1
|
Daidone M, Ferrantelli S, Tuttolomondo A. Machine learning applications in stroke medicine: advancements, challenges, and future prospectives. Neural Regen Res 2024; 19:769-773. [PMID: 37843210 PMCID: PMC10664112 DOI: 10.4103/1673-5374.382228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 10/17/2023] Open
Abstract
Stroke is a leading cause of disability and mortality worldwide, necessitating the development of advanced technologies to improve its diagnosis, treatment, and patient outcomes. In recent years, machine learning techniques have emerged as promising tools in stroke medicine, enabling efficient analysis of large-scale datasets and facilitating personalized and precision medicine approaches. This abstract provides a comprehensive overview of machine learning's applications, challenges, and future directions in stroke medicine. Recently introduced machine learning algorithms have been extensively employed in all the fields of stroke medicine. Machine learning models have demonstrated remarkable accuracy in imaging analysis, diagnosing stroke subtypes, risk stratifications, guiding medical treatment, and predicting patient prognosis. Despite the tremendous potential of machine learning in stroke medicine, several challenges must be addressed. These include the need for standardized and interoperable data collection, robust model validation and generalization, and the ethical considerations surrounding privacy and bias. In addition, integrating machine learning models into clinical workflows and establishing regulatory frameworks are critical for ensuring their widespread adoption and impact in routine stroke care. Machine learning promises to revolutionize stroke medicine by enabling precise diagnosis, tailored treatment selection, and improved prognostication. Continued research and collaboration among clinicians, researchers, and technologists are essential for overcoming challenges and realizing the full potential of machine learning in stroke care, ultimately leading to enhanced patient outcomes and quality of life. This review aims to summarize all the current implications of machine learning in stroke diagnosis, treatment, and prognostic evaluation. At the same time, another purpose of this paper is to explore all the future perspectives these techniques can provide in combating this disabling disease.
Collapse
Affiliation(s)
- Mario Daidone
- Internal Medicine and Stroke Care Ward, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
- Molecular and Clinical Medicine PhD Program, University of Palermo, Palermo, Italy
| | - Sergio Ferrantelli
- Internal Medicine and Stroke Care Ward, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| |
Collapse
|
2
|
Iijima K, Matsuhashi T, Shimodaira Y, Mikami T, Yoshimura T, Yanai S, Kudara N, Tsuji T, Matsushita H, Watanabe H, Koike T, Kato K, Abe Y, Shirahata N, Hikichi T, Katakura K, Kono K, Sakuraba H, Ueno Y, Ohira H, Masamune A, Matsumoto T, Fukuda S. Impact of the COVID-19 pandemic on the performance of endoscopy in the Tohoku region of Japan. DEN Open 2024; 4:e249. [PMID: 37273519 PMCID: PMC10235797 DOI: 10.1002/deo2.249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/02/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
Objectives The whole picture of the disturbance in endoscopy performance caused by the coronavirus disease 2019 (COVID-19) pandemic in Japan remains to be clarified. Therefore, the Japan Gastroenterological Endoscopy Society-Tohoku conducted this questionnaire survey in Tohoku region of Japan. Methods A questionnaire on the number of diagnostic endoscopy procedures and resulting diagnosed cancers in 2019 and 2020 was sent to all guidance/guidance cooperation hospitals in the Japan Gastroenterological Endoscopy Society who worked in the Tohoku region. The percentage change was calculated by comparing the numbers in 2020 with those in 2019 (the pre-COVID-19 period). Results Among the applicable 89 guidance/guidance cooperation hospitals, 83 (94%) returned the questionnaire. The number of endoscopy procedures promptly decreased to the nadir in April and May 2020 (during the first state of emergency in Japan); however, it recovered relatively quickly, within a few months after the state of emergency was lifted. Consequently, the annual reduction in the number of endoscopy procedures in 2020 (in comparison to 2019) was 10.1% for esophagogastroduodenoscopy and 7.9% for colonoscopy. The reduction in the number of diagnostic endoscopy procedures led to a 5.5% reduction in esophagogastric cancer and 2.7% in colorectal cancer. Conclusions This is the most comprehensive survey on the impact of the COVID-19 pandemic on the performance of endoscopy and the resulting diagnosis of cancer in Japan. Understanding the magnitude of the decline in endoscopic examinations and cancer detection due to the pandemic is critical to understanding how many people will ultimately be affected and establishing a strategy for providing endoscopy during national emergencies.
Collapse
Affiliation(s)
- Katsunori Iijima
- Department of GastroenterologyAkita University Graduate School of MedicineAkitaJapan
| | - Tamotsu Matsuhashi
- Department of GastroenterologyAkita University Graduate School of MedicineAkitaJapan
| | - Yosuke Shimodaira
- Department of GastroenterologyAkita University Graduate School of MedicineAkitaJapan
| | - Tatsuya Mikami
- Division of EndoscopyHirosaki University HospitalAomoriJapan
| | | | - Shunichi Yanai
- Department of Internal MedicineDivision of Gastroenterology and HepatologySchool of MedicineIwate Medical UniversityIwateJapan
| | - Norihiko Kudara
- Department of Internal Medicine and GastroenterologyIwate Prefectural Ofunato HospitalIwateJapan
| | | | | | | | - Tomoyuki Koike
- Division of GastroenterologyTohoku University Graduate School of MedicineMiyagiJapan
| | - Katsuaki Kato
- Cancer Detection Center, Miyagi Cancer SocietyMiyagiJapan
| | - Yasuhiko Abe
- Division of EndoscopyYamagata University HospitalYamagataJapan
| | - Nakao Shirahata
- Department of GastroenterologyYamagata Prefectural Central HospitalYamagataJapan
| | - Takuto Hikichi
- Department of EndoscopyFukushima Medical University HospitalFukushimaJapan
| | - Kyoko Katakura
- Department of GastroenterologyIwase general hospitalFukushimaJapan
| | - Koji Kono
- Department of Gastrointestinal Tract SurgeryFukushima Medical University School of MedicineFukushimaJapan
| | - Hirotake Sakuraba
- Department of GastroenterologyHirosaki University Graduate School of MedicineAomoriJapan
| | - Yoshiyuki Ueno
- Department of GastroenterologyFaculty of MedicineYamagata UniversityYamagataJapan
| | - Hiromasa Ohira
- Department of GastroenterologyFukushima Medical University School of MedicineFukushimaJapan
| | - Atsushi Masamune
- Division of GastroenterologyTohoku University Graduate School of MedicineMiyagiJapan
| | - Takayuki Matsumoto
- Department of Internal MedicineDivision of Gastroenterology and HepatologySchool of MedicineIwate Medical UniversityIwateJapan
| | - Shinsaku Fukuda
- Department of GastroenterologyHirosaki University Graduate School of MedicineAomoriJapan
| | | |
Collapse
|
3
|
Katada C, Yokoyama T, Yano T, Suzuki H, Furue Y, Yamamoto K, Doyama H, Koike T, Tamaoki M, Kawata N, Hirao M, Kawahara Y, Ogata T, Katagiri A, Yamanouchi T, Kiyokawa H, Kawakubo H, Konno M, Yokoyama A, Ohashi S, Kondo Y, Kishimoto Y, Kano K, Mure K, Hayashi R, Ishikawa H, Yokoyama A, Muto M. Alcohol consumption, multiple Lugol-voiding lesions, and field cancerization. DEN Open 2024; 4:e261. [PMID: 37409321 PMCID: PMC10318126 DOI: 10.1002/deo2.261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
The development of multiple squamous cell carcinomas (SCC) in the upper aerodigestive tract, which includes the oral cavity, pharynx, larynx, and esophagus, is explained by field cancerization and is associated with alcohol consumption and cigarette smoking. We reviewed the association between alcohol consumption, multiple Lugol-voiding lesions, and field cancerization, mainly based on the Japan Esophageal Cohort study. The Japan Esophageal Cohort study is a prospective cohort study that enrolled patients with esophageal SCC after endoscopic resection. Enrolled patients received surveillance by gastrointestinal endoscopy every 6 months and surveillance by an otolaryngologist every 12 months. The Japan Esophageal Cohort study showed that esophageal SCC and head and neck SCC that developed after endoscopic resection for esophageal SCC were associated with genetic polymorphisms related to alcohol metabolism. They were also associated with Lugol-voiding lesions grade in the background esophageal mucosa, the score of the health risk appraisal model for predicting the risk of esophageal SCC, macrocytosis, and score on alcohol use disorders identification test. The standardized incidence ratio of head and neck SCC in patients with esophageal SCC after endoscopic resection was extremely high compared to the general population. Drinking and smoking cessation is strongly recommended to reduce the risk of metachronous esophageal SCC after treatment of esophageal SCC. Risk factors for field cancerization provide opportunities for early diagnosis and minimally invasive treatment. Lifestyle guidance of alcohol consumption and cigarette smoking for esophageal precancerous conditions, which are endoscopically visualized as multiple Lugol-voiding lesions, may play a pivotal role in decreasing the incidence and mortality of esophageal SCC.
Collapse
Affiliation(s)
- Chikatoshi Katada
- Department of Therapeutic OncologyGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Tetsuji Yokoyama
- Department of Health and PromotionNational Institute of Public HealthSaitamaJapan
| | - Tomonori Yano
- Department of Gastroenterology and EndoscopyNational Cancer Center Hospital EastChibaJapan
| | | | - Yasuaki Furue
- Department of GastroenterologyKitasato University School of MedicineKanagawaJapan
| | - Keiko Yamamoto
- Division of EndoscopyHokkaido University HospitalHokkaidoJapan
| | - Hisashi Doyama
- Department of GastroenterologyIshikawa Prefectural Central HospitalIshikawaJapan
| | - Tomoyuki Koike
- Division of GastroenterologyTohoku University Graduate School of MedicineMiyagiJapan
| | - Masashi Tamaoki
- Department of Therapeutic OncologyGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Noboru Kawata
- Division of EndoscopyShizuoka Cancer CenterShizuokaJapan
| | - Motohiro Hirao
- Department of SurgeryNational Hospital Organization Osaka National HospitalOsakaJapan
| | - Yoshiro Kawahara
- Department of Practical Gastrointestinal EndoscopyFaculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama UniversityOkayamaJapan
| | - Takashi Ogata
- Department of GastroenterologyKanagawa Cancer CenterKanagawaJapan
| | - Atsushi Katagiri
- Department of Medicine, Division of GastroenterologyShowa University HospitalTokyoJapan
| | | | - Hirofumi Kiyokawa
- Division of Gastroenterology, Department of Internal MedicineSt. Marianna University School of MedicineKanagawaJapan
| | - Hirofumi Kawakubo
- Department of SurgeryKawasaki Municipal Kawasaki HospitalKanagawaJapan
| | - Maki Konno
- Department of GastroenterologyTochigi Cancer CenterTochigiJapan
| | - Akira Yokoyama
- Department of Therapeutic OncologyGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Shinya Ohashi
- Department of Therapeutic OncologyGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Yuki Kondo
- Department of Therapeutic OncologyGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Yo Kishimoto
- Department of Otolaryngology‐Head and Neck SurgeryKyoto University HospitalKyotoJapan
| | - Koichi Kano
- Department of Otorhinolaryngology‐Head and Neck SurgeryKitasato University School of MedicineKanagawaJapan
| | - Kanae Mure
- Department of Public HealthWakayama Medical University School of MedicineWakayamaJapan
| | - Ryuichi Hayashi
- Department of Head and Neck SurgeryNational Cancer Center Hospital EastChibaJapan
| | - Hideki Ishikawa
- Department of Molecular‐Targeting PreventionKyoto Prefectural University of MedicineKyotoJapan
| | - Akira Yokoyama
- Clinical Research UnitNational Hospital Organization Kurihama Medical and Addiction CenterKanagawaJapan
| | - Manabu Muto
- Department of Therapeutic OncologyGraduate School of Medicine, Kyoto UniversityKyotoJapan
| |
Collapse
|
4
|
Suzuki K, Kudo S, Kudo T, Misawa M, Mori Y, Ichimasa K, Maeda Y, Hayashi T, Wakamura K, Baba T, Ishda F, Hamatani S, Inoue H, Yokoyama K, Miyachi H. Diagnostic performance of endocytoscopy with normal pit-like structure sign for colorectal low-grade adenoma compared with conventional modalities. DEN Open 2024; 4:e238. [PMID: 37168271 PMCID: PMC10165464 DOI: 10.1002/deo2.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/28/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023]
Abstract
Objectives A "resect-and-discard" strategy has been proposed for diminutive adenomas in the colorectum. However, this strategy is sometimes difficult to implement because of the lack of confidence in differentiating low-grade adenoma (LGA) from advanced lesions such as high-grade adenoma or carcinoma. To perform real-time precise diagnosis of LGA with high confidence, we assessed whether endocytoscopy (EC) diagnosis, considering normal pit-like structure (NP-sign), an excellent indicator of LGA, could have additional diagnostic potential compared with conventional modalities. Methods All the neoplastic lesions that were observed by non-magnifying narrow-band imaging (NBI), magnifying NBI (M-NBI), magnifying pit pattern, and EC prior to pathological examination between 2005 and 2018 were retrospectively investigated. The neoplastic lesions were classified into two categories: LGA and other neoplastic lesions. We assessed the differential diagnostic ability of EC with NP-sign between LGA and other neoplastic lesions compared with that of NBI, M-NBI, pit pattern, and conventional EC in terms of sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (AUC). Results A total of 1376 lesions from 1097 patients were eligible. The specificity (94.9%), accuracy (91.5%), and area under the receiver operating characteristic curve (0.95) of EC with NP-sign were significantly higher than those of NBI, M-NBI, pit pattern, and conventional EC. Conclusions EC diagnosis with NP-sign has significantly higher diagnostic performance for predicting colorectal LGA compared with the conventional modalities and enables stratification of neoplastic lesions for "resect-and-discard" with higher confidence.
Collapse
Affiliation(s)
- Kenichi Suzuki
- Digestive Disease CenterShowa University Northern Yokohama HospitalKanagawaJapan
- Suzuki Gastrointestinal ClinicAkitaJapan
| | - Shin‐ei Kudo
- Digestive Disease CenterShowa University Northern Yokohama HospitalKanagawaJapan
| | - Toyoki Kudo
- Digestive Disease CenterShowa University Northern Yokohama HospitalKanagawaJapan
- Tokyo Endoscopy ClinicTokyoJapan
| | - Masashi Misawa
- Digestive Disease CenterShowa University Northern Yokohama HospitalKanagawaJapan
| | - Yuichi Mori
- Digestive Disease CenterShowa University Northern Yokohama HospitalKanagawaJapan
- Clinical Effectiveness Research GroupInstitute of Health and SocietyUniversity of OsloOsloNorway
| | - Katsuro Ichimasa
- Digestive Disease CenterShowa University Northern Yokohama HospitalKanagawaJapan
| | - Yasuharu Maeda
- Digestive Disease CenterShowa University Northern Yokohama HospitalKanagawaJapan
| | - Takemasa Hayashi
- Digestive Disease CenterShowa University Northern Yokohama HospitalKanagawaJapan
| | - Kunihiko Wakamura
- Digestive Disease CenterShowa University Northern Yokohama HospitalKanagawaJapan
| | - Toshiyuki Baba
- Digestive Disease CenterShowa University Northern Yokohama HospitalKanagawaJapan
| | - Fumio Ishda
- Digestive Disease CenterShowa University Northern Yokohama HospitalKanagawaJapan
| | - Shigeharu Hamatani
- Digestive Disease CenterShowa University Northern Yokohama HospitalKanagawaJapan
- Hamatani‐kikakuTokyoJapan
| | - Haruhiro Inoue
- Digestive Disease CenterShowa University Koto Toyosu HospitalTokyoJapan
| | | | - Hideyuki Miyachi
- Digestive Disease CenterShowa University Northern Yokohama HospitalKanagawaJapan
| |
Collapse
|
5
|
Pan H, Liu P, Zhao L, Pan Y, Mao M, Kroemer G, Kepp O. Immunogenic cell stress and death in the treatment of cancer. Semin Cell Dev Biol 2024; 156:11-21. [PMID: 37977108 DOI: 10.1016/j.semcdb.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
The successful treatment of oncological malignancies which results in long-term disease control or the complete eradication of cancerous cells necessitates the onset of adaptive immune responses targeting tumor-specific antigens. Such desirable anticancer immunity can be triggered via the induction of immunogenic cell death (ICD) of cancer cells, thus converting malignant cells into an in situ vaccine that elicits T cell mediated adaptive immune responses and establishes durable immunological memory. The exploration of ICD for cancer treatment has been subject to extensive research. However, functional heterogeneity among ICD activating therapies in many cases requires specific co-medications to achieve full-blown efficacy. Here, we described the hallmarks of ICD and classify ICD activators into three distinct functional categories namely, according to their mode of action: (i) ICD inducers, which increase the immunogenicity of malignant cells, (ii) ICD sensitizers, which prime cellular circuitries for ICD induction by conventional cytotoxic agents, and (iii) ICD enhancers, which improve the perception of ICD signals by antigen presenting dendritic cells. Altogether, ICD induction, sensitization and enhancement offer the possibility to convert well-established conventional anticancer therapies into immunotherapeutic approaches that activate T cell-mediated anticancer immunity.
Collapse
Affiliation(s)
- Hui Pan
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Peng Liu
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Liwei Zhao
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Yuhong Pan
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Misha Mao
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France; Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France.
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France.
| |
Collapse
|
6
|
Ma X, Wang Q, Li G, Li H, Xu S, Pang D. Cancer organoids: A platform in basic and translational research. Genes Dis 2024; 11:614-632. [PMID: 37692477 PMCID: PMC10491878 DOI: 10.1016/j.gendis.2023.02.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 02/16/2023] [Indexed: 09/12/2023] Open
Abstract
An accumulation of previous work has established organoids as good preclinical models of human tumors, facilitating translation from basic research to clinical practice. They are changing the paradigm of preclinical cancer research because they can recapitulate the heterogeneity and pathophysiology of human cancers and more closely approximate the complex tissue environment and structure found in clinical tumors than in vitro cell lines and animal models. However, the potential applications of cancer organoids remain to be comprehensively summarized. In the review, we firstly describe what is currently known about cancer organoid culture and then discuss in depth the basic mechanisms, including tumorigenesis and tumor metastasis, and describe recent advances in patient-derived tumor organoids (PDOs) for drug screening and immunological studies. Finally, the present challenges faced by organoid technology in clinical practice and its prospects are discussed. This review highlights that organoids may offer a novel therapeutic strategy for cancer research.
Collapse
Affiliation(s)
- Xin Ma
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Qin Wang
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Guozheng Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Hui Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
| |
Collapse
|
7
|
Liu Q, Zhang Y, Han B, Wang M, Hu H, Ning J, Hu W, Chen M, Pang Y, Chen Y, Bao L, Niu Y, Zhang R. circRNAs deregulation in exosomes derived from BEAS-2B cells is associated with vascular stiffness induced by PM 2.5. J Environ Sci (China) 2024; 137:527-539. [PMID: 37980036 DOI: 10.1016/j.jes.2023.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 11/20/2023]
Abstract
As an environmental pollutant, ambient fine particulate matter (PM2.5) was linked to cardiovascular diseases. The molecular mechanisms underlying PM2.5-induced extrapulmonary disease has not been elucidated clearly. In this study the ambient PM2.5 exposure mice model we established was to explore adverse effects of vessel and potential mechanisms. Long-term PM2.5 exposure caused reduced lung function and vascular stiffness in mice. And chronic PM2.5 induced migration and epithelial-mesenchymal transition (EMT) phenotype in BEAS-2B cells. After PM2.5 treatment, the circRNAs and mRNAs levels of exosomes released by BEAS-2B cells were detected by competing endogenous RNA (ceRNA) array, which contained 1664 differentially expressed circRNAs (DE-circRNAs) and 308 differentially expressed mRNAs (DE-mRNAs). By bioinformatics analysis on host genes of DE-circRNAs, vascular diseases and some pathways related to vascular diseases including focal adhesion, tight junction and adherens junction were enriched. Then, ceRNA network was constructed, and DE-mRNAs in ceRNA network were conducted functional enrichment analysis by Ingenuity Pathway Analysis, which indicated that hsa_circ_0012627, hsa_circ_0053261 and hsa_circ_0052810 were related to vascular endothelial dysfunction. Furthermore, it was verified experimentally that ExoPM2.5 could induce endothelial dysfunction by increased endothelial permeability and decreased relaxation in vitro. In present study, we investigated in-depth knowledge into the molecule events related to PM2.5 toxicity and pathogenesis of vascular diseases.
Collapse
Affiliation(s)
- Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yaling Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Bin Han
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China; State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengruo Wang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Huaifang Hu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Jie Ning
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Wentao Hu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Meiyu Chen
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yuanyuan Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Lei Bao
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Yujie Niu
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
8
|
Duan M, Liu H, Xu S, Yang Z, Zhang F, Wang G, Wang Y, Zhao S, Jiang X. IGF2BPs as novel m 6A readers: Diverse roles in regulating cancer cell biological functions, hypoxia adaptation, metabolism, and immunosuppressive tumor microenvironment. Genes Dis 2024; 11:890-920. [PMID: 37692485 PMCID: PMC10491980 DOI: 10.1016/j.gendis.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/24/2023] [Accepted: 06/14/2023] [Indexed: 09/12/2023] Open
Abstract
m6A methylation is the most frequent modification of mRNA in eukaryotes and plays a crucial role in cancer progression by regulating biological functions. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BP) are newly identified m6A 'readers'. They belong to a family of RNA-binding proteins, which bind to the m6A sites on different RNA sequences and stabilize them to promote cancer progression. In this review, we summarize the mechanisms by which different upstream factors regulate IGF2BP in cancer. The current literature analyzed here reveals that the IGF2BP family proteins promote cancer cell proliferation, survival, and chemoresistance, inhibit apoptosis, and are also associated with cancer glycolysis, angiogenesis, and the immune response in the tumor microenvironment. Therefore, with the discovery of their role as 'readers' of m6A and the characteristic re-expression of IGF2BPs in cancers, it is important to elucidate their mechanism of action in the immunosuppressive tumor microenvironment. We also describe in detail the regulatory and interaction network of the IGF2BP family in downstream target RNAs and discuss their potential clinical applications as diagnostic and prognostic markers, as well as recent advances in IGF2BP biology and associated therapeutic value.
Collapse
Affiliation(s)
- Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Haiyang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Shasha Xu
- Department of Gastroendoscopy, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Fusheng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Guang Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Yutian Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Shan Zhao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110002, China
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| |
Collapse
|
9
|
Liu C, Guo S, Liu R, Guo M, Wang Q, Chai Z, Xiao B, Ma C. Fasudil-modified macrophages reduce inflammation and regulate the immune response in experimental autoimmune encephalomyelitis. Neural Regen Res 2024; 19:671-679. [PMID: 37721300 PMCID: PMC10581551 DOI: 10.4103/1673-5374.379050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/10/2023] [Accepted: 05/22/2023] [Indexed: 09/19/2023] Open
Abstract
Multiple sclerosis is characterized by demyelination and neuronal loss caused by inflammatory cell activation and infiltration into the central nervous system. Macrophage polarization plays an important role in the pathogenesis of experimental autoimmune encephalomyelitis, a traditional experimental model of multiple sclerosis. This study investigated the effect of Fasudil on macrophages and examined the therapeutic potential of Fasudil-modified macrophages in experimental autoimmune encephalomyelitis. We found that Fasudil induced the conversion of macrophages from the pro-inflammatory M1 type to the anti-inflammatory M2 type, as shown by reduced expression of inducible nitric oxide synthase/nitric oxide, interleukin-12, and CD16/32 and increased expression of arginase-1, interleukin-10, CD14, and CD206, which was linked to inhibition of Rho kinase activity, decreased expression of toll-like receptors, nuclear factor-κB, and components of the mitogen-activated protein kinase signaling pathway, and generation of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin-1β, and interleukin-6. Crucially, Fasudil-modified macrophages effectively decreased the impact of experimental autoimmune encephalomyelitis, resulting in later onset of disease, lower symptom scores, less weight loss, and reduced demyelination compared with unmodified macrophages. In addition, Fasudil-modified macrophages decreased interleukin-17 expression on CD4+ T cells and CD16/32, inducible nitric oxide synthase, and interleukin-12 expression on F4/80+ macrophages, as well as increasing interleukin-10 expression on CD4+ T cells and arginase-1, CD206, and interleukin-10 expression on F4/80+ macrophages, which improved immune regulation and reduced inflammation. These findings suggest that Fasudil-modified macrophages may help treat experimental autoimmune encephalomyelitis by inducing M2 macrophage polarization and inhibiting the inflammatory response, thereby providing new insight into cell immunotherapy for multiple sclerosis.
Collapse
Affiliation(s)
- Chunyun Liu
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
| | - Shangde Guo
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
| | - Rong Liu
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
| | - Minfang Guo
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
| | - Qing Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Zhi Chai
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Baoguo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Cungen Ma
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| |
Collapse
|
10
|
Gajos-Michniewicz A, Czyz M. WNT/β-catenin signaling in hepatocellular carcinoma: The aberrant activation, pathogenic roles, and therapeutic opportunities. Genes Dis 2024; 11:727-746. [PMID: 37692481 PMCID: PMC10491942 DOI: 10.1016/j.gendis.2023.02.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/28/2022] [Accepted: 02/14/2023] [Indexed: 09/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a liver cancer, highly heterogeneous both at the histopathological and molecular levels. It arises from hepatocytes as the result of the accumulation of numerous genomic alterations in various signaling pathways, including canonical WNT/β-catenin, AKT/mTOR, MAPK pathways as well as signaling associated with telomere maintenance, p53/cell cycle regulation, epigenetic modifiers, and oxidative stress. The role of WNT/β-catenin signaling in liver homeostasis and regeneration is well established, whereas in development and progression of HCC is extensively studied. Herein, we review recent advances in our understanding of how WNT/β-catenin signaling facilitates the HCC development, acquisition of stemness features, metastasis, and resistance to treatment. We outline genetic and epigenetic alterations that lead to activated WNT/β-catenin signaling in HCC. We discuss the pivotal roles of CTNNB1 mutations, aberrantly expressed non-coding RNAs and complexity of crosstalk between WNT/β-catenin signaling and other signaling pathways as challenging or advantageous aspects of therapy development and molecular stratification of HCC patients for treatment.
Collapse
Affiliation(s)
- Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz 92-215, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz 92-215, Poland
| |
Collapse
|
11
|
Lai Y, Lu X, Liao Y, Ouyang P, Wang H, Zhang X, Huang G, Qi S, Li Y. Crosstalk between glioblastoma and tumor microenvironment drives proneural-mesenchymal transition through ligand-receptor interactions. Genes Dis 2024; 11:874-889. [PMID: 37692522 PMCID: PMC10491977 DOI: 10.1016/j.gendis.2023.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Glioblastoma (GBM) is the most common intrinsic and aggressive primary brain tumor in adults, with a median survival of approximately 15 months. GBM heterogeneity is considered responsible for the treatment resistance and unfavorable prognosis. Proneural-mesenchymal transition (PMT) represents GBM malignant progression and recurrence, which might be a breakthrough to understand GBM heterogeneity and overcome treatment resistance. PMT is a complicated process influenced by crosstalk between GBM and tumor microenvironment, depending on intricate ligand-receptor interactions. In this review, we summarize the autocrine and paracrine pathways in the GBM microenvironment and related ligand-receptor interactions inducing PMT. We also discuss the current therapies targeting the PMT-related autocrine and paracrine pathways. Together, this review offers a comprehensive understanding of the failure of GBM-targeted therapy and ideas for future tendencies of GBM treatment.
Collapse
Affiliation(s)
- Yancheng Lai
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaole Lu
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yankai Liao
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Pei Ouyang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hai Wang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xian Zhang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guanglong Huang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Songtao Qi
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yaomin Li
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
12
|
He Y, Yu H, Dai S, He M, Ma L, Xu Z, Luo F, Wang L. Immune checkpoint inhibitors break whose heart? Perspectives from cardio-immuno-oncology. Genes Dis 2024; 11:807-818. [PMID: 37692505 PMCID: PMC10491874 DOI: 10.1016/j.gendis.2023.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/12/2023] [Indexed: 03/30/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are monoclonal antibody antagonists, which can block cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed death-1/ligand-1 (PD-1/PD-L1) pathways, and other molecules exploited by tumor cells to evade T cell-mediated immune response. ICIs have transformed the treatment landscape for various cancers due to their amazing efficacy. Many anti-tumor therapies, including targeted therapy, radiotherapy, and chemotherapy, combine ICIs to make the treatment more effective. However, the off-target immune activation caused by ICIs may lead to a broad spectrum of immune-related adverse events (irAEs) affecting multiple organ systems. Among irAEs, cardiotoxicity induced by ICIs, uncommon but fatal, has greatly offset survival benefits from ICIs, which is heartbreaking for both patients and clinicians. Consequently, such cardiotoxicity requires special vigilance, and it has become a common challenge both for patients and clinicians. This article reviewed the clinical manifestations and influence of cardiotoxicity from the view of patients and clinicians, elaborated on the underlying mechanisms in conjunction with animal studies, and then attempted to propose management strategies from a cardio-immuno-oncology multidisciplinary perspective.
Collapse
Affiliation(s)
- Yingying He
- Oncology Department, Deyang People's Hospital, Deyang, Sichuan 618000, China
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Hui Yu
- Cardiovascular Department, Mianyang Central Hospital, Mianyang, Sichuan 621000, China
| | - Shuang Dai
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Miao He
- Oncology Department, Deyang People's Hospital, Deyang, Sichuan 618000, China
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Ling Ma
- Department of Rheumatology and Immunology, Deyang People's Hospital, Deyang, Sichuan 618000, China
| | - Zihan Xu
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Feng Luo
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Li Wang
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| |
Collapse
|
13
|
Biersack B, Nitzsche B, Höpfner M. Immunomodulatory properties of HDAC6 inhibitors in cancer diseases: New chances for sophisticated drug design and treatment optimization. Semin Cell Dev Biol 2024; 154:286-294. [PMID: 36127263 DOI: 10.1016/j.semcdb.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
Histone deacetylases (HDACs) are promising targets for the design of anticancer drugs. HDAC6 is of particular interest since it is a cytoplasmic HDAC regulating the acetylation state of cancer-relevant cytoplasmic proteins such as tubulin, Hsp90, p53, and others. HDAC6 also influences the immune system, and the combination of HDAC6 inhibitors with immune therapy showed promising anticancer results. In addition, the design of new HDAC6 inhibitors led to potent anticancer drugs with immunomodulatory activities. This review describes the current state of play, and the recent developments in the research on the interactions of HDAC6 inhibitors with the immune system, and the development of new HDAC6 inhibitors with immunomodulatory activities to improve the therapy options for cancer patients.
Collapse
Affiliation(s)
- Bernhard Biersack
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany.
| | - Bianca Nitzsche
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Michael Höpfner
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
14
|
Sharma G, Sultana A, Abdullah KM, Pothuraju R, Nasser MW, Batra SK, Siddiqui JA. Epigenetic regulation of bone remodeling and bone metastasis. Semin Cell Dev Biol 2024; 154:275-285. [PMID: 36379849 PMCID: PMC10175516 DOI: 10.1016/j.semcdb.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Bone remodeling is a continuous and dynamic process of bone formation and resorption to maintain its integrity and homeostasis. Bone marrow is a source of various cell lineages, including osteoblasts and osteoclasts, which are involved in bone formation and resorption, respectively, to maintain bone homeostasis. Epigenetics is one of the elementary regulations governing the physiology of bone remodeling. Epigenetic modifications, mainly DNA methylation, histone modifications, and non-coding RNAs, regulate stable transcriptional programs without causing specific heritable alterations. DNA methylation in CpG-rich promoters of the gene is primarily correlated with gene silencing, and histone modifications are associated with transcriptional activation/inactivation. However, non-coding RNAs regulate the metastatic potential of cancer cells to metastasize at secondary sites. Deregulated or altered epigenetic modifications are often seen in many cancers and interwound with bone-specific tropism and cancer metastasis. Histone acetyltransferases, histone deacetylase, and DNA methyltransferases are promising targets in epigenetically altered cancer. High throughput epigenome mapping and targeting specific epigenetics modifiers will be helpful in the development of personalized epi-drugs for advanced and bone metastasis cancer patients. This review aims to discuss and gather more knowledge about different epigenetic modifications in bone remodeling and metastasis. Further, it provides new approaches for targeting epigenetic changes and therapy research.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ashrafi Sultana
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - K M Abdullah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
15
|
Park SH, Kim G, Yang GE, Yun HJ, Shin TH, Kim ST, Lee K, Kim HS, Kim SH, Leem SH, Cho WS, Lee JH. Disruption of phosphofructokinase activity and aerobic glycolysis in human bronchial epithelial cells by atmospheric ultrafine particulate matter. J Hazard Mater 2024; 464:132966. [PMID: 37976851 DOI: 10.1016/j.jhazmat.2023.132966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Exposure to ambient ultrafine particulate matter (UPM) causes respiratory disorders; however, the underlying molecular mechanisms remain unclear. In this study, we synthesized simulated UPM (sUPM) with controlled physicochemical properties using the spark-discharge method. Subsequently, we investigated the biological effects of sUPM using BEAS-2B human bronchial epithelial cells (HBECs) and a mouse intratracheal instillation model. High throughput RNA-sequencing and bioinformatics analyses revealed that dysregulation of the glycolytic metabolism is involved in the inhibited proliferation and survival of HBECs by sUPM treatment. Furthermore, signaling pathway and enzymatic analyses showed that the treatment of BEAS-2B cells with sUPM induces the inactivation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB, also known as AKT), resulting in the downregulation of phosphofructokinase 2 (PFK2) S483 phosphorylation, PFK enzyme activity, and aerobic glycolysis in HBECs in an oxidative stress-independent manner. Additionally, intratracheal instillation of sUPM reduced the phosphorylation of ERK, AKT, and PFK2, decreased proliferation, and increased the apoptosis of bronchial epithelial cells in mice. The findings of this study imply that UPM induces pulmonary toxicity by disrupting aerobic glycolytic metabolism in lung epithelial cells, which can provide novel insights into the toxicity mechanisms of UPM and strategies to prevent their toxic effects.
Collapse
Affiliation(s)
- Su Hwan Park
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Gyuri Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Gi-Eun Yang
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Hye Jin Yun
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Tae Hwan Shin
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Hyuk Soon Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Seok-Ho Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Sun-Hee Leem
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea.
| | - Wan-Seob Cho
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea.
| | <
|