51
|
Grigoroiu-Serbanescu M, van der Veen T, Bigdeli T, Herms S, Diaconu CC, Neagu AI, Bass N, Thygesen J, Forstner AJ, Nöthen MM, McQuillin A. Schizophrenia polygenic risk scores, clinical variables and genetic pathways as predictors of phenotypic traits of bipolar I disorder. J Affect Disord 2024; 356:507-518. [PMID: 38640977 DOI: 10.1016/j.jad.2024.04.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
AIM We investigated the predictive value of polygenic risk scores (PRS) derived from the schizophrenia GWAS (Trubetskoy et al., 2022) (SCZ3) for phenotypic traits of bipolar disorder type-I (BP-I) in 1878 BP-I cases and 2751 controls from Romania and UK. METHODS We used PRSice-v2.3.3 and PRS-CS for computing SCZ3-PRS for testing the predictive power of SCZ3-PRS alone and in combination with clinical variables for several BP-I subphenotypes and for pathway analysis. Non-linear predictive models were also used. RESULTS SCZ3-PRS significantly predicted psychosis, incongruent and congruent psychosis, general age-of-onset (AO) of BP-I, AO-depression, AO-Mania, rapid cycling in univariate regressions. A negative correlation between the number of depressive episodes and psychosis, mainly incongruent and an inverse relationship between increased SCZ3-SNP loading and BP-I-rapid cycling were observed. In random forest models comparing the predictive power of SCZ3-PRS alone and in combination with nine clinical variables, the best predictions were provided by combinations of SCZ3-PRS-CS and clinical variables closely followed by models containing only clinical variables. SCZ3-PRS performed worst. Twenty-two significant pathways underlying psychosis were identified. LIMITATIONS The combined RO-UK sample had a certain degree of heterogeneity of the BP-I severity: only the RO sample and partially the UK sample included hospitalized BP-I cases. The hospitalization is an indicator of illness severity. Not all UK subjects had complete subphenotype information. CONCLUSION Our study shows that the SCZ3-PRS have a modest clinical value for predicting phenotypic traits of BP-I. For clinical use their best performance is in combination with clinical variables.
Collapse
Affiliation(s)
- Maria Grigoroiu-Serbanescu
- Psychiatric Genetics Research Unit, Alexandru Obregia Clinical Psychiatric Hospital, Bucharest, Romania.
| | - Tracey van der Veen
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| | - Tim Bigdeli
- SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Stefan Herms
- Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Human Genetics, University of Bonn, School of Medicine, University Hospital Bonn, Germany
| | | | | | - Nicholas Bass
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| | - Johan Thygesen
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK; Institute of Health Informatics, University College London, London, UK
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine, University Hospital Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine, University Hospital Bonn, Germany
| | - Andrew McQuillin
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| |
Collapse
|
52
|
Mato-Blanco X, Kim SK, Jourdon A, Ma S, Tebbenkamp AT, Liu F, Duque A, Vaccarino FM, Sestan N, Colantuoni C, Rakic P, Santpere G, Micali N. Early Developmental Origins of Cortical Disorders Modeled in Human Neural Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.598925. [PMID: 38915580 PMCID: PMC11195173 DOI: 10.1101/2024.06.14.598925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The implications of the early phases of human telencephalic development, involving neural stem cells (NSCs), in the etiology of cortical disorders remain elusive. Here, we explored the expression dynamics of cortical and neuropsychiatric disorder-associated genes in datasets generated from human NSCs across telencephalic fate transitions in vitro and in vivo. We identified risk genes expressed in brain organizers and sequential gene regulatory networks across corticogenesis revealing disease-specific critical phases, when NSCs are more vulnerable to gene dysfunctions, and converging signaling across multiple diseases. Moreover, we simulated the impact of risk transcription factor (TF) depletions on different neural cell types spanning the developing human neocortex and observed a spatiotemporal-dependent effect for each perturbation. Finally, single-cell transcriptomics of newly generated autism-affected patient-derived NSCs in vitro revealed recurrent alterations of TFs orchestrating brain patterning and NSC lineage commitment. This work opens new perspectives to explore human brain dysfunctions at the early phases of development.
Collapse
Affiliation(s)
- Xoel Mato-Blanco
- Hospital del Mar Research Institute, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Catalonia, Spain
| | - Suel-Kee Kim
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Alexandre Jourdon
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Fuchen Liu
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Alvaro Duque
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Flora M. Vaccarino
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Departments of Psychiatry, Genetics and Comparative Medicine, Wu Tsai Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Carlo Colantuoni
- Depts. of Neurology, Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Gabriel Santpere
- Hospital del Mar Research Institute, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Catalonia, Spain
| | - Nicola Micali
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
53
|
Hess JL, Barnett EJ, Hou J, Faraone SV, Glatt SJ. Polygenic Resilience Scores are Associated with Lower Penetrance of Schizophrenia Risk Genes, Protection Against Psychiatric and Medical Disorders, and Enhanced Mental Well-Being and Cognition. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.03.24308377. [PMID: 38883801 PMCID: PMC11177905 DOI: 10.1101/2024.06.03.24308377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
In the past decade, significant advances have been made in finding genomic risk loci for schizophrenia (SCZ). This, in turn, has enabled the search for SCZ resilience loci that mitigate the impact of SCZ risk genes. Recently, we discovered the first genomic resilience profile for SCZ, completely independent from the established risk loci for SCZ. We posited that these resilience loci protect against SCZ for those having a heighted genomic risk for SCZ. Nevertheless, our understanding of genetic resilience remains limited. It remains unclear whether resilience loci foster protection against adverse states associated with SCZ risk related to clinical, cognitive, and brain-structural phenotypes. To address this knowledge gap, we analyzed data from 487,409 participants from the UK Biobank, and found that resilience loci for SCZ afforded protection against lifetime psychiatric (schizophrenia, bipolar disorder, anxiety, and depression) and non-psychiatric medical disorders (such as asthma, cardiovascular disease, digestive disorders, metabolic disorders, and external causes of morbidity and mortality). Resilience loci also protected against self-harm behaviors, improved fluid intelligence, and larger whole-brain and brain-regional sizes. Overall, this study sheds light on the range of phenotypes that are significantly associated with resilience loci within the general population, revealing distinct patterns separate from those associated with SCZ risk loci. Our findings indicate that resilience loci may offer protection against serious psychiatric and medical outcomes, co-morbidities, and cognitive impairment. Therefore, it is conceivable that resilience loci facilitate adaptive processes linked to improved health and life expectancy.
Collapse
Affiliation(s)
- Jonathan L. Hess
- Department of Psychiatry & Behavioral Sciences, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, NY USA
| | - Eric J. Barnett
- Department of Psychiatry & Behavioral Sciences, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, NY USA
| | - Jiahui Hou
- Department of Psychiatry & Behavioral Sciences, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, NY USA
| | - Stephen V. Faraone
- Department of Psychiatry & Behavioral Sciences, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, NY USA
- Department of Neuroscience & Physiology, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, NY USA
| | - Stephen J. Glatt
- Department of Psychiatry & Behavioral Sciences, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, NY USA
- Department of Neuroscience & Physiology, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, NY USA
| |
Collapse
|
54
|
Krug A, Stein F, David FS, Schmitt S, Brosch K, Pfarr JK, Ringwald KG, Meller T, Thomas-Odenthal F, Meinert S, Thiel K, Winter A, Waltemate L, Lemke H, Grotegerd D, Opel N, Repple J, Hahn T, Streit F, Witt SH, Rietschel M, Andlauer TFM, Nöthen MM, Philipsen A, Nenadić I, Dannlowski U, Kircher T, Forstner AJ. Factor analysis of lifetime psychopathology and its brain morphometric and genetic correlates in a transdiagnostic sample. Transl Psychiatry 2024; 14:235. [PMID: 38830892 PMCID: PMC11148082 DOI: 10.1038/s41398-024-02936-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
There is a lack of knowledge regarding the relationship between proneness to dimensional psychopathological syndromes and the underlying pathogenesis across major psychiatric disorders, i.e., Major Depressive Disorder (MDD), Bipolar Disorder (BD), Schizoaffective Disorder (SZA), and Schizophrenia (SZ). Lifetime psychopathology was assessed using the OPerational CRITeria (OPCRIT) system in 1,038 patients meeting DSM-IV-TR criteria for MDD, BD, SZ, or SZA. The cohort was split into two samples for exploratory and confirmatory factor analyses. All patients were scanned with 3-T MRI, and data was analyzed with the CAT-12 toolbox in SPM12. Psychopathological factor scores were correlated with gray matter volume (GMV) and cortical thickness (CT). Finally, factor scores were used for exploratory genetic analyses including genome-wide association studies (GWAS) and polygenic risk score (PRS) association analyses. Three factors (paranoid-hallucinatory syndrome, PHS; mania, MA; depression, DEP) were identified and cross-validated. PHS was negatively correlated with four GMV clusters comprising parts of the hippocampus, amygdala, angular, middle occipital, and middle frontal gyri. PHS was also negatively associated with the bilateral superior temporal, left parietal operculum, and right angular gyrus CT. No significant brain correlates were observed for the two other psychopathological factors. We identified genome-wide significant associations for MA and DEP. PRS for MDD and SZ showed a positive effect on PHS, while PRS for BD showed a positive effect on all three factors. This study investigated the relationship of lifetime psychopathological factors and brain morphometric and genetic markers. Results highlight the need for dimensional approaches, overcoming the limitations of the current psychiatric nosology.
Collapse
Affiliation(s)
- Axel Krug
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany.
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany.
| | - Friederike S David
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Simon Schmitt
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Kai G Ringwald
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Florian Thomas-Odenthal
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lena Waltemate
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Hannah Lemke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- German Centre for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Jena, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - Till F M Andlauer
- Department of Neurology, Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Centre for Human Genetics, University of Marburg, Marburg, Germany
| |
Collapse
|
55
|
Chen LM, Pokhvisneva I, Lahti-Pulkkinen M, Kvist T, Baldwin JR, Parent C, Silveira PP, Lahti J, Räikkönen K, Glover V, O'Connor TG, Meaney MJ, O'Donnell KJ. Independent Prediction of Child Psychiatric Symptoms by Maternal Mental Health and Child Polygenic Risk Scores. J Am Acad Child Adolesc Psychiatry 2024; 63:640-651. [PMID: 37977417 PMCID: PMC11105503 DOI: 10.1016/j.jaac.2023.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/10/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE Prenatal maternal symptoms of depression and anxiety are associated with an increased risk for child socioemotional and behavioral difficulties, supporting the fetal origins of mental health hypothesis. However, to date, studies have not considered specific genomic risk as a possible confound. METHOD The Avon Longitudinal Study of Parents and Children (ALSPAC) cohort (n = 5,546) was used to test if child polygenic risk score for attention-deficit/hyperactivity disorder (ADHD), schizophrenia, or depression confounds or modifies the impact of prenatal maternal depression and anxiety on child internalizing, externalizing, and total emotional/behavioral symptoms from age 4 to 16 years. Longitudinal child and adolescent symptom data were analyzed in the ALSPAC cohort using generalized estimating equations. Replication analyses were done in an independent cohort (Prevention of Preeclampsia and Intrauterine Growth Restriction [PREDO] cohort; n = 514) from Finland, which provided complementary measures of maternal mental health and child psychiatric symptoms. RESULTS Maternal depression and anxiety and child polygenic risk scores independently and additively predicted behavioral and emotional symptoms from childhood through mid-adolescence. There was a robust prediction of child and adolescent symptoms from both prenatal maternal depression (generalized estimating equation estimate = 0.093, 95% CI 0.065-0.121, p = 2.66 × 10-10) and anxiety (generalized estimating equation estimate = 0.065, 95% CI 0.037-0.093, p = 1.62 × 10-5) after adjusting for child genomic risk for mental disorders. There was a similar independent effect of maternal depression (B = 0.156, 95% CI 0.066-0.246, p = .001) on child symptoms in the PREDO cohort. Genetically informed sensitivity analyses suggest that shared genetic risk only partially explains the reported association between prenatal maternal depression and offspring mental health. CONCLUSION These findings highlight the genomic contribution to the fetal origins of mental health hypothesis and further evidence that prenatal maternal depression and anxiety are robust in utero risks for child and adolescent psychiatric symptoms. PLAIN LANGUAGE SUMMARY Depression and anxiety affect approximately 15% of pregnant women, and children exposed to maternal depression or anxiety during pregnancy are at higher risk of developing mental health problems. However, the degree to which shared genetics explains the association between maternal and child mental health is unknown. In this study the authors generated polygenic risk scores (PRS), which provide a single measure of genetic risk for complex traits, to investigate the impact of shared genetic risk on the development of childhood mental health problems. Utilizing two longitudinal studies (n = 6,060), the authors found that PRS only partially explained the association between prenatal maternal depression and childhood mental health problems. These analyses show prenatal maternal depression remained a significant predictor of childhood mental health problems after accounting for shared genetic risk, further highlighting that prenatal maternal mental health is a robust predictor of child and adolescent mental health problems.
Collapse
Affiliation(s)
- Lawrence M Chen
- Douglas Research Centre, McGill University, Canada; Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Canada
| | - Irina Pokhvisneva
- Douglas Research Centre, McGill University, Canada; Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Canada
| | - Marius Lahti-Pulkkinen
- University of Helsinki, Finland; Finnish Institute for Health and Welfare, Finland; University of Edinburgh, United Kingdom
| | | | | | - Carine Parent
- Douglas Research Centre, McGill University, Canada; Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Canada
| | - Patricia P Silveira
- Douglas Research Centre, McGill University, Canada; Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Canada
| | - Jari Lahti
- University of Helsinki, Finland; Turku Institute for Advanced Studies, University of Turku, Finland
| | | | - Vivette Glover
- Institute of Reproductive and Developmental Biology, Imperial College London, United Kingdom
| | - Thomas G O'Connor
- University of Rochester, Rochester, New York; Wynne Center for Family Research, University of Rochester, Rochester, New York
| | - Michael J Meaney
- Douglas Research Centre, McGill University, Canada; Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Canada; Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Canada; Singapore Institute for Clinical Sciences, Agency for Science, Technology & Research (A∗STAR), Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kieran J O'Donnell
- Douglas Research Centre, McGill University, Canada; Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Canada; Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut; Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
56
|
Deng YT, Wu BS, Yang L, He XY, Kang JJ, Liu WS, Li ZY, Wu XR, Zhang YR, Chen SD, Ge YJ, Huang YY, Feng JF, Zhu Y, Dong Q, Mao Y, Cheng W, Yu JT. Large-scale whole-exome sequencing of neuropsychiatric diseases and traits in 350,770 adults. Nat Hum Behav 2024; 8:1194-1208. [PMID: 38589703 DOI: 10.1038/s41562-024-01861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
While numerous genomic loci have been identified for neuropsychiatric conditions, the contribution of protein-coding variants has yet to be determined. Here we conducted a large-scale whole-exome-sequencing study to interrogate the impact of protein-coding variants on 46 neuropsychiatric diseases and 23 traits in 350,770 adults from the UK Biobank. Twenty new genes were associated with neuropsychiatric diseases through coding variants, among which 16 genes had impacts on the longitudinal risks of diseases. Thirty new genes were associated with neuropsychiatric traits, with SYNGAP1 showing pleiotropic effects across cognitive function domains. Pairwise estimation of genetic correlations at the coding-variant level highlighted shared genetic associations among pairs of neurodegenerative diseases and mental disorders. Lastly, a comprehensive multi-omics analysis suggested that alterations in brain structures, blood proteins and inflammation potentially contribute to the gene-phenotype linkages. Overall, our findings characterized a compendium of protein-coding variants for future research on the biology and therapeutics of neuropsychiatric phenotypes.
Collapse
Affiliation(s)
- Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Yu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ju-Jiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Wei-Shi Liu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ze-Yu Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Xin-Rui Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Jun Ge
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Yuan Huang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Ying Zhu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital Fudan University, Shanghai, China
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Zhejiang, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
57
|
Hara T, Kazuno AA, Toyota T, Ueda J, Shuno T, Mukai J, Sato TA, Matsumoto N, Yoshikawa T, Takata A. A case of bipolar I disorder with a loss-of-function variant of schizophrenia risk gene SETD1A: possible expansion of the relevant clinical spectrum supported by a meta-analysis. Psychiatry Clin Neurosci 2024; 78:374-375. [PMID: 38646907 DOI: 10.1111/pcn.13669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/21/2024] [Accepted: 03/10/2024] [Indexed: 04/23/2024]
Affiliation(s)
- Tomonori Hara
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Wako, Japan
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
- Hatsuishi Hospital, Kashiwa, Japan
| | - An-A Kazuno
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Wako, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Wako, Japan
- Kokoro Medical Office, Akita, Japan
| | - Junko Ueda
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Wako, Japan
| | | | - Jun Mukai
- Research and Development Center for Precision Medicine, University of Tsukuba, Tsukuba, Japan
| | - Taka-Aki Sato
- Research and Development Center for Precision Medicine, University of Tsukuba, Tsukuba, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Japan
| | - Atsushi Takata
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Wako, Japan
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Japan
| |
Collapse
|
58
|
Downey AE, Bradley ER, Lerche AS, O'Donovan A, Krystal AD, Woolley J. A Plea for Nuance: Should People with a Family History of Bipolar Disorder Be Excluded from Clinical Trials of Psilocybin Therapy? PSYCHEDELIC MEDICINE (NEW ROCHELLE, N.Y.) 2024; 2:61-73. [PMID: 40051581 PMCID: PMC11658676 DOI: 10.1089/psymed.2023.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Background As the field of psychedelic therapy grows, it is vital to consider who can safely engage with psilocybin therapy. In most modern clinical trials of psilocybin therapy, individuals with a family history of bipolar disorder (BD) have been excluded from participation because of their genetic predisposition for developing BD. Review Case studies and survey data shed light on the risks of psilocybin therapy among those with a family history of BD in the absence of data from modern clinical trials. We review existing evidence that could inform risk stratification for these individuals, including genetic proximity to the affected relative, BD type, age at onset in the relative, and participant age. Hypothesizing that the risk of developing BD may predict the risk of developing serious adverse events when engaging with psilocybin therapy, we propose a risk stratification tool to be utilized when determining the relative risks of psilocybin therapy to those with a family history of BD in the context of clinical trials. Conclusion Balancing the need for effective treatments against the potential for serious adverse events in those undergoing psilocybin therapy with a family history of BD, we argue for caution in psychedelic clinical trials but not outright exclusion of these individuals. Our risk stratification tool allows for more nuanced inclusion and exclusion criteria.
Collapse
Affiliation(s)
- Amanda E. Downey
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Ellen R. Bradley
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, California, USA
- San Francisco Veteran's Affairs Medical Center, San Francisco, California, USA
| | - Anna S. Lerche
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, California, USA
- Copenhagen Research Centre for Mental Health, Copenhagen University Hospital, Copenhagen, Denmark
| | - Aoife O'Donovan
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, California, USA
- San Francisco Veteran's Affairs Medical Center, San Francisco, California, USA
| | - Andrew D. Krystal
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Joshua Woolley
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, California, USA
- San Francisco Veteran's Affairs Medical Center, San Francisco, California, USA
| |
Collapse
|
59
|
Dai R, Chu T, Zhang M, Wang X, Jourdon A, Wu F, Mariani J, Vaccarino FM, Lee D, Fullard JF, Hoffman GE, Roussos P, Wang Y, Wang X, Pinto D, Wang SH, Zhang C, Chen C, Liu C. Evaluating performance and applications of sample-wise cell deconvolution methods on human brain transcriptomic data. SCIENCE ADVANCES 2024; 10:eadh2588. [PMID: 38781336 PMCID: PMC11114236 DOI: 10.1126/sciadv.adh2588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 01/05/2024] [Indexed: 05/25/2024]
Abstract
Sample-wise deconvolution methods estimate cell-type proportions and gene expressions in bulk tissue samples, yet their performance and biological applications remain unexplored, particularly in human brain transcriptomic data. Here, nine deconvolution methods were evaluated with sample-matched data from bulk tissue RNA sequencing (RNA-seq), single-cell/nuclei (sc/sn) RNA-seq, and immunohistochemistry. A total of 1,130,767 nuclei per cells from 149 adult postmortem brains and 72 organoid samples were used. The results showed the best performance of dtangle for estimating cell proportions and bMIND for estimating sample-wise cell-type gene expressions. For eight brain cell types, 25,273 cell-type eQTLs were identified with deconvoluted expressions (decon-eQTLs). The results showed that decon-eQTLs explained more schizophrenia GWAS heritability than bulk tissue or single-cell eQTLs did alone. Differential gene expressions associated with Alzheimer's disease, schizophrenia, and brain development were also examined using the deconvoluted data. Our findings, which were replicated in bulk tissue and single-cell data, provided insights into the biological applications of deconvoluted data in multiple brain disorders.
Collapse
Affiliation(s)
- Rujia Dai
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Tianyao Chu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhang
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Wang
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | | | - Feinan Wu
- Child Study Center, Yale University, New Haven, CT, USA
| | | | - Flora M. Vaccarino
- Child Study Center, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Donghoon Lee
- Center for Disease Neurogenomics, Departments of Psychiatry and Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F. Fullard
- Center for Disease Neurogenomics, Departments of Psychiatry and Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriel E. Hoffman
- Center for Disease Neurogenomics, Departments of Psychiatry and Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Departments of Psychiatry and Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yue Wang
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Xusheng Wang
- Department of Biology, University of North Dakota, Grand Forks, ND, USA
| | - Dalila Pinto
- Departments of Psychiatry and Genetics and Genomic Sciences, Mindich Child Health and Development Institute, and Icahn Genomics Institute for Data Science and Genomic Technology, Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sidney H. Wang
- Center for Human Genetics, The Brown foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chunling Zhang
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | | | - Chao Chen
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chunyu Liu
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
60
|
DeGroat W, Inoue F, Ashuach T, Yosef N, Ahituv N, Kreimer A. Comprehensive network modeling approaches unravel dynamic enhancer-promoter interactions across neural differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595375. [PMID: 38826254 PMCID: PMC11142193 DOI: 10.1101/2024.05.22.595375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background Increasing evidence suggests that a substantial proportion of disease-associated mutations occur in enhancers, regions of non-coding DNA essential to gene regulation. Understanding the structures and mechanisms of regulatory programs this variation affects can shed light on the apparatuses of human diseases. Results We collected epigenetic and gene expression datasets from seven early time points during neural differentiation. Focusing on this model system, we constructed networks of enhancer-promoter interactions, each at an individual stage of neural induction. These networks served as the base for a rich series of analyses, through which we demonstrated their temporal dynamics and enrichment for various disease-associated variants. We applied the Girvan-Newman clustering algorithm to these networks to reveal biologically relevant substructures of regulation. Additionally, we demonstrated methods to validate predicted enhancer-promoter interactions using transcription factor overexpression and massively parallel reporter assays. Conclusions Our findings suggest a generalizable framework for exploring gene regulatory programs and their dynamics across developmental processes. This includes a comprehensive approach to studying the effects of disease-associated variation on transcriptional networks. The techniques applied to our networks have been published alongside our findings as a computational tool, E-P-INAnalyzer. Our procedure can be utilized across different cellular contexts and disorders.
Collapse
Affiliation(s)
- William DeGroat
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, 679 Hoes Lane West, Piscataway, NJ 08854, UAS
| | - Fumitaka Inoue
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Tal Ashuach
- Department of Electrical Engineering and Computer Sciences and Center for Computational Biology, University of California, Berkeley, 387 Soda Hall, Berkeley, CA 94720, USA
| | - Nir Yosef
- Department of Systems Immunology, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
- Chan-Zuckerberg Biohub, 499 Illinois St, San Francisco, CA 94158, USA
- Department of Systems Immunology, Ragon Institute of MGH, MIT, and Harvard Institute of Science, 400 Technology Square, Cambridge, MA 02139, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, 513 Parnassus Ave, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, 513 Parnassus Ave, CA 94143, USA
| | - Anat Kreimer
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, 679 Hoes Lane West, Piscataway, NJ 08854, UAS
- Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| |
Collapse
|
61
|
Joo YY, Lee E, Kim BG, Kim G, Seo J, Cha J. Polygenic architecture of brain structure and function, behaviors, and psychopathologies in children. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595444. [PMID: 38826224 PMCID: PMC11142157 DOI: 10.1101/2024.05.22.595444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The human brain undergoes structural and functional changes during childhood, a critical period in cognitive and behavioral development. Understanding the genetic architecture of the brain development in children can offer valuable insights into the development of the brain, cognition, and behaviors. Here, we integrated brain imaging-genetic-phenotype data from over 8,600 preadolescent children of diverse ethnic backgrounds using multivariate statistical techniques. We found a low-to-moderate level of SNP-based heritability in most IDPs, which is lower compared to the adult brain. Using sparse generalized canonical correlation analysis (SGCCA), we identified several covariation patterns among genome-wide polygenic scores (GPSs) of 29 traits, 7 different modalities of brain imaging-derived phenotypes (IDPs), and 266 cognitive and psychological phenotype data. In structural MRI, significant positive associations were observed between total grey matter volume, left ventral diencephalon volume, surface area of right accumbens and the GPSs of cognition-related traits. Conversely, negative associations were found with the GPSs of ADHD, depression and neuroticism. Additionally, we identified a significant positive association between educational attainment GPS and regional brain activation during the N-back task. The BMI GPS showed a positive association with fractional anisotropy (FA) of connectivity between the cerebellum cortex and amygdala in diffusion MRI, while the GPSs for educational attainment and cannabis use were negatively associated with the same IDPs. Our GPS-based prediction models revealed substantial genetic contributions to cognitive variability, while the genetic basis for many mental and behavioral phenotypes remained elusive. This study delivers a comprehensive map of the relationships between genetic profiles, neuroanatomical diversity, and the spectrum of cognitive and behavioral traits in preadolescence.
Collapse
Affiliation(s)
- Yoonjung Yoonie Joo
- Department of Psychology, Seoul National University
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Eunji Lee
- Department of Psychology, Seoul National University
| | - Bo-Gyeom Kim
- Department of Psychology, Seoul National University
| | - Gakyung Kim
- Department of Brain and Cognitive Sciences, Seoul National University
| | - Jungwoo Seo
- Department of Brain and Cognitive Sciences, Seoul National University
| | - Jiook Cha
- Department of Psychology, Seoul National University
- Department of Brain and Cognitive Sciences, Seoul National University
- Institute of Psychological Science, Seoul National University, Seoul, South Korea
- Graduate School of Artificial Intelligence, Seoul National University, Seoul, South Korea
| |
Collapse
|
62
|
Knol MJ, Poot RA, Evans TE, Satizabal CL, Mishra A, Sargurupremraj M, van der Auwera S, Duperron MG, Jian X, Hostettler IC, van Dam-Nolen DHK, Lamballais S, Pawlak MA, Lewis CE, Carrion-Castillo A, van Erp TGM, Reinbold CS, Shin J, Scholz M, Håberg AK, Kämpe A, Li GHY, Avinun R, Atkins JR, Hsu FC, Amod AR, Lam M, Tsuchida A, Teunissen MWA, Aygün N, Patel Y, Liang D, Beiser AS, Beyer F, Bis JC, Bos D, Bryan RN, Bülow R, Caspers S, Catheline G, Cecil CAM, Dalvie S, Dartigues JF, DeCarli C, Enlund-Cerullo M, Ford JM, Franke B, Freedman BI, Friedrich N, Green MJ, Haworth S, Helmer C, Hoffmann P, Homuth G, Ikram MK, Jack CR, Jahanshad N, Jockwitz C, Kamatani Y, Knodt AR, Li S, Lim K, Longstreth WT, Macciardi F, Mäkitie O, Mazoyer B, Medland SE, Miyamoto S, Moebus S, Mosley TH, Muetzel R, Mühleisen TW, Nagata M, Nakahara S, Palmer ND, Pausova Z, Preda A, Quidé Y, Reay WR, Roshchupkin GV, Schmidt R, Schreiner PJ, Setoh K, Shapland CY, Sidney S, St Pourcain B, Stein JL, Tabara Y, Teumer A, Uhlmann A, van der Lugt A, Vernooij MW, Werring DJ, Windham BG, Witte AV, Wittfeld K, Yang Q, Yoshida K, Brunner HG, Le Grand Q, Sim K, Stein DJ, Bowden DW, Cairns MJ, Hariri AR, Cheung CL, Andersson S, Villringer A, Paus T, Cichon S, Calhoun VD, Crivello F, Launer LJ, White T, Koudstaal PJ, Houlden H, Fornage M, Matsuda F, Grabe HJ, Ikram MA, Debette S, Thompson PM, Seshadri S, Adams HHH. Genetic variants for head size share genes and pathways with cancer. Cell Rep Med 2024; 5:101529. [PMID: 38703765 PMCID: PMC11148644 DOI: 10.1016/j.xcrm.2024.101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/18/2023] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
The size of the human head is highly heritable, but genetic drivers of its variation within the general population remain unmapped. We perform a genome-wide association study on head size (N = 80,890) and identify 67 genetic loci, of which 50 are novel. Neuroimaging studies show that 17 variants affect specific brain areas, but most have widespread effects. Gene set enrichment is observed for various cancers and the p53, Wnt, and ErbB signaling pathways. Genes harboring lead variants are enriched for macrocephaly syndrome genes (37-fold) and high-fidelity cancer genes (9-fold), which is not seen for human height variants. Head size variants are also near genes preferentially expressed in intermediate progenitor cells, neural cells linked to evolutionary brain expansion. Our results indicate that genes regulating early brain and cranial growth incline to neoplasia later in life, irrespective of height. This warrants investigation of clinical implications of the link between head size and cancer.
Collapse
Affiliation(s)
- Maria J Knol
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Raymond A Poot
- Department of Cell Biology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Tavia E Evans
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA; The Framingham Heart Study, Framingham, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Aniket Mishra
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, Bordeaux, France
| | - Muralidharan Sargurupremraj
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Sandra van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; German Centre of Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Marie-Gabrielle Duperron
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, Bordeaux, France
| | - Xueqiu Jian
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Isabel C Hostettler
- Stroke Research Centre, University College London, Institute of Neurology, London, UK; Department of Neurosurgery, Klinikum rechts der Isar, University of Munich, Munich, Germany; Neurosurgical Department, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Dianne H K van Dam-Nolen
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Sander Lamballais
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Mikolaj A Pawlak
- Department of Neurology, Poznań University of Medical Sciences, Poznań, Poland; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cora E Lewis
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Amaia Carrion-Castillo
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA; Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA
| | - Céline S Reinbold
- Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland; Institute of Computational Life Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Jean Shin
- The Hospital for Sick Children, University of Toronto, Toronto, Canada; Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany; LIFE Research Center for Civilization Disease, Leipzig, Germany
| | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Radiology and Nuclear Medicine, St. Olavs University Hospital, Trondheim, Norway
| | - Anders Kämpe
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Gloria H Y Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Reut Avinun
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Joshua R Atkins
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia; Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Alyssa R Amod
- Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Max Lam
- North Region, Institute of Mental Health, Singapore, Singapore; Population and Global Health, LKC Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ami Tsuchida
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, Bordeaux, France; Groupe d'imagerie neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, Bordeaux, France
| | - Mariël W A Teunissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neurology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Nil Aygün
- Department of Genetics UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yash Patel
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Dan Liang
- Department of Genetics UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexa S Beiser
- The Framingham Heart Study, Framingham, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Frauke Beyer
- Department of Neurology, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany; Collaborative Research Center 1052 Obesity Mechanisms, Faculty of Medicine, University of Leipzig, Leipzig, Germany; Day Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Daniel Bos
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - R Nick Bryan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Robin Bülow
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gwenaëlle Catheline
- University of Bordeaux, CNRS, INCIA, UMR 5287, team NeuroImagerie et Cognition Humaine, Bordeaux, France; EPHE-PSL University, Bordeaux, France
| | - Charlotte A M Cecil
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Shareefa Dalvie
- Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Jean-François Dartigues
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team SEPIA, UMR 1219, Bordeaux, France
| | - Charles DeCarli
- Department of Neurology and Center for Neuroscience, University of California at Davis, Sacramento, CA, USA
| | - Maria Enlund-Cerullo
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland
| | - Judith M Ford
- San Francisco Veterans Administration Medical Center, San Francisco, CA, USA; University of California, San Francisco, San Francisco, CA, USA
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Barry I Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Melissa J Green
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia; Neuroscience Research Australia, Sydney, NSW, Australia
| | - Simon Haworth
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Catherine Helmer
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team LEHA, UMR 1219, Bordeaux, France
| | - Per Hoffmann
- Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland; Institute of Human Genetics, University of Bonn Medical School, Bonn, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | | | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck USC School of Medicine, Los Angeles, CA, USA
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Yoichiro Kamatani
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Annchen R Knodt
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Shuo Li
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Keane Lim
- Research Division, Institute of Mental Health, Singapore, Singapore
| | - W T Longstreth
- Department of Neurology, University of Washington, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Fabio Macciardi
- Laboratory of Molecular Psychiatry, Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden; Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland
| | - Bernard Mazoyer
- Groupe d'imagerie neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, Bordeaux, France; Centre Hospitalo-Universitaire de Bordeaux, Bordeaux, France
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Psychology, University of Queensland, Brisbane, QLD, Australia; Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susanne Moebus
- Institute for Urban Public Health, University of Duisburg-Essen, Essen, Germany
| | - Thomas H Mosley
- Department of Medicine, Division of Geriatrics, University of Mississippi Medical Center, Jackson, MS, USA; Memory Impairment and Neurodegenerative Dementia (MIND) Center, Jackson, MS, USA
| | - Ryan Muetzel
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Thomas W Mühleisen
- Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; C. and O. Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Manabu Nagata
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Soichiro Nakahara
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA; Unit 2, Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc, 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, Canada; Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Adrian Preda
- Department of Psychiatry, University of California, Irvine, Irvine, CA, USA
| | - Yann Quidé
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia; Neuroscience Research Australia, Sydney, NSW, Australia
| | - William R Reay
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia; Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Gennady V Roshchupkin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
| | | | - Kazuya Setoh
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Chin Yang Shapland
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands; MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, University of Bristol, Bristol, UK
| | - Stephen Sidney
- Kaiser Permanente Division of Research, Oakland, CA, USA
| | - Beate St Pourcain
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Jason L Stein
- Department of Genetics UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Alexander Teumer
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Anne Uhlmann
- Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Aad van der Lugt
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - David J Werring
- Stroke Research Centre, University College London, Institute of Neurology, London, UK
| | - B Gwen Windham
- Department of Medicine, Division of Geriatrics, University of Mississippi Medical Center, Jackson, MS, USA; Memory Impairment and Neurodegenerative Dementia (MIND) Center, Jackson, MS, USA
| | - A Veronica Witte
- Department of Neurology, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany; Collaborative Research Center 1052 Obesity Mechanisms, Faculty of Medicine, University of Leipzig, Leipzig, Germany; Day Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; German Centre of Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Han G Brunner
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Clinical Genetics MUMC+, GROW School of Oncology and Developmental Biology, and MHeNs School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Quentin Le Grand
- Bordeaux Population Health, University of Bordeaux, INSERM U1219, Bordeaux, France
| | - Kang Sim
- West Region, Institute of Mental Health, Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Dan J Stein
- Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany; SAMRC Unit on Risk and Resilience, University of Cape Town, Cape Town, South Africa
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia; Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Ahmad R Hariri
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Ching-Lung Cheung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sture Andersson
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany; Day Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Tomas Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Sven Cichon
- Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) {Georgia State, Georgia Tech, Emory}, Atlanta, GA, USA
| | - Fabrice Crivello
- Groupe d'imagerie neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, Bordeaux, France
| | - Lenore J Launer
- Laboratory of Epidemiology, Demography, and Biometry, Intramural Research Program, National Institute of Aging, The National Institutes of Health, Bethesda, MD, USA
| | - Tonya White
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Peter J Koudstaal
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Henry Houlden
- Stroke Research Centre, University College London, Institute of Neurology, London, UK
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Stéphanie Debette
- Bordeaux Population Health, University of Bordeaux, INSERM U1219, Bordeaux, France; Department of Neurology, Bordeaux University Hospital, Bordeaux, France
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck USC School of Medicine, Los Angeles, CA, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA; The Framingham Heart Study, Framingham, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Hieab H H Adams
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile.
| |
Collapse
|
63
|
Johnson SL, Murray G, Kriegsfeld LJ, Manoogian ENC, Mason L, Allen JD, Berk M, Panda S, Rajgopal NA, Gibson JC, Joyner KJ, Villanueva R, Michalak EE. A randomized controlled trial to compare the effects of time-restricted eating versus Mediterranean diet on symptoms and quality of life in bipolar disorder. BMC Psychiatry 2024; 24:374. [PMID: 38762486 PMCID: PMC11102174 DOI: 10.1186/s12888-024-05790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/25/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND The primary objective of this randomized controlled trial (RCT) is to establish the effectiveness of time-restricted eating (TRE) compared with the Mediterranean diet for people with bipolar disorder (BD) who have symptoms of sleep disorders or circadian rhythm sleep-wake disruption. This work builds on the growing evidence that TRE has benefits for improving circadian rhythms. TRE and Mediterranean diet guidance will be offered remotely using self-help materials and an app, with coaching support. METHODS This study is an international RCT to compare the effectiveness of TRE and the Mediterranean diet. Three hundred participants will be recruited primarily via social media. Main inclusion criteria are: receiving treatment for a diagnosis of BD I or II (confirmed via DIAMOND structured diagnostic interview), endorsement of sleep or circadian problems, self-reported eating window of ≥ 12 h, and no current mood episode, acute suicidality, eating disorder, psychosis, alcohol or substance use disorder, or other health conditions that would interfere with or limit the safety of following the dietary guidance. Participants will be asked to complete baseline daily food logging for two weeks and then will be randomly allocated to follow TRE or the Mediterranean diet for 8 weeks, during which time, they will continue to complete daily food logging. Intervention content will be delivered via an app. Symptom severity interviews will be conducted at baseline; mid-intervention (4 weeks after the intervention begins); end of intervention; and at 6, 9, and 15 months post-baseline by phone or videoconference. Self-rated symptom severity and quality of life data will be gathered at those timepoints, as well as at 16 weeks post baseline. To provide a more refined index of whether TRE successfully decreases emotional lability and improves sleep, participants will be asked to complete a sleep diary (core CSD) each morning and complete six mood assessments per day for eight days at baseline and again at mid-intervention. DISCUSSION The planned research will provide novel and important information on whether TRE is more beneficial than the Mediterranean diet for reducing mood symptoms and improving quality of life in individuals with BD who also experience sleep or circadian problems. TRIAL REGISTRATION ClinicalTrials.gov ID NCT06188754.
Collapse
Affiliation(s)
- Sheri L Johnson
- Department of Psychology, University of California, Berkeley, USA.
| | - Greg Murray
- Centre for Mental Health, Swinburne University, Melbourne, VIC, 3122, Australia
| | | | - Emily N C Manoogian
- Regulatory Biology, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Liam Mason
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - J D Allen
- Department of Psychology, University of California, Berkeley, USA
| | - Michael Berk
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Satchidanda Panda
- Regulatory Biology, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | | | - Jake C Gibson
- Department of Psychology, University of California, Berkeley, USA
| | - Keanan J Joyner
- Department of Psychology, University of California, Berkeley, USA
| | | | - Erin E Michalak
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
64
|
Vessels T, Strayer N, Lee H, Choi KW, Zhang S, Han L, Morley TJ, Smoller JW, Xu Y, Ruderfer DM. Integrating Electronic Health Records and Polygenic Risk to Identify Genetically Unrelated Comorbidities of Schizophrenia That May Be Modifiable. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100297. [PMID: 38645405 PMCID: PMC11033077 DOI: 10.1016/j.bpsgos.2024.100297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 04/23/2024] Open
Abstract
Background Patients with schizophrenia have substantial comorbidity that contributes to reduced life expectancy of 10 to 20 years. Identifying modifiable comorbidities could improve rates of premature mortality. Conditions that frequently co-occur but lack shared genetic risk with schizophrenia are more likely to be products of treatment, behavior, or environmental factors and therefore are enriched for potentially modifiable associations. Methods Phenome-wide comorbidity was calculated from electronic health records of 250,000 patients across 2 independent health care institutions (Vanderbilt University Medical Center and Mass General Brigham); associations with schizophrenia polygenic risk scores were calculated across the same phenotypes in linked biobanks. Results Schizophrenia comorbidity was significantly correlated across institutions (r = 0.85), and the 77 identified comorbidities were consistent with prior literature. Overall, comorbidity and polygenic risk score associations were significantly correlated (r = 0.55, p = 1.29 × 10-118). However, directly testing for the absence of genetic effects identified 36 comorbidities that had significantly equivalent schizophrenia polygenic risk score distributions between cases and controls. This set included phenotypes known to be consequences of antipsychotic medications (e.g., movement disorders) or of the disease such as reduced hygiene (e.g., diseases of the nail), thereby validating the approach. It also highlighted phenotypes with less clear causal relationships and minimal genetic effects such as tobacco use disorder and diabetes. Conclusions This work demonstrates the consistency and robustness of electronic health record-based schizophrenia comorbidities across independent institutions and with the existing literature. It identifies known and novel comorbidities with an absence of shared genetic risk, indicating other causes that may be modifiable and where further study of causal pathways could improve outcomes for patients.
Collapse
Affiliation(s)
- Tess Vessels
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Digital Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nicholas Strayer
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hyunjoon Lee
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Karmel W. Choi
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Siwei Zhang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lide Han
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Digital Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Theodore J. Morley
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Digital Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jordan W. Smoller
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Yaomin Xu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Douglas M. Ruderfer
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Digital Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
65
|
Bureau A, Berthelot N, Ricard J, Lafrance C, Jomphe V, Dioni A, Fortin-Fabbro É, Boisvert MC, Maziade M. Heterogeneity in the longitudinal courses of global functioning in children at familial risk of major psychiatric disorders: Association with trauma and familial characteristics. Bipolar Disord 2024; 26:265-276. [PMID: 37957788 DOI: 10.1111/bdi.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
OBJECTIVES The extent to which heterogeneity in childhood risk trajectories may underlie later heterogeneity in schizophrenia (SZ), bipolar disorder (BP), and major depressive disorder (MDD) remains a chief question. Answers may optimally be found by studying the longitudinal trajectories of children born to an affected parent. We aimed to differentiate trajectories of global functioning and their sensitive periods from the age of 6 to 17 years in children at familial risk (FHRs). METHODS First, a latent class mixed model analysis (LCMM) was applied to yearly ratings of the Children's Global Assessment Scale (CGAS) from the age of 6 to 17 years in 170 FHRs born to a parent affected by DSM-IV SZ (N = 37), BP (N = 82) or MDD (N = 51). Then, we compared the obtained Classes or trajectories of FHRs in terms of sex, parental diagnosis, IQ, child clinical status, childhood trauma, polygenic risk score (PRS), and outcome in transition to illness. RESULTS The LCMM on yearly CGAS trajectories identified a 4-class solution showing markedly different childhood and adolescence dynamic courses and temporal vulnerability windows marked by a functioning decline and a degree of specificity in parental diagnosis. Moreover, IQ, trauma exposure, PRS level, and timing of later transition to illness differentiated the trajectories. Almost half (46%) of the FHRs exhibited a good and stable global functioning trajectory. CONCLUSIONS FHRs of major psychiatric disorders show heterogeneous functional decline during development associated with parental diagnosis, polygenic risk loading, and childhood trauma.
Collapse
Affiliation(s)
- Alexandre Bureau
- Department of Social and Preventive Medicine, Faculty of Medicine, Université Laval, Québec, Quebec, Canada
- Cervo Brain Research Centre, Québec, Quebec, Canada
| | - Nicolas Berthelot
- Cervo Brain Research Centre, Québec, Quebec, Canada
- Université du Québec à Trois-Rivières, Department of Nursing Sciences, Trois-Rivieres, Quebec, Canada
| | | | | | | | - Abdoulaye Dioni
- Department of Social and Preventive Medicine, Faculty of Medicine, Université Laval, Québec, Quebec, Canada
| | | | | | - Michel Maziade
- Cervo Brain Research Centre, Québec, Quebec, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
66
|
Pisanu C, Congiu D, Meloni A, Paribello P, Patrinos GP, Severino G, Ardau R, Chillotti C, Manchia M, Squassina A. Dissecting the genetic overlap between severe mental disorders and markers of cellular aging: Identification of pleiotropic genes and druggable targets. Neuropsychopharmacology 2024; 49:1033-1041. [PMID: 38402365 PMCID: PMC11039620 DOI: 10.1038/s41386-024-01822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/17/2024] [Accepted: 02/04/2024] [Indexed: 02/26/2024]
Abstract
Patients with severe mental disorders such as bipolar disorder (BD), schizophrenia (SCZ) and major depressive disorder (MDD) show a substantial reduction in life expectancy, increased incidence of comorbid medical conditions commonly observed with advanced age and alterations of aging hallmarks. While severe mental disorders are heritable, the extent to which genetic predisposition might contribute to accelerated cellular aging is not known. We used bivariate causal mixture models to quantify the trait-specific and shared architecture of mental disorders and 2 aging hallmarks (leukocyte telomere length [LTL] and mitochondrial DNA copy number), and the conjunctional false discovery rate method to detect shared genetic loci. We integrated gene expression data from brain regions from GTEx and used different tools to functionally annotate identified loci and investigate their druggability. Aging hallmarks showed low polygenicity compared with severe mental disorders. We observed a significant negative global genetic correlation between MDD and LTL (rg = -0.14, p = 6.5E-10), and no significant results for other severe mental disorders or for mtDNA-cn. However, conditional QQ plots and bivariate causal mixture models pointed to significant pleiotropy among all severe mental disorders and aging hallmarks. We identified genetic variants significantly shared between LTL and BD (n = 17), SCZ (n = 55) or MDD (n = 19), or mtDNA-cn and BD (n = 4), SCZ (n = 12) or MDD (n = 1), with mixed direction of effects. The exonic rs7909129 variant in the SORCS3 gene, encoding a member of the retromer complex involved in protein trafficking and intracellular/intercellular signaling, was associated with shorter LTL and increased predisposition to all severe mental disorders. Genetic variants underlying risk of SCZ or MDD and shorter LTL modulate expression of several druggable genes in different brain regions. Genistein, a phytoestrogen with anti-inflammatory and antioxidant effects, was an upstream regulator of 2 genes modulated by variants associated with risk of MDD and shorter LTL. While our results suggest that shared heritability might play a limited role in contributing to accelerated cellular aging in severe mental disorders, we identified shared genetic determinants and prioritized different druggable targets and compounds.
Collapse
Affiliation(s)
- Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| | - Donatella Congiu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Anna Meloni
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Pasquale Paribello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - George P Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, School of Health Sciences, Department of Pharmacy, University of Patras, Patras, Greece
- College of Medicine and Health Sciences, Department of Genetics and Genomics, United Arab Emirates University, Al‑Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al‑Ain, Abu Dhabi, UAE
| | - Giovanni Severino
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Raffaella Ardau
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
67
|
Dines M, Kes M, Ailán D, Cetkovich-Bakmas M, Born C, Grunze H. Bipolar disorders and schizophrenia: discrete disorders? Front Psychiatry 2024; 15:1352250. [PMID: 38745778 PMCID: PMC11091416 DOI: 10.3389/fpsyt.2024.1352250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Background With similarities in heritability, neurobiology and symptomatology, the question has been raised whether schizophrenia and bipolar disorder are truly distinctive disorders or belong to a continuum. This narrative review summarizes common and distinctive findings from genetics, neuroimaging, cognition and clinical course that may help to solve this ethiopathogenetic puzzle. Methods The authors conducted a literature search for papers listed in PubMed and Google Scholar, using the search terms "schizophrenia" and "bipolar disorder" combined with different terms such as "genes", "neuroimaging studies", "phenomenology differences", "cognition", "epidemiology". Articles were considered for inclusion if they were written in English or Spanish, published as full articles, if they compared subjects with schizophrenia and bipolar disorder, or subjects with either disorder with healthy controls, addressing differences between groups. Results Several findings support the hypothesis that schizophrenia and bipolar disorder are discrete disorders, yet some overlapping of findings exists. The evidence for heritability of both SZ and BD is obvious, as well as the environmental impact on individual manifestations of both disorders. Neuroimaging studies support subtle differences between disorders, it appears to be rather a pattern of irregularities than an unequivocally unique finding distinguishing schizophrenia from bipolar disorder. The cognitive profile displays differences between disorders in certain domains, such as premorbid intellectual functioning and executive functions. Finally, the timing and trajectory of cognitive impairment in both disorders also differs. Conclusion The question whether SZ and BD belong to a continuum or are separate disorders remains a challenge for further research. Currently, our research tools may be not precise enough to carve out distinctive, unique and undisputable differences between SZ and BD, but current evidence favors separate disorders. Given that differences are subtle, a way to overcome diagnostic uncertainties in the future could be the application of artificial intelligence based on BigData. Limitations Despite the detailed search, this article is not a full and complete review of all available studies on the topic. The search and selection of papers was also limited to articles in English and Spanish. Selection of papers and conclusions may be biased by the personal view and clinical experience of the authors.
Collapse
Affiliation(s)
- Micaela Dines
- Department of Psychiatry, Instituto de Neurología Cognitiva (INECO), Buenos Aires, Argentina
- Department of Psychiatry, Instituto de Neurociencia Cognitiva y Traslacional (Consejo Nacional de Investigaciones Científicas y Técnicas - Fundación INECO - Universidad Favaloro), Buenos Aires, Argentina
| | - Mariana Kes
- Department of Psychiatry, Instituto de Neurología Cognitiva (INECO), Buenos Aires, Argentina
- Department of Psychiatry, Instituto de Neurociencia Cognitiva y Traslacional (Consejo Nacional de Investigaciones Científicas y Técnicas - Fundación INECO - Universidad Favaloro), Buenos Aires, Argentina
| | - Delfina Ailán
- Department of Psychiatry, Instituto de Neurología Cognitiva (INECO), Buenos Aires, Argentina
- Department of Psychiatry, Instituto de Neurociencia Cognitiva y Traslacional (Consejo Nacional de Investigaciones Científicas y Técnicas - Fundación INECO - Universidad Favaloro), Buenos Aires, Argentina
| | - Marcelo Cetkovich-Bakmas
- Department of Psychiatry, Instituto de Neurología Cognitiva (INECO), Buenos Aires, Argentina
- Department of Psychiatry, Instituto de Neurociencia Cognitiva y Traslacional (Consejo Nacional de Investigaciones Científicas y Técnicas - Fundación INECO - Universidad Favaloro), Buenos Aires, Argentina
| | - Christoph Born
- Department of Psychiatry, Psychiatrie Schwäbisch Hall, Ringstraße, Germany
- Department of Psychiatry, Paracelsus Medical University, Nuremberg, Germany
| | - Heinz Grunze
- Department of Psychiatry, Psychiatrie Schwäbisch Hall, Ringstraße, Germany
- Department of Psychiatry, Paracelsus Medical University, Nuremberg, Germany
| |
Collapse
|
68
|
Phalnikar K, Srividya M, Mythri SV, Vasavi NS, Ganguly A, Kumar A, S P, Kalia K, Mishra SS, Dhanya SK, Paul P, Holla B, Ganesh S, Reddy PC, Sud R, Viswanath B, Muralidharan B. Altered neuroepithelial morphogenesis and migration defects in iPSC-derived cerebral organoids and 2D neural stem cells in familial bipolar disorder. OXFORD OPEN NEUROSCIENCE 2024; 3:kvae007. [PMID: 38638145 PMCID: PMC11024480 DOI: 10.1093/oons/kvae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 04/20/2024]
Abstract
Bipolar disorder (BD) is a severe mental illness that can result from neurodevelopmental aberrations, particularly in familial BD, which may include causative genetic variants. In the present study, we derived cortical organoids from BD patients and healthy (control) individuals from a clinically dense family in the Indian population. Our data reveal that the patient organoids show neurodevelopmental anomalies, including organisational, proliferation and migration defects. The BD organoids show a reduction in both the number of neuroepithelial buds/cortical rosettes and the ventricular zone size. Additionally, patient organoids show a lower number of SOX2-positive and EdU-positive cycling progenitors, suggesting a progenitor proliferation defect. Further, the patient neurons show abnormal positioning in the ventricular/intermediate zone of the neuroepithelial bud. Transcriptomic analysis of control and patient organoids supports our cellular topology data and reveals dysregulation of genes crucial for progenitor proliferation and neuronal migration. Lastly, time-lapse imaging of neural stem cells in 2D in vitro cultures reveals abnormal cellular migration in BD samples. Overall, our study pinpoints a cellular and molecular deficit in BD patient-derived organoids and neural stem cell cultures.
Collapse
Affiliation(s)
- Kruttika Phalnikar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - M Srividya
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - S V Mythri
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - N S Vasavi
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Archisha Ganguly
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Aparajita Kumar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Padmaja S
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Kishan Kalia
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Srishti S Mishra
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Sreeja Kumari Dhanya
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Pradip Paul
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Bharath Holla
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Suhas Ganesh
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Puli Chandramouli Reddy
- Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, India-201314
| | - Reeteka Sud
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Biju Viswanath
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Bhavana Muralidharan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| |
Collapse
|
69
|
Wang T, Yu M, Gu X, Liang X, Wang P, Peng W, Liu D, Chen D, Huang C, Tan Y, Liu K, Xiang B. Mechanism of electroconvulsive therapy in schizophrenia: a bioinformatics analysis study of RNA-seq data. Psychiatr Genet 2024; 34:54-60. [PMID: 38441120 DOI: 10.1097/ypg.0000000000000362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
OBJECTIVE The molecular mechanism of electroconvulsive therapy (ECT) for schizophrenia remains unclear. The aim of this study was to uncover the underlying biological mechanisms of ECT in the treatment of schizophrenia using a transcriptional dataset. METHODS The peripheral blood mRNA sequencing data of eight patients (before and after ECT) and eight healthy controls were analyzed by integrated co-expression network analysis and the differentially expressed genes were analyzed by cluster analysis. Gene set overlap analysis was performed using the hypergeometric distribution of phypfunction in R. Associations of these gene sets with psychiatric disorders were explored. Tissue-specific enrichment analysis, gene ontology enrichment analysis, and protein-protein interaction enrichment analysis were used for gene set organization localization and pathway analysis. RESULTS We found the genes of the green-yellow module were significantly associated with the effect of ECT treatment and the common gene variants of schizophrenia ( P = 0.0061; family-wise error correction). The genes of the green-yellow module are mainly enriched in brain tissue and mainly involved in the pathways of neurotrophin, mitogen-activated protein kinase and long-term potentiation. CONCLUSION Genes associated with the efficacy of ECT were predominantly enriched in neurotrophin, mitogen-activated protein kinase and long-term potentiation signaling pathways.
Collapse
Affiliation(s)
| | - Minglan Yu
- Medical Laboratory Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province
| | - Xiaochu Gu
- Clinical Laboratory, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu Province
| | | | | | | | - Dongmei Liu
- Department of Psychiatry, Yibin Fourth People's Hospital, Yibin
| | - Dechao Chen
- Department of Psychiatry, Yibin Fourth People's Hospital, Yibin
| | | | - Youguo Tan
- Department of Psychiatry, Zigong Mental Health Center, Zigong, Sichuan Province, China
| | | | | |
Collapse
|
70
|
Bourque VR, Poulain C, Proulx C, Moreau CA, Joober R, Forgeot d'Arc B, Huguet G, Jacquemont S. Genetic and phenotypic similarity across major psychiatric disorders: a systematic review and quantitative assessment. Transl Psychiatry 2024; 14:171. [PMID: 38555309 PMCID: PMC10981737 DOI: 10.1038/s41398-024-02866-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024] Open
Abstract
There is widespread overlap across major psychiatric disorders, and this is the case at different levels of observations, from genetic variants to brain structures and function and to symptoms. However, it remains unknown to what extent these commonalities at different levels of observation map onto each other. Here, we systematically review and compare the degree of similarity between psychiatric disorders at all available levels of observation. We searched PubMed and EMBASE between January 1, 2009 and September 8, 2022. We included original studies comparing at least four of the following five diagnostic groups: Schizophrenia, Bipolar Disorder, Major Depressive Disorder, Autism Spectrum Disorder, and Attention Deficit Hyperactivity Disorder, with measures of similarities between all disorder pairs. Data extraction and synthesis were performed by two independent researchers, following the PRISMA guidelines. As main outcome measure, we assessed the Pearson correlation measuring the degree of similarity across disorders pairs between studies and biological levels of observation. We identified 2975 studies, of which 28 were eligible for analysis, featuring similarity measures based on single-nucleotide polymorphisms, gene-based analyses, gene expression, structural and functional connectivity neuroimaging measures. The majority of correlations (88.6%) across disorders between studies, within and between levels of observation, were positive. To identify a consensus ranking of similarities between disorders, we performed a principal component analysis. Its first dimension explained 51.4% (95% CI: 43.2, 65.4) of the variance in disorder similarities across studies and levels of observation. Based on levels of genetic correlation, we estimated the probability of another psychiatric diagnosis in first-degree relatives and showed that they were systematically lower than those observed in population studies. Our findings highlight that genetic and brain factors may underlie a large proportion, but not all of the diagnostic overlaps observed in the clinic.
Collapse
Affiliation(s)
| | - Cécile Poulain
- CHU Sainte-Justine Azrieli Research Center, Université de Montréal, Montreal, QC, Canada
| | - Catherine Proulx
- CHU Sainte-Justine Azrieli Research Center, Université de Montréal, Montreal, QC, Canada
| | - Clara A Moreau
- Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Ridha Joober
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Baudouin Forgeot d'Arc
- CHU Sainte-Justine Azrieli Research Center, Université de Montréal, Montreal, QC, Canada
| | - Guillaume Huguet
- CHU Sainte-Justine Azrieli Research Center, Université de Montréal, Montreal, QC, Canada
| | - Sébastien Jacquemont
- CHU Sainte-Justine Azrieli Research Center, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
71
|
Xue A, Zhu Z, Wang H, Jiang L, Visscher PM, Zeng J, Yang J. Unravelling the complex causal effects of substance use behaviours on common diseases. COMMUNICATIONS MEDICINE 2024; 4:43. [PMID: 38472333 DOI: 10.1038/s43856-024-00473-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Substance use behaviours (SUB) including smoking, alcohol consumption, and coffee intake are associated with many health outcomes. However, whether the health effects of SUB are causal remains controversial, especially for alcohol consumption and coffee intake. METHODS In this study, we assess 11 commonly used Mendelian Randomization (MR) methods by simulation and apply them to investigate the causal relationship between 7 SUB traits and health outcomes. We also combine stratified regression, genetic correlation, and MR analyses to investigate the dosage-dependent effects. RESULTS We show that smoking initiation has widespread risk effects on common diseases such as asthma, type 2 diabetes, and peripheral vascular disease. Alcohol consumption shows risk effects specifically on cardiovascular diseases, dyslipidemia, and hypertensive diseases. We find evidence of dosage-dependent effects of coffee and tea intake on common diseases (e.g., cardiovascular disease and osteoarthritis). We observe that the minor allele effect of rs4410790 (the top signal for tea intake level) is negative on heavy tea intake ( b ̂ G W A S = - 0.091 , s . e . = 0.007 , P = 4.90 × 10 - 35 ) but positive on moderate tea intake ( b ̂ G W A S = 0.034 , s . e . = 0.006 , P = 3.40 × 10 - 8 ) , compared to the non-tea-drinkers. CONCLUSION Our study reveals the complexity of the health effects of SUB and informs design for future studies aiming to dissect the causal relationships between behavioural traits and complex diseases.
Collapse
Affiliation(s)
- Angli Xue
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zhihong Zhu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
- National Centre for Register-Based Research, Aarhus University, Aarhus V, 8210, Denmark
| | - Huanwei Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Longda Jiang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jian Zeng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jian Yang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
72
|
Park J, Lee E, Cho G, Hwang H, Kim BG, Kim G, Joo YY, Cha J. Gene-environment pathways to cognitive intelligence and psychotic-like experiences in children. eLife 2024; 12:RP88117. [PMID: 38441539 PMCID: PMC10942586 DOI: 10.7554/elife.88117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
In children, psychotic-like experiences (PLEs) are related to risk of psychosis, schizophrenia, and other mental disorders. Maladaptive cognitive functioning, influenced by genetic and environmental factors, is hypothesized to mediate the relationship between these factors and childhood PLEs. Using large-scale longitudinal data, we tested the relationships of genetic and environmental factors (such as familial and neighborhood environment) with cognitive intelligence and their relationships with current and future PLEs in children. We leveraged large-scale multimodal data of 6,602 children from the Adolescent Brain and Cognitive Development Study. Linear mixed model and a novel structural equation modeling (SEM) method that allows estimation of both components and factors were used to estimate the joint effects of cognitive phenotypes polygenic scores (PGSs), familial and neighborhood socioeconomic status (SES), and supportive environment on NIH Toolbox cognitive intelligence and PLEs. We adjusted for ethnicity (genetically defined), schizophrenia PGS, and additionally unobserved confounders (using computational confound modeling). Our findings indicate that lower cognitive intelligence and higher PLEs are significantly associated with lower PGSs for cognitive phenotypes, lower familial SES, lower neighborhood SES, and less supportive environments. Specifically, cognitive intelligence mediates the effects of these factors on PLEs, with supportive parenting and positive school environments showing the strongest impact on reducing PLEs. This study underscores the influence of genetic and environmental factors on PLEs through their effects on cognitive intelligence. Our findings have policy implications in that improving school and family environments and promoting local economic development may enhance cognitive and mental health in children.
Collapse
Affiliation(s)
- Junghoon Park
- Interdisciplinary Program in Artificial Intelligence, College of Engineering, Seoul National UniversitySeoulRepublic of Korea
| | - Eunji Lee
- Department of Psychology, College of Social Sciences, Seoul National UniversitySeoulRepublic of Korea
| | - Gyeongcheol Cho
- Department of Psychology, College of Arts and Sciences, The Ohio State UniversityColumbusUnited States
| | - Heungsun Hwang
- Department of Psychology, McGill UniversityMontréalCanada
| | - Bo-Gyeom Kim
- Department of Psychology, College of Social Sciences, Seoul National UniversitySeoulRepublic of Korea
| | - Gakyung Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National UniversitySeoulRepublic of Korea
| | - Yoonjung Yoonie Joo
- Department of Psychology, College of Social Sciences, Seoul National UniversitySeoulRepublic of Korea
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan UniversitySeoulRepublic of Korea
- Samsung Medical CenterSeoulRepublic of Korea
| | - Jiook Cha
- Interdisciplinary Program in Artificial Intelligence, College of Engineering, Seoul National UniversitySeoulRepublic of Korea
- Department of Psychology, College of Social Sciences, Seoul National UniversitySeoulRepublic of Korea
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
73
|
Lori A, Pearce BD, Katrinli S, Carter S, Gillespie CF, Bradley B, Wingo AP, Jovanovic T, Michopoulos V, Duncan E, Hinrichs RC, Smith A, Ressler KJ. Genetic risk for hospitalization of African American patients with severe mental illness reveals HLA loci. Front Psychiatry 2024; 15:1140376. [PMID: 38469033 PMCID: PMC10925622 DOI: 10.3389/fpsyt.2024.1140376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Background Mood disorders such as major depressive and bipolar disorders, along with posttraumatic stress disorder (PTSD), schizophrenia (SCZ), and other psychotic disorders, constitute serious mental illnesses (SMI) and often lead to inpatient psychiatric care for adults. Risk factors associated with increased hospitalization rate in SMI (H-SMI) are largely unknown but likely involve a combination of genetic, environmental, and socio-behavioral factors. We performed a genome-wide association study in an African American cohort to identify possible genes associated with hospitalization due to SMI (H-SMI). Methods Patients hospitalized for psychiatric disorders (H-SMI; n=690) were compared with demographically matched controls (n=4467). Quality control and imputation of genome-wide data were performed following the Psychiatric Genetic Consortium (PGC)-PTSD guidelines. Imputation of the Human Leukocyte Antigen (HLA) locus was performed using the HIBAG package. Results Genome-wide association analysis revealed a genome-wide significant association at 6p22.1 locus in the ubiquitin D (UBD/FAT10) gene (rs362514, p=9.43x10-9) and around the HLA locus. Heritability of H-SMI (14.6%) was comparable to other psychiatric disorders (4% to 45%). We observed a nominally significant association with 2 HLA alleles: HLA-A*23:01 (OR=1.04, p=2.3x10-3) and HLA-C*06:02 (OR=1.04, p=1.5x10-3). Two other genes (VSP13D and TSPAN9), possibly associated with immune response, were found to be associated with H-SMI using gene-based analyses. Conclusion We observed a strong association between H-SMI and a locus that has been consistently and strongly associated with SCZ in multiple studies (6p21.32-p22.1), possibly indicating an involvement of the immune system and the immune response in the development of severe transdiagnostic SMI.
Collapse
Affiliation(s)
- Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Brad D. Pearce
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, United States
| | - Seyma Katrinli
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, United States
| | - Sierra Carter
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| | - Charles F. Gillespie
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Bekh Bradley
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Aliza P. Wingo
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
- Mental Health Service Line, Department of Veterans Affairs Health Care System, Decatur, GA, United States
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University, Detroit, MI, United States
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Erica Duncan
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
- Mental Health Service Line, Department of Veterans Affairs Health Care System, Decatur, GA, United States
| | - Rebecca C. Hinrichs
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Alicia Smith
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, United States
| | - Kerry J. Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, United States
| |
Collapse
|
74
|
Chen Y, Liu S, Ren Z, Wang F, Jiang Y, Dai R, Duan F, Han C, Ning Z, Xia Y, Li M, Yuan K, Qiu W, Yan XX, Dai J, Kopp RF, Huang J, Xu S, Tang B, Gamazon ER, Bigdeli T, Gershon E, Huang H, Ma C, Liu C, Chen C. Brain eQTLs of European, African American, and Asian ancestry improve interpretation of schizophrenia GWAS. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.13.24301833. [PMID: 38405973 PMCID: PMC10888997 DOI: 10.1101/2024.02.13.24301833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Research on brain expression quantitative trait loci (eQTLs) has illuminated the genetic underpinnings of schizophrenia (SCZ). Yet, the majority of these studies have been centered on European populations, leading to a constrained understanding of population diversities and disease risks. To address this gap, we examined genotype and RNA-seq data from African Americans (AA, n=158), Europeans (EUR, n=408), and East Asians (EAS, n=217). When comparing eQTLs between EUR and non-EUR populations, we observed concordant patterns of genetic regulatory effect, particularly in terms of the effect sizes of the eQTLs. However, 343,737 cis-eQTLs (representing ∼17% of all eQTLs pairs) linked to 1,276 genes (about 10% of all eGenes) and 198,769 SNPs (approximately 16% of all eSNPs) were identified only in the non-EUR populations. Over 90% of observed population differences in eQTLs could be traced back to differences in allele frequency. Furthermore, 35% of these eQTLs were notably rare (MAF < 0.05) in the EUR population. Integrating brain eQTLs with SCZ signals from diverse populations, we observed a higher disease heritability enrichment of brain eQTLs in matched populations compared to mismatched ones. Prioritization analysis identified seven new risk genes ( SFXN2 , RP11-282018.3 , CYP17A1 , VPS37B , DENR , FTCDNL1 , and NT5DC2 ), and three potential novel regulatory variants in known risk genes ( CNNM2 , C12orf65 , and MPHOSPH9 ) that were missed in the EUR dataset. Our findings underscore that increasing genetic ancestral diversity is more efficient for power improvement than merely increasing the sample size within single-ancestry eQTLs datasets. Such a strategy will not only improve our understanding of the biological underpinnings of population structures but also pave the way for the identification of novel risk genes in SCZ.
Collapse
|
75
|
Morozova A, Ushakova V, Pavlova O, Bairamova S, Andryshenko N, Ochneva A, Abramova O, Zorkina Y, Spektor VA, Gadisov T, Ukhov A, Zubkov E, Solovieva K, Alexeeva P, Khobta E, Nebogina K, Kozlov A, Klimenko T, Gurina O, Shport S, Kostuyk G, Chekhonin V, Pavlov K. BDNF, DRD4, and HTR2A Gene Allele Frequency Distribution and Association with Mental Illnesses in the European Part of Russia. Genes (Basel) 2024; 15:240. [PMID: 38397229 PMCID: PMC10887670 DOI: 10.3390/genes15020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The prevalence of mental disorders and how they are diagnosed represent some of the major problems in psychiatry. Modern genetic tools offer the potential to reduce the complications concerning diagnosis. However, the vast genetic diversity in the world population requires a closer investigation of any selected populations. In the current research, four polymorphisms, namely rs6265 in BDNF, rs10835210 in BDNF, rs6313 in HTR2A, and rs1800955 in DRD4, were analyzed in a case-control study of 2393 individuals (1639 patients with mental disorders (F20-F29, F30-F48) and 754 controls) from the European part of Russia using the TaqMan SNP genotyping method. Significant associations between rs6265 BDNF and rs1800955 DRD4 and mental impairments were detected when comparing the general group of patients with mental disorders (without separation into diagnoses) to the control group. Associations of rs6265 in BDNF, rs1800955 in DRD4, and rs6313 in HTR2A with schizophrenia in patients from the schizophrenia group separately compared to the control group were also found. The obtained results can extend the concept of a genetic basis for mental disorders in the Russian population and provide a basis for the future improvement in psychiatric diagnostics.
Collapse
Affiliation(s)
- Anna Morozova
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Valeriya Ushakova
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Neurobiology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga Pavlova
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Sakeena Bairamova
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Nika Andryshenko
- Department of Biology, MSU-BIT Shenzhen University, Shenzhen 518172, China;
| | - Aleksandra Ochneva
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Olga Abramova
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Yana Zorkina
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Valery A. Spektor
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Timur Gadisov
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Andrey Ukhov
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Eugene Zubkov
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Kristina Solovieva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Polina Alexeeva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Elena Khobta
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Kira Nebogina
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Alexander Kozlov
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Tatyana Klimenko
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Olga Gurina
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Svetlana Shport
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - George Kostuyk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Vladimir Chekhonin
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Department of Medical Nanobiotechnologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Konstantin Pavlov
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| |
Collapse
|
76
|
Shi S, Zhang H, Chu X, Cai Q, He D, Qin X, Wei W, Zhang N, Zhao Y, Jia Y, Zhang F, Wen Y. Identifying novel chemical-related susceptibility genes for five psychiatric disorders through integrating genome-wide association study and tissue-specific 3'aQTL annotation datasets. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-023-01753-0. [PMID: 38305800 DOI: 10.1007/s00406-023-01753-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
The establishment of 3'aQTLs comprehensive database provides an opportunity to help explore the functional interpretation from the genome-wide association study (GWAS) data of psychiatric disorders. In this study, we aim to search novel susceptibility genes, pathways, and related chemicals of five psychiatric disorders via GWAS and 3'aQTLs datasets. The GWAS datasets of five psychiatric disorders were collected from the open platform of Psychiatric Genomics Consortium (PGC, https://www.med.unc.edu/pgc/ ) and iPSYCH ( https://ipsych.dk/ ) (Demontis et al. in Nat Genet 51(1):63-75, 2019; Grove et al. in Nat Genet 51:431-444, 2019; Genomic Dissection of Bipolar Disorder and Schizophrenia in Cell 173: 1705-1715.e1716, 2018; Mullins et al. in Nat Genet 53: 817-829; Howard et al. in Nat Neurosci 22: 343-352, 2019). The 3'untranslated region (3'UTR) alternative polyadenylation (APA) quantitative trait loci (3'aQTLs) summary datasets of 12 brain regions were obtained from another public platform ( https://wlcb.oit.uci.edu/3aQTLatlas/ ) (Cui et al. in Nucleic Acids Res 50: D39-D45, 2022). First, we aligned the GWAS-associated SNPs of psychiatric disorders and datasets of 3'aQTLs, and then, the GWAS-associated 3'aQTLs were identified from the overlap. Second, gene ontology (GO) and pathway analysis was applied to investigate the potential biological functions of matching genes based on the methods provided by MAGMA. Finally, chemical-related gene-set analysis (GSA) was also conducted by MAGMA to explore the potential interaction of GWAS-associated 3'aQTLs and multiple chemicals in the mechanism of psychiatric disorders. A number of susceptibility genes with 3'aQTLs were found to be associated with psychiatric disorders and some of them had brain-region specificity. For schizophrenia (SCZ), HLA-A showed associated with psychiatric disorders in all 12 brain regions, such as cerebellar hemisphere (P = 1.58 × 10-36) and cortex (P = 1.58 × 10-36). GO and pathway analysis identified several associated pathways, such as Phenylpropanoid Metabolic Process (GO:0009698, P = 6.24 × 10-7 for SCZ). Chemical-related GSA detected several chemical-related gene sets associated with psychiatric disorders. For example, gene sets of Ferulic Acid (P = 6.24 × 10-7), Morin (P = 4.47 × 10-2) and Vanillic Acid (P = 6.24 × 10-7) were found to be associated with SCZ. By integrating the functional information from 3'aQTLs, we identified several susceptibility genes and associated pathways especially chemical-related gene sets for five psychiatric disorders. Our results provided new insights to understand the etiology and mechanism of psychiatric disorders.
Collapse
Affiliation(s)
- Sirong Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Xiaoge Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Qingqing Cai
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Dan He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Xiaoyue Qin
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Na Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Yijing Zhao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
77
|
LaBianca S, Brikell I, Helenius D, Loughnan R, Mefford J, Palmer CE, Walker R, Gådin JR, Krebs M, Appadurai V, Vaez M, Agerbo E, Pedersen MG, Børglum AD, Hougaard DM, Mors O, Nordentoft M, Mortensen PB, Kendler KS, Jernigan TL, Geschwind DH, Ingason A, Dahl AW, Zaitlen N, Dalsgaard S, Werge TM, Schork AJ. Polygenic profiles define aspects of clinical heterogeneity in attention deficit hyperactivity disorder. Nat Genet 2024; 56:234-244. [PMID: 38036780 PMCID: PMC11439085 DOI: 10.1038/s41588-023-01593-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/25/2023] [Indexed: 12/02/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a complex disorder that manifests variability in long-term outcomes and clinical presentations. The genetic contributions to such heterogeneity are not well understood. Here we show several genetic links to clinical heterogeneity in ADHD in a case-only study of 14,084 diagnosed individuals. First, we identify one genome-wide significant locus by comparing cases with ADHD and autism spectrum disorder (ASD) to cases with ADHD but not ASD. Second, we show that cases with ASD and ADHD, substance use disorder and ADHD, or first diagnosed with ADHD in adulthood have unique polygenic score (PGS) profiles that distinguish them from complementary case subgroups and controls. Finally, a PGS for an ASD diagnosis in ADHD cases predicted cognitive performance in an independent developmental cohort. Our approach uncovered evidence of genetic heterogeneity in ADHD, helping us to understand its etiology and providing a model for studies of other disorders.
Collapse
Affiliation(s)
- Sonja LaBianca
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Isabell Brikell
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus University, Aarhus, Denmark
| | - Dorte Helenius
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Robert Loughnan
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Joel Mefford
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Clare E Palmer
- Center for Human Development, University of California, San Diego, La Jolla, CA, USA
| | - Rebecca Walker
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jesper R Gådin
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Morten Krebs
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Vivek Appadurai
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Morteza Vaez
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Esben Agerbo
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Marianne Giørtz Pedersen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - David M Hougaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Aarhus, Denmark
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Copenhagen Mental Health Center, Mental Health Services Capital Region of Denmark Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Preben Bo Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Kenneth S Kendler
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Terry L Jernigan
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
- Center for Human Development, University of California, San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Daniel H Geschwind
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrés Ingason
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Andrew W Dahl
- Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
| | - Noah Zaitlen
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Søren Dalsgaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Thomas M Werge
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark.
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Andrew J Schork
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark.
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark.
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA.
| |
Collapse
|
78
|
Hörbeck E, Jonsson L, Malwade S, Karlsson R, Pålsson E, Sigström R, Sellgren CM, Landén M. Dissecting the impact of complement component 4A in bipolar disorder. Brain Behav Immun 2024; 116:150-159. [PMID: 38070620 DOI: 10.1016/j.bbi.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/31/2023] [Accepted: 12/04/2023] [Indexed: 01/21/2024] Open
Abstract
The genetic overlap between schizophrenia (SZ) and bipolar disorder (BD) is substantial. Polygenic risk scores have been shown to dissect different symptom dimensions within and across these two disorders. Here, we focused on the most strongly associated SZ risk locus located in the extended MHC region, which is largely explained by copy numbers of the gene coding for complement component 4A (C4A). First, we utilized existing brain tissue collections (N = 1,202 samples) and observed no altered C4A expression in BD samples. The generated C4A seeded co-expression networks displayed no genetic enrichment for BD. To study if genetically predicted C4A expression discriminates between subphenotypes of BD, we applied C4A expression scores to symptom dimensions in a total of 4,739 BD cases with deep phenotypic data. We identified a significant association between C4A expression and psychotic mood episodes in BD type 1 (BDI). No significant association was observed between C4A expression and the occurrence of non-affective psychotic episodes in BDI, the psychosis dimensions in the total BD sample, or any other subphenotype of BD. Overall, these results points to a distinct role of C4A in BD that is restricted to vulnerability for developing psychotic symptoms during mood episodes in BDI.
Collapse
Affiliation(s)
- Elin Hörbeck
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Sweden; Sahlgrenska University Hospital, Sweden.
| | - Lina Jonsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Sweden
| | - Susmita Malwade
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Erik Pålsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Sweden
| | - Robert Sigström
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Sweden
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Landén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
79
|
Tandon R, Nasrallah H, Akbarian S, Carpenter WT, DeLisi LE, Gaebel W, Green MF, Gur RE, Heckers S, Kane JM, Malaspina D, Meyer-Lindenberg A, Murray R, Owen M, Smoller JW, Yassin W, Keshavan M. The schizophrenia syndrome, circa 2024: What we know and how that informs its nature. Schizophr Res 2024; 264:1-28. [PMID: 38086109 DOI: 10.1016/j.schres.2023.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 03/01/2024]
Abstract
With new data about different aspects of schizophrenia being continually generated, it becomes necessary to periodically revisit exactly what we know. Along with a need to review what we currently know about schizophrenia, there is an equal imperative to evaluate the construct itself. With these objectives, we undertook an iterative, multi-phase process involving fifty international experts in the field, with each step building on learnings from the prior one. This review assembles currently established findings about schizophrenia (construct, etiology, pathophysiology, clinical expression, treatment) and posits what they reveal about its nature. Schizophrenia is a heritable, complex, multi-dimensional syndrome with varying degrees of psychotic, negative, cognitive, mood, and motor manifestations. The illness exhibits a remitting and relapsing course, with varying degrees of recovery among affected individuals with most experiencing significant social and functional impairment. Genetic risk factors likely include thousands of common genetic variants that each have a small impact on an individual's risk and a plethora of rare gene variants that have a larger individual impact on risk. Their biological effects are concentrated in the brain and many of the same variants also increase the risk of other psychiatric disorders such as bipolar disorder, autism, and other neurodevelopmental conditions. Environmental risk factors include but are not limited to urban residence in childhood, migration, older paternal age at birth, cannabis use, childhood trauma, antenatal maternal infection, and perinatal hypoxia. Structural, functional, and neurochemical brain alterations implicate multiple regions and functional circuits. Dopamine D-2 receptor antagonists and partial agonists improve psychotic symptoms and reduce risk of relapse. Certain psychological and psychosocial interventions are beneficial. Early intervention can reduce treatment delay and improve outcomes. Schizophrenia is increasingly considered to be a heterogeneous syndrome and not a singular disease entity. There is no necessary or sufficient etiology, pathology, set of clinical features, or treatment that fully circumscribes this syndrome. A single, common pathophysiological pathway appears unlikely. The boundaries of schizophrenia remain fuzzy, suggesting the absence of a categorical fit and need to reconceptualize it as a broader, multi-dimensional and/or spectrum construct.
Collapse
Affiliation(s)
- Rajiv Tandon
- Department of Psychiatry, WMU Homer Stryker School of Medicine, Kalamazoo, MI 49008, United States of America.
| | - Henry Nasrallah
- Department of Psychiatry, University of Cincinnati College of Medicine Cincinnati, OH 45267, United States of America
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, United States of America
| | - William T Carpenter
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Lynn E DeLisi
- Department of Psychiatry, Cambridge Health Alliance and Harvard Medical School, Cambridge, MA 02139, United States of America
| | - Wolfgang Gaebel
- Department of Psychiatry and Psychotherapy, LVR-Klinikum Dusseldorf, Heinrich-Heine University, Dusseldorf, Germany
| | - Michael F Green
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute of Neuroscience and Human Behavior, UCLA, Los Angeles, CA 90024, United States of America; Greater Los Angeles Veterans' Administration Healthcare System, United States of America
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States of America
| | - Stephan Heckers
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America
| | - John M Kane
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Glen Oaks, NY 11004, United States of America
| | - Dolores Malaspina
- Department of Psychiatry, Neuroscience, Genetics, and Genomics, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, United States of America
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannhein/Heidelberg University, Mannheim, Germany
| | - Robin Murray
- Institute of Psychiatry, Psychology, and Neuroscience, Kings College, London, UK
| | - Michael Owen
- Centre for Neuropsychiatric Genetics and Genomics, and Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Jordan W Smoller
- Center for Precision Psychiatry, Department of Psychiatry, Psychiatric and Neurodevelopmental Unit, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America
| | - Walid Yassin
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States of America
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States of America
| |
Collapse
|
80
|
Ji Y, Pearlson G, Bustillo J, Kochunov P, Turner JA, Jiang R, Shao W, Zhang X, Fu Z, Li K, Liu Z, Xu X, Zhang D, Qi S, Calhoun VD. Identifying psychosis subtypes use individualized covariance structural differential networks and multi-site clustering. Schizophr Res 2024; 264:130-139. [PMID: 38128344 DOI: 10.1016/j.schres.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 07/19/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Similarities among schizophrenia (SZ), schizoaffective disorder (SAD) and bipolar disorder (BP) including clinical phenotypes, brain alterations and risk genes, make it challenging to perform reliable separation among them. However, previous subtype identification that transcend traditional diagnostic boundaries were based on group-level neuroimaging features, ignoring individual-level inferences. METHODS 455 psychoses (178 SZs, 134 SADs and 143 BPs), their first-degree relatives (N = 453) and healthy controls (HCs, N = 220) were collected from Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP I) consortium. Individualized covariance structural differential networks (ICSDNs) were constructed for each patient and multi-site clustering was used to identify psychosis subtypes. Group differences between subtypes in clinical phenotypes and voxel-wise fractional amplitude of low frequency fluctuation (fALFF) were calculated, as well as between the corresponding relatives. RESULTS Two psychosis subtypes were identified with increased whole brain structural covariance, with decreased connectivity between amygdala-hippocampus and temporal-occipital cortex in subtype I (S-I) compared to subtype II (S-II), which was replicated under different clustering methods, number of edges and across datasets (B-SNIP II) and different brain atlases. S-I had higher emotional-related symptoms than S-II and showed significant fALFF decrease in temporal and occipital cortex, while S-II was more similar to HC. This pattern was consistently validated on relatives of S-I and S-II in both fALFF and clinical symptoms. CONCLUSIONS These findings reconcile categorical and dimensional perspectives of psychosis neurobiological heterogeneity, indicating that relatives of S-I might have greater predisposition in developing psychosis, while relatives of S-II are more likely to be healthy. This study contributes to the development of neuroimaging informed diagnostic classifications within psychosis spectrum.
Collapse
Affiliation(s)
- Yixin Ji
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, China
| | - Godfrey Pearlson
- Departments of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, CT, USA; Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA
| | - Juan Bustillo
- Departments of Neurosciences and Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Peter Kochunov
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jessica A Turner
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| | - Rongtao Jiang
- Departments of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Wei Shao
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, China
| | - Xiao Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
| | - Zening Fu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaowen Liu
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Xijia Xu
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, China.
| | - Shile Qi
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, China.
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA; Department of Electrical and Computer Engineering, Georgia Tech University, Atlanta, GA, USA
| |
Collapse
|
81
|
Niu L, Fang K, Han S, Xu C, Sun X. Resolving heterogeneity in schizophrenia, bipolar I disorder, and attention-deficit/hyperactivity disorder through individualized structural covariance network analysis. Cereb Cortex 2024; 34:bhad391. [PMID: 38142281 DOI: 10.1093/cercor/bhad391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 12/25/2023] Open
Abstract
Disruptions in large-scale brain connectivity are hypothesized to contribute to psychiatric disorders, including schizophrenia, bipolar I disorder, and attention-deficit/hyperactivity disorder. However, high inter-individual variation among patients with psychiatric disorders hinders achievement of unified findings. To this end, we adopted a newly proposed method to resolve heterogeneity of differential structural covariance network in schizophrenia, bipolar I disorder, and attention-deficit/hyperactivity disorder. This method could infer individualized structural covariance aberrance by assessing the deviation from healthy controls. T1-weighted anatomical images of 114 patients with psychiatric disorders (schizophrenia: n = 37; bipolar I disorder: n = 37; attention-deficit/hyperactivity disorder: n = 37) and 110 healthy controls were analyzed to obtain individualized differential structural covariance network. Patients exhibited tremendous heterogeneity in profiles of individualized differential structural covariance network. Despite notable heterogeneity, patients with the same disorder shared altered edges at network level. Moreover, individualized differential structural covariance network uncovered two distinct psychiatric subtypes with opposite differences in structural covariance edges, that were otherwise obscured when patients were merged, compared with healthy controls. These results provide new insights into heterogeneity and have implications for the nosology in psychiatric disorders.
Collapse
Affiliation(s)
- Lianjie Niu
- Department of Breast Disease, Henan Breast Cancer Center. The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Keke Fang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Chunmiao Xu
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xianfu Sun
- Department of Breast Disease, Henan Breast Cancer Center. The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| |
Collapse
|
82
|
Ohi K, Shimada M, Soda M, Nishizawa D, Fujikane D, Takai K, Kuramitsu A, Muto Y, Sugiyama S, Hasegawa J, Kitaichi K, Ikeda K, Shioiri T. Genome-wide DNA methylation risk scores for schizophrenia derived from blood and brain tissues further explain the genetic risk in patients stratified by polygenic risk scores for schizophrenia and bipolar disorder. BMJ MENTAL HEALTH 2024; 27:e300936. [PMID: 38216218 PMCID: PMC10806921 DOI: 10.1136/bmjment-2023-300936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/14/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND Genetic and environmental factors contribute to the pathogenesis of schizophrenia (SZ) and bipolar disorder (BD). Among genetic risk groups stratified by combinations of Polygenic Risk Score (PRS) deciles for SZ, BD and SZ versus BD, genetic SZ risk groups had high SZ risk and prominent cognitive impairments. Furthermore, epigenetic alterations are implicated in these disorders. However, it was unclear whether DNA Methylation Risk Scores (MRSs) for SZ risk derived from blood and brain tissues were associated with SZ risk, particularly the PRS-stratified genetic SZ risk group. METHODS Epigenome-wide association studies (EWASs) of SZ risk in whole blood were preliminarily conducted between 66 SZ patients and 30 healthy controls (HCs) and among genetic risk groups (individuals with low genetic risk for SZ and BD in HCs (n=30) and in SZ patients (n=11), genetic BD risk in SZ patients (n=25) and genetic SZ risk in SZ patients (n=30)) stratified by combinations of PRSs for SZ, BD and SZ versus BD. Next, differences in MRSs based on independent EWASs of SZ risk in whole blood, postmortem frontal cortex (FC) and superior temporal gyrus (STG) were investigated among our case‒control and PRS-stratified genetic risk status groups. RESULTS Among case‒control and genetic risk status groups, 33 and 351 genome-wide significant differentially methylated positions (DMPs) associated with SZ were identified, respectively, many of which were hypermethylated. Compared with the low genetic risk in HCs group, the genetic SZ risk in SZ group had 39 genome-wide significant DMPs, while the genetic BD risk in SZ group had only six genome-wide significant DMPs. The MRSs for SZ risk derived from whole blood, FC and STG were higher in our SZ patients than in HCs in whole blood and were particularly higher in the genetic SZ risk in SZ group than in the low genetic risk in HCs and genetic BD risk in SZ groups. Conversely, the MRSs for SZ risk based on our whole-blood EWASs among genetic risk groups were also associated with SZ in the FC and STG. There were no correlations between the MRSs and PRSs. CONCLUSIONS These findings suggest that the MRS is a potential genetic marker in understanding SZ, particularly in patients with a genetic SZ risk.
Collapse
Affiliation(s)
- Kazutaka Ohi
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of General Internal Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Mihoko Shimada
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Midori Soda
- Laboratory of Pharmaceutics, Department of Biomedical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Daisuke Fujikane
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kentaro Takai
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ayumi Kuramitsu
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yukimasa Muto
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kiyoyuki Kitaichi
- Laboratory of Pharmaceutics, Department of Biomedical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Toshiki Shioiri
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
83
|
Dollish HK, Tsyglakova M, McClung CA. Circadian rhythms and mood disorders: Time to see the light. Neuron 2024; 112:25-40. [PMID: 37858331 PMCID: PMC10842077 DOI: 10.1016/j.neuron.2023.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/09/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
The importance of time is ever prevalent in our world, and disruptions to the normal light/dark and sleep/wake cycle have now become the norm rather than the exception for a large part of it. All mood disorders, including seasonal affective disorder (SAD), major depressive disorder (MDD), and bipolar disorder (BD), are strongly associated with abnormal sleep and circadian rhythms in a variety of physiological processes. Environmental disruptions to normal sleep/wake patterns, light/dark changes, and seasonal changes can precipitate episodes. Moreover, treatments that target the circadian system have proven to be therapeutic in certain cases. This review will summarize much of our current knowledge of how these disorders associate with specific circadian phenotypes, as well as the neuronal mechanisms that link the circadian clock with mood regulation. We also discuss what has been learned from therapies that target circadian rhythms and how we may use current knowledge to develop more individually designed treatments.
Collapse
Affiliation(s)
- Hannah K Dollish
- Department of Psychiatry, University of Pittsburgh School of Medicine, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, USA
| | - Mariya Tsyglakova
- Department of Psychiatry, University of Pittsburgh School of Medicine, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, USA
| | - Colleen A McClung
- Department of Psychiatry, University of Pittsburgh School of Medicine, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, USA.
| |
Collapse
|
84
|
Haatveit B, Westlye LT, Vaskinn A, Flaaten CB, Mohn C, Bjella T, Sæther LS, Sundet K, Melle I, Andreassen OA, Alnæs D, Ueland T. Intra- and inter-individual cognitive variability in schizophrenia and bipolar spectrum disorder: an investigation across multiple cognitive domains. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:89. [PMID: 38110366 PMCID: PMC10728206 DOI: 10.1038/s41537-023-00414-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/17/2023] [Indexed: 12/20/2023]
Abstract
There is substantial cognitive heterogeneity among patients with schizophrenia (SZ) and bipolar disorders (BD). More knowledge about the magnitude and clinical correlates of performance variability could improve our understanding of cognitive impairments. Using double generalized linear models (DGLMs) we investigated cognitive mean and variability differences between patients with SZ (n = 905) and BD spectrum disorders (n = 522), and healthy controls (HC, n = 1170) on twenty-two variables. The analysis revealed significant case-control differences on 90% of the variables. Compared to HC, patients showed larger intra-individual (within subject) variability across tests and larger inter-individual (between subject) variability in measures of fine-motor speed, mental processing speed, and inhibitory control (SZ and BD), and in verbal learning and memory and intellectual functioning (SZ). In SZ, we found that lager intra -and inter (on inhibitory control and speed functions) individual variability, was associated with lower functioning and more negative symptoms. Inter-individual variability on single measures of memory and intellectual function was additionally associated with disorganized and positive symptoms, and use of antidepressants. In BD, there were no within-subject associations with symptom severity. However, greater inter-individual variability (primarily on inhibitory control and speeded functions) was associated with lower functioning, more negative -and disorganized symptoms, earlier age at onset, longer duration of illness, and increased medication use. These results highlight larger individual differences in patients compared to controls on various cognitive domains. Further investigations of the causes and correlates of individual differences in cognitive function are warranted.
Collapse
Affiliation(s)
- Beathe Haatveit
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Anja Vaskinn
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Camilla Bärthel Flaaten
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Christine Mohn
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thomas Bjella
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn Sofie Sæther
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Kjetil Sundet
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Torill Ueland
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
85
|
Ye J, Huang Z, Li Q, Li Z, Lan Y, Wang Z, Ni C, Wu X, Jiang T, Li Y, Yang Q, Lim J, Ren CY, Jiang M, Li S, Jin P, Chen JH, Zhao C. Transition of allele-specific DNA hydroxymethylation at regulatory loci is associated with phenotypic variation in monozygotic twins discordant for psychiatric disorders. BMC Med 2023; 21:491. [PMID: 38082312 PMCID: PMC10714646 DOI: 10.1186/s12916-023-03177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Major psychiatric disorders such as schizophrenia (SCZ) and bipolar disorder (BPD) are complex genetic mental illnesses. Their non-Mendelian features, such as those observed in monozygotic twins discordant for SCZ or BPD, are likely complicated by environmental modifiers of genetic effects. 5-Hydroxymethylcytosine (5hmC) is an important epigenetic mark in gene regulation, and whether it is linked to genetic variants that contribute to non-Mendelian features remains largely unexplored. METHODS We combined the 5hmC-selective chemical labeling method (5hmC-seq) and whole-genome sequencing (WGS) analysis of peripheral blood DNA obtained from monozygotic (MZ) twins discordant for SCZ or BPD to identify allelic imbalances in hydroxymethylome maps, and examined association of allele-specific hydroxymethylation (AShM) transition with disease susceptibility based on Bayes factors (BF) derived from the Bayesian generalized additive linear mixed model. We then performed multi-omics integrative analysis to determine the molecular pathogenic basis of those AShM sites. We finally employed luciferase reporter, CRISPR/Cas9 technology, electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), PCR, FM4-64 imaging analysis, and RNA sequencing to validate the function of interested AShM sites in the human neuroblastoma SK-N-SH cells and human embryonic kidney 293T (HEK293T) cells. RESULTS We identified thousands of genetic variants associated with AShM imbalances that exhibited phenotypic variation-associated AShM changes at regulatory loci. These AShM marks showed plausible associations with SCZ or BPD based on their effects on interactions among transcription factors (TFs), DNA methylation levels, or other epigenomic marks and thus contributed to dysregulated gene expression, which ultimately increased disease susceptibility. We then validated that competitive binding of POU3F2 on the alternative allele at the AShM site rs4558409 (G/T) in PLLP-enhanced PLLP expression, while the hydroxymethylated alternative allele, which alleviated the POU3F2 binding activity at the rs4558409 site, might be associated with the downregulated PLLP expression observed in BPD or SCZ. Moreover, disruption of rs4558409 promoted neural development and vesicle trafficking. CONCLUSION Our study provides a powerful strategy for prioritizing regulatory risk variants and contributes to our understanding of the interplay between genetic and epigenetic factors in mediating SCZ or BPD susceptibility.
Collapse
Affiliation(s)
- Junping Ye
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhanwang Huang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiyang Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Rehabilitation, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Zhongwei Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuting Lan
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China
| | - Zhongju Wang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chaoying Ni
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaohui Wu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tingyun Jiang
- The Third People's Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Yujing Li
- Departments of Human Genetics, Emory University, Atlanta, GA, USA
| | - Qiong Yang
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China
| | - Junghwa Lim
- Departments of Human Genetics, Emory University, Atlanta, GA, USA
| | - Cun-Yan Ren
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Meijun Jiang
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Guangdong Mental Health Center, Southern Medical University, Guangzhou, China
| | - Shufen Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Peng Jin
- Departments of Human Genetics, Emory University, Atlanta, GA, USA
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| | - Cunyou Zhao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Department of Rehabilitation, Zhujiang Hospital of Southern Medical University, Guangzhou, China.
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Guangdong Mental Health Center, Southern Medical University, Guangzhou, China.
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China.
| |
Collapse
|
86
|
Li H, Mazumder R, Lin X. Accurate and efficient estimation of local heritability using summary statistics and the linkage disequilibrium matrix. Nat Commun 2023; 14:7954. [PMID: 38040712 PMCID: PMC10692177 DOI: 10.1038/s41467-023-43565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
Existing SNP-heritability estimators that leverage summary statistics from genome-wide association studies (GWAS) are much less efficient (i.e., have larger standard errors) than the restricted maximum likelihood (REML) estimators which require access to individual-level data. We introduce a new method for local heritability estimation-Heritability Estimation with high Efficiency using LD and association Summary Statistics (HEELS)-that significantly improves the statistical efficiency of summary-statistics-based heritability estimator and attains comparable statistical efficiency as REML (with a relative statistical efficiency >92%). Moreover, we propose representing the empirical LD matrix as the sum of a low-rank matrix and a banded matrix. We show that this way of modeling the LD can not only reduce the storage and memory cost, but also improve the computational efficiency of heritability estimation. We demonstrate the statistical efficiency of HEELS and the advantages of our proposed LD approximation strategies both in simulations and through empirical analyses of the UK Biobank data.
Collapse
Affiliation(s)
- Hui Li
- Harvard T.H. Chan School of Public Health, Department of Biostatistics, Boston, MA, USA
| | - Rahul Mazumder
- Massachusetts Institute of Technology, Operations Research and Statistics group, Cambridge, MA, USA
| | - Xihong Lin
- Harvard T.H. Chan School of Public Health, Department of Biostatistics, Boston, MA, USA.
- Harvard University, Department of Statistics, Cambridge, MA, USA.
| |
Collapse
|
87
|
Liu H, Wang L, Yu H, Chen J, Sun P. Polygenic Risk Scores for Bipolar Disorder: Progress and Perspectives. Neuropsychiatr Dis Treat 2023; 19:2617-2626. [PMID: 38050614 PMCID: PMC10693760 DOI: 10.2147/ndt.s433023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/05/2023] [Indexed: 12/06/2023] Open
Abstract
Bipolar disorder (BD) is a common and highly heritable psychiatric disorder, the study of BD genetic characteristics can help with early prevention and individualized treatment. At the same time, BD is a highly heterogeneous polygenic genetic disorder with significant genetic overlap with other psychiatric disorders. In recent years, polygenic risk scores (PRS) derived from genome-wide association studies (GWAS) data have been widely used in genetic studies of various complex diseases and can be used to explore the genetic susceptibility of diseases. This review discusses phenotypic associations and genetic correlations with other conditions of BD based on PRS, and provides ideas for genetic studies and prevention of BD.
Collapse
Affiliation(s)
- Huanxi Liu
- Qingdao Medical College, Qingdao University, Qingdao, 266071, People’s Republic of China
- Qingdao Mental Health Center, Qingdao, 266034, People’s Republic of China
| | - Ligang Wang
- Qingdao Mental Health Center, Qingdao, 266034, People’s Republic of China
| | - Hui Yu
- Qingdao Mental Health Center, Qingdao, 266034, People’s Republic of China
| | - Jun Chen
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Ping Sun
- Qingdao Mental Health Center, Qingdao, 266034, People’s Republic of China
| |
Collapse
|
88
|
Bulik CM, Micali N, MacDermod CM, Qi B, Munn-Chernoff MA, Thornton LM, White J, Dinkler L, Pisetsky EM, Johnson J, Devine KR, Ortiz SN, Silverman AE, Berthold N, Dumain A, Guintivano J, Halvorsen M, Crowley JJ. ARFID Genes and Environment (ARFID-GEN): study protocol. BMC Psychiatry 2023; 23:863. [PMID: 37990202 PMCID: PMC10664384 DOI: 10.1186/s12888-023-05266-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND The Avoidant Restrictive Food Intake Disorder - Genes and Environment (ARFID-GEN) study is a study of genetic and environmental factors that contribute to risk for developing ARFID in children and adults. METHODS A total of 3,000 children and adults with ARFID from the United States will be included. Parents/guardians and their children with ARFID (ages 7 to 17) and adults with ARFID (ages 18 +) will complete comprehensive online consent, parent verification of child assent (when applicable), and phenotyping. Enrolled participants with ARFID will submit a saliva sample for genotyping. A genome-wide association study of ARFID will be conducted. DISCUSSION ARFID-GEN, a large-scale genetic study of ARFID, is designed to rapidly advance the study of the genetics of eating disorders. We will explicate the genetic architecture of ARFID relative to other eating disorders and to other psychiatric, neurodevelopmental, and metabolic disorders and traits. Our goal is for ARFID to deliver "actionable" findings that can be transformed into clinically meaningful insights. TRIAL REGISTRATION ARFID-GEN is a registered clinical trial: clinicaltrials.gov NCT05605067.
Collapse
Affiliation(s)
- Cynthia M Bulik
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, PO Box 281, 171 77, Stockholm, Sweden.
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, US.
| | - Nadia Micali
- Center for Eating and Feeding Disorders Research, Psychiatric Center Ballerup, Mental Health Services of the Capital Region of Denmark, Ballerup, Denmark
- Institute of Biological Psychiatry, Psykiatrisk Center Sct. Hans, Boserupvej 2, 4000, Roskilde, Denmark
- Great Ormond Street Hospital Institute of Child Health, University College London, London, UK
| | - Casey M MacDermod
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Baiyu Qi
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Melissa A Munn-Chernoff
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Texas Tech University, Lubbock, TX, 79409, USA
| | - Laura M Thornton
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jennifer White
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lisa Dinkler
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, PO Box 281, 171 77, Stockholm, Sweden
| | - Emily M Pisetsky
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jessica Johnson
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Katelin R Devine
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shelby N Ortiz
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ava E Silverman
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Smith College, Northampton, MA, 01063, USA
| | - Natasha Berthold
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- University of Western Australia, Crawley, WA, 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Alexis Dumain
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, US
| | - Jerry Guintivano
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Matthew Halvorsen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - James J Crowley
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
89
|
Rahman S, Dong P, Apontes P, Fernando M, Kosoy R, Townsley KG, Girdhar K, Bendl J, Shao Z, Misir R, Tsankova N, Kleopoulos S, Brennand K, Fullard J, Roussos P. Lineage specific 3D genome structure in the adult human brain and neurodevelopmental changes in the chromatin interactome. Nucleic Acids Res 2023; 51:11142-11161. [PMID: 37811875 PMCID: PMC10639075 DOI: 10.1093/nar/gkad798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/18/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
The human brain is a complex organ comprised of distinct cell types, and the contribution of the 3D genome to lineage specific gene expression remains poorly understood. To decipher cell type specific genome architecture, and characterize fine scale changes in the chromatin interactome across neural development, we compared the 3D genome of the human fetal cortical plate to that of neurons and glia isolated from the adult prefrontal cortex. We found that neurons have weaker genome compartmentalization compared to glia, but stronger TADs, which emerge during fetal development. Furthermore, relative to glia, the neuronal genome shifts more strongly towards repressive compartments. Neurons have differential TAD boundaries that are proximal to active promoters involved in neurodevelopmental processes. CRISPRi on CNTNAP2 in hIPSC-derived neurons reveals that transcriptional inactivation correlates with loss of insulation at the differential boundary. Finally, re-wiring of chromatin loops during neural development is associated with transcriptional and functional changes. Importantly, differential loops in the fetal cortex are associated with autism GWAS loci, suggesting a neuropsychiatric disease mechanism affecting the chromatin interactome. Furthermore, neural development involves gaining enhancer-promoter loops that upregulate genes that control synaptic activity. Altogether, our study provides multi-scale insights on the 3D genome in the human brain.
Collapse
Affiliation(s)
- Samir Rahman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pengfei Dong
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pasha Apontes
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Michael B Fernando
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roman Kosoy
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kayla G Townsley
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kiran Girdhar
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhiping Shao
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ruth Misir
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nadia Tsankova
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular, and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Steven P Kleopoulos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristen J Brennand
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY 10468, USA
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| |
Collapse
|
90
|
Ohi K, Fujikane D, Kuramitsu A, Takai K, Muto Y, Sugiyama S, Shioiri T. Is adjustment disorder genetically correlated with depression, anxiety, or risk-tolerant personality trait? J Affect Disord 2023; 340:197-203. [PMID: 37557993 DOI: 10.1016/j.jad.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/30/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
Adjustment disorder has three main subtypes: adjustment disorder with depressed mood, adjustment disorder with anxiety, and adjustment disorder with disturbance of conduct. The disorder is moderately heritable and has lifetime comorbidities with major depressive disorder (MDD), anxiety disorders, or risk-tolerant personality. However, it remains unclear whether the degrees of genetic correlations between adjustment disorder and other psychiatric disorders and intermediate phenotypes are similar or different to those between MDD, anxiety disorders or risk-tolerant personality and these other psychiatric disorders and intermediate phenotypes. To compare patterns of genetic correlations, we utilized large-scale genome-wide association study summary statistics for adjustment disorder-related disorders and personality trait, eleven other psychiatric disorders and fifteen intermediate phenotypes. Adjustment disorder had highly positive genetic correlations with MDD, anxiety disorders, and risk-tolerant personality. Among other psychiatric disorders, adjustment disorder, MDD, anxiety disorders and risk-tolerant personality were positively correlated with risks for schizophrenia (SCZ), bipolar disorder (BD), SCZ + BD, attention-deficit/hyperactivity disorder, and cross disorders. In contrast, adjustment disorder was not significantly correlated with risks for obsessive-compulsive disorder, Tourette syndrome, or posttraumatic stress disorder despite significant genetic correlations of MDD or anxiety disorders with these disorders. Among intermediate phenotypes, adjustment disorder, MDD, anxiety disorders, and risk-tolerant personality commonly had a younger age at first sexual intercourse, first birth, and menopause, lower cognitive ability, and higher rate of smoking initiation. Adjustment disorder was not genetically correlated with extraversion, although the related disorder and personality were correlated with extraversion. Only adjustment disorder was correlated with a higher smoking quantity. These findings suggest that adjustment disorder could share a genetic etiology with MDD, anxiety disorders and risk-tolerant personality trait, as well as have a disorder-specific genetic etiology.
Collapse
Affiliation(s)
- Kazutaka Ohi
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan; Department of General Internal Medicine, Kanazawa Medical University, Ishikawa, Japan.
| | - Daisuke Fujikane
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ayumi Kuramitsu
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kentaro Takai
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yukimasa Muto
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toshiki Shioiri
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
91
|
Guo MG, Reynolds DL, Ang CE, Liu Y, Zhao Y, Donohue LKH, Siprashvili Z, Yang X, Yoo Y, Mondal S, Hong A, Kain J, Meservey L, Fabo T, Elfaki I, Kellman LN, Abell NS, Pershad Y, Bayat V, Etminani P, Holodniy M, Geschwind DH, Montgomery SB, Duncan LE, Urban AE, Altman RB, Wernig M, Khavari PA. Integrative analyses highlight functional regulatory variants associated with neuropsychiatric diseases. Nat Genet 2023; 55:1876-1891. [PMID: 37857935 PMCID: PMC10859123 DOI: 10.1038/s41588-023-01533-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/15/2023] [Indexed: 10/21/2023]
Abstract
Noncoding variants of presumed regulatory function contribute to the heritability of neuropsychiatric disease. A total of 2,221 noncoding variants connected to risk for ten neuropsychiatric disorders, including autism spectrum disorder, attention deficit hyperactivity disorder, bipolar disorder, borderline personality disorder, major depression, generalized anxiety disorder, panic disorder, post-traumatic stress disorder, obsessive-compulsive disorder and schizophrenia, were studied in developing human neural cells. Integrating epigenomic and transcriptomic data with massively parallel reporter assays identified differentially-active single-nucleotide variants (daSNVs) in specific neural cell types. Expression-gene mapping, network analyses and chromatin looping nominated candidate disease-relevant target genes modulated by these daSNVs. Follow-up integration of daSNV gene editing with clinical cohort analyses suggested that magnesium transport dysfunction may increase neuropsychiatric disease risk and indicated that common genetic pathomechanisms may mediate specific symptoms that are shared across multiple neuropsychiatric diseases.
Collapse
Affiliation(s)
- Margaret G Guo
- Stanford Program in Biomedical Informatics, Stanford University, Stanford, CA, USA
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - David L Reynolds
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - Cheen E Ang
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Yingfei Liu
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA, USA
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yang Zhao
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - Laura K H Donohue
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Zurab Siprashvili
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - Xue Yang
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA
| | - Yongjin Yoo
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Smarajit Mondal
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - Audrey Hong
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - Jessica Kain
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Tania Fabo
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Ibtihal Elfaki
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Laura N Kellman
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA
| | - Nathan S Abell
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Yash Pershad
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | | | - Mark Holodniy
- Public Health Surveillance and Research, Department of Veterans Affairs, Washington, DC, USA
- Division of Infectious Disease & Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel H Geschwind
- Program in Neurobehavioral Genetics, Semel Institute, UCLA, Los Angeles, CA, USA
| | - Stephen B Montgomery
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Laramie E Duncan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Alexander E Urban
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Russ B Altman
- Stanford Program in Biomedical Informatics, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Marius Wernig
- Department of Pathology, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA.
- Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA.
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
92
|
Simonsson O, Goldberg SB, Chambers R, Osika W, Simonsson C, Hendricks PS. Psychedelic use and psychiatric risks. Psychopharmacology (Berl) 2023:10.1007/s00213-023-06478-5. [PMID: 37874345 PMCID: PMC11039563 DOI: 10.1007/s00213-023-06478-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/07/2023] [Indexed: 10/25/2023]
Abstract
RATIONALE Research on psychedelics has recently shown promising results in the treatment of various psychiatric disorders, but relatively little remains known about the psychiatric risks associated with naturalistic use of psychedelics. OBJECTIVE The objective of the current study was to investigate associations between naturalistic psychedelic use and psychiatric risks. METHODS Using a sample representative of the US adult population with regard to sex, age, and ethnicity (N=2822), this study investigated associations between lifetime naturalistic psychedelic use, lifetime unusual visual experiences, and past 2-week psychotic symptoms. RESULTS Among respondents who reported lifetime psychedelic use (n=613), 1.3% reported having been told by a doctor or other medical professional that they had hallucinogen persisting perception disorder. In covariate-adjusted linear regression models, lifetime psychedelic use was associated with more unusual visual experiences at any point across the lifetime, but no association was observed between lifetime psychedelic use and past 2-week psychotic symptoms. There was an interaction between lifetime psychedelic use and family (but not personal) history of psychotic or bipolar disorders on past 2-week psychotic symptoms such that psychotic symptoms were highest among respondents who reported lifetime psychedelic use and a family history of psychotic or bipolar disorders and lowest among those who reported lifetime psychedelic use and no family history of psychotic or bipolar disorders. CONCLUSIONS Although the results in this study should be interpreted with caution, the findings suggest that lifetime naturalistic use of psychedelics might be associated with more unusual visual experiences across the lifetime, as well as more psychotic symptoms in the past 2 weeks for individuals with a family history of psychotic or bipolar disorders and the reverse for those without such a family history. Future research should distinguish between different psychotic and bipolar disorders and should also utilize other research designs (e.g., longitudinal) and variables (e.g., polygenic risk scores) to better understand potential cause-and-effect relationships.
Collapse
Affiliation(s)
- Otto Simonsson
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
- Center for Social Sustainability, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden.
- Department of Sociology, University of Oxford, Oxford, UK.
| | - Simon B Goldberg
- Department of Counseling Psychology, University of Wisconsin - Madison, Madison, WI, USA
| | - Richard Chambers
- Monash Centre for Consciousness & Contemplative Studies, Monash University, Melbourne, Australia
| | - Walter Osika
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Center for Social Sustainability, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Charlotta Simonsson
- Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Peter S Hendricks
- Department of Psychiatry and Behavioral Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
93
|
Jiang X, Zai CC, Kennedy KG, Zou Y, Nikolova YS, Felsky D, Young LT, MacIntosh BJ, Goldstein BI. Association of polygenic risk for bipolar disorder with grey matter structure and white matter integrity in youth. Transl Psychiatry 2023; 13:322. [PMID: 37852985 PMCID: PMC10584947 DOI: 10.1038/s41398-023-02607-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
There is a gap in knowledge regarding the polygenic underpinnings of brain anomalies observed in youth bipolar disorder (BD). This study examined the association of a polygenic risk score for BD (BD-PRS) with grey matter structure and white matter integrity in youth with and without BD. 113 participants were included in the analyses, including 78 participants with both T1-weighted and diffusion-weighted MRI images, 32 participants with T1-weighted images only, and 3 participants with diffusion-weighted images only. BD-PRS was calculated using PRS-CS-auto and was based on independent adult genome-wide summary statistics. Vertex- and voxel-wise analyses examined the associations of BD-PRS with grey matter metrics (cortical volume [CV], cortical surface area [CSA], cortical thickness [CTh]) and fractional anisotropy [FA] in the combined sample, and separately in BD and HC. In the combined sample of participants with T1-weighted images (n = 110, 66 BD, 44 HC), higher BD-PRS was associated with smaller grey matter metrics in frontal and temporal regions. In within-group analyses, higher BD-PRS was associated with lower CTh of frontal, temporal, and fusiform gyrus in BD, and with lower CV and CSA of superior frontal gyrus in HC. In the combined sample of participants with diffusion-weighted images (n = 81, 49 BD, 32 HC), higher BD-PRS was associated with lower FA in widespread white matter regions. In summary, BD-PRS calculated based on adult genetic data was negatively associated with grey matter structure and FA in youth in regions implicated in BD, which may suggest neuroimaging markers of vulnerability to BD. Future longitudinal studies are needed to examine whether BD-PRS predicts neurodevelopmental changes in BD vs. HC and its interaction with course of illness and long-term medication use.
Collapse
Affiliation(s)
- Xinyue Jiang
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Clement C Zai
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Kody G Kennedy
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Yi Zou
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Yuliya S Nikolova
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Daniel Felsky
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - L Trevor Young
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Sandra E Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
94
|
Kirschner M, Paquola C, Khundrakpam BS, Vainik U, Bhutani N, Hodzic-Santor B, Georgiadis F, Al-Sharif NB, Misic B, Bernhardt BC, Evans AC, Dagher A. Schizophrenia Polygenic Risk During Typical Development Reflects Multiscale Cortical Organization. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:1083-1093. [PMID: 37881579 PMCID: PMC10593879 DOI: 10.1016/j.bpsgos.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/23/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022] Open
Abstract
Background Schizophrenia is widely recognized as a neurodevelopmental disorder. Abnormal cortical development in otherwise typically developing children and adolescents may be revealed using polygenic risk scores for schizophrenia (PRS-SCZ). Methods We assessed PRS-SCZ and cortical morphometry in typically developing children and adolescents (3-21 years, 46.8% female) using whole-genome genotyping and T1-weighted magnetic resonance imaging (n = 390) from the PING (Pediatric Imaging, Neurocognition, and Genetics) cohort. We contextualized the findings using 1) age-matched transcriptomics, 2) histologically defined cytoarchitectural types and functionally defined networks, and 3) case-control differences of schizophrenia and other major psychiatric disorders derived from meta-analytic data of 6 ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) working groups, including a total of 12,876 patients and 15,670 control participants. Results Higher PRS-SCZ was associated with greater cortical thickness, which was most prominent in areas with heightened gene expression of dendrites and synapses. PRS-SCZ-related increases in vertexwise cortical thickness were mainly distributed in association cortical areas, particularly the ventral attention network, while relatively sparing koniocortical type cortex (i.e., primary sensory areas). The large-scale pattern of cortical thickness increases related to PRS-SCZ mirrored the pattern of cortical thinning in schizophrenia and mood-related psychiatric disorders derived from the ENIGMA consortium. Age group models illustrate a possible trajectory from PRS-SCZ-associated cortical thickness increases in early childhood toward thinning in late adolescence, with the latter resembling the adult brain phenotype of schizophrenia. Conclusions Collectively, combining imaging genetics with multiscale mapping, our work provides novel insight into how genetic risk for schizophrenia affects the cortex early in life.
Collapse
Affiliation(s)
- Matthias Kirschner
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Casey Paquola
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
- Institute of Neuroscience and Medicine, Forschungszentrum Jülich, Jülich, Germany
| | | | - Uku Vainik
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
- Institute of Psychology, Faculty of Social Sciences, Tartu, Estonia
| | - Neha Bhutani
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | | | - Foivos Georgiadis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
| | - Noor B. Al-Sharif
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Boris C. Bernhardt
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Alan C. Evans
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| |
Collapse
|
95
|
Koch S, Schmidtke J, Krawczak M, Caliebe A. Clinical utility of polygenic risk scores: a critical 2023 appraisal. J Community Genet 2023; 14:471-487. [PMID: 37133683 PMCID: PMC10576695 DOI: 10.1007/s12687-023-00645-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/31/2023] [Indexed: 05/04/2023] Open
Abstract
Since their first appearance in the context of schizophrenia and bipolar disorder in 2009, polygenic risk scores (PRSs) have been described for a large number of common complex diseases. However, the clinical utility of PRSs in disease risk assessment or therapeutic decision making is likely limited because PRSs usually only account for the heritable component of a trait and ignore the etiological role of environment and lifestyle. We surveyed the current state of PRSs for various diseases, including breast cancer, diabetes, prostate cancer, coronary artery disease, and Parkinson disease, with an extra focus upon the potential improvement of clinical scores by their combination with PRSs. We observed that the diagnostic and prognostic performance of PRSs alone is consistently low, as expected. Moreover, combining a PRS with a clinical score at best led to moderate improvement of the power of either risk marker. Despite the large number of PRSs reported in the scientific literature, prospective studies of their clinical utility, particularly of the PRS-associated improvement of standard screening or therapeutic procedures, are still rare. In conclusion, the benefit to individual patients or the health care system in general of PRS-based extensions of existing diagnostic or treatment regimens is still difficult to judge.
Collapse
Affiliation(s)
- Sebastian Koch
- Institut für Medizinische Informatik und Statistik, Christian-Albrechts-Universität zu Kiel, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Jörg Schmidtke
- Amedes MVZ Wagnerstibbe, Hannover, Germany
- Institut für Humangenetik, Medizinische Hochschule Hannover, Hannover, Germany
| | - Michael Krawczak
- Institut für Medizinische Informatik und Statistik, Christian-Albrechts-Universität zu Kiel, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Amke Caliebe
- Institut für Medizinische Informatik und Statistik, Christian-Albrechts-Universität zu Kiel, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany.
| |
Collapse
|
96
|
Wang L, Pang K, Zhou L, Cebrián-Silla A, González-Granero S, Wang S, Bi Q, White ML, Ho B, Li J, Li T, Perez Y, Huang EJ, Winkler EA, Paredes MF, Kovner R, Sestan N, Pollen AA, Liu P, Li J, Piao X, García-Verdugo JM, Alvarez-Buylla A, Liu Z, Kriegstein AR. A cross-species proteomic map reveals neoteny of human synapse development. Nature 2023; 622:112-119. [PMID: 37704727 PMCID: PMC10576238 DOI: 10.1038/s41586-023-06542-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023]
Abstract
The molecular mechanisms and evolutionary changes accompanying synapse development are still poorly understood1,2. Here we generate a cross-species proteomic map of synapse development in the human, macaque and mouse neocortex. By tracking the changes of more than 1,000 postsynaptic density (PSD) proteins from midgestation to young adulthood, we find that PSD maturation in humans separates into three major phases that are dominated by distinct pathways. Cross-species comparisons reveal that human PSDs mature about two to three times slower than those of other species and contain higher levels of Rho guanine nucleotide exchange factors (RhoGEFs) in the perinatal period. Enhancement of RhoGEF signalling in human neurons delays morphological maturation of dendritic spines and functional maturation of synapses, potentially contributing to the neotenic traits of human brain development. In addition, PSD proteins can be divided into four modules that exert stage- and cell-type-specific functions, possibly explaining their differential associations with cognitive functions and diseases. Our proteomic map of synapse development provides a blueprint for studying the molecular basis and evolutionary changes of synapse maturation.
Collapse
Affiliation(s)
- Li Wang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| | - Kaifang Pang
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Li Zhou
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Arantxa Cebrián-Silla
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Susana González-Granero
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED, Valencia, Spain
| | - Shaohui Wang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Qiuli Bi
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Matthew L White
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Brandon Ho
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Jiani Li
- Gilead Sciences, Foster City, CA, USA
| | - Tao Li
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Yonatan Perez
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Eric J Huang
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Ethan A Winkler
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Mercedes F Paredes
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Rothem Kovner
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Alex A Pollen
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Pengyuan Liu
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, USA
| | - Jingjing Li
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Xianhua Piao
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Division of Neonatology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Newborn Brain Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED, Valencia, Spain
| | - Arturo Alvarez-Buylla
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Arnold R Kriegstein
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
97
|
Mollon J, Schultz LM, Huguet G, Knowles EEM, Mathias SR, Rodrigue A, Alexander-Bloch A, Saci Z, Jean-Louis M, Kumar K, Douard E, Almasy L, Jacquemont S, Glahn DC. Impact of Copy Number Variants and Polygenic Risk Scores on Psychopathology in the UK Biobank. Biol Psychiatry 2023; 94:591-600. [PMID: 36764568 PMCID: PMC10409883 DOI: 10.1016/j.biopsych.2023.01.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Our understanding of the impact of copy number variants (CNVs) on psychopathology and their joint influence with polygenic risk scores (PRSs) remains limited. METHODS The UK Biobank recruited 502,534 individuals ages 37 to 73 years living in the United Kingdom between 2006 and 2010. After quality control, genotype data from 459,855 individuals were available for CNV calling. A total of 61 commonly studied recurrent neuropsychiatric CNVs were selected for analyses and examined individually and in aggregate (any CNV, deletion, or duplication). CNV risk scores were used to quantify intolerance of CNVs to haploinsufficiency. Major depressive disorder and generalized anxiety disorder PRSs were generated for White British individuals (N = 408,870). Mood/anxiety factor scores were generated using item-level questionnaire data (N = 501,289). RESULTS CNV carriers showed higher mood/anxiety scores than noncarriers, with the largest effects seen for intolerant deletions. A total of 11 individual deletions and 8 duplications were associated with higher mood/anxiety. Carriers of the 9p24.3 (DMRT1) duplication showed lower mood/anxiety. Associations remained significant for most CNVs when excluding individuals with psychiatric diagnoses. Nominally significant CNV × PRS interactions provided preliminary evidence that associations between select individual CNVs, but not CNVs in aggregate, and mood/anxiety may be modulated by PRSs. CONCLUSIONS CNVs associated with risk for psychiatric disorders showed small to large effects on dimensional mood/anxiety scores in a general population cohort, even when excluding individuals with psychiatric diagnoses. CNV × PRS interactions showed that associations between select CNVs and mood/anxiety may be modulated by PRSs.
Collapse
Affiliation(s)
- Josephine Mollon
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Laura M Schultz
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Guillaume Huguet
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada; Department of Pediatrics, Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Emma E M Knowles
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Samuel R Mathias
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amanda Rodrigue
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aaron Alexander-Bloch
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zohra Saci
- Department of Pediatrics, Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Martineau Jean-Louis
- Department of Pediatrics, Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Kuldeep Kumar
- Department of Pediatrics, Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Elise Douard
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada; Department of Pediatrics, Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Laura Almasy
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Genetics, Perelman School of Medicine, Penn-CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sebastien Jacquemont
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada; Department of Pediatrics, Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Olin Neuropsychiatry Research Center, Institute of Living, Hartford, Connecticut
| |
Collapse
|
98
|
Zhang S, Zhang H, Forrest MP, Zhou Y, Sun X, Bagchi VA, Kozlova A, Santos MD, Piguel NH, Dionisio LE, Sanders AR, Pang ZP, He X, Penzes P, Duan J. Multiple genes in a single GWAS risk locus synergistically mediate aberrant synaptic development and function in human neurons. CELL GENOMICS 2023; 3:100399. [PMID: 37719141 PMCID: PMC10504676 DOI: 10.1016/j.xgen.2023.100399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/22/2023] [Accepted: 08/07/2023] [Indexed: 09/19/2023]
Abstract
The mechanistic tie between genome-wide association study (GWAS)-implicated risk variants and disease-relevant cellular phenotypes remains largely unknown. Here, using human induced pluripotent stem cell (hiPSC)-derived neurons as a neurodevelopmental model, we identify multiple schizophrenia (SZ) risk variants that display allele-specific open chromatin (ASoC) and are likely to be functional. Editing the strongest ASoC SNP, rs2027349, near vacuolar protein sorting 45 homolog (VPS45) alters the expression of VPS45, lncRNA AC244033.2, and a distal gene, C1orf54. Notably, the transcriptomic changes in neurons are associated with SZ and other neuropsychiatric disorders. Neurons carrying the risk allele exhibit increased dendritic complexity and hyperactivity. Interestingly, individual/combinatorial gene knockdown shows that these genes alter cellular phenotypes in a non-additive synergistic manner. Our study reveals that multiple genes at a single GWAS risk locus mediate a compound effect on neural function, providing a mechanistic link between a non-coding risk variant and disease-related cellular phenotypes.
Collapse
Affiliation(s)
- Siwei Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA
| | - Hanwen Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Marc P. Forrest
- Department of Neuroscience, Northwestern University, Chicago, IL 60611, USA
- Center for Autism and Neurodevelopment, Northwestern University, Chicago, IL 60611, USA
| | - Yifan Zhou
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Xiaotong Sun
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Vikram A. Bagchi
- Department of Neuroscience, Northwestern University, Chicago, IL 60611, USA
- Center for Autism and Neurodevelopment, Northwestern University, Chicago, IL 60611, USA
| | - Alena Kozlova
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Marc Dos Santos
- Department of Neuroscience, Northwestern University, Chicago, IL 60611, USA
- Center for Autism and Neurodevelopment, Northwestern University, Chicago, IL 60611, USA
| | - Nicolas H. Piguel
- Department of Neuroscience, Northwestern University, Chicago, IL 60611, USA
- Center for Autism and Neurodevelopment, Northwestern University, Chicago, IL 60611, USA
| | - Leonardo E. Dionisio
- Department of Neuroscience, Northwestern University, Chicago, IL 60611, USA
- Center for Autism and Neurodevelopment, Northwestern University, Chicago, IL 60611, USA
| | - Alan R. Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA
| | - Zhiping P. Pang
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Xin He
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Peter Penzes
- Department of Neuroscience, Northwestern University, Chicago, IL 60611, USA
- Center for Autism and Neurodevelopment, Northwestern University, Chicago, IL 60611, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
99
|
Owen MJ, Legge SE, Rees E, Walters JTR, O'Donovan MC. Genomic findings in schizophrenia and their implications. Mol Psychiatry 2023; 28:3638-3647. [PMID: 37853064 PMCID: PMC10730422 DOI: 10.1038/s41380-023-02293-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023]
Abstract
There has been substantial progress in understanding the genetics of schizophrenia over the past 15 years. This has revealed a highly polygenic condition with the majority of the currently explained heritability coming from common alleles of small effect but with additional contributions from rare copy number and coding variants. Many specific genes and loci have been implicated that provide a firm basis upon which mechanistic research can proceed. These point to disturbances in neuronal, and particularly synaptic, functions that are not confined to a small number of brain regions and circuits. Genetic findings have also revealed the nature of schizophrenia's close relationship to other conditions, particularly bipolar disorder and childhood neurodevelopmental disorders, and provided an explanation for how common risk alleles persist in the population in the face of reduced fecundity. Current genomic approaches only potentially explain around 40% of heritability, but only a small proportion of this is attributable to robustly identified loci. The extreme polygenicity poses challenges for understanding biological mechanisms. The high degree of pleiotropy points to the need for more transdiagnostic research and the shortcomings of current diagnostic criteria as means of delineating biologically distinct strata. It also poses challenges for inferring causality in observational and experimental studies in both humans and model systems. Finally, the Eurocentric bias of genomic studies needs to be rectified to maximise benefits and ensure these are felt across diverse communities. Further advances are likely to come through the application of new and emerging technologies, such as whole-genome and long-read sequencing, to large and diverse samples. Substantive progress in biological understanding will require parallel advances in functional genomics and proteomics applied to the brain across developmental stages. For these efforts to succeed in identifying disease mechanisms and defining novel strata they will need to be combined with sufficiently granular phenotypic data.
Collapse
Affiliation(s)
- Michael J Owen
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| | - Sophie E Legge
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Elliott Rees
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - James T R Walters
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Michael C O'Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
100
|
Danks D, Davis I. Causal inference in cognitive neuroscience. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2023; 14:e1650. [PMID: 37032464 DOI: 10.1002/wcs.1650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 04/11/2023]
Abstract
Causal inference is a key step in many research endeavors in cognitive science and neuroscience, and particularly cognitive neuroscience. Statistical knowledge is sufficient for prediction and diagnosis, but causal knowledge is required for action and intervention. Most statistics courses and textbooks emphasize the difficulty of causal inference, focusing on the maxim that "correlation does not mean causation": there can be multiple causal possibilities, often many of them, consistent with given observed statistics. This paper focuses instead on the conceptual issues and assumptions that confront causal and other kinds of inference, primarily focusing on cognitive neuroscience. We connect inference methods with goals and challenges, and provide concrete guidance about how to select appropriate tools for the scientific task. This article is categorized under: Psychology > Theory and Methods Philosophy > Foundations of Cognitive Science.
Collapse
Affiliation(s)
- David Danks
- Halicioglu Data Science Institute, Department of Philosophy, University of California San Diego, La Jolla, California, USA
| | - Isaac Davis
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|