1
|
|
Surov A, Benkert F, Pönisch W, Meyer HJ. CT-defined body composition as a prognostic factor in multiple myeloma. Hematology 2023;28:2191075. [PMID: 36946869 DOI: 10.1080/16078454.2023.2191075] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/23/2023] Open
Abstract
OBJECTIVES Body composition assessment is comprised by skeletal muscle mass (SMM) and subcutaneous and visceral adipose tissue (SAT and VAT) and can be quantified by imaging. It can be predictive of several clinically outcomes in patients with hematological diseases. Our aim was to establish the effect of body composition parameters on overall survival (OS) and progression-free survival (PFS) in patients with multiple myeloma (MM). MATERIALS AND METHODS All patients with MM were retrospectively analyzed between 2009 and 2019. One hundred twenty-three patients were included into the analysis. Whole-body computed tomography (CT) was used to calculate SMM, VAT, and SAT. RESULTS Overall, 22 patients (17.9%) of the patient sample died. Forty patients were sarcopenic (32.5%), 79 patients were visceral obese (64.2%), and 18 patients (14.6%) were sarcopenic obese. Parameter of body composition did not influence OS: sarcopenia, hazard ratio (HR) = 1.3 (95% CI 0.50-3.34), p = .59; visceral obesity, HR = 1.6 (95% CI 0.70-3.76), p = .26; sarcopenic obesity, HR = 2.3 (95% CI 0.90-5.63), p = 0.08. Patients with infectious complications showed higher VAT values. CONCLUSIONS CT-defined body composition parameters have no influence on survival in patients with MM undergoing autologous stem-cell therapy. These results corroborate previous smaller studies that body composition might have a limited role in this tumor entity. VAT may predict the occurrence of infectious complications.
Collapse
|
2
|
|
Bezzi D, Ambrosini V, Nanni C. Clinical Value of FDG-PET/CT in Multiple Myeloma: An Update. Semin Nucl Med 2023;53:352-70. [PMID: 36446644 DOI: 10.1053/j.semnuclmed.2022.10.008] [Cited by in Crossref: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/28/2022]
Abstract
FDG-PET/CT is a standardized imaging technique that has reached a great importance in the management of patients affected by Multiple Myeloma. It is proved, in fact, that it allows a deep evaluation of therapy efficacy and provides several prognostic indexes both at staging and after therapy. For this reason, it is now recognised as a gold standard for therapy assessment. Beside this, in reacent years FDG-PET/CT contribution to the understanding of Multiple Myeloma has progressively grown. Papers have been published analyzing the prognostic value of active disease volume measurement and standardization issues, the meaning of FDG positive paramedullary and extrameduallary disease, the prognostic impact of FDG positive minimal residual disease, the relation between focal lesions and clonal eterogenity of this disease and the comparison with whole body DWI-MR in terms of detection and therapy assessment. These newer aspects not of clinical impact yet, of FDG-PET/CT in Multiple Myeloma will be presented and discussed in this review.
Collapse
|
3
|
|
Davidsson S, Messing Eriksson A, Udumyan R, Swanholm P, Lewin Lundh M, Widing C, Lindlöf C, Fridfeldt J, Andersson SO, Fall K. Androgen deprivation therapy in men with prostate cancer is not associated with COVID-2019 infection. Prostate 2023;83:555-62. [PMID: 36658755 DOI: 10.1002/pros.24485] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/21/2023]
Abstract
BACKGROUND Androgens may play a role in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and host responses as the virus is dependent on the androgen-regulated protein transmembrane serine protease 2 for cell entry. Studies have indicated that prostate cancer patients receiving androgen deprivation therapy (ADT) are at reduced risk of SARS-CoV-2 infection and serious complications compared with patients without ADT, but data are inconsistent. METHODS A total of 655 prostate cancer patients who were under surveillance at two urology departments in Sweden on April 1, 2020 were included in the study as well as 240 patients with benign prostatic hyperplasia (BPH). At follow-up early in 2021, the participants completed a questionnaire containing information about symptoms compatible with coronavirus disease 2019 (COVID-19). Blood samples were also collected for the assessment of SARS-CoV-2 IgG antibodies (SARS-CoV-2 Total; Siemens). We used multivariable logistic regression models to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between ADT and the risk of SARS-CoV-2 infection. RESULTS The cumulative incidence of SARS-CoV-2 seropositivity was 13.4% among patients receiving ADT and 10.4% among patients without ADT. After adjusting for potential confounders, we observed no differences in symptoms or risk of SARS-CoV-2 infection between patients with and without ADT (OR: 0.98; 95% CI: 0.52-1.85). Higher body mass index, Type 1 diabetes, and prostate cancer severity, defined by high Gleason score (8-10; OR: 2.06; 95% CI: 1.04-4.09) or elevated levels of prostate-specific antigen (>20 µg/l; OR: 2.15; 95% CI: 1.13-4.07) were associated with increased risk of SARS-CoV-2 infection. Overall, the risk of SARS-CoV-2 infection was not higher among men with prostate cancer than among men with BPH. CONCLUSIONS Our results do not support the hypothesis that ADT use in prostate cancer patients reduces the risk or symptom severity of SARS-CoV-2 infection or that prostate cancer patients are at increased risk of COVID-19 compared with men without prostate cancer.
Collapse
|
4
|
|
Wang M, Tang G, Zhou C, Guo H, Hu Z, Hu Q, Li G. Revisiting the intersection of microglial activation and neuroinflammation in Alzheimer's disease from the perspective of ferroptosis. Chem Biol Interact 2023;375:110387. [PMID: 36758888 DOI: 10.1016/j.cbi.2023.110387] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/10/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by chronic neuroinflammation with amyloid beta-protein deposition and hyperphosphorylated tau protein. The typical clinical manifestation of AD is progressive memory impairment, and AD is considered a multifactorial disease with various etiologies (genetic factors, aging, lifestyle, etc.) and complicated pathophysiological processes. Previous research identified that neuroinflammation and typical microglial activation are significant mechanisms underlying AD, resulting in dysfunction of the nervous system and progression of the disease. Ferroptosis is a novel modality involved in this process. As an iron-dependent form of cell death, ferroptosis, characterized by iron accumulation, lipid peroxidation, and irreversible plasma membrane disruption, promotes AD by accelerating neuronal dysfunction and abnormal microglial activation. In this case, disturbances in brain iron homeostasis and neuronal ferroptosis aggravate neuroinflammation and lead to the abnormal activation of microglia. Abnormally activated microglia release various pro-inflammatory factors that aggravate the dysregulation of iron homeostasis and neuroinflammation, forming a vicious cycle. In this review, we first introduce ferroptosis, microglia, AD, and their relationship. Second, we discuss the nonnegligible role of ferroptosis in the abnormal microglial activation involved in the chronic neuroinflammation of AD to provide new ideas for the identification of potential therapeutic targets for AD.
Collapse
|
5
|
|
Jiang Y, Wu H, Zhao Y, Cui Y, Dai J, Huang S, Li C, Mao H, Ju S, Peng XG. Abnormal [(18)F]FDG uptake in liver and adipose tissue: a potential imaging biomarker for cancer-associated cachexia. Eur Radiol 2023;33:2561-73. [PMID: 36350393 DOI: 10.1007/s00330-022-09226-z] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/11/2022]
Abstract
OBJECTIVES This study aims to investigate and develop imaging biomarkers for the diagnosis of cancer-associated cachexia based on the organ and tissue-specific abnormal metabolisms measured by fluorine-18-fluorodeoxyglucose (18F-FDG) PET/CT. METHODS FDG PET/CT data from 390 cancer patients were analyzed retrospectively. Patients were divided into a development cohort and a validation cohort. Cachexia was defined as weight loss > 5% in 6 months or BMI < 20 and weight loss > 2%. According to the above definitions, patients were divided into cachexia and non-cachexia groups. Results of the clinical laboratory tests for metabolic levels and organ and tissue-specific FDG uptake obtained from the cachexia and non-cachexia groups were compared statistically. Logistic regression analysis was performed to identify independent variables associated with cachexia in the development cohort for generating the regression model. The performance of the model was tested using the data from a validation cohort and evaluated by area under the receiver operating characteristic curve (AUC). RESULTS Based on the data from the development cohort of 286 patients and a validation cohort of 104 patients, it is found that age, white blood cell count, peak standardized uptake value (SUV) of the liver, and minimum SUV of lean body mass of visceral fat and subcutaneous fat were independently associated with cachexia. The model incorporating these variables reached an AUC of 0.777 (95% confidence interval (CI): 0.721, 0.833) in the development cohort and an AUC of 0.729 (95% CI: 0.629, 0.829) in the validation cohort. CONCLUSION Organ and tissue-specific abnormal glucose metabolism as measured by PET/CT can be used as a biomarker for cancer-associated cachexia. KEY POINTS • Patients with cancer-associated cachexia have reduced FDG uptake in the liver and increased FDG uptake in visceral fat and subcutaneous fat. • FDG uptake of the liver, visceral fat, and subcutaneous fat can be independent risk factors for identifying cancer-associated cachexia. • Cancer-associated cachexia can be classified using the model that incorporates age, white blood cell count, FDG uptake of the liver, and visceral and subcutaneous fat can diagnose with an AUC of 0.729.
Collapse
|
6
|
|
Hall LG, Thyfault JP, Johnson JD. Exercise and inactivity as modifiers of β cell function and type 2 diabetes risk. J Appl Physiol (1985) 2023;134:823-39. [PMID: 36759159 DOI: 10.1152/japplphysiol.00472.2022] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/11/2023] Open
Abstract
Exercise and regular physical activity are beneficial for the prevention and management of metabolic diseases such as obesity and type 2 diabetes, whereas exercise cessation, defined as deconditioning from regular exercise or physical activity that has lasted for a period of months to years, can lead to metabolic derangements that drive disease. Adaptations to the insulin-secreting pancreatic β-cells are an important benefit of exercise, whereas less is known about how exercise cessation affects these cells. Our aim is to review the impact that exercise and exercise cessation have on β-cell function, with a focus on the evidence from studies examining glucose-stimulated insulin secretion (GSIS) using gold-standard techniques. Potential mechanisms by which the β-cell adapts to exercise, including exerkine and incretin signaling, autonomic nervous system signaling, and changes in insulin clearance, will also be explored. We will highlight areas for future research.
Collapse
|
7
|
|
Torosian K, Lal E, Kavanaugh A, Loomba R, Ajmera V, Guma M. Psoriatic disease and non-alcoholic fatty liver disease shared pathogenesis review. Semin Arthritis Rheum 2023;59:152165. [PMID: 36716599 DOI: 10.1016/j.semarthrit.2023.152165] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/20/2023]
Abstract
Psoriatic disease (PD) and non-alcoholic fatty liver disease (NAFLD) potentially share disease pathways given the numerous inflammatory pathways involved in both diseases and a higher prevalence of NAFLD in PD patients. Metabolic syndrome and obesity are a key link between the two diseases, but even when controlling for this, associations between both diseases are still seen. Therapeutics that impact metabolic or inflammatory pathways may be impactful in both PD and NAFLD. In this review, we describe common inflammatory pathways contributing to both PD and NAFLD and critically review the potential impact of treatments for and on both diseases.
Collapse
|
8
|
|
Muscat SM, Butler MJ, Mackey-Alfonso SE, Barrientos RM. Young adult and aged female rats are vulnerable to amygdala-dependent, but not hippocampus-dependent, memory impairment following short-term high-fat diet. Brain Res Bull 2023;195:145-56. [PMID: 36870621 DOI: 10.1016/j.brainresbull.2023.03.001] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/06/2023]
Abstract
Global populations are increasingly consuming diets high in saturated fats and refined carbohydrates, and such diets have been well-associated with heightened inflammation and neurological dysfunction. Notably, older individuals are particularly vulnerable to the impact of unhealthy diet on cognition, even after a single meal, and pre-clinical rodent studies have demonstrated that short-term consumption of high-fat diet (HFD) induces marked increases in neuroinflammation and cognitive impairment. Unfortunately though, to date, most studies on the topic of nutrition and cognition, especially in aging, have been performed only in male rodents. This is especially concerning given that older females are more vulnerable to develop certain memory deficits and/or severe memory-related pathologies than males. Thus, the aim of the present study was to determine the extent to which short-term HFD consumption impacts memory function and neuroinflammation in female rats. Young adult (3 months) and aged (20-22 months) female rats were fed HFD for 3 days. Using contextual fear conditioning, we found that HFD had no effect on long-term contextual memory (hippocampus-dependent) at either age, but impaired long-term auditory-cued memory (amygdala-dependent) regardless of age. Gene expression of Il-1β was markedly dysregulated in the amygdala, but not hippocampus, of both young and aged rats after 3 days of HFD. Interestingly, modulation of IL-1 signaling via central administration of the IL-1 receptor antagonist (which we have previously demonstrated to be protective in males) had no impact on memory function following the HFD in females. Investigation of the memory-associated gene Pacap and its receptor Pac1r revealed differential effects of HFD on their expression in the hippocampus and amygdala. Specifically, HFD induced increased expression of Pacap and Pac1r in the hippocampus, whereas decreased Pacap was observed in the amygdala. Collectively, these data suggest that both young adult and aged female rats are vulnerable to amygdala-dependent (but not hippocampus-dependent) memory impairments following short-term HFD consumption, and identify potential mechanisms related to IL-1β and PACAP signaling in these differential effects. Notably, these findings are strikingly different than those previously reported in male rats using the same diet regimen and behavioral paradigms, and highlight the importance of examining potential sex differences in the context of neuroimmune-associated cognitive dysfunction.
Collapse
|
9
|
|
Lazarini M, Assis-Mendonça GR, Machado-Neto JA, Latuf-Filho P, Bezerra SM, Vieira KP, Saad STO. Silencing of ARHGAP21, a Rho GTPase activating protein (RhoGAP), reduces the growth of prostate cancer xenografts in NOD/SCID mice. Biochim Biophys Acta Mol Cell Res 2023;1870:119439. [PMID: 36764390 DOI: 10.1016/j.bbamcr.2023.119439] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/11/2023]
|
10
|
|
Hejazi K, Mohammad Rahimi GR, Rosenkranz SK. Effects of Exercise Training on Inflammatory and Cardiometabolic Risk Biomarkers in Patients With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Biol Res Nurs 2023;25:250-66. [PMID: 36213963 DOI: 10.1177/10998004221132841] [Cited by in Crossref: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/15/2022]
Abstract
BACKGROUND The interaction between type 2 diabetes mellitus (T2DM) and cardiometabolic morbidity and mortality stems from the progressive nature of inflammation underpinning both diseases. Exercise training is considered an effective treatment strategy for T2DM and cardiometabolic diseases. OBJECTIVE The current systematic review and meta-analysis investigated the effects of exercise training on inflammatory and cardiometabolic risk biomarkers in patients with T2DM. DATA SOURCES Electronic databases (PubMed/Medline, Embase, Cochrane Library, CINAHL, Google Scholar, Scopus, and Web of Science) were searched for randomized controlled trials (RCTs) from inception to January 2022. We used random effects models to estimate weighted mean differences with 95% confidence intervals. STUDY SELECTION Twenty-five RCTs were included (N = 1257 participants; mean age = 52 years). Included studies had moderate to good overall methodological quality (TESTEX = 9 (range 7-13). RESULTS Meta-analysis indicated that exercise training significantly increased adiponectin and decreased fasting insulin, homeostatic model assessment for insulin resistance, tumor necrosis factor-α, interleukin-6, and C-reactive protein (ps ≤ 0.05). Subgroup analysis by type of training indicated that aerobic exercise had the most consistent beneficial effects as compared to other types of exercise training; however, there was high heterogeneity among studies. CONCLUSION Different types of exercise training increase adiponectin levels and decrease pro-inflammatory cytokines such as TNF-α, IL-6, and CRP, as well as fasting insulin and insulin resistance markers in patients with T2DM. However, these effects were not beneficial for more commonly measured cardiometabolic risk factors (i.e., lipid profiles). Additional relevant clinical trials are required to confirm these results. TRIAL REGISTRATION This systematic review and meta-analysis was prospectively registered in the PROSPERO database (CRD42022307396).
Collapse
|
11
|
|
Lott N, Gebhard CE, Bengs S, Haider A, Kuster GM, Regitz-Zagrosek V, Gebhard C. Sex hormones in SARS-CoV-2 susceptibility: key players or confounders? Nat Rev Endocrinol 2023;19:217-31. [PMID: 36494595 DOI: 10.1038/s41574-022-00780-6] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 12/14/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has a clear sex disparity in clinical outcomes. Hence, the interaction between sex hormones, virus entry receptors and immune responses has attracted major interest as a target for the prevention and treatment of SARS-CoV-2 infections. This Review summarizes the current understanding of the roles of androgens, oestrogens and progesterone in the regulation of virus entry receptors and disease progression of coronavirus disease 2019 (COVID-19) as well as their therapeutic value. Although many experimental and clinical studies have analysed potential mechanisms by which female sex hormones might provide protection against SARS-CoV-2 infectivity, there is currently no clear evidence for a sex-specific expression of virus entry receptors. In addition, reports describing an influence of oestrogen, progesterone and androgens on the course of COVID-19 vary widely. Current data also do not support the administration of oestradiol in COVID-19. The conflicting evidence and lack of consensus results from a paucity of mechanistic studies and clinical trials reporting sex-disaggregated data. Further, the influence of variables beyond biological factors (sex), such as sociocultural factors (gender), on COVID-19 manifestations has not been investigated. Future research will have to fill this knowledge gap as the influence of sex and gender on COVID-19 will be essential to understanding and managing the long-term consequences of this pandemic.
Collapse
|
12
|
|
Papagianni G, Panayiotou C, Vardas M, Balaskas N, Antonopoulos C, Tachmatzidis D, Didangelos T, Lambadiari V, Kadoglou NPE. The anti-inflammatory effects of aerobic exercise training in patients with type 2 diabetes: A systematic review and meta-analysis. Cytokine 2023;164:156157. [PMID: 36842369 DOI: 10.1016/j.cyto.2023.156157] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/26/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a low-grade, chronic inflammatory disease, associated with increased cardiovascular risk. The purpose of this systematic review/ meta-analysis was to evaluate the effects of aerobic exercise training (AET) on inflammatory markers in T2DM patients. METHODS The literature search was conducted utilizing PubMed, Web of Science, Embase, and the Cochrane Library from their inception up to April 2022. We screened only for randomized controlled trials (RCTs) investigating the effects of AET on C-reactive protein (CRP) and adipokines: adiponectin, resistin, interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-a), along with changes in anthropometric indices and glycemic control in adult T2DM patients. Pooled post-exercise weighted mean differences (WMDs) with 95% Confidence Intervals (CIs) were calculated for all outcomes of interest between exercise-treated patients and controls. RESULTS Twenty-six RCTs involving 1239 T2DM patients were retrieved from the databases for meta-analysis. The cumulative results showed that post-AET inflammatory markers were lower in exercise-treated patients compared to controls regarding CRP (mg/L): WMD: -0.91; 95%CIs: -1.43, -0.40; p < 0.001 resistin (mg/ml): (WMD: -2.08; 95%CIs: -3.32, -0.84; p < 0.001); TNF-a (pg/ml): (WMD: -2.70; 95%CIs: -4.26, -1.14; p < 0.001), and IL-6 (pg/ml): (WMD: -1.05; 95%CIs: -1.68, -0.43; p < 0.001). Those effects were accompanied by significant amelioration of fasting glucose (mg/dl) (WMD: -13.02; 95%CIs: -25.39, -0.66; p = 0.04), HbA1c (%) (WMD: -0.51; 95%CIs: -0.73, -0.28, p < 0.001), and fat mass (%) (WMD: -3.14; 95%CI: -4.71, -1.58; p < 0.001). Our meta-analysis demonstrated less-consistent results for adiponectin (μg/ml), (WMD: 1.00; 95%CI: -0.12, 2.12; p = 0.08) and body-mass index (kg/m2) (WMD: -1.34; 95%CI: -2.76, 0.08; p = 0.06) tending to differ between AET and control group. CONCLUSIONS AET can significantly reduce the inflammatory burden in T2DM patients. by ameliorating the circulating levels of CRP, resistin, TNF-a and IL-6, even without accompanied significant weight-loss. The clinical impact of those anti-inflammatory effects of AET needs to be determined.
Collapse
|
13
|
|
Nakandakari SCBR, Gaspar RC, Kuga GK, Ramos CO, Vieira RF, Rios TDS, Muñoz VR, Sant'ana MR, Simabuco FM, da Silva ASR, Moura LP, Ropelle ER, Pauli JR, Cintra DE. Short-term flaxseed oil, rich in omega 3, protects mice against metabolic damage caused by high-fat diet, but not inflammation. J Nutr Biochem 2023;114:109270. [PMID: 36706930 DOI: 10.1016/j.jnutbio.2023.109270] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/26/2023]
Abstract
It is known that long-term high-fat diet (HF) feeding drastically affects the adipose tissue, contributing to metabolic disorders. Recently, short-term HF consumption was shown to affect different neuronal signaling pathways. Thus, we aimed to evaluate the inflammatory effects of a short-term HF and whether a diet containing omega-3 fatty acid fats from flaxseed oil (FS) has protective effects. Mice were divided into three groups for 3 d, according to their diets: Control group (CT), HF, or FS for 3 d. Lipid profiles were assessed through mass spectrometry and inflammatory markers by RT-qPCR and Western blotting. After short-term HF, mice increased food intake, body weight, adiposity, and fasting glucose. Increased mRNA content of Ccl2 and Tnf was demonstrated in the HF compared to CT in mesenteric adipose tissue. In the liver, TNFα protein was higher in the HF group than in CT, followed by a decreased polyunsaturated fatty acids tissue incorporation in HF. On the other hand, the consumption of FS reduced food intake and fasting glucose, as well as increased omega-3 fatty acid incorporation in MAT and the liver. However, short-term FS was insufficient to control the early inflammation triggered by HF in MAT and the liver. These data demonstrated that a 3-d HF diet is enough to damage glucose homeostasis and trigger inflammation. In contrast, short-term FS protects against increased food intake and fasting glucose but not inflammation in mice.
Collapse
|
14
|
|
Ghavami G, Kiasari RE, Pakzad F, Sardari S. Effect of metformin alone and in combination with etoposide and epirubicin on proliferation, apoptosis, necrosis, and migration of B-CPAP and SW cells as thyroid cancer cell lines. Res Pharm Sci 2023;18:185-201. [PMID: 36873273 DOI: 10.4103/1735-5362.367797] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 01/20/2023] Open
Abstract
Background and purpose There has not been a comprehensive study on the simultaneous effects of metformin, etoposide, and epirubicin on thyroid cancer cells. Hence, the current research proposed the in vitro study on the effect of metformin alone and in combination with etoposide and epirubicin on the rate of proliferation, apoptosis, necrosis, and migration against B-CPAP and SW-1736 cells as thyroid cancer cell lines. Experimental approach MTT-based proliferation assay, combination index method, flow cytometry, and scratch wound healing assays were used to evaluate the simultaneous effects of the three approved drugs against thyroid cancer cells. Findings/Results This study showed that the toxic concentration of metformin on normal Hu02 cells was more than 10 folds higher than B-CPAP and SW cancerous cells. Metformin in combination with epirubicin and etoposide could increase percentages of B-CPAP and SW cells in early and late apoptosis and necrosis phases in comparison with their single concentrations, significantly. Metformin in combination with epirubicin and etoposide could arrest the S phase in B-CPAP and SW cells, significantly. Metformin in combination with epirubicin and etoposide could reduce ~100% migration rate, whereas single concentrations of epirubicin and etoposide could reduce ~50% migration rate. Conclusion and implication Combined treatment of metformin with anticancer drugs epirubicin and etoposide can increase the mortality in thyroid cancer cell lines and reduce the toxicity of these drugs on the normal cell line, which could be the starting point for proposing a new combination strategy in the therapy of thyroid cancer to induce more potency and reduce acute toxicity.
Collapse
|
15
|
|
Kakoty V, Kc S, Kumari S, Yang CH, Dubey SK, Sahebkar A, Kesharwani P, Taliyan R. Brain insulin resistance linked Alzheimer's and Parkinson's disease pathology: An undying implication of epigenetic and autophagy modulation. Inflammopharmacology 2023. [PMID: 36952096 DOI: 10.1007/s10787-023-01187-z] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Indexed: 03/24/2023]
Abstract
In metabolic syndrome, dysregulated signalling activity of the insulin receptor pathway in the brain due to persistent insulin resistance (IR) condition in the periphery may lead to brain IR (BIR) development. BIR causes an upsurge in the activity of glycogen synthase kinase-3 beta, increased amyloid beta (Aβ) accumulation, hyperphosphorylation of tau, aggravated formation of Aβ oligomers and simultaneously neurofibrillary tangle formation, all of which are believed to be direct contributors in Alzheimer's Disease (AD) pathology. Likewise, for Parkinson's Disease (PD), BIR is associated with alpha-synuclein alterations, dopamine loss in brain areas which ultimately succumbs towards the appearance of classical motor symptoms corresponding to the typical PD phenotype. Modulation of the autophagy process for clearing misfolded proteins and alteration in histone proteins to alleviate disease progression in BIR-linked AD and PD have recently evolved as a research hotspot, as the majority of the autophagy-related proteins are believed to be regulated by histone posttranslational modifications. Hence, this review will provide a timely update on the possible mechanism(s) converging towards BIR induce AD and PD. Further, emphasis on the potential epigenetic regulation of autophagy that can be effectively targeted for devising a complete therapeutic cure for BIR-induced AD and PD will also be reviewed.
Collapse
|
16
|
|
Zhao Z, Chen H, He K, Lin J, Cai W, Sun Y, Liu J. Glutathione-Activated Emission of Ultrasmall Gold Nanoparticles in the Second Near-Infrared Window for Imaging of Early Kidney Injury. Anal Chem 2023;95:5061-8. [PMID: 36908024 DOI: 10.1021/acs.analchem.2c05612] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/14/2023]
Abstract
Biomarker-activatable luminescent probes with high sensitivity and specificity show great promise in advanced bioimaging applications. However, the lack of stable biomarkers at an early stage is currently a major obstacle for sensitive early disease imaging. Herein, we develop a facile in vivo ligand exchange strategy to achieve renal-clearable activatable luminescent gold nanoparticles (AuNPs), which are independent of biomarkers for sensitive and long-time imaging of early kidney injury. Significantly activated emission in the second near-infrared region (∼1026 nm) is realized from the ligand exchange of triphenylphosphine-3,3',3″-trisulfonic acid (TPPTS)-coated AuNPs (∼1.4 nm, TPPTS-AuNPs) with quantitative amounts of glutathione (GSH). The abundant GSH in cells, particularly in liver sinusoids, is then demonstrated successfully to activate the emission of TPPTS-AuNPs with an extremely low background for both cell imaging and in vivo visualization of visceral organs (e.g., liver and kidneys). In addition, the in vivo GSH-exchanged TPPTS-AuNPs show enhanced interactions with acidic renal tubular epithelial cells, resulting in sensitive (contrast index, ∼3.9) and long-time (>6.5 h) noninvasive monitoring of acidosis-induced early kidney injury. This facile ligand exchange strategy opens new possibilities for designing activatable luminescent probes independent of biomarkers for earlier disease diagnosis and treatment.
Collapse
|
17
|
|
Gómez-Contreras A, Franco-Ávila T, Miró L, Juan ME, Moretó M, Planas JM. Dietary intake of table olives exerts antihypertensive effects in association with changes in gut microbiota in spontaneously hypertensive rats. Food Funct 2023;14:2793-806. [PMID: 36861461 DOI: 10.1039/d2fo02928f] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/27/2023]
Abstract
Arbequina table olive (AO) consumption lowers blood pressure (BP) in spontaneously hypertensive rats (SHR). This study evaluates whether dietary supplementation with AO induced changes in the gut microbiota that are consistent with the purported antihypertensive effects. Wistar-Kyoto rats (WKY-c) and SHR-c received water, while SHR-o were supplemented by gavage with AO (3.85 g kg-1) for 7 weeks. Faecal microbiota was analysed by 16S rRNA gene sequencing. SHR-c showed increased Firmicutes and decreased Bacteroidetes compared to WKY-c. AO supplementation in SHR-o decreased BP by approximately 19 mmHg, and reduced plasmatic concentrations of malondialdehyde and angiotensin II. Moreover, reshaped faecal microbiota associated with antihypertensive activity by lowering Peptoniphilus and increasing Akkermansia, Sutterella, Allobaculum, Ruminococcus, and Oscillospira. Also promoted the growth of probiotic strains of Lactobacillus and Bifidobacterium and modified the relationship of Lactobacillus with other microorganisms, from competitive to symbiotic. In SHR, AO promotes a microbiota profile compatible with the antihypertensive effects of this food.
Collapse
|
18
|
|
Storkebaum E, Rosenblum K, Sonenberg N. Messenger RNA Translation Defects in Neurodegenerative Diseases. N Engl J Med 2023;388:1015-30. [PMID: 36920757 DOI: 10.1056/NEJMra2215795] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/16/2023]
|
19
|
|
Vourdoumpa A, Paltoglou G, Charmandari E. The Genetic Basis of Childhood Obesity: A Systematic Review. Nutrients 2023;15:1416. [DOI: 10.3390/nu15061416] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/17/2023] Open
Abstract
Overweight and obesity in childhood and adolescence represents one of the most challenging public health problems of our century owing to its epidemic proportions and the associated significant morbidity, mortality, and increase in public health costs. The pathogenesis of polygenic obesity is multifactorial and is due to the interaction among genetic, epigenetic, and environmental factors. More than 1100 independent genetic loci associated with obesity traits have been currently identified, and there is great interest in the decoding of their biological functions and the gene–environment interaction. The present study aimed to systematically review the scientific evidence and to explore the relation of single-nucleotide polymorphisms (SNPs) and copy number variants (CNVs) with changes in body mass index (BMI) and other measures of body composition in children and adolescents with obesity, as well as their response to lifestyle interventions. Twenty-seven studies were included in the qualitative synthesis, which consisted of 7928 overweight/obese children and adolescents at different stages of pubertal development who underwent multidisciplinary management. The effect of polymorphisms in 92 different genes was assessed and revealed SNPs in 24 genetic loci significantly associated with BMI and/or body composition change, which contribute to the complex metabolic imbalance of obesity, including the regulation of appetite and energy balance, the homeostasis of glucose, lipid, and adipose tissue, as well as their interactions. The decoding of the genetic and molecular/cellular pathophysiology of obesity and the gene–environment interactions, alongside with the individual genotype, will enable us to design targeted and personalized preventive and management interventions for obesity early in life.
Collapse
|
20
|
|
Delle C, Cankar N, Digebjerg Holgersson C, Hvorup Knudsen H, Schiøler Nielsen E, Kjaerby C, Mori Y, Nedergaard M, Weikop P. Long-term high-fat diet increases glymphatic activity in the hypothalamus in mice. Sci Rep 2023;13:4137. [PMID: 36914703 DOI: 10.1038/s41598-023-30630-y] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/16/2023] Open
Abstract
Obesity affects millions of people worldwide and is associated with an increased risk of cognitive decline. The glymphatic system is a brain-wide metabolic waste clearance system, dysfunction of which is linked to dementia. We herein examined glymphatic transport in mice with long-term obesity induced by a high-fat diet for 10 months. The obese mice developed hypertension and elevated heart rate, neuroinflammation and gliosis, but not apparent systemic inflammation. Surprisingly, glymphatic inflow was globally unaffected by the high-fat diet except for the hypothalamus, which displayed increased influx and elevated AQP4 vascular polarization compared to the normal weight control group. We propose that a long-term high-fat diet induced metabolic alteration of hypothalamic neurons and neuroinflammation, which in turn enhanced glymphatic clearance in the effected brain region.
Collapse
|
21
|
|
Guerrero-Romero F, Castellanos-Juárez FX, Salas-Pacheco JM, Morales-Gurrola FG, Salas-Leal AC, Simental-Mendía LE. Association between the expression of TLR4, TLR2, and MyD88 with low-grade chronic inflammation in individuals with metabolically healthy obesity. Mol Biol Rep 2023. [PMID: 36905405 DOI: 10.1007/s11033-023-08338-z] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Indexed: 03/12/2023]
Abstract
BACKGROUND Among the Toll-like receptors (TLR) that are dependent of myeloid response protein (MyD88), the TLR4 and TLR2 are directly associated with low-grade chronic inflammation; however, they are not been investigated in subjects with metabolically healthy obesity (MHO). Thus, the objective of this study was to determine the association between the expression of TLR4, TLR2, and MyD88 with low-grade chronic inflammation in individuals with MHO. METHODS AND RESULTS Men and women with obesity aged 20 to 55 years were enrolled in a cross-sectional study. Individuals with MHO were allocated into the groups with and without low-grade chronic inflammation. Pregnancy, smoking, alcohol consumption, intense physical activity or sexual intercourse in the previous 72 h, diabetes, high blood pressure, cancer, thyroid disease, acute or chronic infections, renal impairment, and hepatic diseases, were exclusion criteria. The MHO phenotype was defined by a body mass index (BMI ≥ 30 kg/m2) plus one or none of the following cardiovascular risk factors: hyperglycemia, elevated blood pressure, hypertriglyceridemia, and low high-density lipoprotein cholesterol. A total of 64 individuals with MHO were enrolled and allocated into the groups with (n = 37) and without (n = 27) inflammation. The multiple logistic regression analysis indicated that TLR2 expression is significantly associated with inflammation in individuals with MHO. In the subsequent analysis adjusted by BMI, TLR2 expression remained associated with inflammation in individuals with MHO. CONCLUSION Our results suggest that overexpression of TLR2, but not TLR4 and MyD88, is associated with low-grade chronic inflammation in subjects with MHO.
Collapse
|
22
|
|
Xia Y, Yang H, Zhang K, Tian J, Li Z, Yu E, Li H, Gong W, Xie W, Wang G, Xie J. Berberine regulates glucose metabolism in largemouth bass by modulating intestinal microbiota. Front Physiol 2023;14. [DOI: 10.3389/fphys.2023.1147001] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/11/2023] Open
Abstract
This study examined the role of intestinal microbiota in berberine (BBR)-mediated glucose (GLU) metabolism regulation in largemouth bass. Four groups of largemouth bass (133.7 ± 1.43 g) were fed with control diet, BBR (1 g/kg feed) supplemented diet, antibiotic (ATB, 0.9 g/kg feed) supplemented diet and BBR + ATB (1g/kg feed +0.9 g/kg feed) supplemented diet for 50 days. BBR improved growth, decreased the hepatosomatic and visceral weight indices, significantly downregulated the serum total cholesterol and GLU levels, and significantly upregulated the serum total bile acid (TBA) levels. The hepatic hexokinase, pyruvate kinase, GLU-6-phosphatase and glutamic oxalacetic transaminase activities in the largemouth bass were significantly upregulated when compared with those in the control group. The ATB group exhibited significantly decreased final bodyweight, weight gain, specific growth rates and serum TBA levels, and significantly increased hepatosomatic and viscera weight indices, hepatic phosphoenolpyruvate carboxykinase, phosphofructokinase, and pyruvate carboxylase activities, and serum GLU levels. Meanwhile, the BBR + ATB group exhibited significantly decreased final weight, weight gain and specific growth rates, and TBA levels and significantly increased hepatosomatic and viscera weight indices and GLU levels. High-throughput sequencing revealed that compared with those in the control group, the Chao one index and Bacteroidota contents were significantly upregulated and the Firmicutes contents were downregulated in the BBR group. Additionally, the Shannon and Simpson indices and Bacteroidota levels were significantly downregulated, whereas the Firmicutes levels were significantly upregulated in ATB and BBR + ATB groups. The results of in-vitro culture of intestinal microbiota revealed that BBR significantly increased the number of culturable bacteria. The characteristic bacterium in the BBR group was Enterobacter cloacae. Biochemical identification analysis revealed that E. cloacae metabolizes carbohydrates. The size and degree of vacuolation of the hepatocytes in the control, ATB, and ATB + BBR groups were higher than those in the BBR group. Additionally, BBR decreased the number of nuclei at the edges and the distribution of lipids in the liver tissue. Collectively, BBR reduced the blood GLU level and improved GLU metabolism in largemouth bass. Comparative analysis of experiments with ATB and BBR supplementation revealed that BBR regulated GLU metabolism in largemouth bass by modulating intestinal microbiota.
Collapse
|
23
|
|
Kim J, Hong S, Park J, Kim S. Metabolic and Transcriptomic Changes in the Mouse Brain in Response to Short-Term High-Fat Metabolic Stress. Metabolites 2023;13:407. [DOI: 10.3390/metabo13030407] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/12/2023] Open
Abstract
The chronic consumption of diets rich in saturated fats leads to obesity and associated metabolic disorders including diabetes and atherosclerosis. Intake of a high-fat diet (HFD) is also recognized to dysregulate neural functions such as cognition, mood, and behavior. However, the effects of short-term high-fat diets on the brain are elusive. Here, we investigated molecular changes in the mouse brain following an acute HFD for 10 days by employing RNA sequencing and metabolomics profiling. Aberrant expressions of 92 genes were detected in the brain tissues of acute HFD-exposed mice. The differentially expressed genes were enriched for various pathways and processes such as superoxide metabolism. In our global metabolomic profiling, a total of 59 metabolites were significantly altered by the acute HFD. Metabolic pathways upregulated from HFD-exposed brain tissues relative to control samples included oxidative stress, oxidized polyunsaturated fatty acids, amino acid metabolism (e.g., branched-chain amino acid catabolism, and lysine metabolism), and the gut microbiome. Acute HFD also elevated levels of N-acetylated amino acids, urea cycle metabolites, and uracil metabolites, further suggesting complex changes in nitrogen metabolism. The observed molecular events in the present study provide a valuable resource that can help us better understand how acute HFD stress impacts brain homeostasis.
Collapse
|
24
|
|
Elaidy SM, El-kherbetawy MK, Abed SY, Alattar A, Alshaman R, Eladl MA, Alamri ES, Al balawi AN, Zaid A, Elkazzaz AY, Abdelkhalig SM, Hamed ZE, Zaitone SA. α-Hederin Saponin Augments the Chemopreventive Effect of Cisplatin against Ehrlich Tumors and Bioinformatic Approach Identifying the Role of SDF1/CXCR4/p-AKT-1/NFκB Signaling. Pharmaceuticals (Basel) 2023;16:405. [DOI: 10.3390/ph16030405] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/10/2023] Open
Abstract
Stromal cell-derived factor-1 (SDF1) and its C-X-C chemokine receptor type 4 receptor (CXCR4) are significant mediators for cancer cells’ proliferation, and we studied their expression in Ehrlich solid tumors (ESTs) grown in mice. α-Hederin is a pentacyclic triterpenoid saponin found in Hedera or Nigella species with biological activity that involves suppression of growth of breast cancer cell lines. The aim of this study was to explore the chemopreventive activity of α-hederin with/without cisplatin; this was achieved by measuring the reduction in tumor masses and the downregulation in SDF1/CXCR4/pAKT signaling proteins and nuclear factor kappa B (NFκB). Ehrlich carcinoma cells were injected in four groups of Swiss albino female mice (Group1: EST control group, Group2: EST + α-hederin group, Group3: EST + cisplatin group, and Group4: EST+α-hederin/cisplatin treated group). Tumors were dissected and weighed, one EST was processed for histopathological staining with hematoxylin and eosin (HE), and the second MC was frozen and processed for estimation of signaling proteins. Computational analysis for these target proteins interactions showed direct-ordered interactions. The dissected solid tumors revealed decreases in tumor masses (~21%) and diminished viable tumor regions with significant necrotic surrounds, particularly with the combination regimens. Immunohistochemistry showed reductions (~50%) in intratumoral NFκβ in the mouse group that received the combination therapy. The combination treatment lowered the SDF1/CXCR4/p-AKT proteins in ESTs compared to the control. In conclusion, α-hederin augmented the chemotherapeutic potential of cisplatin against ESTs; this effect was at least partly mediated through suppressing the chemokine SDF1/CXCR4/p-AKT/NFκB signaling. Further studies are recommended to verify the chemotherapeutic potential of α-hederin in other breast cancer models.
Collapse
|
25
|
|
Sewaybricker LE, Huang A, Chandrasekaran S, Melhorn SJ, Schur EA. The Significance of Hypothalamic Inflammation and Gliosis for the Pathogenesis of Obesity in Humans. Endocr Rev 2023;44:281-96. [PMID: 36251886 DOI: 10.1210/endrev/bnac023] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/19/2022]
Abstract
Accumulated preclinical literature demonstrates that hypothalamic inflammation and gliosis are underlying causal components of diet-induced obesity in rodent models. This review summarizes and synthesizes available translational data to better understand the applicability of preclinical findings to human obesity and its comorbidities. The published literature in humans includes histopathologic analyses performed postmortem and in vivo neuroimaging studies measuring indirect markers of hypothalamic tissue microstructure. Both support the presence of hypothalamic inflammation and gliosis in children and adults with obesity. Findings predominantly point to tissue changes in the region of the arcuate nucleus of the hypothalamus, although findings of altered tissue characteristics in whole hypothalamus or other hypothalamic regions also emerged. Moreover, the severity of hypothalamic inflammation and gliosis has been related to comorbid conditions, including glucose intolerance, insulin resistance, type 2 diabetes, and low testosterone levels in men, independent of elevated body adiposity. Cross-sectional findings are augmented by a small number of prospective studies suggesting that a greater degree of hypothalamic inflammation and gliosis may predict adiposity gain and worsening insulin sensitivity in susceptible individuals. In conclusion, existing human studies corroborate a large preclinical literature demonstrating that hypothalamic neuroinflammatory responses play a role in obesity pathogenesis. Extensive or permanent hypothalamic tissue remodeling may negatively affect the function of neuroendocrine regulatory circuits and promote the development and maintenance of elevated body weight in obesity and/or comorbid endocrine disorders.
Collapse
|
26
|
|
Vargas-Soria M, García-Alloza M, Corraliza-Gómez M. Effects of diabetes on microglial physiology: a systematic review of in vitro, preclinical and clinical studies. J Neuroinflammation 2023;20:57. [PMID: 36869375 DOI: 10.1186/s12974-023-02740-x] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 03/05/2023] Open
Abstract
Diabetes mellitus is a heterogeneous chronic metabolic disorder characterized by the presence of hyperglycemia, commonly preceded by a prediabetic state. The excess of blood glucose can damage multiple organs, including the brain. In fact, cognitive decline and dementia are increasingly being recognized as important comorbidities of diabetes. Despite the largely consistent link between diabetes and dementia, the underlying causes of neurodegeneration in diabetic patients remain to be elucidated. A common factor for almost all neurological disorders is neuroinflammation, a complex inflammatory process in the central nervous system for the most part orchestrated by microglial cells, the main representatives of the immune system in the brain. In this context, our research question aimed to understand how diabetes affects brain and/or retinal microglia physiology. We conducted a systematic search in PubMed and Web of Science to identify research items addressing the effects of diabetes on microglial phenotypic modulation, including critical neuroinflammatory mediators and their pathways. The literature search yielded 1327 records, including 18 patents. Based on the title and abstracts, 830 papers were screened from which 250 primary research papers met the eligibility criteria (original research articles with patients or with a strict diabetes model without comorbidities, that included direct data about microglia in the brain or retina), and 17 additional research papers were included through forward and backward citations, resulting in a total of 267 primary research articles included in the scoping systematic review. We reviewed all primary publications investigating the effects of diabetes and/or its main pathophysiological traits on microglia, including in vitro studies, preclinical models of diabetes and clinical studies on diabetic patients. Although a strict classification of microglia remains elusive given their capacity to adapt to the environment and their morphological, ultrastructural and molecular dynamism, diabetes modulates microglial phenotypic states, triggering specific responses that include upregulation of activity markers (such as Iba1, CD11b, CD68, MHC-II and F4/80), morphological shift to amoeboid shape, secretion of a wide variety of cytokines and chemokines, metabolic reprogramming and generalized increase of oxidative stress. Pathways commonly activated by diabetes-related conditions include NF-κB, NLRP3 inflammasome, fractalkine/CX3CR1, MAPKs, AGEs/RAGE and Akt/mTOR. Altogether, the detailed portrait of complex interactions between diabetes and microglia physiology presented here can be regarded as an important starting point for future research focused on the microglia-metabolism interface.
Collapse
|
27
|
|
Monfort-Pires M, Lamichhane S, Alonso C, Egelandsdal B, Orešič M, Jordahl VO, Skjølsvold O, Pérez-Ruiz I, Blanco ME, Skeie S, Martins C, Haug A. Classification of Common Food Lipid Sources Regarding Healthiness Using Advanced Lipidomics: A Four-Arm Crossover Study. Int J Mol Sci 2023;24. [PMID: 36902372 DOI: 10.3390/ijms24054941] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/08/2023] Open
Abstract
Prospective studies have failed to establish a causal relationship between animal fat intake and cardiovascular diseases in humans. Furthermore, the metabolic effects of different dietary sources remain unknown. In this four-arm crossover study, we investigated the impact of consuming cheese, beef, and pork meat on classic and new cardiovascular risk markers (obtained from lipidomics) in the context of a healthy diet. A total of 33 young healthy volunteers (23 women/10 men) were assigned to one out of four test diets in a Latin square design. Each test diet was consumed for 14 days, with a 2-week washout. Participants received a healthy diet plus Gouda- or Goutaler-type cheeses, pork, or beef meats. Before and after each diet, fasting blood samples were withdrawn. A reduction in total cholesterol and an increase in high density lipoprotein particle size were detected after all diets. Only the pork diet upregulated plasma unsaturated fatty acids and downregulated triglycerides species. Improvements in the lipoprotein profile and upregulation of circulating plasmalogen species were also observed after the pork diet. Our study suggests that, within the context of a healthy diet rich in micronutrients and fiber, the consumption of animal products, in particular pork meat, may not induce deleterious effects, and reducing the intake of animal products should not be regarded as a way of reducing cardiovascular risk in young individuals.
Collapse
|
28
|
|
Oikawa KH, Juliani FL, Carrilho LAO, Pozzuto L, Padilha DMH, Silveira MN, Costa FO, Macedo LT, da Cunha Júnior AD, Mendes MCS, Carvalheira JBC. Abdominal adiposity as a prognosis biomarker of clinical outcome in metastatic colorectal cancer. Nutrition 2023;107:111913. [PMID: 36563436 DOI: 10.1016/j.nut.2022.111913] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Adipose tissue distribution and radiodensity are associated with prognosis in many types of cancer. However, the roles of adipose tissue distribution and radiodensity in patients with metastatic colorectal cancer (mCRC) remain unclear. The aim of this study was to assess the prognostic effect of adiposity and adipose tissue radiodensities in patients with mCRC. METHODS Patients with mCRC who received first-line palliative chemotherapy and had a computed tomography (CT) scan at the third lumbar vertebra (L3) level, admitted between January 2010 and December 2018, were sequentially enrolled. Body composition was assessed using CT-derived measurements. Univariate and multivariate logistic regression analyses and Kaplan-Meier curves were used to determine prognostic values. RESULTS The study included 237 patients. Cox analyses demonstrated that high subcutaneous adipose tissue (SAT) index was associated with a lower risk for death (hazard ratio [HR], 0.51; 95% confidence interval [CI], 0.29-0.88; Ptrend < 0.025). There was no significant association between visceral adipose tissue (VAT) index tertiles and overall survival. However, high VAT and SAT radiodensities were significantly associated with increased mortality (HR, 1.80; 95% CI, 1.12-2.89; Ptrend < 0.030 and HR, 1.85; 95% CI, 1.19-2.86; Ptrend < 0.021, respectively). CONCLUSIONS A higher SAT index in patients with mCRC was associated with a favorable overall survival outcome, whereas higher SAT and VAT radiodensities were associated with an increased risk for death, supporting that early nutritional intervention may improve mCRC prognosis.
Collapse
|
29
|
|
Jeczmien-Lazur JS, Sanetra AM, Pradel K, Izowit G, Chrobok L, Palus-Chramiec K, Piggins HD, Lewandowski MH. Metabolic cues impact non-oscillatory intergeniculate leaflet and ventral lateral geniculate nucleus: standard versus high-fat diet comparative study. J Physiol 2023;601:979-1016. [PMID: 36661095 DOI: 10.1113/JP283757] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/21/2023] Open
Abstract
The intergeniculate leaflet and ventral lateral geniculate nucleus (IGL/VLG) are subcortical structures involved in entrainment of the brain's circadian system to photic and non-photic (e.g. metabolic and arousal) cues. Both receive information about environmental light from photoreceptors, exhibit infra-slow oscillations (ISO) in vivo, and connect to the master circadian clock. Although current evidence demonstrates that the IGL/VLG communicate metabolic information and are crucial for entrainment of circadian rhythms to time-restricted feeding, their sensitivity to food intake-related peptides has not been investigated yet. We examined the effect of metabolically relevant peptides on the spontaneous activity of IGL/VLG neurons. Using ex vivo and in vivo electrophysiological recordings as well as in situ hybridisation, we tested potential sensitivity of the IGL/VLG to anorexigenic and orexigenic peptides, such as cholecystokinin, glucagon-like peptide 1, oxyntomodulin, peptide YY, orexin A and ghrelin. We explored neuronal responses to these drugs during day and night, and in standard vs. high-fat diet conditions. We found that IGL/VLG neurons responded to all the substances tested, except peptide YY. Moreover, more neurons responded to anorexigenic drugs at night, while a high-fat diet affected the IGL/VLG sensitivity to orexigenic peptides. Interestingly, ISO neurons responded to light and orexin A, but did not respond to the other food intake-related peptides. In contrast, non-ISO cells were activated by metabolic peptides, with only some being responsive to light. Our results show for the first time that peptides involved in the body's energy homeostasis stimulate the thalamus and suggest functional separation of the IGL/VLG cells. KEY POINTS: The intergeniculate leaflet and ventral lateral geniculate nucleus (IGL/VLG) of the rodent thalamus process various signals and participate in circadian entrainment. In both structures, cells exhibiting infra-slow oscillatory activity as well as non-rhythmically firing neurons being observed. Here, we reveal that only one of these two groups of cells responds to anorexigenic (cholecystokinin, glucagon-like peptide 1 and oxyntomodulin) and orexigenic (ghrelin and orexin A) peptides. Neuronal responses vary depending on the time of day (day vs. night) and on the diet (standard vs. high-fat diet). Additionally, we visualised receptors to the tested peptides in the IGL/VLG using in situ hybridisation. Our results suggest that two electrophysiologically different subpopulations of IGL/VLG neurons are involved in two separate functions: one related to the body's energy homeostasis and one associated with the subcortical visual system.
Collapse
|
30
|
|
Naseri A, Sanaie S, Hamzehzadeh S, Seyedi-Sahebari S, Hosseini MS, Gholipour-Khalili E, Rezazadeh-Gavgani E, Majidazar R, Seraji P, Daneshvar S, Rezazadeh-Gavgani E. Metformin: new applications for an old drug. J Basic Clin Physiol Pharmacol 2023;34:151-60. [PMID: 36474458 DOI: 10.1515/jbcpp-2022-0252] [Cited by in Crossref: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/12/2022]
Abstract
Metformin is a biguanide, evolved as one of the most widely used medicines. The applications of this component include but are not limited to reducing blood glucose, weight loss, and polycystic ovary syndrome. Studies about other probable indications have emerged, indicating that this agent can also be utilized for other purposes. In this review, applications of metformin are noticed based on the current evidence. Metformin commonly is used as an off-label drug in non-alcoholic fatty liver disease (NAFLD), but it worsens inflammation and should not be used for this purpose, according to the latest research. Metformin decreased the risk of death in patients with liver cirrhosis. It is an effective agent in the prevention and improvement of survival in patients suffering hepatocellular carcinoma. There is evidence of the beneficial effects of metformin in colorectal cancer, early-stage prostate cancer, breast cancer, urothelial cancer, blood cancer, melanoma, and bone cancer, suggesting metformin as a potent anti-tumor agent. Metformin shows neuroprotective effects and provides a potential therapeutic benefit for mild cognitive impairment and Alzheimer's disease (AD). It also has been shown to improve mental function and reduce the incidence of dementia. Another condition that metformin has been shown to slow the progression of is Duchenne muscular dystrophy. Regarding infectious diseases, tuberculosis (TB) and coronavirus disease (COVID-19) are among the conditions suggested to be affected by metformin. The beneficial effects of metformin in cardiovascular diseases were also reported in the literature. Concerning renal function, studies showed that daily oral administration of metformin could ameliorate kidney fibrosis and normalize kidney structure and function. This study reviewed the clinical and preclinical evidence about the possible benefits of metformin based on recent studies. Numerous questions like whether these probable indications of metformin can be observed in non-diabetics, need to be described by future basic experiments and clinical studies.
Collapse
|
31
|
|
Supruniuk E, Żebrowska E, Maciejczyk M, Zalewska A, Chabowski A. Lipid peroxidation and sphingolipid alterations in the cerebral cortex and hypothalamus of rats fed a high-protein diet. Nutrition 2023;107:111942. [PMID: 36621260 DOI: 10.1016/j.nut.2022.111942] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/15/2022]
Abstract
OBJECTIVES High-protein diets (HPDs) are widely accepted to enhance satiety and energy expenditure and thus have become a popular strategy to lose weight and facilitate muscle protein synthesis. However, long-term high-protein consumption could be linked with metabolic and clinical problems such as renal and liver dysfunctions. This study verified the effects of 8-wk high-protein ingestion on lipid peroxidation and sphingolipid metabolism in the plasma, cerebral cortex, and hypothalamus in rats. METHODS Immunoenzymatic and spectrophotometric methods were applied to assess oxidation-reduction (redox) biomarkers and neutral sphingomyelinase activity, whereas gas-liquid chromatography and high-performance liquid chromatography were used to examine sphingolipid levels. RESULTS The vast majority of HPD-related alterations was restricted to the hypothalamus. Specifically, an increased rate of lipid peroxidation (increased lipid hydroperoxides, 8-isoprostanes, and thiobarbituric acid reactive substances) associated with ceramide accumulation via the activation of de novo synthesis (decreased sphinganine), salvage pathway (decreased sphingosine), and sphingomyelin hydrolysis (decreased sphingomyelin and increased neutral sphingomyelinase activity) was noted. CONCLUSIONS This study showed that HPD substantially affected hypothalamic metabolic pathways, which potentially alter cerebral output signals to the peripheral tissues.
Collapse
|
32
|
|
Abe S, Nozawa H, Sasaki K, Murono K, Emoto S, Yokoyama Y, Matsuzaki H, Nagai Y, Yoshioka Y, Shinagawa T, Sonoda H, Ishihara S. Sarcopenia is Associated With Oncological Prognosis and the Incidence of Secondary Cancer in Patients With Middle/Lower Rectal Cancer. Clin Colorectal Cancer 2023;22:143-52. [PMID: 36418196 DOI: 10.1016/j.clcc.2022.10.001] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This study evaluated the clinical implications of sarcopenia for patients with rectal cancer according to cancer progression. SUMMARY BACKGROUND DATA The negative impact of body composition on long-term outcome has been demonstrated for various malignancies. METHODS We retrospectively reviewed 708 patients with rectal cancer who underwent curative resection at our institution between 2003 and 2020. Factors contributing to long-term outcomes and the incidence of secondary cancer (ISC) were analyzed. Psoas muscle mass index (PMI) was assessed using preoperative computed tomography. Sarcopenia was defined using the PMI cut-off values for Asian adults (6.36 cm2/m2 for males and 3.92 cm2/m2 for females). RESULTS Sarcopenia was identified in 306 patients (43.2%). Sarcopenia was associated with advanced age, low body mass index, smoking history, and advanced T-stage. Multivariate analysis showed sarcopenia was an independent poor prognostic factor for OS (HR 1.71; P = .0102) and cancer-specific survival (HR 1.64; P = .0490). Patients with sarcopenia had significantly higher mortality due to cancer-related death in stages III and IV, whereas non-rectal cancer-related death, including secondary cancer, was markedly increased in stage 0-II sarcopenic rectal patients. Five-year cumulative ISC in patients with and without sarcopenia was 11.8% and 5.9%, respectively. Multivariate analysis revealed that sarcopenia was an independent predictive factor for ISC (HR 2.05; P = .0063). CONCLUSIONS Sarcopenia helps predict survival outcomes and cause of death according to cancer stage for patients with middle/lower rectal cancer who underwent radical surgery. Furthermore, sarcopenia increased the development of secondary cancer in those patients.
Collapse
|
33
|
|
Fan X, Zhang Y, Song Y, Zhao Y, Xu Y, Guo F, Shao M, Ma X, Zhang W, Wei F, Qin G. Compound Danshen Dripping Pills moderate intestinal flora and the TLR4/MyD88/NF-κB signaling pathway in alleviating cognitive dysfunction in type 2 diabetic KK-Ay mice. Phytomedicine 2023;111:154656. [PMID: 36682300 DOI: 10.1016/j.phymed.2023.154656] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/12/2023]
Abstract
BACKGROUD Bidirectional communications between the gut microbiota and the brain may play a critical role in diabetes-related cognitive impairment. Compound Danshen Dripping Pills (CDDP) treatment has shown remarkable improvement in cognitive impairment in people with type 2 diabetes mellitus (T2DM) in clinical settings, but the underlying mechanisms remain unknown. PURPOSE An extensive detailed strategy via in vivo functional experiments, transcriptomics, metabolomics, and network pharmacology was adopted to investigate the CDDP-treatment mechanism in diabetic cognitive dysfunction. METHODS For 12 weeks, KK-Ay mice, a spontaneous T2DM model, were intragastrically administered various doses of CDDP solution or an equivalent volume of water, and the nootropic drug piracetam was orally administered as a positive control. At the 12th week, cognition was assessed using Morris water maze tests and brain magnetic resonance imaging (MRI). Furthermore, transcriptomics, metabolomics, and network pharmacology analyses were applied to reveal novel molecular mechanisms of CDDP-treatment in diabetic cognitive dysfunction of KK-Ay mice, which were then validated using quantitative real-time polymerase chain reaction and Western blot. RESULTS Here we verified that CDDP can suppress inflammatory response and alleviate the cognitive dysfunction in KK-Ay mice. Also, as demonstrated by 16S rRNA sequencing and short-chain fatty acids (SCFAs) analysis, CDDP attenuated intestinal flora disorder as well as increases of metabolites including butyric acid, hexanoic acid, and isohexic acid. Given the integrated analyses of network pharmacology, transcriptomic, metabolomic data, and molecular biology, the TLR4/MyD88/NF-κB signaling pathway was activated in diabetes, which could be reversed by CDDP. CONCLUSIONS Our findings demonstrate that CDDP restructures the gut microbiota composition and increased the intestinal SCFAs in KK-Ay mice, which might inhibit neuroinflammation, and thus improve diabetic mice cognitive disorder.
Collapse
|
34
|
|
Jörgensen SKM, Karnošová A, Mazzaferro S, Rowley O, Chen HC, Robbins SJ, Christofides S, Merkle FT, Maletínská L, Petrik D. An analogue of the Prolactin Releasing Peptide reduces obesity and promotes adult neurogenesis.. [DOI: 10.1101/2023.02.28.528936] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/06/2023]
Abstract
AbstractHypothalamic Adult Neurogenesis (hAN) has been implicated in regulating energy homeostasis. Adult-generated neurons and adult Neural Stem Cells (aNSCs) in the hypothalamus control food intake and body weight. Conversely, Diet Induced Obesity (DIO) by High Fat Diets (HFD) exerts adverse influence on hAN. However, the effects of anti-obesity compounds on hAN are not known. To address this, we administered a lipidized analogue of an anti-obesity neuropeptide, Prolactin Releasing Peptide (PrRP), so-called LiPR. In the HFD context, LiPR rescued survival of adult-born hypothalamic neurons and increased the number of aNSCs by reducing their activation. In addition, LiPR rescued reduction of immature hippocampal neurons and modulated calcium dynamics in iPSC-derived human neurons. These results show for the first time that anti-obesity neuropeptides influence adult neurogenesis and suggest that the neurogenic process can serve as a target of anti-obesity pharmacotherapy.
Collapse
|
35
|
|
Leng L, Yuan Z, Su X, Chen Z, Yang S, Chen M, Zhuang K, Lin H, Sun H, Li H, Xue M, Xu J, Yan J, Chen Z, Yuan T, Zhang J. Hypothalamic Menin regulates systemic aging and cognitive decline. PLoS Biol 2023;21:e3002033. [PMID: 36928253 DOI: 10.1371/journal.pbio.3002033] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/18/2023] Open
Abstract
Aging is a systemic process, which is a risk factor for impaired physiological functions, and finally death. The molecular mechanisms driving aging process and the associated cognitive decline are not fully understood. The hypothalamus acts as the arbiter that orchestrates systemic aging through neuroinflammatory signaling. Our recent findings revealed that Menin plays important roles in neuroinflammation and brain development. Here, we found that the hypothalamic Menin signaling diminished in aged mice, which correlates with systemic aging and cognitive deficits. Restoring Menin expression in ventromedial nucleus of hypothalamus (VMH) of aged mice extended lifespan, improved learning and memory, and ameliorated aging biomarkers, while inhibiting Menin in VMH of middle-aged mice induced premature aging and accelerated cognitive decline. We further found that Menin epigenetically regulates neuroinflammatory and metabolic pathways, including D-serine metabolism. Aging-associated Menin reduction led to impaired D-serine release by VMH-hippocampus neural circuit, while D-serine supplement rescued cognitive decline in aged mice. Collectively, VMH Menin serves as a key regulator of systemic aging and aging-related cognitive decline.
Collapse
|
36
|
|
Cozachenco D, Ribeiro FC, Ferreira ST. Defective proteostasis in Alzheimer's disease. Ageing Res Rev 2023;85:101862. [PMID: 36693451 DOI: 10.1016/j.arr.2023.101862] [Cited by in Crossref: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/22/2023]
Abstract
The homeostasis of cellular proteins, or proteostasis, is critical for neuronal function and for brain processes, including learning and memory. Increasing evidence indicates that defective proteostasis contributes to the progression of neurodegenerative disorders, including Alzheimer's disease (AD), the most prevalent form of dementia in the elderly. Proteostasis comprises a set of cellular mechanisms that control protein synthesis, folding, post-translational modification and degradation, all of which are deregulated in AD. Importantly, deregulation of proteostasis plays a key role in synapse dysfunction and in memory impairment, the major clinical manifestation of AD. Here, we discuss molecular pathways involved in protein synthesis and degradation that are altered in AD, and possible pharmacological approaches to correct these defects.
Collapse
|
37
|
|
Xu T, Wang X, Chen Y, Li H, Zhao L, Ding X, Zhang C. Microbiome Features Differentiating Unsupervised-Stratification-Based Clusters of Patients with Abnormal Glycometabolism. mBio 2023;14:e0348722. [PMID: 36651735 DOI: 10.1128/mbio.03487-22] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/19/2023] Open
Abstract
The alteration of gut microbiota structure plays a pivotal role in the pathogenesis of abnormal glycometabolism. However, the microbiome features identified in patient groups stratified solely based on glucose levels remain controversial among different studies. In this study, we stratified 258 participants (discovery cohort) into three clusters according to an unsupervised method based on 16 clinical parameters involving the levels of blood glucose, insulin, and lipid. We found 67 cluster-specific microbiome features (i.e., amplicon sequence variants [ASVs]) based on 16S rRNA gene V3-V4 region sequencing. Specifically, ASVs belonging to Barnesville and Alistipes were enriched in cluster 1, in which participants had the lowest blood glucose levels, high insulin sensitivity, and a high-fecal short-chain fatty acid concentration. ASVs belonging to Prevotella copri and Ruminococcus gnavus were enriched in cluster 2, which was characterized by a moderate level of blood glucose, serious insulin resistance, and high levels of cholesterol and triglyceride. Cluster 3 was characterized by a high level of blood glucose and insulin deficiency, enriched with ASVs in P. copri and Bacteroides vulgatus. In addition, machine learning classifiers using the 67 cluster-specific ASVs were used to distinguish individuals in one cluster from those in the other two clusters both in discovery and testing cohorts (n = 83). Therefore, microbiome features identified based on the unsupervised stratification of patients with more inclusive clinical parameters may better reflect microbiota alterations associated with the progression of abnormal glycometabolism. IMPORTANCE The gut microbiota is altered in patients with type 2 diabetes (T2D) and prediabetes. The association of particular bacteria with T2D, however, varied among studies, which has made it challenging to develop precision medicine approaches for the prevention and alleviation of T2D. Blood glucose level is the only parameter in clustering patients when identifying the T2D-related bacteria in previous studies. This stratification ignores the fact that patients within the same blood glucose range differ in their insulin resistance and dyslipidemia, which also may be related to disordered gut microbiota. In addition to parameters of blood glucose levels, we also used additional parameters involving insulin and lipid levels to stratify participants into three clusters and further identified cluster-specific microbiome features. We further validated the association between these microbiome features and glycometabolism with an independent cohort. This study highlights the importance of stratification of patients with blood glucose, insulin, and lipid levels when identifying the microbiome features associated with the progression of abnormal glycometabolism.
Collapse
|
38
|
|
Adila F, Rejeki PS, Herawati L. Acute Moderate-Intensity Strength Exercise Increases Anti-Inflammatory Cytokines in Obese Females. Teor metod fiz vihov 2023;23:35-41. [DOI: 10.17309/tmfv.2023.1.05] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/06/2023] Open
Abstract
The study purpose was to prove the effect of acute moderate-intensity endurance and strength exercise on increasing IL-6 levels in obese females.
Materials and methods. A total of 21 obese women aged 20-25 years were recruited from among university students and given two modes of acute exercise intervention, namely moderate-intensity endurance and strength exercise carried out for 35 minutes/session. Subjects were divided randomly into three groups, namely K1 (control group without intervention; n = 7), K2 (Acute moderate-intensity endurance exercise; n = 7), K3 (Acute moderate-intensity strength exercise; n = 7). ELISA was used to analyze serum IL-6 levels before and after exercise. The data analysis technique used the One-way ANOVA test and continued with the Tukey HSD post-hoc test with a significance level of 5%.
Results. The results of the One-way ANOVA test showed that there was a significant difference between serum IL-6 levels after exercise and delta (Δ) in the three groups (p ≤ 0.01). The results of the Tukey HSD post-hoc test showed that there was a significant difference between serum IL-6 levels after exercise and delta (Δ) at K3 with K1 (p ≤ 0.01), K3with K2 (p ≤ 0.01), while there was no significant difference in serum IL-6 levels (p ≥ 0.05) at K2 with K1.
Conclusions. Overall, our study concluded that 35 min/session of acute moderate-intensity strength exercise was effective in increasing anti-inflammatory cytokines, such as IL-6, in obese females.
Collapse
|
39
|
|
Burman P, Casar-Borota O, Perez-Rivas LG, Dekkers OM. Aggressive pituitary tumors and pituitary carcinomas: from pathology to treatment. J Clin Endocrinol Metab 2023:dgad098. [PMID: 36856733 DOI: 10.1210/clinem/dgad098] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/02/2023]
Abstract
Aggressive pituitary tumors (APT) and pituitary carcinomas (PC) are heterogeneous with regard to clinical presentation, proliferative markers, clinical course and response to therapy. Half of them show an aggressive course only many years after the first apparently benign presentation. APT and PC share several properties, but Ki67 index ≥10% and extensive p53 expression are more prevalent in PCs. Mutations in TP53 and ATRX are the most common genetic alterations, their detection might be of value for early identification of aggressiveness. Treatment requires a multimodal approach including surgery, radiotherapy, and drugs. Temozolomide (TMZ) is the recommended first line chemotherapy, with response rates of about 40%. Immune checkpoint inhibitors have emerged as second line treatment in PCs, with currently no evidence for a superior effect of dual therapy compared to monotherapy with PD-1 blockers. Bevacizumab has resulted in partial response (PR) in few patients, tyrosine kinase inhibitors and everolimus have generally not been useful. The effect of peptide receptor radionuclide therapy is limited as well. Management of APT/PC is challenging and should be discussed within an expert-team with consideration of clinical and pathological findings, age and general condition of the patient. Considering that APT/PCs are rare, new therapies should preferably be evaluated in shared standardized protocols. Prognostic and predictive markers to guide treatment decisions are needed and are scope of ongoing research.
Collapse
|
40
|
|
Plakkot B, Di Agostino A, Subramanian M. Implications of Hypothalamic Neural Stem Cells on Aging and Obesity-Associated Cardiovascular Diseases. Cells 2023;12. [PMID: 36899905 DOI: 10.3390/cells12050769] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/06/2023] Open
Abstract
The hypothalamus, one of the major regulatory centers in the brain, controls various homeostatic processes, and hypothalamic neural stem cells (htNSCs) have been observed to interfere with hypothalamic mechanisms regulating aging. NSCs play a pivotal role in the repair and regeneration of brain cells during neurodegenerative diseases and rejuvenate the brain tissue microenvironment. The hypothalamus was recently observed to be involved in neuroinflammation mediated by cellular senescence. Cellular senescence, or systemic aging, is characterized by a progressive irreversible state of cell cycle arrest that causes physiological dysregulation in the body and it is evident in many neuroinflammatory conditions, including obesity. Upregulation of neuroinflammation and oxidative stress due to senescence has the potential to alter the functioning of NSCs. Various studies have substantiated the chances of obesity inducing accelerated aging. Therefore, it is essential to explore the potential effects of htNSC dysregulation in obesity and underlying pathways to develop strategies to address obesity-induced comorbidities associated with brain aging. This review will summarize hypothalamic neurogenesis associated with obesity and prospective NSC-based regenerative therapy for the treatment of obesity-induced cardiovascular conditions.
Collapse
|
41
|
|
de Moura SS, de Menezes-Júnior LAA, Rocha AMS, Batista AP, de Menezes MC, Carraro JCC, Machado-Coelho GLL, Meireles AL. High Levels of Glycated Hemoglobin (HbA1c) Are Associated with Physical Inactivity, and Part of This Association Is Mediated by Being Overweight. Nutrients 2023;15. [PMID: 36904190 DOI: 10.3390/nu15051191] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/03/2023] Open
Abstract
The COVID-19 pandemic has generated substantial changes in the lives of the population, such as increased physical inactivity, which can lead to being overweight and, consequently, repercussions on glucose homeostasis. A cross-sectional study based on the adult population of Brazil was conducted by stratified, multistage probability cluster sampling (October and December 2020). Participants were classified as physically active or inactive during leisure time according to the recommendations of the World Health Organization. HbA1c levels were categorized as normal (≤6.4%) or with glycemic changes (≥6.5%). The mediating variable was being overweight (overweight and obese). Descriptive, univariate, and multivariate logistic regression analyses examined the association between physical inactivity and glycemic changes. Mediation was analyzed using the Karlson-Holm-Breen method to verify the influence of being overweight on the association. We interviewed 1685 individuals, mostly women (52.4%), 35-59 years old (45.8%), race/ethnicity brown (48.1%), and overweight (56.5%). The mean HbA1c was 5.68% (95% CI: 5.58-5.77). Mediation analysis verified that physically inactive participants during leisure time were 2.62 times more likely to have high levels of HbA1c (OR: 2.62, 95% CI: 1.29-5.33), and 26.87% of this effect was mediated by over-weight (OR: 1.30: 95% CI: 1.06-1.57). Physical inactivity at leisure increases the chances of high levels of HbA1c, and part of this association can be explained by being overweight.
Collapse
|
42
|
|
Moroni-gonzález D, Sarmiento-ortega VE, Diaz A, Brambila E, Treviño S. Pancreas–Liver–Adipose Axis: Target of Environmental Cadmium Exposure Linked to Metabolic Diseases. Toxics 2023;11:223. [DOI: 10.3390/toxics11030223] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/02/2023] Open
Abstract
Cadmium has been well recognized as a critical toxic agent in acute and chronic poisoning cases in occupational and nonoccupational settings and environmental exposure situations. Cadmium is released into the environment after natural and anthropogenic activities, particularly in contaminated and industrial areas, causing food pollution. In the body, cadmium has no biological activity, but it accumulates primarily in the liver and kidney, which are considered the main targets of its toxicity, through oxidative stress and inflammation. However, in the last few years, this metal has been linked to metabolic diseases. The pancreas–liver–adipose axis is largely affected by cadmium accumulation. Therefore, this review aims to collect bibliographic information that establishes the basis for understanding the molecular and cellular mechanisms linked to cadmium with carbohydrate, lipids, and endocrine impairments that contribute to developing insulin resistance, metabolic syndrome, prediabetes, and diabetes.
Collapse
|
43
|
|
Kirwan JP, Heintz EC, Rebello CJ, Axelrod CL. Exercise in the Prevention and Treatment of Type 2 Diabetes. Compr Physiol 2023;13:1-27. [PMID: 36815623 DOI: 10.1002/cphy.c220009] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/24/2023]
Abstract
Type 2 diabetes is a systemic, multifactorial disease that is a leading cause of morbidity and mortality globally. Despite a rise in the number of available medications and treatments available for management, exercise remains a first-line prevention and intervention strategy due to established safety, efficacy, and tolerability in the general population. Herein we review the predisposing risk factors for, prevention, pathophysiology, and treatment of type 2 diabetes. We emphasize key cellular and molecular adaptive processes that provide insight into our evolving understanding of how, when, and what types of exercise may improve glycemic control. © 2023 American Physiological Society. Compr Physiol 13:1-27, 2023.
Collapse
|
44
|
|
Kaur J, Valisekka SS, Hameed M, Bandi PS, Varma S, Onwughalu CJ, Ibrahim H, Mongia H. Monoclonal Gammopathy of Undetermined Significance: A Comprehensive Review. Clin Lymphoma Myeloma Leuk 2023:S2152-2650(23)00060-5. [PMID: 36966041 DOI: 10.1016/j.clml.2023.02.004] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/24/2023]
Abstract
Monoclonal Gammopathy of Undetermined Significance (MGUS) is an asymptomatic premalignant plasma cell dyscrasia with a predominate rise of the IgG immunoglobulin fraction without end-organ damage, often diagnosed incidentally. Despite its progression into various subsequent forms of hematological malignancies, MGUS remains underdiagnosed. A literature search was conducted using the Medline, Cochrane, Embase, and Google Scholar databases, including articles published until December 2022. Keywords used encompassed "Monoclonal Gammopathy of Undetermined Significance," "Plasma Cell dyscrasia," "Monoclonal gammopathy of renal significance," and "IgM Monoclonal gammopathy of Undetermined Significance," This study aimed to conduct a critical review to update knowledge regarding the pathophysiology, risk factors, clinical features, diagnostic protocols, complications, and current and novel treatments for MGUS. We recommend a multidisciplinary approach to manage MGUS due to the complexity of the illness's etiology, diagnosis, and therapy. This comprehensive review also highlights future prospects, such as developing screening protocols for at-risk populations, prevention of disease progression by early diagnosis through genome-wide association studies, and management using Daratumumab and NSAIDs.
Collapse
|
45
|
|
Ryu AJ, Kumar S, Dispenzieri A, Kyle RA, Rajkumar SV, Kingsley TC. Artificial intelligence-enabled screening strategy for drug repurposing in monoclonal gammopathy of undetermined significance. Blood Cancer J 2023;13:28. [PMID: 36797276 DOI: 10.1038/s41408-023-00798-7] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/18/2023] Open
Abstract
Monoclonal gammopathy of undetermined significance (MGUS) is a benign hematological condition with the potential to progress to malignant conditions including multiple myeloma and Waldenstrom macroglobulinemia. Medications that modify progression risk have yet to be identified. To investigate, we leveraged machine-learning and electronic health record (EHR) data to screen for drug repurposing candidates. We extracted clinical and laboratory data from a manually curated MGUS database, containing 16,752 MGUS patients diagnosed from January 1, 2000 through December 31, 2021, prospectively maintained at Mayo Clinic. We merged this with comorbidity and medication data from the EHR. Medications were mapped to 21 drug classes of interest. The XGBoost module was then used to train a primary Cox survival model; sensitivity analyses were also performed limiting the study group to those with non-IgM MGUS and those with M-spikes >0.3 g/dl. The impact of explanatory features was quantified as hazard ratios after generating distributions using bootstrapping. Medication data were available for 12,253 patients; those without medications data were excluded. Our model achieved a good fit of the data with inverse probability of censoring weights concordance index of 0.883. The presence of multivitamins, immunosuppression, non-coronary NSAIDS, proton pump inhibitors, vitamin D supplementation, opioids, statins and beta-blockers were associated with significantly lower hazard ratio for MGUS progression in our primary model; multivitamins and non-coronary NSAIDs remained significant across both sensitivity analyses. This work could inform subsequent prospective studies, or similar studies in other disease states.
Collapse
|
46
|
|
Poblete Jara C, Nogueira G, Morari J, do Prado TP, de Medeiros Bezerra R, Velloso LA, Velander W, de Araújo EP. An older diabetes-induced mice model for studying skin wound healing. PLoS One 2023;18:e0281373. [PMID: 36800369 DOI: 10.1371/journal.pone.0281373] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/18/2023] Open
Abstract
Advances in wound treatment depend on the availability of animal models that reflect key aspects of human wound healing physiology. To this date, the accepted mouse models do not reflect defects in the healing process for chronic wounds that are associated with type two diabetic skin ulcers. The long term, systemic physiologic stress that occurs in middle aged or older Type 2 diabetes patients is difficult to simulate in preclinical animal model. We have strived to incorporate the essential elements of this stress in a manageable mouse model: long term metabolic stress from obesity to include the effects of middle age and thereafter onset of diabetes. At six-weeks age, male C57BL/6 mice were separated into groups fed a chow and High-Fat Diet for 0.5, 3, and 6 months. Treatment groups included long term, obesity stressed mice with induction of diabetes by streptozotocin at 5 months, and further physiologic evaluation at 8 months old. We show that this model results in a severe metabolic phenotype with insulin resistance and glucose intolerance associated with obesity and, more importantly, skin changes. The phenotype of this older age mouse model included a transcriptional signature of gene expression in skin that overlapped that observed with elderly patients who develop diabetic foot ulcers. We believe this unique old age phenotype contrasts with current mice models with induced diabetes.
Collapse
|
47
|
|
Keane JM, Walsh CJ, Cronin P, Baker K, Melgar S, Cotter PD, Joyce SA, Gahan CGM, Houston A, Hyland NP. Investigation of the gut microbiome, bile acid composition and host immunoinflammatory response in a model of azoxymethane-induced colon cancer at discrete timepoints. Br J Cancer 2023;128:528-36. [PMID: 36418894 DOI: 10.1038/s41416-022-02062-4] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Distinct sets of microbes contribute to colorectal cancer (CRC) initiation and progression. Some occur due to the evolving intestinal environment but may not contribute to disease. In contrast, others may play an important role at particular times during the tumorigenic process. Here, we describe changes in the microbiota and host over the course of azoxymethane (AOM)-induced tumorigenesis. METHODS Mice were administered AOM or PBS and were euthanised 8, 12, 24 and 48 weeks later. Samples were analysed using 16S rRNA gene sequencing, UPLC-MS and qRT-PCR. RESULTS The microbiota and bile acid profile showed distinct changes at each timepoint. The inflammatory response became apparent at weeks 12 and 24. Moreover, significant correlations between individual taxa, cytokines and bile acids were detected. One co-abundance group (CAG) differed significantly between PBS- and AOM-treated mice at week 24. Correlation analysis also revealed significant associations between CAGs, bile acids and the bile acid transporter, ASBT. Aberrant crypt foci and adenomas were first detectable at weeks 24 and 48, respectively. CONCLUSION The observed changes precede host hyperplastic transformation and may represent early therapeutic targets for the prevention or management of CRC at specific timepoints in the tumorigenic process.
Collapse
|
48
|
|
Nehme J, Altulea A, Gheorghe T, Demaria M. The effects of macronutrients metabolism on cellular and organismal aging. Biomed J 2023:S2319-4170(23)00009-4. [PMID: 36801257 DOI: 10.1016/j.bj.2023.02.005] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/17/2023] Open
Abstract
Evidence supports the notion that metabolic pathways are major regulators of organismal aging, and that metabolic perturbations can extend health- and lifespan. For this reason, dietary interventions and compounds perturbing metabolism are currently explored as anti-aging strategies. A common target for metabolic interventions delaying aging is cellular senescence, a state of stable growth arrest that is accompanied by various structural and functional changes including the activation of a pro-inflammatory secretome. Here, we summarize the current knowledge on the molecular and cellular events associated with carbohydrate, lipid and protein metabolism, and define how macronutrients can regulate induction or prevention of cellular senescence. We discuss how various dietary interventions can achieve prevention of disease and extension of healthy longevity by partially modulating senescence-associated phenotypes. We also emphasize the importance of developing personalized nutritional interventions that take into account the current health and age status of the individual.
Collapse
|
49
|
|
Jiménez-Martínez P, Ramirez-Campillo R, Alix-Fages C, Gene-Morales J, García-Ramos A, Colado JC. Chronic Resistance Training Effects on Serum Adipokines in Type 2 Diabetes Mellitus: A Systematic Review. Healthcare (Basel) 2023;11. [PMID: 36833129 DOI: 10.3390/healthcare11040594] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/19/2023] Open
Abstract
(1) Background: Non-communicable diseases (NCD) are an important concern for public health because of their high rates of morbidity and mortality. A prevalent lifestyle-linked NCD is type 2 diabetes mellitus (T2D). Recently, molecular biomarkers secreted by adipocytes, called adipokines, have been linked with T2D and muscle function disturbances. However, the effects of resistance training (RT) interventions on adipokine levels in patients with T2D have not been systematically studied. (2) Methods: The PRISMA guidelines were followed. Searches for the studies were performed in the PubMed/MEDLINE and Web of Science electronic databases. Eligibility criteria included: (i) participants with T2D; (ii) RT interventions; (iii) randomized controlled trials; and (iv) measurement of serum adipokines. The PEDro scale was used to assess the methodological quality of the selected studies. Significant differences (p ≤ 0.05) and effect size were screened for each variable. (3) Results: Of the initial 2166 records, database search extraction yielded 14 studies to be included. The methodological quality of the included data was high (median PEDro score of 6.5). Analyzed adipokines in the included studies were leptin, adiponectin, visfatin, apelin, resistin, retinol-binding protein 4 (RBP4), vaspin, chemerin, and omentin. RT interventions (6-52 weeks; minimal effective duration >12 weeks) exert a meaningful effect on serum adipokine, (e.g., leptin) levels in T2D patients. (4) Conclusions: RT may be an alternative, but not an optimal, option in adipokine disruptions in T2D. Combined (i.e., aerobic and RT) long-term training may be considered the optimal intervention for treating adipokine level disturbances.
Collapse
|
50
|
|
Puthanveetil P. Metabolic Activation of PARP as a SARS-CoV-2 Therapeutic Target-Is It a Bait for the Virus or the Best Deal We Could Ever Make with the Virus? Is AMBICA the Potential Cure? Biomolecules 2023;13. [PMID: 36830743 DOI: 10.3390/biom13020374] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/18/2023] Open
Abstract
The COVID-19 pandemic has had a great impact on global health and is an economic burden. Even with vaccines and anti-viral medications we are still scrambling to get a balance. In this perspective, we have shed light upon an extremely feasible approach by which we can control the SARS-CoV-2 infection and the associated complications, bringing some solace to this ongoing turmoil. We are providing some insights regarding an ideal agent which could prevent SARS-CoV-2 multiplication. If we could identify an agent which is an activator of metabolism and is also bioactive, we could prevent corona activation (AMBICA). Some naturally occurring lipid molecules best fit this identity as an agent which has the capacity to replenish our host cells, specifically immune cells, with ATP. It could also act as a source for providing a substrate for host cell PARP family members for MARylation and PARylation processes, leading to manipulation of the viral macro domain function, resulting in curbing the virulence and propagation of SARS-CoV-2. Identification of the right lipid molecule or combination of lipid molecules will fulfill the criteria. This perspective has focused on a unique angle of host-pathogen interaction and will open up a new dimension in treating COVID-19 infection.
Collapse
|