1
|
Gogos A, Thomson S, Drummond K, Holland L, O'Hely M, Dawson S, Marx W, Mansell T, Burgner D, Saffery R, Sly P, Collier F, Tang ML, Symeonides C, Vuillermin P, Ponsonby AL. Socioeconomic adversity, maternal nutrition, and the prenatal programming of offspring cognition and language at two years of age through maternal inflammation. Brain Behav Immun 2024; 122:471-482. [PMID: 39163911 DOI: 10.1016/j.bbi.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/18/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024] Open
Abstract
Increasing rates of child neurodevelopmental vulnerability are a significant public health challenge. The adverse effect of socioeconomic adversity on offspring cognition may be mediated through elevated prenatal maternal systemic inflammation, but the role of modifiable antecedents such as maternal nutrition has not yet been clarified. This study aimed to examine (1) whether prenatal factors, with an emphasis on maternal nutrition, were associated with prenatal maternal systemic inflammation at 28 weeks' gestation, including the metabolomic marker glycoprotein acetyls (GlycA); (2) the extent to which the association between prenatal maternal nutrition and child cognition and language at age two years was mediated by elevated maternal inflammation in pregnancy; (3) the extent to which the associations between prenatal socioeconomic adversity and child neurodevelopment were mediated through prenatal maternal nutrition and GlycA levels. We used a prospective population-derived pre-birth longitudinal cohort study, the Barwon Infant Study (Barwon region of Victoria, Australia), where 1074 mother-child pairs were recruited by 28 weeks' gestation using an unselected sampling frame. Exposures included prenatal factors such as maternal diet measured by a validated food frequency questionnaire at 28 weeks' gestation and dietary patterns determined by principal component analysis. The main outcome measures were maternal inflammatory biomarkers (GlycA and hsCRP levels) at 28 weeks' gestation, and offspring Bayley-III cognition and language scores at age two years. Results showed that the 'modern wholefoods' and 'processed' maternal dietary patterns were independently associated with reduced and elevated maternal inflammation respectively (GlycA or hsCRP p < 0.001), and also with higher and reduced offspring Bayley-III scores respectively (cognition p ≤ 0.004, language p ≤ 0.009). Associations between dietary patterns and offspring cognition and language were partially mediated by higher maternal GlycA (indirect effect: cognition p ≤ 0.036, language p ≤ 0.05), but were less evident for hsCRP. The maternal dietary patterns mediated 22 % of the association between socioeconomic adversity (lower maternal education and/or lower household income vs otherwise) and poorer offspring cognition (indirect effect p = 0.001). Variation in prenatal GlycA levels that were independent of these dietary measures appeared less important. In conclusion, modifiable prenatal maternal dietary patterns were associated with adverse child neurocognitive outcomes through their effect on maternal inflammation (GlycA). Maternal diet may partially explain the association between socioeconomic adversity and child neurocognitive vulnerability. Maternal diet-by-inflammation pathways are an attractive target for future intervention studies.
Collapse
Affiliation(s)
- Andrea Gogos
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Melbourne, Department of Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Sarah Thomson
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Katherine Drummond
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Melbourne, Department of Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Lada Holland
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Melbourne, Department of Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Martin O'Hely
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia; Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia
| | - Samantha Dawson
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia; Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia
| | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Peter Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia; Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Fiona Collier
- Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Mimi Lk Tang
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Christos Symeonides
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Peter Vuillermin
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia; Barwon Health, Geelong, VIC, Australia
| | - Anne-Louise Ponsonby
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Melbourne, Department of Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
2
|
Huang Y, Chen W, Gan Y, Liu X, Tian Y, Zhang J, Li F. Prenatal exposure to per- and polyfluoroalkyl substances, genetic factors, and autistic traits: Evidence from the Shanghai birth cohort. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135857. [PMID: 39383700 DOI: 10.1016/j.jhazmat.2024.135857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/07/2024] [Accepted: 09/14/2024] [Indexed: 10/11/2024]
Abstract
The epidemiological evidence regarding prenatal PFAS exposure and its interaction with genetic factors on the autistic traits risk is unclear. This study included 1610 mother-child pairs from the Shanghai Birth Cohort (SBC). Ten PFAS were quantified in blood serum collected in the first trimester. Child autistic traits were evaluated at age 4 using a Chinese version of the social responsiveness scale-short form (SRS-SF). We calculated the polygenic risk score (PRS) to evaluate the cumulative genetic effects of autism. Additive interaction models were established to explore whether genetic susceptibility modified the effects of prenatal PFAS exposure. After adjusting for confounders, we found prenatal PFOA exposure was associated with an increased risk of autistic traits in children (OR, 3.05; 95 % CI, 1.14-7.58), and the increased risk associated with PFOA was mitigated among women who reported pre-pregnancy folic acid supplementation. Additionally, an increased risk of autistic traits was observed in children with higher levels of prenatal PFHxS exposure and a high PRS (p for interaction = 0.021). Our findings suggest prenatal PFAS exposure may increase the risk of autistic traits in children, especially in those with a high genetic risk. Further research is warranted to confirm this association and explore the underlying mechanisms.
Collapse
Affiliation(s)
- Yun Huang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiran Chen
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuexin Gan
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Liu
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Tian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fei Li
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Rosen EM, Stevens DR, McNell EE, Wood ME, Engel SM, Keil AP, Calafat AM, Botelho JC, Sinkovskaya E, Przybylska A, Saade G, Abuhamad A, Ferguson KK. Longitudinal associations between urinary biomarkers of phthalates and replacements with novel in vivo measures of placental health. Hum Reprod 2024; 39:2104-2114. [PMID: 38970902 PMCID: PMC11373341 DOI: 10.1093/humrep/deae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/10/2024] [Indexed: 07/08/2024] Open
Abstract
STUDY QUESTION What is the longitudinal association between gestational phthalate exposure and in vivo placental outcomes? SUMMARY ANSWER Phthalates were adversely associated with placental microvasculature, stiffness, and presence of calcification, with different metabolites associated with different outcomes. WHAT IS KNOWN ALREADY Phthalate exposure is ubiquitous and implicated as a contributor to adverse pregnancy outcomes, possibly through impacts on the placenta. STUDY DESIGN, SIZE, DURATION A total of 303 women were recruited in early pregnancy and prospectively followed for up to eight visits across gestation in the Human Placenta and Phthalates study. PARTICIPANTS/MATERIALS, SETTING, METHODS At each visit, women provided urine samples and underwent placental ultrasounds. Urine was analyzed for 18 metabolites of phthalates and replacements. We took the geometric mean of repeated measurements to reflect pregnancy-averaged phthalate or replacement exposure for each participant (n = 303). Placental microvasculature, stiffness, and microcalcification presence were quantified from ultrasounds at each visit. Higher scores reflected worse placental function for all measures. Generalized linear mixed models were created to estimate the association between pregnancy-averaged exposure biomarker concentrations and repeated outcome measurements for microvasculature and stiffness. Gestational age at the time of calcification detection was modeled using Cox proportional hazards models. MAIN RESULTS AND THE ROLE OF CHANCE Monocarboxyisononyl phthalate and summed di(2-ethylhexyl) phthalate metabolites were associated with impaired microvasculature development, such that an interquartile range increase in concentration was associated with 0.11 standard deviation increase in the microvasculature ratio, indicating poorer vascularization (95% CI: 0.00, 0.22); 0.11 [95% CI: -0.01, 0.22], respectively. Monoethyl phthalate was associated with increased placental stiffness (0.09 [95% CI: -0.01, 0.19]) while summed di-iso-butyl phthalate metabolites and monobenzyl phthalate were associated with increased hazard of calcification detection (hazard ratios: 1.18 [95% CI: 0.98, 1.42]; 1.13 [95% CI: 0.96, 1.34]). LIMITATIONS, REASONS FOR CAUTION Outcomes used in this study are novel and further investigation is needed to provide clinical context and relevance. WIDER IMPLICATIONS OF THE FINDINGS We found evidence of associations between select phthalate biomarkers and various aspects of in vivo placental health, although we did not observe consistency across placental outcomes. These findings could illustrate heterogeneous effects of phthalate exposure on placental function. STUDY FUNDING/COMPETING INTEREST(S) This research was supported in part by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (ZIA ES103344), and NIEHS T32ES007018. The authors declare that they have no competing interests to disclose. The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention. Use of trade names is for identification only and does not imply endorsement by the CDC, the Public Health Service, or the US Department of Health and Human Services. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Emma M Rosen
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Danielle R Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Erin E McNell
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Mollie E Wood
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie M Engel
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Alexander P Keil
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julianne Cook Botelho
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elena Sinkovskaya
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Ann Przybylska
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - George Saade
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alfred Abuhamad
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| |
Collapse
|
4
|
Bloom MS, Clark JM, Pearce JL, Ferguson PL, Newman RB, Roberts JR, Grobman WA, Sciscione AC, Skupski DW, Garcia K, Vena JE, Hunt KJ. Impact of Skin Care Products on Phthalates and Phthalate Replacements in Children: the ECHO-FGS. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:97001. [PMID: 39230332 PMCID: PMC11373421 DOI: 10.1289/ehp13937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
BACKGROUND Phthalates and their replacements have been implicated as developmental toxicants. Young children may be exposed to phthalates/replacements when using skin care products (SCPs). OBJECTIVES Our objective is to assess the associations between use of SCPs and children's urinary phthalate/replacement metabolite concentrations. METHODS Children (4-8 years old) from the Environmental Influences on Child Health Outcomes-Fetal Growth Study (ECHO-FGS) cohort provided spot urine samples from 2017 to 2019, and mothers were queried about children's SCP use in the past 24 h (n = 906 ). Concentrations of 16 urinary phthalate/replacement metabolites were determined by liquid chromatography-tandem mass spectrometry (n = 630 ). We used linear regression to estimate the child's use of different SCPs as individual predictors of urinary phthalate/replacement metabolites, adjusted for urinary specific gravity, age, sex assigned at birth, body mass index, and self-reported race/ethnic identity, as well as maternal education, and season of specimen collection. We created self-organizing maps (SOM) to group children into "exposure profiles" that reflect discovered patterns of use for multiple SCPs. RESULTS Children had lotions applied (43.0%) frequently, but "2-in-1" hair-care products (7.5%), sunscreens (5.9%), and oils (4.3%) infrequently. Use of lotions was associated with 1.17-fold [95% confidence interval (CI): 1.00, 1.34] greater mono-benzyl phthalate and oils with 2.86-fold (95% CI: 1.89, 4.31) greater monoethyl phthalate (MEP), 1.43-fold (95% CI: 1.09, 1.90) greater monobutyl phthalate (MBP), and 1.40-fold (95% CI: 1.22, 1.61) greater low-molecular-weight phthalates (LMW). Use of 2-in-1 haircare products was associated with 0.84-fold (95% CI: 0.72, 0.97) and 0.78-fold (95% CI: 0.62, 0.98) lesser mono(3-carboxypropyl) phthalate (MCPP) and MBP, respectively. Child's race/ethnic identity modified the associations of lotions with LMW, oils with MEP and LMW, sunscreen with MCPP, ointments with MEP, and hair conditioner with MCPP. SOM identified four distinct SCP-use exposure scenarios (i.e., profiles) within our population that predicted 1.09-fold (95% CI: 1.03, 1.15) greater mono-carboxy isononyl phthalate, 1.31-fold (95% CI: 0.98, 1.77) greater mono-2-ethyl-5-hydroxyhexyl terephthalate, 1.13-fold (95% CI: 0.99, 1.29) greater monoethylhexyl phthalate, and 1.04-fold (95% CI: 1.00, 1.09) greater diethylhexyl phthalate. DISCUSSION We found that reported SCP use was associated with urinary phthalate/replacement metabolites in young children. These results may inform policymakers, clinicians, and parents to help limit children's exposure to developmental toxicants. https://doi.org/10.1289/EHP13937.
Collapse
Affiliation(s)
- Michael S Bloom
- Department of Global and Community Health, George Mason University, Fairfax, Virginia, USA
| | - Juliana M Clark
- Department of Global and Community Health, George Mason University, Fairfax, Virginia, USA
| | - John L Pearce
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Pamela L Ferguson
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Roger B Newman
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - James R Roberts
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - William A Grobman
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Anthony C Sciscione
- Department of Obstetrics and Gynecology, Christiana Care Health System, Newark, Delaware, USA
| | - Daniel W Skupski
- Department of Obstetrics and Gynecology, New York-Presbyterian Queens Hospital, Queens, New York, USA
| | - Kelly Garcia
- Department of Global and Community Health, George Mason University, Fairfax, Virginia, USA
| | - John E Vena
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kelly J Hunt
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
5
|
Sprague NL, Uong SP, Kelsall NC, Jacobowitz AL, Quinn JW, Keyes KM, Rundle AG. Using geographic effect measure modification to examine socioeconomic-related surface temperature disparities in New York City. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00714-6. [PMID: 39179752 DOI: 10.1038/s41370-024-00714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Lower socioeconomic (SES) communities are more likely to be situated in urban heat islands and have higher heat exposures than their higher SES counterparts, and this inequality is expected to intensify due to climate change. OBJECTIVES To examine the relationship between surface temperatures and SES in New York City (NYC) by employing a novel analytical approach. Through incorporating modifiable features, this study aims to identify potential locations where mitigation interventions can be implemented to reduce heat disparities associated with SES. METHODS Using the 2013-2017 American Community Survey, U.S Landsat-8 Analysis Ready Data surface temperatures (measured on 8/12/2016), and the NYC Land Cover Dataset at the census tract level (2098 tracts), this study examines the association between two components of tract-level SES (percentage of individuals living below the poverty line and the percentage of individuals without a high school degree) and summer day surface temperature in NYC. First, we examine this association with an unrestricted NYC linear regression, examining the city-wide association between the two SES facets and summer surface temperature, with additional models adjusting for altitude, shoreline, and nature-cover. Then, we assess geographic effect measure modification by employing the same models to three supplemental regression model strategies (borough-restricted and community district-restricted linear regressions, and geographically weighted regression (GWR)) that examined associations within smaller intra-city areas. RESULTS All regression strategies identified areas where lower neighborhood SES composition is associated with higher summer day surface temperatures. The unrestricted NYC regressions revealed widespread disparities, while the borough-restricted and community district-restricted regressions identified specific political boundaries within which these disparities existed. The GWR, addressing spatial autocorrelation, identified significant socioeconomic heat disparities in locations such as northwest Bronx, central Brooklyn, and uptown Manhattan. These findings underscore the need for targeted policies and community interventions, including equitable urban planning and cooling strategies, to mitigate heat exposure in vulnerable neighborhoods. IMPACT STATEMENT This study redefines previous research on urban socioeconomic disparities in heat exposure by investigating both modifiable (nature cover) and non-modifiable (altitude and shoreline) built environment factors affecting local temperatures at the census tract level in New York City. Through a novel analytical approach, the research aims to highlight intervention opportunities to mitigate heat disparities related to socioeconomic status. By examining the association between surface temperatures and socioeconomic status, as well as investigating different geographic and governmental scales, this study offers actionable insights for policymakers and community members to address heat exposure inequalities effectively across different administrative boundaries. The objective is to pinpoint potential sites for reducing socioeconomic heat exposure disparities at various geographic and political levels.
Collapse
Affiliation(s)
- Nadav L Sprague
- Department of Epidemiology, Columbia Mailman School of Public Health, 722 W 168th St., New York, NY, 10032, USA.
| | - Stephen P Uong
- Department of Epidemiology, Columbia Mailman School of Public Health, 722 W 168th St., New York, NY, 10032, USA
| | - Nora C Kelsall
- Department of Epidemiology, Columbia Mailman School of Public Health, 722 W 168th St., New York, NY, 10032, USA
| | - Ahuva L Jacobowitz
- Department of Epidemiology, Columbia Mailman School of Public Health, 722 W 168th St., New York, NY, 10032, USA
| | - James W Quinn
- Department of Epidemiology, Columbia Mailman School of Public Health, 722 W 168th St., New York, NY, 10032, USA
| | - Katherine M Keyes
- Department of Epidemiology, Columbia Mailman School of Public Health, 722 W 168th St., New York, NY, 10032, USA
| | - Andrew G Rundle
- Department of Epidemiology, Columbia Mailman School of Public Health, 722 W 168th St., New York, NY, 10032, USA
| |
Collapse
|
6
|
Bommarito PA, Stevens DR, Welch BM, Meeker JD, Cantonwine DE, McElrath TF, Ferguson KK. Prenatal exposure to environmental phenols and fetal growth across pregnancy in the LIFECODES fetal growth study. ENVIRONMENT INTERNATIONAL 2024; 190:108866. [PMID: 38968832 PMCID: PMC11349462 DOI: 10.1016/j.envint.2024.108866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
INTRODUCTION Environmental phenols are endocrine disrupting chemicals hypothesized to affect early life development. Previous research examining the effects of phenols on fetal growth has focused primarily on associations with measures of size at delivery. Few have included ultrasound measures to examine growth across pregnancy. OBJECTIVE Investigate associations between prenatal exposure to phenols and ultrasound and delivery measures of fetal growth. METHODS Using the LIFECODES Fetal Growth Study (n = 900), a case-cohort including 248 small-for-gestational-age, 240 large-for-gestational age, and 412 appropriate-for-gestational-age births, we estimated prenatal exposure to 12 phenols using three urine samples collected during pregnancy (median 10, 24, and 35 weeks gestation). We abstracted ultrasound and delivery measures of fetal growth from medical records. We estimated associations between pregnancy-average phenol biomarker concentrations and repeated ultrasound measures of fetal growth using linear mixed effects models and associations with birthweight using linear regression models. We also used logistic regression models to estimate associations with having a small- or large-for-gestational birth. RESULTS We observed positive associations between 2,4-dichlorophenol, benzophenone-3, and triclosan (TCS) and multiple ultrasound measures of fetal growth. For example, TCS was associated with a 0.09 (95 % CI: 0.01, 0.18) higher estimated fetal weight z-score longitudinally across pregnancy. This effect size corresponds to a 21 g increase in estimated fetal weight at 30 weeks gestation. Associations with delivery measures of growth were attenuated, but TCS remained positively associated with birthweight z-scores (mean difference: 0.13, 95 % CI: 0.02, 0.25). Conversely, methylparaben was associated with higher odds of a small-for-gestational age birth (odds ratio: 1.45, 95 % CI: 1.06, 1.98). DISCUSSION We observed associations between some biomarkers of phenol exposure and ultrasound measures of fetal growth, though associations at the time of delivery were attenuated. These findings are consistent with hypotheses that phenols have the potential to affect growth during the prenatal period.
Collapse
Affiliation(s)
- Paige A Bommarito
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Danielle R Stevens
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Barrett M Welch
- School of Public Health, University of Nevada, Reno, NV, USA
| | - John D Meeker
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - David E Cantonwine
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas F McElrath
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kelly K Ferguson
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
7
|
Cotter DL, Ahmadi H, Cardenas-Iniguez C, Bottenhorn KL, Gauderman WJ, McConnell R, Berhane K, Schwartz J, Hackman DA, Chen JC, Herting MM. Exposure to multiple ambient air pollutants changes white matter microstructure during early adolescence with sex-specific differences. COMMUNICATIONS MEDICINE 2024; 4:155. [PMID: 39090375 PMCID: PMC11294340 DOI: 10.1038/s43856-024-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Air pollution is ubiquitous, yet questions remain regarding its impact on the developing brain. Large changes occur in white matter microstructure across adolescence, with notable differences by sex. METHODS We investigate sex-stratified effects of annual exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) at ages 9-10 years on longitudinal patterns of white matter microstructure over a 2-year period. Diffusion-weighted imaging was collected on 3T MRI scanners for 8182 participants (1-2 scans per subject; 45% with two scans) from the Adolescent Brain Cognitive Development (ABCD) Study®. Restriction spectrum imaging was performed to quantify intracellular isotropic (RNI) and directional (RND) diffusion. Ensemble-based air pollution concentrations were assigned to each child's primary residential address. Multi-pollutant, sex-stratified linear mixed-effect models assessed associations between pollutants and RNI/RND with age over time, adjusting for sociodemographic factors. RESULTS Here we show higher PM2.5 exposure is associated with higher RND at age 9 in both sexes, with no significant effects of PM2.5 on RNI/RND change over time. Higher NO2 exposure is associated with higher RNI at age 9 in both sexes, as well as attenuating RNI over time in females. Higher O3 exposure is associated with differences in RND and RNI at age 9, as well as changes in RND and RNI over time in both sexes. CONCLUSIONS Criteria air pollutants influence patterns of white matter maturation between 9-13 years old, with some sex-specific differences in the magnitude and anatomical locations of affected tracts. This occurs at concentrations that are below current U.S. standards, suggesting exposure to low-level pollution during adolescence may have long-term consequences.
Collapse
Affiliation(s)
- Devyn L Cotter
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Katherine L Bottenhorn
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Psychology, Florida International University, Miami, FL, USA
| | - W James Gauderman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kiros Berhane
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daniel A Hackman
- USC Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Children's Hospital Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Jolidon V, De Prez V, Bracke P, Cullati S, Burton-Jeangros C. Lack of social support, gender and colorectal cancer screening participation across Europe: How do screening programmes mitigate the effect of social support for men and women? SOCIOLOGY OF HEALTH & ILLNESS 2024; 46:1212-1237. [PMID: 38761366 DOI: 10.1111/1467-9566.13791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/16/2024] [Indexed: 05/20/2024]
Abstract
This study investigates how a lack of social support differentially affects men and women's colorectal cancer (CRC) screening participation, considering different screening strategies implemented across European countries. Although health sociology has stressed gender differences in social support and its effects on health behaviours, this was overlooked by cancer screening research. Using a data set of 65,961 women and 55,602 men in 31 European countries, we analysed the effect of social support variables on CRC screening uptake. We found that living alone and lower perceived social support were associated with lower screening uptake for both men and women. These effects were, however, stronger among men. Population-based screening programmes mitigated these effects, particularly for women, but not for men living alone. In countries with opportunistic screening programmes, social support variables remained associated with screening uptake. We conclude that cancer screening interventions should pay attention to social support and its gender-differentiated effects.
Collapse
Affiliation(s)
- Vladimir Jolidon
- Institute of Sociological Research, University of Geneva, Geneva, Switzerland
- Population Health Laboratory, University of Fribourg, Fribourg, Switzerland
| | - Vincent De Prez
- Department of Sociology, Ghent University, Ghent, Belgium
- Health Services Research, Sciensano, Brussels, Belgium
| | - Piet Bracke
- Department of Sociology, Ghent University, Ghent, Belgium
| | - Stéphane Cullati
- Institute of Sociological Research, University of Geneva, Geneva, Switzerland
- Population Health Laboratory, University of Fribourg, Fribourg, Switzerland
- Department of Readaptation and Geriatrics, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
9
|
Day DB, Melough MM, Flynn JT, Zhu H, Kannan K, Ruzinski J, de Boer IH, Sathyanarayana S. Environmental exposure to melamine and its derivatives and kidney outcomes in children. ENVIRONMENTAL RESEARCH 2024; 252:118789. [PMID: 38555096 PMCID: PMC11156556 DOI: 10.1016/j.envres.2024.118789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Melamine caused acute nephrotoxicity in a past food adulteration incident, but it is unclear whether and how widespread ambient exposure to melamine and related compounds might affect pediatric kidney health. We assessed cross-sectional associations between childhood exposure to melamine and its derivatives and biomarkers of kidney injury and health and explored potential heterogeneity by sex suggested by sex-dependent differences in renal physiology. We measured melamine and its derivatives ammeline, ammelide, and cyanuric acid (CYA) in spot urine samples collected from 192 children from an urban site (Seattle, WA) and 187 children from a rural site (Yakima, WA) aged 4-8 years in the Global Alliance to Prevent Prematurity and Stillbirth (GAPPS) Study. In addition, biomarkers of kidney injury were measured in the same urine samples, including albumin, total protein, KIM-1, NAG, NGAL, and EGF. We utilized linear regressions to examine associations between individual chemical exposures and kidney biomarkers. Interaction terms examined association modification by sex, as well as potential interactions between melamine and CYA. Despite comparable exposures, girls had higher levels of many kidney injury biomarkers compared to boys. A ten-fold higher melamine concentration was associated with a 18% (95% CI: 5.6%, 31%) higher EGF in the full sample, while ten-fold higher melamine was associated with a 76% (14.1%, 173%) higher KIM-1 in boys but not in girls (-10.1% (-40.6%, 36.1%), interaction p = 0.026). Melamine exhibited significant negative interactions with CYA in association with total protein and NAG that appeared to be specific to girls. Our results suggest possible associations between melamine exposure and markers of kidney injury that may be more pronounced in boys. These findings provide novel insights into melamine and related derivative compound health effects at low levels of exposure in children and emphasize the role of sex in mediating the relationship between nephrotoxicant exposure and kidney injury.
Collapse
Affiliation(s)
- Drew B Day
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, 1920 Terry Ave, Seattle, WA, 98101, USA.
| | - Melissa M Melough
- Department of Health Behavior and Nutrition Sciences, University of Delaware, Newark, DE, 19713, USA.
| | - Joseph T Flynn
- Division of Nephrology, Seattle Children's Hospital, 4800 Sand Point NE, Seattle, WA, 98105, USA; Department of Pediatrics, University of Washington, 1959 Northeast Pacific Street, Seattle, WA, 98195, USA.
| | - Hongkai Zhu
- Department of Environmental Medicine, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| | | | - John Ruzinski
- Kidney Research Institute, Department of Nephrology, University of Washington, 908 Jefferson St, Seattle, WA, 98104, USA.
| | - Ian H de Boer
- Kidney Research Institute, Department of Nephrology, University of Washington, 908 Jefferson St, Seattle, WA, 98104, USA.
| | - Sheela Sathyanarayana
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, 1920 Terry Ave, Seattle, WA, 98101, USA; Department of Pediatrics, University of Washington, 1959 Northeast Pacific Street, Seattle, WA, 98195, USA.
| |
Collapse
|
10
|
Cotter DL, Morrel J, Sukumaran K, Cardenas-Iniguez C, Schwartz J, Herting MM. Prenatal and childhood air pollution exposure, cellular immune biomarkers, and brain connectivity in early adolescents. Brain Behav Immun Health 2024; 38:100799. [PMID: 39021436 PMCID: PMC11252082 DOI: 10.1016/j.bbih.2024.100799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Ambient air pollution is a neurotoxicant with hypothesized immune-related mechanisms. Adolescent brain structural and functional connectivity may be especially vulnerable to ambient pollution due to the refinement of large-scale brain networks during this period, which vary by sex and have important implications for cognitive, behavioral, and emotional functioning. In the current study we explored associations between air pollutants, immune markers, and structural and functional connectivity in early adolescence by leveraging cross-sectional sex-stratified data from the Adolescent Brain Cognitive Development℠ Study®. Methods Pollutant concentrations of fine particulate matter, nitrogen dioxide, and ozone were assigned to each child's primary residential address during the prenatal period and childhood (9-10 years-old) using an ensemble-based modeling approach. Data collected at 11-13 years-old included resting-state functional connectivity of the default mode, frontoparietal, and salience networks and limbic regions of interest, intracellular directional and isotropic diffusion of available white matter tracts, and markers of cellular immune activation. Using partial least squares correlation, a multivariate data-driven method that identifies important variables within latent dimensions, we investigated associations between 1) pollutants and structural and functional connectivity, 2) pollutants and immune markers, and 3) immune markers and structural and functional connectivity, in each sex separately. Results Air pollution exposure was related to white matter intracellular directional and isotropic diffusion at ages 11-13 years, but the direction of associations varied by sex. There were no associations between pollutants and resting-state functional connectivity at ages 11-13 years. Childhood exposure to nitrogen dioxide was negatively correlated with white blood cell count in males. Immune biomarkers were positively correlated with white matter intracellular directional diffusion in females and both white matter intracellular directional and isotropic diffusion in males. Lastly, there was a reliable negative correlation between lymphocyte-to-monocyte ratio and default mode network resting-state functional connectivity in females, as well as a compromised immune marker profile associated with lower resting-state functional connectivity between the salience network and the left hippocampus in males. In post-hoc exploratory analyses, we found that the PLSC-identified white matter tracts and resting-state networks related to processing speed and cognitive control performance from the NIH Toolbox. Conclusions We identified novel links between childhood nitrogen dioxide and cellular immune activation in males, and brain network connectivity and immune markers in both sexes. Future research should explore the potentially mediating role of immune activity in how pollutants affect neurological outcomes as well as the potential consequences of immune-related patterns of brain connectivity in service of improved brain health for all.
Collapse
Affiliation(s)
- Devyn L. Cotter
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jessica Morrel
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kirthana Sukumaran
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
11
|
Cecil KM, Xu Y, Chen A, Khoury J, Altaye M, Braun JM, Sjodin A, Lanphear BP, Newman N, Strawn JR, Vuong AM, Yolton K. Gestational PBDE concentrations, persistent externalizing, and emerging internalizing behaviors in adolescents: The HOME study. ENVIRONMENTAL RESEARCH 2024; 252:118981. [PMID: 38663667 PMCID: PMC11152989 DOI: 10.1016/j.envres.2024.118981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) are ubiquitous environmental chemicals used as flame retardants in commercial and consumer products. Gestational PBDE concentrations are associated with adverse behaviors in children; however, the persistence of these associations into adolescence remains understudied. OBJECTIVE We estimated the association of gestational PBDE serum concentrations with early adolescent self- and caregiver-reported behaviors at age 12 years and determined the consistency with previously observed associations in childhood with caregiver-reported behaviors in a prospective pregnancy and birth cohort. METHODS We measured maternal serum concentrations of five individual PBDE congeners and created a summary exposure variable (∑5BDE: 28, -47, -99, -100 and -153) during pregnancy. At age 12 years, we assessed behaviors for 237 adolescents using self- and caregiver-reports with the Behavioral Assessment System for Children-3 (BASC3). We used multivariable linear regression models to estimate covariate-adjusted associations of lipid standardized, log10-transformed gestational PBDE concentrations with BASC3 scores. We obtained estimates and 95% confidence intervals through a bootstrapping approach. We evaluated potential effect measure modification (EMM) of adolescent sex by examining sex-stratified regression models and estimating the EMM p-values. RESULTS Gestational PBDE concentrations were positively associated with adolescent-reported BASC3 composite indices for inattention & hyperactivity (BDE-28, -47, -99, -100, ∑5BDE), internalizing problems (BDE-28, -47, -99), functional impairment (BDE-28, ∑5BDE), and emotional symptoms (BDE-28). Gestational PBDE concentrations were positively associated with caregiver-reported BASC3 composite indices for externalizing problems (BDE-28, -47, -99, -100, -153, ∑5BDE) and behavioral symptoms (BDE-99). For caregiver reported behaviors, we observed stronger associations with gestational BDE concentrations among males, especially for executive functioning (BDE-28, -47, -99, -100, ∑5BDE). DISCUSSION Gestational PBDE serum concentrations were associated with self-reported internalizing and externalizing behavior problems in early adolescence. Caregiver-reported externalizing behaviors recognized during childhood remain associated with gestational PBDE concentrations and persist into early adolescence. Internalizing behaviors were less recognized by caregivers.
Collapse
Affiliation(s)
- Kim M Cecil
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Yingying Xu
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jane Khoury
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mekibib Altaye
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Andreas Sjodin
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bruce P Lanphear
- Department of Health Sciences, Simon Fraser University, Burnaby BC, Canada
| | - Nicholas Newman
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey R Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ann M Vuong
- Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada, Las Vegas, NV, USA
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
12
|
Harrall KK, Sauder KA, Glueck DH, Shenkman EA, Muller KE. Using Power Analysis to Choose the Unit of Randomization, Outcome, and Approach for Subgroup Analysis for a Multilevel Randomized Controlled Clinical Trial to Reduce Disparities in Cardiovascular Health. PREVENTION SCIENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR PREVENTION RESEARCH 2024; 25:433-445. [PMID: 38767783 PMCID: PMC11239604 DOI: 10.1007/s11121-024-01673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 05/22/2024]
Abstract
We give examples of three features in the design of randomized controlled clinical trials which can increase power and thus decrease sample size and costs. We consider an example multilevel trial with several levels of clustering. For a fixed number of independent sampling units, we show that power can vary widely with the choice of the level of randomization. We demonstrate that power and interpretability can improve by testing a multivariate outcome rather than an unweighted composite outcome. Finally, we show that using a pooled analytic approach, which analyzes data for all subgroups in a single model, improves power for testing the intervention effect compared to a stratified analysis, which analyzes data for each subgroup in a separate model. The power results are computed for a proposed prevention research study. The trial plans to randomize adults to either telehealth (intervention) or in-person treatment (control) to reduce cardiovascular risk factors. The trial outcomes will be measures of the Essential Eight, a set of scores for cardiovascular health developed by the American Heart Association which can be combined into a single composite score. The proposed trial is a multilevel study, with outcomes measured on participants, participants treated by the same provider, providers nested within clinics, and clinics nested within hospitals. Investigators suspect that the intervention effect will be greater in rural participants, who live farther from clinics than urban participants. The results use published, exact analytic methods for power calculations with continuous outcomes. We provide example code for power analyses using validated software.
Collapse
Affiliation(s)
- Kylie K Harrall
- Department of Health Outcomes and Biomedical Informatics, University of Florida College of Medicine, 2004 Mowry Road, Gainesville, 32606, FL, USA.
| | - Katherine A Sauder
- Department of Implementation Science, Wake Forest University School of Medicine, 475 Vine Street, Winston-Salem, 27101, NC, USA
| | - Deborah H Glueck
- Department of Pediatrics, University of Colorado School of Medicine, 13123 E. 16th Ave., Aurora, 80045, CO, USA
| | - Elizabeth A Shenkman
- Department of Health Outcomes and Biomedical Informatics, University of Florida College of Medicine, 2004 Mowry Road, Gainesville, 32606, FL, USA
| | - Keith E Muller
- Department of Health Outcomes and Biomedical Informatics, University of Florida College of Medicine, 2004 Mowry Road, Gainesville, 32606, FL, USA
| |
Collapse
|
13
|
Meeker JD, McArthur KL, Adibi JJ, Alshawabkeh AN, Barrett ES, Brubaker SG, Cordero JF, Dabelea D, Dunlop AL, Herbstman JB, Kahn LG, Karr CJ, Mehta-Lee S, O'Connor TG, Sathyanarayana S, Trasande L, Kuiper JR. Urinary concentrations of phthalate metabolites in relation to preeclampsia and other hypertensive disorders of pregnancy in the environmental influences on child health outcomes (ECHO) program. ENVIRONMENT INTERNATIONAL 2024; 187:108678. [PMID: 38696977 DOI: 10.1016/j.envint.2024.108678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/01/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Phthalate exposure may contribute to hypertensive disorders of pregnancy (HDP), including preeclampsia/eclampsia (PE/E), but epidemiologic studies are lacking. OBJECTIVES To evaluate associations of pregnancy phthalate exposure with development of PE/E and HDP. METHODS Using data from 3,430 participants in eight Environmental influences on Child Health Outcomes (ECHO) Program cohorts (enrolled from 1999 to 2019), we quantified concentrations of 13 phthalate metabolites (8 measured in all cohorts, 13 in a subset of four cohorts) in urine samples collected at least once during pregnancy. We operationalized outcomes as PE/E and composite HDP (PE/E and/or gestational hypertension). After correcting phthalate metabolite concentrations for urinary dilution, we evaluated covariate-adjusted associations of individual phthalates with odds of PE/E or composite HDP via generalized estimating equations, and the phthalate mixture via quantile-based g-computation. We also explored effect measure modification by fetal sex using stratified models. Effect estimates are reported as odds ratios (OR) with 95% confidence intervals (95% CIs). RESULTS In adjusted analyses, a doubling of mono-benzyl phthalate (MBzP) and of mono (3-carboxypropyl) phthalate (MCPP) concentrations was associated with higher odds of PE/E as well as composite HDP, with somewhat larger associations for PE/E. For example, a doubling of MCPP was associated with 1.12 times the odds of PE/E (95%CI 1.00, 1.24) and 1.02 times the odds of composite HDP (95%CI 1.00, 1.05). A quartile increase in the phthalate mixture was associated with 1.27 times the odds of PE/E (95%CI 0.94, 1.70). A doubling of mono-carboxy isononyl phthalate (MCiNP) and of mono-carboxy isooctyl phthalate (MCiOP) concentrations were associated with 1.08 (95%CI 1.00, 1.17) and 1.11 (95%CI 1.03, 1.19) times the odds of PE/E. Effect estimates for PE/E were generally larger among pregnancies carrying female fetuses. DISCUSSION In this study, multiple phthalates were associated with higher odds of PE/E and HDP. Estimates were precise and some were low in magnitude. Interventions to reduce phthalate exposures during pregnancy may help mitigate risk of these conditions.
Collapse
Affiliation(s)
- John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | - Kristen L McArthur
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Jennifer J Adibi
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers University School of Public Health, Environmental and Occupational Health Institute, Piscataway, NJ, USA.
| | - Sara G Brubaker
- Division of Maternal-Fetal Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Jose F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, GA, USA.
| | - Dana Dabelea
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA.
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA.
| | - Linda G Kahn
- Division of Environmental Pediatrics, New York University Grossman School of Medicine, New York, NY, USA.
| | - Catherine J Karr
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA, USA.
| | - Shilpi Mehta-Lee
- Division of Maternal-Fetal Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Thomas G O'Connor
- Departments of Psychiatry, Neuroscience and Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA.
| | - Sheela Sathyanarayana
- Department of Pediatrics, Department of Environmental and Occupational Health Sciences, Department of Epidemiology University of Washington and Seattle Children's Research Institute, Seattle, WA, USA.
| | | | - Jordan R Kuiper
- Department of Environmental and Occupational Health, The George Washington University, Washington, D.C., USA.
| |
Collapse
|
14
|
Day DB, LeWinn KZ, Karr CJ, Loftus CT, Carroll KN, Bush NR, Zhao Q, Barrett ES, Swan SH, Nguyen RHN, Trasande L, Moore PE, Adams Ako A, Ji N, Liu C, Szpiro AA, Sathyanarayana S. Subpopulations of children with multiple chronic health outcomes in relation to chemical exposures in the ECHO-PATHWAYS consortium. ENVIRONMENT INTERNATIONAL 2024; 185:108486. [PMID: 38367551 PMCID: PMC10961192 DOI: 10.1016/j.envint.2024.108486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
A multimorbidity-focused approach may reflect common etiologic mechanisms and lead to better targeting of etiologic agents for broadly impactful public health interventions. Our aim was to identify clusters of chronic obesity-related, neurodevelopmental, and respiratory outcomes in children, and to examine associations between cluster membership and widely prevalent chemical exposures to demonstrate our epidemiologic approach. Early to middle childhood outcome data collected 2011-2022 for 1092 children were harmonized across the ECHO-PATHWAYS consortium of 3 prospective pregnancy cohorts in six U.S. cities. 15 outcomes included age 4-9 BMI, cognitive and behavioral assessment scores, speech problems, and learning disabilities, asthma, wheeze, and rhinitis. To form generalizable clusters across study sites, we performed k-means clustering on scaled residuals of each variable regressed on study site. Outcomes and demographic variables were summarized between resulting clusters. Logistic weighted quantile sum regressions with permutation test p-values associated odds of cluster membership with a mixture of 15 prenatal urinary phthalate metabolites in full-sample and sex-stratified models. Three clusters emerged, including a healthier Cluster 1 (n = 734) with low morbidity across outcomes; Cluster 2 (n = 192) with low IQ and higher levels of all outcomes, especially 0.4-1.8-standard deviation higher mean neurobehavioral outcomes; and Cluster 3 (n = 179) with the highest asthma (92 %), wheeze (53 %), and rhinitis (57 %) frequencies. We observed a significant positive, male-specific stratified association (odds ratio = 1.6; p = 0.01) between a phthalate mixture with high weights for MEP and MHPP and odds of membership in Cluster 3 versus Cluster 1. These results identified subpopulations of children with co-occurring elevated levels of BMI, neurodevelopmental, and respiratory outcomes that may reflect shared etiologic pathways. The observed association between phthalates and respiratory outcome cluster membership could inform policy efforts towards children with respiratory disease. Similar cluster-based epidemiology may identify environmental factors that impact multi-outcome prevalence and efficiently direct public policy efforts.
Collapse
Affiliation(s)
- Drew B Day
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, 1920 Terry Avenue, Seattle, Washington 98101, USA.
| | - Kaja Z LeWinn
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, 675 18th Street, San Francisco, CA 94143, USA
| | - Catherine J Karr
- Department of Environmental and Occupational Health, University of Washington, 4245 Roosevelt Way NE, Seattle, WA 98105, USA; Department of Epidemiology, University of Washington, 4245 Roosevelt Way NE, Seattle, WA 98105, USA; Department of Pediatrics, University of Washington, 4245 Roosevelt Way NE, Seattle, WA 98105, USA
| | - Christine T Loftus
- Department of Environmental and Occupational Health, University of Washington, 4245 Roosevelt Way NE, Seattle, WA 98105, USA
| | - Kecia N Carroll
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, 675 18th Street, San Francisco, CA 94143, USA; Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Qi Zhao
- Department of Preventive Medicine, Division of Preventive Medicine, University of Tennessee Health Science Center, 66 North Pauline Street, Memphis, TN 38163, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, 683 Hoes Lane West, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Shanna H Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Ruby H N Nguyen
- Department of Epidemiology and Community Health, University of Minnesota, 420 Delaware Street Southeast, Minneapolis, Minnesota 55455, USA
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Paul E Moore
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, Nashville, TN 37232, USA
| | - Ako Adams Ako
- Department of Pediatrics, Children's Hospital at Montefiore, 3415 Bainbridge Avenue, Bronx, NY 10467, USA
| | - Nan Ji
- Division of Environmental Health, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto St, MC 9239, Los Angeles, CA, 90039, USA
| | - Chang Liu
- Department of Psychology, Washington State University, Johnson Tower, Pullman, WA 99164, USA
| | - Adam A Szpiro
- Department of Biostatistics, University of Washington, 3980 15th Avenue NE, Seattle, WA 98195, USA
| | - Sheela Sathyanarayana
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, 1920 Terry Avenue, Seattle, Washington 98101, USA; Department of Environmental and Occupational Health, University of Washington, 4245 Roosevelt Way NE, Seattle, WA 98105, USA; Department of Epidemiology, University of Washington, 4245 Roosevelt Way NE, Seattle, WA 98105, USA; Department of Pediatrics, University of Washington, 4245 Roosevelt Way NE, Seattle, WA 98105, USA
| |
Collapse
|
15
|
Duan X, Chen Z, Xia C, Zhong R, Liu L, Long L. Increased Levels of Urine Volatile Organic Compounds Are Associated With Diabetes Risk and Impaired Glucose Homeostasis. J Clin Endocrinol Metab 2024; 109:e531-e542. [PMID: 37793167 DOI: 10.1210/clinem/dgad584] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023]
Abstract
CONTEXT Volatile organic compounds (VOCs) are pervasive environmental pollutants that have been linked to various adverse health effects. However, the effect of ambient VOCs, whether individually or in mixtures, on diabetes remains uncertain and requires further investigation. OBJECTIVE This study investigates the effects of ambient VOCs exposure, whether single or mixed, on diabetes mellitus and glucose homeostasis in the general population. METHODS Urinary concentrations of VOC metabolites were obtained from the National Health and Nutrition Examination Survey. Survey-weighted logistic regression and generalized linear regression were used to explore the associations between individual VOC exposure and diabetes risk and glucose homeostasis indicators, respectively. Weighted quantile sum (WQS) regression models were applied to assess the combined effects of VOC mixtures. RESULTS Out of 8468 participants, 1504 had diabetes mellitus. Eight VOC metabolites showed positive associations with diabetes mellitus (OR, 1.15-1.43; all P < .05), insulin resistance (IR) (OR, 1.02-1.06; P < .05), and other glucose homeostasis indicators (β, 0.04-2.32; all P < .05). Mixed VOC models revealed positive correlations between the WQS indices and diabetes risk (OR = 1.52; 95% CI, 1.29-1.81), IR (OR = 1.36; 95% CI, 1.14-1.62), and other glucose homeostasis indicators (β, 0.17-2.22; all P < .05). CONCLUSION Urinary metabolites of ambient VOCs are significantly associated with an increased diabetes risk and impaired glucose homeostasis. Thus, primary prevention policies aimed at reducing ambient VOCs could attenuate diabetes burden.
Collapse
Affiliation(s)
- Xiaoxia Duan
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenhua Chen
- Department of Microbiology Laboratory, Chengdu Municipal Center for Disease Control and Prevention, Chengdu 610031, China
| | - Congying Xia
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rong Zhong
- Department of Epidemiology and Health Statistics, School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Lu Long
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Wan W, Peters S, Portengen L, Olsson A, Schüz J, Ahrens W, Schejbalova M, Boffetta P, Behrens T, Brüning T, Kendzia B, Consonni D, Demers PA, Fabiánová E, Fernández-Tardón G, Field JK, Forastiere F, Foretova L, Guénel P, Gustavsson P, Jöckel KH, Karrasch S, Landi MT, Lissowska J, Barul C, Mates D, McLaughlin JR, Merletti F, Migliore E, Richiardi L, Pándics T, Pohlabeln H, Siemiatycki J, Świątkowska B, Wichmann HE, Zaridze D, Ge C, Straif K, Kromhout H, Vermeulen R. Occupational Benzene Exposure and Lung Cancer Risk: A Pooled Analysis of 14 Case-Control Studies. Am J Respir Crit Care Med 2024; 209:185-196. [PMID: 37812782 PMCID: PMC10806413 DOI: 10.1164/rccm.202306-0942oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023] Open
Abstract
Rationale: Benzene has been classified as carcinogenic to humans, but there is limited evidence linking benzene exposure to lung cancer. Objectives: We aimed to examine the relationship between occupational benzene exposure and lung cancer. Methods: Subjects from 14 case-control studies across Europe and Canada were pooled. We used a quantitative job-exposure matrix to estimate benzene exposure. Logistic regression models assessed lung cancer risk across different exposure indices. We adjusted for smoking and five main occupational lung carcinogens and stratified analyses by smoking status and lung cancer subtypes. Measurements and Main Results: Analyses included 28,048 subjects (12,329 cases, 15,719 control subjects). Lung cancer odds ratios ranged from 1.12 (95% confidence interval, 1.03-1.22) to 1.32 (95% confidence interval, 1.18-1.48) (Ptrend = 0.002) for groups with the lowest and highest cumulative occupational exposures, respectively, compared with unexposed subjects. We observed an increasing trend of lung cancer with longer duration of exposure (Ptrend < 0.001) and a decreasing trend with longer time since last exposure (Ptrend = 0.02). These effects were seen for all lung cancer subtypes, regardless of smoking status, and were not influenced by specific occupational groups, exposures, or studies. Conclusions: We found consistent and robust associations between different dimensions of occupational benzene exposure and lung cancer after adjusting for smoking and main occupational lung carcinogens. These associations were observed across different subgroups, including nonsmokers. Our findings support the hypothesis that occupational benzene exposure increases the risk of developing lung cancer. Consequently, there is a need to revisit published epidemiological and molecular data on the pulmonary carcinogenicity of benzene.
Collapse
Affiliation(s)
- Wenxin Wan
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Susan Peters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Lützen Portengen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Ann Olsson
- International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Joachim Schüz
- International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Wolfgang Ahrens
- Leibniz Institute for Prevention Research and Epidemiology, Bremen, Germany
- Faculty of Mathematics and Computer Science, Institute of Statistics, University of Bremen, Bremen, Germany
| | - Miriam Schejbalova
- Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Paolo Boffetta
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Thomas Behrens
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University, Bochum, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University, Bochum, Germany
| | - Benjamin Kendzia
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University, Bochum, Germany
| | - Dario Consonni
- Epidemiology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paul A. Demers
- Occupational Cancer Research Centre, Ontario Health, Toronto, Ontario, Canada
| | - Eleonóra Fabiánová
- Regional Authority of Public Health, Banská Bystrica, Slovakia
- Faculty of Health, Catholic University, Ružomberok, Slovakia
| | - Guillermo Fernández-Tardón
- Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
- Health Research Institute of Asturias, University Institute of Oncology of Asturias – Cajastur Social Program, University of Oviedo, Oviedo, Spain
| | - John K. Field
- Roy Castle Lung Cancer Research Programme, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | | | | | - Pascal Guénel
- Center for Research in Epidemiology and Population Health, Team Exposome and Heredity, U1018 Institut national de la santé et de la recherche médicale, University of Paris-Saclay, Villejuif, France
| | - Per Gustavsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, Essen, Germany
| | - Stefan Karrasch
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, and
- Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Jolanta Lissowska
- Epidemiology Unit, Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Christine Barul
- Université Rennes, Institut national de la santé et de la recherche médicale, École des hautes études en santé publique, Institut de recherche en santé, environnement et travail, UMR_S 1085, Pointe-à-Pitre, France
| | - Dana Mates
- National Institute of Public Health, Bucharest, Romania
| | - John R. McLaughlin
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Franco Merletti
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Enrica Migliore
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Lorenzo Richiardi
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Hermann Pohlabeln
- Leibniz Institute for Prevention Research and Epidemiology, Bremen, Germany
| | - Jack Siemiatycki
- Department of Social and Preventive Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Beata Świątkowska
- Department of Environmental Epidemiology, The Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Heinz-Erich Wichmann
- Institut für Medizinische Informatik Biometrie Epidemiologie, Ludwig-Maximilians-Universität München, Munich, Germany
- Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research, Munich, Germany
| | - David Zaridze
- Department of Cancer Epidemiology and Prevention, N.N. Blokhin National Research Center of Oncology, Moscow, Russia
| | - Calvin Ge
- Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek, Utrecht, the Netherlands
| | - Kurt Straif
- ISGlobal, Barcelona, Spain; and
- Boston College, Boston, Massachusetts
| | - Hans Kromhout
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
17
|
Silva-Gallardo CP, Maggs JL. Pubertal development at age 14 is associated with male adolescents' combustible cigarette smoking and dual use, but not with e-cigarette use - Findings from the UK Millennium Cohort Study. Drug Alcohol Depend 2023; 253:111031. [PMID: 37995392 DOI: 10.1016/j.drugalcdep.2023.111031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/30/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Adolescent nicotine exposure via electronic cigarettes (e-cigarettes) is a global health concern. Pubertal development earlier than peers increases the risk of tobacco smoking compared to peers experiencing on-time or late maturation, yet relationships of pubertal timing with e-cigarettes are unknown. We examine whether early pubertal timing is associated with risk for e-cigarette use, tobacco cigarettes, or both by age 14. METHODS The Millennium Cohort Study follows a representative cohort of 18,552 9-month-old children born 2000-2002 in the United Kingdom. Our sample includes 11,445 adolescents (5697 boys, 5748 girls) classified at age 14 as early, on-time, or late in pubertal development timing (PDT) relative to same-age, same-sex peers using the Pubertal Development Scale. Outcomes were use of e-cigarettes, tobacco cigarettes, or both by age 14. We included childhood liability confounders and demographics measured from age 7-11. RESULTS For girls, no PDT differences in age 14 e-cigarette or tobacco cigarette use were observed. All relative to on-time PDT boys, early maturing boys' odds of tobacco cigarette use were 59% higher (OR=1.59, 95% confidence interval (CI)=1.08,2.35), and odds of dual-use were 49% higher (OR=1.49, CI=1.11,1.99), both compared to odds of never use. Among late PDT boys, dual-use odds were lower than never use by 35% (OR=0.65, CI=0.47,0.91) and lower than e-cigarette use only by 36% (OR=0.64, CI=0.42,0.97). CONCLUSIONS At age 14, PDT was not associated with e-cigarette use for either sex, yet it was linked with tobacco use and dual use among boys.
Collapse
Affiliation(s)
- Constanza P Silva-Gallardo
- Prevention Research Center, Pennsylvania State University, University Park, PA, USA; Society and Health Research Center and Facultad de Ciencias Sociales y Artes, Universidad Mayor, Santiago, Chile; Millennium Nucleus for the Evaluation and Analysis of Drug Policies (nDP), Chile.
| | - Jennifer L Maggs
- Human Development and Family Studies, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
18
|
Bulka CM, Everson TM, Burt AA, Marsit CJ, Karagas MR, Boyle KE, Niemiec S, Kechris K, Davidson EJ, Yang IV, Feinberg JI, Volk HE, Ladd-Acosta C, Breton CV, O’Shea TM, Fry RC. Sex-based differences in placental DNA methylation profiles related to gestational age: an NIH ECHO meta-analysis. Epigenetics 2023; 18:2179726. [PMID: 36840948 PMCID: PMC9980626 DOI: 10.1080/15592294.2023.2179726] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 02/26/2023] Open
Abstract
The placenta undergoes many changes throughout gestation to support the evolving needs of the foetus. There is also a growing appreciation that male and female foetuses develop differently in utero, with unique epigenetic changes in placental tissue. Here, we report meta-analysed sex-specific associations between gestational age and placental DNA methylation from four cohorts in the National Institutes of Health (NIH) Environmental influences on Child Health Outcomes (ECHO) Programme (355 females/419 males, gestational ages 23-42 weeks). We identified 407 cytosine-guanine dinucleotides (CpGs) in females and 794 in males where placental methylation levels were associated with gestational age. After cell-type adjustment, 55 CpGs in females and 826 in males were significant. These were enriched for biological processes critical to the immune system in females and transmembrane transport in males. Our findings are distinct between the sexes: in females, associations with gestational age are largely explained by differences in placental cellular composition, whereas in males, gestational age is directly associated with numerous alterations in methylation levels.
Collapse
Affiliation(s)
- Catherine M. Bulka
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- College of Public Health, University of South Florida, Tampa, FL, USA
| | - Todd M. Everson
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Amber A. Burt
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Carmen J. Marsit
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Kristen E. Boyle
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Colorado School of Public Health, The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO, USA
| | - Sierra Niemiec
- Colorado School of Public Health, The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO, USA
| | - Katerina Kechris
- Colorado School of Public Health, The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO, USA
- Department of Biostatistics & Informatics, Colorado School of Public Health, Aurora, CO, USA
| | | | - Ivana V. Yang
- Colorado School of Public Health, The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO, USA
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jason I. Feinberg
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, ML, USA
| | - Heather E. Volk
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, ML, USA
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, ML, USA
| | - Carrie V. Breton
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - T. Michael O’Shea
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
19
|
Welch BM, Keil AP, Buckley JP, Engel SM, James-Todd T, Zota AR, Alshawabkeh AN, Barrett ES, Bloom MS, Bush NR, Cordero JF, Dabelea D, Eskenazi B, Lanphear BP, Padmanabhan V, Sathyanarayana S, Swan SH, Aalborg J, Baird DD, Binder AM, Bradman A, Braun JM, Calafat AM, Cantonwine DE, Christenbury KE, Factor-Litvak P, Harley KG, Hauser R, Herbstman JB, Hertz-Picciotto I, Holland N, Jukic AMZ, McElrath TF, Meeker JD, Messerlian C, Michels KB, Newman RB, Nguyen RH, O’Brien KM, Rauh VA, Redmon B, Rich DQ, Rosen EM, Schmidt RJ, Sparks AE, Starling AP, Wang C, Watkins DJ, Weinberg CR, Weinberger B, Wenzel AG, Wilcox AJ, Yolton K, Zhang Y, Ferguson KK. Racial and Ethnic Disparities in Phthalate Exposure and Preterm Birth: A Pooled Study of Sixteen U.S. Cohorts. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127015. [PMID: 38117586 PMCID: PMC10732302 DOI: 10.1289/ehp12831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/22/2023]
Abstract
BACKGROUND Phthalate exposures are ubiquitous during pregnancy and may contribute to racial and ethnic disparities in preterm birth. OBJECTIVES We investigated race and ethnicity in the relationship between biomarkers of phthalate exposure and preterm birth by examining: a) how hypothetical reductions in racial and ethnic disparities in phthalate metabolites might reduce the probability of preterm birth; and b) exposure-response models stratified by race and ethnicity. METHODS We pooled individual-level data on 6,045 pregnancies from 16 U.S. cohorts. We investigated covariate-adjusted differences in nine urinary phthalate metabolite concentrations by race and ethnicity [non-Hispanic White (White, 43%), non-Hispanic Black (Black, 13%), Hispanic/Latina (38%), and Asian/Pacific Islander (3%)]. Using g-computation, we estimated changes in the probability of preterm birth under hypothetical interventions to eliminate disparities in levels of urinary phthalate metabolites by proportionally lowering average concentrations in Black and Hispanic/Latina participants to be approximately equal to the averages in White participants. We also used race and ethnicity-stratified logistic regression to characterize associations between phthalate metabolites and preterm birth. RESULTS In comparison with concentrations among White participants, adjusted mean phthalate metabolite concentrations were consistently higher among Black and Hispanic/Latina participants by 23%-148% and 4%-94%, respectively. Asian/Pacific Islander participants had metabolite levels that were similar to those of White participants. Hypothetical interventions to reduce disparities in metabolite mixtures were associated with lower probabilities of preterm birth for Black [13% relative reduction; 95% confidence interval (CI): - 34 % , 8.6%] and Hispanic/Latina (9% relative reduction; 95% CI: - 19 % , 0.8%) participants. Odds ratios for preterm birth in association with phthalate metabolites demonstrated heterogeneity by race and ethnicity for two individual metabolites (mono-n-butyl and monoisobutyl phthalate), with positive associations that were larger in magnitude observed among Black or Hispanic/Latina participants. CONCLUSIONS Phthalate metabolite concentrations differed substantially by race and ethnicity. Our results show hypothetical interventions to reduce population-level racial and ethnic disparities in biomarkers of phthalate exposure could potentially reduce the probability of preterm birth. https://doi.org/10.1289/EHP12831.
Collapse
Affiliation(s)
- Barrett M. Welch
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
- University of Nevada, Reno, Reno, Nevada, USA
| | | | - Jessie P. Buckley
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Stephanie M. Engel
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tamarra James-Todd
- Harvard TH Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Ami R. Zota
- Columbia University Mailman School of Public Health, Columbia University, New York, New York, USA
| | | | - Emily S. Barrett
- Rutgers School of Public Health, Rutgers University, Piscataway, New Jersey, USA
| | | | - Nicole R. Bush
- University of California, San Francisco, San Francisco, California, USA
| | | | - Dana Dabelea
- University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), University of California, Berkeley, Berkeley, California, USA
| | | | | | - Sheela Sathyanarayana
- Seattle Children’s Research Institute, University of Washington, Seattle, Washington, USA
| | - Shanna H. Swan
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jenny Aalborg
- University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Donna D. Baird
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | - Asa Bradman
- University of California, Merced, Merced, California, USA
| | | | - Antonia M. Calafat
- National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Kate E. Christenbury
- Social & Scientific Systems, Inc., a DLH Holdings Company, Durham, North Carolina, USA
| | - Pam Factor-Litvak
- Columbia University Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Kim G. Harley
- Center for Environmental Research and Community Health (CERCH), University of California, Berkeley, Berkeley, California, USA
| | - Russ Hauser
- Harvard TH Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Julie B. Herbstman
- Columbia University Mailman School of Public Health, Columbia University, New York, New York, USA
| | | | - Nina Holland
- Center for Environmental Research and Community Health (CERCH), University of California, Berkeley, Berkeley, California, USA
| | - Anne Marie Z. Jukic
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | - John D. Meeker
- School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Carmen Messerlian
- Harvard TH Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Karin B. Michels
- University of California, Los Angeles, Los Angeles, California, USA
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Roger B. Newman
- Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ruby H.N. Nguyen
- University of Minnesota, School of Public Health, Minneapolis, Minnesota, USA
| | - Katie M. O’Brien
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Virginia A. Rauh
- Columbia University Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Bruce Redmon
- University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - David Q. Rich
- University of Rochester Medical Center, Rochester, New York, USA
| | - Emma M. Rosen
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | - Anne P. Starling
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christina Wang
- The Lundquist Institute at Harbor, UCLA Medical Center, West Carson, California, USA
| | - Deborah J. Watkins
- School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Clarice R. Weinberg
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Barry Weinberger
- Cohen Children’s Medical Center of New York, Northwell Health, Queens, New York, USA
| | - Abby G. Wenzel
- Medical University of South Carolina, Charleston, South Carolina, USA
| | - Allen J. Wilcox
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Kimberly Yolton
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yu Zhang
- Harvard TH Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Kelly K. Ferguson
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
20
|
Oh J, Kim E, Huh I. Associations between weekend catch-up sleep and health-related quality of life with focusing on gender differences. Sci Rep 2023; 13:20280. [PMID: 37985799 PMCID: PMC10662263 DOI: 10.1038/s41598-023-47244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023] Open
Abstract
This study investigated associations between weekend catch-up sleep (WCUS) and health-related quality of life (HRQoL) in 15,837 participants from the 7th (2016-2018) Korea National Health and Nutrition Examination Survey. We categorized WCUS durations into four groups: none (≤ 0 h [h]), short (> 0 h, ≤ 1 h), medium (> 1 h, ≤ 2 h), and long (> 2 h), and performed complex samples logistic regression and likelihood ratio χ2 test. The study found significant associations in women for the European Quality of Life-5 Dimensions (EQ-5D) index and three EQ-5D subdomains (self-care, usual activities, and anxiety/depression) with the WCUS durations, but no significant association in men. Compared to the non-WCUS, the short or medium WCUS was positively associated with the EQ-5D index and EQ-5D subdomains (usual activities and anxiety/depression) in women, while the long WCUS significantly reduced the quality of life in the self-care domain. In an additional subgroup analysis by age, middle-aged and elderly women had a more noticeable effect of WCUS on HRQoL than young women, and the short or medium WCUS improved HRQoL in middle-aged and elderly women in general. Therefore, we recommend appropriate WCUS durations to improve HRQoL, considering both gender and age.
Collapse
Affiliation(s)
- Jinkyung Oh
- College of Nursing, Seoul National University, Seoul, 03080, Republic of Korea
| | - Eunmi Kim
- College of Nursing, Seoul National University, Seoul, 03080, Republic of Korea
| | - Iksoo Huh
- College of Nursing, Seoul National University, Seoul, 03080, Republic of Korea.
- The Research Institute of Nursing Science, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
21
|
Herting M, Cotter D, Ahmadi H, Cardenas-Iniguez C, Bottenhorn K, Gauderman WJ, McConnell R, Berhane K, Schwartz J, Hackman D, Chen JC. Sex-specific effects in how childhood exposures to multiple ambient air pollutants affect white matter microstructure development across early adolescence. RESEARCH SQUARE 2023:rs.3.rs-3213618. [PMID: 37645919 PMCID: PMC10462194 DOI: 10.21203/rs.3.rs-3213618/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Ambient air pollution is ubiquitous, yet questions remain as to how it might impact the developing brain. Large changes occur in the brain's white matter (WM) microstructure across adolescence, with noticeable differences in WM integrity in male and female youth. Here we report sex-stratified effects of fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) on longitudinal patterns of WM microstructure from 9-13 years-old in 8,182 (49% female) participants using restriction spectrum imaging. After adjusting for key sociodemographic factors, multi-pollutant, sex-stratified models showed that one-year annual exposure to PM2.5 and NO2 was associated with higher, while O3 was associated with lower, intracellular diffusion at age 9. All three pollutants also affected trajectories of WM maturation from 9-13 years-old, with some sex-specific differences in the number and anatomical locations of tracts showing altered trajectories of intracellular diffusion. Concentrations were well-below current U.S. standards, suggesting exposure to these criteria pollutants during adolescence may have long-term consequences on brain development.
Collapse
|
22
|
Huang Y, Fang F, Chen Y, He X, Chen Q, Wang H, Zhang J. Prenatal exposure to per- and polyfluoroalkyl substances and infant sleep disturbance: A prospective cohort study. ENVIRONMENT INTERNATIONAL 2023; 178:108070. [PMID: 37399769 DOI: 10.1016/j.envint.2023.108070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) may adversely affect fetal brain development, yet no study has investigated the potential association between prenatal PFAS exposure and infant sleep. OBJECTIVES To explore the associations of prenatal PFAS exposure with infant sleep disturbances during the first year of life in a prospective cohort study. METHODS We recruited 4127 pregnant women from the Shanghai Birth Cohort (SBC) and followed their children from birth to 12 months old. A total of 2366 infants were included in the 6-month analyses, and 2466 infants in the 12-month analyses. Ten PFAS were quantified in blood serum collected in the first trimester. Sleep quality was measured using the Brief Infant Sleep Questionnaire. We used multiple linear regression and multinomial logistic regression to estimate the individual effects of PFAS on sleep outcomes. We utilized a quantile-based g-computation model to determine the joint effects of the PFAS mixture on infant sleep outcomes. Additionally, generalized estimating equation (GEE) models were performed to examine the longitudinal effects of PFAS exposure during pregnancy. RESULTS In infants aged 6 months, perfluorooctane sulfonate and perfluoroheptanoic acid were associated with a more than 2-fold risk of parent-reported sleep problems as severe. Perfluorodecanoic acid was associated with an increased risk of often or almost always snoring in one-year-old infants (relative risk ratios, 1.79; 95% CI, 1.12-2.86). PFAS mixtures were positively associated with nighttime awakenings both among infants aged 6 months (β, 0.11; 95% CI, 0.04-0.19) and 12 months (β, 0.11; 95% CI, 0.05-0.18). Prenatal exposure to PFAS were associated with longer sleep latency, increased nighttime awakenings, longer nocturnal wakefulness hours, snoring, and earlier sleep-onset time in infants aged 6-12 months, according to GEE models. CONCLUSIONS Our study suggests that prenatal exposure to PFAS may increase the risk of sleep disturbance in infants.
Collapse
Affiliation(s)
- Yun Huang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Fang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Developmental and Behavioral Pediatric Department & Child Primary Care Department, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yan Chen
- Department of Neonatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoqing He
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Chen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
23
|
Rivera-Núñez Z, Hansel M, Capurro C, Kozlosky D, Wang C, Doherty CL, Buckley B, Ohman-Strickland P, Miller RK, O’Connor TG, Aleksunes LM, Barrett ES. Prenatal Cadmium Exposure and Maternal Sex Steroid Hormone Concentrations across Pregnancy. TOXICS 2023; 11:589. [PMID: 37505555 PMCID: PMC10384739 DOI: 10.3390/toxics11070589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
Cadmium exposure has been associated with adverse perinatal outcomes. One possible mechanism is endocrine disruption. Studies of non-pregnant adults suggest that cadmium impacts androgen production; here, we examined these associations during pregnancy. Participants in the Understanding Pregnancy Signals and Infant Development (UPSIDE) cohort provided biospecimens and questionnaire data in each trimester (n = 272). We quantified urinary cadmium, serum total testosterone (TT), estrone, estradiol, and estriol and serum free testosterone (fT). In adjusted longitudinal models, we examined sex steroid concentrations across pregnancy in relation to specific gravity-adjusted, ln-transformed cadmium concentrations. Additionally, we examined trimester-specific associations and stratified models by fetal sex. Results are presented as percent change (%∆) in hormone concentrations. In longitudinal models, higher cadmium concentrations were associated with lower fT across pregnancy (%∆ = -5.19, 95%CI: -8.33, -1.93), with no differences in other hormones observed. In trimester-specific models, higher cadmium concentrations were associated with lower TT in trimester 2 (%∆ = -15.26, 95%CI: -25.15, -4.06) and lower fT in trimester 3 (%∆ = -14.35, 95%CI: -19.75, -8.59). Associations with TT were stronger in pregnancies carrying female fetuses. Maternal cadmium exposure may be associated with reduced testosterone in pregnancy. Additional work is necessary to understand how alterations in gestational testosterone activity may impact pregnancy and child health.
Collapse
Affiliation(s)
- Zorimar Rivera-Núñez
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854, USA; (M.H.); (C.C.); (P.O.-S.); (E.S.B.)
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (D.K.); (C.L.D.); (B.B.); (L.M.A.)
| | - Megan Hansel
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854, USA; (M.H.); (C.C.); (P.O.-S.); (E.S.B.)
| | - Camila Capurro
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854, USA; (M.H.); (C.C.); (P.O.-S.); (E.S.B.)
| | - Danielle Kozlosky
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (D.K.); (C.L.D.); (B.B.); (L.M.A.)
| | - Christina Wang
- Clinical and Translational Science Institute, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
| | - Cathleen L. Doherty
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (D.K.); (C.L.D.); (B.B.); (L.M.A.)
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (D.K.); (C.L.D.); (B.B.); (L.M.A.)
| | - Pamela Ohman-Strickland
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854, USA; (M.H.); (C.C.); (P.O.-S.); (E.S.B.)
| | - Richard K. Miller
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14620, USA; (R.K.M.); (T.G.O.)
- Department of Environmental Medicine, Pediatrics and Pathology, University of Rochester, New York, NY 14642, USA
| | - Thomas G. O’Connor
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14620, USA; (R.K.M.); (T.G.O.)
- Departments of Psychiatry, Psychology, Neuroscience, University of Rochester, New York, NY 14620, USA
| | - Lauren M. Aleksunes
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (D.K.); (C.L.D.); (B.B.); (L.M.A.)
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Emily S. Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854, USA; (M.H.); (C.C.); (P.O.-S.); (E.S.B.)
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (D.K.); (C.L.D.); (B.B.); (L.M.A.)
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14620, USA; (R.K.M.); (T.G.O.)
| |
Collapse
|
24
|
McGuinn LA, Rivera NR, Osorio-Valencia E, Schnaas L, Hernandez-Chavez C, DeFelice NB, Harari H, Klein DN, Wright RJ, Téllez-Rojo MM, Wright RO, Rosa MJ, Tamayo-Ortiz M. Changes in depressive and anxiety symptoms during COVID-19 in children from the PROGRESS cohort. Pediatr Res 2023; 94:349-355. [PMID: 36396698 PMCID: PMC10192449 DOI: 10.1038/s41390-022-02379-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND We assessed associations between maternal stress, social support, and child resiliency during the COVID-19 pandemic in relation to changes in anxiety and depression symptoms in children in Mexico City. METHODS Participants included 464 mother-child pairs from a longitudinal birth cohort in Mexico City. At ages 8-11 (pre-COVID, 2018-2019) and 9-12 (during COVID, May-Nov 2020) years, depressive symptoms were assessed using the child and parent-reported Children's Depressive Inventory. Anxiety symptoms were assessed using the child-reported Revised Manifest Anxiety Scale. Linear regression models were used to estimate associations between maternal stress, social support, and resiliency in relation to changes in depressive and anxiety symptoms. We additionally assessed outcomes using clinically relevant cut-points. Models were adjusted for child age and sex and maternal socioeconomic status and age. RESULTS Higher continuous maternal stress levels during the COVID-19 pandemic were associated with increases in depressive symptoms (β: 0.72; 95% CI: 0.12, 1.31), and higher odds of clinically relevant depressive and anxiety symptoms in the children. CONCLUSIONS Maternal stress during the pandemic may increase mental health symptoms in pre-adolescent children. Additional studies are needed that examine the long-term pandemic-related impacts on mental health throughout the adolescent years. IMPACT In this longitudinal cohort study of children in Mexico City, we observed that depressive symptoms were higher from before to during the pandemic. Maternal stress surrounding the pandemic may increase mental health symptoms in pre-adolescent children. Child resiliency may help to protect against pandemic-related stressors.
Collapse
Affiliation(s)
- Laura A McGuinn
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA.
| | - Nadya Rivera Rivera
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | - Nicholas B DeFelice
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Homero Harari
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel N Klein
- Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Pediatric Pulmonology, Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martha Maria Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria José Rosa
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcela Tamayo-Ortiz
- Occupational Health Research Unit, Mexican Institute of Social Security (IMSS), Mexico City, Mexico
| |
Collapse
|
25
|
Wu Y, Zeng F, Li J, Jiang Y, Zhao S, Knibbs LD, Zhang X, Wang Y, Zhang Q, Wang Q, Hu Q, Guo X, Chen Y, Cao G, Wang J, Yang X, Wang X, Liu T, Zhang B. Sex-specific relationships between prenatal exposure to metal mixtures and birth weight in a Chinese birth cohort. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115158. [PMID: 37348214 DOI: 10.1016/j.ecoenv.2023.115158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
Birth weight is an indicator linking intrauterine environmental exposures to later-life diseases, and intrauterine metal exposure may affect birth weight in a sex-specific manner. We investigated sex-specific associations between prenatal exposure to metal mixtures and birth weight in a Chinese birth cohort. The birth weight of 1296 boys and 1098 girls were recorded, and 10 metals in maternal urine samples collected during pregnancy were measured using inductively coupled plasma mass spectrometry. Bayesian Kernel Machine Regression was used to estimate the association of individual metals or metal mixtures and birth weight for gestational age (BW for GA). The model showed a sex-specific relationship between prenatal exposure to metal mixtures and BW for GA with a significant negative association in girls and a non-significant positive association in boys. Cadmium (Cd) and nickel (Ni) were positively and negatively associated with BW for GA in girls, respectively. Moreover, increasing thallium (Tl) concentration lowered the positive association between Cd and BW for GA and enhanced the negative association between Ni and BW for GA in girls. When exposure to other metals increased, the positive association with Cd diminished, whereas the negative association with Ni or Tl increased. Our findings provide evidence supporting the complex effects of intrauterine exposure to metal mixtures on the birth weight of girls and further highlight the sex heterogeneity in fetal development influenced by intrauterine environmental factors.
Collapse
Affiliation(s)
- Ying Wu
- Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Fulin Zeng
- Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinhui Li
- Department of Urology, Stanford University Medical Center, Stanford, CA, USA
| | - Yukang Jiang
- School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong, China; Southern China Center for Statistical Science, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shi Zhao
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China; Chinese University of Hong Kong (CUHK) Shenzhen Research Institute, Shenzhen, Guangdong, China
| | - Luke D Knibbs
- School of Public Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Xiaojun Zhang
- Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiding Wang
- Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, China
| | - Qianqian Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiong Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiansheng Hu
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaobo Guo
- School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong, China; Southern China Center for Statistical Science, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yumeng Chen
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Ganxiang Cao
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jing Wang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Xingfen Yang
- Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, China
| | - Xueqin Wang
- Department of Statistics and Finance/International Institute of Finance, School of Management, University of Science and Technology of China, Hefei, Anhui, China
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China; Disease Control and Prevention Institute of Jinan University, Jinan University, Guangzhou, Guangdong, China.
| | - Bo Zhang
- Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
26
|
Laupsa-Borge J, Grytten E, Bohov P, Bjørndal B, Strand E, Skorve J, Nordrehaug JE, Berge RK, Rostrup E, Mellgren G, Dankel SN, Nygård OK. Sex-specific responses in glucose-insulin homeostasis and lipoprotein-lipid components after high-dose supplementation with marine n-3 PUFAs in abdominal obesity: a randomized double-blind crossover study. Front Nutr 2023; 10:1020678. [PMID: 37404855 PMCID: PMC10315503 DOI: 10.3389/fnut.2023.1020678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Background Clinical studies on effects of marine-derived omega-3 (n-3) polyunsaturated fatty acids (PUFAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and the plant-derived omega-6 (n-6) PUFA linoleic acid (LA) on lipoprotein-lipid components and glucose-insulin homeostasis have shown conflicting results, which may partly be explained by differential responses in females and males. However, we have lacked data on sexual dimorphism in the response of cardiometabolic risk markers following increased consumption of n-3 or n-6 PUFAs. Objective To explore sex-specific responses after n-3 (EPA + DHA) or n-6 (LA) PUFA supplementation on circulating lipoprotein subfractions, standard lipids, apolipoproteins, fatty acids in red blood cell membranes, and markers of glycemic control/insulin sensitivity among people with abdominal obesity. Methods This was a randomized double-blind crossover study with two 7-week intervention periods separated by a 9-week washout phase. Females (n = 16) were supplemented with 3 g/d of EPA + DHA (fish oil) or 15 g/d of LA (safflower oil), while males (n = 23) received a dose of 4 g/d of EPA + DHA or 20 g/d of LA. In fasting blood samples, we measured lipoprotein particle subclasses, standard lipids, apolipoproteins, fatty acid profiles, and markers of glycemic control/insulin sensitivity. Results The between-sex difference in relative change scores was significant after n-3 for total high-density lipoproteins (females/males: -11%*/-3.3%, p = 0.036; *: significant within-sex change), high-density lipoprotein particle size (+2.1%*/-0.1%, p = 0.045), and arachidonic acid (-8.3%*/-12%*, p = 0.012), and after n-6 for total (+37%*/+2.1%, p = 0.041) and small very-low-density lipoproteins (+97%*/+14%, p = 0.021), and lipoprotein (a) (-16%*/+0.1%, p = 0.028). Circulating markers of glucose-insulin homeostasis differed significantly after n-3 for glucose (females/males: -2.1%/+3.9%*, p = 0.029), insulin (-31%*/+16%, p < 0.001), insulin C-peptide (-12%*/+13%*, p = 0.001), homeostasis model assessment of insulin resistance index 2 (-12%*/+14%*, p = 0.001) and insulin sensitivity index 2 (+14%*/-12%*, p = 0.001), and quantitative insulin sensitivity check index (+4.9%*/-3.4%*, p < 0.001). Conclusion We found sex-specific responses after high-dose n-3 (but not n-6) supplementation in circulating markers of glycemic control/insulin sensitivity, which improved in females but worsened in males. This may partly be related to the sex differences we observed in several components of the lipoprotein-lipid profile following the n-3 intervention. Clinical trial registration https://clinicaltrials.gov/, identifier [NCT02647333].
Collapse
Affiliation(s)
- Johnny Laupsa-Borge
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Elise Grytten
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Pavol Bohov
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Elin Strand
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jon Skorve
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jan Erik Nordrehaug
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Rolf K. Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Espen Rostrup
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simon N. Dankel
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ottar K. Nygård
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
27
|
Hall AM, Keil AP, Choi G, Ramos AM, Richardson DB, Olshan AF, Martin CL, Villanger GD, Reichborn-Kjennerud T, Zeiner P, Øvergaard KR, Sakhi AK, Thomsen C, Aase H, Engel SM. Prenatal organophosphate ester exposure and executive function in Norwegian preschoolers. Environ Epidemiol 2023; 7:e251. [PMID: 37304339 PMCID: PMC10256412 DOI: 10.1097/ee9.0000000000000251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/26/2023] [Indexed: 06/13/2023] Open
Abstract
Organophosphate esters (OPEs) are ubiquitous chemicals, used as flame retardants and plasticizers. OPE usage has increased over time as a substitute for other controlled compounds. This study investigates the impact of prenatal OPE exposure on executive function (EF) in preschoolers. Methods We selected 340 preschoolers from the Norwegian Mother, Father, and Child Cohort Study. Diphenyl-phosphate (DPhP), di-n-butyl-phosphate (DnBP), bis(2-butoxyethyl) phosphate (BBOEP), and bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) were measured in maternal urine. EF was measured using the Behavior Rating Inventory of Executive Functioning-Preschool (BRIEF-P) and the Stanford-Binet fifth edition (SB-5). EF scores were scaled so a higher score indicated worse performance. We estimated exposure-outcome associations and evaluated modification by child sex using linear regression. Results Higher DnBP was associated with lower EF scores across multiple rater-based domains. Higher DPhP and BDCIPP were associated with lower SB-5 verbal working memory (β = 0.49, 95% CI = 0.12, 0.87; β = 0.53, 95% CI = 0.08, 1.02), and higher BBOEP was associated with lower teacher-rated inhibition (β = 0.34, 95% CI = 0.01, 0.63). DPhP was associated with lower parent-reported BRIEF-P measures in boys but not girls [inhibition: boys: 0.37 (95% CI = 0.03, 0.93); girls: -0.48 (95% CI = -1.27, 0.19); emotional control: boys: 0.44 (95% CI = -0.13, 1.26); girls: -0.83 (95% CI = -1.73, -0.00); working memory: boys: 0.49 (95% CI = 0.03, 1.08); girls: -0.40 (95% CI = -1.11, 0.36)]. Fewer sex interactions were observed for DnBP, BBOEP, and BDCIPP, with irregular patterns observed across EF domains. Conclusions We found some evidence prenatal OPE exposure may impact EF in preschoolers and variation in associations by sex.
Collapse
Affiliation(s)
- Amber M. Hall
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alexander P. Keil
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Giehae Choi
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Amanda M. Ramos
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - David B. Richardson
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Andrew F. Olshan
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Chantel L. Martin
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gro D. Villanger
- Department of Child Health and Development, Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ted Reichborn-Kjennerud
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Mental Disorders, Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Pål Zeiner
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Kristin R. Øvergaard
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Amrit K. Sakhi
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Cathrine Thomsen
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Heidi Aase
- Department of Child Health and Development, Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Stephanie M. Engel
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
28
|
Liu Y, Wosu AC, Fleisch AF, Dunlop AL, Starling AP, Ferrara A, Dabelea D, Oken E, Buckley JP, Chatzi L, Karagas MR, Romano ME, Schantz S, O’Connor TG, Woodruff TJ, Zhu Y, Hamra GB, Braun JM. Associations of Gestational Perfluoroalkyl Substances Exposure with Early Childhood BMI z-Scores and Risk of Overweight/Obesity: Results from the ECHO Cohorts. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:67001. [PMID: 37283528 PMCID: PMC10246497 DOI: 10.1289/ehp11545] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Gestational per- and polyfluoroalkyl substances (PFAS) exposure may be associated with adiposity and increased risk of obesity among children and adolescents. However, results from epidemiological studies evaluating these associations are inconsistent. OBJECTIVES We estimated the associations of pregnancy PFAS concentrations with child body mass index (BMI) z -scores and risk of overweight/obesity in eight U.S. cohorts. METHODS We used data from 1,391 mother-child pairs who enrolled in eight Environmental influences on Child Health Outcomes (ECHO) cohorts (enrolled: 1999-2019). We quantified concentrations of seven PFAS in maternal plasma or serum in pregnancy. We measured child weight and height between the ages of 2 and 5 y and calculated age- and sex-specific BMI z -scores; 19.6% children had more than one BMI measurement. We estimated covariate-adjusted associations of individual PFAS and their mixture with child BMI z -scores and risk of overweight/obesity using linear mixed models, modified Poisson regression models, and Bayesian approaches for mixtures. We explored whether child sex modified these associations. RESULTS We observed a pattern of subtle positive associations of PFAS concentrations in pregnancy with BMI z -scores and risk of overweight/obesity. For instance, each doubling in perfluorohexane sulfonic acid concentrations was associated with higher BMI z -scores (β = 0.07 ; 95% CI: 0.01, 0.12). Each doubling in perfluroundecanoic acid [relative risk ( RR ) = 1.10 ; 95% CI: 1.04, 1.16] and N -methyl perfluorooctane sulfonamido acetic acid (RR = 1.06 ; 95% CI: 1.00, 1.12) was associated with increased risk of overweight/obesity, with some evidence of a monotonic dose-response relation. We observed weaker and more imprecise associations of the PFAS mixture with BMI or risk of overweight/obesity. Associations did not differ by child sex. DISCUSSION In eight U.S.-based prospective cohorts, gestational exposure to higher levels of PFAS were associated with slightly higher childhood BMI z -score and risk of overweight or obesity. Future studies should examine associations of gestational exposure to PFAS with adiposity and related cardiometabolic consequences in older children. https://doi.org/10.1289/EHP11545.
Collapse
Affiliation(s)
- Yun Liu
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Adaeze C. Wosu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Abby F. Fleisch
- Pediatric Endocrinology and Diabetes, Maine Medical Center and Maine Medical Center Research Institute, Portland, Maine, USA
- Center for Outcomes Research and Evaluation, Maine Medical Center and Maine Medical Center Research Institute, Portland, Maine, USA
| | - Anne L. Dunlop
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anne P. Starling
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Assiamira Ferrara
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Jessie P. Buckley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Megan E. Romano
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Susan Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Thomas G. O’Connor
- Department of Psychiatry, University of Rochester, Rochester, New York, USA
| | - Tracey J. Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Yeyi Zhu
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ghassan B. Hamra
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
| | - and the program collaborators for Environmental influences on Child Health Outcomes
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Pediatric Endocrinology and Diabetes, Maine Medical Center and Maine Medical Center Research Institute, Portland, Maine, USA
- Center for Outcomes Research and Evaluation, Maine Medical Center and Maine Medical Center Research Institute, Portland, Maine, USA
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Psychiatry, University of Rochester, Rochester, New York, USA
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
29
|
Rokoff LB, Seshasayee SM, Carwile JL, Rifas-Shiman SL, Botelho JC, Gordon CM, Hauser R, James-Todd T, Young JG, Rosen CJ, Calafat AM, Oken E, Fleisch AF. Associations of urinary metabolite concentrations of phthalates and phthalate replacements with body composition from mid-childhood to early adolescence. ENVIRONMENTAL RESEARCH 2023; 226:115629. [PMID: 36889566 PMCID: PMC10101932 DOI: 10.1016/j.envres.2023.115629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Phthalates may adversely influence body composition by lowering anabolic hormones and activating peroxisome-proliferator activated receptor gamma. However, data are limited in adolescence when body mass distributions rapidly change and bone accrual peaks. Also, potential health effects of certain phthalate/replacements [e.g., di-2-ethylhexyl terephthalate (DEHTP)] have not been well studied. METHODS Among 579 children in the Project Viva cohort, we used linear regression to evaluate associations of urinary concentrations of 19 phthalate/replacement metabolites from mid-childhood (median: 7.6 years; 2007-2010) with annualized change in areal bone mineral density (aBMD) and lean, total fat, and truncal fat mass as measured by dual-energy X-ray absorptiometry between mid-childhood and early adolescence (median: 12.8 years). We used quantile g-computation to assess associations of the overall chemical mixture with body composition. We adjusted for sociodemographics and tested for sex-specific associations. RESULTS Urinary concentrations were highest for mono-2-ethyl-5-carboxypentyl phthalate [median (IQR): 46.7 (69.1) ng/mL]. We detected metabolites of most replacement phthalates in a relatively small number of participants [e.g., 28% for mono-2-ethyl-5-hydrohexyl terephthalate (MEHHTP; metabolite of DEHTP)]. Detectable (vs. non-detectable) MEHHTP was associated with less bone and greater fat accrual in males and greater bone and lean mass accrual in females [e.g., change in aBMD Z-score/year (95% CI): -0.049 (-0.085, -0.013) in males versus 0.042 (0.007, 0.076) in females; pinteraction<0.01]. Children with higher concentrations of mono-oxo-isononyl phthalate and mono-3-carboxypropyl phthalate (MCPP) had greater bone accrual. Males with higher concentrations of MCPP and mono-carboxynonyl phthalate had greater accrual of lean mass. Other phthalate/replacement biomarkers, and their mixtures, were not associated with longitudinal changes in body composition. CONCLUSIONS Concentrations of select phthalate/replacement metabolites in mid-childhood were associated with changes in body composition through early adolescence. As use of phthalate replacements such as DEHTP may be increasing, further investigation can help better understand the potential effects of early-life exposures.
Collapse
Affiliation(s)
- Lisa B Rokoff
- Center for Interdisciplinary Population & Health Research, MaineHealth Institute for Research, Portland, ME, USA.
| | - Shravanthi M Seshasayee
- Center for Interdisciplinary Population & Health Research, MaineHealth Institute for Research, Portland, ME, USA
| | - Jenny L Carwile
- Center for Interdisciplinary Population & Health Research, MaineHealth Institute for Research, Portland, ME, USA
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Julianne Cook Botelho
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Catherine M Gordon
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Russ Hauser
- Department of Environmental Health and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tamarra James-Todd
- Department of Environmental Health and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jessica G Young
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Clifford J Rosen
- Center for Clinical and Translational Science, MaineHealth Institute for Research, Scarborough, ME, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Abby F Fleisch
- Center for Interdisciplinary Population & Health Research, MaineHealth Institute for Research, Portland, ME, USA; Pediatric Endocrinology and Diabetes, Maine Medical Center, Portland, ME, USA
| |
Collapse
|
30
|
Huo T, Glueck DH, Shenkman EA, Muller KE. Stratified split sampling of electronic health records. BMC Med Res Methodol 2023; 23:128. [PMID: 37231360 DOI: 10.1186/s12874-023-01938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Although superficially similar to data from clinical research, data extracted from electronic health records may require fundamentally different approaches for model building and analysis. Because electronic health record data is designed for clinical, rather than scientific use, researchers must first provide clear definitions of outcome and predictor variables. Yet an iterative process of defining outcomes and predictors, assessing association, and then repeating the process may increase Type I error rates, and thus decrease the chance of replicability, defined by the National Academy of Sciences as the chance of "obtaining consistent results across studies aimed at answering the same scientific question, each of which has obtained its own data."[1] In addition, failure to account for subgroups may mask heterogeneous associations between predictor and outcome by subgroups, and decrease the generalizability of the findings. To increase chances of replicability and generalizability, we recommend using a stratified split sample approach for studies using electronic health records. A split sample approach divides the data randomly into an exploratory set for iterative variable definition, iterative analyses of association, and consideration of subgroups. The confirmatory set is used only to replicate results found in the first set. The addition of the word 'stratified' indicates that rare subgroups are oversampled randomly by including them in the exploratory sample at higher rates than appear in the population. The stratified sampling provides a sufficient sample size for assessing heterogeneity of association by testing for effect modification by group membership. An electronic health record study of the associations between socio-demographic factors and uptake of hepatic cancer screening, and potential heterogeneity of association in subgroups defined by gender, self-identified race and ethnicity, census-tract level poverty and insurance type illustrates the recommended approach.
Collapse
Affiliation(s)
- Tianyao Huo
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 2004 Mowry Road; Room 2236-5, PO Box 100177, Gainesville, FL, 32608, USA
| | - Deborah H Glueck
- Department of Pediatrics, School of Medicine, University of Colorado, 12474 E. 19th Avenue, Building 402, Room 219 Main Stop F426, Aurora, CO, 80045, USA
| | - Elizabeth A Shenkman
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 2004 Mowry Road; Room 2245, PO Box 100177, Gainesville, FL, 32608, USA
| | - Keith E Muller
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 2004 Mowry Road; Room 2244, PO Box 100177, Gainesville, FL, 32608, USA.
| |
Collapse
|
31
|
Ronco R, Rea F, Filippelli A, Maggioni AP, Corrao G. Sex-Related Differences in Outpatient Healthcare of Acute Coronary Syndrome: Evidence from an Italian Real-World Investigation. J Clin Med 2023; 12:2972. [PMID: 37109306 PMCID: PMC10140904 DOI: 10.3390/jcm12082972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
At the time of first acute coronary syndrome (ACS) hospital admission, women are generally older and have more comorbidities than men, which may explain differences in their short-term prognosis. However, few studies have focused on differences in the out-of-hospital management of men and women. This study investigated (i) the risk of clinical outcomes, (ii) the use of out-of-hospital healthcare and (iii) the effects of clinical recommendations on outcomes in men vs. women. A total of 90,779 residents of the Lombardy Region (Italy) were hospitalized for ACS from 2011 to 2015. Exposure to prescribed drugs, diagnostic procedures, laboratory tests, and cardiac rehabilitation in the first year after ACS hospitalization were recorded. To evaluate whether sex can modify the relationship between clinical recommendations and outcomes, adjusted Cox models were separately fitted for men and women. Women were exposed to fewer treatments, required fewer outpatient services than men and had a lower risk of long-term clinical events. The stratified analysis showed an association between adherence to clinical recommendations and a lower risk of clinical outcomes in both sexes. Since improved adherence to clinical recommendations seems to be beneficial for both sexes, tight out-of-hospital healthcare control should be recommended to achieve favourable clinical benefits.
Collapse
Affiliation(s)
- Raffaella Ronco
- National Centre for Healthcare Research and Pharmacoepidemiology, University of Milano-Bicocca, 20126 Milan, Italy; (R.R.); (A.F.); (G.C.)
- Unit of Biostatistics, Epidemiology and Public Health, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, 20126 Milan, Italy
| | - Federico Rea
- National Centre for Healthcare Research and Pharmacoepidemiology, University of Milano-Bicocca, 20126 Milan, Italy; (R.R.); (A.F.); (G.C.)
- Unit of Biostatistics, Epidemiology and Public Health, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, 20126 Milan, Italy
| | - Amelia Filippelli
- National Centre for Healthcare Research and Pharmacoepidemiology, University of Milano-Bicocca, 20126 Milan, Italy; (R.R.); (A.F.); (G.C.)
- Department of Medicine, Surgery, and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | | | - Giovanni Corrao
- National Centre for Healthcare Research and Pharmacoepidemiology, University of Milano-Bicocca, 20126 Milan, Italy; (R.R.); (A.F.); (G.C.)
- Unit of Biostatistics, Epidemiology and Public Health, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, 20126 Milan, Italy
| |
Collapse
|
32
|
Kuiper JR, Pan S, Lanphear BP, Calafat AM, Chen A, Cecil KM, Xu Y, Yolton K, Kalkwarf HJ, Braun JM, Buckley JP. Associations of maternal gestational urinary environmental phenols concentrations with bone mineral density among 12-year-old children in the HOME Study. Int J Hyg Environ Health 2023; 248:114104. [PMID: 36525700 PMCID: PMC9898141 DOI: 10.1016/j.ijheh.2022.114104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Early life environmental exposures may affect bone mass accrual in childhood, but only one study has assessed the role of environmental phenols on child bone health. METHODS We used data from 223 mother-child dyads enrolled in the Health Outcomes and Measures of the Environment (HOME) Study (Cincinnati, OH; 2003-2006). We quantified benzophenone-3, bisphenol A (BPA), 2,5-dichlorophenol, and triclosan in maternal urine collected at 16- and 26-weeks gestation and calculated the average of creatinine-adjusted concentrations. We performed dual x-ray absorptiometry at age 12 years and calculated Z-scores for whole body (less head), total hip, femoral neck, and 1/3rd distal radius bone mineral content (BMC) and areal bone mineral density (aBMD) as well as ultra-distal radius aBMD and spine BMC and bone mineral apparent density (BMAD). We estimated covariate-adjusted associations per doubling of maternal urinary environmental phenol concentrations in linear regression models. We also examined effect measure modification by child's sex and estimated associations of the environmental phenol mixture with BMC and aBMD using quantile g-computation. RESULTS We observed generally null associations for all analytes and bone measures. Yet, in adjusted models, higher urinary 2,5-dichlorophenol concentrations were associated with higher 1/3rd distal radius BMC (β: 0.09; 95% CI: 0.02, 0.17) and aBMD (β: 0.09; 95% CI: 0.02, 0.17) Z-scores in the overall sample. In sex-stratified analyses, the magnitude of the BMC association was positive for females (β: 0.16; 95% CI: 0.06, 0.26) and null for males (β: 0.02; 95% CI: 0.08, 0.13). The environmental phenol mixture was associated with greater 1/3rd distal radius BMC and aBMD Z-scores in both sexes, which was mostly driven by benzophenone-3 in males and 2,5-dichlorophenol in females. CONCLUSION In this prospective cohort study, we observed generally null associations for environmental phenols with BMC and aBMD at age 12 years. While there was a positive association of 2,5-dichlorophenol concentrations during fetal development with distal radius BMC and aBMD at age 12 years, future studies utilizing methods capable of differentiating cortical and trabecular bone are needed to elucidate potential mechanisms and implications for bone strength and microarchitecture.
Collapse
Affiliation(s)
- Jordan R Kuiper
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Shudi Pan
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada.
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA.
| | - Kim M Cecil
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Yingying Xu
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Kimberly Yolton
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Heidi J Kalkwarf
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA.
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
33
|
Rivera-Núñez Z, Kinkade CW, Khoury L, Brunner J, Murphy H, Wang C, Kannan K, Miller RK, O'Connor TG, Barrett ES. Prenatal perfluoroalkyl substances exposure and maternal sex steroid hormones across pregnancy. ENVIRONMENTAL RESEARCH 2023; 220:115233. [PMID: 36621543 PMCID: PMC9977559 DOI: 10.1016/j.envres.2023.115233] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/08/2022] [Accepted: 01/03/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Poly- and perfluoroalkyl substances (PFAS) are ubiquitous and persistent environmental contaminants that may act as endocrine disruptors in utero, but the specific endocrine pathways are unknown. OBJECTIVE We examined associations between maternal serum PFAS and sex steroid hormones at three time points during pregnancy. METHODS Pregnant women participating in the Understanding Pregnancy Signals and Infant Development (UPSIDE) study contributed biospecimens, questionnaire, and medical record data in each trimester (n = 285). PFAS (including perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA)) were analyzed in second-trimester serum samples by high-performance liquid chromatography and tandem mass spectrometry (LC-MS/MS). Total testosterone [TT], free testosterone [fT], estrone [E1], estradiol [E2], and estriol [E3]) were measured by LC-MS/MS in serum samples from each trimester. Linear mixed models with random intercepts were used to examine associations between log-transformed PFAS concentrations and hormone levels, adjusting for covariates, and stratifying by fetal sex. Results are presented as the mean percentage difference (Δ%) in hormone levels per ln-unit increase in PFAS concentration. RESULTS In adjusted models, PFHxS was associated with higher TT (%Δ = 20.0, 95%CI: 1.7, 41.6), particularly among women carrying male fetuses (%Δ = 15.3, 95%CI: 1.2, 30.7); this association strengthened as the pregnancy progressed. PFNA (%Δ = 7.9, 95%CI: 3.4, 12.5) and PFDA (%Δ = 7.2, 95%CI: 4.9, 9.7) were associated with higher fT, with associations again observed only in women carrying male fetuses. PFHxS was associated with higher levels of E2 and E3 in women carrying female fetuses (%Δ = 13.2, 95%CI: 0.5, 29.1; %Δ = 17.9, 95%CI: 3.2, 34.8, respectively). No associations were observed for PFOS and PFOA. CONCLUSION PFHxS, PFNA, and PFDA may disrupt androgenic and estrogenic pathways in pregnancy in a sex-dependent manner.
Collapse
Affiliation(s)
- Zorimar Rivera-Núñez
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA.
| | - Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Leena Khoury
- Departments of Psychiatry, Psychology, Neuroscience, University of Rochester, NY, USA; Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Jessica Brunner
- Departments of Psychiatry, Psychology, Neuroscience, University of Rochester, NY, USA; Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Hannah Murphy
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Christina Wang
- Clinical and Translational Science Institute, The Lundquist Institute at Harbor -UCLA Medical Center, Torrance, CA, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics, And Department of Environmental Medicine, New York University, Grossman School of Medicine, NY, NY, USA
| | - Richard K Miller
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Thomas G O'Connor
- Departments of Psychiatry, Psychology, Neuroscience, University of Rochester, NY, USA; Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
34
|
Hall AM, Ramos AM, Drover SS, Choi G, Keil AP, Richardson DB, Martin CL, Olshan AF, Villanger GD, Reichborn-Kjennerud T, Zeiner P, Øvergaard KR, Sakhi AK, Thomsen C, Aase H, Engel SM. Gestational organophosphate ester exposure and preschool attention-deficit/hyperactivity disorder in the Norwegian Mother, Father, and Child cohort study. Int J Hyg Environ Health 2023; 248:114078. [PMID: 36455478 PMCID: PMC9898152 DOI: 10.1016/j.ijheh.2022.114078] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Attention-deficit/hyperactivity-disorder (ADHD) is a leading neurodevelopmental disorder in children worldwide; however, few modifiable risk factors have been identified. Organophosphate esters (OPEs) are ubiquitous chemical compounds that are increasingly prevalent as a replacement for other regulated chemicals. Current research has linked OPEs to neurodevelopmental deficits. The purpose of this study was to assess gestational OPE exposure on clinically-assessed ADHD in children at age 3 years. METHODS In this nested case-control study within the Norwegian Mother, Father, and Child Cohort study, we evaluated the impact of OPE exposure at 17 weeks' gestation on preschool-age ADHD. Between 2007 and 2011, 260 ADHD cases were identified using the Preschool Age Psychiatric Assessment and compared to a birth-year-stratified control group of 549 children. We categorized bis(2-butoxyethyl) phosphate (BBOEP) and bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) as values < limit of detection (LOD) (BBOEP N = 386, BDCIPP N = 632), ≥LOD but < limit of quantification (LOQ) (BBOEP N = 413; BDCIPP N = 75), or above LOQ (BBOEP N = 70; BDCIPP N = 102). Diphenyl phosphate (DPhP) and di-n-butyl phosphate (DnBP) were categorized as quartiles and also modeled with a log10 linear term. We estimated multivariable adjusted odds ratios (ORs) using logistic regression and examined modification by sex using an augmented product term approach. RESULTS Mothers in the 3rd DnBP quartile had 1.71 times the odds of having a child with ADHD compared to the 1st quartile (95%CI: 1.13, 2.58); a similar trend was observed for log10 DnBP and ADHD. Mothers with BDCIPP ≥ LOD but < LOQ had 1.39 times the odds of having a child with ADHD compared to those with BDCIPP < LOD (95%CI: 0.83, 2.31). Girls had lower odds of ADHD with increasing BBOEP exposure (log10 OR: 0.55 (95%CI: 0.37, 0.93), however boys had a weakly increased odds (log10 OR: 1.25 (95%CI: 0.74, 2.11) p-interaction = 0.01]. CONCLUSIONS We found modest increased odds of preschool ADHD with higher DnBP and BDCIPP exposure.
Collapse
Affiliation(s)
- Amber M Hall
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Amanda M Ramos
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Samantha Sm Drover
- Department of Public Health Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Giehae Choi
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Alexander P Keil
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David B Richardson
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chantel L Martin
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gro D Villanger
- Department of Child Health and Development, Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ted Reichborn-Kjennerud
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Mental Disorders, Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Pål Zeiner
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Kristin R Øvergaard
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Amrit K Sakhi
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Cathrine Thomsen
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Heidi Aase
- Department of Child Health and Development, Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Stephanie M Engel
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
35
|
Hall AM, Thistle JE, Manley CK, Roell KR, Ramos AM, Villanger GD, Reichborn-Kjennerud T, Zeiner P, Cequier E, Sakhi AK, Thomsen C, Aase H, Engel SM. Organophosphorus Pesticide Exposure at 17 Weeks' Gestation and Odds of Offspring Attention-Deficit/Hyperactivity Disorder Diagnosis in the Norwegian Mother, Father, and Child Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16851. [PMID: 36554732 PMCID: PMC9778918 DOI: 10.3390/ijerph192416851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Prenatal organophosphorus pesticides (OPs) are ubiquitous and have been linked to adverse neurodevelopmental outcomes. However, few studies have examined prenatal OPs in relation to diagnosed attention-deficit/hyperactivity disorder (ADHD), with only two studies exploring this relationship in a population primarily exposed through diet. In this study, we used a nested case-control study to evaluate prenatal OP exposure and ADHD diagnosis in the Norwegian Mother, Father, and Child Cohort Study (MoBa). For births that occurred between 2003 and 2008, ADHD diagnoses were obtained from linkage of MoBa participants with the Norwegian Patient Registry (N = 297), and a reference population was randomly selected from the eligible population (N = 552). Maternal urine samples were collected at 17 weeks' gestation and molar sums of diethyl phosphates (ΣDEP) and dimethyl phosphates metabolites (ΣDMP) were calculated. Multivariable adjusted logistic regression models were used to estimate the association between prenatal OP metabolite exposure and child ADHD diagnosis. Additionally, multiplicative effect measure modification (EMM) by child sex was assessed. In most cases, mothers in the second and third tertiles of ΣDMP and ΣDEP exposure had slightly lower odds of having a child with ADHD, although confidence intervals were wide and included the null. EMM by child sex was not observed for either ΣDMP or ΣDEP. In summary, we did not find evidence that OPs at 17 weeks' gestation increased the odds of ADHD in this nested case-control study of ADHD in MoBa, a population primarily experiencing dietary exposure.
Collapse
Affiliation(s)
- Amber M. Hall
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jake E. Thistle
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cherrel K. Manley
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kyle R. Roell
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Amanda M. Ramos
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gro D. Villanger
- Department of Child Health and Development, Division of Mental and Physical Health, Norwegian Institute of Public Health, 0213 Oslo, Norway
| | - Ted Reichborn-Kjennerud
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Mental Disorders, Division of Mental and Physical Health, Norwegian Institute of Public Health, 0213 Oslo, Norway
| | - Pål Zeiner
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, 0424 Oslo, Norway
| | - Enrique Cequier
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, 0213 Oslo, Norway
| | - Amrit K. Sakhi
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, 0213 Oslo, Norway
| | - Cathrine Thomsen
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, 0213 Oslo, Norway
| | - Heidi Aase
- Department of Child Health and Development, Division of Mental and Physical Health, Norwegian Institute of Public Health, 0213 Oslo, Norway
| | - Stephanie M. Engel
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
36
|
Contreras JA, Aslanyan V, Albrecht DS, Mack WJ, Pa J. Higher baseline levels of CSF inflammation increase risk of incident mild cognitive impairment and Alzheimer's disease dementia. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12346. [PMID: 36187197 PMCID: PMC9484791 DOI: 10.1002/dad2.12346] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/06/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022]
Abstract
Introduction Few studies have investigated how neuroinflammation early in the disease course may affect Alzheimer's disease (AD) progression over time despite evidence that neuroinflammation is associated with AD. Methods Research participants with cerebrospinal fluid (CSF) biomarkers from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were included in this study. Cox models were used to investigate whether baseline CSF neuroinflammation was associated with incident mild cognitive impairment (MCI) or AD. Moderating effects of sex and apolipoprotein E (APOE) ε4 were also examined. Results Elevated levels of tumor necrosis factor α (TNF-α), interleukin (IL)-9, and IL-12p40 at baseline were associated with higher rates of conversion to MCI/AD. Interactions with sex and APOE ε4 were observed, such that women with elevated TNF-α and all APOE ε4 carriers with elevated IL-9 levels had shorter times to conversion. In addition, TNF-α mediated the relationship between elevated IL-12p40 and IL-9. Discussion Elevated neuroinflammation markers are associated with incident MCI/AD, and the factors of sex and APOE ε4 status modify the time to conversion.
Collapse
Affiliation(s)
- Joey A. Contreras
- Alzheimer's Disease Cooperative Study (ADCS)Department of NeurosciencesUniversity of CaliforniaSan DiegoCaliforniaUSA
- Mark and Mary Stevens Neuroimaging and Informatics InstituteDepartment of NeurologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Vahan Aslanyan
- Mark and Mary Stevens Neuroimaging and Informatics InstituteDepartment of NeurologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Population and Public Health SciencesKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Daniel S. Albrecht
- Mark and Mary Stevens Neuroimaging and Informatics InstituteDepartment of NeurologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Wendy J. Mack
- Department of Population and Public Health SciencesKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Judy Pa
- Alzheimer's Disease Cooperative Study (ADCS)Department of NeurosciencesUniversity of CaliforniaSan DiegoCaliforniaUSA
- Mark and Mary Stevens Neuroimaging and Informatics InstituteDepartment of NeurologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
37
|
Bulka CM, Eaves LA, Gardner AJ, Parsons PJ, Galusha AL, Roell KR, Smeester L, O’Shea TM, Fry RC. Prenatal exposure to multiple metallic and metalloid trace elements and the risk of bacterial sepsis in extremely low gestational age newborns: A prospective cohort study. FRONTIERS IN EPIDEMIOLOGY 2022; 2:958389. [PMID: 36405975 PMCID: PMC9674331 DOI: 10.3389/fepid.2022.958389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND Prenatal exposures to metallic and metalloid trace elements have been linked to altered immune function in animal studies, but few epidemiologic studies have investigated immunological effects in humans. We evaluated the risk of bacterial sepsis (an extreme immune response to bacterial infection) in relation to prenatal metal/metalloid exposures, individually and jointly, within a US-based cohort of infants born extremely preterm. METHODS We analyzed data from 269 participants in the US-based ELGAN cohort, which enrolled infants delivered at <28 weeks' gestation (2002-2004). Concentrations of 8 trace elements-including 4 non-essential and 4 essential-were measured using inductively coupled plasma tandem mass spectrometry in umbilical cord tissue, reflecting in utero fetal exposures. The infants were followed from birth to postnatal day 28 with bacterial blood culture results reported weekly to detect sepsis. Discrete-time hazard and quantile g-computation models were fit to estimate associations for individual trace elements and their mixtures with sepsis incidence. RESULTS Approximately 30% of the extremely preterm infants developed sepsis during the follow-up period (median follow-up: 2 weeks). After adjustment for potential confounders, no trace element was individually associated with sepsis risk. However, there was some evidence of a non-monotonic relationship for cadmium, with hazard ratios (HRs) for the second, third, and fourth (highest) quartiles being 1.13 (95% CI: 0.51-2.54), 1.94 (95% CI: 0.87-4.32), and 1.88 (95% CI: 0.90-3.93), respectively. The HRs for a quartile increase in concentrations of all 8 elements, all 4 non-essential elements, and all 4 essential elements were 0.92 (95% CI: 0.68-1.25), 1.19 (95% CI: 0.92-1.55), and 0.77 (95% CI: 0.57-1.06). Cadmium had the greatest positive contribution whereas arsenic, copper, and selenium had the greatest negative contributions to the mixture associations. CONCLUSIONS We found some evidence that greater prenatal exposure to cadmium was associated with an increased the risk of bacterial sepsis in extremely preterm infants. However, this risk was counteracted by a combination of arsenic, copper, and selenium. Future studies are needed to confirm these findings and to evaluate the potential for nutritional interventions to prevent sepsis in high-risk infants.
Collapse
Affiliation(s)
- Catherine M. Bulka
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lauren A. Eaves
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Amaree J. Gardner
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Patrick J. Parsons
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY, United States
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, NY, United States
| | - Aubrey L. Galusha
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY, United States
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, NY, United States
| | - Kyle R. Roell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - T. Michael O’Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
38
|
Tan H, Wu J, Zhang R, Zhang C, Li W, Chen Q, Zhang X, Yu H, Shi W. Development, Validation, and Application of a Human Reproductive Toxicity Prediction Model Based on Adverse Outcome Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12391-12403. [PMID: 35960020 DOI: 10.1021/acs.est.2c02242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A growing number of environmental contaminants have been proved to have reproductive toxicity to males and females. However, the unclear toxicological mechanism of reproductive toxicants limits the development of virtual screening methods. By consolidating androgen (AR)-/estrogen receptors (ERs)-mediated adverse outcome pathways (AOPs) with more than 8000 chemical substances, we uncovered relationships between chemical features, a series of pathway-related effects, and reproductive apical outcomes─changes in sex organ weights. An AOP-based computational model named RepTox was developed and evaluated to predict and characterize chemicals' reproductive toxicity for males and females. Results showed that RepTox has three outstanding advantages. (I) Compared with the traditional models (37 and 81% accuracy, respectively), AOP significantly improved the predictive robustness of RepTox (96.3% accuracy). (II) Compared with the application domain (AD) of models based on small in vivo datasets, AOP expanded the ADs of RepTox by 1.65-fold for male and 3.77-fold for female, respectively. (III) RepTox implied that hydrophobicity, cyclopentanol substructure, and several topological indices (e.g., hydrogen-bond acceptors) were important, unbiased features associated with reproductive toxicants. Finally, RepTox was applied to the inventory of existing chemical substances of China and identified 2100 and 7281 potential toxicants to the male and female reproductive systems, respectively.
Collapse
Affiliation(s)
- Haoyue Tan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Jinqiu Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Rong Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Chi Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Wei Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Qinchang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| |
Collapse
|
39
|
Pa J, Aslanyan V, Casaletto KB, Rentería MA, Harrati A, Tom SE, Armstrong N, Rajan K, Avila-Rieger J, Gu Y, Schupf N, Manly JJ, Brickman A, Zahodne L. Effects of Sex, APOE4, and Lifestyle Activities on Cognitive Reserve in Older Adults. Neurology 2022; 99:e789-e798. [PMID: 35858818 PMCID: PMC9484731 DOI: 10.1212/wnl.0000000000200675] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/18/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Lifestyle activities, such as physical activity and cognitive stimulation, may mitigate age-associated cognitive decline, delay dementia onset, and increase cognitive reserve. Whether the association between lifestyle activities and cognitive reserve differs by sex and APOE4 status is an understudied yet critical component for informing targeted prevention strategies. The current study examined interactions between sex and physical or cognitive activities on cognitive reserve for speed and memory in older adults. METHODS Research participants with unimpaired cognition, mild cognitive impairment, or dementia from the Washington Heights-Inwood Columbia Aging Cohort were included in this study. Cognitive reserve scores for speed and memory were calculated by regressing out hippocampal volume, total gray matter volume, and white matter hyperintensity volume from composite cognitive scores for speed and memory, respectively. Self-reported physical activity was assessed using the Godin Leisure Time Exercise Questionnaire, converted to metabolic equivalents (METS). Self-reported cognitive activity (COGACT) was calculated as the sum of 3 yes/no questions. Sex by activity interactions and sex-stratified analyses were conducted using multivariable linear regression models, including a secondary analysis with APOE4 as a moderating factor. RESULTS Seven hundred fifty-eight participants (mean age = 76.11 ± 6.31 years, 62% women) were included in this study. Higher METS was associated with greater speed reserve in women (β = 0.04, CI 0.0-08) but not in men (β = 0.004, CI -0.04 to 0.05). METS was not associated with memory reserve in women or men. More COGACT was associated with greater speed reserve in the cohort (β = 0.13, CI 0.05-0.21). More COGACT had a trend for greater memory reserve in women (β = 0.06, CI -0.02 to 0.14) but not in men (β = -0.04, CI -0.16 to 0.08). Only among women, APOE4 carrier status attenuated relationships between METS and speed reserve (β = -0.09, CI -0.22 to 0.04) and between COGACT and both speed (β = -0.26, CI -0.63 to 0.11) and memory reserves (β = -0.20, CI -0.50.0 to 093). DISCUSSION The associations of self-reported physical and cognitive activities with cognitive reserve are more pronounced in women, although APOE4 attenuates these associations. Future studies are needed to understand the causal relationship among sex, lifestyle activities, and genetic factors on cognitive reserve in older adults to best understand which lifestyle activities may be most beneficial and for whom.
Collapse
Affiliation(s)
- Judy Pa
- From the Alzheimer's Disease Cooperative Study (J.P.), Department of Neurosciences, School of Medicine, UCSD Health, San Diego, CA; Mark and Mary Stevens Neuroimaging and Informatics Institute (J.P., V.A.), USC Alzheimer Disease Research Center, Department of Neurology, University of Southern California, Los Angeles; Department of Population and Public Health Sciences (V.A.), Keck School of Medicine, University of Southern California, Los Angeles; Memory and Aging Center (K.B.C.), Department of Neurology, University of California, San Francisco; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.A.R., J.A.-R., Y.G., N.S., J.J.M., A.B.), Department of Neurology, Columbia University, New York City; Center for Population Health Sciences (A.H.), Department of Primary Care and Population Health, Stanford University, CA; Department of Neurology (S.E.T.), Vagelos College of Physicians and Surgeons and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City; Laboratory of Behavioral Neuroscience (N.A.), National Institute on Aging, Bethesda, MD; Department of Psychiatry and Human Behavior (N.A.), Warren Alpert Medical School of Brown University, Providence, RI; Department of Public Health Sciences (K.R.), University of California, Davis; and Department of Psychology (L.Z.), University of Michigan, Ann Arbor.
| | - Vahan Aslanyan
- From the Alzheimer's Disease Cooperative Study (J.P.), Department of Neurosciences, School of Medicine, UCSD Health, San Diego, CA; Mark and Mary Stevens Neuroimaging and Informatics Institute (J.P., V.A.), USC Alzheimer Disease Research Center, Department of Neurology, University of Southern California, Los Angeles; Department of Population and Public Health Sciences (V.A.), Keck School of Medicine, University of Southern California, Los Angeles; Memory and Aging Center (K.B.C.), Department of Neurology, University of California, San Francisco; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.A.R., J.A.-R., Y.G., N.S., J.J.M., A.B.), Department of Neurology, Columbia University, New York City; Center for Population Health Sciences (A.H.), Department of Primary Care and Population Health, Stanford University, CA; Department of Neurology (S.E.T.), Vagelos College of Physicians and Surgeons and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City; Laboratory of Behavioral Neuroscience (N.A.), National Institute on Aging, Bethesda, MD; Department of Psychiatry and Human Behavior (N.A.), Warren Alpert Medical School of Brown University, Providence, RI; Department of Public Health Sciences (K.R.), University of California, Davis; and Department of Psychology (L.Z.), University of Michigan, Ann Arbor
| | - Kaitlin B Casaletto
- From the Alzheimer's Disease Cooperative Study (J.P.), Department of Neurosciences, School of Medicine, UCSD Health, San Diego, CA; Mark and Mary Stevens Neuroimaging and Informatics Institute (J.P., V.A.), USC Alzheimer Disease Research Center, Department of Neurology, University of Southern California, Los Angeles; Department of Population and Public Health Sciences (V.A.), Keck School of Medicine, University of Southern California, Los Angeles; Memory and Aging Center (K.B.C.), Department of Neurology, University of California, San Francisco; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.A.R., J.A.-R., Y.G., N.S., J.J.M., A.B.), Department of Neurology, Columbia University, New York City; Center for Population Health Sciences (A.H.), Department of Primary Care and Population Health, Stanford University, CA; Department of Neurology (S.E.T.), Vagelos College of Physicians and Surgeons and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City; Laboratory of Behavioral Neuroscience (N.A.), National Institute on Aging, Bethesda, MD; Department of Psychiatry and Human Behavior (N.A.), Warren Alpert Medical School of Brown University, Providence, RI; Department of Public Health Sciences (K.R.), University of California, Davis; and Department of Psychology (L.Z.), University of Michigan, Ann Arbor
| | - Miguel Arce Rentería
- From the Alzheimer's Disease Cooperative Study (J.P.), Department of Neurosciences, School of Medicine, UCSD Health, San Diego, CA; Mark and Mary Stevens Neuroimaging and Informatics Institute (J.P., V.A.), USC Alzheimer Disease Research Center, Department of Neurology, University of Southern California, Los Angeles; Department of Population and Public Health Sciences (V.A.), Keck School of Medicine, University of Southern California, Los Angeles; Memory and Aging Center (K.B.C.), Department of Neurology, University of California, San Francisco; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.A.R., J.A.-R., Y.G., N.S., J.J.M., A.B.), Department of Neurology, Columbia University, New York City; Center for Population Health Sciences (A.H.), Department of Primary Care and Population Health, Stanford University, CA; Department of Neurology (S.E.T.), Vagelos College of Physicians and Surgeons and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City; Laboratory of Behavioral Neuroscience (N.A.), National Institute on Aging, Bethesda, MD; Department of Psychiatry and Human Behavior (N.A.), Warren Alpert Medical School of Brown University, Providence, RI; Department of Public Health Sciences (K.R.), University of California, Davis; and Department of Psychology (L.Z.), University of Michigan, Ann Arbor
| | - Amal Harrati
- From the Alzheimer's Disease Cooperative Study (J.P.), Department of Neurosciences, School of Medicine, UCSD Health, San Diego, CA; Mark and Mary Stevens Neuroimaging and Informatics Institute (J.P., V.A.), USC Alzheimer Disease Research Center, Department of Neurology, University of Southern California, Los Angeles; Department of Population and Public Health Sciences (V.A.), Keck School of Medicine, University of Southern California, Los Angeles; Memory and Aging Center (K.B.C.), Department of Neurology, University of California, San Francisco; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.A.R., J.A.-R., Y.G., N.S., J.J.M., A.B.), Department of Neurology, Columbia University, New York City; Center for Population Health Sciences (A.H.), Department of Primary Care and Population Health, Stanford University, CA; Department of Neurology (S.E.T.), Vagelos College of Physicians and Surgeons and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City; Laboratory of Behavioral Neuroscience (N.A.), National Institute on Aging, Bethesda, MD; Department of Psychiatry and Human Behavior (N.A.), Warren Alpert Medical School of Brown University, Providence, RI; Department of Public Health Sciences (K.R.), University of California, Davis; and Department of Psychology (L.Z.), University of Michigan, Ann Arbor
| | - Sarah E Tom
- From the Alzheimer's Disease Cooperative Study (J.P.), Department of Neurosciences, School of Medicine, UCSD Health, San Diego, CA; Mark and Mary Stevens Neuroimaging and Informatics Institute (J.P., V.A.), USC Alzheimer Disease Research Center, Department of Neurology, University of Southern California, Los Angeles; Department of Population and Public Health Sciences (V.A.), Keck School of Medicine, University of Southern California, Los Angeles; Memory and Aging Center (K.B.C.), Department of Neurology, University of California, San Francisco; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.A.R., J.A.-R., Y.G., N.S., J.J.M., A.B.), Department of Neurology, Columbia University, New York City; Center for Population Health Sciences (A.H.), Department of Primary Care and Population Health, Stanford University, CA; Department of Neurology (S.E.T.), Vagelos College of Physicians and Surgeons and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City; Laboratory of Behavioral Neuroscience (N.A.), National Institute on Aging, Bethesda, MD; Department of Psychiatry and Human Behavior (N.A.), Warren Alpert Medical School of Brown University, Providence, RI; Department of Public Health Sciences (K.R.), University of California, Davis; and Department of Psychology (L.Z.), University of Michigan, Ann Arbor
| | - Nicole Armstrong
- From the Alzheimer's Disease Cooperative Study (J.P.), Department of Neurosciences, School of Medicine, UCSD Health, San Diego, CA; Mark and Mary Stevens Neuroimaging and Informatics Institute (J.P., V.A.), USC Alzheimer Disease Research Center, Department of Neurology, University of Southern California, Los Angeles; Department of Population and Public Health Sciences (V.A.), Keck School of Medicine, University of Southern California, Los Angeles; Memory and Aging Center (K.B.C.), Department of Neurology, University of California, San Francisco; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.A.R., J.A.-R., Y.G., N.S., J.J.M., A.B.), Department of Neurology, Columbia University, New York City; Center for Population Health Sciences (A.H.), Department of Primary Care and Population Health, Stanford University, CA; Department of Neurology (S.E.T.), Vagelos College of Physicians and Surgeons and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City; Laboratory of Behavioral Neuroscience (N.A.), National Institute on Aging, Bethesda, MD; Department of Psychiatry and Human Behavior (N.A.), Warren Alpert Medical School of Brown University, Providence, RI; Department of Public Health Sciences (K.R.), University of California, Davis; and Department of Psychology (L.Z.), University of Michigan, Ann Arbor
| | - Kumar Rajan
- From the Alzheimer's Disease Cooperative Study (J.P.), Department of Neurosciences, School of Medicine, UCSD Health, San Diego, CA; Mark and Mary Stevens Neuroimaging and Informatics Institute (J.P., V.A.), USC Alzheimer Disease Research Center, Department of Neurology, University of Southern California, Los Angeles; Department of Population and Public Health Sciences (V.A.), Keck School of Medicine, University of Southern California, Los Angeles; Memory and Aging Center (K.B.C.), Department of Neurology, University of California, San Francisco; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.A.R., J.A.-R., Y.G., N.S., J.J.M., A.B.), Department of Neurology, Columbia University, New York City; Center for Population Health Sciences (A.H.), Department of Primary Care and Population Health, Stanford University, CA; Department of Neurology (S.E.T.), Vagelos College of Physicians and Surgeons and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City; Laboratory of Behavioral Neuroscience (N.A.), National Institute on Aging, Bethesda, MD; Department of Psychiatry and Human Behavior (N.A.), Warren Alpert Medical School of Brown University, Providence, RI; Department of Public Health Sciences (K.R.), University of California, Davis; and Department of Psychology (L.Z.), University of Michigan, Ann Arbor
| | - Justina Avila-Rieger
- From the Alzheimer's Disease Cooperative Study (J.P.), Department of Neurosciences, School of Medicine, UCSD Health, San Diego, CA; Mark and Mary Stevens Neuroimaging and Informatics Institute (J.P., V.A.), USC Alzheimer Disease Research Center, Department of Neurology, University of Southern California, Los Angeles; Department of Population and Public Health Sciences (V.A.), Keck School of Medicine, University of Southern California, Los Angeles; Memory and Aging Center (K.B.C.), Department of Neurology, University of California, San Francisco; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.A.R., J.A.-R., Y.G., N.S., J.J.M., A.B.), Department of Neurology, Columbia University, New York City; Center for Population Health Sciences (A.H.), Department of Primary Care and Population Health, Stanford University, CA; Department of Neurology (S.E.T.), Vagelos College of Physicians and Surgeons and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City; Laboratory of Behavioral Neuroscience (N.A.), National Institute on Aging, Bethesda, MD; Department of Psychiatry and Human Behavior (N.A.), Warren Alpert Medical School of Brown University, Providence, RI; Department of Public Health Sciences (K.R.), University of California, Davis; and Department of Psychology (L.Z.), University of Michigan, Ann Arbor
| | - Yian Gu
- From the Alzheimer's Disease Cooperative Study (J.P.), Department of Neurosciences, School of Medicine, UCSD Health, San Diego, CA; Mark and Mary Stevens Neuroimaging and Informatics Institute (J.P., V.A.), USC Alzheimer Disease Research Center, Department of Neurology, University of Southern California, Los Angeles; Department of Population and Public Health Sciences (V.A.), Keck School of Medicine, University of Southern California, Los Angeles; Memory and Aging Center (K.B.C.), Department of Neurology, University of California, San Francisco; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.A.R., J.A.-R., Y.G., N.S., J.J.M., A.B.), Department of Neurology, Columbia University, New York City; Center for Population Health Sciences (A.H.), Department of Primary Care and Population Health, Stanford University, CA; Department of Neurology (S.E.T.), Vagelos College of Physicians and Surgeons and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City; Laboratory of Behavioral Neuroscience (N.A.), National Institute on Aging, Bethesda, MD; Department of Psychiatry and Human Behavior (N.A.), Warren Alpert Medical School of Brown University, Providence, RI; Department of Public Health Sciences (K.R.), University of California, Davis; and Department of Psychology (L.Z.), University of Michigan, Ann Arbor
| | - Nicole Schupf
- From the Alzheimer's Disease Cooperative Study (J.P.), Department of Neurosciences, School of Medicine, UCSD Health, San Diego, CA; Mark and Mary Stevens Neuroimaging and Informatics Institute (J.P., V.A.), USC Alzheimer Disease Research Center, Department of Neurology, University of Southern California, Los Angeles; Department of Population and Public Health Sciences (V.A.), Keck School of Medicine, University of Southern California, Los Angeles; Memory and Aging Center (K.B.C.), Department of Neurology, University of California, San Francisco; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.A.R., J.A.-R., Y.G., N.S., J.J.M., A.B.), Department of Neurology, Columbia University, New York City; Center for Population Health Sciences (A.H.), Department of Primary Care and Population Health, Stanford University, CA; Department of Neurology (S.E.T.), Vagelos College of Physicians and Surgeons and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City; Laboratory of Behavioral Neuroscience (N.A.), National Institute on Aging, Bethesda, MD; Department of Psychiatry and Human Behavior (N.A.), Warren Alpert Medical School of Brown University, Providence, RI; Department of Public Health Sciences (K.R.), University of California, Davis; and Department of Psychology (L.Z.), University of Michigan, Ann Arbor
| | - Jennifer J Manly
- From the Alzheimer's Disease Cooperative Study (J.P.), Department of Neurosciences, School of Medicine, UCSD Health, San Diego, CA; Mark and Mary Stevens Neuroimaging and Informatics Institute (J.P., V.A.), USC Alzheimer Disease Research Center, Department of Neurology, University of Southern California, Los Angeles; Department of Population and Public Health Sciences (V.A.), Keck School of Medicine, University of Southern California, Los Angeles; Memory and Aging Center (K.B.C.), Department of Neurology, University of California, San Francisco; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.A.R., J.A.-R., Y.G., N.S., J.J.M., A.B.), Department of Neurology, Columbia University, New York City; Center for Population Health Sciences (A.H.), Department of Primary Care and Population Health, Stanford University, CA; Department of Neurology (S.E.T.), Vagelos College of Physicians and Surgeons and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City; Laboratory of Behavioral Neuroscience (N.A.), National Institute on Aging, Bethesda, MD; Department of Psychiatry and Human Behavior (N.A.), Warren Alpert Medical School of Brown University, Providence, RI; Department of Public Health Sciences (K.R.), University of California, Davis; and Department of Psychology (L.Z.), University of Michigan, Ann Arbor
| | - Adam Brickman
- From the Alzheimer's Disease Cooperative Study (J.P.), Department of Neurosciences, School of Medicine, UCSD Health, San Diego, CA; Mark and Mary Stevens Neuroimaging and Informatics Institute (J.P., V.A.), USC Alzheimer Disease Research Center, Department of Neurology, University of Southern California, Los Angeles; Department of Population and Public Health Sciences (V.A.), Keck School of Medicine, University of Southern California, Los Angeles; Memory and Aging Center (K.B.C.), Department of Neurology, University of California, San Francisco; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.A.R., J.A.-R., Y.G., N.S., J.J.M., A.B.), Department of Neurology, Columbia University, New York City; Center for Population Health Sciences (A.H.), Department of Primary Care and Population Health, Stanford University, CA; Department of Neurology (S.E.T.), Vagelos College of Physicians and Surgeons and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City; Laboratory of Behavioral Neuroscience (N.A.), National Institute on Aging, Bethesda, MD; Department of Psychiatry and Human Behavior (N.A.), Warren Alpert Medical School of Brown University, Providence, RI; Department of Public Health Sciences (K.R.), University of California, Davis; and Department of Psychology (L.Z.), University of Michigan, Ann Arbor
| | - Laura Zahodne
- From the Alzheimer's Disease Cooperative Study (J.P.), Department of Neurosciences, School of Medicine, UCSD Health, San Diego, CA; Mark and Mary Stevens Neuroimaging and Informatics Institute (J.P., V.A.), USC Alzheimer Disease Research Center, Department of Neurology, University of Southern California, Los Angeles; Department of Population and Public Health Sciences (V.A.), Keck School of Medicine, University of Southern California, Los Angeles; Memory and Aging Center (K.B.C.), Department of Neurology, University of California, San Francisco; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.A.R., J.A.-R., Y.G., N.S., J.J.M., A.B.), Department of Neurology, Columbia University, New York City; Center for Population Health Sciences (A.H.), Department of Primary Care and Population Health, Stanford University, CA; Department of Neurology (S.E.T.), Vagelos College of Physicians and Surgeons and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City; Laboratory of Behavioral Neuroscience (N.A.), National Institute on Aging, Bethesda, MD; Department of Psychiatry and Human Behavior (N.A.), Warren Alpert Medical School of Brown University, Providence, RI; Department of Public Health Sciences (K.R.), University of California, Davis; and Department of Psychology (L.Z.), University of Michigan, Ann Arbor
| |
Collapse
|
40
|
Akwo EA, Chen HC, Liu G, Triozzi JL, Tao R, Yu Z, Chung CP, Giri A, Ikizler TA, Stein CM, Siew ED, Feng Q, Robinson-Cohen C, Hung AM. Phenome-Wide Association Study of UMOD Gene Variants and Differential Associations With Clinical Outcomes Across Populations in the Million Veteran Program a Multiethnic Biobank. Kidney Int Rep 2022; 7:1802-1818. [PMID: 35967117 PMCID: PMC9366371 DOI: 10.1016/j.ekir.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/22/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Common variants in the UMOD gene are considered an evolutionary adaptation against urinary tract infections (UTIs) and have been implicated in kidney stone formation, chronic kidney disease (CKD), and hypertension. However, differences in UMOD variant-phenotype associations across population groups are unclear. Methods We tested associations between UMOD/PDILT variants and up to 1528 clinical diagnosis codes mapped to phenotype groups in the Million Veteran Program (MVP), using published phenome-wide association study (PheWAS) methodology. Associations were tested using logistic regression adjusted for age, sex, and 10 principal components of ancestry. Bonferroni correction for multiple comparisons was applied. Results Among 648,593 veterans, mean (SD) age was 62 (14) years; 9% were female, 19% Black, and 8% Hispanic. In White patients, the rs4293393 UMOD risk variant associated with increased uromodulin was associated with increased odds of CKD (odds ratio [OR]: 1.22, 95% CI: 1.20-1.24, P = 5.90 × 10-111), end-stage kidney disease (OR: 1.17, 95% CI: 1.11-1.24, P = 2.40 × 10-09), and hypertension (OR: 1.03, 95% CI: 1.05-1.05, P = 2.11 × 10-06) and significantly lower odds of UTIs (OR: 0.94, 95% CI: 0.92-0.96, P = 1.21 × 10-10) and kidney calculus (OR: 0.85, 95% CI: 0.83-0.86, P = 4.27 × 10-69). Similar findings were observed across UMOD/PDILT variants. The rs77924615 PDILT variant had stronger associations with acute cystitis in White female (OR: 0.73, 95% CI: 0.59-0.91, P = 4.98 × 10-03) versus male (OR: 0.99, 95% CI: 0.89-1.11, P = 8.80 × 10-01) (P interaction = 0.01) patients. In Black patients, the rs77924615 PDILT variant was significantly associated with pyelonephritis (OR: 0.65, 95% CI: 0.54-0.79, P = 1.05 × 10-05), whereas associations with UMOD promoter variants were attenuated. Conclusion Robust associations were observed between UMOD/PDILT variants linked with increased uromodulin expression and lower odds of UTIs and calculus and increased odds of CKD and hypertension. However, these associations varied significantly across ancestry groups and sex.
Collapse
Affiliation(s)
- Elvis A. Akwo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Center for Kidney Disease, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Hua-Chang Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ge Liu
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jefferson L. Triozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Genetics Institute, Nashville, Tennessee, USA
| | - Zhihong Yu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cecilia P. Chung
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Vanderbilt Genetics Institute, Nashville, Tennessee, USA
- Division of Rheumatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ayush Giri
- Vanderbilt Genetics Institute, Nashville, Tennessee, USA
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - T. Alp Ikizler
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Center for Kidney Disease, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - C. Michael Stein
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Edward D. Siew
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Center for Kidney Disease, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - QiPing Feng
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cassianne Robinson-Cohen
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Center for Kidney Disease, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Adriana M. Hung
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Center for Kidney Disease, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - the VA Million Veteran Program12
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Center for Kidney Disease, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Genetics Institute, Nashville, Tennessee, USA
- Division of Rheumatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
41
|
Akwo E, Pike MM, Ertuglu LA, Vartanian N, Farber-Eger E, Lipworth L, Perwad F, Siew E, Hung A, Bansal N, de Boer I, Kestenbaum B, Cox NJ, Ikizler TA, Wells Q, Robinson-Cohen C. Association of Genetically Predicted Fibroblast Growth Factor-23 with Heart Failure: A Mendelian Randomization Study. Clin J Am Soc Nephrol 2022; 17:1183-1193. [PMID: 35902130 PMCID: PMC9435988 DOI: 10.2215/cjn.00960122] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/31/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Elevated fibroblast growth factor-23 (FGF23) has been consistently associated with heart failure, particularly heart failure with preserved ejection fraction, among patients with CKD and in the general population. FGF23 may directly induce cardiac remodeling and heart failure. However, biases affecting observational studies impede robust causal inferences. Mendelian randomization leverages genetic determinants of a risk factor to examine causality. We performed a two-sample Mendelian randomization to assess causal associations between FGF23 and heart failure. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Genetic instruments were genome-wide significant genetic variants associated with FGF23, including variants near PIP5K1B, RGS14, LINC01229, and CYP24A1. We analyzed data from the Heart Failure Molecular Epidemiology for Therapeutic Targets and BioVU biobanks to examine associations of the four variants with overall heart failure, heart failure with preserved ejection fraction, and heart failure with reduced and mid-range ejection fraction. We developed an eGFR polygenic risk score using summary statistics from the Chronic Kidney Disease Genetics Consortium (CKDGen) genome-wide association study of eGFR in >1 million individuals and performed stratified analyses across eGFR polygenic risk score strata. RESULTS Genetically determined FGF23 was not associated with overall heart failure in the Heart Failure Molecular Epidemiology for Therapeutic Targets consortium (odds ratio, 1.13; 95% confidence interval, 0.89 to 1.42 per unit higher genetically predicted log FGF23) and the full BioVU sample (odds ratio, 1.32; 95% confidence interval, 0.95 to 1.84). In stratified analyses in BioVU, higher FGF23 was associated with overall heart failure (odds ratio, 3.09; 95% confidence interval, 1.38 to 6.91) among individuals with low eGFR-polygenic risk score (<1 SD below the mean), but not those with high eGFR-polygenic risk score (P interaction = 0.02). Higher FGF23 was also associated with heart failure with preserved ejection fraction among all BioVU participants (odds ratio, 1.47; 95% confidence interval, 1.01 to 2.14) and individuals with low eGFR-polygenic risk score (odds ratio, 7.20; 95% confidence interval, 2.80 to 18.49), but not those high eGFR-polygenic risk score (P interaction = 2.25 × 10-4). No significant associations were observed with heart failure with reduced and midrange ejection fraction. CONCLUSION We found no association between genetically predicted FGF23 and heart failure in the Heart Failure Molecular Epidemiology for Therapeutic Targets consortium. In BioVU, genetically elevated FGF23 was associated with higher heart failure risk, specifically heart failure with preserved ejection fraction, particularly among individuals with low genetically predicted eGFR. PODCAST This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2022_07_28_CJN00960122.mp3.
Collapse
Affiliation(s)
- Elvis Akwo
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mindy M. Pike
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee,Division of Cardiovascular Medicine, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lale A. Ertuglu
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nicholas Vartanian
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eric Farber-Eger
- Division of Cardiovascular Medicine, Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, Tennessee,Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Loren Lipworth
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee,Division of Cardiovascular Medicine, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Farzana Perwad
- Division of Pediatric Nephrology, University of California San Francisco, San Francisco, California
| | - Edward Siew
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee,Division of Nephrology, Vanderbilt Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Adriana Hung
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee,Division of Nephrology, Vanderbilt Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Nisha Bansal
- Division of Nephrology, Vanderbilt Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Ian de Boer
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Bryan Kestenbaum
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Nancy J. Cox
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - T. Alp Ikizler
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Quinn Wells
- Division of Cardiovascular Medicine, Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, Tennessee,Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | |
Collapse
|
42
|
Tilves C, Yeh HC, Maruthur N, Juraschek SP, Miller E, White K, Appel LJ, Mueller NT. Increases in Circulating and Fecal Butyrate are Associated With Reduced Blood Pressure and Hypertension: Results From the SPIRIT Trial. J Am Heart Assoc 2022; 11:e024763. [PMID: 35730613 PMCID: PMC9333372 DOI: 10.1161/jaha.121.024763] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Short chain fatty acids (SCFAs) are microbially derived end products of dietary fiber fermentation. The SCFA butyrate reduces blood pressure (BP) in mouse models. The association of SCFAs, including butyrate, with BP in humans is unclear, due in part to predominantly cross-sectional analyses and different biospecimens (blood versus fecal) for SCFA measurement. Longitudinal studies including both circulating and fecal SCFAs are lacking. Methods and Results We leveraged existing data from the SPIRIT (Survivorship Promotion In Reducing IGF-1 Trial), which randomized 121 adult cancer survivors with overweight/obesity to a behavioral weight-loss intervention, metformin, or self-directed weight-loss. Of participants with baseline serum and fecal SCFAs measured (n=111), a subset had serum (n=93) and fecal (n=89) SCFA measurements 12 months later. We used Poisson regression with robust error variance to estimate baseline associations of SCFAs with hypertension, and we assessed the percent change in SCFAs from baseline with corresponding 12-month changes in BP using multiple linear regression. Baseline fecal butyrate was inversely associated with prevalent hypertension (standardized PR [95%CI]: 0.71 [0.54, 0.92]). A 10% increase in fecal butyrate from baseline was associated with decreased systolic BP (β [95%CI]: -0.56 [-1.01, -0.10] mm Hg), and a 10% increase in serum butyrate was associated with decreased systolic (β [95%CI]: -1.39 [-2.15, -0.63] mm Hg) and diastolic (β [95%CI]: -0.55 [-1.03, -0.08] mm Hg) BPs. Butyrate associations with systolic BP were linear and not modified by sex, race, or intervention arm. Conclusions Increased serum or fecal butyrate is associated with lowered BP. Butyrate may be a target for SCFA-centered BP-lowering interventions. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT02431676.
Collapse
Affiliation(s)
- Curtis Tilves
- Department of Epidemiology Johns Hopkins University Bloomberg School of Public Health Baltimore MD.,Welch Center for Prevention, Epidemiology, and Clinical Research Johns Hopkins University Baltimore MD
| | - Hsin-Chieh Yeh
- Welch Center for Prevention, Epidemiology, and Clinical Research Johns Hopkins University Baltimore MD
| | - Nisa Maruthur
- Welch Center for Prevention, Epidemiology, and Clinical Research Johns Hopkins University Baltimore MD
| | - Stephen P Juraschek
- Division of General Medicine and Primary Care Beth Israel Deaconess Medical Center Boston MA
| | - Edgar Miller
- Department of Epidemiology Johns Hopkins University Bloomberg School of Public Health Baltimore MD.,Welch Center for Prevention, Epidemiology, and Clinical Research Johns Hopkins University Baltimore MD
| | - Karen White
- Welch Center for Prevention, Epidemiology, and Clinical Research Johns Hopkins University Baltimore MD
| | - Lawrence J Appel
- Department of Epidemiology Johns Hopkins University Bloomberg School of Public Health Baltimore MD.,Welch Center for Prevention, Epidemiology, and Clinical Research Johns Hopkins University Baltimore MD
| | - Noel T Mueller
- Department of Epidemiology Johns Hopkins University Bloomberg School of Public Health Baltimore MD.,Welch Center for Prevention, Epidemiology, and Clinical Research Johns Hopkins University Baltimore MD
| |
Collapse
|
43
|
McGuinn LA, Tamayo-Ortiz M, Rosa MJ, Harari H, Osorio-Valencia E, Schnaas L, Hernandez-Chavez C, Wright RJ, Klein DN, Téllez-Rojo MM, Wright RO. The influence of maternal anxiety and cortisol during pregnancy on childhood anxiety symptoms. Psychoneuroendocrinology 2022; 139:105704. [PMID: 35286908 PMCID: PMC8977283 DOI: 10.1016/j.psyneuen.2022.105704] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The etiology of child and adolescent anxiety remains poorly understood. Although several previous studies have examined associations between prenatal maternal psychological functioning and infant and child health outcomes, less is known about the impact of maternal anxiety specific to pregnancy and cortisol during pregnancy on childhood anxiety outcomes. METHODS Participants included 496 mother-child pairs from the PROGRESS longitudinal birth cohort in Mexico City. Anxiety symptoms were assessed at age 8-11 years during 2018-2019 using the Revised Children's Manifest Anxiety Scale. Pregnancy-specific anxiety was assessed using an expanded version of the Pregnancy Anxiety Scale. Maternal biological stress response during pregnancy was assessed using salivary cortisol measures (area under the curve, cortisol awakening response, and diurnal slope). Linear regression models were used to estimate associations between maternal anxiety and cortisol in relation to continuous child anxiety symptom T-scores. Models were adjusted for maternal age, socioeconomic status, child sex and age, and gestational age at saliva collection. RESULTS We found that higher levels of pregnancy-specific anxiety in the mother were associated with higher anxiety symptoms in the child (β: 1.30, 95% CI: 0.19, 2.41). We additionally observed an association between higher maternal total cortisol output during pregnancy and higher anxiety symptoms in the child (β: 1.13, 95% CI: 0.25, 2.01). DISCUSSION These findings highlight the importance of screening for maternal pregnancy-specific anxiety and the need to identify interventions and support for mothers during pregnancy in order to promote healthy outcomes for mothers and their children.
Collapse
Affiliation(s)
- Laura A McGuinn
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Marcela Tamayo-Ortiz
- Occupational Health Research Unit, Mexican Institute of Social Security (IMSS), Mexico City, Mexico
| | - Maria José Rosa
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Homero Harari
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Kravis Children's Hospital, Department of Pediatrics, Division of Pediatric Pulmonology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel N Klein
- Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Martha Maria Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
44
|
Bezzina A, Ashton L, Watson T, James CL. Workplace wellness programs targeting weight outcomes in men: A scoping review. Obes Rev 2022; 23:e13410. [PMID: 35076133 DOI: 10.1111/obr.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 11/28/2022]
Abstract
Workplaces have been identified as a priority setting for the delivery of wellness programs to address risk factors for overweight and obesity. Men in particular may benefit greatly from these types of programs as they are typically harder to engage in health promotion. A scoping review was performed to provide an overview of interventions that have been implemented within the workplace that target weight outcomes in men. A searched of six electronic databases (Medline, Embase, CINAHL, Scopus, Cochrane Database of Systematic Review, and Business Source Ultimate) was conducted from January 2010 to August 2020. Of the 2191 articles identified, 25 were included. The majority took place in North America or Europe (72%). Over half (n = 17, 68%) utilized both a nutrition and physical activity component. Thirteen of the 19 articles (68%) that reported weight as an outcome showed the program to be efficacious in reducing weight. Overall, only seven articles were solely focused on an all-male population. Workplace wellness programs targeting weight outcomes in men have been conducted to some extent, with majority being successful in reducing weight. However, there is a need for more randomized controlled trials (RCTs), long-term follow-up, and male-only programs.
Collapse
Affiliation(s)
- Aaron Bezzina
- Centre for Resources Health and Safety, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, Australia.,School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, Australia
| | - Lee Ashton
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, Australia.,Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan, Australia.,School of Education, College of Human and Social Futures, University of Newcastle, Callaghan, Australia
| | - Trent Watson
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, Australia.,Ethos Health, Newcastle West, Australia
| | - Carole L James
- Centre for Resources Health and Safety, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, Australia.,School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, Australia
| |
Collapse
|
45
|
Xie X, Wan Y, Zhu B, Liu Q, Zhu K, Jiang Q, Feng Y, Xiao P, Wu X, Zhang J, Meng H, Song R. Association between urinary dialkylphosphate metabolites and dyslexia among children from three cities of China: The READ program. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:151852. [PMID: 34826485 DOI: 10.1016/j.scitotenv.2021.151852] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/28/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Exposure to organophosphate (OP) insecticides has been found to be related to neurodevelopmental disorders in children. However, no study has examined the association between OP insecticide exposure and the risk of dyslexia among children. We aimed to explore the association between OP insecticide exposure, indicated by urinary dialkylphosphate metabolites (DAPs), and the risk of dyslexia among Chinese Han children from three cities. A total of 845 children (422 dyslexics and 423 non-dyslexics) from Tongji Reading Environment and Dyslexia research program were included in the current case-control study. We measured six DAPs in urine samples, collected from November 2017 to December 2020. Logistic regression models were used to estimate odds ratios (ORs) for the association between DAPs and dyslexia risk, adjusting for potential confounders. The detection frequencies of DAPs were above 97.5%, except for diethyldithiophosphate and dimethyldithiophosphate. Diethyl phosphate metabolites (DEs) were significantly associated with the risk of dyslexia. Compared with the lowest quartile, the adjusted ORs of dyslexia risk for the highest quartile of urinary diethylthiophosphate (DETP) and diethylphosphate (DEP) were 1.82 (1.04, 3.20) and 1.85 (1.08, 3.17), respectively. In addition, the adjusted ORs for dyslexia per 10-fold of urinary DEP, DETP, and ∑DEs concentration were 1.87 (1.12, 3.13), 1.55 (1.03, 2.35), and 1.91 (1.13, 3.21), respectively. Analyses stratified by gender indicated that such associations were more significant among boys. This study suggested that exposure to OP insecticides may be related to dyslexia among Chinese Han children from the three studied cities. However, our results should be interpreted with caution because of the case-control design and the fact that only one-spot urine sample was collected from the children. More studies with children living in China are necessary concerning the relatively high levels of urinary OP metabolites in our study.
Collapse
Affiliation(s)
- Xinyan Xie
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, China.
| | - Bing Zhu
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Qi Liu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaiheng Zhu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Jiang
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanan Feng
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Xiao
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqian Wu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Heng Meng
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ranran Song
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
46
|
Ho V, Pelland-St-Pierre L, Gravel S, Bouchard MF, Verner MA, Labrèche F. Endocrine disruptors: Challenges and future directions in epidemiologic research. ENVIRONMENTAL RESEARCH 2022; 204:111969. [PMID: 34461123 DOI: 10.1016/j.envres.2021.111969] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Public concern about the impact of endocrine disrupting chemicals (EDCs) on both humans and the environment is growing steadily. Epidemiologic research provides key information towards our understanding of the relationship between environmental exposures like EDCs and human health outcomes. Intended for researchers in disciplines complementary to epidemiology, this paper highlights the importance and challenges of epidemiologic research in order to present the key elements pertaining to the design and interpretation of an epidemiologic study on EDCs. The conduct of observational studies on EDCs derives from a thoughtful research question, which will help determine the subsequent methodological choices surrounding the careful selection of the study population (including the comparison group), the adequate ascertainment of exposure(s) and outcome(s) of interest, and the application of methodological and statistical concepts more specific to epidemiology. The interpretation of epidemiologic results may be arduous due to the latency occurring between EDC exposure and certain outcome(s), the complexity in capturing EDC exposure(s), and traditional methodological and statistical issues that also deserve consideration (e.g., confounding, effect modification, non-monotonic responses). Moving forward, we strongly advocate for an integrative approach of expertise in the fields of epidemiology, exposure science, risk assessment and toxicology to adequately study the health risks associated with EDCs while tackling their challenges.
Collapse
Affiliation(s)
- V Ho
- Health Innovation and Evaluation Hub, Université de Montréal Hospital Research Centre (CRCHUM), Montréal, Québec, Canada; Department of Social and Preventive Medicine, School of Public Health (ESPUM), Université de Montréal, Montréal, Québec, Canada.
| | - L Pelland-St-Pierre
- Health Innovation and Evaluation Hub, Université de Montréal Hospital Research Centre (CRCHUM), Montréal, Québec, Canada; Department of Social and Preventive Medicine, School of Public Health (ESPUM), Université de Montréal, Montréal, Québec, Canada; Centre de recherche en santé publique (CReSP), Université de Montréal and CIUSSS Centre-Sud, Montréal, Québec, Canada
| | - S Gravel
- . Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Montréal, Québec, Canada
| | - M F Bouchard
- Department of Environmental and Occupational Health, School of Public Health (ESPUM), Université de Montréal, Montréal, Québec, Canada; CHU Sainte-Justine Hospital Research Center, Montréal, Québec, Canada
| | - M-A Verner
- Centre de recherche en santé publique (CReSP), Université de Montréal and CIUSSS Centre-Sud, Montréal, Québec, Canada; Department of Environmental and Occupational Health, School of Public Health (ESPUM), Université de Montréal, Montréal, Québec, Canada
| | - F Labrèche
- Centre de recherche en santé publique (CReSP), Université de Montréal and CIUSSS Centre-Sud, Montréal, Québec, Canada; . Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Montréal, Québec, Canada; Department of Environmental and Occupational Health, School of Public Health (ESPUM), Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
47
|
Choi JY, Lee J, Huh DA, Moon KW. Urinary bisphenol concentrations and its association with metabolic disorders in the US and Korean populations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118679. [PMID: 34915096 DOI: 10.1016/j.envpol.2021.118679] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Bisphenol A (BPA) is a representative endocrine disrupting compound used in a vast array of consumer products, and are being frequently substituted by its analogues, bisphenol S (BPS) and bisphenol F (BPF). We aimed to examine the association between urinary bisphenol levels with obesity and lipid profiles in the general population to comprehensively evaluate its potential of metabolic disturbance. A representative sample of 1046 US adults from the National Health and Nutrition Examination Survey (2013-2016) and 3268 Korean adults from the Korean National Environmental Health Survey (2015-2017) was analyzed. We examined the exposure levels of bisphenols and determined their associations with obesity, high-density lipoprotein cholesterol (HDL-C) and triglyceride (TG) levels, and hypercholesterolemia prevalence through multiple linear, and binary/ordinal logistic regression models. In both populations, high BPA levels (lowest tertile vs. 2nd, 3rd tertiles) showed corresponding associations with lipid profile and obesity. BPA levels were associated with decreased HDL-C levels (Q3: β = -0.053, p = 0.08 (US); Q2: β = -0.030, p-0.03), increased TG levels (Q3: β = 0.121, p = 0.029 (US); Q3: β = 0.089, p = 0.021, and higher odds for obesity (Q3: OR = 1.58, 95% CI: 1.06, 2.35 (US); Q3: OR = 1.41, 95% CI: 1.11, 1.78). Higher BPS levels were positively associated with obesity status, especially in US men (Q2: OR = 1.84, 95% CI: 1.15, 2.96) and Korean women (Q3: OR = 1.27, 95% CI: 0.99, 1.64). A significant decrease in HDL-C (Q3: β = -0.088, p = 0.01) and elevated odds for obesity at higher BPF levels (Q3: OR = 1.60, 95% CI: 1.00, 2.56) was observed in US women. The findings of our study indicate that BPA and its analogues, BPS and BPF, are associated with lipid metabolism disorders in addition to obesity in adults. Given the increase in exposure to BPA alternatives, continuous biomonitoring, and further investigation of their health effects through prospective cohort studies are warranted.
Collapse
Affiliation(s)
- Ji Yoon Choi
- Department of Health and Safety Convergence Science, Graduate School at Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jiyun Lee
- Department of Health and Safety Convergence Science, Graduate School at Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea; BK21 FOUR R&E Center for Learning Health System, Graduate School at Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Da-An Huh
- Institute of Health Sciences, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kyong Whan Moon
- Department of Health and Safety Convergence Science, Graduate School at Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea; BK21 FOUR R&E Center for Learning Health System, Graduate School at Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
48
|
Duarte CDP, Wannier SR, Cohen AK, Glymour MM, Ream RK, Yen IH, Vable AM. Lifecourse Educational Trajectories and Hypertension in Midlife: An Application of Sequence Analysis. J Gerontol A Biol Sci Med Sci 2022; 77:383-391. [PMID: 34455437 PMCID: PMC8824562 DOI: 10.1093/gerona/glab249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Higher educational attainment predicts lower hypertension. Yet, associations between nontraditional educational trajectories (eg, interrupted degree programs) and hypertension are less well understood, particularly among structurally marginalized groups who are more likely to experience these non-traditional trajectories. METHODS In National Longitudinal Survey of Youth 1979 cohort data (N = 6 317), we used sequence and cluster analyses to identify groups of similar educational sequences-characterized by timing and type of terminal credential-that participants followed from age 14-48 years. Using logistic regression, we estimated associations between the resulting 10 educational sequences and hypertension at age 50. We evaluated effect modification by individual-level indicators of structural marginalization (race, gender, race and gender, and childhood socioeconomic status [cSES]). RESULTS Compared to terminal high school (HS) diploma completed at traditional age, terminal GED (OR: 1.32; 95%CI: 1.04, 1.66) or Associate degree after CONCLUSIONS Both type and timing to terminal credential matter for hypertension but effects may vary by experiences of structural marginalization. Documenting the nuanced ways in which complex educational trajectories are associated with health could elucidate underlying mechanisms and inform systems-level interventions for health equity.
Collapse
Affiliation(s)
- Catherine dP Duarte
- Division of Epidemiology, School of Public Health, University of California Berkeley, USA
| | - S Rae Wannier
- Department of Epidemiology and Biostatistics, University of California San Francisco, USA
| | - Alison K Cohen
- Department of Epidemiology and Biostatistics, University of California San Francisco, USA
| | - M Maria Glymour
- Department of Epidemiology and Biostatistics, University of California San Francisco, USA
| | - Robert K Ream
- Graduate School of Education, University of California Riverside, USA
| | - Irene H Yen
- Department of Public Health, School of Social Sciences, Humanities, and Arts, University of California Merced, USA
| | - Anusha M Vable
- Department of Family and Community Medicine, University of California San Francisco, USA
| |
Collapse
|
49
|
Gajjar P, Liu Y, Li N, Buckley JP, Chen A, Lanphear BP, Kalkwarf HJ, Cecil KM, Yolton K, Braun JM. Associations of mid-childhood bisphenol A and bisphenol S exposure with mid-childhood and adolescent obesity. Environ Epidemiol 2022; 6:e187. [PMID: 35169665 PMCID: PMC8835638 DOI: 10.1097/ee9.0000000000000187] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/26/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Bisphenol A (BPA) is a suspected obesogen that has been associated with adiposity in children. Bisphenol S (BPS), a structural analog of BPA, is used as a BPA substitute and may have similar health effects as BPA. However, few studies have examined whether BPS is associated with childhood adiposity. METHODS We quantified urinary BPA and BPS concentrations in 212 children age 8 years from the HOME Study, a prospective pregnancy and birth cohort study that enrolled pregnant women in Cincinnati, Ohio (2003-2006). We assessed children's adiposity by bioelectric impedance at age 8 years (n = 212), and by anthropometry and dual-energy X-ray absorptiometry at age 12 years (n = 181). We measured serum adipocytokine concentrations at age 12 years (n = 155). Using multivariable linear regression, we estimated covariate-adjusted associations of BPA and BPS with adiposity measures at ages 8 and 12 years and adipocytokine concentrations at age 12 years. RESULTS Each 10-fold increase in urinary BPA concentrations were inversely associated with percent body fat at age 8 years [β = -1.2, 95% confidence interval (CI) = -3.4, 1.0] and 12 years (β = -1.6, 95% CI = -4.0, 0.9). In contrast, urinary BPS concentrations were positively associated with percent body fat at age 8 years (β = 1.1, 95% CI = -0.6, 2.7), but not at 12 years (β = 0.1, 95% CI = -1.7, 1.8). Urinary BPA and BPS concentrations were not associated with serum adiponectin or leptin concentrations. CONCLUSIONS We did not observe evidence that urinary BPA or BPS concentrations during childhood were associated with greater child adiposity at ages 8 and 12 years in this cohort.
Collapse
Affiliation(s)
- Priya Gajjar
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island
| | - Yun Liu
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island
| | - Nan Li
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island
| | - Jessie P. Buckley
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Aimin Chen
- Department of Biostatistics, Epidemiology & Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Bruce P. Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Heidi J. Kalkwarf
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kim M. Cecil
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Joseph M. Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island
| |
Collapse
|
50
|
Freedman AA, Papachristos AV, Smart BP, Keenan-Devlin LS, Khan SS, Borders A, Kershaw KN, Miller GE. Complaints about excessive use of police force in women's neighborhoods and subsequent perinatal and cardiovascular health. SCIENCE ADVANCES 2022; 8:eabl5417. [PMID: 35044830 PMCID: PMC8769548 DOI: 10.1126/sciadv.abl5417] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/19/2021] [Indexed: 05/17/2023]
Abstract
There are substantial, unexplained racial disparities in women’s health. Some of the most pronounced involve elevated rates of preterm delivery (PTD) and cardiovascular disease (CVD) among Black women. We hypothesized that stress associated with excessive use of force by police may contribute to these disparities. In two prospective cohorts derived from electronic health records (pregnancy cohort, N = 67,976; CVD cohort, N = 6773), we linked formal complaints of excessive police force in patients’ neighborhoods with health outcomes. Exposed Black women were 1.19 times as likely to experience PTD [95% confidence interval (CI): 1.04 to 1.35] and 1.42 times as likely to develop CVD (95% CI: 1.12 to 1.79), even after adjustment for neighborhood disadvantage and homicide. The excess risks of PTD were also observed in maternal fixed-effects analyses comparing births to the same woman. These findings suggest police violence may be an unrecognized contributor to health inequity for Black women.
Collapse
Affiliation(s)
- Alexa A. Freedman
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, IL, USA
- Institute for Policy Research, Northwestern University, Evanston, IL, USA
| | - Andrew V. Papachristos
- Institute for Policy Research, Northwestern University, Evanston, IL, USA
- Department of Sociology, Northwestern University, Evanston, IL, USA
| | - Britney P. Smart
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, IL, USA
| | - Lauren S. Keenan-Devlin
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, IL, USA
- Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Sadiya S. Khan
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ann Borders
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, IL, USA
- Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kiarri N. Kershaw
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gregory E. Miller
- Institute for Policy Research, Northwestern University, Evanston, IL, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
| |
Collapse
|