601
|
DiScenza DJ, Smith MA, Intravaia LE, Levine M. Efficient Detection of Phthalate Esters in Human Saliva via Fluorescence Spectroscopy. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1471086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Dana J. DiScenza
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | - Melissa A. Smith
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | | | - Mindy Levine
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
602
|
Wang L, Liu T, Sun H, Zhou Q. Transesterification of para-hydroxybenzoic acid esters (parabens) in the activated sludge. JOURNAL OF HAZARDOUS MATERIALS 2018; 354:145-152. [PMID: 29751170 DOI: 10.1016/j.jhazmat.2018.04.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/27/2018] [Accepted: 04/29/2018] [Indexed: 05/27/2023]
Abstract
Hydrolysis is generally considered as the main pathway for the degradation of ester-type pollutants in aquatic environments. In this study, we found that when methanol or ethanol presented as the external carbon in the activated sludge, transesterification is very important for the degradation of para-hydroxybenzoic acid esters (parabens). In the activated sludge solutions with 1% methanol added, contribution of transesterification to the degradation of the propyl substituted paraben (PrP) and ethyl substituted paraben (EtP) accounted for 46% and 83%, respectively, in the early stage of the reaction. This indicates that in aquatic environments with alcohols presence, parabens prefer to form small molecule homologues than hydrolysis to acid. The predominant transesterification in the activated sludge is related to enzyme preference. Amano lipase from Pseudomonas fluorescens was verified to catalyze hydrolysis and transesterification of parabens, while the latter was dominant in water solution with 1% methanol or ethanol. Considering the common application of small molecular alcohols as the external carbon sources in wastewater treatment plants, transesterification might be an important pathway for the degradation of parabens pollutants in these engineering aquatic environments.
Collapse
Affiliation(s)
- Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering at Nankai University, Tianjin, 300350, China.
| | - Tianzhen Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering at Nankai University, Tianjin, 300350, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering at Nankai University, Tianjin, 300350, China
| | - Qixing Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering at Nankai University, Tianjin, 300350, China
| |
Collapse
|
603
|
Shaida MA, Dutta R, Sen A. Removal of diethyl phthalate via adsorption on mineral rich waste coal modified with chitosan. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.04.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
604
|
Lu S, Kang L, Liao S, Ma S, Zhou L, Chen D, Yu Y. Phthalates in PM 2.5 from Shenzhen, China and human exposure assessment factored their bioaccessibility in lung. CHEMOSPHERE 2018; 202:726-732. [PMID: 29604559 DOI: 10.1016/j.chemosphere.2018.03.155] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Temporal variability of phthalates (PAEs) in PM2.5 from Shenzhen during 2015-2016 was measured and the associated human exposure via inhalation was assessed. The PM2.5 concentrations ranged from 30.7 to 115 μg m-3, greater than the air quality guidelines of interim target-3 (10-15 μg m-3) and interim target-2 (15-25 μg m-3) set by World Health Organization. PAEs were detected in 94.7% samples and the 95th percentile concentrations of total PAEs (∑6PAEs) in Longgang and Nanshan districts were 324 and 44.7 ng m-3, respectively. Di-2-ethylhexyl phthalate was the dominant species, accounting for an average of 81.9% of ∑6PAEs. The mean and 95th percentile concentrations of ∑6PAEs in PM2.5 were used to calculate a "typical" and "high" total daily intake and uptake, respectively. The estimated total daily intakes of PAEs varied and depended on body weight in each age group. Infants had the highest "typical" and "high" daily intake of 43.4 and 179 ng kg-body weight (bw) -1 day-1 for boys, and 42.0 and 173 ng kg-bw-1 day-1 for girls, respectively. However, after taking the bioaccessibility of PAEs in PM2.5 into account, the total daily "typical" and "high" uptakes dropped to 27.3 and 113 ng kg-bw-1 day-1 for male infants, and 29.0 and 120 ng kg-bw-1 day-1 for female infants, respectively. Both of the data on the daily "high" intake and uptake were much lower than the tolerable daily intake set by the European Food Safety Agency. It merits attention that infants were subject to greater PAE exposure than adults.
Collapse
Affiliation(s)
- Shaoyou Lu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guangdong, China
| | - Li Kang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guangdong, China.
| | - Shicheng Liao
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guangdong, China
| | - Shengtao Ma
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Li Zhou
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guangdong, China
| | - Dingyan Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guangdong, China
| | - Yingxin Yu
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
605
|
Lü H, Mo CH, Zhao HM, Xiang L, Katsoyiannis A, Li YW, Cai QY, Wong MH. Soil contamination and sources of phthalates and its health risk in China: A review. ENVIRONMENTAL RESEARCH 2018; 164:417-429. [PMID: 29573717 DOI: 10.1016/j.envres.2018.03.013] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/28/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
Phthalates (PAEs) are extensively used as plasticizers and constitute one of the most frequently detected organic contaminants in the environment. With the deterioration of eco-environment in China during the past three decades, many studies on PAE occurrence in soils and their risk assessments have been conducted which allow us to carry out a fairly comprehensive assessment of soil PAE contamination on a nation-wide scale. This review combines the updated information available associated with PAE current levels, distribution patterns (including urban soil, rural or agricultural soil, seasonal and vertical variations), potential sources, and human health exposure. The levels of PAEs in soils of China are generally at the high end of the global range, and higher than the grade II limits of the Environmental Quality Standard for soil in China. The most abundant compounds, di-n-butyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP), display obvious spatial distribution in different provinces. It is noted that urbanization and industrialization, application of plastic film (especially plastic film mulching in agricultural soil) and fertilizer are the major sources of PAEs in soil. Uptake of PAEs by crops, and human exposure to PAEs via ingestion of soil and vegetables are reviewed, with scientific gaps highlighted.
Collapse
Affiliation(s)
- Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Athanasios Katsoyiannis
- Norwegian Institute for Air Research (NILU) - FRAM High North Research Centre on Climate and the Environment, Hjalmar Johansens gt. 14, NO-9296 Tromsø, Norway
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Ming-Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, the Education University of Hong Kong, Hong Kong, China
| |
Collapse
|
606
|
Lin L, Dong L, Meng X, Li Q, Huang Z, Li C, Li R, Yang W, Crittenden J. Distribution and sources of polycyclic aromatic hydrocarbons and phthalic acid esters in water and surface sediment from the Three Gorges Reservoir. J Environ Sci (China) 2018; 69:271-280. [PMID: 29941263 DOI: 10.1016/j.jes.2017.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 06/08/2023]
Abstract
After the impoundment of the Three Gorges Reservoir (TGR), the hydrological situation of the reservoir has changed greatly. The concentration and distribution of typical persistent organic pollutants in water and sediment have also changed accordingly. In this study, the concentration, distribution and potential sources of 16 polycyclic aromatic hydrocarbons (PAHs) and 6 phthalic acid esters (PAEs) during the water drawdown and impoundment periods were investigated in water and sediment from the TGR. According to our results, PAHs and PAEs showed temporal and spatial variations. The mean ΣPAH and ΣPAE concentrations in water and sediment were both higher during the water impoundment period than during the water drawdown period. The water samples from the main stream showed larger ΣPAH concentration fluctuations than those from tributaries. Both the PAH and PAE concentrations meet the Chinese national water environmental quality standard (GB 3838-2002). PAH monomers with 2-3 rings and 4 rings were dominant in water, and 4-ring and 5-6-ring PAHs were dominant in sediment. Di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP) were the dominant PAE pollutants in the TGR. DBP and DEHP had the highest concentrations in water and sediment, respectively. The main source of PAHs in water from the TGR was petroleum and emissions from coal and biomass combustion, whereas the main sources of PAHs in sediments included coal and biomass combustion, petroleum, and petroleum combustion. The main source of PAEs in water was domestic waste, and the plastics and heavy chemical industries were the main sources of PAEs in sediment.
Collapse
Affiliation(s)
- Li Lin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China; Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lei Dong
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China
| | - Xiaoyang Meng
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Qingyun Li
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China
| | - Zhuo Huang
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China
| | - Chao Li
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China
| | - Rui Li
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China
| | - Wenjun Yang
- Administration Office, Changjiang River Scientific Research Institute, Wuhan 430010, China.
| | - John Crittenden
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
607
|
Wu Y, Chen XX, Zhu TK, Li X, Chen XH, Mo CH, Li YW, Cai QY, Wong MH. Variation in accumulation, transport, and distribution of phthalic acid esters (PAEs) in soil columns grown with low- and high-PAE accumulating rice cultivars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:17768-17780. [PMID: 29675815 DOI: 10.1007/s11356-018-1938-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
The extensive use of plasticizers containing di-n-butyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) results in high residual concentrations in agricultural soils and poses potential risks to human health through the food chain. Here, two rice cultivars with low (Fengyousimiao) and high (Peizataifeng) phthalic acid ester (PAE) accumulation were grown in leaching columns packed with DBP- and DEHP-contaminated soils to investigate their transport, fraction distribution, and accumulation in soil-rice-water system. Significant differences in soil vertical distribution of DBP and DEHP were observed among the two cultivars, sterilization and non-sterilization treatments. Both DBP and DEHP could leach to the bottom layer even though their concentrations in both soil and pore water decreased along with soil depth. DBP and DEHP concentrations in pore water were significantly correlated with those in corresponding soil layer at ripening stage. The available fractions including desorbing and non-desorbing fractions were predominant in the total concentrations of DBP and DEHP of soils. DBP and DEHP storages in coarse soil fractions (i.e., coarse and fine sands) with higher bioavailability displayed higher bioconcentration factors compared to finer soil fractions (i.e., silt and clay), and bioconcentration factors of Peizataifeng were higher than those of Fengyousimiao. The variations in vertical migration and accumulation of DBP and DEHP by the two cultivars implied different adverse effects on the security of groundwater and food.
Collapse
Affiliation(s)
- Yang Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xue-Xue Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ting-Kai Zhu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xing Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xiao-Hong Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Ming-Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Consortium on Environment, Health, Education and Research (CHEER) and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, SAR, China
| |
Collapse
|
608
|
He MJ, Lu JF, Ma JY, Wang H, Du XF. Organophosphate esters and phthalate esters in human hair from rural and urban areas, Chongqing, China: Concentrations, composition profiles and sources in comparison to street dust. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:143-153. [PMID: 29482020 DOI: 10.1016/j.envpol.2018.02.040] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
Human hair and street dust from rural and urban areas in Chongqing were collected to analyze Organophosphate esters (OPEs) and phthalate esters (PAEs). Concentrations of OPEs in urban hair were significantly higher than those in rural hair, whereas PAEs concentrations in rural hair were significantly higher than those in urban hair. Different composition patterns of OPEs were observed in rural and urban hair, where tris (2-chloroisopropyl) phosphate (TCIPP), tris (butyl) phosphate (TNBP) and triphenyl phosphate (TPHP) were the dominating analogues in rural hair, accounting for 62.1% of the OPEs burden, and tris (methylphenyl) phosphate (TMPP) exhibited a high contribution in urban hair, responsible for 51.3% of total OPEs, which differed from the composition profiles in corresponding street dust. Analogous composition patterns of PAEs were found in hair of both areas. Di-(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DNBP), diisobutyl phthalate (DIBP) and diethyl phthalate (DEP) were the most abundant analogues in hair samples, while DEHP was the predominant analogue in dust samples. No clear tendency was obtained between the increasing ages and the concentrations of both compounds. Most OPEs and PAEs congeners showed significantly positive correlation with one another in rural hair. On the contrary, different correlation patterns were observed in urban hair for OPEs and PAEs, indicating multiple or additional sources existed in urban areas. Significant correlations of OPEs and PAEs were found between hair and corresponding street dust samples, but poor correlations of OPEs and PAEs were observed between rural hair and rural indoor dust, suggesting that street dust may be a predominant exogenous source for human exposure to OPEs and PAEs in this area.
Collapse
Affiliation(s)
- Ming-Jing He
- College of Resources and Environment, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, China.
| | - Jun-Feng Lu
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Jing-Ye Ma
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Huan Wang
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xiao-Fan Du
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| |
Collapse
|
609
|
Armstrong DL, Rice CP, Ramirez M, Torrents A. Fate of four phthalate plasticizers under various wastewater treatment processes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:1075-1082. [PMID: 29775422 DOI: 10.1080/10934529.2018.1474580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The fate of four phthalate plasticizers during wastewater treatment processes at six different wastewater treatment plants (WWTPs) was investigated. Concentrations of benzyl butyl phthalate (BBP), di(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DiNP), and diisodecyl phthalate (DiDP) were determined prior to either aerobic or anaerobic (conventional and advanced) treatment, after treatment, and in final, dewatered solids. Despite their elevated use worldwide, the fate of DiNP and DiDP during wastewater treatment have not been well characterized. DEHP was readily degraded during aerobic treatments while anaerobic digestion resulted in either no significant change in concentrations or an increase in concentration, in the case of more advanced anaerobic processes (thermal hydrolysis pretreatment and a two-phase acid/gas process). Impacts of the various treatment systems on DiNP, DiDP, and BBP concentrations were more varied - anaerobic digestion led to significant decreases, increases, or no significant change for these compounds, depending on the treatment facility, while aerobic treatment was generally effective at degrading the compounds. Additionally, thermal hydrolysis pretreatment of sludge prior to anaerobic digestion resulted in increases in DiNP, DiDP, and BBP concentrations. The predicted environmental concentrations for all four compounds in soils after a single biosolids application were calculated and the risk quotients for DEHP in soils were determined. The estimated toxicity risk for DEHP in soils treated with a single application of sludge from any of the six studied WWTPs is lower than the level of concern for acute and chronic risk, as defined by the US EPA.
Collapse
Affiliation(s)
- Dana L Armstrong
- a Marine Estuarine Environmental Sciences (MEES) Graduate Program, University of Maryland , College Park , Maryland , USA
| | - Clifford P Rice
- b Sustainable Agricultural Systems Laboratory, ARS-USDA , Beltsville , Maryland , USA
| | - Mark Ramirez
- c DC Water, District of Columbia Water and Sewer Authority , Washington, District of Columbia , USA
| | - Alba Torrents
- d Department of Civil and Environmental Engineering , University of Maryland , College Park , Maryland , USA
| |
Collapse
|
610
|
González-Sálamo J, Hernández-Borges J, Afonso MDM, Rodríguez-Delgado MÁ. Determination of phthalates in beverages using multiwalled carbon nanotubes dispersive solid-phase extraction before HPLC-MS. J Sep Sci 2018; 41:2613-2622. [DOI: 10.1002/jssc.201800192] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Javier González-Sálamo
- Unidad Departamental de Química Analítica; Departamento de Química; Facultad de Ciencias; Universidad de La Laguna (ULL); San Cristóbal de Laguna Spain
| | - Javier Hernández-Borges
- Unidad Departamental de Química Analítica; Departamento de Química; Facultad de Ciencias; Universidad de La Laguna (ULL); San Cristóbal de Laguna Spain
| | - María del Mar Afonso
- Departamento de Química Orgánica; Instituto Universitario de Bio-Orgánica Antonio González; Universidad de La Laguna (ULL); San Cristóbal de Laguna Spain
| | - Miguel Ángel Rodríguez-Delgado
- Unidad Departamental de Química Analítica; Departamento de Química; Facultad de Ciencias; Universidad de La Laguna (ULL); San Cristóbal de Laguna Spain
| |
Collapse
|
611
|
Vita N, Brohem C, Canavez A, Oliveira C, Kruger O, Lorencini M, Carvalho C. Parameters for assessing the aquatic environmental impact of cosmetic products. Toxicol Lett 2018; 287:70-82. [DOI: 10.1016/j.toxlet.2018.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 01/05/2018] [Accepted: 01/18/2018] [Indexed: 11/27/2022]
|
612
|
Paluselli A, Fauvelle V, Schmidt N, Galgani F, Net S, Sempéré R. Distribution of phthalates in Marseille Bay (NW Mediterranean Sea). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:578-587. [PMID: 29195205 DOI: 10.1016/j.scitotenv.2017.11.306] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/18/2017] [Accepted: 11/26/2017] [Indexed: 06/07/2023]
Abstract
Phthalic Acid Esters (PAEs) are a group of emerging organic contaminants that have become a serious issue because of their ubiquitous presence and hazardous impact on the marine environment worldwide. Seawater samples were collected monthly from December 2013 to November 2014 in the northwestern Mediterranean Sea (Marseille Bay). The samples were analyzed for dissolved organic carbon (DOC) as well as the molecular distribution of dissolved PAEs by using solid phase extraction followed by gas chromatography and mass spectrometry (GC/MS) analyses. The results demonstrated the occurrence of six PAEs, including dimethyl phthalate (DMP), diethyl phthalate (DEP), di-isobutyl phthalate (DiBP), di-n-butyl phthalate (DnBP), benzylbutyl phthalate (BzBP) and diethylhexyl phthalate (DEHP), with total concentrations ranging from 130 to 1330ngL-1 (av. 522ngL-1). In Marseille Bay, the highest concentrations were detected in the bottom water from June to November 2014 and in the whole water column during the winter mixing period. This result suggests that resuspension of PAE-rich sediment, in relation to the accumulation of plastic debris above the seabed, or the higher degradation rate in the upper layer of the water column, plays a significant role in the PAE dynamics in coastal water. DEHP was the most abundant PAE in all of the surface samples and the summer bottom samples, followed by DiBP and DnBP, which also represent the largest fractions in the other bottom samples.
Collapse
Affiliation(s)
- Andrea Paluselli
- Aix-Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Vincent Fauvelle
- Aix-Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Natascha Schmidt
- Aix-Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - François Galgani
- IFREMER, Laboratoire Environnement Ressources, Provence Azur Corse (LER/PAC), Ifremer Centre de Méditerranée, ZP de Bregaillon, La Seyne sur Mer, France
| | - Sopheak Net
- Université de Lille, Laboratoire LASIR, Villeneuve d'Ascq, France
| | - Richard Sempéré
- Aix-Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France.
| |
Collapse
|
613
|
He MJ, Yang T, Yang ZH, Zhou H, Wei SQ. Current State, Distribution, and Sources of Phthalate Esters and Organophosphate Esters in Soils of the Three Gorges Reservoir Region, China. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 74:502-513. [PMID: 29058061 DOI: 10.1007/s00244-017-0469-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/07/2017] [Indexed: 06/07/2023]
Abstract
Phthalate esters (PAEs) and organophosphate esters (OPEs) were identified and quantified in surface soils from farmland and riparian areas of the Three Gorges Reservoir (TGR), western China. Generally, the mean values of PAEs and OPEs were 618 and 266 ng/g dry weight (dw) in farmland soil and 560 and 499 ng/g dw in riparian soil, respectively. The occurrence of OPEs should be regarded as a risk factor in the TGR region. Analogous spatial distribution patterns for PAEs were observed with higher concentrations observed at site WZ in both types of soil, which might relate to the anthropogenic activities. The hydrodynamic conditions might be important factors contributing to the slightly different spatial distribution of OPEs. The concentrations of OPEs in riparian soil exceed those in farmland soil at all sampling sites, which could partly be ascribed to the complete operation of the TGR. Dibutyl phthalate (DnBP) was the most dominated PAEs congener in both types of soil. Of particular note is the elevated contribution of tris(methylphenyl) phosphate (TMPP), followed by 2-ethylhexyl diphenyl phosphate (EHDPP), accounting for more than 90% of the total OPEs, and the shipping or/and the local human activity might be considered as the major contributor. The slight differences in PAEs composition of principal components might largely attribute to the variety of emission sources in two types of soil. The different cluster patterns between two types of soil indicated that the anthropogenic activities as well as the full operation of TGR, may play a role.
Collapse
Affiliation(s)
- Ming-Jing He
- College of Resources and Environment, Southwest University, Chongqing, 400716, China.
- Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, China.
| | - Ting Yang
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Zhi-Hao Yang
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Hong Zhou
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Shi-Qiang Wei
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, China
| |
Collapse
|
614
|
Wu X, Diao D, Lu Z, Han Y, Xu S, Lou X. Phthalic Acid Ester-Binding DNA Aptamer Selection, Characterization, and Application to an Electrochemical Aptasensor. J Vis Exp 2018. [PMID: 29630049 DOI: 10.3791/56814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Phthalic acid esters (PAEs) areone of the major groups of persistent organic pollutants. The group-specific detection of PAEs is highly desired due to the rapid growing of congeners. DNA aptamers have been increasingly applied as recognition elements on biosensor platforms, but selecting aptamers toward highly hydrophobic small molecule targets, such as PAEs, is rarely reported. This work describes a bead-based method designed to select group-specific DNA aptamers to PAEs. The amino group functionalized dibutyl phthalate (DBP-NH2) as the anchor target was synthesized and immobilized on the epoxy-activated agarose beads, allowing the display of the phthalic ester group at the surface of the immobilization matrix, and therefore the selection of the group-specific binders. We determined the dissociation constants of the aptamer candidates by quantitative polymerization chain reaction coupled with magnetic separation. The relative affinities and selectivity of the aptamers to other PAEs were determined by the competitive assays, where the aptamer candidates were pre-bounded to the DBP-NH2 attached magnetic beads and released to the supernatant upon incubation with the tested PAEs or other potential interfering substances. The competitive assay was applied because it provided a facile affinity comparison among PAEs that had no functional groups for surface immobilization. Finally, we demonstrated the fabrication of an electrochemical aptasensor and used it for ultrasensitive and selective detection of bis(2-ethylhexyl) phthalate. This protocol provides insights for the aptamer discovery of other hydrophobic small molecules.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Chemistry, Capital Normal University
| | - Donglin Diao
- Department of Chemistry, Capital Normal University
| | - Zhangwei Lu
- Department of Chemistry, Capital Normal University
| | - Yu Han
- Department of Chemistry, Capital Normal University
| | - Shi Xu
- College of Life Sciences, Capital Normal University
| | - Xinhui Lou
- Department of Chemistry, Capital Normal University;
| |
Collapse
|
615
|
Feng NX, Yu J, Mo CH, Zhao HM, Li YW, Wu BX, Cai QY, Li H, Zhou DM, Wong MH. Biodegradation of di-n-butyl phthalate (DBP) by a novel endophytic Bacillus megaterium strain YJB3. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:117-127. [PMID: 29112835 DOI: 10.1016/j.scitotenv.2017.10.298] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/27/2017] [Accepted: 10/29/2017] [Indexed: 05/10/2023]
Abstract
Phthalic acid esters (PAEs) are a group of recalcitrant and hazardous organic compounds that pose a great threat to both ecosystem and human beings. A novel endophytic strain YJB3 that could utilize a wide range of PAEs as the sole carbon and energy sources for cell growth was isolated from Canna indica root tissue. It was identified as Bacillus megaterium based on morphological characteristics and 16S rDNA sequence homology analysis. The degradation capability of the strain YJB3 was investigated by incubation in mineral salt medium containing di-n-butyl-phthalate (DBP), one of important PAEs under different environmental conditions, showing 82.5% of the DBP removal in 5days of incubation under the optimum conditions (acetate 1.2g·L-1, inocula 1.8%, and temperature 34.2°C) achieved by two-step sequential optimization technologies. The DBP metabolites including mono-butyl phthalate (MBP), phthalic acid (PA), protocatechuic acid (PCA), etc. were determined by GC-MS. The PCA catabolic genes responsible for the aromatic ring cleavage of PCA in the strain YJB3 were excavated by whole-genome sequencing. Thus, a degradation pathway of DBP by the strain YJB3 was proposed that MBP was formed, followed by PA, and then the intermediates were further utilized till complete degradation. To our knowledge, this is the first study to show the biodegradation of PAEs using endophyte. The results in the present study suggest that the strain YJB3 is greatly promising to act as a competent inoculum in removal of PAEs in both soils and crops.
Collapse
Affiliation(s)
- Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Jiao Yu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou 510632, PR China.
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Bing-Xiao Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Dong-Mei Zhou
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou 510632, PR China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Ming-Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou 510632, PR China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, PR China
| |
Collapse
|
616
|
Zhang H, Zhou Q, Xie Z, Zhou Y, Tu C, Fu C, Mi W, Ebinghaus R, Christie P, Luo Y. Occurrences of organophosphorus esters and phthalates in the microplastics from the coastal beaches in north China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:1505-1512. [PMID: 29089130 DOI: 10.1016/j.scitotenv.2017.10.163] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
Chemical pollution in the microplastics has been concerned worldwide as pollutants might potentially transfer from the environment to living organisms via plastics. Here, we investigate organophosphorus esters (OPEs) and phthalic acid esters (PAEs) in the beached microplastics collected from 28 coastal beaches of the Bohai and Yellow Sea in north China. The analyzed microplastics included polyethylene (PE) pellets and fragments, polypropylene (PP) flakes and fragments and polystyrene (PS) foams. The tris-(2-chloroethyl)-phosphate (TCEP), tris (1-chloro-2-propyl) phosphate (TCPP) and di-(2-ethylhexyl) phthalate (DEHP) were the three predominant compounds found overall. The maximum Σ4 OPEs concentration was 84,595.9ngg-1, almost three orders of magnitude higher than the maximum Σ9 PAEs concentration. The PP flakes and PS foams contained the highest concentrations of the additives in contrast to the PE pellets which contained the lowest. The high concentration level of carcinogenic chlorinated OPEs and DEHP with endocrine disrupting effects implied the suggested potential hazards to coastal organisms. Spatial differences and compositional variation of the additives among the different microplastics suggests different origins and residence times in the coastal environment. This indicates that the characteristics of chemical additives might be a useful approach when tracing sources of microplastics in the environment.
Collapse
Affiliation(s)
- Haibo Zhang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Qian Zhou
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyong Xie
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Geesthacht, 21502, Germany
| | - Yang Zhou
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Tu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Chuancheng Fu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenying Mi
- MINJIE Analytical Laboratory, Geesthacht, 21502, Germany
| | - Ralf Ebinghaus
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Geesthacht, 21502, Germany
| | - Peter Christie
- Nanjing Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
617
|
Wen Z, Huang X, Gao D, Liu G, Fang C, Shang Y, Du J, Zhao Y, Lv L, Song K. Phthalate esters in surface water of Songhua River watershed associated with land use types, Northeast China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:7688-7698. [PMID: 29285703 DOI: 10.1007/s11356-017-1119-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
The ubiquitous presence of phthalate esters (PAEs) in the environment and their potential role as endocrine disruptors of marine organisms has attracted much attention. The presence of PAEs in different water sources collected from the Songhua River mainstream and its tributaries has been determined in this study. The total concentration of the seven PAEs (∑PAEs) detected was found to range from 1.153 to 7.867 μg L-1, with di(2-ethylhexyl) phthalate (DEHP) present as the predominate PAE congener. Dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), and DEHP were present in all of the water samples analyzed. The concentration of ∑PAEs in the Songhua River mainstream was shown to decrease initially, with a subsequent increase being detected due to inflow from branch tributaries contaminated with higher concentrations of PAEs. Analysis of land type usage, in this agriculture-dominated river watershed, also revealed an increase in ∑PAE concentration in waters flowing through forested area. The concentration of ∑PAEs in river waters also had a significant positive correlation with both agricultural and urban areas (p < 0.05); however, anthropogenic activities were not the only determining factor determining the ∑PAE concentration in this river watershed. Ecological risk assessment revealed that the levels of DMP and DEP in all waters were generally low, representing a relatively low ecological risk to marine organisms; however, DBP was present at medium or high risk levels, whilst DEHP also displayed high risk levels.
Collapse
Affiliation(s)
- Zhidan Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Xiaoli Huang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Dawen Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Ge Liu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Chong Fang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingxin Shang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia Du
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Ying Zhao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Lv
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Kaishan Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| |
Collapse
|
618
|
Zhang H, Hua Y, Chen J, Li X, Bai X, Wang H. Organism-derived phthalate derivatives as bioactive natural products. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2018; 36:125-144. [PMID: 30444179 DOI: 10.1080/10590501.2018.1490512] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phthalates are widely used in polymer materials as a plasticizer. These compounds possess potent toxic variations depending on their chemical structures. However, a growing body of evidence indicates that phthalate compounds are undoubtedly discovered in secondary metabolites of organisms, including plants, animals and microorganisms. This review firstly summarizes biological sources of various phthalates and their bioactivities reported during the past few decades as well as their environmental toxicities and public health risks. It suggests that these organisms are one of important sources of natural phthalates with diverse profiles of bioactivity and toxicity.
Collapse
Affiliation(s)
- Huawei Zhang
- a School of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou , China
| | - Yi Hua
- a School of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou , China
| | - Jianwei Chen
- a School of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou , China
| | - Xiuting Li
- b Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing , China
| | - Xuelian Bai
- c College of Life and Environmental Sciences , Hangzhou Normal University , Hangzhou , China
| | - Hong Wang
- a School of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou , China
| |
Collapse
|
619
|
Wei W, Wang J, Tian CB, Du SW, Wu KC. A highly hydrolytically stable lanthanide organic framework as a sensitive luminescent probe for DBP and chlorpyrifos detection. Analyst 2018; 143:5481-5486. [DOI: 10.1039/c8an01606b] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of isostructural 3D Ln-MOFs with exceptional hydrolytic stability were synthesized. The Tb3+ compound showed excellent sensing ability towards DBP and chlorpyrifos.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Jian Wang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Chong-Bin Tian
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Shao-Wu Du
- Center for Advanced Marine Materials and Smart Sensors
- Minjiang University
- Fuzhou
- China
| | - Ke-Chen Wu
- Center for Advanced Marine Materials and Smart Sensors
- Minjiang University
- Fuzhou
- China
| |
Collapse
|
620
|
Kang M, Yang F, Ren H, Zhao W, Zhao Y, Li L, Yan Y, Zhang Y, Lai S, Zhang Y, Yang Y, Wang Z, Sun Y, Fu P. Influence of continental organic aerosols to the marine atmosphere over the East China Sea: Insights from lipids, PAHs and phthalates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:339-350. [PMID: 28697387 DOI: 10.1016/j.scitotenv.2017.06.214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/21/2017] [Accepted: 06/25/2017] [Indexed: 06/07/2023]
Abstract
Total suspended particle (TSP) samples were collected during a marine cruise in the East China Sea from May 18 to June 12, 2014. They were analyzed for solvent extractable organic compounds (lipid compounds, PAHs and phthalates) using gas chromatography/mass spectrometry (GC/MS) to better understand the sources and source apportionment of aerosol pollution in the western North Pacific. Higher concentrations were observed in the terrestrially influenced aerosol samples on the basis of five-day backward air mass trajectories, especially for aerosols collected near coastal areas. Phthalates were found to be the dominant species among these measured compound classes (707±401ngm-3 for daytime and 313±155ngm-3 for nighttime), followed by fatty acids, fatty alcohols, n-alkanes and PAHs. In general, the daytime abundances for these compounds are higher than nighttime, possibly attributable to more intensive anthropogenic activities during the daytime. The factor analysis indicates that biomass burning, fungal activities and fossil fuel combustion maybe the main emission sources for organic aerosols over the East China Sea. This study demonstrates that the East Asian continent can be a natural emitter of biogenic and anthropogenic organics to the marine atmosphere through long-range transport, which controls the chemical composition and concentration of organic aerosols over the East China Sea.
Collapse
Affiliation(s)
- Mingjie Kang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Fan Yang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Hong Ren
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanyu Zhao
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Linjie Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Yan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
| | - Yingjie Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Senchao Lai
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Yingyi Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Yang Yang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Zifa Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Pingqing Fu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
621
|
He F, Tian Y, Xu Z, Luo L, Yang J, Wang H, Sun Y, Du Q, Shen Y. Development of an immunochromatographic assay as a screen for detection of total phthalate acid esters in cooking oil. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 81:80-88. [PMID: 29279017 DOI: 10.1080/15287394.2017.1414023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phthalate acid esters (PAEs) contamination raised concerns as a result of migration from food packaging and environmental exposure. Because of the adverse effects of PAE reported in humans, the aim of this study was to examine the ability to screen for the detection these chemicals as an indicator of potential exposure. Too develop a sensitive screening test to determine PAE, a specific polyclonal antibody against phthalic acid (PA), the hydrolysate of PAEs, was used as a marker of total PAEs. This method involved the use of 4-aminophthalic acid (APA) as an immunizing hapten to generate antibody. Subsequently, this antibody conjugated with labeled gold nanoparticles (GNPs) was then used to develop an immunochromatographic assay (ICA) for visually detecting PA. After establishing optimal assay conditions, the ICA strip detected visually PA at 3 μg/ml rapidly in less than 5 min. Further, this assay exhibited reliable specificity for PA with no apparent cross-reactivity with structurally related PAEs. A significant correlation between data obtained with the ICA strip and high-performance liquid chromatography (HPLC) analysis was achieved using cooking oils as model spiked samples. The proposed use of ICA offers an effective tool for rapid on-site screening for total PAEs in cooking oils.
Collapse
Affiliation(s)
- Fan He
- a Guangdong Provincial Key Laboratory of Food Quality and Safety , College of Food Science, South China Agricultural University , Guangzhou , China
| | - Yuanxin Tian
- b Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou , People's Republic of China
| | - Zhenlin Xu
- a Guangdong Provincial Key Laboratory of Food Quality and Safety , College of Food Science, South China Agricultural University , Guangzhou , China
| | - Lin Luo
- a Guangdong Provincial Key Laboratory of Food Quality and Safety , College of Food Science, South China Agricultural University , Guangzhou , China
| | - Jinyi Yang
- a Guangdong Provincial Key Laboratory of Food Quality and Safety , College of Food Science, South China Agricultural University , Guangzhou , China
| | - Hong Wang
- a Guangdong Provincial Key Laboratory of Food Quality and Safety , College of Food Science, South China Agricultural University , Guangzhou , China
| | - Yuanming Sun
- a Guangdong Provincial Key Laboratory of Food Quality and Safety , College of Food Science, South China Agricultural University , Guangzhou , China
| | - Qingfeng Du
- c Nanhai Hospital, Southern Medical University , Foshan , China
| | - Yudong Shen
- a Guangdong Provincial Key Laboratory of Food Quality and Safety , College of Food Science, South China Agricultural University , Guangzhou , China
| |
Collapse
|
622
|
Bacteria-mediated phthalic acid esters degradation and related molecular mechanisms. Appl Microbiol Biotechnol 2017; 102:1085-1096. [DOI: 10.1007/s00253-017-8687-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 10/18/2022]
|
623
|
Arukwe A, Ibor OR, Adeogun AO. Biphasic modulation of neuro- and interrenal steroidogenesis in juvenile African sharptooth catfish (Clarias gariepinus) exposed to waterborne di-(2-ethylhexyl) phthalate. Gen Comp Endocrinol 2017; 254:22-37. [PMID: 28919451 DOI: 10.1016/j.ygcen.2017.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/04/2017] [Accepted: 09/13/2017] [Indexed: 12/27/2022]
Abstract
Receptor (i.e. genomic) and non-receptor (or non-genomic) effects of endocrine toxicology have received limited or almost non-existent attention for tropical species and regions. In the present study, we have evaluated the effects of di-(2-ethylhexyl) phthalate (DEHP) on neuro- and interrenal steroidogenesis of the African catfish (Clarias gariepinus) using molecular, immunochemical and physiological approaches. Juvenile fish (mean weight and length: 5.6±0.6g and 8.2±1.2cm, respectively), were randomly distributed into ten 120L rectangular glass tanks containing 60L of dechlorinated tap water, at 50 fish per exposure group. The fish were exposed to environmentally relevant concentrations of DEHP, consisting of 0 (ethanol solvent control), 10, 100, 200, and 400μg DEHP/L water and performed in two replicates. Brain, liver and head kidney samples were collected at day 3, 7 and 14 after exposure, and analysed for star, p450scc, cyp19a1, cyp17, cyp11β-, 3β-, 17β- and 20β-hsd, and 17β-ohase mRNA expression using real-time PCR. The StAR, P450scc and CYP19 proteins were measured using immunoblotting method, while estradiol-17β (E2) and testosterone (T) were measured in liver homogenate using enzyme immunoassay (EIA). Our data showed a consistent and unique pattern of biphasic effect on star and steroidogenic enzyme genes with increases at low concentration (10μg/L) and thereafter, a concentration-dependent decrease in both the brain and head kidney, that paralleled the expression of StAR, P450scc and CYP19 proteins. Cellular E2 and T levels showed an apparent DEHP concentration-dependent increase at day 14 of exposure. The observed consistency in the current findings and in view of previous reports on contaminants-induced alterations in neuro- and interrenal steroidogenesis, the broader toxicological and endocrine disruptor implication of our data indicate potentials for overt reproductive, metabolic, physiological and general health consequences for the exposed organisms.
Collapse
Affiliation(s)
- Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, N-7491 Trondheim, Norway.
| | - Oju R Ibor
- Department of Zoology, University of Ibadan, Ibadan, Nigeria; Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria
| | - Aina O Adeogun
- Department of Zoology, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
624
|
Duan Y, Wang L, Han L, Wang B, Sun H, Chen L, Zhu L, Luo Y. Exposure to phthalates in patients with diabetes and its association with oxidative stress, adiponectin, and inflammatory cytokines. ENVIRONMENT INTERNATIONAL 2017; 109:53-63. [PMID: 28938100 DOI: 10.1016/j.envint.2017.09.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Epidemiologic studies have revealed higher concentrations of the metabolites of phthalic acid esters (mPAEs) in patients with type 2 diabetes. On the other hand, oxidative stress, adiponectin, and inflammatory cytokines play important roles in the pathogenesis of diabetes and its complications. However, little information is known about the association between exposure to PAEs and these physiological parameters. Hence, paired urine and blood samples were collected from a total of 329 volunteers, and 11 main mPAEs and malondialdehyde (MDA), as a biomarker of oxidative stress, were measured in the urine samples. Serum adiponectin and tumor necrosis factor-α (TNF-α), a biomarker of inflammation, were also measured. Multivariable linear regression was used to assess the association between urinary mPAEs and these physiological parameters in the total subjects and subjects stratified by age, sex, and body mass index (BMI) to elucidate their possible interactions. All 11 mPAEs were detected in the urine with detection rates of 42.9%-100% and geometric means of 0.30-54.52ng/mL (0.44-79.93μg/g creatinine). The mPAEs were all positively associated with MDA levels. There were significant positive associations between monomethyl phthalate (mMP) and TNF-α, and inverse associations between mMP and adiponectin levels. In the stratified analysis, there were age-, sex-, and BMI-specific differences for these associations. The positive associations between mPAEs and MDA were insignificant in some subgroups, especially in the larger age group. However, in the larger BMI group, summed metabolites of di-(2-ethylhexyl) phthalate (∑DEHP) and mono(2-ethylhexyl) phthalate were positively associated with TNF-α, and the concentrations of ∑DEHP were negatively associated with adiponectin. Our findings suggested that PAE exposure is associated with oxidative stress, adiponectin, and inflammatory cytokines in diabetic patients; further studies on toxicology and a comparison with general population are needed.
Collapse
Affiliation(s)
- Yishuang Duan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Liping Han
- Tianjin Medical University Metabolic Diseases Hospital, Tianjin, China.
| | - Bin Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China.
| | - Liming Chen
- Tianjin Medical University Metabolic Diseases Hospital, Tianjin, China
| | - Lingyan Zhu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
625
|
Tang J, An T, Xiong J, Li G. The evolution of pollution profile and health risk assessment for three groups SVOCs pollutants along with Beijiang River, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2017; 39:1487-1499. [PMID: 28315117 DOI: 10.1007/s10653-017-9936-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/09/2017] [Indexed: 06/06/2023]
Abstract
Three important groups of semi-volatile organic compounds (SVOCs), polycyclic aromatic hydrocarbons (PAHs), organic chlorinated pesticides (OCPs) and phthalate esters (PAEs), were produced by various human activities and entered the water body. In this study, the pollution profiles of three species including 16 PAHs, 20 OCPs and 15 PAEs in water along the Beijiang River, China were investigated. The concentrations of Σ16PAHs in the dissolved and particulate phases were obtained as 69-1.5 × 102 ng L-1 and 2.3 × 103-8.6 × 104 ng g-1, respectively. The levels of Σ20OCPs were 23-66 ng L-1 (dissolved phase) and 19-1.7 × 103 ng g-1 (particulate phase). Nevertheless, higher levels of PAEs were found both in the dissolved and particulate phases due to abuse use of plastic products. Furthermore, non-cancer and cancer risks caused by these SVOCs through the ingestion absorption and dermal absorption were also assessed. There was no non-cancer risk existed through two kinds of exposure of them at current levels, whereas certain cancer risk existed through dermal absorption of PAHs in the particulate phase in some sampling sites. The results will show scientific insights into the evaluation of the status of combined pollution in river basins, and the determination of strategies for incident control and pollutant remediation.
Collapse
Affiliation(s)
- Jiao Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Taicheng An
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jukun Xiong
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
626
|
Liang J, Ning XA, Kong M, Liu D, Wang G, Cai H, Sun J, Zhang Y, Lu X, Yuan Y. Elimination and ecotoxicity evaluation of phthalic acid esters from textile-dyeing wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:115-122. [PMID: 28797900 DOI: 10.1016/j.envpol.2017.08.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 06/07/2023]
Abstract
Phthalic acid esters (PAEs), presented in fabrics, surfactants and detergents, were discharged into the ecosystem during textile-dyeing wastewater treatment and might have adverse effects on water ecosystems. In this study, comprehensive investigations of the content and component distributions of 12 PAEs across different units of four textile-dyeing wastewater plants were carried out in Guangdong Province, China. Ecotoxicity assessments were also conducted based on risk quotients (RQs). On average, 93.54% TOC and 80.14% CODCr were removed following treatment at the four plants. The average concentration of Σ12PAEs in effluent was 11.78 μg/L. PAEs with highest concentrations were dimethylphthalate (6.58 μg/L), bis(2-ethylhexyl)phthalate (2.23 μg/L), and dibutylphthalate (1.98 μg/L). The concentrations of the main toxic PAEs were 2.23 μg/L (bis(2-ethylhexyl)phthalate), 0.19 μg/L (diisononylphthalate) and 0.67 μg/L (dinoctylphthalate); corresponding RQs were 1.4, 0.55, and 0.54 for green algae, respectively. The RQs of Σ12PAEs in effluent of the four plants were >0.1, indicating that Σ12PAEs posed medium or higher ecological risk to fish, Daphnia and green algae. Physicochemical-biochemical system was found to be more effective than biochemical-physicochemical system for TOC and CODCr removal, because pre-physicochemical treatment helped to remove macromolecular organic substances, and reduced the competition with other pollutants during biochemical treatment. However, biochemical-physicochemical system was more effective than physicochemical-biochemical system for elimination of PAEs and for detoxification, since the biochemical treatment might produce the toxic PAEs that could helpfully be settled by post-physicochemical treatment. Moreover, ecotoxicity evaluation was recommended for current textile-dyeing wastewater treatment plants.
Collapse
Affiliation(s)
- Jieying Liang
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xun-An Ning
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Minyi Kong
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Daohua Liu
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guangwen Wang
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Haili Cai
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jian Sun
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaping Zhang
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xingwen Lu
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yong Yuan
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
627
|
Chen CF, Chen CW, Ju YR, Dong CD. Determination and assessment of phthalate esters content in sediments from Kaohsiung Harbor, Taiwan. MARINE POLLUTION BULLETIN 2017; 124:767-774. [PMID: 28007384 DOI: 10.1016/j.marpolbul.2016.11.064] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/25/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Phthalate esters (PAEs) are known organic endocrine disruptors. The distribution of 10 PAEs in sediments of Kaohsiung Harbor of Taiwan was studied using organic solvents extraction and quantified by gas chromatography/mass spectrometry. The average concentration of total PAEs (ΣPAEs) in the sediment was 8713±11,454ng/g dw with di-(2-ethylhexyl) phthalate (DEHP) (3630ng/g-dw) and diisononyl phthalate (DiNP) (3497ng/g dw) being the major species, which constitutes of 41.7% and 40.1% of ΣPAEs. PAEs concentration was relatively high near the river mouths, especially in Love River mouth, and diminished toward the harbor. Based on the sediment quality guidelines developed from previous studies, several of the observed PAE levels exceeded the Maximum Contaminant Level, especially for DEHP and thus may cause adverse effect in aquatic organisms.
Collapse
Affiliation(s)
- Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung Marine University, Kaohsiung 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung Marine University, Kaohsiung 81157, Taiwan
| | - Yun-Ru Ju
- Department of Marine Environmental Engineering, National Kaohsiung Marine University, Kaohsiung 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung Marine University, Kaohsiung 81157, Taiwan; Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
628
|
Zhang Q, Hu J, Lee DJ, Chang Y, Lee YJ. Sludge treatment: Current research trends. BIORESOURCE TECHNOLOGY 2017; 243:1159-1172. [PMID: 28764130 DOI: 10.1016/j.biortech.2017.07.070] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 05/22/2023]
Abstract
Sludge is produced during wastewater treatment as a residue containing most insoluble and adsorbed soluble impurities in wastewaters. This paper summarized the currently available review papers on sludge treatments and proposed the research trends based on the points raised therein. On partition aspect, sludge production rate and the reduction of production rate and the fate and transformation of involved emergent contaminants including endocrine disrupting chemicals and pharmaceuticals and personal care products are widely studied. On release aspect, development of thermal processes on sludge with migration and transformation of heavy metals in sludge during treatment is a research focus. The use of detailed fluid and biological reaction models and advanced instrumentation and control systems is studied to optimize treatment performances. On recovery part, co-digestion of sludge with co-substrates at mesophilic and hyperthermophilic conditions and the recovery of phosphorus at low costs are research highlights.
Collapse
Affiliation(s)
- Quanguo Zhang
- Collaborative Innovation Center of Biomass Energy, Henan Agriculture University, Henan Province, Zhengzhou 450002, China
| | - Jianjun Hu
- Collaborative Innovation Center of Biomass Energy, Henan Agriculture University, Henan Province, Zhengzhou 450002, China
| | - Duu-Jong Lee
- Collaborative Innovation Center of Biomass Energy, Henan Agriculture University, Henan Province, Zhengzhou 450002, China; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Yingju Chang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Jen Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
629
|
Mohebbi M, Heydari R, Ramezani M. Solvent-vapor-assisted liquid-liquid microextraction: A
novel method for the determination of phthalate esters in aqueous samples using GC-MS. J Sep Sci 2017; 40:4394-4402. [DOI: 10.1002/jssc.201700755] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/28/2017] [Accepted: 09/01/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Maryam Mohebbi
- Department of Chemistry; Faculty of Sciences; Arak Branch; Islamic Azad University; Arak Iran
| | - Rouhollah Heydari
- Razi Herbal Medicines Research Center; Lorestan University of Medical Sciences; Khorramabad Iran
| | - Majid Ramezani
- Department of Chemistry; Faculty of Sciences; Arak Branch; Islamic Azad University; Arak Iran
| |
Collapse
|
630
|
Gu S, Zheng H, Xu Q, Sun C, Shi M, Wang Z, Li F. Comparative toxicity of the plasticizer dibutyl phthalate to two freshwater algae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:122-130. [PMID: 28822891 DOI: 10.1016/j.aquatox.2017.08.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/05/2017] [Accepted: 08/08/2017] [Indexed: 05/25/2023]
Abstract
Phthalate esters (PAEs), a family of emerging environmental contaminants, have been frequently detected in soils and water. However, intensive studies on the toxicity of PAEs have focused on growth response of terrestrial and aquatic animals, while only limited attention has been paid to aquatic plants, especially phytoplankton, the primary producer in aquatic ecosystems. Therefore, the acute toxic effects and underlying mechanisms of dibutyl phthalate (DBP) at different concentrations (0-20mgL-1) on two typical freshwater algae (Scenedesmus obliquus and Chlorella pyrenoidosa) were investigated. The growth of S. obliquus and C. pyrenoidosa was conspicuously inhibited by DBP exposure at 2-20mgL-1. The 96-h median effective concentration values (96h-EC50) were 15.3mgL-1 and 3.14mgL-1 for S. obliquus and C. pyrenoidosa, respectively, implying that the spherical C. pyrenoidosa is more sensitive to DBP than the spindle-shaped S. obliquus. As expected from the damage done to cell organelles (i.e. cell membranes, chloroplasts, and protein rings), cell densities and chlorophyll content conspicuously decreased under DBP treatments. Moreover, the algal growth inhibition was closely linked to the increased production of intracellular reactive oxygen species and malondialdehyde content, indicating oxidative stress and lipid peroxidation in both algae. This was proved by the increased activity of antioxidant enzymes such as superoxide dismutase and catalase. Our findings will contribute to the understanding of toxic mechanisms in PAEs and the evaluation of environmental risks for primary producers in aquatic ecosystems.
Collapse
Affiliation(s)
- Shurui Gu
- Institute of Coastal Environmental Pollution Control, Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Qingqing Xu
- Institute of Coastal Environmental Pollution Control, Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Cuizhu Sun
- Institute of Coastal Environmental Pollution Control, Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mei Shi
- Institute of Coastal Environmental Pollution Control, Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
631
|
Li R, Liang J, Duan H, Gong Z. Spatial distribution and seasonal variation of phthalate esters in the Jiulong River estuary, Southeast China. MARINE POLLUTION BULLETIN 2017; 122:38-46. [PMID: 28712773 DOI: 10.1016/j.marpolbul.2017.05.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 05/22/2017] [Accepted: 05/27/2017] [Indexed: 06/07/2023]
Abstract
The spatial distribution and seasonal variation of 16 phthalate esters (PAEs) in water, suspended particulate matter (SPM) and sediment were investigated in the Jiulong River estuary, Fujian, Southeast China. Of the 16 PAE congeners analyzed, only six PAEs, including dimethyl phthalate (DMP), diethyl phthalate (DEP), diisobutyl phthalate (DIBP), di-n-butyl phthalate (DBP), di(2-ethylhexyl) phthalate (DEHP) and diisononyl phthalate (DINP), were identified and quantified. The total concentrations of the six PAEs (∑6PAEs) detected for all seasons ranged from 3.01 to 26.4μg/L in water, 1.56 to 48.7mg/kg in SPM, and 0.037 to 0.443μg/kg in sediment. DEHP, DIBP and DBP were the most abundant PAE congeners in all of the water, SPM and sediment phases. The spatial distributions of PAEs in the estuary were controlled not only by the riverine runoff, seasons, hydrodynamic condition and human activities but also the physicochemical properties of PAEs.
Collapse
Affiliation(s)
- Rongli Li
- State key Laboratory of Marine Environment Science, Xiamen University, Xiamen 361102, China; Center for Marine Environmental Chemistry and Toxicology, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Jing Liang
- State key Laboratory of Marine Environment Science, Xiamen University, Xiamen 361102, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen 361102, China
| | - Hualing Duan
- State key Laboratory of Marine Environment Science, Xiamen University, Xiamen 361102, China
| | - Zhenbin Gong
- State key Laboratory of Marine Environment Science, Xiamen University, Xiamen 361102, China; Center for Marine Environmental Chemistry and Toxicology, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
632
|
Singh N, Dalal V, Mahto JK, Kumar P. Biodegradation of phthalic acid esters (PAEs) and in silico structural characterization of mono-2-ethylhexyl phthalate (MEHP) hydrolase on the basis of close structural homolog. JOURNAL OF HAZARDOUS MATERIALS 2017; 338:11-22. [PMID: 28531656 DOI: 10.1016/j.jhazmat.2017.04.055] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 05/27/2023]
Abstract
Three bacterial strains capable of degrading phthalates namely Pseudomonas sp. PKDM2, Pseudomonas sp. PKDE1 and Pseudomonas sp. PKDE2 were isolated and characterized for their degradative potential. These strains efficiently degraded 77.4%-84.4% of DMP, 75.0%-75.7% of DEP and 71.7%-74.7% of DEHP, initial amount of each phthalate is 500mgL-1 of each phthalate, after 44h of incubation. GC-MS results reveal the tentative DEHP degradation pathway, where hydrolases mediate the breakdown of DEHP to phthalic acid (PA) via an intermediate MEHP. MEHP hydrolase is a serine hydrolase which is involved in the reduction of the MEHP to PA. The predicted 3D model of MEHP hydrolase from Pseudomonas mosselii was docked with phthalate monoesters (PMEs) such as MEHP, mono-n-hexyl phthalate (MHP), mono-n-butyl phthalate (MBP) and mono-n-ethyl phthalate (MEP), respectively. Docking results show the distance between the carbonyl carbon of respective phthalate monoester and the hydroxyl group of catalytic serine lies in the range of 2.9 to 3.3Å, which is similar to the ES complex of other serine hydrolases. This structural study highlights the interaction and the role of catalytic residues of MEHP hydrolase involved in the biodegradation of PMEs to phthalate.
Collapse
Affiliation(s)
- Neha Singh
- Department of Biotechnology, Indian Institute of Technology, Roorkee, 247667, India
| | - Vikram Dalal
- Department of Biotechnology, Indian Institute of Technology, Roorkee, 247667, India
| | - Jai Krishna Mahto
- Department of Biotechnology, Indian Institute of Technology, Roorkee, 247667, India
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology, Roorkee, 247667, India.
| |
Collapse
|
633
|
Hermabessiere L, Dehaut A, Paul-Pont I, Lacroix C, Jezequel R, Soudant P, Duflos G. Occurrence and effects of plastic additives on marine environments and organisms: A review. CHEMOSPHERE 2017; 182:781-793. [PMID: 28545000 DOI: 10.1016/j.chemosphere.2017.05.096] [Citation(s) in RCA: 547] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 05/20/2023]
Abstract
Plastics debris, especially microplastics, have been found worldwide in all marine compartments. Much research has been carried out on adsorbed pollutants on plastic pieces and hydrophobic organic compounds (HOC) associated with microplastics. However, only a few studies have focused on plastic additives. These chemicals are incorporated into plastics from which they can leach out as most of them are not chemically bound. As a consequence of plastic accumulation and fragmentation in oceans, plastic additives could represent an increasing ecotoxicological risk for marine organisms. The present work reviewed the main class of plastic additives identified in the literature, their occurrence in the marine environment, as well as their effects on and transfers to marine organisms. This work identified polybrominated diphenyl ethers (PBDE), phthalates, nonylphenols (NP), bisphenol A (BPA) and antioxidants as the most common plastic additives found in marine environments. Moreover, transfer of these plastic additives to marine organisms has been demonstrated both in laboratory and field studies. Upcoming research focusing on the toxicity of microplastics should include these plastic additives as potential hazards for marine organisms, and a greater focus on the transport and fate of plastic additives is now required considering that these chemicals may easily leach out from plastics.
Collapse
Affiliation(s)
- Ludovic Hermabessiere
- Anses, Laboratoire de Sécurité des Aliments, Boulevard du Bassin Napoléon, 62200 Boulogne-sur-Mer, France
| | - Alexandre Dehaut
- Anses, Laboratoire de Sécurité des Aliments, Boulevard du Bassin Napoléon, 62200 Boulogne-sur-Mer, France
| | - Ika Paul-Pont
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR6539/UBO/CNRS/IRD/IFREMER, Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280 Plouzané, France
| | | | | | - Philippe Soudant
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR6539/UBO/CNRS/IRD/IFREMER, Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280 Plouzané, France
| | - Guillaume Duflos
- Anses, Laboratoire de Sécurité des Aliments, Boulevard du Bassin Napoléon, 62200 Boulogne-sur-Mer, France.
| |
Collapse
|
634
|
Mergelsberg M, Willistein M, Meyer H, Stärk HJ, Bechtel DF, Pierik AJ, Boll M. Phthaloyl-coenzyme A decarboxylase from Thauera chlorobenzoica: the prenylated flavin-, K + - and Fe 2+ -dependent key enzyme of anaerobic phthalate degradation. Environ Microbiol 2017; 19:3734-3744. [PMID: 28752942 DOI: 10.1111/1462-2920.13875] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/14/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
Abstract
The degradation of the industrially produced and environmentally relevant phthalate esters by microorganisms is initiated by the hydrolysis to alcohols and phthalate (1,2-dicarboxybenzene). In the absence of oxygen the further degradation of phthalate proceeds via activation to phthaloyl-CoA followed by decarboxylation to benzoyl-CoA. Here, we report on the first purification and characterization of a phthaloyl-CoA decarboxylase (PCD) from the denitrifying Thauera chlorobenzoica. Hexameric PCD belongs to the UbiD-family of (de)carboxylases and contains prenylated FMN (prFMN), K+ and, unlike other UbiD-like enzymes, Fe2+ as cofactors. The latter is suggested to be involved in oxygen-independent electron-transfer during oxidative prFMN maturation. Either oxidation to the Fe3+ -state in air or removal of K+ by desalting resulted in >92% loss of both, prFMN and decarboxylation activity suggesting the presence of an active site prFMN/Fe2+ /K+ -complex in PCD. The PCD-catalysed reaction was essentially irreversible: neither carboxylation of benzoyl-CoA in the presence of 2 M bicarbonate, nor an isotope exchange of phthaloyl-CoA with 13 C-bicarbonate was observed. PCD differs in many aspects from prFMN-containing UbiD-like decarboxylases and serves as a biochemically accessible model for the large number of UbiD-like (de)carboxylases that play key roles in the anaerobic degradation of environmentally relevant aromatic pollutants.
Collapse
Affiliation(s)
- Mario Mergelsberg
- Faculty of Biology, Department of Microbiology, University of Freiburg, Freiburg, Germany
| | - Max Willistein
- Faculty of Biology, Department of Microbiology, University of Freiburg, Freiburg, Germany
| | - Heike Meyer
- Faculty of Biology, Department of Microbiology, University of Freiburg, Freiburg, Germany
| | - Hans-Joachim Stärk
- Department of Analytics, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | | | - Antonio J Pierik
- Department of Chemistry, TU Kaiserslautern, Kaiserslautern, Germany
| | - Matthias Boll
- Faculty of Biology, Department of Microbiology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
635
|
Wang H, Liang H, Gao DW. Occurrence and risk assessment of phthalate esters (PAEs) in agricultural soils of the Sanjiang Plain, northeast China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:19723-19732. [PMID: 28685330 DOI: 10.1007/s11356-017-9646-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
This study looks at the pollution status of six priority control phthalate esters (PAEs) under different cultivation of agricultural soils in the Sanjiang Plain, northeast China. Results show the total concentration of PAEs ranged from 162.9 to 946.9 μg kg-1 with an average value of 369.5 μg kg-1. PAE concentrations in three types of cultivated soils exhibited decreasing order paddy field (532.1 ± 198.1 μg kg-1) > vegetable field (308.2 ± 87.5 μg kg-1) > bean field (268.2 ± 48.3 μg kg-1). Di-(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP) were the most abundant PAEs congeners. Compared with previous studies, agricultural soils in the Sanjiang Plain showed relatively low contamination levels. Anthropogenic activities such as cultivation practices and industrial emissions were associated with the distribution pattern of PAEs. Furthermore, human health risks of PAEs were estimated and the non-cancer risk shown negligible but carcinogenic risk of DEHP exceeded the threshold limits value. PAE contaminants originated from cultivation practices and intense anthropogenic activities result in placing the agricultural soils under a potential risk to human health and also to ecosystems in the Sanjiang Plain. Therefore, the contamination status of PAEs in agricultural soil and potential impacts on human health should attract considerable attention.
Collapse
Affiliation(s)
- He Wang
- Center for Ecological Research, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Hong Liang
- School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Da-Wen Gao
- Center for Ecological Research, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
- School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
636
|
Gani KM, Tyagi VK, Kazmi AA. Occurrence of phthalates in aquatic environment and their removal during wastewater treatment processes: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17267-17284. [PMID: 28567676 DOI: 10.1007/s11356-017-9182-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 05/01/2017] [Indexed: 05/25/2023]
Abstract
Phthalates are plasticizers and are concerned environmental endocrine-disrupting compounds. Due to their extensive usage in plastic manufacturing and personal care products as well as the potential to leach out from these products, phthalates have been detected in various aquatic environments including drinking water, groundwater, surface water, and wastewater. The primary source of their environmental occurrence is the discharge of phthalate-laden wastewater and sludge. This review focuses on recent knowledge on the occurrence of phthalate in different aquatic environments and their fate in conventional and advanced wastewater treatment processes. This review also summarizes recent advances in biological removal and degradation mechanisms of phthalates, identifies knowledge gaps, and suggests future research directions.
Collapse
Affiliation(s)
- Khalid Muzamil Gani
- Department of Civil Engineering (Environmental Engineering Section), Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| | - Vinay Kumar Tyagi
- Nanyang Environment and Water Research Institute, Advanced Environmental Biotechnology Centre, Nanyang Technological University, Singapore, 637141, Singapore
| | - Absar Ahmad Kazmi
- Department of Civil Engineering (Environmental Engineering Section), Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
637
|
Lauw SJ, Lee JH, Tessensohn ME, Leong WQ, Webster RD. The electrochemical reduction of di-(2-ethylhexyl) phthalate (DEHP) in acetonitrile. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
638
|
Rocha BA, Asimakopoulos AG, Barbosa F, Kannan K. Urinary concentrations of 25 phthalate metabolites in Brazilian children and their association with oxidative DNA damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:152-162. [PMID: 28174045 DOI: 10.1016/j.scitotenv.2017.01.193] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 06/06/2023]
Abstract
Exposure of humans to phthalates has received considerable attention due to the ubiquitous occurrence and potential adverse health effects of these chemicals. Nevertheless, little is known about the exposure of the Brazilian population to phthalates. In this study, concentrations of 25 phthalate metabolites were determined in urine samples collected from 300 Brazilian children (6-14years old). Further, the association between urinary phthalate concentrations and a biomarker of oxidative stress, 8-hydroxy-2'-deoxyguanosine (8OHDG), was examined. Overall, eleven phthalate metabolites were found in at least 95% of the samples analyzed. The highest median concentrations were found for monoethyl phthalate (mEP; 57.3ngmL-1), mono-(2-ethyl-5-carboxypentyl) phthalate (mECPP; 52.8ngmL-1), mono-isobutyl phthalate (mIBP; 43.8ngmL-1), and mono-n-butyl phthalate (mBP; 42.4ngmL-1). The secondary metabolites of di(2-ethylhexyl) phthalate (DEHP), and mEP, mIBP, and mBP were the most abundant compounds, accounting for >90% of the total concentrations. On the basis of the measured concentrations of urinary phthalate metabolites, we estimated daily intakes of the parent phthalates, which were 0.3, 1.7, 1.8, 2.1, and 7.2μg/kg-bw/day for dimethyl phthalate, di-n-butyl phthalate, diisobutyl phthalate, diethyl phthalate, and DEHP, respectively. Approximately one-quarter of the Brazilian children had a hazard index of >1 for phthalate exposures. Statistically significant positive associations were found between 8OHDG and the concentration of the sum of phthalate metabolites, sum of DEHP metabolites, mEP, mIBP, mBP, monomethyl phthalate, mono(3-carboxypropyl) phthalate, monobenzyl phthalate, monocarboxyoctyl phthalate, monocarboxynonyl phthalate, monoisopentyl phthalate, and mono-n-propyl phthalate. To the best of our knowledge, this is the first study to report the exposure of a Brazilian population to phthalates.
Collapse
Affiliation(s)
- Bruno A Rocha
- Laboratório de Toxicologia e Essencialidade de Metais, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil; Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12201, United States.
| | - Alexandros G Asimakopoulos
- Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12201, United States; Department of Chemistry, The Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.
| | - Fernando Barbosa
- Laboratório de Toxicologia e Essencialidade de Metais, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil.
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12201, United States; Biochemistry Department, Faculty of Science, Bioactive Natural Products Research Group, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
639
|
Han Y, Diao D, Lu Z, Li X, Guo Q, Huo Y, Xu Q, Li Y, Cao S, Wang J, Wang Y, Zhao J, Li Z, He M, Luo Z, Lou X. Selection of Group-Specific Phthalic Acid Esters Binding DNA Aptamers via Rationally Designed Target Immobilization and Applications for Ultrasensitive and Highly Selective Detection of Phthalic Acid Esters. Anal Chem 2017; 89:5270-5277. [PMID: 28414217 DOI: 10.1021/acs.analchem.6b04808] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Phthalic acid esters (PAEs) are ubiquitous in the environment, and some of them are recognized as endocrine disruptors that cause concerns on ecosystem functioning and public health. Due to the diversity of PAEs in the environment, there is a vital need to detect the total concentration of PAEs in a timely and low-cost way. To fulfill this requirement, it is highly desired to obtain group-specific PAE binders that are specific to the basic PAE skeleton. In this study, for the first time we have identified the group-specific PAE-binding aptamers via rationally designed target immobilization. The two target immobilization strategies were adopted to display either the phthalic ester group or the alkyl chain, respectively, at the surface of the immobilization matrix. The former enabled the rapid enrichment of aptamers after four rounds of selection. The top 100 sequences are cytosine-rich (44.7%) and differentiate from each other by only 1-4 nucleotides at limited locations. The top two aptamers all display the nanomolar dissociation constants to both the immobilized target and the free PAEs [dibutyl phthalate (DBP), butyl benzyl phthalate (BBP), bis(2-ethylhexyl) phthalate (DEHP)]. We further demonstrate the applications of the aptamers in the development of high-throughput PAE assays and DEHP electrochemical biosensors with exceptional sensitivity [limit of detection (LOD), 10 pM] and selectivity (>105-fold). PAE aptamers targeting one of the most sought for targets thus offer the promise of convenient, low-cost detection of total PAEs. Our study also provides insights on the aptamer selection and sensor development of highly hydrophobic small molecules.
Collapse
Affiliation(s)
- Yu Han
- Department of Chemistry, Capital Normal University , Beijing, 100048, China
| | - Donglin Diao
- Department of Chemistry, Capital Normal University , Beijing, 100048, China
| | - Zhangwei Lu
- Department of Chemistry, Capital Normal University , Beijing, 100048, China
| | - Xiaoning Li
- Department of Chemistry, Capital Normal University , Beijing, 100048, China
| | - Qian Guo
- Department of Chemistry, Capital Normal University , Beijing, 100048, China
| | - Yumeng Huo
- Department of Chemistry, Capital Normal University , Beijing, 100048, China
| | - Qing Xu
- Department of Chemistry, Capital Normal University , Beijing, 100048, China
| | - Youshan Li
- Department of Chemistry, Capital Normal University , Beijing, 100048, China
| | - Shengli Cao
- Department of Chemistry, Capital Normal University , Beijing, 100048, China
| | - Jianchun Wang
- Department of Chemistry, Capital Normal University , Beijing, 100048, China
| | - Yuan Wang
- Department of Chemistry, Capital Normal University , Beijing, 100048, China
| | - Jiaxing Zhao
- Department of Chemistry, Capital Normal University , Beijing, 100048, China
| | - Zhongfeng Li
- Department of Chemistry, Capital Normal University , Beijing, 100048, China
| | - Miao He
- School of Environment, Tsinghua University , Beijing 100084, China
| | - Zhaofeng Luo
- School of Life Sciences, University of Science and Technology of China , Hefei 230027, China
| | - Xinhui Lou
- Department of Chemistry, Capital Normal University , Beijing, 100048, China
| |
Collapse
|
640
|
Wowkonowicz P, Kijeńska M. Phthalate release in leachate from municipal landfills of central Poland. PLoS One 2017; 12:e0174986. [PMID: 28358912 PMCID: PMC5373626 DOI: 10.1371/journal.pone.0174986] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/18/2017] [Indexed: 12/18/2022] Open
Abstract
Phthalate diesters (PAEs) are used as plasticizer additives to polymer chains to make the material more flexible and malleable. PAEs are bonded physically, not chemically, to the polymeric matrix and can migrate to and leach from the product surface, posing a serious danger to the environment and human health. There have been a number of studies on PAE concentrations in landfill leachate conducted in the EU and around the world, though few in Poland. In the present study, the leachate of five municipal landfills was analyzed for the presence of PAEs. Raw leachate was sampled four times over the period of one year in 2015/16. It was the first large study on this subject in Poland. PAEs were detected in the leachate samples on all of the landfills, thereby indicating that PAEs are ubiquitous environmental contaminants. The following PAEs were detected in at least one sample: Di(2-ethylhexyl) phthalate (DEHP), Diethyl phthalate (DEP), Dimethyl phthalate (DMP), Di-n-butyl phthalate (DBP), Di-isobutylphthalate (DIBP). Out of all ten PAEs, DEHP was the most predominant, with concentrations up to 73.9 μg/L. DEHP was present in 65% of analyzed samples (in 100% of samples in spring, 80% in winter, and 40% in summer and autumn). In only 25% of all samples DEHP was below the acceptable UE limit for surface water (1.3 μg/L), while 75% was from 1.7 to 56 times higher than that value. On the two largest landfills DEHP concentrations were observed during samples from all four seasons, including on a landfill which has been remediated and closed for the last 5 years.
Collapse
Affiliation(s)
- Paweł Wowkonowicz
- Institute of Environmental Protection - National Research Institute, Environmental Chemistry and Risk Assessment Department, Warsaw, Poland
| | - Marta Kijeńska
- Institute of Environmental Protection - National Research Institute, Environmental Chemistry and Risk Assessment Department, Warsaw, Poland
| |
Collapse
|
641
|
Cai QY, Xiao PY, Zhao HM, Lü H, Zeng QY, Li YW, Li H, Xiang L, Mo CH. Variation in accumulation and translocation of di-n-butyl phthalate (DBP) among rice (Oryza sativa L.) genotypes and selection of cultivars for low DBP exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:7298-7309. [PMID: 28102498 DOI: 10.1007/s11356-017-8365-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
Di-n-butyl phthalate (DBP) is a typical endocrine-disrupting chemical with higher detection frequency and concentration in agricultural soil (particularly in paddy-field soil of Guangdong Province) of China. In this study, a greenhouse experiment was conducted to investigate variation in uptake and accumulation of DBP by 20 rice cultivars and to screen low DBP-accumulating cultivars. DBP concentrations in plants varied greatly with rice cultivars, growth stages, and tissues. The highest DBP concentrations in both roots and shoots were observed at the ripening stage, with concentrations 2-100-fold higher than those at tillering, jointing, and flowering stages. At the ripening stage, DBP concentrations decreased in the order of leaf > root > stem > grain, and significant differences of DBP concentrations were observed among various rice cultivars. Moreover, the magnitude of variation in DBP concentrations among various cultivars was greater in stems and grains than in roots and leaves. The translocation factors of DBP from roots to stems and from shoots to grains were <1.0, and those from stems to leaves were almost >1.0. Overall, cultivars Yuxiangyouzhan, Jinnongsimiao, Tianyou 122, and Wuyou 380 accumulated relatively lower DBP in grains, resulting in lower DBP exposure. The DBP uptake and translocation pathways in rice require further investigation. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Pei-Yun Xiao
- Management School, Jinan University, Guangzhou, 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Huixiong Lü
- Key Laboratory of Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutions, College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Qiao-Yun Zeng
- Key Laboratory of Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutions, College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
642
|
Li R, Liang J, Gong Z, Zhang N, Duan H. Occurrence, spatial distribution, historical trend and ecological risk of phthalate esters in the Jiulong River, Southeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:388-397. [PMID: 28012650 DOI: 10.1016/j.scitotenv.2016.11.190] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/25/2016] [Accepted: 11/26/2016] [Indexed: 06/06/2023]
Abstract
The occurrence and spatial distribution of phthalate esters (PAEs) in the Jiulong River of southeast China were investigated in water and sediment samples collected from 35 stations along the river in Mar. 2014. The historical trend of the past 26years was reconstructed with a sediment core collected in Dec. 2012 via a 210Pb dating technique. The potential ecological risk of PAEs was assessed using the risk quotient (RQ) method. Of the 16 PAE congeners analyzed, only 6 PAEs, including dimethyl phthalate (DMP), diethyl phthalate (DEP), diisobutyl phthalate (DIBP), di-n-butyl phthalate (DBP), di(2-ethylhexyl) phthalate (DEHP) and diisononyl phthalate (DINP), were identified and quantified; the remaining 10 PAEs were below their respective limits of quantification (LOQs) for the analytical methods used here. The cumulative concentration of 6 PAEs (∑6PAEs) found in the samples spanned a range of 3.48-17.7μg/L in water and 0.046-1.65mg/kg in sediment. The most abundant PAEs in the water-phase were DEHP and DIBP, together accounting for 84.9% of ∑6PAEs in the North River, 82.8% of ∑6PAEs in the West River and 91.6% of ∑6PAEs in the estuary. DEHP and DINP were the richest congeners in the sediment-phase, with proportions of 84.9% in the North River, 81.0% in the West River and 65.4% in the estuary. The spatial distribution of ∑6PAEs in water and sediment phases showed that the riverside environment had influence on the distribution pattern. The reconstruction profile of the PAE congeners and the ∑6PAEs vs the depth of the sediment core indicated that PAEs became increasingly present pollutants around 2006 in the Jiulong River. The results of the potential ecological risk assessment of the RQ method revealed that DIBP and DEHP posed a high risk because of their relatively higher concentrations, while DBP and DINP posed a medium risk to the aquatic system. The baseline data of PAEs in this river will be benefits to the regulatory attention and future strategies of the pollutants control along the river network.
Collapse
Affiliation(s)
- Rongli Li
- State Key Laboratory of Marine Environment Science, Xiamen University, Xiamen 361102, China; Center for Marine Environmental Chemistry and Toxicology, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Jing Liang
- State Key Laboratory of Marine Environment Science, Xiamen University, Xiamen 361102, China
| | - Zhenbin Gong
- State Key Laboratory of Marine Environment Science, Xiamen University, Xiamen 361102, China; Center for Marine Environmental Chemistry and Toxicology, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen 361102, China.
| | - Ningning Zhang
- Center for Marine Environmental Chemistry and Toxicology, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen 361102, China
| | - Hualing Duan
- State Key Laboratory of Marine Environment Science, Xiamen University, Xiamen 361102, China; Center for Marine Environmental Chemistry and Toxicology, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
643
|
Ding K, Lu L, Wang J, Wang J, Zhou M, Zheng C, Liu J, Zhang C, Zhuang S. In vitro and in silico investigations of the binary-mixture toxicity of phthalate esters and cadmium (II) to Vibrio qinghaiensis sp.-Q67. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:1078-1084. [PMID: 27993475 DOI: 10.1016/j.scitotenv.2016.12.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/09/2016] [Accepted: 12/09/2016] [Indexed: 06/06/2023]
Abstract
Phthalate esters (PAEs) are widely used as plasticizers and have become one of the emerging contaminants with an increasing public concern. The residues of PAEs frequently co-exist with heavy metals such as cadmium (Cd) in waters; however, their joint ecotoxicity remains largely unknown. We herein investigated the single and joint toxicity of commonly used PAEs and Cd using freshwater luminescent bacteria Vibrio qinghaiensis sp.-Q67. The median effective concentration (EC50) of benzyl butyl phthalate (BBP), dibutyl phthalate (DBP), diethyl phthalate (DEP), dimethyl phthalate (DMP), diisooctyl phthalate (DIOP) and di-n-octyl phthalate (DOP) were determined to be in the range from 134.4mg/L to as high as 1000mg/L, indicating very weak toxicity to Vibrio qinghaiensis sp.-Q67. The toxicity of single PAEs showed a significant linear relationship with Log Kow, indicating the dependence of the elevated toxicity on the increasing hydrophilicity. The toxicity of binary mixture of PAEs was further evaluated in silico using the independent action (IA) model and concentration addition (CA) model. DMP-DEP, DEP-DBP or DMP-DBP exhibited antagonistic effects with the toxic unit value higher than 1.2. The CA and IA models poorly predicted the joint toxicity of DMP-DEP, DEP-DBP or DMP-DBP. The joint toxicity of the binary mixtures of DMP, DEP or DBP with Cd was simple additive as predicted by the CA and IA models. Our results indicated the potentially higher risk of PAEs in the presence of Cd, emphasizing the importance of determining the impact of their joint effects on aquatic organisms. The integrated in vitro and in silico methods employed in this study will be beneficial to study the joint toxicity and better assess the aquatic ecological risk of PAEs.
Collapse
Affiliation(s)
- Keke Ding
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan 316022, China
| | - Liping Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan 316022, China
| | - Jiaying Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingpeng Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minqiang Zhou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cunwu Zheng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinsong Liu
- Zhejiang Province Environmental Monitoring Center, Hangzhou 310005, China
| | - Chunlong Zhang
- Department of Biological and Environmental Sciences, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston, TX 77058, USA
| | - Shulin Zhuang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan 316022, China.
| |
Collapse
|
644
|
Herrero Ó, Morcillo G, Planelló R. Transcriptional deregulation of genetic biomarkers in Chironomus riparius larvae exposed to ecologically relevant concentrations of di(2-ethylhexyl) phthalate (DEHP). PLoS One 2017; 12:e0171719. [PMID: 28166271 PMCID: PMC5293269 DOI: 10.1371/journal.pone.0171719] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/24/2017] [Indexed: 11/19/2022] Open
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental pollutant used worldwide as a plasticizer and solvent in many formulations. Based on available toxicological data, it has been classified as toxic for reproduction and as an endocrine disruptor. Despite this, ecotoxicological studies in aquatic wildlife organisms are still scarce. In the present work, the toxic molecular alterations caused by DEHP in aquatic larvae of the midge Chironomus riparius have been studied, by analyzing the transcriptional activity of genes related to some vital cellular pathways, such as the ribosomal machinery (rpL4, rpL13), the cell stress response (hsc70, hsp70, hsp40, hsp27), the ecdysone hormone pathway (EcR), the energy metabolism (GAPDH), and detoxication processes (CYP4G). Environmentally relevant concentrations (10-3 to 105 μg/L) and exposure conditions (24 to 96 h) have been tested, as well as the toxic effects after DEHP withdrawal. Although the compound caused no mortality, significant changes were detected in almost all the studied biomarkers: e.g. strong repression of hsp70; general inhibition of EcR; GAPDH activity loss in long exposures; among others. Our data show a general transcriptional downregulation that could be associated with an adaptive response to cell damage. Besides, the activity of the compound as an ecdysone antagonist and its delayed effects over almost all the biomarkers analyzed are described as novel toxic targets in insects.
Collapse
Affiliation(s)
- Óscar Herrero
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, Madrid, Spain
| | - Gloria Morcillo
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, Madrid, Spain
| | - Rosario Planelló
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, Madrid, Spain
| |
Collapse
|
645
|
Gyllenhammar I, Glynn A, Jönsson BAG, Lindh CH, Darnerud PO, Svensson K, Lignell S. Diverging temporal trends of human exposure to bisphenols and plastizisers, such as phthalates, caused by substitution of legacy EDCs? ENVIRONMENTAL RESEARCH 2017; 153:48-54. [PMID: 27898309 DOI: 10.1016/j.envres.2016.11.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/03/2016] [Accepted: 11/18/2016] [Indexed: 05/02/2023]
Abstract
Phthalates and phenolic substances were investigated in urine samples from first-time mothers in Uppsala, Sweden, collected between 2009 and 2014. These substances have a comparably fast metabolism and urinary metabolites are predominantly analysed. The main aim was to investigate if measures to decrease production and use of certain phthalates and bisphenol A (BPA) have resulted in decreased human exposure, and to determine if exposures to replacement chemicals have increased. Temporal trends were evaluated for metabolites (n=13) of seven phthalates, a phthalate replacer, four different bisphenols, triclosan, one organophosphate-based flame retardant, and for two pesticides. The results showed downward trends of several phthalates which are in the process of being regulated and phased out. Concomitantly, an increasing trend was seen for a metabolite of the phthalate replacer Di-iso-nonylcyclohexane 1,2-dicarboxylate (DiNCH). Bisphenol A (BPA) showed a downward trend, whereas bisphenol F, identified as one of the substitutes for BPA, showed an increasing trend. The decreasing trend of triclosan is likely due to declining use within the EU. Temporal trend studies of urine samples make it possible to investigate human exposure to rapidly metabolised substances and study how measures taken to regulate and replace problematic chemicals affect human exposure.
Collapse
Affiliation(s)
| | - Anders Glynn
- National Food Agency, P.O. Box 622, 751 26, Uppsala, Sweden
| | - Bo A G Jönsson
- Division of Occupational and Environmental Medicine, Lund University, 221 85, Lund, Sweden
| | - Christian H Lindh
- Division of Occupational and Environmental Medicine, Lund University, 221 85, Lund, Sweden
| | | | | | - Sanna Lignell
- National Food Agency, P.O. Box 622, 751 26, Uppsala, Sweden
| |
Collapse
|
646
|
Al-Saleh I, Elkhatib R, Al-Rajoudi T, Al-Qudaihi G. Assessing the concentration of phthalate esters (PAEs) and bisphenol A (BPA) and the genotoxic potential of treated wastewater (final effluent) in Saudi Arabia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 578:440-451. [PMID: 27836348 DOI: 10.1016/j.scitotenv.2016.10.207] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/10/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
Plasticizers such as phthalate esters (PAEs) and bisphenol A (BPA) are highly persistent organic pollutants that tend to bio-accumulate in humans through the soil-plant-animal food chain. Some studies have reported the potential carcinogenic and teratogenic effects in addition to their estrogenic activities. Water resources are scarce in Saudi Arabia, and several wastewater treatment plants (WTPs) have been constructed for agricultural and industrial use. This study was designed to: (1) measure the concentrations of BPA and six PAEs, dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP), bis (2-ethylhexyl) phthalate (DEHP) and dioctyl phthalate (DOP), in secondary- and tertiary-treated wastewater collected from five WTPs in three Saudi cities for four to five weeks and (2) test their potential genotoxicity. Three genotoxicological parameters were used: % tail DNA (%T), tail moment (TM) and percentage micronuclei (%MN). Both DBP and DEHP were detected in all treated wastewater samples. DMP, DEP, BBP, DOP, and BPA were found in 83.3, 84.2, 79, 73.7 and 97.4% of the samples, respectively. The levels of DMP (p<0.001), DOP (p<0.001) and BPA (p=0.001) were higher in tertiary- treated wastewater than secondary-treated wastewater, perhaps due to the influence of the molecular weight and polarity of the chemicals. Both weekly sampling frequency and WTP locations significantly affected the variability in our data. Treated wastewater from Wadi Al-Araj was able to induce DNA damage (%T and TM) in human lymphoblastoid TK6 cells that was statistically higher than wastewater from all other WTPs and in untreated TK6 cells (negative control). %MN in samples from both Wadi Al-Araj and Manfouah did not differ statistically but was significantly higher than in the untreated TK6 cells. This study also showed that the samples of tertiary-treated wastewater had a higher genotoxicological potential to induce DNA damage than the samples of secondary-treated wastewater. BPA and some PAEs in the treated wastewater might have the potential to induce genetic damage, despite their low levels. Genotoxicity, however, may also have been due to the presence of other contaminants. Our preliminary findings should be of concern to Saudi agriculture because long-term irrigation with treated wastewater could lead to the accumulation of PAEs and BPA in the soil and ultimately reach the human and animal food chain. WTPs need to remove pollutants more efficiently. Until then, a cautious use of treated wastewater for irrigation is recommended to avoid serious health impacts on local populations.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia.
| | - Rola Elkhatib
- Environmental Health Program, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia
| | - Tahreer Al-Rajoudi
- Environmental Health Program, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia
| | - Ghofran Al-Qudaihi
- Environmental Health Program, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
647
|
Nahurira R, Ren L, Song J, Jia Y, Wang J, Fan S, Wang H, Yan Y. Degradation of Di(2-Ethylhexyl) Phthalate by a Novel Gordonia alkanivorans Strain YC-RL2. Curr Microbiol 2017; 74:309-319. [PMID: 28078431 DOI: 10.1007/s00284-016-1159-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 11/08/2016] [Indexed: 11/28/2022]
Abstract
One bacterial strain, YC-RL2, isolated from petroleum-contaminated soil, could utilize environmental hormone Di(2-Ethylhexyl) phthalate (DEHP) as a sole carbon source for growth. Strain YC-RL2 was identified as Gordonia alkanivorans by 16S rRNA gene analysis and Biolog tests. The effects of environmental factors which might affect the degrading process were optimized at 30 °C and pH 8.0. Strain YC-RL2 showed superior halotolerance and could tolerate up to 0-5% NaCl in trace element medium supplemented with DEHP, although the DEHP degradation rates slowed as NaCl concentration increased. It also showed an outstanding performance in a wide range of pH (6.0-11.0). Meanwhile, strain YC-RL2 was able to withstand high concentrations of DEHP (from 100 to 800 mg/L), and the degradation rates were all above 94%. The DEHP intermediates were detected by HPLC-MS, and the degradation pathway was deduced tentatively. DEHP was transformed into phthalic acid (PA) via mono (2-ethylhexyl) phthalate (MEHP), and PA was further utilized for growth via benzoic acid (BA). The enzyme expected to catalyze the hydrolysis of MEHP to PA was identified from strain YC-RL2. Further investigation found that the enzyme could catalyze the transformation of a wide range of monoalkyl phthalates to PA. This study is the first report about species G. alkanivorans which could degrade several kinds of phthalic acid esters (PAEs), and indicates its application potential for bioremediation of PAE-polluted sites.
Collapse
Affiliation(s)
- Ruth Nahurira
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lei Ren
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinlong Song
- Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Yang Jia
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Junhuan Wang
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuanghu Fan
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haisheng Wang
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanchun Yan
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
648
|
Shen R, Zhao LL, Yu Z, Zhang C, Chen YH, Wang H, Zhang ZH, Xu DX. Maternal di-(2-ethylhexyl) phthalate exposure during pregnancy causes fetal growth restriction in a stage-specific but gender-independent manner. Reprod Toxicol 2017; 67:117-124. [DOI: 10.1016/j.reprotox.2016.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/13/2016] [Accepted: 12/06/2016] [Indexed: 11/28/2022]
|
649
|
|
650
|
Hou M, Chu Y, Li X, Wang H, Yao W, Yu G, Murayama S, Wang Y. Electro-peroxone degradation of diethyl phthalate: Cathode selection, operational parameters, and degradation mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2016; 319:61-68. [PMID: 26777107 DOI: 10.1016/j.jhazmat.2015.12.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 12/13/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
This study compares the degradation of diethyl phthalate (DEP) by the electro-peroxone (E-peroxone) process with three different carbon-based cathodes, namely, carbon-polytetrafluorethylene (carbon-PTFE), carbon felt, and reticulated vitreous carbon (RVC). Results show that the three cathodes had different electrocatalytic activity for converting sparged O2 to H2O2, which increased in order of carbon felt, RVC, and carbon-PTFE. The in-situ generated H2O2 then reacts with sparged O3 to yield OH, which can in turn oxidize ozone-refractory DEP toward complete mineralization. In general, satisfactory total organic carbon removal yields (76.4-91.8%) could be obtained after 60min of the E-peroxone treatment with the three carbon-based cathodes, and the highest yield was obtained with the carbon-PTFE cathode due to its highest activity for H2O2 generation. In addition, the carbon-PTFE and carbon felt cathodes exhibited excellent stability over six cycles of the E-peroxone treatment of DEP solutions. Based on the intermediates (e.g., monoethyl phthalate, phthalic acid, phenolics, and carboxylic acids) identified by HPLC-UV, plausible reaction pathways were proposed for DEP mineralization by the E-peroxone process. The results of this study indicate that carbon-based cathodes generally have good electrocatalytic activity and stability for application in extended E-peroxone operations to effectively remove phthalates from water.
Collapse
Affiliation(s)
- Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yaofei Chu
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Xiang Li
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Huijiao Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Weikun Yao
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Seiichi Murayama
- Power and Industrial Systems R&D Center, Toshiba Corporation, Fuchu-shi, Tokyo, Japan
| | - Yujue Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| |
Collapse
|