1
|
|
Nemzer B, Al-Taher F. Analysis of Fatty Acid Composition in Sprouted Grains. Foods 2023; 12. [PMID: 37174393 DOI: 10.3390/foods12091853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
A whole-grain diet is associated with the prevention of metabolic syndromes, including obesity, diabetes, and cardiovascular diseases. Sprouting improves the nutritional profile and bioactive properties of grains, which are important for use as raw ingredients in the food industry. The aim of this review was to examine the lipid and fatty acid composition of germinated grains. The methods discussed include germination and analytical procedures for determining fat and fatty acid contents of grains. The effects of sprouting on the fat content and storage stability of grains were also assessed. Lipid levels ranged from 1.43% to 6.66% in the sprouted grains. The individual fatty acid content of grains changed depending on the germination conditions (17-37 °C, 1-9 days). Limited findings showed that sprouting grains at higher temperatures (20-25 °C) and longer times generated a healthy balance of omega-6 and omega-3 fatty acids, which is beneficial to humans. Future studies are needed to determine the optimum incubation and germination periods specific to each grain to improve the omega-6/omega-3 ratio. Free fatty acids were produced more slowly and levels of oxidation products were lower in sprouted grains than in the raw ingredients when stored for a year. Additional studies are required to investigate the oxidative stability and shelf life of sprouted grains.
Collapse
Affiliation(s)
- Boris Nemzer
- Research & Development, VDF/FutureCeuticals, Inc., Momence, IL 60954, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Fadwa Al-Taher
- Research & Development, VDF/FutureCeuticals, Inc., Momence, IL 60954, USA
| |
Collapse
|
2
|
|
Samtiya M, Chandratre GA, Dhewa T, Badgujar PC, Sirohi R, Kumar A, Kumar A. A comparative study on comprehensive nutritional profiling of indigenous non-bio-fortified and bio-fortified varieties and bio-fortified hybrids of pearl millets. J Food Sci Technol 2023; 60:1065-76. [PMID: 36908360 DOI: 10.1007/s13197-022-05452-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Seven indigenous pearl millet varieties, including non-bio-fortified (HC-10 & HC-20) and bio-fortified (Dhanashakti) and bio-fortified hybrids, viz., AHB-1200, HHB-299, HHB-311, and RHB-233, were studied in the present work. There was not any significant difference observed in the crucial anti-nutrients content, i.e., phytate (24.88-32.56 mg/g), tannin (3.07-4.35 mg/g), and oxalate (0.33-0.43 mg/g). Phytochemical content and antioxidant activity showed significantly high (p < 0.05) TPC and FRAP, TFC, and DPPH radical scavenging activity in the HHB 299 and Dhanashakti, respectively. Quantitative analysis of polyphenols by HPLC (first report on these varieties) revealed that HHB-299 has the highest amount of gallic acid. Fatty acid profiling by GC-FID showed that Dhanashakti, AHB-1200, and HHB-299 have rich monounsaturated fatty acid (MUFA) and polyunsaturated fatty acids (PUFA). Mineral analysis by ICP-OES showed high iron (87.79 and 84.26 mg/kg) and zinc (55.05 and 52.43 mg/kg) content in the HHB-311 and Dhanashakti, respectively. Results of the present study would help facilitate the formulation of various processed functional food products (RTC/RTE) that are currently not reported/unavailable. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05452-x.
Collapse
Affiliation(s)
- Mrinal Samtiya
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131 028 India
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana 123 031 India
| | - Gauri A. Chandratre
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125001 India
| | - Tejpal Dhewa
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana 123 031 India
| | - Prarabdh C. Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131 028 India
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Ankur Kumar
- Central Instrumentation Laboratory, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131 028 India
| | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana 123 031 India
| |
Collapse
|
3
|
|
Errum A, Rehman N, Uzair M, Inam S, Ali GM, Khan MR. CRISPR/Cas9 editing of wheat Ppd-1 gene homoeologs alters spike architecture and grain morphometric traits. Funct Integr Genomics 2023; 23:66. [PMID: 36840774 DOI: 10.1007/s10142-023-00989-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Mutations in Photoperiod-1 (Ppd-1) gene are known to modify flowering time and yield in wheat. We cloned TaPpd-1 from wheat and found high similarity among the three homoeologs of TaPpd-1. To clarify the characteristics of TaPpd-1 homoeologs in different photoperiod conditions for inflorescence architecture and yield, we used CRISPR/Cas9 system to generate Tappd-1 mutant plants by simultaneous modification of the three homoeologs of wheat Ppd-1. Tappd-1 mutant plants showed no off-target mutations. Four T0-edited lines under short-day length and three lines under long-day length conditions with the mutation frequency of 25% and 21%, respectively. These putative transgenic plants of all the lines were self-fertilized and generated T1 and T2 progenies and were evaluated by phenotypic and expression analysis. Results demonstrated that simultaneously edited TaPpd-1- A1, B1, and D1 homoeologs gene copies in T2_SDL-8-4, T2_SDL-4-5, T2_SDL-3-9, and T2_LDL-10-9 showed similar spike inflorescence, flowering time, and significantly increase in 1000-grain weight, grain area, grain width, grain length, plant height, and spikelets per spike due to mutation in both alleles of Ppd-B1 and Ppd-D1 homoeologs but only spike length was decreased in T2_SDL-8-4, T2_SDL-4-5, and T2_LDL-13-3 mutant lines due to mutation in both alleles of Ppd-A1 homoeolog under both conditions. Our results indicate that all TaPpd1 gene homoeologs influence wheat spike development by affecting both late flowering and earlier flowering but single mutant TaPpd-A1 homoeolog affect lowest as compared to the combination with double mutants of TaPpd-B1 and TaPpd-D1, TaPpd-A1 and TaPpd-B1, and TaPpd-A1 and TaPpd-D1 homoeologs for yield enhancement. Our findings further raised the idea that the relative expression of the various genomic copies of TaPpd-1 homoeologs may have an impact on the spike inflorescence architecture and grain morphometric features in wheat cultivars.
Collapse
Affiliation(s)
- Aliya Errum
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan
- PARC Institute of Advanced Studies in Agriculture (PIASA), Islamabad, Pakistan
| | - Nazia Rehman
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan
| | - Safeena Inam
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan
| | | | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan.
| |
Collapse
|
4
|
|
Gunun N, Wanapat M, Kaewpila C, Khota W, Polyorach S, Cherdthong A, Suwannasing R, Patarapreecha P, Kesorn P, Intarapanich P, Viriyawattana N, Gunun P. Effect of Heat Processing of Rubber Seed Kernel on In Vitro Rumen Biohydrogenation of Fatty Acids and Fermentation. Fermentation 2023; 9:143. [DOI: 10.3390/fermentation9020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to assess the effect of rubber seed kernel heat processing on in vitro rumen biohydrogenation of fatty acids and fermentation. The experiment was conducted with a completely randomized design (CRD). The inclusion of RSK at 0% (CON) and 20% with different processing methods as follows: Raw rubber seed kernel (RAWR), roasted rubber seed kernel (ROR), microwave irradiated rubber seed kernel (MIR), and rubber seed kernel were heated in a hot air oven (RHO) in total mixed ration (TMR) diets. The hydrogen cyanide (HCN) was reduced using RSK heat methods. The heat processing of RSK had no effect on cumulative gas production at 96 h, the gas production from the insoluble fraction (b), or degradability (p > 0.05), whereas it reduced the gas production from the immediately soluble fraction (a) and constant rate of gas production for the insoluble fraction (c) (p < 0.01). The RSK processing methods did not influence ruminal pH, total volatile fatty acid (VFA), or VFA proportions (p > 0.05). RSK heat processing reduced ammonia-nitrogen (NH3-N) (p < 0.04) while increasing the bacterial population (p < 0.02). Heat treatment had no effect on linoleic acid (C18:2 cis-9,12 + tran-9,12) (p > 0.05). The RHO increases oleic acid (C18:1 cis-9 + tran-9) and linolenic acid (C18:3 cis-9,12,15) concentrations (p < 0.01). In conclusion, RHO reduced rumen biohydrogenation of unsaturated fatty acids (UFA), especially C18:3 and C18:1.
Collapse
|
5
|
|
Sabuz AA, Rana MR, Ahmed T, Molla MM, Islam N, Khan HH, Chowdhury GF, Zhao Q, Shen Q. Health-Promoting Potential of Millet: A Review. SEPARATIONS 2023; 10:80. [DOI: 10.3390/separations10020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Being a key source of animal food, millet production has been sharply increasing over the last few years in order to cope with the dietary requirements of the ever-increasing world population. It is a splendid source of essential nutrients such as protein, carbohydrates, fat, minerals, vitamins, and also some other bioactive compounds that eventually help through multiple biological activities, including antioxidant, anti-hyperglycemic, anti-cholesterol, anti-hypertensive, anthropometric effects and regulation of gut microbiota composition. These bioactive compounds, nutrients, and functions of cereal grains can be affected by processing techniques such as decortication, soaking, malting, milling, fermentation, etc. This study discusses the nutritional and functional properties of millet-incorporated foods and their impact on health, based on around 150 articles between 2015 and 2022 from the Web of Science, Google Scholar, Food and Agriculture Organization of the United Nations (FAO), Breeding Bid Survey (BBS), and FoodData Central (USDA) databases. Analyzing literature reviews, it is evident that the incorporation of millet and its constituents into foodstuffs could be useful against undernourishment and several other health diseases. Additionally, this review provides crucial information about the beneficial features of millet, which can serve as a benchmark of guidelines for industry, consumers, researchers, and nutritionists.
Collapse
|
6
|
|
Alsabbagh P, Gay L, Colombo M, Montazeaud G, Ardisson M, Rocher A, Allard V, David JL. Diversity matters in wheat mixtures: A genomic survey of the impact of genetic diversity on the performance of 12 way durum wheat mixtures grown in two contrasted and controlled environments. PLoS One 2022; 17:e0276223. [PMID: 36490260 DOI: 10.1371/journal.pone.0276223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In ecology, an increase in genetic diversity within a community in natural ecosystems increases its productivity, while in evolutionary biology, kinship selection predicts that relatedness on social traits improves fitness. Varietal mixtures, where different genotypes are grown together, show contrasting results, especially for grain yield where both positive and negative effects of mixtures have been reported. To understand the effect of diversity on field performance, we grew 96 independent mixtures each composed with 12 durum wheat (Triticum turgidum ssp. durum Thell.) inbred lines, under two contrasting environmental conditions for water availability. Using dense genotyping, we imputed allelic frequencies and a genetic diversity index on more than 96000 loci for each mixture. We then analyzed the effect of genetic diversity on agronomic performance using a genome-wide approach. We explored the stress gradient hypothesis, which proposes that the greater the unfavourable conditions, the more beneficial the effect of diversity on mixture performance. We found that diversity on average had a negative effect on yield and its components while it was beneficial on grain weight. There was little support for the stress gradient theory. We discuss how to use genomic data to improve the assembly of varietal mixtures.
Collapse
|
7
|
|
Abdelli N, Mekawi E, Ebrahim Abdel-Alim M, Salim NS, El-Nagar M, Al-Dalain SY, Adlan Abdalla R, Nagarajan G, Fadhal E, Ibrahim RIH, Afkar E, Morsy MK. QTRAP LC/MS/MS of Garlic Nanoparticles and Improving Sunflower Oil Stabilization during Accelerated Shelf Life Storage. Foods 2022; 11. [PMID: 36553704 DOI: 10.3390/foods11243962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The purpose of this research was to assess and utilize the bioactive compounds of garlic nanoparticles (Ga-NPs) as a natural antioxidant in sunflower oil (SFO) stored at 65 ± 1 °C for 24 days. The garlic nanoparticles (Ga-NPs) from the Balady cultivar were prepared, characterized, and added to SFO at three concentrations: 200, 600, and 1000 ppm (w/v), and they were compared with 600 ppm garlic lyophilized powder extract (Ga-LPE), 200 ppm BHT, 200 ppm α-tocopherol, and SFO without Ga-NPs (control). The QTRAP LC/MS/MS profile of Ga-NPs revealed the presence of four organosulfur compounds. Ga-NPs exhibited the highest capacity for phenolic, flavonoid, and antioxidant compounds. In Ga-NP SFO samples, the values of peroxide, p-anisidine, totox, conjugated dienes, and conjugated trienes were significantly lower than the control. The antioxidant indices of SFO samples containing Ga-NPs were higher than the control. The Ga-NPs enhanced the sensory acceptability of SFO treatments up to day 24 of storage. The shelf life of SFO treated with Ga-NPs was substantially increased (presuming a Q10 amount). The results show that Ga-NPs are a powerful antioxidant that improves SFO stability and extends the shelf life (~384 days at 25 °C).
Collapse
Affiliation(s)
- Nouara Abdelli
- Department of Basic Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Correspondence: (N.A.); (M.K.M.)
| | - Enas Mekawi
- Department of Agricultural Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Qaluobia P.O. Box 13736, Egypt
| | - Mohammed Ebrahim Abdel-Alim
- Department of Agricultural Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Qaluobia P.O. Box 13736, Egypt
| | - Nesreen Saad Salim
- Department of Agricultural Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Qaluobia P.O. Box 13736, Egypt
| | - Mahran El-Nagar
- Department of Horticulture, Faculty of Agriculture, Benha University, Moshtohor, Qaluobia P.O. Box 13736, Egypt
| | - Sati Y. Al-Dalain
- Department of Medical Support, Al-Karak University College, Al-Balqa Applied University, Salt P.O. Box 19117, Jordan
| | - Ridab Adlan Abdalla
- Department of Basic Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Ganesan Nagarajan
- Department of Basic Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Emad Fadhal
- Department of Mathematics & Statistics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Rashid I. H. Ibrahim
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Department of Botany, Faculty of Science, Khartoum University, P.O. Box 321, Khartoum 11115, Sudan
| | - Eman Afkar
- Department of Basic Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Department of Botany and Microbiology, College of Science, Bani-Suef University, Bani-Suef P.O. Box 52621, Egypt
| | - Mohamed K. Morsy
- Department of Food Technology, Faculty of Agriculture, Benha University, Moshtohor, Qaluobia P.O. Box 13736, Egypt
- Correspondence: (N.A.); (M.K.M.)
| |
Collapse
|
8
|
|
Mavroeidis A, Roussis I, Kakabouki I. The Role of Alternative Crops in an Upcoming Global Food Crisis: A Concise Review. Foods 2022; 11. [PMID: 36429176 DOI: 10.3390/foods11223584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Achieving Food Security (FS) is perhaps our most challenging aspiration. Despite our best efforts, millions of people around the globe are malnourished or live with hunger. The state of the geo-political scene, as well as the COVID-19 pandemic, have recently brought forth fears of a Global Food Crisis (GFC). Here, we present the factors that threaten FS and could trigger a GFC, examine the potential of alternative crops (ACs) as a measure against an upcoming GFC, and highlight the key aspects of the ACs introduction process in new regions. ACs could enhance FS, yet their success is premised on the adoption of sustainable practices and the implementation of food strategies that aim to promote healthy consumer behaviours.
Collapse
|
9
|
|
Samtiya M, Aluko RE, Dhaka N, Dhewa T, Puniya AK. Nutritional and health-promoting attributes of millet: current and future perspectives. Nutr Rev 2022:nuac081. [PMID: 36219789 DOI: 10.1093/nutrit/nuac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Millet is consumed as a staple food, particularly in developing countries, is part of the traditional diet in a number of relatively affluent countries, and is gaining popularity throughout the world. It is a valuable dietary energy source. In addition to high caloric value, several health-promoting attributes have been reported for millet seeds. This review describes many nutritional characteristics of millet seeds and their derivatives that are important to human health: antioxidant, antihypertensive, immunomodulatory or anti-inflammatory, antibacterial or antimicrobial, hypocholesterolemic, hypoglycemic, and anti-carcinogenic potential, and their role as modulators of gut health. There are several varieties, but the main focus of this review is on pearl millet (Cenchrus americanus [synonym Pennisetum glaucum]), one of the most widely eaten millet crops grown in India, though other millet types are also covered. In this article, the health-promoting properties of the natural components (ie, proteins, peptides, polyphenols, polysaccharides, oil, isoflavones, etc.) present in millet seeds are discussed. Although many of these health benefits have been demonstrated using animal models in vitro studies, human intervention-feeding trials are required to confirm several of the potential health benefits of millet seeds. Based on the nutritional and health-promoting attributes known for pearl millet (discussed in this review), finger millet and foxtail millet are suggested as good candidates for use in future nutritional interventions for improved human health.
Collapse
Affiliation(s)
- Mrinal Samtiya
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Tejpal Dhewa
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Anil Kumar Puniya
- is with the Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
10
|
|
Alsaleh A. SSR-based genome-wide association study in turkish durum wheat germplasms revealed novel QTL of accumulated platinum. Mol Biol Rep 2022. [PMID: 35819556 DOI: 10.1007/s11033-022-07720-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Durum wheat has a genetic capacity to accumulate toxic metals that can exceed the safety limit of the international standards, which may seriously affect human health. Identifying germplasms with low, nontoxic accumulated metal contents is important to select and develop new varieties. Thus, the objective of this study is to identify the levels of accumulated platinum in durum wheat and detect novel QTL. METHODS AND RESULTS Platinum contents were determined using 130 durum genotypes. Results generally showed low values of accumulated Pt and significantly less than the maximum grain's Pt content determined by international standards. Pt contents among genotypes varied from ≤ 0.001 to 0.72 µg/kg with an average of 0.02. Landraces showed the lowest average accumulated Pt. GWAS was then performed with 780 SSR markers. Five QTL were detected and explained 14.4-23.1% of the total phenotypic variation. Chromosomes 3 A, 3B, and 5B appear to be hotspots and may play a crucial role in accumulated Pt and were harbored in 1, 3, and 1 QTL, respectively. CONCLUSIONS This assessment of accumulated Pt within a unique panel included accessions mostly from Turkish regions, and GWAS used is the first study regarding accumulated Pt indices to reveal novel QTL. It will allow breeders to accelerate their selection of proper genotypes according to desired alleles and offer an opportunity to apply MAS to minimize Pt toxicity in durum wheat. Results indicated that the significance of genome (B) regions are likely related to the inheritance control of Pt content and may play a pivotal role regarding durum wheat's Pt contents. Nonetheless, these novel QTL should be validated in independent populations in numerous environments.
Collapse
Affiliation(s)
- Ahmad Alsaleh
- Department of Agriculture and Food, Institute of Hemp Research, Yozgat Bozok University, 66200, Yozgat, Turkey.
| |
Collapse
|
11
|
|
Ojo OA, Ojo AB, Barnabas M, Iyobhebhe M, Elebiyo TC, Evbuomwan IO, Michael T, Ajiboye BO, Oyinloye BE, Oloyede OI. Phytochemical properties and pharmacological activities of the genus Pennisetum: A review. Scientific African 2022; 16:e01132. [DOI: 10.1016/j.sciaf.2022.e01132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
12
|
|
Siddiqui SA, Mahmud MMC, Abdi G, Wanich U, Farooqi MQU, Settapramote N, Khan S, Wani SA. New alternatives from sustainable sources to wheat in bakery foods: Science, technology, and challenges. J Food Biochem 2022;:e14185. [PMID: 35441405 DOI: 10.1111/jfbc.14185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ongoing research in the food industry is striving to replace wheat flour with new alternatives from sustainable sources to overcome the disease burden in the existing population. Celiac disease, wheat allergy, gluten sensitivity, or non-celiac gluten sensitivity are some common disorders associated with gluten present in wheat. These scientific findings are crucial to finding appropriate alternatives in introducing new ingredients supporting the consumer's requirements. Among the alternatives, amaranth, barley, coconut, chestnut, maize, millet, teff, oat, rye, sorghum, soy, rice flour, and legumes could be considered appropriate due to their chemical composition, bioactive profile, and alternatives utilization in the baking industry. Furthermore, the enrichment of these alternatives with proper ingredients is considered effective. Literature demonstrated that the flours from these alternative sources significantly enhanced the physicochemical, pasting, and rheological properties of the doughs. These flours boost a significant reduction in gluten proteins associated with food intolerance, in comparison with wheat highlighting a visible market opportunity with nutritional and organoleptic benefits for food producers. PRACTICAL APPLICATIONS: New alternatives from sustainable sources to wheat in bakery foods as an approach that affects human health. Alternatives from sustainable sources are important source of nutrients and bioactive compounds. Alternatives from sustainable sources are rising due to nutritional and consumer demand in bakery industry. New alternatives from sustainable sources improve physicochemical, pasting, and rheological properties of dough. Non-wheat-based foods from non-traditional grains have a potential to increase consumer market acceptance.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany.,German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - M M Chayan Mahmud
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Uracha Wanich
- Department of Home Economics, Rambhaibarni Rahjabhat University, Chanthaburi, Thailand
| | | | | | - Sipper Khan
- Institute of Agricultural Engineering, Tropics and Subtropics Group, University of Hohenheim, Stuttgart, Germany
| | - Sajad Ahmad Wani
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, India
| |
Collapse
|
13
|
|
Leigh FJ, Wright TIC, Horsnell RA, Dyer S, Bentley AR. Progenitor species hold untapped diversity for potential climate-responsive traits for use in wheat breeding and crop improvement. Heredity (Edinb) 2022. [PMID: 35383318 DOI: 10.1038/s41437-022-00527-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Climate change will have numerous impacts on crop production worldwide necessitating a broadening of the germplasm base required to source and incorporate novel traits. Major variation exists in crop progenitor species for seasonal adaptation, photosynthetic characteristics, and root system architecture. Wheat is crucial for securing future food and nutrition security and its evolutionary history and progenitor diversity offer opportunities to mine favourable functional variation in the primary gene pool. Here we provide a review of the status of characterisation of wheat progenitor variation and the potential to use this knowledge to inform the use of variation in other cereal crops. Although significant knowledge of progenitor variation has been generated, we make recommendations for further work required to systematically characterise underlying genetics and physiological mechanisms and propose steps for effective use in breeding. This will enable targeted exploitation of useful variation, supported by the growing portfolio of genomics and accelerated breeding approaches. The knowledge and approaches generated are also likely to be useful across wider crop improvement.
Collapse
Affiliation(s)
- Fiona J Leigh
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Tally I C Wright
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Richard A Horsnell
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Sarah Dyer
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK.,European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Alison R Bentley
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK. .,International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico.
| |
Collapse
|
14
|
|
Abrougui K, Boughattas NEH, Belhaj M, Buchaillot ML, Segarra J, Dorbolo S, Amami R, Chehaibi S, Tarchoun N, Kefauver SC. Assessing Phytosanitary Application Efficiency of a Boom Sprayer Machine Using RGB Sensor in Grassy Fields. Sustainability 2022; 14:3666. [DOI: 10.3390/su14063666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The systematic use of plant protection products is now being called into question with the growing awareness of the risks they can represent for the environment and human health. The application of precision agriculture technologies helps to improve agricultural production but also to rationalize input costs and improve ecological footprints. Here we present a study on fungicide application efficiency and its impact on the grass quality of a golf course green using the free open-source image analysis software FIJI (Image J) to analyze ground RGB (high-resolution digital cameras) and multispectral aerial imagery in combination with experimental data of spray pressure and hydraulic slot nozzle size of a boom sprayer machine. The multivariate regression model best explained variance in the normalized green-red difference index (NGRDI) as a relevant indicator of healthy turfgrass fields from the aerial, ground, and machine data set.
Collapse
|
15
|
|
Fiorilli V, Maghrebi M, Novero M, Votta C, Mazzarella T, Buffoni B, Astolfi S, Vigani G. Arbuscular Mycorrhizal Symbiosis Differentially Affects the Nutritional Status of Two Durum Wheat Genotypes under Drought Conditions. Plants (Basel) 2022; 11. [PMID: 35336686 DOI: 10.3390/plants11060804] [Citation(s) in RCA: 5] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 05/17/2023]
Abstract
Durum wheat is one of the most important agricultural crops, currently providing 18% of the daily intake of calories and 20% of daily protein intake for humans. However, being wheat that is cultivated in arid and semiarid areas, its productivity is threatened by drought stress, which is being exacerbated by climate change. Therefore, the identification of drought tolerant wheat genotypes is critical for increasing grain yield and also improving the capability of crops to uptake and assimilate nutrients, which are seriously affected by drought. This work aimed to determine the effect of arbuscular mycorrhizal fungi (AMF) on plant growth under normal and limited water availability in two durum wheat genotypes (Svevo and Etrusco). Furthermore, we investigated how the plant nutritional status responds to drought stress. We found that the response of Svevo and Etrusco to drought stress was differentially affected by AMF. Interestingly, we revealed that AMF positively affected sulfur homeostasis under drought conditions, mainly in the Svevo cultivar. The results provide a valuable indication that the identification of drought tolerant plants cannot ignore their nutrient use efficiency or the impact of other biotic soil components (i.e., AMF).
Collapse
Affiliation(s)
- Valentina Fiorilli
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, 10124 Torino, Italy; (V.F.); (M.M.); (M.N.); (C.V.); (T.M.); (B.B.)
| | - Moez Maghrebi
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, 10124 Torino, Italy; (V.F.); (M.M.); (M.N.); (C.V.); (T.M.); (B.B.)
| | - Mara Novero
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, 10124 Torino, Italy; (V.F.); (M.M.); (M.N.); (C.V.); (T.M.); (B.B.)
| | - Cristina Votta
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, 10124 Torino, Italy; (V.F.); (M.M.); (M.N.); (C.V.); (T.M.); (B.B.)
| | - Teresa Mazzarella
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, 10124 Torino, Italy; (V.F.); (M.M.); (M.N.); (C.V.); (T.M.); (B.B.)
| | - Beatrice Buffoni
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, 10124 Torino, Italy; (V.F.); (M.M.); (M.N.); (C.V.); (T.M.); (B.B.)
| | - Stefania Astolfi
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy;
| | - Gianpiero Vigani
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, 10124 Torino, Italy; (V.F.); (M.M.); (M.N.); (C.V.); (T.M.); (B.B.)
- Correspondence: ; Tel.: +39-0116706360
| |
Collapse
|
16
|
|
Liao L, Cao L, Xie Y, Luo J, Wang G. Phenotypic Traits Extraction and Genetic Characteristics Assessment of Eucalyptus Trials Based on UAV-Borne LiDAR and RGB Images. Remote Sensing 2022; 14:765. [DOI: 10.3390/rs14030765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phenotype describes the physical, physiological and biochemical characteristics of organisms that are determined or influenced by genes and environment. Accurate extraction of phenotypic data is a prerequisite for comprehensive forest phenotyping in order to improve the growth and development of forest plantations. Combined with the assessments of genetic characteristics, forest phenotyping will help to accelerate the breeding process, improve stress resistance and enhance the quality of the planted forest. In this study, we disposed our study in Eucalyptus trials within the Gaofeng forest farm (a typical Eucalyptus plantation site in southern China) for a high-throughput phenotypic traits extraction and genetic characteristics analysis based on high-density point clouds (acquired by a UAV-borne LiDAR sensor) and high-resolution RGB images (acquired by a UAV-borne camera), aiming at developing a high-resolution and high-throughput UAV-based phenotyping approach for tree breeding. First, we compared the effect of CHM-based Marker-Controlled Watershed Segmentation (MWS) and Point Cloud-based Cluster Segmentation (PCS) for extracting individual trees; Then, the phenotypic traits (i.e., tree height, diameter at breast height, crown width), the structural metrics (n = 19) and spectral indices (n = 9) of individual trees were extracted and assessed; Finally, a genetic characteristics analysis was carried out based on the above results, and we compared the differences between high-throughput phenotyping by UAV-based data and on manual measurements. Results showed that: in the relatively low stem density site of the trial (760 n/ha), the overall accuracy of MWS and PCS was similar, while in the higher stem density sites (982 n/ha, 1239 n/ha), the overall accuracy of MWS (F(2) = 0.93, F(3) = 0.86) was higher than PCS (F(2) = 0.84, F(3) = 0.74); With the increase of stem density, the difference between the overall accuracy of MWS and PCS gradually expanded. Both UAV–LiDAR extracted phenotypic traits and manual measurements were significantly different across the Eucalyptus clones (P < 0.05), as were most of the structural metrics (47/57) and spectral indices (26/27), revealing the genetic divergence between the clones. The rank of clones demonstrated that the pure clones (of E. urophylla), the hybrid clones (of E. urophylla as the female parent) and the hybrid clones (of E. wetarensis and E. grandis) have a higher fineness of growth. This study proved that UAV-based fine-resolution remote sensing could be an efficient, accurate and precise technology in phenotyping (used in genetic analysis) for tree breeding.
Collapse
|
17
|
|
Condorell GE, Newcomb M, Groli EL, Maccaferri M, Forestan C, Babaeian E, Tuller M, White JW, Ward R, Mockler T, Shakoor N, Tuberosa R. Genome Wide Association Study Uncovers the QTLome for Osmotic Adjustment and Related Drought Adaptive Traits in Durum Wheat. Genes (Basel) 2022; 13:293. [PMID: 35205338 DOI: 10.3390/genes13020293] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Osmotic adjustment (OA) is a major component of drought resistance in crops. The genetic basis of OA in wheat and other crops remains largely unknown. In this study, 248 field-grown durum wheat elite accessions grown under well-watered conditions, underwent a progressively severe drought treatment started at heading. Leaf samples were collected at heading and 17 days later. The following traits were considered: flowering time (FT), leaf relative water content (RWC), osmotic potential (ψs), OA, chlorophyll content (SPAD), and leaf rolling (LR). The high variability (3.89-fold) in OA among drought-stressed accessions resulted in high repeatability of the trait (h2 = 72.3%). Notably, a high positive correlation (r = 0.78) between OA and RWC was found under severe drought conditions. A genome-wide association study (GWAS) revealed 15 significant QTLs (Quantitative Trait Loci) for OA (global R2 = 63.6%), as well as eight major QTL hotspots/clusters on chromosome arms 1BL, 2BL, 4AL, 5AL, 6AL, 6BL, and 7BS, where a higher OA capacity was positively associated with RWC and/or SPAD, and negatively with LR, indicating a beneficial effect of OA on the water status of the plant. The comparative analysis with the results of 15 previous field trials conducted under varying water regimes showed concurrent effects of five OA QTL cluster hotspots on normalized difference vegetation index (NDVI), thousand-kernel weight (TKW), and/or grain yield (GY). Gene content analysis of the cluster regions revealed the presence of several candidate genes, including bidirectional sugar transporter SWEET, rhomboid-like protein, and S-adenosyl-L-methionine-dependent methyltransferases superfamily protein, as well as DREB1. Our results support OA as a valuable proxy for marker-assisted selection (MAS) aimed at enhancing drought resistance in wheat.
Collapse
|
18
|
|
Arriagada O, Gadaleta A, Marcotuli I, Maccaferri M, Campana M, Reveco S, Alfaro C, Matus I, Schwember AR. A comprehensive meta-QTL analysis for yield-related traits of durum wheat (Triticum turgidum L. var. durum) grown under different water regimes. Front Plant Sci 2022; 13:984269. [PMID: 36147234 DOI: 10.3389/fpls.2022.984269] [Citation(s) in RCA: 3] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Abiotic stress strongly affects yield-related traits in durum wheat, in particular drought is one of the main environmental factors that have effect on grain yield and plant architecture. In order to obtain new genotypes well adapted to stress conditions, the highest number of desirable traits needs to be combined in the same genotype. In this context, hundreds of quantitative trait loci (QTL) have been identified for yield-related traits in different genetic backgrounds and environments. Meta-QTL (MQTL) analysis is a useful approach to combine data sets and for creating consensus positions for the QTL detected in independent studies for the reliability of their location and effects. MQTL analysis is a useful method to dissect the genetic architecture of complex traits, which provide an extensive allelic coverage, a higher mapping resolution and allow the identification of putative molecular markers useful for marker-assisted selection (MAS). In the present study, a complete and comprehensive MQTL analysis was carried out to identify genomic regions associated with grain-yield related traits in durum wheat under different water regimes. A total of 724 QTL on all 14 chromosomes (genomes A and B) were collected for the 19 yield-related traits selected, of which 468 were reported under rainfed conditions, and 256 under irrigated conditions. Out of the 590 QTL projected on the consensus map, 421 were grouped into 76 MQTL associated with yield components under both irrigated and rainfed conditions, 12 genomic regions containing stable MQTL on all chromosomes except 1A, 4A, 5A, and 6B. Candidate genes associated to MQTL were identified and an in-silico expression analysis was carried out for 15 genes selected among those that were differentially expressed under drought. These results can be used to increase durum wheat grain yields under different water regimes and to obtain new genotypes adapted to climate change.
Collapse
Affiliation(s)
- Osvin Arriagada
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Agata Gadaleta
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Bari, Italy
| | - Ilaria Marcotuli
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Bari, Italy
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Matteo Campana
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Samantha Reveco
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christian Alfaro
- Centro Regional Rayentue, Instituto de Investigaciones Agropecuarias (INIA), Rengo, Chile
| | - Iván Matus
- Centro Regional Quilamapu, Instituto de Investigaciones Agropecuarias (INIA), Chillán, Chile
| | - Andrés R. Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Andrés R. Schwember,
| |
Collapse
|
19
|
|
Martínez-Peña R, Schlereth A, Höhne M, Encke B, Morcuende R, Nieto-Taladriz MT, Araus JL, Aparicio N, Vicente R. Source-Sink Dynamics in Field-Grown Durum Wheat Under Contrasting Nitrogen Supplies: Key Role of Non-Foliar Organs During Grain Filling. Front Plant Sci 2022; 13:869680. [PMID: 35574116 DOI: 10.3389/fpls.2022.869680] [Citation(s) in RCA: 2] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The integration of high-throughput phenotyping and metabolic approaches is a suitable strategy to study the genotype-by-environment interaction and identify novel traits for crop improvement from canopy to an organ level. Our aims were to study the phenotypic and metabolic traits that are related to grain yield and quality at canopy and organ levels, with a special focus on source-sink coordination under contrasting N supplies. Four modern durum wheat varieties with contrasting grain yield were grown in field conditions under two N fertilization levels in north-eastern Spain. We evaluated canopy vegetation indices taken throughout the growing season, physiological and metabolic traits in different photosynthetic organs (flag leaf blade, sheath, peduncle, awn, glume, and lemma) at anthesis and mid-grain filling stages, and agronomic and grain quality traits at harvest. Low N supply triggered an imbalance of C and N coordination at the whole plant level, leading to a reduction of grain yield and nutrient composition. The activities of key enzymes in C and N metabolism as well as the levels of photoassimilates showed that each organ plays an important role during grain filling, some with a higher photosynthetic capacity, others for nutrient storage for later stages of grain filling, or N assimilation and recycling. Interestingly, the enzyme activities and sucrose content of the ear organs were positively associated with grain yield and quality, suggesting, together with the regression models using isotope signatures, the potential contribution of these organs during grain filling. This study highlights the use of holistic approaches to the identification of novel targets to improve grain yield and quality in C3 cereals and the key role of non-foliar organs at late-growth stages.
Collapse
Affiliation(s)
- Raquel Martínez-Peña
- Group of Cereals, Section of Herbaceous, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Junta de Castilla y León, Valladolid, Spain
| | - Armin Schlereth
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Melanie Höhne
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Beatrice Encke
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Rosa Morcuende
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | | | - José Luis Araus
- Integrative Crop Ecophysiology Group, Section of Plant Physiology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Nieves Aparicio
- Group of Cereals, Section of Herbaceous, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Junta de Castilla y León, Valladolid, Spain
| | - Rubén Vicente
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Plant Ecophysiology and Metabolism Group, Oeiras, Portugal
- *Correspondence: Rubén Vicente
| |
Collapse
|
20
|
|
Mandal S, Verma AK. Wheat Breeding, Fertilizers, and Pesticides: Do They Contribute to the Increasing Immunogenic Properties of Modern Wheat? GastrointestDisord 2021; 3:247-64. [DOI: 10.3390/gidisord3040023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Celiac disease (CD) is a small intestinal inflammatory condition where consumption of gluten induces a T-cell mediated immune response that damages the intestinal mucosa in susceptible individuals. CD affects at least 1% of the world’s population. The increasing prevalence of CD has been reported over the last few decades. However, the reason for this increase is not known so far. Certain factors such as increase in awareness and the development of advanced and highly sensitive diagnostic screening markers are considered significant factors for this increase. Wheat breeding strategies, fertilizers, and pesticides, particularly herbicides, are also thought to have a role in the increasing prevalence. However, less is known about this issue. In this review, we investigated the role of these agronomic practices in depth. Our literature-based results showed that wheat breeding, use of nitrogen-based fertilizers, and herbicides cannot be solely responsible for the increase in celiac prevalence. However, applying nitrogen fertilizers is associated with an increase in gluten in wheat, which increases the risk of developing celiac-specific symptoms in gluten-sensitive individuals. Additionally, clustered regularly interspaced short palindromic repeats (CRISPR) techniques can edit multiple gliadin genes, resulting in a low-immunogenic wheat variety that is safe for such individuals.
Collapse
|
21
|
|
Cotrozzi L, Lorenzini G, Nali C, Pisuttu C, Pampana S, Pellegrini E. Transient Waterlogging Events Impair Shoot and Root Physiology and Reduce Grain Yield of Durum Wheat Cultivars. Plants (Basel) 2021; 10. [PMID: 34834720 DOI: 10.3390/plants10112357] [Citation(s) in RCA: 3] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husn) is a staple crop of the Mediterranean countries, where more frequent waterlogging events are predicted due to climate change. However, few investigations have been conducted on the physiological and agronomic responses of this crop to waterlogging. The present study provides a comprehensive evaluation of the effects of two waterlogging durations (i.e., 14 and 35 days) on two durum wheat cultivars (i.e., Svevo and Emilio Lepido). An integrated analysis of an array of physiological, biochemical, biometric, and yield parameters was performed at the end of the waterlogging events, during recovery, and at physiological maturity. Results established that effects on durum wheat varied depending on waterlogging duration. This stress imposed at tillering impaired photosynthetic activity of leaves and determined oxidative injury of the roots. The physiological damages could not be fully recovered, subsequently slowing down tiller formation and crop growth, and depressing the final grain yield. Furthermore, differences in waterlogging tolerance between cultivars were discovered. Our results demonstrate that in durum wheat, the energy maintenance, the cytosolic ion homeostasis, and the ROS control and detoxification can be useful physiological and biochemical parameters to consider for the waterlogging tolerance of genotypes, with regard to sustaining biomass production and grain yield.
Collapse
Affiliation(s)
- Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.C.); (G.L.); (C.N.); (C.P.); (E.P.)
| | - Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.C.); (G.L.); (C.N.); (C.P.); (E.P.)
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.C.); (G.L.); (C.N.); (C.P.); (E.P.)
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Claudia Pisuttu
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.C.); (G.L.); (C.N.); (C.P.); (E.P.)
| | - Silvia Pampana
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.C.); (G.L.); (C.N.); (C.P.); (E.P.)
- Correspondence: ; Tel.: +39-050-221-8941
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.C.); (G.L.); (C.N.); (C.P.); (E.P.)
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
22
|
|
Tomar M, Bhardwaj R, Kumar M, Pal Singh S, Krishnan V, Kansal R, Verma R, Yadav VK, dahuja A, Ahlawat SP, Rana JC, Bollinedi H, Ranjan Kumar R, Goswami S, T V, Satyavathi CT, Praveen S, Sachdev A. Nutritional composition patterns and application of multivariate analysis to evaluate indigenous Pearl millet ((Pennisetum glaucum (L.) R. Br.) germplasm. J Food Compost Anal 2021; 103:104086. [DOI: 10.1016/j.jfca.2021.104086] [Citation(s) in RCA: 10] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
|
Conti V, Romi M, Parri S, Aloisi I, Marino G, Cai G, Cantini C. Morpho-Physiological Classification of Italian Tomato Cultivars ( Solanum lycopersicum L.) According to Drought Tolerance during Vegetative and Reproductive Growth. Plants (Basel) 2021; 10:1826. [PMID: 34579359 DOI: 10.3390/plants10091826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Irrigation is fundamental for agriculture but, as climate change becomes more persistent, there is a need to conserve water and use it more efficiently. It is therefore crucial to identify cultivars that can tolerate drought. For economically relevant crops, such as tomatoes, this purpose takes on an even more incisive role and local agrobiodiversity is a large genetic reservoir of promising cultivars. In this study, nine local Italian cultivars of tomatoes plus four widely used commercial cultivars were considered. These experienced about 20 d of drought, either at vegetative or reproductive phase. Various physio-morphological parameters were monitored, such as stomatal conductance (gs), photosynthesis (A), water use efficiency (WUE), growth (GI) and soil water content (SWC). The different responses and behaviors allowed to divide the cultivars into three groups: tolerant, susceptible, and intermediate. The classification was also confirmed by a principal component analysis (PCA). The study, in addition to deepening the knowledge of local Italian tomato cultivars, reveals how some cultivars perform better under stress condition than commercial ones. Moreover, the different behavior depends on the genotype and on the growth phase of plants. In fact, the Perina cultivar is the most tolerant during vegetative growth while the Quarantino cultivar is mostly tolerant at reproductive stage. The results suggest that selection of cultivars could lead to a more sustainable agriculture and less wasteful irrigation plans.
Collapse
Affiliation(s)
- Veronica Conti
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (S.P.); (G.C.)
- Correspondence: ; Tel.: +39-0577-232392
| | - Marco Romi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (S.P.); (G.C.)
| | - Sara Parri
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (S.P.); (G.C.)
| | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio, 40126 Bologna, Italy;
| | - Giovanni Marino
- National Research Council of Italy, Institute of Sustainable Plant Protection (CNR-IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy;
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (S.P.); (G.C.)
| | - Claudio Cantini
- National Research Council of Italy, Institute for Bioeconomy (CNR-IBE), 58022 Follonica, Italy;
| |
Collapse
|
24
|
|
Zeng L, Peng G, Meng R, Man J, Li W, Xu B, Lv Z, Sun R. Wheat Yield Prediction Based on Unmanned Aerial Vehicles-Collected Red–Green–Blue Imagery. Remote Sensing 2021; 13:2937. [DOI: 10.3390/rs13152937] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Unmanned aerial vehicles-collected (UAVs) digital red–green–blue (RGB) images provided a cost-effective method for precision agriculture applications regarding yield prediction. This study aims to fully explore the potential of UAV-collected RGB images in yield prediction of winter wheat by comparing it to multi-source observations, including thermal, structure, volumetric metrics, and ground-observed leaf area index (LAI) and chlorophyll content under the same level or across different levels of nitrogen fertilization. Color indices are vegetation indices calculated by the vegetation reflectance at visible bands (i.e., red, green, and blue) derived from RGB images. The results showed that some of the color indices collected at the jointing, flowering, and early maturity stages had high correlation (R2 = 0.76–0.93) with wheat grain yield. They gave the highest prediction power (R2 = 0.92–0.93) under four levels of nitrogen fertilization at the flowering stage. In contrast, the other measurements including canopy temperature, volumetric metrics, and ground-observed chlorophyll content showed lower correlation (R2 = 0.52–0.85) to grain yield. In addition, thermal information as well as volumetric metrics generally had little contribution to the improvement of grain yield prediction when combining them with color indices derived from digital images. Especially, LAI had inferior performance to color indices in grain yield prediction within the same level of nitrogen fertilization at the flowering stage (R2 = 0.00–0.40 and R2 = 0.55–0.68), and color indices provided slightly better prediction of yield than LAI at the flowering stage (R2 = 0.93, RMSE = 32.18 g/m2 and R2 = 0.89, RMSE = 39.82 g/m2) under all levels of nitrogen fertilization. This study highlights the capabilities of color indices in wheat yield prediction across genotypes, which also indicates the potential of precision agriculture application using many other flexible, affordable, and easy-to-handle devices such as mobile phones and near surface digital cameras in the future.
Collapse
|
25
|
|
Boukail S, Macharia M, Miculan M, Masoni A, Calamai A, Palchetti E, Dell'Acqua M. Genome wide association study of agronomic and seed traits in a world collection of proso millet (Panicum miliaceum L.). BMC Plant Biol 2021; 21:330. [PMID: 34243721 DOI: 10.1186/s12870-021-03111-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/23/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND The climate crisis threatens sustainability of crop production worldwide. Crop diversification may enhance food security while reducing the negative impacts of climate change. Proso millet (Panicum milaceum L.) is a minor cereal crop which holds potential for diversification and adaptation to different environmental conditions. In this study, we assembled a world collection of proso millet consisting of 88 varieties and landraces to investigate its genomic and phenotypic diversity for seed traits, and to identify marker-trait associations (MTA). RESULTS Sequencing of restriction-site associated DNA fragments yielded 494 million reads and 2,412 high quality single nucleotide polymorphisms (SNPs). SNPs were used to study the diversity in the collection and perform a genome wide association study (GWAS). A genotypic diversity analysis separated accessions originating in Western Europe, Eastern Asia and Americas from accessions sampled in Southern Asia, Western Asia, and Africa. A Bayesian structure analysis reported four cryptic genetic groups, showing that landraces accessions had a significant level of admixture and that most of the improved proso millet materials clustered separately from landraces. The collection was highly diverse for seed traits, with color varying from white to dark brown and width spanning from 1.8 to 2.6 mm. A GWAS study for seed morphology traits identified 10 MTAs. In addition, we identified three MTAs for agronomic traits that were previously measured on the collection. CONCLUSION Using genomics and automated seed phenotyping, we elucidated phylogenetic relationships and seed diversity in a global millet collection. Overall, we identified 13 MTAs for key agronomic and seed traits indicating the presence of alleles with potential for application in proso breeding programs.
Collapse
Affiliation(s)
- Sameh Boukail
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Mercy Macharia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Mara Miculan
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alberto Masoni
- School of Agriculture, University of Florence, Florence, Italy
| | | | | | - Matteo Dell'Acqua
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
| |
Collapse
|
26
|
|
Perveen S, Hanif MA, Nadeem R, Rashid U, Azeem MW, Zubair M, Nisar N, Alharthi FA, Moser BR. A Novel Route of Mixed Catalysis for Production of Fatty Acid Methyl Esters from Potential Seed Oil Sources. Catalysts 2021; 11:811. [DOI: 10.3390/catal11070811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Depleting petroleum resources coupled with the environmental consequences of fossil fuel combustion have led to the search for renewable alternatives, such as biodiesel. In this study, sunflower (Helianthus annus), mustard (Brassica compestres) and pearl millet (Pennisetum americanum) seed oils were converted into biodiesel (fatty acid methyl esters) by acid-, base- and lipase-catalyzed transesterification, and the resultant fuel properties were determined. The methyl esters displayed superior iodine values (102–139), low densities, and a high cetane number (CN). The highest yield of biodiesel was obtained from mustard seed oil, which provided cloud (CP) and pour (PP) points of −3.5 and 5 °C, respectively, and a CN of 53. The sunflower seed oil methyl esters had a density of 0.81–0.86 kg/L at 16 °C, CP of 2 °C, PP of −8 °C, and a CN of 47. The pearl millet seed oil methyl esters yielded a density 0.87–0.89 kg/L, CP and PP of 4 °C and −5 °C, respectively, and a CN of 46. The major fatty acids identified in the sunflower, mustard, and pearl millet seed oils were linolenic (49.2%), oleic acid (82.2%), and linoleic acid (73.9%), respectively. The present study reports biodiesel with ideal values of CP and PP, to extend the use of biodiesel at the commercial level.
Collapse
|
27
|
|
Isham K, Wang R, Zhao W, Wheeler J, Klassen N, Akhunov E, Chen J. QTL mapping for grain yield and three yield components in a population derived from two high-yielding spring wheat cultivars. Theor Appl Genet 2021; 134:2079-95. [PMID: 33687497 DOI: 10.1007/s00122-021-03806-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Four genomic regions on chromosomes 4A, 6A, 7B, and 7D were discovered, each with multiple tightly linked QTL (QTL clusters) associated with two to three yield components. The 7D QTL cluster was associated with grain yield, fertile spikelet number per spike, thousand kernel weight, and heading date. It was located in the flanking region of FT-D1, a homolog gene of Arabidopsis FLOWERING LOCUS T, a major gene that regulates wheat flowering. Genetic manipulation of yield components is an important approach to increase grain yield in wheat (Triticum aestivum). The present study used a mapping population comprised of 181 doubled haploid lines derived from two high-yielding spring wheat cultivars, UI Platinum and LCS Star. The two cultivars and the derived population were assessed for six traits in eight field trials primarily in Idaho in the USA. The six traits were grain yield, fertile spikelet number per spike, productive tiller number per unit area, thousand kernel weight, heading date, and plant height. Quantitative Trait Locus (QTL) analysis of the six traits was conducted using 14,236 single-nucleotide polymorphism (SNP) markers generated from the wheat 90 K SNP and the exome and promoter capture arrays. Of the 19 QTL detected, 14 were clustered in four chromosomal regions on 4A, 6A, 7B and 7D. Each of the four QTL clusters was associated with multiple yield component traits, and these traits were often negatively correlated with one another. As a result, additional QTL dissection studies are needed to optimize trade-offs among yield component traits for specific production environments. Kompetitive allele-specific PCR markers for the four QTL clusters were developed and assessed in an elite spring wheat panel of 170 lines, and eight of the 14 QTL were validated. The two parents contain complementary alleles for the four QTL clusters, suggesting the possibility of improving grain yield via genetic recombination of yield component loci.
Collapse
Affiliation(s)
- Kyle Isham
- Department of Plant Sciences, University of Idaho, Aberdeen, ID, USA
| | - Rui Wang
- Department of Plant Sciences, University of Idaho, Aberdeen, ID, USA
| | - Weidong Zhao
- Department of Plant Sciences, University of Idaho, Aberdeen, ID, USA
| | - Justin Wheeler
- Department of Plant Sciences, University of Idaho, Aberdeen, ID, USA
| | - Natalie Klassen
- Department of Plant Sciences, University of Idaho, Aberdeen, ID, USA
| | - Eduard Akhunov
- Department of Plant Sciences, Kansas State University, Manhattan, KS, USA
| | - Jianli Chen
- Department of Plant Sciences, University of Idaho, Aberdeen, ID, USA.
| |
Collapse
|
28
|
|
Rabbi SMHA, Kumar A, Mohajeri Naraghi S, Sapkota S, Alamri MS, Elias EM, Kianian S, Seetan R, Missaoui A, Solanki S, Mergoum M. Identification of Main-Effect and Environmental Interaction QTL and Their Candidate Genes for Drought Tolerance in a Wheat RIL Population Between Two Elite Spring Cultivars. Front Genet 2021; 12:656037. [PMID: 34220939 DOI: 10.3389/fgene.2021.656037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Understanding the genetics of drought tolerance can expedite the development of drought-tolerant cultivars in wheat. In this study, we dissected the genetics of drought tolerance in spring wheat using a recombinant inbred line (RIL) population derived from a cross between a drought-tolerant cultivar, ‘Reeder’ (PI613586), and a high-yielding but drought-susceptible cultivar, ‘Albany.’ The RIL population was evaluated for grain yield (YLD), grain volume weight (GVW), thousand kernel weight (TKW), plant height (PH), and days to heading (DH) at nine different environments. The Infinium 90 k-based high-density genetic map was generated using 10,657 polymorphic SNP markers representing 2,057 unique loci. Quantitative trait loci (QTL) analysis detected a total of 11 consistent QTL for drought tolerance-related traits. Of these, six QTL were exclusively identified in drought-prone environments, and five were constitutive QTL (identified under both drought and normal conditions). One major QTL on chromosome 7B was identified exclusively under drought environments and explained 13.6% of the phenotypic variation (PV) for YLD. Two other major QTL were detected, one each on chromosomes 7B and 2B under drought-prone environments, and explained 14.86 and 13.94% of phenotypic variation for GVW and YLD, respectively. One novel QTL for drought tolerance was identified on chromosome 2D. In silico expression analysis of candidate genes underlaying the exclusive QTLs associated with drought stress identified the enrichment of ribosomal and chloroplast photosynthesis-associated proteins showing the most expression variability, thus possibly contributing to stress response by modulating the glycosyltransferase (TraesCS6A01G116400) and hexosyltransferase (TraesCS7B01G013300) unique genes present in QTL 21 and 24, respectively. While both parents contributed favorable alleles to these QTL, unexpectedly, the high-yielding and less drought-tolerant parent contributed desirable alleles for drought tolerance at four out of six loci. Regardless of the origin, all QTL with significant drought tolerance could assist significantly in the development of drought-tolerant wheat cultivars, using genomics-assisted breeding approaches.
Collapse
Affiliation(s)
- S M Hisam Al Rabbi
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | | | - Suraj Sapkota
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Griffin, GA, United States
| | - Mohammed S Alamri
- Department of Food Science and Nutrition, King Saud University, Riyadh, Saudi Arabia
| | - Elias M Elias
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Shahryar Kianian
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, St. Paul, MN, United States
| | - Raed Seetan
- Department of Computer Science, Slippery Rock University, Slippery Rock, PA, United States
| | - Ali Missaoui
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Griffin, GA, United States.,Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, United States
| | - Shyam Solanki
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Mohamed Mergoum
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Griffin, GA, United States.,Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, United States
| |
Collapse
|
29
|
|
Kaya C. Nitrate reductase is required for salicylic acid-induced water stress tolerance of pepper by upraising the AsA-GSH pathway and glyoxalase system. Physiol Plant 2021; 172:351-70. [PMID: 32542778 DOI: 10.1111/ppl.13153] [Citation(s) in RCA: 5] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/18/2020] [Accepted: 06/11/2020] [Indexed: 05/07/2023]
Abstract
A trial was conducted to evaluate whether nitrate reductase (NR) participates in salicylic acid (SA)-improved water stress (WS) tolerance in pepper (Capsicum annuum L.) plants. Before starting WS treatment, 0.5 mM SA was applied to half of the well-watered (WW) plants as well as to WS-plants as a foliar spray once a day for a week. The soil water holding capacity was maintained at 40 and 80% of the full water storing capacity for WS and and well-watered (WW) plants, respectively. Water stress caused substantial decreases in total plant dry weight, Fv /Fm , chlorophyll a and b, relative water content, leaf water potential (ΨI) by 53, 37, 49, 21, 36 and 33%, respectively relative to control, but significant increases in malondialdehyde (MDA), hydrogen peroxide (H2 O2 ), electrolyte leakage (EL), methylglyoxal (MG), proline, key antioxidant enzymes' activities, NO and NR activity. The SA reduced oxidative stress, but improved antioxidant defence system, ascorbate-glutathione (AsA-GSH) cycle enzymes, glyoxalase system-related enzymes, glyoxalase I (Gly I) and glyoxalase II (Gly II), plant growth, photosynthetic traits, NO, NR and proline. SA-induced WS tolerance was further improved by supplementation of sodium nitroprusside (SNP), a donor of NO. NR inhibitor, sodium tungstate (ST) was applied in conjunction with SA and SA + SNP to the WW and WS-plants to assess whether NR contributes to SA-improved WS tolerance. ST abolished the beneficial effects of SA by reducing NO and NR activity in WS-pepper, but the application of SNP along with SA + ST reversed negative effects of ST, showing that NO and NR are jointly needed for SA-induced WS tolerance of pepper plants.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa, Turkey
| |
Collapse
|
30
|
|
Abstract
As temperatures rise and water availability decreases, the water decit is gaining attention regarding future agricultural production. Drought stress is a global issue and adversely affects the productivity of different crops. In this study, drought-tolerant varieties of oats were screened to determine drought-tolerant varieties that may be employed in drought-prone areas to achieve sustainable development and mitigate the impact of climate change. To do so, the growth and stress adaptive mechanism of 15 domestic and overseas oat cultivars at the seedling stage were analyzed. Water stress was simulated using 20% polyethylene glycol (PEG-6000). The results showed that the soluble protein content and superoxide dismutase activity of variety DY2 significantly increased under drought stress, whereas the photochemical efficiency and relative water content decreased slightly. The relative electrical conductivity (REC) and drought damage index of the QH444 and DY2 varieties increased the least. The peroxidase content of Q1 and DY2 significantly increased, and the catalase activity of Q1, QH444, and DY2 also substantially increased. Principal component analysis revealed that nine physiological and biochemical parameters were transformed into three independent comprehensive indexes. The comprehensive evaluation results showed that DY2, LN, and Q1 exhibited a strong drought resistance capacity and could be used as a reference material for a drought-resistant oat breeding program. The gray correlation analysis also indicated that Fv/Fm, chlorophyll, REC, and malondialdehyde could be used as key indexes for evaluating the drought resistance of oat.
Collapse
|
31
|
|
Deery DM, Smith DJ, Davy R, Jimenez-Berni JA, Rebetzke GJ, James RA. Impact of Varying Light and Dew on Ground Cover Estimates from Active NDVI, RGB, and LiDAR. Plant Phenomics 2021; 2021:9842178. [PMID: 34250506 DOI: 10.34133/2021/9842178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/29/2021] [Indexed: 05/29/2023]
Abstract
Canopy ground cover (GC) is an important agronomic measure for evaluating crop establishment and early growth. This study evaluates the reliability of GC estimates, in the presence of varying light and dew on leaves, from three different ground-based sensors: (1) normalized difference vegetation index (NDVI) from the commercially available GreenSeeker®; (2) RGB images from a digital camera, where GC was determined as the portion of pixels from each image meeting a greenness criterion (i.e., (Green - Red)/(Green + Red) > 0); and (3) LiDAR using two separate approaches: (a) GC from LiDAR red reflectance (whereby red reflectance less than five was classified as vegetation) and (b) GC from LiDAR height (whereby height greater than 10 cm was classified as vegetation). Hourly measurements were made early in the season at two different growth stages (tillering and stem elongation), among wheat genotypes highly diverse for canopy characteristics. The active NDVI showed the least variation through time and was particularly stable, regardless of the available light or the presence of dew. In addition, between-sample-time Pearson correlations for NDVI were consistently high and significant (P < 0.0001), ranging from 0.89 to 0.98. In comparison, GC from LiDAR and RGB showed greater variation across sampling times, and LiDAR red reflectance was strongly influenced by the presence of dew. Excluding times when the light was exceedingly low, correlations between GC from RGB and NDVI were consistently high (ranging from 0.79 to 0.92). The high reliability of the active NDVI sensor potentially affords a high degree of flexibility for users by enabling sampling across a broad range of acceptable light conditions.
Collapse
Affiliation(s)
| | | | - Robert Davy
- CSIRO Information Management and Technology, Canberra, ACT, Australia
| | - Jose A. Jimenez-Berni
- CSIRO Agriculture and Food, Canberra, ACT, Australia
- Instituto Agricultura Sostenible, Consejo Superior de Investigaciones Cientificas, Cordoba, Spain
| | | | | |
Collapse
|
32
|
|
Slama A, Cherif A, Boukhchina S, Di Maro A. Importance of New Edible Oil Extracted from Seeds of Seven Cereals Species. J FOOD QUALITY 2021; 2021:1-8. [DOI: 10.1155/2021/5531414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cereals constitute a major source of human and animal nutrition. In spite of the extensive production of numerous cereal species, some information is unavailable in terms of lipid composition. Due to the oil increasing demand by the overgrowth of the world population, oleaginous species have encountered problems in recent years. In order to find new sources of edible oil, the aim of this study was to describe the importance of seventeen varieties oil of seven cereal species. Oils were extracted by the Soxhlet method, and fatty acids were measured by gas chromatography. The present study demonstrated that the lipid content of cereal seeds ranged from 1.42% to 5.97%. In average, oat, millet, and maize had significantly higher lipid content, respectively, 5.97%, 5.06%, and 4.71%. The main fatty acid recorded in the studied cereal species, except oat, was linoleic acid C18 : 2 (ω6). Regarding the essential fatty acids linoleic acid C18 : 2 and linolenic acid C18 : 3 (ω3), the oil of all studied species, except oat, was rich in ω6 fatty acids (47.50 to 60.13%) and poor in ω3 (0.45% to 5.33%). The content of unsaturated fatty acids in all studied species ranged from 77.22 to 81.89%. Cereal oil was considered as highly unsaturated oil with the presence of the essential fatty acids necessary for human health. Therefore, cereal oils could be commercialized in small quantities in pharmacies or parapharmacies.
Collapse
|
33
|
|
Slama A, Cherif A, Boukhchina S, Di Maro A. Importance of New Edible Oil Extracted from Seeds of Seven Cereals Species. J FOOD QUALITY 2021; 2021:1-8. [DOI: 10.1155/2021/5531414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Cereals constitute a major source of human and animal nutrition. In spite of the extensive production of numerous cereal species, some information is unavailable in terms of lipid composition. Due to the oil increasing demand by the overgrowth of the world population, oleaginous species have encountered problems in recent years. In order to find new sources of edible oil, the aim of this study was to describe the importance of seventeen varieties oil of seven cereal species. Oils were extracted by the Soxhlet method, and fatty acids were measured by gas chromatography. The present study demonstrated that the lipid content of cereal seeds ranged from 1.42% to 5.97%. In average, oat, millet, and maize had significantly higher lipid content, respectively, 5.97%, 5.06%, and 4.71%. The main fatty acid recorded in the studied cereal species, except oat, was linoleic acid C18 : 2 (ω6). Regarding the essential fatty acids linoleic acid C18 : 2 and linolenic acid C18 : 3 (ω3), the oil of all studied species, except oat, was rich in ω6 fatty acids (47.50 to 60.13%) and poor in ω3 (0.45% to 5.33%). The content of unsaturated fatty acids in all studied species ranged from 77.22 to 81.89%. Cereal oil was considered as highly unsaturated oil with the presence of the essential fatty acids necessary for human health. Therefore, cereal oils could be commercialized in small quantities in pharmacies or parapharmacies.
Collapse
Affiliation(s)
- Amor Slama
- University of Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03,Laboratory of Neurophysiology, Cellular Physiopathology and Biomolecules Valorisation, Tunis 2092, Tunisia
- University of Carthage, Faculty of Sciences of Bizerte, Jarzouna-Bizerte 7021, Tunisia
| | - Ammar Cherif
- University of Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03,Laboratory of Neurophysiology, Cellular Physiopathology and Biomolecules Valorisation, Tunis 2092, Tunisia
- Department of Science Laboratories, College of Sciences and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Sadok Boukhchina
- University of Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03,Laboratory of Neurophysiology, Cellular Physiopathology and Biomolecules Valorisation, Tunis 2092, Tunisia
| |
Collapse
|
34
|
|
Krishnan V, Awana M, Singh A, Goswami S, Vinutha T, Kumar RR, Singh SP, Sathyavathi T, Sachdev A, Praveen S. Starch molecular configuration and starch-sugar homeostasis: Key determinants of sweet sensory perception and starch hydrolysis in pearl millet (Pennisetum glaucum). Int J Biol Macromol 2021; 183:1087-95. [PMID: 33965496 DOI: 10.1016/j.ijbiomac.2021.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Starch-sugar homeostasis and starch molecular configuration regulates the dynamics of starch digestibility which result in sweet sensory perception and eliciting glycemic response, which has been measured in vitro as inherent glycemic potential (IGP). The objective of the research was to understand the key determinants of IGP as well as sweetness in different Pearl millet (PM) genotypes. To understand the intricate balance between starch and sugar, total starch content (TSC) and total soluble sugars (TSS) were evaluated. Higher concentrations of TSC (67.8%), TSS (2.75%), glucose (0.78%) and sucrose (1.68%) were found in Jafarabadi Bajra. Considering the role of compact molecular configuration of starch towards digestibility, X-ray powder diffraction (XRD) analysis was performed. A-type crystallinity with crystallinity degree (CD %) ranged from 53.53-62.63% among different genotypes, where the least CD% (53.53%) was found in Jafarabadi Bajra. In vitro starch hydrolyzation kinetics carried out to determine IGP, revealed a maximum of 77.05% IGP with minimum 1.42% resistant starch (RS) in Jafarabadi Bajra. Overall our results suggest higher sweet sensory perception of Jafarabadi Bajra which is contributed by the matrix composition with least molecular compactness of starch. Also, the interdependence among starch quality parameters; CD%, IGP, RS and amylose has also been discussed.
Collapse
Affiliation(s)
- Veda Krishnan
- Division of Biochemistry, ICAR- Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Monika Awana
- Division of Biochemistry, ICAR- Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Archana Singh
- Division of Biochemistry, ICAR- Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Suneha Goswami
- Division of Biochemistry, ICAR- Indian Agricultural Research Institute (IARI), New Delhi, India
| | - T Vinutha
- Division of Biochemistry, ICAR- Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, ICAR- Indian Agricultural Research Institute (IARI), New Delhi, India
| | - S P Singh
- Division of Genetics, ICAR- Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Tara Sathyavathi
- All India Coordinated Research Project on Pearl Millet (AICRP-PM), ICAR, Jodhpur, India
| | - Archana Sachdev
- Division of Biochemistry, ICAR- Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Shelly Praveen
- Division of Biochemistry, ICAR- Indian Agricultural Research Institute (IARI), New Delhi, India.
| |
Collapse
|
35
|
|
Popowski E, Thomson SJ, Knäbel M, Tahir J, Crowhurst RN, Davy M, Foster TM, Schaffer RJ, Tustin DS, Allan AC, McCallum J, Chagné D. Construction of a high density genetic map for hexaploid kiwifruit (Actinidia chinensis var. deliciosa) using genotyping by sequencing. G3 (Bethesda) 2021:jkab142. [PMID: 34009255 DOI: 10.1093/g3journal/jkab142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Commercially grown kiwifruit (genus Actinidia) are generally of two sub-species which have a base haploid genome of 29 chromosomes. The yellow-fleshed Actinidia chinensis var. chinensis, is either diploid (2n = 2x = 58) or tetraploid (2n = 4x = 116) and the green-fleshed cultivar A. chinensis var. deliciosa “Hayward,” is hexaploid (2n = 6x = 174). Advances in breeding green kiwifruit could be greatly sped up by the use of molecular resources for more efficient and faster selection, for example using marker-assisted selection (MAS). The key genetic marker that has been implemented for MAS in hexaploid kiwifruit is for gender testing. The limited marker-trait association has been reported for other polyploid kiwifruit for fruit and production traits. We have constructed a high-density linkage map for hexaploid green kiwifruit using genotyping-by-sequence (GBS). The linkage map obtained consists of 3686 and 3940 markers organized in 183 and 176 linkage groups for the female and male parents, respectively. Both parental linkage maps are co-linear with the A. chinensis “Red5” reference genome of kiwifruit. The linkage map was then used for quantitative trait locus (QTL) mapping, and successfully identified QTLs for king flower number, fruit number and weight, dry matter accumulation, and storage firmness. These are the first QTLs to be reported and discovered for complex traits in hexaploid kiwifruit.
Collapse
Affiliation(s)
- Elizabeth Popowski
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Te Puke, New Zealand
| | | | | | | | | | - Marcus Davy
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Te Puke, New Zealand
| | | | - Robert J Schaffer
- Plant & Food Research, Motueka, New Zealand.,School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | - Andrew C Allan
- Plant & Food Research, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | - David Chagné
- Plant & Food Research, Palmerston North, New Zealand
| |
Collapse
|
36
|
|
Elsayed S, El-hendawy S, Khadr M, Elsherbiny O, Al-suhaibani N, Alotaibi M, Tahir MU, Darwish W. Combining Thermal and RGB Imaging Indices with Multivariate and Data-Driven Modeling to Estimate the Growth, Water Status, and Yield of Potato under Different Drip Irrigation Regimes. Remote Sensing 2021; 13:1679. [DOI: 10.3390/rs13091679] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in proximal hyperspectral sensing tools, chemometric techniques, and data-driven modeling have enhanced precision irrigation management by facilitating the monitoring of several plant traits. This study investigated the performance of remote sensing indices derived from thermal and red-green-blue (RGB) images combined with stepwise multiple linear regression (SMLR) and an integrated adaptive neuro-fuzzy inference system with a genetic algorithm (ANFIS-GA) for monitoring the biomass fresh weight (BFW), biomass dry weight (BDW), biomass water content (BWC), and total tuber yield (TTY) of two potato varieties under 100%, 75%, and 50% of the estimated crop evapotranspiration (ETc). Results showed that the plant traits and indices varied significantly between the three irrigation regimes. Furthermore, all of the indices exhibited strong relationships with BFW, CWC, and TTY (R2 = 0.80–0.92) and moderate to weak relationships with BDW (R2 = 0.25–0.65) when considered for each variety across the irrigation regimes, for each season across the varieties and irrigation regimes, and across all data combined, but none of the indices successfully assessed any of the plant traits when considered for each irrigation regime across the two varieties. The SMLR and ANFIS-GA models gave the best predictions for the four plant traits in the calibration and testing stages, with the exception of the SMLR testing model for BDW. Thus, the use of thermal and RGB imaging indices with ANFIS-GA models could be a practical tool for managing the growth and production of potato crops under deficit irrigation regimes.
Collapse
|
37
|
|
Sharma R, Sharma S, Dar B, Singh B. Millets as potential nutri‐cereals: a review of nutrient composition, phytochemical profile and techno‐functionality. Int J Food Sci Technol 2021; 56:3703-18. [DOI: 10.1111/ijfs.15044] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Rajan Sharma
- Department of Food Science & Technology Punjab Agricultural University Ludhiana141001India
| | - Savita Sharma
- Department of Food Science & Technology Punjab Agricultural University Ludhiana141001India
| | - B.N. Dar
- Department of Food Technology Islamic University of Science & Technology 1‐University Avenue Awantipora Srinagar Kashmir192122India
| | - Baljit Singh
- Department of Food Science & Technology Punjab Agricultural University Ludhiana141001India
| |
Collapse
|
38
|
|
Abstract
Development of high-throughput phenotyping technologies has progressed considerably in the last 10 years. These technologies provide precise measurements of desired traits among thousands of field-grown plants under diversified environments; this is a critical step towards selection of better performing lines as to yield, disease resistance, and stress tolerance to accelerate crop improvement programs. High-throughput phenotyping techniques and platforms help unraveling the genetic basis of complex traits associated with plant growth and development and targeted traits. This review focuses on the advancements in technologies involved in high-throughput, field-based, aerial, and unmanned platforms. Development of user-friendly data management tools and softwares to better understand phenotyping will increase the use of field-based high-throughput techniques, which have potential to revolutionize breeding strategies and meet the future needs of stakeholders.
Collapse
Affiliation(s)
- Sumit Jangra
- Department of Molecular Biology, Biotechnology, and Bioinformatics, CCS Haryana Agricultural University, Hisar, 125004 India
| | - Vrantika Chaudhary
- Department of Molecular Biology, Biotechnology, and Bioinformatics, CCS Haryana Agricultural University, Hisar, 125004 India
| | - Ram C. Yadav
- Department of Molecular Biology, Biotechnology, and Bioinformatics, CCS Haryana Agricultural University, Hisar, 125004 India
| | - Neelam R. Yadav
- Department of Molecular Biology, Biotechnology, and Bioinformatics, CCS Haryana Agricultural University, Hisar, 125004 India
| |
Collapse
|
39
|
|
Halder T, Liu H, Chen Y, Yan G, Siddique KHM. Identification of Candidate Genes for Root Traits Using Genotype-Phenotype Association Analysis of Near-Isogenic Lines in Hexaploid Wheat ( Triticum aestivum L.). Int J Mol Sci 2021; 22:3579. [PMID: 33808237 DOI: 10.3390/ijms22073579] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Global wheat (Triticum aestivum L.) production is constrained by different biotic and abiotic stresses, which are increasing with climate change. An improved root system is essential for adaptability and sustainable wheat production. In this study, 10 pairs of near-isogenic lines (NILs)—targeting four genomic regions (GRs) on chromosome arms 4BS, 4BL, 4AS, and 7AL of hexaploid wheat—were used to phenotype root traits in a semi-hydroponic system. Seven of the 10 NIL pairs significantly differed between their isolines for 11 root traits. The NIL pairs targeting qDSI.4B.1 GR varied the most, followed by the NIL pair targeting qDT.4A.1 and QHtscc.ksu-7A GRs. For pairs 5–7 targeting qDT.4A.1 GR, pair 6 significantly differed in the most root traits. Of the 4 NIL pairs targeting qDSI.4B.1 GR, pairs 2 and 4 significantly differed in 3 and 4 root traits, respectively. Pairs 9 and 10 targeting QHtscc.ksu-7A GR significantly differed in 1 and 4 root traits, respectively. Using the wheat 90K Illumina iSelect array, we identified 15 putative candidate genes associated with different root traits in the contrasting isolines, in which two UDP-glycosyltransferase (UGT)-encoding genes, TraesCS4A02G185300 and TraesCS4A02G442700, and a leucine-rich repeat receptor-like protein kinase (LRR-RLK)-encoding gene, TraesCS4A02G330900, also showed important functions for root trait control in other crops. This study characterized, for the first time, that these GRs control root traits in wheat, and identified candidate genes, although the candidate genes will need further confirmation and validation for marker-assisted wheat breeding.
Collapse
|
40
|
|
Rufo R, Soriano JM, Villegas D, Royo C, Bellvert J. Using Unmanned Aerial Vehicle and Ground-Based RGB Indices to Assess Agronomic Performance of Wheat Landraces and Cultivars in a Mediterranean-Type Environment. Remote Sensing 2021; 13:1187. [DOI: 10.3390/rs13061187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The adaptability and stability of new bread wheat cultivars that can be successfully grown in rainfed conditions are of paramount importance. Plant improvement can be boosted using effective high-throughput phenotyping tools in dry areas of the Mediterranean basin, where drought and heat stress are expected to increase yield instability. Remote sensing has been of growing interest in breeding programs since it is a cost-effective technology useful for assessing the canopy structure as well as the physiological traits of large genotype collections. The purpose of this study was to evaluate the use of a 4-band multispectral camera on-board an unmanned aerial vehicle (UAV) and ground-based RGB imagery to predict agronomic traits as well as quantify the best estimation of leaf area index (LAI) in rainfed conditions. A collection of 365 bread wheat genotypes, including 181 Mediterranean landraces and 184 modern cultivars, was evaluated during two consecutive growing seasons. Several vegetation indices (VI) derived from multispectral UAV and ground-based RGB images were calculated at different image acquisition dates of the crop cycle. The modified triangular vegetation index (MTVI2) proved to have a good accuracy to estimate LAI (R2 = 0.61). Although the stepwise multiple regression analysis showed that grain yield and number of grains per square meter (NGm2) were the agronomic traits most suitable to be predicted, the R2 were low due to field trials were conducted under rainfed conditions. Moreover, the prediction of agronomic traits was slightly better with ground-based RGB VI rather than with UAV multispectral VIs. NDVI and GNDVI, from multispectral images, were present in most of the prediction equations. Repeated measurements confirmed that the ability of VIs to predict yield depends on the range of phenotypic data. The current study highlights the potential use of VI and RGB images as an efficient tool for high-throughput phenotyping under rainfed Mediterranean conditions.
Collapse
|
41
|
|
Bhandari M, Baker S, Rudd JC, Ibrahim AMH, Chang A, Xue Q, Jung J, Landivar J, Auvermann B. Assessing the Effect of Drought on Winter Wheat Growth Using Unmanned Aerial System (UAS)-Based Phenotyping. Remote Sensing 2021; 13:1144. [DOI: 10.3390/rs13061144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drought significantly limits wheat productivity across the temporal and spatial domains. Unmanned Aerial Systems (UAS) has become an indispensable tool to collect refined spatial and high temporal resolution imagery data. A 2-year field study was conducted in 2018 and 2019 to determine the temporal effects of drought on canopy growth of winter wheat. Weekly UAS data were collected using red, green, and blue (RGB) and multispectral (MS) sensors over a yield trial consisting of 22 winter wheat cultivars in both irrigated and dryland environments. Raw-images were processed to compute canopy features such as canopy cover (CC) and canopy height (CH), and vegetation indices (VIs) such as Normalized Difference Vegetation Index (NDVI), Excess Green Index (ExG), and Normalized Difference Red-edge Index (NDRE). The drought was more severe in 2018 than in 2019 and the effects of growth differences across years and irrigation levels were visible in the UAS measurements. CC, CH, and VIs, measured during grain filling, were positively correlated with grain yield (r = 0.4–0.7, p < 0.05) in the dryland in both years. Yield was positively correlated with VIs in 2018 (r = 0.45–0.55, p < 0.05) in the irrigated environment, but the correlations were non-significant in 2019 (r = 0.1 to −0.4), except for CH. The study shows that high-throughput UAS data can be used to monitor the drought effects on wheat growth and productivity across the temporal and spatial domains.
Collapse
|
42
|
|
Bányai J, Maccaferri M, Láng L, Mayer M, Tóth V, Cséplő M, Pál M, Mészáros K, Vida G. Abiotic Stress Response of Near-Isogenic Spring Durum Wheat Lines under Different Sowing Densities. Int J Mol Sci 2021; 22:2053. [PMID: 33669605 DOI: 10.3390/ijms22042053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0 |