perinatal exposure to perfluorohexane sulfonate (PFHxS). Sci Rep 2020; 10:2672. [PMID: 32060323 PMCID: PMC7021709 DOI: 10.1038/s41598-020-59354-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/24/2020] [Indexed: 12/17/2022] Open
Abstract
Thyroid hormones are critical for mammalian brain development. Thus, chemicals that can affect thyroid hormone signaling during pregnancy are of great concern. Perfluorohexane sulfonate (PFHxS) is a widespread environmental contaminant found in human serum, breastmilk, and other tissues, capable of lowering serum thyroxine (T4) in rats. Here, we investigated its effects on the thyroid system and neurodevelopment following maternal exposure from early gestation through lactation (0.05, 5 or 25 mg/kg/day PFHxS), alone or in combination with a mixture of 12 environmentally relevant endocrine disrupting compounds (EDmix). PFHxS lowered thyroid hormone levels in both dams and offspring in a dose-dependent manner, but did not change TSH levels, weight, histology, or expression of marker genes of the thyroid gland. No evidence of thyroid hormone-mediated neurobehavioral disruption in offspring was observed. Since human brain development appear very sensitive to low T4 levels, we maintain that PFHxS is of potential concern to human health. It is our view that current rodent models are not sufficiently sensitive to detect adverse neurodevelopmental effects of maternal and perinatal hypothyroxinemia and that we need to develop more sensitive brain-based markers or measurable metrics of thyroid hormone-dependent perturbations in brain development.
Collapse
Affiliation(s)
- Louise Ramhøj
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800,, Denmark
| | - Ulla Hass
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800,, Denmark
| | - Mary E Gilbert
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Carmen Wood
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800,, Denmark
| | - Diana Usai
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800,, Denmark
| | - Anne Marie Vinggaard
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800,, Denmark
| | - Karen Mandrup
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800,, Denmark
| | - Marta Axelstad
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800,, Denmark.
| |
Collapse
|
32
|
Nelson W, Wang YX, Sakwari G, Ding YB. Review of the Effects of Perinatal Exposure to Endocrine-Disrupting Chemicals in Animals and Humans. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 251:131-184. [PMID: 31129734 DOI: 10.1007/398_2019_30] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Maternal exposure to endocrine-disrupting chemicals (EDCs) is associated with long-term hormone-dependent effects that are sometimes not revealed until maturity, middle age, or adulthood. The aim of this study was to conduct descriptive reviews on animal experimental and human epidemiological evidence of the adverse health effects of in utero and lactational exposure to selected EDCs on the first generation and subsequent generation of the exposed offspring. PubMed, Web of Science, and Toxline databases were searched for relevant human and experimental animal studies on 29 October 29 2018. Search results were screened for relevance, and studies that met the inclusion criteria were evaluated and qualitative data extracted for analysis. The search yielded 73 relevant human and 113 animal studies. Results from studies show that in utero and lactational exposure to EDCs is associated with impairment of reproductive, immunologic, metabolic, neurobehavioral, and growth physiology of the exposed offspring up to the fourth generation without additional exposure. Little convergence is seen between animal experiments and human studies in terms of the reported adverse health effects which might be associated with methodologic challenges across the studies. Based on the available animal and human evidence, in utero and lactational exposure to EDCs is detrimental to the offspring. However, more human studies are necessary to clarify the toxicological and pathophysiological mechanisms underlying these effects.
Collapse
Affiliation(s)
- William Nelson
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ying-Xiong Wang
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Gloria Sakwari
- Department of Environmental and Occupational Health, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, Dar es salaam, Tanzania
| | - Yu-Bin Ding
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
33
|
Nesan D, Kurrasch DM. Gestational Exposure to Common Endocrine Disrupting Chemicals and Their Impact on Neurodevelopment and Behavior. Annu Rev Physiol 2019; 82:177-202. [PMID: 31738670 DOI: 10.1146/annurev-physiol-021119-034555] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endocrine disrupting chemicals are common in our environment and act on hormone systems and signaling pathways to alter physiological homeostasis. Gestational exposure can disrupt developmental programs, permanently altering tissues with impacts lasting into adulthood. The brain is a critical target for developmental endocrine disruption, resulting in altered neuroendocrine control of hormonal signaling, altered neurotransmitter control of nervous system function, and fundamental changes in behaviors such as learning, memory, and social interactions. Human cohort studies reveal correlations between maternal/fetal exposure to endocrine disruptors and incidence of neurodevelopmental disorders. Here, we summarize the major literature findings of endocrine disruption of neurodevelopment and concomitant changes in behavior by four major endocrine disruptor classes:bisphenol A, polychlorinated biphenyls, organophosphates, and polybrominated diphenyl ethers. We specifically review studies of gestational and/or lactational exposure to understand the effects of early life exposure to these compounds and summarize animal studies that help explain human correlative data.
Collapse
Affiliation(s)
- Dinushan Nesan
- Department of Medical Genetics, University of Calgary, Calgary, Alberta T2N 4N1, Canada; , .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, Alberta T2N 4N1, Canada; , .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
34
|
Ramsey JT, Li Y, Arao Y, Naidu A, Coons LA, Diaz A, Korach KS. Lavender Products Associated With Premature Thelarche and Prepubertal Gynecomastia: Case Reports and Endocrine-Disrupting Chemical Activities. J Clin Endocrinol Metab 2019; 104:5393-5405. [PMID: 31393563 PMCID: PMC6773459 DOI: 10.1210/jc.2018-01880] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 08/02/2019] [Indexed: 02/06/2023]
Abstract
CONTEXT Previous case reports associated prepubertal gynecomastia with lavender-containing fragrances, but there appear to be no reports of premature thelarche. OBJECTIVE To add to a case series about lavender-fragranced product use and breast growth in children and to measure endocrine-disrupting chemical activity of essential oil components. DESIGN, SETTING, AND PATIENTS Patients experiencing premature thelarche or prepubertal gynecomastia with continuous exposure to lavender-fragranced products were evaluated in the pediatric endocrinology departments of two institutions. Mechanistic in vitro experiments using eight components of lavender and other essential oils were performed at National Institute of Environmental Health Sciences. MAIN OUTCOME MEASURES Case reports and in vitro estrogen and androgen receptor gene expression activities in human cell lines with essential oils. RESULTS Three prepubertal girls and one boy with clinical evidence of estrogenic action and a history of continuous exposure to lavender-containing fragrances were studied. Breast growth dissipated in all patients with discontinuation of the fragranced products. Some of the components tested elicited estrogenic and antiandrogenic properties of varying degrees. CONCLUSION We report cases of premature thelarche that resolved upon cessation of lavender-containing fragrance exposure commonly used in Hispanic communities. The precise developmental basis for such conditions could be multifactorial. In vitro demonstration of estrogenic and antiandrogenic properties of essential oil components suggests essential oils in these cases could be considered a possible source and supports a possible link with idiopathic prepubertal breast development. Whether the level of lavender oil estrogenic potency is sufficient to cause these effects is unknown.
Collapse
Affiliation(s)
- J Tyler Ramsey
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
- Campbell University School of Osteopathic Medicine, Lillington, North Carolina
| | - Yin Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Yukitomo Arao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Ajanta Naidu
- University of California, Irvine Health, Pediatric Endocrinology, Irvine, California
| | - Laurel A Coons
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Alejandro Diaz
- Division of Pediatric Endocrinology, Nicklaus Children’s Hospital, Miami, Florida
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
- Correspondence and Reprint Requests: Kenneth S. Korach, PhD, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, PO Box 12233, Research Triangle Park, North Carolina 27709. E-mail:
| |
Collapse
|
35
|
Ji H, Liang H, Wang Z, Miao M, Wang X, Zhang X, Wen S, Chen A, Sun X, Yuan W. Associations of prenatal exposures to low levels of Polybrominated Diphenyl Ether (PBDE) with thyroid hormones in cord plasma and neurobehavioral development in children at 2 and 4 years. ENVIRONMENT INTERNATIONAL 2019; 131:105010. [PMID: 31326823 DOI: 10.1016/j.envint.2019.105010] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/21/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Neurotoxic effects of Polybrominated Diphenyl Ethers (PBDEs) at low levels have not been well studied in human population, and whether the associations can be explained by thyroid hormones (THs) remains unclear. OBJECTIVES We examined the associations of prenatal PBDE exposures with THs in cord plasma and neurobehavior of children at 2 and 4 years among general population in China. METHODS Participants were mother-child pairs in the Shanghai-Minhang Birth Cohort Study. Nine PBDE congeners and THs (thyroid stimulating hormone, total thyroxine, free thyroxine, total triiodothyronine, and free triiodothyronine) were determined in cord plasma. Child Behavior Checklist (CBCL/1.5-5) were completed by caregivers to assess children's neurobehavioral development at 2 and 4 years. In the final analyses, 199 and 307 mother-child pairs at 2 and 4 years were included to examine associations of PBDEs with CBCL scores using Pearson-scale-adjusted Poisson regressions, and 339 subjects were included in linear regression models to investigate the associations between PBDEs and THs. RESULTS BDE-47 had the highest detection rate of 83.82% with the median concentration of 0.19 ng/g lipid, followed by BDE-28, -99, -100 and -153 with detection rates nearly 50%. We found positive associations between prenatal PBDE concentrations and children's neurobehavior, including Somatic Complaints, Withdrawn, Sleep Problems and Internalizing Problems in girls, and Somatic Complaints and Attention Problems in boys. We also observed inverse associations of the sum of BDE-47, -28, -99, -100 and -153 with THs. However, by adding THs to the models examining associations between PBDEs and CBCL, the main results didn't measurably change. CONCLUSIONS This study adds new knowledge that prenatal PBDEs at low levels may be related to long-lasting behavioral abnormalities in children and reduced THs in cord plasma. However, the hypothesis that the neurotoxic impact of PBDEs may be explained by alterations in cord THs was not supported.
Collapse
Affiliation(s)
- Honglei Ji
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Hong Liang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Ziliang Wang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Maohua Miao
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Xin Wang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Xiaotian Zhang
- National Reference Laboratory of Dioxin, Institute of Health Inspection and Detection, Hubei Provincial Academy of Preventive Medicine, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Sheng Wen
- National Reference Laboratory of Dioxin, Institute of Health Inspection and Detection, Hubei Provincial Academy of Preventive Medicine, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Aimin Chen
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, OH, USA
| | - Xiaowei Sun
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Wei Yuan
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China.
| |
Collapse
|
36
|
Gouesse RJ, Lavoie M, Dianati E, Wade MG, Hales BF, Robaire B, Plante I. Gestational and Lactational Exposure to an Environmentally Relevant Mixture of Brominated Flame Retardants Downregulates Junctional Proteins, Thyroid Hormone Receptor α1 Expression, and the Proliferation-Apoptosis Balance in Mammary Glands Post Puberty. Toxicol Sci 2019; 171:13-31. [PMID: 31241157 PMCID: PMC6735962 DOI: 10.1093/toxsci/kfz147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
Mammary gland development requires hormonal regulation during puberty, pregnancy, and lactation. Brominated flame retardants (BFRs) are endocrine disruptors; they are added to consumer products to satisfy flammability standards. Previously, we showed that gestational and lactational exposure to an environmentally relevant mixture of BFRs disrupts proteins of the adherens junctions in rat dam mammary glands at weaning. Here, we hypothesize that perinatal exposure to the same BFR mixture also disrupts junctional proteins and signaling pathways controlling mammary gland development in pups. Dams were exposed through diet to a BFR mixture based on the substances in house dust; doses of the mixture used were 0, 0.06, 20, or 60 mg/kg/day. Dams were exposed continuously beginning prior to mating until pups' weaning; female offspring were euthanized on postnatal day (PND) 21, 46, and 208. The lowest dose of BFRs significantly downregulated adherens junction proteins, E-cadherin, and β-catenin, and the gap junction protein p-Cx43, as well as thyroid hormone receptor alpha 1 protein at PND 46. No effects were observed on estrogen or progesterone receptors. The low dose also resulted in a decrease in cleaved caspase-3, a downward trend in PARP levels, proteins involved in apoptosis, and an upward trend in proliferating cell nuclear antigen, a marker of proliferation. No effects were observed on ductal elongation or on the numbers of terminal end buds. Together, our results indicate that gestational and lactational exposure to an environmentally relevant mixture of BFRs disrupts cell-cell interactions, thyroid hormone homeostasis and the proliferation-apoptosis balance at PND 46, a critical stage for mammary gland development.
Collapse
Affiliation(s)
| | - Mélanie Lavoie
- INRS, Centre Armand-Frappier Santé Bioscience, Laval, Quebec, Canada
| | - Elham Dianati
- INRS, Centre Armand-Frappier Santé Bioscience, Laval, Quebec, Canada
| | - Mike G Wade
- Health Canada, Environmental Health Science and Research Bureau, Ottawa, Ontario, Canada
| | | | - Bernard Robaire
- Department of Pharmacology & Therapeutics
- Department of Obstetrics & Gynecology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Isabelle Plante
- INRS, Centre Armand-Frappier Santé Bioscience, Laval, Quebec, Canada
| |
Collapse
|
37
|
Zhu Y, Li X, Liu J, Zhou G, Yu Y, Jing L, Shi Z, Zhou X, Sun Z. The effects of decabromodiphenyl ether on glycolipid metabolism and related signaling pathways in mice. CHEMOSPHERE 2019; 222:849-855. [PMID: 30743236 DOI: 10.1016/j.chemosphere.2019.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Decabromodiphenyl ether (BDE-209), an addictive type flame retardant, is widely found in environments, and could affect the glycolipid metabolism. The present study was designed to investigate the potential mechanism of BDE-209 affecting glycolipid metabolism. Forty mice were randomly divided into four groups, and they were exposed to BDE-209 at dosages of 0, 7.5, 25 and 75 mg kg-1·d-1 for 28 d, respectively. The results showed that BDE-209 increased the serum levels of glucose, insulin, and triglyceride, also decreased the level of high-density lipoprotein, and damaged the structures of liver and adipose tissue in mice. BDE-209 significantly increased the protein expression of p-IRS, markedly decreased the expressions of PI3K, p-AKT, and GLUT4, significantly improved the lipid metabolism related factor expressions of p-mTOR, mTOR, PPARγ and RXRɑ, also inhibited the activity of antioxidant enzymes in the liver of mice. These results suggested that BDE-209 could affect glucose metabolism and inhibiting PI3K/AKT/GLUT4 signaling pathway resulting from improving the p-IRS expression, and interfered with lipid metabolism through activate mTOR/PPARγ/RXRα resulting from oxidative stress in mice.
Collapse
Affiliation(s)
- Yupeng Zhu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, China
| | - Xiangyang Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, China
| | - Jianhui Liu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, China
| | - Guiqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, China
| | - Yang Yu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, China.
| | - Li Jing
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, China
| | - Zhixiong Shi
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, China.
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, China
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW With the incidence of neurodevelopmental disorders on the rise, it is imperative to identify and understand the mechanisms by which environmental contaminants can impact the developing brain and heighten risk. Here, we report on recent findings regarding novel mechanisms of developmental neurotoxicity and highlight chemicals of concern, beyond traditionally defined neurotoxicants. RECENT FINDINGS The perinatal window represents a critical and extremely vulnerable period of time during which chemical insult can alter the morphological and functional trajectory of the developing brain. Numerous chemical classes have been associated with alterations in neurodevelopment including metals, solvents, pesticides, and, more recently, endocrine-disrupting compounds. Although mechanisms of neurotoxicity have traditionally been identified as pathways leading to neuronal cell death, neuropathology, or severe neural injury, recent research highlights alternative mechanisms that result in more subtle but consequential changes in the brain and behavior. These emerging areas of interest include neuroendocrine and immune disruption, as well as indirect toxicity via actions on other organs such as the gut and placenta. Understanding of the myriad ways in which the developing brain is vulnerable to chemical exposures has grown tremendously over the past decade. Further progress and implementation in risk assessment is critical to reducing risk of neurodevelopmental disorders.
Collapse
|
39
|
Jia W, Ma C, White JC, Yin M, Cao H, Wang J, Wang C, Sun H, Xing B. Effects of biochar on 2, 2', 4, 4', 5, 5'-hexabrominated diphenyl ether (BDE-153) fate in Amaranthus mangostanus L.: Accumulation, metabolite formation, and physiological response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1154-1165. [PMID: 30360247 DOI: 10.1016/j.scitotenv.2018.09.229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/08/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
The accumulation and metabolism of 2, 2', 4, 4', 5, 5'-hexabrominated diphenyl ether (BDE-153) in Amaranthus mangostanus L. (amaranth) as affected by different concentrations of biochar (1.3 to 26.6 g/L) under hydroponic conditions exposed to 10 μg/L BDE-153 after 10 days were investigated. Biochar significantly reduced BDE-153 shoot and root content by 27.5-61.6% and 73-95.3%, respectively. In general, BDE-153 migration from solution to amaranth decreased with increasing the doses of biochar. BDE-153 metabolites altered with doses of biochar. The ratio of de-BDEs to BDE-153 in root was polynomial correlated to biochar dose (R2 = 0.9356**). Root and shoot Fe content was positively correlated with the BDE-153 amounts (R2 = 0.948** and 0.822*, respectively). Though the higher biochar dose could obviously control BDE-153 uptake by the vegetable, the toxicity was caused more significantly. For instances, the high concentration of biochar at 26.6 g/L reduced pigment content, increased total ROS, and elevated antioxidant enzyme activity. At the same time, the O2- intensity was linearly positively correlated with de-BDEs in root (R2 = 0.7324*) while photosynthetic parameter Fv/fm intensity was polynomial correlated to BDEs in shoot (R2 = 0.9366*). Transmission electron microscopy (TEM) confirmed that exposure to BDE-153 and high concentration biochar at 26.6 g/L severely altered the chloroplasts in terms of the organelle shape and the presence of starch granules in the chloroplast. Taken together, biochar as a soil amendment could significantly control BDE-153 uptake and enhance BDE-153 metabolism in vegetables, but considering the dose of biochar to avoid its toxicity with higher dose.
Collapse
Affiliation(s)
- Weili Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Chuanxin Ma
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Mengfei Yin
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Huimin Cao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jicheng Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
40
|
Luan M, Liang H, Yang F, Yuan W, Chen A, Liu X, Ji H, Wen S, Miao M. Prenatal polybrominated diphenyl ethers exposure and anogenital distance in boys from a Shanghai birth cohort. Int J Hyg Environ Health 2019; 222:513-523. [PMID: 30713057 DOI: 10.1016/j.ijheh.2019.01.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/18/2019] [Accepted: 01/26/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) are major brominated flame retardant (BFR) chemicals with endocrine-disrupting properties. One small-scale study on humans has suggested that prenatal exposure to PBDEs is adversely related to anogenital distance (AGD) a sensitive marker for prenatal androgen exposure. The aim of the present study was to examine the associations between prenatal exposure to PBDEs and AGD among boys 0-4 years of age in a cohort study. METHODS In the Shanghai-Minhang Birth Cohort Study (S-MBCS), nine PBDE congeners were measured in cord plasma of 192 male infants. We measured anopenile distance (AGDAP) and anoscrotal distance (AGDAS) at birth, 6 months, 12 months, and 48 months of age. A total of 190 boys with neonatal concentrations of PBDEs (ng/g lipid) who had at-least one AGD measurement were included in our study. Information on potential confounding variables were collected through in-person interviews. Multiple linear regression models and generalized estimating equation (GEE) models were used to evaluate the associations between prenatal PBDEs concentrations and AGD. RESULTS Among the nine congeners, BDE-47 had the highest detection rate (83.68%) and the highest median concentration (0.18 ng/g lipid). Boys who had neonatal concentration of BDE-47 or Σ4PBDEs (sum of BDE-47, BDE-99, BDE-100, and BDE-153) in the higher quartile generally had shorter AGDAP and AGDAS than those in the first quartile. Significant inverse associations were found between AGDAS and fourth quartile BDE-47 levels among boys 12 months and 48 months of age (β = -5.57, 95% confidence interval (CI): -9.89, -1.25 for 12 month of age; β = -4.32, 95% CI: -8.18, -0.46 for 48 month of age). Inverse associations were also observed between AGDAS and fourth quartile Σ4PBDEs levels among boys 12 months of age (β = -5.13, 95% CI: -9.89, -1.25). In GEE models, similar patterns of association were also observed between BDE-47 and AGDAS. CONCLUSIONS Our findings provide preliminary evidence that prenatal exposure to BDE-47 and Σ4PBDEs, even at low environmental levels, may be associated with shorter AGD in boys. This data suggest that prenatal exposure to PBDEs may have adverse effects on male reproductive development. Further studies should be conducted to validate these results.
Collapse
Affiliation(s)
- Min Luan
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, Shanghai, China
| | - Hong Liang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, Shanghai, China
| | - Fen Yang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, Shanghai, China
| | - Wei Yuan
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, Shanghai, China
| | - Aimin Chen
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Xiao Liu
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Honglei Ji
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, Shanghai, China
| | - Sheng Wen
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China.
| | - Maohua Miao
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
41
|
Zhang F, Peng L, Huang Y, Lin X, Zhou L, Chen J. Chronic BDE-47 Exposure Aggravates Malignant Phenotypes and Chemoresistance by Activating ERK Through ERα and GPR30 in Endometrial Carcinoma. Front Oncol 2019; 9:1079. [PMID: 31737560 PMCID: PMC6834531 DOI: 10.3389/fonc.2019.01079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 09/30/2019] [Indexed: 02/05/2023] Open
Abstract
Environmental exposure to certain compounds contribute to cell plasticity, tumor progression and even chemoresistance. 2,2',4,4'-tetrabromo diphenyl ether (BDE-47), one of the most frequently detected polybrominated diphenyl ethers (PBDEs) in environmental and biological samples, is a known estrogen disruptor closely associated with the development of hormone-dependent cancers. However, the effect of BDE-47 on endometrial carcinoma (EC), an estrogen-dependent cancer, remains to be elucidated. Mechanisms of estrogen receptor α (ERα) and G-protein-coupled receptor-30 (GPR30) involved in BDE-47 carcinogenesis are yet to be identified. This study aims to investigate the effect of BDE-47 on the invasive phenotype of estrogen-dependent EC cells. BDE-47-treated cells, such as Ishikawa-BDE-47 and HEC-1B-BDE-47 cells, exhibited increased cell viability and enhanced metastatic ability. In vivo studies showed larger tumor volumes and more metastasis in mice injected with Ishikawa-BDE-47 cells compared with parental Ishikawa cells. MTT assay showed that BDE-47 exposure could attenuate sensitivity of EC cells to cisplatin or paclitaxel treatment in vitro. Western blotting revealed overexpression of ERα, GPR30, pEGFR (phosphorylated epidermal growth factor receptor), and pERK (phosphorylated extracellular-regulated protein kinase) in Ishikawa-BDE-47 and HEC-1B-BDE-47 cells. Knockdown of ERα or GPR30 by small interfering RNA reversed the stimulating effect of BDE-47 on cell growth, migration and invasion of EC cells. Additionally, treatment with pEGFR or pERK inhibitor impaired cell viability, migration and invasion in Ishikawa-BDE-47 and HEC-1B-BDE-47 cells. Overall, our results indicate that chronic BDE-47 exposure triggers phenotypic plasticity, promotes progression and even chemoresistance in EC cells, at least in part, via ERα/GPR30 and EGFR/ERK signaling pathways.
Collapse
Affiliation(s)
- Fan Zhang
- Oncology Research Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Lin Peng
- Department of Laboratory Medicine, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yiteng Huang
- Health Care Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xueqiong Lin
- Department of Laboratory Medicine, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Li Zhou
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
- *Correspondence: Li Zhou
| | - Jiongyu Chen
- Oncology Research Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, China
- Jiongyu Chen
| |
Collapse
|
42
|
He Y, Peng L, Zhang W, Liu C, Yang Q, Zheng S, Bao M, Huang Y, Wu K. Adipose tissue levels of polybrominated diphenyl ethers and breast cancer risk in Chinese women: A case-control study. ENVIRONMENTAL RESEARCH 2018; 167:160-168. [PMID: 30014897 DOI: 10.1016/j.envres.2018.07.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 02/05/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are suspected to be associated with breast cancer risk because of their estrogenic potencies. Epidemiological studies of PBDEs and breast cancer are scarce. Our study aimed to estimate the association between adipose-tissue PBDE concentrations and breast cancer risk. A total of 209 breast cancer cases and 165 controls were recruited from hospitals between January 2014 and May 2016 in Shantou, Chaoshan area, China. Concentrations of 14 PBDE congeners were measured in adipose tissues obtained from the breast for cases and the abdomen/breast for controls during surgery. Demographic and clinicopathologic characteristics were obtained from medical records. Breast cancer risk as well as clinicopathologic characteristics were evaluated by adipose-tissue PBDE level. Odds ratios (ORs) and 95% confidence intervals (95% CIs) for breast cancer risk associated with levels of PBDE congeners were estimated from logistic regression models for all cases and stratified by estrogen receptor (ER) status. Level of total PBDEs (∑PBDE) and most individual PBDE congeners were higher in breast cancer cases than controls (median ∑PBDE, 94.99 vs 73.72 ng/g lipid). In the adjusted univariate model for all cases, breast cancer risk was increased with both 2nd and 3rd tertiles versus the 1st tertile of BDE-47 level (OR 2.05 [95% CI 1.08-3.92]; 5.47 [2.96-10.11]) and BDE-209 level (2.48 [1.30-4.73]; 4.72 [2.52-8.83]) with trend (both P < 0.001) and with the 3rd tertile of BDE-28 level (2.83 [1.63-4.92]), BDE-99 (3.22 [1.85-5.60]), BDE-100 (5.45 [2.90-10.23]), BDE-138 (2.40 [1.37-4.20]), BDE-153 (1.74 [1.02-2.97]), BDE-154 (1.84 [1.05-3.22]), and ∑PBDE levels (1.83 [1.07-3.14]) but decreased with the 3rd tertile of BDE-71 level (0.38 [0.22-0.65]) with trend (all P < 0.01). After stratifying by ER-positive or -negative status, the adjusted results were similar for ER-positive patients except for BDE-153 and BDE-154, with no statistical significance. In the multivariate model for all cases, age, menarche age, BDE-47, 71, 99, 100, 183 and 209 were independent factors associated with breast-cancer risk. ∑PBDE and most individual PBDE congeners investigated were positively associated with breast cancer risk in women from the Chaoshan area, China. PBDE may play a role in the occurrence and development of breast cancer.
Collapse
Affiliation(s)
- Yuanfang He
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Lin Peng
- Clinical Laboratory, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wancong Zhang
- Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Caixia Liu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qingtao Yang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shukai Zheng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Mian Bao
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yuanni Huang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
43
|
Buser MC, Abadin HG, Irwin JL, Pohl HR. Windows of sensitivity to toxic chemicals in the development of reproductive effects: an analysis of ATSDR's toxicological profile database. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2018; 28:553-578. [PMID: 30022686 PMCID: PMC6261274 DOI: 10.1080/09603123.2018.1496235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Development of the fetus is a complex process influenced by many factors including genetics, maternal health, and environmental exposures to toxic chemicals. Adverse developmental effects on the reproductive system have the potential to harm generations beyond those directly exposed. Here, we review the available literature in Agency for Toxic Substances and Disease Registry toxicological profiles related to reproductive-developmental effects in animals following in utero exposure to chemicals. We attempt to identify windows of sensitivity. In the discussion, we correlate the findings with human development. The endpoints noted are fertility, estrus, anogenital distance, sex ratio, spermatogenesis, and mammary gland development. We identified some windows of sensitivity; however, the results were hampered by chronic-exposure studies designed to detect effects occurring throughout developmental, including multi-generational studies. This paper demonstrates the need for more acute studies in animals aimed at understanding time periods of development that are more susceptible to chemically induced adverse effects.
Collapse
Affiliation(s)
- Melanie C Buser
- a US Department of Health and Human Services , Agency for Toxic Substances and Disease Registry , Atlanta , GA , USA
| | - Henry G Abadin
- a US Department of Health and Human Services , Agency for Toxic Substances and Disease Registry , Atlanta , GA , USA
| | - John L Irwin
- a US Department of Health and Human Services , Agency for Toxic Substances and Disease Registry , Atlanta , GA , USA
| | - Hana R Pohl
- a US Department of Health and Human Services , Agency for Toxic Substances and Disease Registry , Atlanta , GA , USA
| |
Collapse
|
44
|
Gorini F, Iervasi G, Coi A, Pitto L, Bianchi F. The Role of Polybrominated Diphenyl Ethers in Thyroid Carcinogenesis: Is It a Weak Hypothesis or a Hidden Reality? From Facts to New Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15091834. [PMID: 30149577 PMCID: PMC6165121 DOI: 10.3390/ijerph15091834] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/23/2022]
Abstract
In the last decades, the incidence of thyroid cancer has increased faster than that of any other malignant tumor type. The cause of thyroid cancer is likely multifactorial and a variety of both exogenous and endogenous has been identified as potential risk factors. Polybrominated diphenyl ethers (PBDEs), used since the 1970s as flame retardants, are still widespread and persistent pollutants today, although their production was definitely phased out in the western countries several years ago. Polybrominated diphenyl ethers are known endocrine disruptors, and the endocrine system is their primary target. Whereas animal studies have ascertained the ability of PBDEs to affect the normal functionality of the thyroid, evidence in humans remains inconclusive, and only a few epidemiological studies investigated the association between exposure to PBDEs and thyroid cancer. However, a number of clues suggest that a prolonged exposure to these chemicals might act a trigger of the most common malignancy of the endocrine system, whereas further studies with an advanced design are suggested.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy.
| | - Giorgio Iervasi
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy.
| | - Alessio Coi
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy.
| | - Letizia Pitto
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy.
| | - Fabrizio Bianchi
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy.
| |
Collapse
|
45
|
Dianati E, Wade MG, Hales BF, Robaire B, Plante I. From the Cover: Exposure to an Environmentally Relevant Mixture of Brominated Flame Retardants Decreased p-β-Cateninser675 Expression and Its Interaction With E-Cadherin in the Mammary Glands of Lactating Rats. Toxicol Sci 2018; 159:114-123. [PMID: 28903489 DOI: 10.1093/toxsci/kfx123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Proper mammary gland development and function require precise hormonal regulation and bidirectional cross talk between cells provided by means of paracrine factors as well as intercellular junctions; exposure to environmental endocrine disruptors can disturb these processes. Exposure to one such family of chemicals, the brominated flame retardants (BFRs), is ubiquitous. Here, we tested the hypothesis that BFR exposures disrupt signaling pathways and intercellular junctions that control mammary gland development. Before mating, during pregnancy and throughout lactation, female Sprague-Dawley rats were fed diets containing that BFR mixture based on house dust, delivering nominal exposures of BFR of 0 (control), 0.06, 20, or 60 mg/kg/d. Dams were euthanized and mammary glands collected on postnatal day 21. BFR exposure had no significant effects on mammary gland/body weight ratios or the levels of proteins involved in milk synthesis, epithelial-mesenchymal transition, cell-cell interactions, or hormone signalling. However, BFR exposure (0.06 mg/kg/d) down-regulated phospho-ser675 β-catenin (p-β-catSer675) levels in the absence of any effect on total β-catenin levels. Levels of p-CREB were also down-regulated, suggesting that PKA inhibition plays a role. p-β-catSer675 co-localized with β-catenin at the mammary epithelial cell membrane, and its expression was decreased in animals from the 0.06 and 20 mg/kg/d BFR treatment groups. Although β-Catenin signaling was not affected by BFR exposure, the interaction between p-β-catSer675 and E-cadherin was significantly reduced. Together, our results demonstrate that exposure to an environmentally relevant mixture of BFR during pregnancy and lactation decreases p-β-catser675 at cell adhesion sites, likely in a PKA-dependant manner, altering mammary gland signaling.
Collapse
Affiliation(s)
- Elham Dianati
- INRS, Institut Armand-Frappier, Laval, Québec, Canada.,Centre de Recherche Biomed, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Michael G Wade
- Health Canada, Environmental Health Science and Research Bureau, Ottawa, Ontario, Canada
| | | | - Bernard Robaire
- Department of Pharmacology and Therapeutics.,Department of Obstetrics and Gynecology, Faculty of Medicine, McGill University, Montreal, Québec, Canada
| | - Isabelle Plante
- INRS, Institut Armand-Frappier, Laval, Québec, Canada.,Centre de Recherche Biomed, Université du Québec à Montréal, Montréal, Québec, Canada
| |
Collapse
|
46
|
Cai C, Yu S, Liu Y, Tao S, Liu W. PBDE emission from E-wastes during the pyrolytic process: Emission factor, compositional profile, size distribution, and gas-particle partitioning. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:419-428. [PMID: 29310085 DOI: 10.1016/j.envpol.2017.12.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 11/18/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
Polybrominated diphenyl ether (PBDE) pollution in E-waste recycling areas has garnered great concern by scientists, the government and the public. In the current study, two typical kinds of E-wastes (printed wiring boards and plastic casings of household or office appliances) were selected to investigate the emission behaviors of individual PBDEs during the pyrolysis process. Emission factors (EFs), compositional profile, particle size distribution and gas-particle partitioning of PBDEs were explored. The mean EF values of the total PBDEs were determined at 8.1 ± 4.6 μg/g and 10.4 ± 11.3 μg/g for printed wiring boards and plastic casings, respectively. Significantly positive correlations were observed between EFs and original addition contents of PBDEs. BDE209 was the most abundant in the E-waste materials, while lowly brominated and highly brominated components (excluding BDE209) were predominant in the exhaust fumes. The distribution of total PBDEs on different particle sizes was characterized by a concentration of finer particles with an aerodynamic diameter between 0.4 μm and 2.1 μm and followed by less than 0.4 μm. Similarly, the distribution of individual species was dominated by finer particles. Most of the freshly emitted PBDEs (via pyrolysis) were liable to exist in the particulate phase with respect to the gaseous phase, particularly for finer particles. In addition, a linear relationship between the partitioning coefficient (KP) and the subcooled liquid vapor pressure (PL0) of the different components indicated non-equilibrium gas-particle partitioning during the pyrolysis process and suggested that absorption by particulate organic carbon, rather than surface adsorption, governed gas-particle partitioning.
Collapse
Affiliation(s)
- ChuanYang Cai
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - ShuangYu Yu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Yu Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Shu Tao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - WenXin Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
47
|
Mughal BB, Fini JB, Demeneix BA. Thyroid-disrupting chemicals and brain development: an update. Endocr Connect 2018; 7:R160-R186. [PMID: 29572405 PMCID: PMC5890081 DOI: 10.1530/ec-18-0029] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022]
Abstract
This review covers recent findings on the main categories of thyroid hormone-disrupting chemicals and their effects on brain development. We draw mostly on epidemiological and experimental data published in the last decade. For each chemical class considered, we deal with not only the thyroid hormone-disrupting effects but also briefly mention the main mechanisms by which the same chemicals could modify estrogen and/or androgen signalling, thereby exacerbating adverse effects on endocrine-dependent developmental programmes. Further, we emphasize recent data showing how maternal thyroid hormone signalling during early pregnancy affects not only offspring IQ, but also neurodevelopmental disease risk. These recent findings add to established knowledge on the crucial importance of iodine and thyroid hormone for optimal brain development. We propose that prenatal exposure to mixtures of thyroid hormone-disrupting chemicals provides a plausible biological mechanism contributing to current increases in the incidence of neurodevelopmental disease and IQ loss.
Collapse
Affiliation(s)
- Bilal B Mughal
- CNRS/UMR7221Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Jean-Baptiste Fini
- CNRS/UMR7221Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Barbara A Demeneix
- CNRS/UMR7221Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| |
Collapse
|
48
|
Wei J, Xiang L, Yuan Z, Li S, Yang C, Liu H, Jiang Y, Cai Z. Metabolic profiling on the effect of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in MCF-7 cells. CHEMOSPHERE 2018; 192:297-304. [PMID: 29117588 DOI: 10.1016/j.chemosphere.2017.10.170] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are commonly used to prevent the development of fire in various factory products. Due to the adverse effects on human health and the bio-accumulation capacity, PBDEs are considered as one kind of persistent organic pollutants (POPs). BDE-47 is one of the most frequently detected PBDEs congeners in human samples. Although numerous studies have shown the close connection between BDE-47 and human health, few reports were related to breast carcinoma. In the present study, the toxicity mechanism of BDE-47 was investigated by using MCF-7 breast cancer cells. Metabolomics analysis was conducted by using ultra-high performance liquid chromatography coupled with mass spectrometry (UHPLC-MS). Results showed that the toxicity to MCF-7 cells gradually increased when the concentration of BDE-47 exceeded 1 μM in the medium with 1% fetal bovine serum (FBS). It was found that pyrimidine metabolism, purine metabolism and pentose phosphate pathway (PPP) were the most influenced metabolic pathways, and the metabolites in the three metabolic pathways were significantly downregulated. Moreover, the increase of reactive oxygen species (ROS) was detected by using the 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining method. The obtained results suggested that the BDE-47 induced oxidative stress by downregulating the NADPH generation in PPP. The pyrimidine metabolism and purine metabolism might be downregulated by the downregulation of mRNA transcripts. Therefore, BDE-47 could induce oxidative stress by inhibiting PPP and disorder the metabolism of the entire cell subsequently. This research provided evidence for investigating mechanism of the adverse effect of BDE-47 on human health.
Collapse
Affiliation(s)
- Juntong Wei
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Li Xiang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Zigao Yuan
- Key Laboratory of Metabolomics at Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Shangfu Li
- Key Laboratory of Metabolomics at Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Chunxue Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Hongxia Liu
- Key Laboratory of Metabolomics at Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Yuyang Jiang
- Key Laboratory of Metabolomics at Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| |
Collapse
|
49
|
Rodgers KM, Udesky JO, Rudel RA, Brody JG. Environmental chemicals and breast cancer: An updated review of epidemiological literature informed by biological mechanisms. ENVIRONMENTAL RESEARCH 2018; 160:152-182. [PMID: 28987728 DOI: 10.1016/j.envres.2017.08.045] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Many common environmental chemicals are mammary gland carcinogens in animal studies, activate relevant hormonal pathways, or enhance mammary gland susceptibility to carcinogenesis. Breast cancer's long latency and multifactorial etiology make evaluation of these chemicals in humans challenging. OBJECTIVE For chemicals previously identified as mammary gland toxicants, we evaluated epidemiologic studies published since our 2007 review. We assessed whether study designs captured relevant exposures and disease features suggested by toxicological and biological evidence of genotoxicity, endocrine disruption, tumor promotion, or disruption of mammary gland development. METHODS We systematically searched the PubMed database for articles with breast cancer outcomes published in 2006-2016 using terms for 134 environmental chemicals, sources, or biomarkers of exposure. We critically reviewed the articles. RESULTS We identified 158 articles. Consistent with experimental evidence, a few key studies suggested higher risk for exposures during breast development to dichlorodiphenyltrichloroethane (DDT), dioxins, perfluorooctane-sulfonamide (PFOSA), and air pollution (risk estimates ranged from 2.14 to 5.0), and for occupational exposure to solvents and other mammary carcinogens, such as gasoline components (risk estimates ranged from 1.42 to 3.31). Notably, one 50-year cohort study captured exposure to DDT during several critical windows for breast development (in utero, adolescence, pregnancy) and when this chemical was still in use. Most other studies did not assess exposure during a biologically relevant window or specify the timing of exposure. Few studies considered genetic variation, but the Long Island Breast Cancer Study Project reported higher breast cancer risk for polycyclic aromatic hydrocarbons (PAHs) in women with certain genetic variations, especially in DNA repair genes. CONCLUSIONS New studies that targeted toxicologically relevant chemicals and captured biological hypotheses about genetic variants or windows of breast susceptibility added to evidence of links between environmental chemicals and breast cancer. However, many biologically relevant chemicals, including current-use consumer product chemicals, have not been adequately studied in humans. Studies are challenged to reconstruct exposures that occurred decades before diagnosis or access biological samples stored that long. Other problems include measuring rapidly metabolized chemicals and evaluating exposure to mixtures.
Collapse
Affiliation(s)
- Kathryn M Rodgers
- Silent Spring Institute, 320 Nevada Street, Newton, MA 02460, United States.
| | - Julia O Udesky
- Silent Spring Institute, 320 Nevada Street, Newton, MA 02460, United States.
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Newton, MA 02460, United States.
| | - Julia Green Brody
- Silent Spring Institute, 320 Nevada Street, Newton, MA 02460, United States.
| |
Collapse
|
50
|
Zhang C, Li P, Zhang S, Lei R, Li B, Wu X, Jiang C, Zhang X, Ma R, Yang L, Wang C, Zhang X, Xia T, Wang A. Oxidative stress-elicited autophagosome accumulation contributes to human neuroblastoma SH-SY5Y cell death induced by PBDE-47. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:322-328. [PMID: 29096325 DOI: 10.1016/j.etap.2017.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
Polybrominated diphenyl ethers, a ubiquitous persistent organic pollutant used as brominated flame retardants, is known to damage nervous system, however the underlying mechanism is still elusive. In this study, we used human neuroblastoma SH-SY5Y cells to explore the effects of PBDE-47 on autophagy and investigate the role of autophagy in PBDE-47-induced cell death. Results showed PBDE-47 could increase autophagic level (performation of cell ultrastructure with double membrane formation, MDC-positive cells raised, autophagy-related proteins LC3-II, Beclin1 and P62 increased) after cells exposed to PBDE-47. Then cells were exposed to PBDE-47 (1, 5, 10μmol/L) respectively for 1, 3, 6, 9, 12, 18, 24h, and the results showed that PBDE-47 increased the levels of LC3-II, Beclin1 and P62 in 5, 10μmol/L (9, 12, 18, 24h) PBDE-47 exposed groups. Furthermore, ROS scavenger N-Acetyl-l-cysteine (NAC), autophagic inhibitor 3-methyladenine (3-MA) and 5μmol/L PBDE-47 treated for 9h and 24h were chosen for the follow-up research. Moreover, 3-MA significantly improved cell viability when cells exposed to 5 and 10μmol/L PBDE-47, indicating that PBDE-47-induced autophagic cell death. Importantly, NAC could decrease PBDE-47-induced LC3-II, Beclin1 and P62 expression. We concluded that autophagosome accumulation mediated by oxidative stress may contribute to SH-SY5Y cell death induced by PBDE-47.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, People's Republic of China; Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan North Road 18-20, Wuhan 430015, Hubei, People's Republic of China
| | - Pei Li
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, People's Republic of China
| | - Shun Zhang
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, People's Republic of China
| | - Rongrong Lei
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, People's Republic of China
| | - Bei Li
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, People's Republic of China
| | - Xue Wu
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, People's Republic of China
| | - Chunyang Jiang
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, People's Republic of China
| | - Xiaofei Zhang
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, People's Republic of China
| | - Rulin Ma
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, People's Republic of China
| | - Lu Yang
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, People's Republic of China
| | - Chao Wang
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, People's Republic of China
| | - Xiao Zhang
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, People's Republic of China
| | - Tao Xia
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, People's Republic of China
| | - Aiguo Wang
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, People's Republic of China.
| |
Collapse
|