51
|
Ali AM, Langberg HA, Hale SE, Kallenborn R, Hartz WF, Mortensen ÅK, Ciesielski TM, McDonough CA, Jenssen BM, Breedveld GD. The fate of poly- and perfluoroalkyl substances in a marine food web influenced by land-based sources in the Norwegian Arctic. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:588-604. [PMID: 33704290 DOI: 10.1039/d0em00510j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although poly- and perfluorinated alkyl substances (PFAS) are ubiquitous in the Arctic, their sources and fate in Arctic marine environments remain unclear. Herein, abiotic media (water, snow, and sediment) and biotic media (plankton, benthic organisms, fish, crab, and glaucous gull) were sampled to study PFAS uptake and fate in the marine food web of an Arctic Fjord in the vicinity of Longyearbyen (Svalbard, Norwegian Arctic). Samples were collected from locations impacted by a firefighting training site (FFTS) and a landfill as well as from a reference site. Mean concentration in the landfill leachate was 643 ± 84 ng L-1, while it was 365 ± 8.0 ng L-1 in a freshwater pond and 57 ± 4.0 ng L-1 in a creek in the vicinity of the FFTS. These levels were an order of magnitude higher than in coastal seawater of the nearby fjord (maximum level , at the FFTS impacted site). PFOS was the most predominant compound in all seawater samples and in freshly fallen snow (63-93% of ). In freshwater samples from the Longyear river and the reference site, PFCA ≤ C9 were the predominant PFAS (37-59%), indicating that both local point sources and diffuse sources contributed to the exposure of the marine food web in the fjord. concentrations increased from zooplankton (1.1 ± 0.32 μg kg-1 ww) to polychaete (2.8 ± 0.80 μg kg-1 ww), crab (2.9 ± 0.70 μg kg-1 ww whole-body), fish liver (5.4 ± 0.87 μg kg-1 ww), and gull liver (62.2 ± 11.2 μg kg-1). PFAS profiles changed with increasing trophic level from a large contribution of 6:2 FTS, FOSA and long-chained PFCA in zooplankton and polychaetes to being dominated by linear PFOS in fish and gull liver. The PFOS isomer profile (branched versus linear) in the active FFTS and landfill was similar to historical ECF PFOS. A similar isomer profile was observed in seawater, indicating major contribution from local sources. However, a PFOS isomer profile enriched by the linear isomer was observed in other media (sediment and biota). Substitutes for PFOS, namely 6:2 FTS and PFBS, showed bioaccumulation potential in marine invertebrates. However, these compounds were not found in organisms at higher trophic levels.
Collapse
Affiliation(s)
- Aasim M Ali
- Department of Contaminants and Biohazards, Institute of Marine Research, Bergen NO-5817, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
De Silva AO, Armitage JM, Bruton TA, Dassuncao C, Heiger-Bernays W, Hu XC, Kärrman A, Kelly B, Ng C, Robuck A, Sun M, Webster TF, Sunderland EM. PFAS Exposure Pathways for Humans and Wildlife: A Synthesis of Current Knowledge and Key Gaps in Understanding. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:631-657. [PMID: 33201517 PMCID: PMC7906948 DOI: 10.1002/etc.4935] [Citation(s) in RCA: 329] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/17/2020] [Accepted: 11/05/2020] [Indexed: 05/20/2023]
Abstract
We synthesize current understanding of the magnitudes and methods for assessing human and wildlife exposures to poly- and perfluoroalkyl substances (PFAS). Most human exposure assessments have focused on 2 to 5 legacy PFAS, and wildlife assessments are typically limited to targeted PFAS (up to ~30 substances). However, shifts in chemical production are occurring rapidly, and targeted methods for detecting PFAS have not kept pace with these changes. Total fluorine measurements complemented by suspect screening using high-resolution mass spectrometry are thus emerging as essential tools for PFAS exposure assessment. Such methods enable researchers to better understand contributions from precursor compounds that degrade into terminal perfluoroalkyl acids. Available data suggest that diet is the major human exposure pathway for some PFAS, but there is large variability across populations and PFAS compounds. Additional data on total fluorine in exposure media and the fraction of unidentified organofluorine are needed. Drinking water has been established as the major exposure source in contaminated communities. As water supplies are remediated, for the general population, exposures from dust, personal care products, indoor environments, and other sources may be more important. A major challenge for exposure assessments is the lack of statistically representative population surveys. For wildlife, bioaccumulation processes differ substantially between PFAS and neutral lipophilic organic compounds, prompting a reevaluation of traditional bioaccumulation metrics. There is evidence that both phospholipids and proteins are important for the tissue partitioning and accumulation of PFAS. New mechanistic models for PFAS bioaccumulation are being developed that will assist in wildlife risk evaluations. Environ Toxicol Chem 2021;40:631-657. © 2020 SETAC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Carla Ng
- University of Pittsburgh, Pittsburgh, PA, USA
| | - Anna Robuck
- University of Rhode Island, Graduate School of Oceanography, Narragansett, RI USA
| | - Mei Sun
- University of North Carolina at Charlotte, Charlotte, NC USA
| | | | | |
Collapse
|
53
|
Chou WC, Lin Z. Development of a Gestational and Lactational Physiologically Based Pharmacokinetic (PBPK) Model for Perfluorooctane Sulfonate (PFOS) in Rats and Humans and Its Implications in the Derivation of Health-Based Toxicity Values. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:37004. [PMID: 33730865 PMCID: PMC7969127 DOI: 10.1289/ehp7671] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND There is a great concern on potential adverse effects of exposure to perfluorooctane sulfonate (PFOS) in sensitive subpopulations, such as pregnant women, fetuses, and neonates, due to its reported transplacental and lactational transfer and reproductive and developmental toxicities in animals and humans. OBJECTIVES This study aimed to develop a gestational and lactational physiologically based pharmacokinetic (PBPK) model in rats and humans for PFOS to aid risk assessment in sensitive human subpopulations. METHODS Based upon existing PBPK models for PFOS, the present model addressed a data gap of including a physiologically based description of basolateral and apical membrane transporter-mediated renal reabsorption and excretion in kidneys during gestation and lactation. The model was calibrated with published rat toxicokinetic and human biomonitoring data and was independently evaluated with separate data. Monte Carlo simulation was used to address the interindividual variability. RESULTS Model simulations were generally within 2-fold of observed PFOS concentrations in maternal/fetal/neonatal plasma and liver in rats and humans. Estimated fifth percentile human equivalent doses (HEDs) based on selected critical toxicity studies in rats following U.S. Environmental Protection Agency (EPA) guidelines ranged from 0.08 to 0.91 μ g / kg per day . These values are lower than the HEDs estimated in U.S. EPA guidance (0.51 - 1.6 μ g / kg per day ) using an empirical toxicokinetic model in adults. CONCLUSIONS The results support the importance of renal reabsorption/excretion during pregnancy and lactation in PFOS dosimetry and suggest that the derivation of health-based toxicity values based on developmental toxicity studies should consider gestational/lactational dosimetry estimated from a life stage-appropriate PBPK model. This study provides a quantitative tool to aid risk reevaluation of PFOS, especially in sensitive human subpopulations, and it provides a basis for extrapolating to other per- and polyfluoroalkyl substances (PFAS). All model codes and detailed tutorials are provided in the Supplemental Materials to allow readers to reproduce our results and to use this model. https://doi.org/10.1289/EHP7671.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Institute of Computational Comparative Medicine, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
54
|
Fenton SE, Ducatman A, Boobis A, DeWitt JC, Lau C, Ng C, Smith JS, Roberts SM. Per- and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:606-630. [PMID: 33017053 PMCID: PMC7906952 DOI: 10.1002/etc.4890] [Citation(s) in RCA: 795] [Impact Index Per Article: 198.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/29/2020] [Accepted: 09/20/2020] [Indexed: 01/09/2023]
Abstract
Reports of environmental and human health impacts of per- and polyfluoroalkyl substances (PFAS) have greatly increased in the peer-reviewed literature. The goals of the present review are to assess the state of the science regarding toxicological effects of PFAS and to develop strategies for advancing knowledge on the health effects of this large family of chemicals. Currently, much of the toxicity data available for PFAS are for a handful of chemicals, primarily legacy PFAS such as perfluorooctanoic acid and perfluorooctane sulfonate. Epidemiological studies have revealed associations between exposure to specific PFAS and a variety of health effects, including altered immune and thyroid function, liver disease, lipid and insulin dysregulation, kidney disease, adverse reproductive and developmental outcomes, and cancer. Concordance with experimental animal data exists for many of these effects. However, information on modes of action and adverse outcome pathways must be expanded, and profound differences in PFAS toxicokinetic properties must be considered in understanding differences in responses between the sexes and among species and life stages. With many health effects noted for a relatively few example compounds and hundreds of other PFAS in commerce lacking toxicity data, more contemporary and high-throughput approaches such as read-across, molecular dynamics, and protein modeling are proposed to accelerate the development of toxicity information on emerging and legacy PFAS, individually and as mixtures. In addition, an appropriate degree of precaution, given what is already known from the PFAS examples noted, may be needed to protect human health. Environ Toxicol Chem 2021;40:606-630. © 2020 SETAC.
Collapse
Affiliation(s)
- Suzanne E. Fenton
- National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Alan Ducatman
- West Virginia University School of Public Health, Morgantown, West Virginia, USA
| | - Alan Boobis
- Imperial College London, London, United Kingdom
| | - Jamie C. DeWitt
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Christopher Lau
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Carla Ng
- Departments of Civil and Environmental Engineering and Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James S. Smith
- Navy and Marine Corps Public Health Center, Portsmouth, Virginia, USA
| | - Stephen M. Roberts
- Center for Environmental & Human Toxicology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
55
|
Allendorf F, Goss KU, Ulrich N. Estimating the Equilibrium Distribution of Perfluoroalkyl Acids and 4 of Their Alternatives in Mammals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:910-920. [PMID: 33289938 DOI: 10.1002/etc.4954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/27/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Perfluoroalkyl acids (PFAAs) mostly exist as ionic compounds that are of major concern because of their accumulative behavior. The discussion about their risk is ongoing considering the increasing production of structurally similar alternatives. We conducted model calculations based on equilibrium distribution coefficients that allow studying the distribution of PFAAs and their alternatives in various mammalian organs through comparison to empirical measurements in humans and rats. The calculations rely on experimentally determined distribution coefficients of a series of PFAAs and 4 of their alternatives to physiological matrices such as structural proteins, storage lipids, membrane lipids, albumin, and fatty acid binding protein (FABP). The relative sorption capacities in each organ were calculated from the combination of distribution coefficients and physiological data. The calculated distribution of PFAAs and alternatives within the organs showed that albumin and membrane lipids and, to a lesser extent, structural proteins have the highest relative sorption capacities for the compounds. Sorption to FABP is only relevant in the distribution of short-chain PFAAs. Storage lipids play a minor role in the distribution of all studied compounds. Our calculated distribution of PFAAs was evaluated by comparison to reported PFAA concentrations in various organs. Environ Toxicol Chem 2021;40:910-920. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Flora Allendorf
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Kai-Uwe Goss
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Institute of Chemistry, University of Halle-Wittenberg, Halle, Germany
| | - Nadin Ulrich
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| |
Collapse
|
56
|
Khazaee M, Christie E, Cheng W, Michalsen M, Field J, Ng C. Perfluoroalkyl Acid Binding with Peroxisome Proliferator-Activated Receptors α, γ, and δ, and Fatty Acid Binding Proteins by Equilibrium Dialysis with a Comparison of Methods. TOXICS 2021; 9:45. [PMID: 33652875 PMCID: PMC7996760 DOI: 10.3390/toxics9030045] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 01/09/2023]
Abstract
The biological impacts of per- and polyfluorinated alkyl substances (PFAS) are linked to their protein interactions. Existing research has largely focused on serum albumin and liver fatty acid binding protein, and binding affinities determined with a variety of methods show high variability. Moreover, few data exist for short-chain PFAS, though their prevalence in the environment is increasing. We used molecular dynamics (MD) to screen PFAS binding to liver and intestinal fatty acid binding proteins (L- and I-FABPs) and peroxisome proliferator activated nuclear receptors (PPAR-α, -δ and -γ) with six perfluoroalkyl carboxylates (PFCAs) and three perfluoroalkyl sulfonates (PFSAs). Equilibrium dissociation constants, KDs, were experimentally determined via equilibrium dialysis (EqD) with liquid chromatography tandem mass spectrometry for protein-PFAS pairs. A comparison was made between KDs derived from EqD, both here and in literature, and other in vitro approaches (e.g., fluorescence) from literature. EqD indicated strong binding between PPAR-δ and perfluorobutanoate (0.044 ± 0.013 µM) and perfluorohexane sulfonate (0.035 ± 0.0020 µM), and between PPAR-α and perfluorohexanoate (0.097 ± 0.070 µM). Unlike binding affinities for L-FABP, which increase with chain length, KDs for PPARs showed little chain length dependence by either MD simulation or EqD. Compared with other in vitro approaches, EqD-based KDs consistently indicated higher affinity across different proteins. This is the first study to report PPARs binding with short-chain PFAS with KDs in the sub-micromolar range.
Collapse
Affiliation(s)
- Manoochehr Khazaee
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (M.K.); (W.C.)
| | - Emerson Christie
- Department of Molecular and Environmental Toxicology, Oregon State University, Corvallis, OR 97330, USA; (E.C.); (J.F.)
| | - Weixiao Cheng
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (M.K.); (W.C.)
| | - Mandy Michalsen
- U.S. Army Engineer Research Development Center—Environmental Lab, Vicksburg, MS 39180, USA;
| | - Jennifer Field
- Department of Molecular and Environmental Toxicology, Oregon State University, Corvallis, OR 97330, USA; (E.C.); (J.F.)
| | - Carla Ng
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (M.K.); (W.C.)
- Secondary Appointment, Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
57
|
Xie LN, Wang XC, Dong XJ, Su LQ, Zhu HJ, Wang C, Zhang DP, Liu FY, Hou SS, Dong B, Shan GQ, Zhang X, Zhu Y. Concentration, spatial distribution, and health risk assessment of PFASs in serum of teenagers, tap water and soil near a Chinese fluorochemical industrial plant. ENVIRONMENT INTERNATIONAL 2021; 146:106166. [PMID: 33068851 DOI: 10.1016/j.envint.2020.106166] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/17/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Discharges released from fluorochemical industrial plants lead to severe contamination of the environment with per- and polyfluoroalkyl substances (PFASs), which may pose risks to human health. In this study, 187 serum samples from teenagers (age = 14 years), 22 tap water samples and 40 soil samples were collected in areas within 0-11 km of a fluorochemical industrial plant in Huantai County, Shandong Province, and concentrations of 18 PFASs were quantified by UPLC-MS/MS. Perfluorooctanoic acid (PFOA) was found to be predominant, concentrations of which ranged from 40.4 to 845 ng/mL in serum, from 2.88 to 19.3 ng/L in tap water, from 4.40 to 189 ng/g in soil, and accounting for 84.1-98.6%, 15.9-79.8%, and 73.8-96.7% of the total PFASs, respectively. Statistical analysis demonstrated that concentrations of perfluorinated carboxylic acids (PFCAs) in soil (C5-C9) and serum (C8-C10) were associated with the industrial plant. And PFOA concentrations in tap water were not relevant to the industrial plant, which were comparable with the non-contaminated area and lower than the threshold value recommended by U.S. EPA (70 ng/mL), indicating that the contribution to the high concentration of serum PFOA of local teenagers by drinking water was limited. Moreover, PFCAs in soil only made a limited contribution to the serum PFCAs of local residents by direct inhalation and dermal exposure, but the potential health risk by the soil via food chain should be paid attention to. Furthermore, health risk assessment demonstrated that high concentrations of PFOA in serum could pose potential health risk to local teenagers. Therefore, effective measures should be taken to attenuate the health risks caused by the industrial plant to local residents, and further epidemiological studies should be carried out in the future.
Collapse
Affiliation(s)
- Lin-Na Xie
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiao-Chen Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiao-Jie Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Li-Qin Su
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hui-Juan Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Cong Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dian-Ping Zhang
- Department of Environmental Hygiene, Zibo Center for Disease Control and Prevention, Zibo 255026, China
| | - Fang-Ying Liu
- Department of Environmental Hygiene, Zibo Center for Disease Control and Prevention, Zibo 255026, China
| | - Sha-Sha Hou
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Bing Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Guo-Qiang Shan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xu Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ying Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
58
|
Henneberger L, Goss KU. Environmental Sorption Behavior of Ionic and Ionizable Organic Chemicals. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 253:43-64. [PMID: 31748892 DOI: 10.1007/398_2019_37] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Traditionally our tools for environmental risk assessment of organic chemicals have been developed for neutral chemicals. However, many commercial chemicals are ionic or ionizable and require different tools and approaches for their assessment. In recent years this task starts to obtain increasing attention but our understanding for their environmental fate is still far behind that for neutral chemicals. This review first gives an overview on the principles that govern ionic partitioning in environmental systems which are more complex than the simple partition processes of neutral chemicals. Second, a summary of our current knowledge on various topics such as bioaccumulation, sorption in soils, and nonspecific-toxicity reveals that ionic species can actually be quite hydrophobic contrary to commonly held beliefs. Eventually, we discuss existing models for the quantitative prediction of organic ions' sorption in soils and biota. We have to assert that the available model tools are quite restricted in their application range compared to neutral chemicals which is due to the higher complexity of the various ionic sorption processes. In order to further advance our understanding more high-quality sorption data are needed with a focus on multivalent and zwitterionic ions in all partition systems as well as cations in biological matrices.
Collapse
Affiliation(s)
| | - Kai-Uwe Goss
- Helmholtz Centre for Environmental Research UFZ, Leipzig, Germany.
- Institute of Chemistry, University of Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
59
|
Fedorenko M, Alesio J, Fedorenko A, Slitt A, Bothun GD. Dominant entropic binding of perfluoroalkyl substances (PFASs) to albumin protein revealed by 19F NMR. CHEMOSPHERE 2021; 263:128083. [PMID: 33297081 PMCID: PMC8479757 DOI: 10.1016/j.chemosphere.2020.128083] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 05/05/2023]
Abstract
Mechanistic insight into protein binding by poly- and perfluoroalkyl substances (PFASs) is critical to understanding how PFASs distribute and accumulate within the body and to developing predictive models within and across classes of PFASs. Fluorine nuclear magnetic resonance spectroscopy (19F NMR) has proven to be a powerful, yet underutilized tool to study PFAS binding; chemical shifts of each fluorine group reflect the local environment along the length of the PFAS molecule. Using bovine serum albumin (BSA), we report dissociation constants, Kd, for four common PFASs well below reported critical micelle concentrations (CMCs) - perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexanesulfonic acid (PFHxS), and perfluorooctanesulfonic acid (PFOS) - as a function of temperature in phosphate buffered saline. Kd values were determined based on the difluoroethyl group adjacent to the anionic headgroups and the terminal trifluoromethyl groups. Our results indicate that the hydrophobic tails exhibit greater binding affinity relative to the headgroup, and that the binding affinities are generally consistent with previous results showing that greater PFAS hydrophobicity leads to greater protein binding. However, the binding mechanism was dominated by entropic hydrophobic interactions attributed to desolvation of the PFAS tails within the hydrophobic cavities of the protein and on the surface of the protein. In addition, PFNA appears to form hemimicelles on the protein surfaces below reported CMC values. This work provides a renewed approach to utilizing 19F NMR for PFAS-protein binding studies and a new perspective on the role of solvent entropy.
Collapse
Affiliation(s)
- Michael Fedorenko
- Department of Chemical Engineering, University of Rhode Island, 2 East Alumni Ave, Kingston, RI, 02881, USA
| | - Jessica Alesio
- Department of Chemical Engineering, University of Rhode Island, 2 East Alumni Ave, Kingston, RI, 02881, USA
| | - Anatoliy Fedorenko
- Department of Chemical Engineering, University of Rhode Island, 2 East Alumni Ave, Kingston, RI, 02881, USA
| | - Angela Slitt
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI, 02881, USA
| | - Geoffrey D Bothun
- Department of Chemical Engineering, University of Rhode Island, 2 East Alumni Ave, Kingston, RI, 02881, USA.
| |
Collapse
|
60
|
Roth K, Imran Z, Liu W, Petriello MC. Diet as an Exposure Source and Mediator of Per- and Polyfluoroalkyl Substance (PFAS) Toxicity. FRONTIERS IN TOXICOLOGY 2020; 2:601149. [PMID: 35296120 PMCID: PMC8915917 DOI: 10.3389/ftox.2020.601149] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/06/2020] [Indexed: 01/09/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitously found in the environment due to their widespread commercial use and high chemical stability. Humans are exposed primarily through ingestion of contaminated water and food and epidemiological studies over the last several decades have shown that PFAS levels are associated with adverse chronic health effects, including cardiometabolic disorders such as hyperlipidemia and non-alcoholic fatty liver disease. Perhaps the most well-established effects, as demonstrated in animal studies and human epidemiological studies, are the metabolic alterations PFAS exposure can lead to, especially on lipid homeostasis and signaling. This altered lipid metabolism has often been linked to conditions such as dyslipidemia, leading to fatty liver disease and steatosis. Western diets enriched in high fat and high cholesterol containing foods may be an important human exposure route of PFAS and may also act as an important modulator of associated toxicities. In fact, the chemical structure of PFAS resemble fatty acids and may activate some of the same signaling cascades critical for endogenous metabolism. In this review we aim to outline known dietary exposure sources of PFAS, describe the detrimental metabolic health effects associated with PFAS exposure, and focus on studies examining emerging interaction of dietary effects with PFAS exposure that further alter the dysregulated metabolic state.
Collapse
Affiliation(s)
- Katherine Roth
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Zunaira Imran
- Department of Chemistry, Wayne State University, Detroit, MI, United States
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, Wayne State University, Detroit, MI, United States
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Michael C. Petriello
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, United States
- *Correspondence: Michael C. Petriello
| |
Collapse
|
61
|
López-Berenguer G, Bossi R, Eulaers I, Dietz R, Peñalver J, Schulz R, Zubrod J, Sonne C, Martínez-López E. Stranded cetaceans warn of high perfluoroalkyl substance pollution in the western Mediterranean Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115367. [PMID: 32866862 DOI: 10.1016/j.envpol.2020.115367] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/16/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Perfluoroalkyl substances (PFASs) are a class of organohalogenated compounds of environmental concern due to similar characteristics as the well-studied legacy persistent organic pollutants (POPs) that typically show environmental persistence, biomagnification and toxicity. Nevertheless, PFAS are still poorly regulated internationally and in many aspects poorly understood. Here, we studied liver and muscle concentrations in five cetacean species stranded at the southeastern coast of Spain during 2009-2018. Twelve of the fifteen targeted compounds were detected in >50% of the liver samples. Hepatic concentrations were significantly higher than those in muscle reflecting the particular toxicokinetics of these compounds. Bottlenose dolphins Tursiops truncatus showed the highest hepatic ΣPFAS (n = 5; 796.8 ± 709.0 ng g-1 ww) concentrations, followed by striped dolphin Stenella coeruleoalba (n = 29; 259.5 ± 136.2 ng g-1 ww), sperm whale Physeter macrocephalus (n = 1; 252.8 ng g-1 ww), short-beaked common dolphin Delphinus delphis (n = 2; 240.3 ± 218.6 ng g-1 ww) and Risso's dolphin Grampus griseus (n = 1; 78.7 ng g-1 ww). These interspecies differences could be partially explained by habitat preferences, although they could generally not be related to trophic position or food chain proxied by stable N (δ15N) and C (δ13C) isotope values, respectively. PFAS profiles in all species showed a similar pattern of concentration prevalence in the order PFOS>PFOSA>PFNA≈PFFUnA>PFDA. The higher number of samples available for striped dolphin allowed for evaluating their PFAS burden and profile in relation to the stranding year, stable isotope values, and biological variables including sex and length. However, we could only find links between δ15N and PFAS burdens in muscle tissue, and between stranding year and PFAS profile composition. Despite reductions in the manufacturing industry, these compounds still appear in high concentrations compared to more than two decades ago in the Mediterranean Sea and PFOS remains the dominating compound.
Collapse
Affiliation(s)
| | - R Bossi
- Department of Environmental Science, Aarhus University, Denmark
| | - I Eulaers
- Section of Marine Mammals, Department of Bioscience, Aarhus University, Denmark
| | - R Dietz
- Section of Marine Mammals, Department of Bioscience, Aarhus University, Denmark
| | - J Peñalver
- Area of Toxicology, Veterinary Faculty, University of Murcia, Spain; Fishing and Aquaculture Service (CARM), Murcia, Spain
| | - R Schulz
- IES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - J Zubrod
- IES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - C Sonne
- Section of Marine Mammals, Department of Bioscience, Aarhus University, Denmark
| | - E Martínez-López
- Area of Toxicology, Veterinary Faculty, University of Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), Spain.
| |
Collapse
|
62
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Ceccatelli S, Cravedi J, Halldorsson TI, Haug LS, Johansson N, Knutsen HK, Rose M, Roudot A, Van Loveren H, Vollmer G, Mackay K, Riolo F, Schwerdtle T. Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J 2020; 18:e06223. [PMID: 32994824 PMCID: PMC7507523 DOI: 10.2903/j.efsa.2020.6223] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluoroalkyl substances (PFASs) in food. Based on several similar effects in animals, toxicokinetics and observed concentrations in human blood, the CONTAM Panel decided to perform the assessment for the sum of four PFASs: PFOA, PFNA, PFHxS and PFOS. These made up half of the lower bound (LB) exposure to those PFASs with available occurrence data, the remaining contribution being primarily from PFASs with short half-lives. Equal potencies were assumed for the four PFASs included in the assessment. The mean LB exposure in adolescents and adult age groups ranged from 3 to 22, the 95th percentile from 9 to 70 ng/kg body weight (bw) per week. Toddlers and 'other children' showed a twofold higher exposure. Upper bound exposure was 4- to 49-fold higher than LB levels, but the latter were considered more reliable. 'Fish meat', 'Fruit and fruit products' and 'Eggs and egg products' contributed most to the exposure. Based on available studies in animals and humans, effects on the immune system were considered the most critical for the risk assessment. From a human study, a lowest BMDL 10 of 17.5 ng/mL for the sum of the four PFASs in serum was identified for 1-year-old children. Using PBPK modelling, this serum level of 17.5 ng/mL in children was estimated to correspond to long-term maternal exposure of 0.63 ng/kg bw per day. Since accumulation over time is important, a tolerable weekly intake (TWI) of 4.4 ng/kg bw per week was established. This TWI also protects against other potential adverse effects observed in humans. Based on the estimated LB exposure, but also reported serum levels, the CONTAM Panel concluded that parts of the European population exceed this TWI, which is of concern.
Collapse
|
63
|
Wang G, Sun S, Wu X, Yang S, Wu Y, Zhao J, Zhang H, Chen W. Intestinal environmental disorders associate with the tissue damages induced by perfluorooctane sulfonate exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110590. [PMID: 32283409 DOI: 10.1016/j.ecoenv.2020.110590] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 05/26/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a recently identified and persistent organic pollutant that becomes enriched in living organisms via bioaccumulation and the food chain. PFOS can induce various disorders, including liver toxicity, neurotoxicity and metabolic dysregulation. Most recent studies have shown a close association of the gut microbiota with the occurrence of diseases. However, few studies have explored the effects of PFOS on the gut environment, including the intestinal flora and barrier. In this study, we evaluated the effects of PFOS in C57BL/6J male mice and explored the relationship between tissue damage and the gut environment. Mice were orally exposed to PFOS for 16 days. Liver damage was assessed by examining the inflammatory reaction in the liver and serum liver enzyme concentrations. Metabolic function was assessed by the hepatic cholesterol level and the serum concentrations of glucose, high-density lipoprotein cholesterol, total cholesterol and triglycerides. Intestinal environmental disorders were assessed by evaluating the gut microbiota, SCFAs production, inflammatory reactions and intestinal tight junction protein expression. Our results indicated that PFOS affected inflammatory reactions in the liver and colon and promoted the development of metabolic disorders (especially of cholesterol and glucose metabolism). Moreover, PFOS dysregulated various populations in the gut microbiota (e.g., Firmicutes, Bacteroides, Proteobacteria, Gammaproteobacteria, Clostridiales, Enterobacteriales, Lactobacillales, Erysipelotrichaceae, Rikenellaceae, Ruminococcaceae and Blautia) and induced a loss of gut barrier integrity by reducing short-chain fatty acids (SCFAs) production and intestinal tight junction protein expression. A Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis mainly identified metabolic pathways (e.g., the adipocytokine signalling pathway), endocrine system pathways (e.g., steroid hormone biosynthesis, flavonoid biosynthesis), the latter of which is widely considered to be associated with metabolism. Overall, our results suggest that PFOS damages various aspects of the gut environment, including the microbiota, SCFAs and barrier function, and thereby exacerbates the toxicity associated with liver, gut and metabolic disorders.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Shanshan Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Xiaobing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Shurong Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Yanmin Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, PR China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, PR China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, PR China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, PR China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| |
Collapse
|
64
|
Wen Y, Mirji N, Irudayaraj J. Epigenetic toxicity of PFOA and GenX in HepG2 cells and their role in lipid metabolism. Toxicol In Vitro 2020; 65:104797. [DOI: 10.1016/j.tiv.2020.104797] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/29/2020] [Accepted: 02/13/2020] [Indexed: 01/09/2023]
|
65
|
Blévin P, Shaffer SA, Bustamante P, Angelier F, Picard B, Herzke D, Moe B, Gabrielsen GW, Bustnes JO, Chastel O. Contaminants, prolactin and parental care in an Arctic seabird: Contrasted associations of perfluoroalkyl substances and organochlorine compounds with egg-turning behavior. Gen Comp Endocrinol 2020; 291:113420. [PMID: 32032604 DOI: 10.1016/j.ygcen.2020.113420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
Abstract
Incubating eggs represents a trade-off for parent birds between spending enough time fasting to take care of the clutch and to get enough nutrients for self-maintenance. It is believed that the pituitary hormone prolactin plays an important role in such allocation processes. Incubation does not solely imply the active warming of the eggs but also the active egg-turning to facilitate absorption of albumen by the embryo, reduce malposition and prevent the embryo from adhering to the inner shell membrane. However, how prolactin secretion is related to egg-turning behaviors is presently poorly addressed. In addition, several environmental contaminants can affect parental care behaviors through their endocrine disrupting properties but the effects of such contaminants on egg-turning behaviors remain so far unexplored. Using artificial eggs equipped with miniaturized data loggers, we investigated the relationships between egg-turning behaviors, prolactin secretion and contaminants burden in Arctic black-legged kittiwakes (Rissa tridactyla). Specifically, we examined the relationships between blood concentrations of poly- and perfluoroalkyl substances (PFASs), organochlorines (OCs), mercury (Hg), plasma prolactin levels and both egg-turning frequency and angular change. We also incorporated baseline corticosterone levels since this glucocorticoid is known to affect parental care. Plasma prolactin levels were positively related to angular change in female kittiwakes while corticosterone was not related to egg-turning behaviors in either sex. Hg was not related to egg-turning behaviors in either sex. We found contrasting associations between OCs and PFASs, since polychlorinated biphenyls (PCBs) were negatively associated with angular change in females, contrary to linear perfluorooctanesulfonate (PFOSlin) and perfluoroalkyl carboxylic acids (PFCAs) which were positively related to egg-turning frequency and angular change in both sexes. Additionally, PFASs concentrations were positively related to prolactin levels in female kittiwake. The possible stimulation of prolactin secretion by PFASs could therefore make adult kittiwakes to allocate more time taking care of their eggs, and thus possibly modify the trade-off between spending enough time caring for the clutch and obtaining enough nutrients at sea.
Collapse
Affiliation(s)
- Pierre Blévin
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - Université de La Rochelle, 79360 Villiers-en-Bois, France; Akvaplan niva AS (APN), Fram Centre, NO-9296 Tromsø, Norway.
| | - Scott A Shaffer
- San José State University, Department of Biological Sciences, San José, CA, USA
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - Université de La Rochelle, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 75005 Paris, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - Université de La Rochelle, 79360 Villiers-en-Bois, France
| | - Baptiste Picard
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - Université de La Rochelle, 79360 Villiers-en-Bois, France
| | - Dorte Herzke
- Norwegian Institute for Air Research (NILU), Fram Centre, NO-9296 Tromsø, Norway
| | - Børge Moe
- Norwegian Institute for Nature Research (NINA), NO-7034 Trondheim, Norway
| | | | - Jan Ove Bustnes
- Norwegian Institute for Nature Research (NINA), Fram Centre, NO-9296 Tromsø, Norway
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - Université de La Rochelle, 79360 Villiers-en-Bois, France
| |
Collapse
|
66
|
Yang D, Han J, Hall DR, Sun J, Fu J, Kutarna S, Houck KA, LaLone CA, Doering JA, Ng CA, Peng H. Nontarget Screening of Per- and Polyfluoroalkyl Substances Binding to Human Liver Fatty Acid Binding Protein. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5676-5686. [PMID: 32249562 PMCID: PMC7477755 DOI: 10.1021/acs.est.0c00049] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
More than 1000 per- and polyfluoroalkyl substances (PFASs) have been discovered by nontarget analysis (NTA), but their prioritization for health concerns is challenging. We developed a method by incorporating size-exclusion column co-elution (SECC) and NTA, to screen PFASs binding to human liver fatty acid binding protein (hL-FABP). Of 74 PFASs assessed, 20 were identified as hL-FABP ligands in which eight of them have high binding affinities. Increased PFAS binding affinities correlate with stronger responses in electrospray ionization (ESI-) and longer retention times on a C18 column. This is well explained by a mechanistic model, which revealed that both polar and hydrophobic interactions are crucial for binding affinities. Encouraged by this, we then developed an SECC method to identify hL-FABP ligands, and all eight high-affinity ligands were selectively captured from 74 PFASs. The method was further applied to an aqueous film-forming foam (AFFF) product in which 31 new hL-FABP ligands were identified. Suspect and nontargeted screening revealed these ligands as analogues of perfluorosulfonic acids and homologues of alkyl ether sulfates (C8- and C10/EOn, C8H17(C2H4O)nSO4-, and C10H21(C2H4O)nSO4-). The SECC method was then applied to AFFF-contaminated surface waters. In addition to perfluorooctanesulfonic acid and perfluorohexanesulfonic acid, eight other AFFF chemicals were discovered as novel ligands, including four C14- and C15/EOn. This study implemented a high-throughput method to prioritize PFASs and revealed the existence of many previously unknown hL-FABP ligands.
Collapse
Affiliation(s)
- Diwen Yang
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Jiajun Han
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - David Ross Hall
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Jesse Fu
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Steven Kutarna
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Keith A. Houck
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, 27711 USA
| | - Carlie A. LaLone
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Duluth, Minnesota 55804 United States
| | - Jon A. Doering
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Duluth, Minnesota 55804 United States
- National Research Council, U.S. Environmental Protection Agency, Duluth, Minnesota 55804 USA
| | - Carla A. Ng
- Department of Civil & Environmental Engineering, University of Pittsburgh, 3700 O’Hara St, Pittsburgh, USA
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- School of the Environment, University of Toronto, Toronto, ON, Canada
- Corresponding author: Hui Peng, , Department of Chemistry, University of Toronto, Toronto, Ontario, M5S3H6, Canada
| |
Collapse
|
67
|
Ebert A, Allendorf F, Berger U, Goss KU, Ulrich N. Membrane/Water Partitioning and Permeabilities of Perfluoroalkyl Acids and Four of their Alternatives and the Effects on Toxicokinetic Behavior. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5051-5061. [PMID: 32212724 DOI: 10.1021/acs.est.0c00175] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The search for alternatives to bioaccumulative perfluoroalkyl acids (PFAAs) is ongoing. New, still highly fluorinated alternatives are produced in hopes of reducing bioaccumulation. To better estimate this bioaccumulative behavior, we performed dialysis experiments and determined membrane/water partition coefficients, Kmem/w, of six perfluoroalkyl carboxylic acids (PFCAs), three perfluoroalkanesulfonic acids, and four alternatives. We also investigated how passive permeation might influence the uptake kinetics into cells, measuring the passive anionic membrane permeability Pion through planar lipid bilayers for six PFAAs and three alternatives. Experimental Kmem/w and Pion were both predicted well by the COSMO-RS theory (log RMSE 0.61 and 0.46, respectively). Kmem/w values were consistent with the literature data, and alternatives showed similar sorption behavior as PFAAs. Experimental Pion values were high enough to explain observed cellular uptake by passive diffusion with no need to postulate the existence of active uptake processes. However, predicted pKa and neutral permeabilities suggest that also the permeation of the neutral species should be significant in case of PFCAs. This can have direct consequences on the steady-state distribution of PFAAs across cell membranes and thus toxicity. Consequently, we propose a model to predict pH-dependent baseline toxicity based on Kmem/w, which considers the permeation of both neutral and anionic species.
Collapse
Affiliation(s)
- Andrea Ebert
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany
- Institute of Biophysics, Johannes Kepler University, Gruberstrasse 40, 4020 Linz, Austria
| | - Flora Allendorf
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany
| | - Urs Berger
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany
| | - Kai-Uwe Goss
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany
- Institute of Chemistry, University of Halle-Wittenberg, Kurt-Mothes-Strasse 2, D-06120 Halle, Germany
| | - Nadin Ulrich
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany
| |
Collapse
|
68
|
Koelmel JP, Napolitano MP, Ulmer CZ, Vasiliou V, Garrett TJ, Yost RA, Prasad MNV, Godri Pollitt KJ, Bowden JA. Environmental lipidomics: understanding the response of organisms and ecosystems to a changing world. Metabolomics 2020; 16:56. [PMID: 32307636 DOI: 10.1007/s11306-020-01665-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/13/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Understanding the interaction between organisms and the environment is important for predicting and mitigating the effects of global phenomena such as climate change, and the fate, transport, and health effects of anthropogenic pollutants. By understanding organism and ecosystem responses to environmental stressors at the molecular level, mechanisms of toxicity and adaptation can be determined. This information has important implications in human and environmental health, engineering biotechnologies, and understanding the interaction between anthropogenic induced changes and the biosphere. One class of molecules with unique promise for environmental science are lipids; lipids are highly abundant and ubiquitous across nearly all organisms, and lipid profiles often change drastically in response to external stimuli. These changes allow organisms to maintain essential biological functions, for example, membrane fluidity, as they adapt to a changing climate and chemical environment. Lipidomics can help scientists understand the historical and present biofeedback processes in climate change and the biogeochemical processes affecting nutrient cycles. Lipids can also be used to understand how ecosystems respond to historical environmental changes with lipid signatures dating back to hundreds of millions of years, which can help predict similar changes in the future. In addition, lipids are direct targets of environmental stressors, for example, lipids are easily prone to oxidative damage, which occurs during exposure to most toxins. AIM OF REVIEW This is the first review to summarize the current efforts to comprehensively measure lipids to better understand the interaction between organisms and their environment. This review focuses on lipidomic applications in the arenas of environmental toxicology and exposure assessment, xenobiotic exposures and health (e.g., obesity), global climate change, and nutrient cycles. Moreover, this review summarizes the use of and the potential for lipidomics in engineering biotechnologies for the remediation of persistent compounds and biofuel production. KEY SCIENTIFIC CONCEPT With the preservation of certain lipids across millions of years and our ever-increasing understanding of their diverse biological roles, lipidomic-based approaches provide a unique utility to increase our understanding of the contemporary and historical interactions between organisms, ecosystems, and anthropogenically-induced environmental changes.
Collapse
Affiliation(s)
- Jeremy P Koelmel
- Department of Chemistry, University of Florida, 125 Buckman Drive, Gainesville, FL, 32611, USA
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Michael P Napolitano
- CSS, Inc., under contract to National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC, 29412, USA
| | - Candice Z Ulmer
- National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Ft. Johnson Road, Charleston, SC, 29412, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Timothy J Garrett
- Department of Chemistry, University of Florida, 125 Buckman Drive, Gainesville, FL, 32611, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Richard A Yost
- Department of Chemistry, University of Florida, 125 Buckman Drive, Gainesville, FL, 32611, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - M N V Prasad
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - John A Bowden
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, Gainesville, FL, 32610, USA.
| |
Collapse
|
69
|
Guo Q, He Z, Liu X, Liu B, Zhang Y. High-throughput non-targeted metabolomics study of the effects of perfluorooctane sulfonate (PFOS) on the metabolic characteristics of A. thaliana leaves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:135542. [PMID: 31785916 DOI: 10.1016/j.scitotenv.2019.135542] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
The ecotoxicity of perfluorooctane sulfonate (PFOS) is complex and has been reported in animals (including fish and mice), but the effects of PFOS in plants, especially the toxic mechanisms, have rarely been studied. High-throughput nontargeted metabolomics methods for comprehensive assessment were selected to study changes in metabolic characteristics in Arabidopsis thaliana leaves by exposure to different concentrations of PFOS throughout the growth period (30 days). All the metabolites were analyzed by PCA and OPLS-DA methods, by the cutoff of VIP and p-value, 53 biomarkers were found and significantly regulated, all amino acids except glutamate were inhibited and probably associated with binding to protein, auxin and cytokinin of phytohormones were significantly down-regulated. In response mechanism to oxidative stress from PFOS, the phenylpropanoid pathway were fully activated to form several polyphenols and further enhanced into several flavonoids against the reactive oxygen species (ROS) as the primary defend pathway, in addition, ascorbate, trehalose and nicotinamide also were activated and help decrease the damage from oxidative stress. These results provide insights into the mechanism underlying the phytotoxicity of PFOS.
Collapse
Affiliation(s)
- Qiqi Guo
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zeying He
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiaowei Liu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Bingjie Liu
- Shanghai AB Sciex Analytical Instrument Trading Co., Ltd, Shanghai, China
| | - Yanwei Zhang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
70
|
Nguyen GTH, Nocentini A, Angeli A, Gratteri P, Supuran CT, Donald WA. Perfluoroalkyl Substances of Significant Environmental Concern Can Strongly Inhibit Human Carbonic Anhydrase Isozymes. Anal Chem 2020; 92:4614-4622. [PMID: 32096628 DOI: 10.1021/acs.analchem.0c00163] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Perfluoroalkyl substances (PFASs) persist and are ubiquitous in the environment. The origins of PFAS toxicity and how they specifically affect the functions of proteins remain unclear. Herein, we report that PFASs can strongly inhibit the activity of human carbonic anhydrases (hCAs), which are ubiquitous enzymes that catalyze the hydration of CO2, are abundant in the blood and organs of mammals, and involved in pH regulation, ion homeostasis, and biosynthesis. The interactions between PFASs and hCAs were investigated using stopped-flow kinetic enzyme-inhibition measurements, native mass spectrometry (MS), and ligand-docking simulations. Narrow-bore emitters in native MS with inner diameters of ∼300 nm were used to directly and simultaneously measure the dissociation constants of 11 PFASs to an enzyme, which was not possible using conventional emitters. The data from native MS and stopped-flow measurements were in excellent agreement. Of 15 PFASs investigated, eight can inhibit at least one of four hCA isozymes (I, II, IX, and XII) with submicromolar inhibition constants, including perfluorooctanoic acid, perfluorooctanesulfonamide, and perfluorooctanesulfonic acid. Some PFASs, including those with both short and long perfluoromethylene chains, can effectively inhibit at least one hCA isozyme with low nanomolar inhibition constants.
Collapse
Affiliation(s)
- Giang T H Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Alessio Nocentini
- Department NEUROFARBA-Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy.,Department NEUROFARBA-Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Andrea Angeli
- Department NEUROFARBA-Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Paola Gratteri
- Department NEUROFARBA-Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Claudiu T Supuran
- Department NEUROFARBA-Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
71
|
Dzierlenga MW, Moreau M, Song G, Mallick P, Ward PL, Campbell JL, Housand C, Yoon M, Allen BC, Clewell HJ, Longnecker MP. Quantitative bias analysis of the association between subclinical thyroid disease and two perfluoroalkyl substances in a single study. ENVIRONMENTAL RESEARCH 2020; 182:109017. [PMID: 31865168 DOI: 10.1016/j.envres.2019.109017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/08/2019] [Accepted: 12/06/2019] [Indexed: 05/23/2023]
Abstract
Exposure to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) has been associated with the occurrence of thyroid disease in some epidemiologic studies. We hypothesized that in a specific epidemiologic study based on the National Health and Nutrition Examination Survey, the association of subclinical thyroid disease with serum concentration of PFOA and PFOS was due to reverse causality. Thyroid hormone affects glomerular filtration, which in turn affects excretion of PFOA and PFOS. We evaluated this by linking a model of thyroid disease status over the lifetime to physiologically based pharmacokinetic models of PFOA and PFOS. Using Monte Carlo methods, we simulated the target study population and analyzed the data using multivariable logistic regression. The target and simulated populations were similar with respect to age, estimated glomerular filtration rate, serum concentrations of PFOA and PFOS, and prevalence of subclinical thyroid disease. Our findings suggest that in the target study the associations with subclinical hypothyroidism were overstated and the results for subclinical hyperthyroidism were, in general, understated. For example, for subclinical hypothyroidism in men, the reported odds ratio per ln(PFOS) increase was 1.98 (95% CI 1.19-3.28), whereas in the simulated data the bias due to reverse causality gave an odds ratio of 1.19 (1.16-1.23). Our results provide evidence of bias due to reverse causality in a specific cross-sectional study of subclinical thyroid disease with exposure to PFOA and PFOS among adults.
Collapse
Affiliation(s)
| | | | - Gina Song
- ScitoVation, LLC, Research Triangle Park, NC, USA
| | | | | | | | | | - Miyoung Yoon
- ScitoVation, LLC, Research Triangle Park, NC, USA; ToxStrategies, Research Triangle Park, NC, USA
| | | | | | | |
Collapse
|
72
|
Khazaee M, Guardian MGE, Aga DS, Ng CA. Impacts of Sex and Exposure Duration on Gene Expression in Zebrafish Following Perfluorooctane Sulfonate Exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:437-449. [PMID: 31652359 DOI: 10.1002/etc.4628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/19/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a member of the anthropogenic class of perfluorinated alkyl acids (PFAAs) and one of the most frequently detected PFAAs in water, humans, mammals, and fish around the world. The zebrafish (Danio rerio) is a small freshwater fish considered an appropriate vertebrate model for investigating the toxicity of compounds. Previous investigations showed tissue-specific bioaccumulation and alterations in the expression of fatty acid-binding proteins (fabps) in male and female zebrafish, potentially due to interactions between PFAA and fatty acid transporters. In addition, a number of neurological impacts have been reported as a result of human and animal exposure to PFAAs. Therefore, the present comprehensive study was designed to investigate whether PFOS exposure affects the expression of genes associated with fatty acid metabolism (fabp1a, fabp2, and fabp10a) in zebrafish liver, intestine, heart, and ovary and genes involved in the nervous system (acetylcholinesterase, brain-derived neurotrophic factor, choline acetyltransferase, histone deacetylase 6, and nerve growth factor) in brain and muscle. The results indicate alterations in expression of genes associated with fatty acid metabolism and neural function that vary with both exposure concentration and sex. In addition, our findings highlight that expression of these genes differs according to exposure duration. The present results extend the knowledge base on PFOS effects to other tissues less often studied than the liver. The findings of the present investigation provide a basis for future studies on the potential risks of PFOS as one of the most abundant PFAAs in the environment. Environ Toxicol Chem 2020;39:437-449. © 2019 SETAC.
Collapse
Affiliation(s)
- Manoochehr Khazaee
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mary Grace E Guardian
- Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Carla A Ng
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
73
|
Yi S, Zhu L, Mabury SA. First Report on In Vivo Pharmacokinetics and Biotransformation of Chlorinated Polyfluoroalkyl Ether Sulfonates in Rainbow Trout. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:345-354. [PMID: 31774655 DOI: 10.1021/acs.est.9b05258] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study provides the first in vivo pharmacokinetic data for chlorinated perfluorooctanesulfonate (Cl-PFOS), 6:2 and 8:2 chlorinated polyfluoroalkyl ether sulfonates (Cl-PFESAs), upon a 30 day dietary exposure and 34 day depuration phase in rainbow trout (Oncorhynchus mykiss). Biological handling of these three novel molecules and legacy PFOS were investigated via cross-comparison. PFOS and Cl-PFOS displayed comparable bioaccumulative potencies and similar distribution tendencies in tissues (blood > liver > kidneys), despite the presence of a terminal chlorine atom in Cl-PFOS molecule. The Cl-PFESAs, especially 8:2 Cl-PFESA, were predominantly assimilated from the bloodstream by liver and kidneys and resisted elimination, leading to higher bioaccumulation factors in liver than in blood (0.576 and 0.254, respectively, for 8:2 Cl-PFESA) and longer half-lives in liver and kidneys than PFOS, suggesting these alternatives may pose greater risks in terms of the great accumulation potentials in fish tissues. The present study provides the first report of the in vivo transformation of 6:2 and 8:2 Cl-PFESAs and identifies 6:2 and 8:2 H-PFESAs as their respective sole metabolites. This provides the first line of evidence suggesting that the transformation susceptibility of Cl-PFESAs in organisms is distinct from their environmental persistence.
Collapse
Affiliation(s)
- Shujun Yi
- State Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada
| | - Lingyan Zhu
- State Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Scott A Mabury
- Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada
| |
Collapse
|
74
|
Bogdanska J, Borg D, Bergström U, Mellring M, Bergman Å, DePierre J, Nobel S. Tissue distribution of 14C-labelled perfluorooctanoic acid in adult mice after 1-5 days of dietary exposure to an experimental dose or a lower dose that resulted in blood levels similar to those detected in exposed humans. CHEMOSPHERE 2020; 239:124755. [PMID: 31726523 DOI: 10.1016/j.chemosphere.2019.124755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Perfluorooctanoic acid (PFOA), a global environmental pollutant detected in both wildlife and human populations, has several pathophysiological effects in experimental animals, including hepatotoxicity, immunotoxicity, and developmental toxicity. However, details concerning the tissue distribution of PFOA, in particular at levels relevant to humans, are lacking, which limits our understanding of how humans, and other mammals, may be affected by this compound. Therefore, we characterized the tissue distribution of 14C-PFOA in mice in the same manner as we earlier examined its analogues perfluorooctanesulfonate (PFOS) and perfluorobutanesulfonate (PFBS) in order to allow direct comparisons. Following dietary exposure of adult male C57/BL6 mice for 1, 3 or 5 days to a low dose (0.06 mg/kg/day) or a higher experimental dose (22 mg/kg/day) of 14C-PFOA, both scintillation counting and whole-body autoradiography revealed the presence of PFOA in most of the 19 different tissues examined, demonstrating its ability to leave the bloodstream and enter tissues. There were no differences in the pattern of tissue distribution with the low and high dose and the tissue-to-blood ratios were similar. At both doses, PFOA levels were highest in the liver, followed by blood, lungs and kidneys. The body compartments estimated to contain the largest amounts of PFOA were the liver, blood, skin and muscle. In comparison with our identical studies on PFOS and PFBS, PFOA reached considerably higher tissue levels than PFBS, but lower than PFOS. Furthermore, the distribution of PFOA differed notably from that of PFOS, with lower tissue-to-blood ratios in the liver, lungs, kidneys and skin.
Collapse
Affiliation(s)
- Jasna Bogdanska
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden.
| | - Daniel Borg
- Swedish Chemicals Agency, SE-17267, Stockholm, Sweden.
| | - Ulrika Bergström
- Department of Environmental Toxicology, Uppsala University, SE-75236, Uppsala, Sweden.
| | - Maria Mellring
- Department of Analytical Chemistry and Environmental Science, Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Åke Bergman
- Department of Analytical Chemistry and Environmental Science, Stockholm University, SE-106 91, Stockholm, Sweden; School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden.
| | - Joseph DePierre
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden.
| | - Stefan Nobel
- Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, SE-17177, Stockholm, Sweden.
| |
Collapse
|
75
|
Yi S, Chen P, Yang L, Zhu L. Probing the hepatotoxicity mechanisms of novel chlorinated polyfluoroalkyl sulfonates to zebrafish larvae: Implication of structural specificity. ENVIRONMENT INTERNATIONAL 2019; 133:105262. [PMID: 31665679 DOI: 10.1016/j.envint.2019.105262] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Hepatotoxicity in zebrafish (Danio rerio) larvae elicited by legacy perfluorooctane sulfonate (PFOS) and its three novel chlorinated alternatives, including chlorinated polyfluorooctane sulfonate (Cl-PFOS) and chlorinated polyfluoroalkyl ether sulfonates (6:2 and 8:2 Cl-PFESA analogs), was evaluated in this study. Upon 7-day separate exposure to the four target compounds at 1 µmol/L, significant hepatic steatosis in exposed larvae was evidenced by pathological micro/macro vacuolation, which was presumably attributed to the excess accumulation of lipid, especially the overloaded triglyceride (TG) level. Disruption on gene transcription was subjected to a structure-dependent manner. In general, PFOS, Cl-PFOS and 6:2 Cl-PFESA of the identical carbon chain length (i.e. C8), despite with different substituents, displayed a similar activation mode and comparable disruptive potency on lipid metabolism responsive genes, which particularly promoted fatty acid synthesis (acetyl-CoA carboxylase, acacb) and β-oxidation (cytochrome P450 enzymes-1A, cyp1a; peroxisomal acyl-CoA oxidase 1, acox1; and acyl-CoA dehy-drogenase, acadm). However, 8:2 Cl-PFESA with a prolonged carbon chain length (i.e. C10), preferentially disturbed fatty acid exportation (apolipoprotein-B100, apob) and triggered a different modulation pattern on fatty acid β-oxidation against the other three compounds. Molecular docking analysis indicated that 8:2 Cl-PFESA exhibited considerably higher peroxisome proliferator-activated receptors (PPARs) antagonism than others, corresponding to its unique suppression effect on fatty acid β-oxidation responsive genes. To our knowledge, this is the first in vivo study reporting hepatotoxicity of Cl-PFOS and Cl-PFESAs to aquatic organisms. Although characterized with different toxic mode-of-action, these novel alternatives can elicit hepatic steatosis as strong as PFOS, stressing the biological risks in view of their global contamination.
Collapse
Affiliation(s)
- Shujun Yi
- State Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Pengyu Chen
- State Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Liping Yang
- State Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- State Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
76
|
Taylor MD, Bräunig J, Mueller JF, Crompton M, Dunstan RH, Nilsson S. Metabolomic profiles associated with exposure to per- and polyfluoroalkyl substances (PFASs) in aquatic environments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1980-1990. [PMID: 31553340 DOI: 10.1039/c9em00394k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are frequently detected in aquatic environments. Longer chained perfluoroalkyl acids (PFAAs), in particular, have been found to bioaccumulate in a broad range of aquatic biota. PFAAs have a physiochemical similarity to naturally occurring fatty acids and could potentially disrupt metabolic processes, however, there has been limited study in this area, especially in aquatic species. In this study, the associations between PFAAs and metabolite profiles were investigated in crustaceans. Eastern School Prawn (Metapenaeus macleayi) were obtained from three different locations (n = 15 per location) with similar environmental conditions but different levels of PFAA contamination. The concentrations of PFAAs, fatty acids and amino acids were analysed and differences in PFAA and metabolite profiles were evaluated. Different PFAA profiles were mirrored by significant differences in the composition of both fatty acid and amino acid profiles, indicating a potential association between PFAA concentration and the composition of metabolites in prawns. These results highlight a need for further research investigating the impacts of PFAA exposure, with the current study providing a foundation for further investigation of the relationship between PFAA bioaccumulation and organism metabolism.
Collapse
Affiliation(s)
- Matthew D Taylor
- Port Stephens Fisheries Institute, New South Wales Department of Primary Industries, Locked Bag 1, Nelson Bay, NSW 2315, Australia. and The University of Queensland, Queensland Alliance for Environmental Health Sciences, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia and School of Environmental and Life Sciences, University of Newcastle, New South Wales 2308, Australia
| | - Jennifer Bräunig
- The University of Queensland, Queensland Alliance for Environmental Health Sciences, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Jochen F Mueller
- The University of Queensland, Queensland Alliance for Environmental Health Sciences, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Marcus Crompton
- School of Environmental and Life Sciences, University of Newcastle, New South Wales 2308, Australia
| | - R Hugh Dunstan
- School of Environmental and Life Sciences, University of Newcastle, New South Wales 2308, Australia
| | - Sandra Nilsson
- The University of Queensland, Queensland Alliance for Environmental Health Sciences, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
77
|
Boisvert G, Sonne C, Rigét FF, Dietz R, Letcher RJ. Bioaccumulation and biomagnification of perfluoroalkyl acids and precursors in East Greenland polar bears and their ringed seal prey. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1335-1343. [PMID: 31252131 DOI: 10.1016/j.envpol.2019.06.035] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 05/19/2023]
Abstract
The bioaccumulation and biomagnification of 22 major perfluoroalkyl substances (PFAS) were investigated in tissues of polar bears (Ursus maritimus) and their major prey species, the ringed seal (Pusa hispida), from the Scoresby Sound region of East Greenland. In polar bear liver the mean Σ4PFSA (perfluoroalkyl sulfonic acid) concentration (C4, C6, C8 and C10) was 2611 ± 202 ng/g wet weight (ww; 99% perfluorooctane sulfonate (PFOS)) and two orders of magnitude higher than the 20 ± 3 ng/g ww (89% PFOS) concentration in fat. The mean Σ4PFSAs in seal liver was 111 ± 5 ng/g ww (98% PFOS) and three orders of magnitude higher relative to the 0.05 ± 0.01 ng/g ww concentration in blubber (100% perfluorohexane sulfonate). Perfluoro-1-octane sulfonamide (FOSA) was quantifiable in bear (mean 10 ± 1.4 ng/g ww) and seal (mean 0.6 ± 0.1 ng/g ww) liver but not in fat or blubber. The mean Σ13PFCAs (C4-C18; perfluoroalkyl carboxylic acids) in bear liver (924 ± 71 ng/g ww) was much greater than in seal liver (74 ± 6 ng/g ww). In bear fat and seal blubber, the mean Σ13PFCAs were 15 ± 1.9 and 0.9 ± 0.1 ng/g ww, respectively. Longer chain C11 to C14 PFCAs dominated in bear fat and seal blubber (60-80% of Σ13PFCA), whereas shorter-chain C9 to C11 PFCAs dominated in the liver (85-90% of Σ13PFCA). Biomagnification factors (BMFs) were orders of magnitude greater for PFHxS and C9 to C13 PFCAs when based on bear liver to seal blubber rather than bear liver to seal liver, and PFCA (C9 to C13) BMFs decreased with increasing chain length. Seal blubber to bear liver BMFs better reflects the dietary exposure relationship of PFAS between bears and seals.
Collapse
Affiliation(s)
- Gabriel Boisvert
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada and the Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre, Aarhus University, Roskilde, Denmark
| | - Frank F Rigét
- Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre, Aarhus University, Roskilde, Denmark
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada and the Department of Chemistry, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
78
|
Characterization of the binding of per- and poly-fluorinated substances to proteins: A methodological review. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
79
|
Huang M, Dzierlenga A, Robinson V, Waidyanatha S, DeVito M, Eifrid M, Granville C, Gibbs S, Blystone C. Toxicokinetics of perfluorobutane sulfonate (PFBS), perfluorohexane-1-sulphonic acid (PFHxS), and perfluorooctane sulfonic acid (PFOS) in male and female Hsd:Sprague Dawley SD rats after intravenous and gavage administration. Toxicol Rep 2019; 6:645-655. [PMID: 31334035 PMCID: PMC6624215 DOI: 10.1016/j.toxrep.2019.06.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/20/2022] Open
Abstract
In rats, the half-life of perfluoroalkyl sulfonic acids decreased with shorter chain lengths. Sex differences in kinetics were found for PFBS and PFHxS but not PFOS. Perfluoroalkyl sulfonic acids were highly present in the liver but not the brain.
Perfluorinated alkyl substances (PFAS) are persistent contaminants that have been detected in the environment and in humans. With the PFAS chemical class, there are perfluorinated alkyl acids, many of which have been associated with certain toxicities. Because toxicity testing cannot feasibly be conducted for each individual PFAS, the National Toxicology Program (NTP) designed studies to compare toxicities across different subclasses of PFAS and across PFAS of different chain lengths to better understand the structure-toxicity relationship. Pharmacokinetic studies were conducted in parallel to these toxicity studies to facilitate comparisons across PFAS and to provide context for human relevance. Here, the toxicokinetic parameters of perfluorobutane sulfonate (PFBS), perfluorohexane-1-sulphonic acid (PFHxS), or perfluorooctane sulfonate (PFOS) after a single intravenous or gavage administration in male and female Hsd:Sprague-Dawley rats are reported. Concentrations of these PFAS were measured in the liver, kidney, and brain. Plasma half-life increased with longer chain length after gavage administration: PFBS- males averaged 3.3 h, females 1.3 h; PFHxS- males averaged 16.3 days, females 2.1 days; PFOS- males and females averaged ˜ 20 days. There were dose-dependent changes in clearance and systemic exposure for all administered chemicals and the direction of change was different in PFOS compared to the others. Liver:plasma ratios of PFOS were the highest followed by PFHxS and PFBS, while brain:plasma ratios were low in all three sulfonates. Sex differences in plasma half-life and tissue distribution were observed for PFBS and PFHxS, but not PFOS. These data provide a direct comparison of the kinetics of three different perfluoroalkyl sulfonic acids and allow for the contextualization of toxicity data in rats for human risk assessment of this chemical class.
Collapse
Affiliation(s)
- M.C. Huang
- Division of the National Toxicology Program, National Institutes of Environmental Health Sciences, National Institute of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, United States
| | - A.L. Dzierlenga
- Division of the National Toxicology Program, National Institutes of Environmental Health Sciences, National Institute of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, United States
| | - V.G. Robinson
- Division of the National Toxicology Program, National Institutes of Environmental Health Sciences, National Institute of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, United States
| | - S. Waidyanatha
- Division of the National Toxicology Program, National Institutes of Environmental Health Sciences, National Institute of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, United States
| | - M.J. DeVito
- Division of the National Toxicology Program, National Institutes of Environmental Health Sciences, National Institute of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, United States
| | - M.A. Eifrid
- Battelle Memorial Institute, Columbus, OH, 43201, United States
| | - C.A. Granville
- Battelle Memorial Institute, Columbus, OH, 43201, United States
| | - S.T. Gibbs
- Battelle Memorial Institute, Columbus, OH, 43201, United States
| | - C.R. Blystone
- Division of the National Toxicology Program, National Institutes of Environmental Health Sciences, National Institute of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, United States
- Corresponding author at: Division of the National Toxicology Program, NIEHS, PO Box 12233 (MD K2-12), Research Triangle Park, NC, 27709, United States.
| |
Collapse
|
80
|
Vidal A, Lafay F, Daniele G, Vulliet E, Rochard E, Garric J, Babut M. Does water temperature influence the distribution and elimination of perfluorinated substances in rainbow trout (Oncorhynchus mykiss)? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:16355-16365. [PMID: 30980373 DOI: 10.1007/s11356-019-05029-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Perfluorinated and polyfluorinated substances (PFASs) are widely found in freshwater ecosystems because of their resistance to degradation and their ability to accumulate in aquatic organisms. While water temperature controls many physiological processes in fish, knowledge of the effects of this factor on PFAS toxicokinetic is still limited. This study presents experimental results of internal distribution and elimination rates of two perfluorinated acid compounds, namely perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS) in adult rainbow trout (Oncorhynchus mykiss) exposed to three temperatures. Dietary exposure experiments were conducted at 7 °C, 11 °C, and 19 °C and liver, blood, muscle, brain, and kidney were sampled for analysis. PFOS concentrations were comparable to or exceeded those of PFHxS, while PFHxS was eliminated faster than PFOS, whatever the temperature. Internal distribution changed significantly for both substances when fish were exposed to a range of temperatures from 7 to 19 °C. Indeed, PFOS and PFHxS relative distribution increased in blood, liver, and brain while they decreased in muscle when the water temperature rose. The water temperature variation affected the elimination half-lives, depending on the substances and organs.
Collapse
Affiliation(s)
- Alice Vidal
- Irstea, RIVERLY Research Unit, 5 rue de la Doua CS 20244, 69625, Villeurbanne Cedex, France
| | - Florent Lafay
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280 CNRS, Université Claude Bernard Lyon 1, ENS-Lyon, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Gaelle Daniele
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280 CNRS, Université Claude Bernard Lyon 1, ENS-Lyon, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Emmanuelle Vulliet
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280 CNRS, Université Claude Bernard Lyon 1, ENS-Lyon, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Eric Rochard
- Irstea, EABX Research Unit, 50 avenue de Verdun, 33612, Cestas, France
| | - Jeanne Garric
- Irstea, RIVERLY Research Unit, 5 rue de la Doua CS 20244, 69625, Villeurbanne Cedex, France
| | - Marc Babut
- Irstea, RIVERLY Research Unit, 5 rue de la Doua CS 20244, 69625, Villeurbanne Cedex, France.
| |
Collapse
|
81
|
Zeng Z, Song B, Xiao R, Zeng G, Gong J, Chen M, Xu P, Zhang P, Shen M, Yi H. Assessing the human health risks of perfluorooctane sulfonate by in vivo and in vitro studies. ENVIRONMENT INTERNATIONAL 2019; 126:598-610. [PMID: 30856447 DOI: 10.1016/j.envint.2019.03.002] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 05/20/2023]
Abstract
The wide use of perfluorooctane sulfonate (PFOS) has led to increasing concern about its human health risks over the past decade. In vivo and in vitro studies are important and effective means to ascertain the toxic effects of PFOS on humans and its toxic mechanisms. This article systematically reviews the human health risks of PFOS based on the currently known facts found by in vivo and in vitro studies from 2008 to 2018. Exposure to PFOS has caused hepatotoxicity, neurotoxicity, reproductive toxicity, immunotoxicity, thyroid disruption, cardiovascular toxicity, pulmonary toxicity, and renal toxicity in laboratory animals and many in vitro human systems. These results and related epidemiological studies confirmed the human health risks of PFOS, especially for exposure via food and drinking water. Oxidative stress and physiological process disruption based on fatty acid similarity were widely studied mechanisms of PFOS toxicity. Future research for assessing the human health risks of PFOS is recommended in the chronic toxicity and molecular mechanisms, the application of various omics, and the integration of toxicological and epidemiological data.
Collapse
Affiliation(s)
- Zhuotong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Rong Xiao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Jilai Gong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Peng Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Maocai Shen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
82
|
Gui D, Zhang M, Zhang T, Zhang B, Lin W, Sun X, Yu X, Liu W, Wu Y. Bioaccumulation behavior and spatiotemporal trends of per- and polyfluoroalkyl substances in Indo-Pacific humpback dolphins from the Pearl River Estuary, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:1029-1038. [PMID: 30677968 DOI: 10.1016/j.scitotenv.2018.12.278] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Sixteen per- and polyfluoroalkyl substances (PFASs) were measured in liver (n = 52) and kidney (n = 18) tissues of Indo-Pacific humpback dolphins (Sousa chinensis) stranded in the Pearl River Estuary (PRE) of China between 2004 and 2016. The average concentrations of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and most of other PFASs in the liver samples were respectively greater than any records previously reported in cetaceans globally. PFOS levels in 46% of dolphin liver samples exceeded the hepatic toxicity threshold in cetaceans. For the first time, we found a U-shaped trend for the distribution pattern of perfluorinated carboxylic acids (PFCAs) between liver and kidney with increasing carbon chain lengths (C5-C16), whereas a descending trend (C4-C10) was found for perfluoroalkane sulfonic acids (PFASs), which may be explained by binding efficiencies of PFAS analogues to proteins. Dolphins with the highest levels of ∑PFASs (age-corrected) were clustered near the river outlets in Lingdingyang area, which agrees with the spatial distribution of PFASs in the environment. Significant temporal trends were observed for many PFASs. Concentrations of PFOA, perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA) and perfluoroheptanoic acid (PFHpA) all peaked in year 2011, followed by a decreasing trend, while a consistently descending trend was shown for perfluoroundecanoic acid (PFUdA) and perfluorodecane sulfonate (PFDS). Our findings contribute to the knowledge of tissue distribution and spatiotemporal trends of PFASs in the PRE dolphins, which are valuable for us to understand the PFASs exposure risk and their industrial emission in Southern China.
Collapse
Affiliation(s)
- Duan Gui
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, China
| | - Mei Zhang
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Bo Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wenzhi Lin
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, China
| | - Xian Sun
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, China
| | - Xinjian Yu
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, China
| | - Wen Liu
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, China
| | - Yuping Wu
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, China.
| |
Collapse
|
83
|
Jansen A, Müller MHB, Grønnestad R, Klungsøyr O, Polder A, Skjerve E, Aaseth J, Lyche JL. Decreased plasma levels of perfluoroalkylated substances one year after bariatric surgery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:863-870. [PMID: 30677951 DOI: 10.1016/j.scitotenv.2018.11.453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/24/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Per- and polyfluoroalkylated substances (PFASs) are classified as persistent organic pollutants (POPs), and known to be protein bound. The aim of the present study was to determine the levels of 17 different PFASs before and one year after bariatric surgery, and to assess whether weight loss and changed serum protein concentrations could be influencing factors. Plasma samples from 63 patients were analyzed for nine perfluoroalkyl carboxylic acids (PFCAs), three perfluoroalkane sulfonic acids (PFSAs), and five perfluoroalkyl sulfonamide based substances (PASF) before and after surgery. Protein determination was performed in the corresponding serum samples. Mean weight loss one year after surgery was 32.1 kg. The plasma levels of all PFASs decreased with 4-34% compared to preoperative values, and included perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), and perfluorobutane sulfonate (PFBS), which have been identified with increasing levels in the general population during recent years. Serum protein concentrations also decreased with 7-8%. Although protein levels were positively correlated with PFOA, PFBS, PFHxS and PFOS, regression analysis revealed that neither weight loss nor reductions in concentrations of serum protein could explain the decreased PFAS levels. The type of surgical procedure did not influence the changes of PFAS levels between the two sample points. A reduced food intake and alterations in absorptions of nutrients after bariatric surgery may have influenced the observed decreasing plasma levels of PFASs.
Collapse
Affiliation(s)
- Aina Jansen
- Department of Surgery, Innlandet Hospital Trust, Gjøvik, Norway; Department of Food Safety and Infection Biology, Norwegian University of Life Sciences (NMBU), Oslo, Norway.
| | - Mette H B Müller
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Randi Grønnestad
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences (NMBU), Oslo, Norway; Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ole Klungsøyr
- Oslo Centre for Biostatistics and Epidemiology, Section for Treatment Research, Department for Research and Education, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Anuschka Polder
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Eystein Skjerve
- Centre for Epidemiology and Biostatistics, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Jan Aaseth
- Innlandet Hospital Trust, Research Department, Brumunddal, Norway; Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, Elverum, Norway
| | - Jan L Lyche
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| |
Collapse
|
84
|
Dassuncao C, Pickard H, Pfohl M, Tokranov AK, Li M, Mikkelsen B, Slitt A, Sunderland EM. Phospholipid Levels Predict the Tissue Distribution of Poly- and Perfluoroalkyl Substances in a Marine Mammal. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2019; 6:119-125. [PMID: 33283018 PMCID: PMC7713714 DOI: 10.1021/acs.estlett.9b00031] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Exposure to poly- and perfluoroalkyl substances (PFASs) has been linked to many negative health impacts in humans and wildlife. Unlike neutral hydrophobic organic pollutants, many PFASs are ionic and have been hypothesized to accumulate in both phospholipids and protein-rich tissues. Here we investigate the role of phospholipids for PFAS accumulation by analyzing associations among concurrent measurements of phospholipid, total protein, total lipid and 24 PFASs in the heart, muscle, brain, kidney, liver, blubber, placenta and spleen of North Atlantic pilot whales (Globicephala melas). The sum of 24 PFASs ( ∑ 24 PFAS ) was highest in the liver (median 260 ng g-1; interquartile range (IQR) 216-295 ng g-1) and brain (86.0; IQR 54.5-91.3 ng g-1), while phospholipid levels were highest in brain. The relative abundance of PFASs in the brain greatly increases with carbon chain lengths of 10 or greater, suggesting shorter-chained compounds may cross the blood-brain barrier less efficiently. Phospholipids were significant predictors of the tissue distribution of the longest-chained PFASs: perfluorodecanesulfonate (PFDS), perfluorododecanoate (PFDoA), perfluorotridecanoate (PFTrA), and perfluorotetradecanoic acid (PFTA) (rs = 0.5-0.6). In all tissues except the brain, each 1 mg g-1 increase in phospholipids led to a 12%-25% increase in the concentration of each PFAS. We conclude that partitioning to phospholipids is an important mechanism of bioaccumulation for long-chained PFASs in marine mammals.
Collapse
Affiliation(s)
- Clifton Dassuncao
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA 02138
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA 02115
- Corresponding Author
| | - Heidi Pickard
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA 02138
| | - Marisa Pfohl
- Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA 02881
| | - Andrea K. Tokranov
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA 02138
| | - Miling Li
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA 02138
| | | | - Angela Slitt
- Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA 02881
| | - Elsie M. Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA 02138
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA 02115
| |
Collapse
|
85
|
Design and synthesis of the novel branched fluorinated surfactant intermediates with CF3CF2CF2C(CF3)2 group. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
86
|
Ishibashi H, Hirano M, Kim EY, Iwata H. In Vitro and In Silico Evaluations of Binding Affinities of Perfluoroalkyl Substances to Baikal Seal and Human Peroxisome Proliferator-Activated Receptor α. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2181-2188. [PMID: 30649875 DOI: 10.1021/acs.est.8b07273] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, we assessed the binding affinities of perfluoroalkyl substances (PFASs), including perfluoroalkyl carboxylates (PFCAs) and perfluoroalkyl sulfonates (PFSAs), to the ligand-binding domains (LBDs) of Baikal seal ( Pusa sibirica; bs) and human (h) peroxisome proliferator-activated receptor alpha (PPARα). An in vitro competitive binding assay showed that six PFCAs and two PFSAs could bind to recombinant bs and hPPARα LBD proteins in a dose-dependent manner. The relative binding affinities (RBAs) of PFASs to bsPPARα were as follows: PFOS > PFDA > PFNA > PFUnDA > PFOA > PFHxS > PFHpA > PFHxA. The RBAs to bsPPARα showed a significant positive correlation with those to hPPARα. In silico PPARα homology modeling predicted that there were two ligand-binding pockets (LBPs) in the bsPPARα and hPPARα LBDs. Structure-activity relationship analyses suggested that the binding potencies of PFASs to PPARα might depend on LBP binding cavity volume, hydrogen bond interactions, the number of perfluorinated carbons, and the hydrophobicity of PFASs. Interspecies comparison of the in vitro binding affinities revealed that bsPPARα had higher preference for PFASs with long carbon chains than hPPARα. The in silico docking simulations suggested that the first LBP of bsPPARα had higher affinities than that of hPPARα; however, the second LBP of bsPPARα had lower affinities than that of hPPARα. To our knowledge, this is the first evidence showing interspecies differences in the binding of PFASs to PPARαs and their structure-activity relationships.
Collapse
Affiliation(s)
- Hiroshi Ishibashi
- Center for Marine Environmental Studies (CMES) , Ehime University , Bunkyo-cho 2-5 , Matsuyama 790-8577 , Japan
- Graduate School of Agriculture , Ehime University , 3-5-7 Tarumi , Matsuyama 790-8566 , Japan
| | - Masashi Hirano
- Department of Biological and Chemical Systems Engineering , National Institute of Technology, Kumamoto College , 2627 Hirayama-shinmachi , Yatsushiro , Kumamoto 866-8501 , Japan
| | - Eun-Young Kim
- Department of Life and Nanopharmaceutical Science and Department of Biology , Kyung Hee University , Hoegi-Dong , Dongdaemun-Gu , Seoul 130-701 , Korea
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES) , Ehime University , Bunkyo-cho 2-5 , Matsuyama 790-8577 , Japan
| |
Collapse
|
87
|
Rodríguez-Jorquera IA, Colli-Dula RC, Kroll K, Jayasinghe BS, Parachu Marco MV, Silva-Sanchez C, Toor GS, Denslow ND. Blood Transcriptomics Analysis of Fish Exposed to Perfluoro Alkyls Substances: Assessment of a Non-Lethal Sampling Technique for Advancing Aquatic Toxicology Research. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1441-1452. [PMID: 30572700 DOI: 10.1021/acs.est.8b03603] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In contrast to mammals, the blood from other vertebrates such as fish contains nucleated red cells. Using a fathead minnow ( Pimephales promelas) oligonucleotide microarray, we compared altered transcripts in the liver and whole blood after exposure to environmentally relevant concentrations of perfluorooctanesulfonic acid (PFOS) and a mixture of seven types of perfluoro alkyl substances (PFAS), including perfluorooctanoic acid (PFOA). We used quantitative polymerase chain reactions and cell-based assays to confirm the main effects and found that blood responded with a greater number of altered genes than the liver. The exposure to PFAS altered similar genes with central roles in a cellular pathway in both tissues, including estrogen receptor α and peroxisome proliferator activator β and γ, indicating that the genes previously associated with PFAS exposure are differentially expressed in blood and liver. The altered transcripts are involved with cholesterol metabolism and mitochondrial function. Our data confirmed that PFAS are weak xenoestrogens and exert effects on DNA integrity. Gene expression profiling from blood samples not related with the immune system, including very-low-density lipoprotein, vitellogenin, estrogen receptor, and thyroid hormone receptor, demonstrated that blood is a useful tissue for assessing endocrine disruption in non-mammalian vertebrates. We conclude that the use of blood for non-lethal sampling in genomics studies is informative and particularly useful for assessing the effects of pollution in endangered species. Further, using blood will reduce animal use and widen the experimental design options for studying the effects of contaminant exposure on wildlife.
Collapse
Affiliation(s)
- Ignacio A Rodríguez-Jorquera
- Centro de Humedales Río Cruces (CEHUM) , Universidad Austral de Chile , Independencia 641 , Valdivia , Región de los Ríos , Chile
| | - R Cristina Colli-Dula
- Departamento de Recursos el Mar , Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional , Unidad Mérida , México
| | | | | | - Maria V Parachu Marco
- Laboratorio de Biología Celular y Molecular Aplicada (LBCMA), Instituto de Ciencias Veterinarias del Litoral (ICiVet - Litoral) , Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) , CP 3080 Esperanza , Santa Fe , Argentina
- Facultad de Humanidades y Ciencias - Universidad Nacional del Litoral , Paraje El Pozo sin nombre , CP 3000 Santa Fe , Argentina
- Proyecto Yacaré, Laboratorio de Zoología Aplicada: Anexo Vertebrados (Facultad de Humanidades y Ciencias - Universidad de Nacional del Litoral/MASPyMA) , Aristóbulo del Valle 8700 , 3000 Santa Fe (Santa Fe) Argentina
| | | | - Gurpal S Toor
- Department of Environmental Science and Technology , University of Maryland , College Park , Maryland 20742 , United States
| | | |
Collapse
|
88
|
Zhang H, He J, Li N, Gao N, Du Q, Chen B, Chen F, Shan X, Ding Y, Zhu W, Wu Y, Tang J, Jia X. Lipid accumulation responses in the liver of Rana nigromaculata induced by perfluorooctanoic acid (PFOA). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:29-35. [PMID: 30292973 DOI: 10.1016/j.ecoenv.2018.09.120] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 05/22/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a perfluorinated compound that is widely distributed, is persistent in the environment, and has a low-level chronic exposure effect on human health. The aim of this study was to investigate the peroxisome proliferator activated receptors γ (PPARγ) and the sterol regulatory element-binding protein 2 (SREBP2) signaling pathways in regulating the lipid damage response to PFOA in the livers of amphibians. Male and female frogs (Rana nigromaculata) were exposed to 0, 0.01, 0.1, 0.5 and 1 mg/L PFOA. After treatment, we evaluated the pathological changes in the liver by Oil Red O, staining and examined the total cholesterol (T-CHO) and triglyceride (TG) contents. The mRNA expression levels of PPARγ, Fatty acid synthase (FAS), Acetyl-CoA carboxylase (ACC), Glycerol-3-phosphate acyltransferase (GPAT), SREBP2 and 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The administration of PFOA caused marked lipid accumulation damage in the amphibian livers. The T-CHO contents were elevated significantly after PFOA treatment; these results show a dose-dependent manner in both sexes. The TG content showed a significant increase in male livers, while it was elevated significantly in female livers. The RT-PCR results showed that the mRNA expression levels of PPARγ, ACC, FAS, GPAT, SREBP2 and HMG-CoA were significantly dose-dependently increased in the PFOA-treated groups compared with those of the control group. Our results demonstrated that PFOA-induced lipid accumulation also affected the expression levels of genes FAS, ACC, GPAT and HMG-CoA in the PPARγ and SREBP2 signaling pathways in the liver. These finding will provide a scientific theoretical basis for the protection of Rana nigromaculata against PFOA effects.
Collapse
Affiliation(s)
- Hangjun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China; Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, Zhejiang Province 310036, China
| | - Jianbo He
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China
| | - Ning Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China
| | - Nana Gao
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China
| | - Qiongxia Du
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China
| | - Bin Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China
| | - Feifei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China
| | - Xiaodong Shan
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China
| | - Ying Ding
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, Zhejiang Province 310036, China
| | - Weiqin Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, Zhejiang Province 310036, China
| | - Yingzhu Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China
| | - Juan Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China
| | - Xiuying Jia
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China.
| |
Collapse
|
89
|
Wang Y, Han W, Wang C, Zhou Y, Shi R, Bonefeld-Jørgensen EC, Yao Q, Yuan T, Gao Y, Zhang J, Tian Y. Efficiency of maternal-fetal transfer of perfluoroalkyl and polyfluoroalkyl substances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:2691-2698. [PMID: 30484044 DOI: 10.1007/s11356-018-3686-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) can be transferred from a mother to her fetus during pregnancy and adversely affect fetal development. However, the efficiency and influencing factors of PFASs maternal-fetal transfer remain unclear. We measured the levels of six perfluoroalkylcarboxylates, three perfluoroalkylsulfonates, and one sulfonamide in 369 pairs of maternal and umbilical cord serum and examined the transplacental transfer efficiency (TTE) of PFASs by the functional group and carbon chain length in a prospective birth cohort in Shandong, China. All ten PFASs were detected in both maternal and umbilical cord serum in nearly all samples. Maternal and cord levels were closely correlated (the correlation coefficient [r] ranging from 0.485 to 0.908) in most PFASs except perfluorobutane sulfonic acid (PFBS) (r = 0.159). TTE was significantly affected by the functional group and carbon chain length. Compared to perfluoroalkylcarboxylates, perfluoroalkylsulfonates had a lower ratio of maternal to fetal transfer. A U-shaped relationship between carbon chain length and TTE was observed for perfluoroalkylcarboxylates while a monotonic descending trend was identified between TTE and the increasing carbon chain length for perfluoroalkylsulfonates. PFASs can readily pass through the placenta. The functional group and carbon chain length are important determinants for the TTE of PFASs.
Collapse
Affiliation(s)
- Yiwen Wang
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Department of Neonatology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenchao Han
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Department of Pediatrics, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Caifeng Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijun Zhou
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Shi
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Qian Yao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Gao
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jun Zhang
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Ying Tian
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
90
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Vleminckx C, Vollmer G, Wallace H, Bodin L, Cravedi JP, Halldorsson TI, Haug LS, Johansson N, van Loveren H, Gergelova P, Mackay K, Levorato S, van Manen M, Schwerdtle T. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J 2018. [PMID: 32625773 DOI: 10.2903/j.efsa.2018.5194">10.2903/j.efsa.2018.5194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [10.2903/j.efsa.2018.5194','32625773', '10.1016/s0300-483x(02)00081-1')">Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
10.2903/j.efsa.2018.5194" />
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in food. Regarding PFOS and PFOA occurrence, the final data set available for dietary exposure assessment contained a total of 20,019 analytical results (PFOS n = 10,191 and PFOA n = 9,828). There were large differences between upper and lower bound exposure due to analytical methods with insufficient sensitivity. The CONTAM Panel considered the lower bound estimates to be closer to true exposure levels. Important contributors to the lower bound mean chronic exposure were 'Fish and other seafood', 'Meat and meat products' and 'Eggs and egg products', for PFOS, and 'Milk and dairy products', 'Drinking water' and 'Fish and other seafood' for PFOA. PFOS and PFOA are readily absorbed in the gastrointestinal tract, excreted in urine and faeces, and do not undergo metabolism. Estimated human half-lives for PFOS and PFOA are about 5 years and 2-4 years, respectively. The derivation of a health-based guidance value was based on human epidemiological studies. For PFOS, the increase in serum total cholesterol in adults, and the decrease in antibody response at vaccination in children were identified as the critical effects. For PFOA, the increase in serum total cholesterol was the critical effect. Also reduced birth weight (for both compounds) and increased prevalence of high serum levels of the liver enzyme alanine aminotransferase (ALT) (for PFOA) were considered. After benchmark modelling of serum levels of PFOS and PFOA, and estimating the corresponding daily intakes, the CONTAM Panel established a tolerable weekly intake (TWI) of 13 ng/kg body weight (bw) per week for PFOS and 6 ng/kg bw per week for PFOA. For both compounds, exposure of a considerable proportion of the population exceeds the proposed TWIs.
Collapse
|
91
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Vleminckx C, Vollmer G, Wallace H, Bodin L, Cravedi JP, Halldorsson TI, Haug LS, Johansson N, van Loveren H, Gergelova P, Mackay K, Levorato S, van Manen M, Schwerdtle T. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J 2018; 16:e05194. [PMID: 32625773 PMCID: PMC7009575 DOI: 10.2903/j.efsa.2018.5194] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in food. Regarding PFOS and PFOA occurrence, the final data set available for dietary exposure assessment contained a total of 20,019 analytical results (PFOS n = 10,191 and PFOA n = 9,828). There were large differences between upper and lower bound exposure due to analytical methods with insufficient sensitivity. The CONTAM Panel considered the lower bound estimates to be closer to true exposure levels. Important contributors to the lower bound mean chronic exposure were 'Fish and other seafood', 'Meat and meat products' and 'Eggs and egg products', for PFOS, and 'Milk and dairy products', 'Drinking water' and 'Fish and other seafood' for PFOA. PFOS and PFOA are readily absorbed in the gastrointestinal tract, excreted in urine and faeces, and do not undergo metabolism. Estimated human half-lives for PFOS and PFOA are about 5 years and 2-4 years, respectively. The derivation of a health-based guidance value was based on human epidemiological studies. For PFOS, the increase in serum total cholesterol in adults, and the decrease in antibody response at vaccination in children were identified as the critical effects. For PFOA, the increase in serum total cholesterol was the critical effect. Also reduced birth weight (for both compounds) and increased prevalence of high serum levels of the liver enzyme alanine aminotransferase (ALT) (for PFOA) were considered. After benchmark modelling of serum levels of PFOS and PFOA, and estimating the corresponding daily intakes, the CONTAM Panel established a tolerable weekly intake (TWI) of 13 ng/kg body weight (bw) per week for PFOS and 6 ng/kg bw per week for PFOA. For both compounds, exposure of a considerable proportion of the population exceeds the proposed TWIs.
Collapse
|
92
|
Exploring sex differences in human health risk assessment for PFNA and PFDA using a PBPK model. Arch Toxicol 2018; 93:311-330. [DOI: 10.1007/s00204-018-2365-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
|
93
|
Fujii Y, Kato Y, Kozai M, Matsuishi T, Harada KH, Koizumi A, Kimura O, Endo T, Haraguchi K. Different profiles of naturally produced and anthropogenic organohalogens in the livers of cetaceans from the Sea of Japan and the North Pacific Ocean. MARINE POLLUTION BULLETIN 2018; 136:230-242. [PMID: 30509803 DOI: 10.1016/j.marpolbul.2018.08.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 06/25/2018] [Accepted: 08/23/2018] [Indexed: 05/03/2023]
Abstract
Levels and profiles of naturally produced halogenated bipyrroles (Br4Cl2-DBP and Cl7-MBP), methoxylated tetrabromodiphenyl ethers (6-MeO-BDE47), anthropogenic perfluoroalkyl substances (PFASs) and legacy persistent organic pollutants (POPs) were investigated in the livers of 14 cetaceans from the Sea of Japan and the North Pacific Ocean. The concentrations of Br4Cl2-DBP (4 to 4900 ng/g-wet), Cl7-MBP (16 to 3960 ng/g-wet) and 6-MeO-BDE47 (7 to 190 ng/g-wet) were higher in the order of killer whales > toothed whales > baleen whales. Profiles of PFASs were dominated by perfluoroundecanoic and perfluorotridecanoic acids (10 to 540 ng/g-wet), sum of which accounted for 70% of total measured PFASs. Regional difference was observed for Cl7-MBP and PFASs, which were higher in the Sea of Japan, whereas Br4Cl2-DBP was in the North Pacific Ocean. Specific accumulation pattern of these natural contaminants in cetaceans around northern Japan could help compare the exposure profile of PFASs and POPs among other geographic regions.
Collapse
Affiliation(s)
- Yukiko Fujii
- Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Yoshihisa Kato
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1, Sanuki, Kagawa 769-2193, Japan
| | - Mai Kozai
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1, Sanuki, Kagawa 769-2193, Japan
| | - Takashi Matsuishi
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1, Minato-cho, Hakodate, Hokkaido 041-8611, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto 606-8501, Japan
| | - Akio Koizumi
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto 606-8501, Japan
| | - Osamu Kimura
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Tetsuya Endo
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Koichi Haraguchi
- Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan.
| |
Collapse
|
94
|
Zhao S, Yang Q, Wang B, Peng Y, Zhan J, Liu L. Effects of combined exposure to perfluoroalkyl acids and heavy metals on bioaccumulation and subcellular distribution in earthworms (Eisenia fetida) from co-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:29335-29344. [PMID: 30121767 DOI: 10.1007/s11356-018-2951-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
The effects of combined exposure to perfluoroalkyl acids (PFAAs) and heavy metals (HMs) including cadmium (Cd), copper (Cu), zinc (Zn), nickel (Ni), and lead (Pb) on earthworms (Eisenia fetida) were investigated. The results have demonstrated that the concentrations of labile acid exchangeable Cd, Zn, Ni, Pb, and Cu in soil were enhanced in addition of PFAAs. With PFAAs, the uptake of Cd, Zn, Ni, Pb, and Cu in earthworms was increased compared to those without PFAAs with the order of Cd > Zn > Pb > Ni > Cu. In the presence of HMs, the average biota-to-soil accumulation factors (BSAFs) of PFAAs in earthworms were decreased by 0.498-0.729 times for perfluorooctane sulfonate (PFOS) and 0.606-0.978 times for perfluorooctanoic acid (PFOA), indicating decrease rates of PFOS were higher than those of PFOA. And different levels of HMs led to insignificant different responses on the inhibiting effects of PFAAs uptake in earthworms. The increase of Cd in fraction C (associated with cytosol) and decrease of PFAAs in fraction C and fraction P (associated with tissue fragments, cell membranes, and intact cells) especially for fraction C were revealed when they were combined, suggesting cytosolic PFAAs and Cd were susceptibly mutual effected. This study indicated that PFAAs and metals mutually affected their bioaccumulation and subcellular distribution in earthworms, which will help to understand the fate and risks of PFAAs and metals in co-contaminated soil.
Collapse
Affiliation(s)
- Shuyan Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Food and Environment, Dalian University of Technology, Panjin, 124221, Liaoning, People's Republic of China.
| | - Qiao Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Food and Environment, Dalian University of Technology, Panjin, 124221, Liaoning, People's Republic of China
| | - Bohui Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Food and Environment, Dalian University of Technology, Panjin, 124221, Liaoning, People's Republic of China
| | - Yihong Peng
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Food and Environment, Dalian University of Technology, Panjin, 124221, Liaoning, People's Republic of China
| | - Jingjing Zhan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Food and Environment, Dalian University of Technology, Panjin, 124221, Liaoning, People's Republic of China
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Food and Environment, Dalian University of Technology, Panjin, 124221, Liaoning, People's Republic of China
| |
Collapse
|
95
|
Fitzgerald NJM, Wargenau A, Sorenson C, Pedersen J, Tufenkji N, Novak PJ, Simcik MF. Partitioning and Accumulation of Perfluoroalkyl Substances in Model Lipid Bilayers and Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10433-10440. [PMID: 30148610 DOI: 10.1021/acs.est.8b02912] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Perfluoroalkyl substances (PFAS) are ubiquitous and persistent environmental contaminants, yet knowledge of their biological effects and mechanisms of action is limited. The highest aqueous PFAS concentrations are found in areas where bacteria are relied upon for functions such as nutrient cycling and contaminant degradation, including fire-training areas, wastewater treatment plants, and landfill leachates. This research sought to elucidate one of the mechanisms of action of PFAS by studying their uptake by bacteria and partitioning into model phospholipid bilayer membranes. PFAS partitioned into bacteria as well as model membranes (phospholipid liposomes and bilayers). The extent of incorporation into model membranes and bacteria was positively correlated to the number of fluorinated carbons. Furthermore, incorporation was greater for perfluorinated sulfonates than for perfluorinated carboxylates. Changes in zeta potential were observed in liposomes but not bacteria, consistent with PFAS being incorporated into the phospholipid bilayer membrane. Complementary to these results, PFAS were also found to alter the gel-to-fluid phase transition temperature of phospholipid bilayers, demonstrating that PFAS affected lateral phospholipid interactions. This investigation compliments other studies showing that sulfonated PFAS and PFAS with more than seven fluorinated carbons have a higher potential to accumulate within biota than carboxylated and shorter-chain PFAS.
Collapse
Affiliation(s)
- Nicole J M Fitzgerald
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , 500 Pillsbury Drive SE , Minneapolis , Minnesota 55455 , United States
| | - Andreas Wargenau
- Department of Chemical Engineering , McGill University , 3610 University Street , Montreal , Quebec H3A 0C5 , Canada
| | - Carlise Sorenson
- Department of Bioproducts and Biosystems Engineering , University of Minnesota , 1390 Eckles Avenue , Saint Paul , Minnesota 55108 , United States
| | - Joel Pedersen
- Departments of Soil Science, Civil and Environmental Engineering, and Chemistry , University of Wisconsin , 1525 Observatory Drive , Madison , Wisconsin 53706 , United States
| | - Nathalie Tufenkji
- Department of Chemical Engineering , McGill University , 3610 University Street , Montreal , Quebec H3A 0C5 , Canada
| | - Paige J Novak
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , 500 Pillsbury Drive SE , Minneapolis , Minnesota 55455 , United States
| | - Matt F Simcik
- School of Public Health , University of Minnesota , 420 Delaware Street S.E. , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
96
|
Jian JM, Chen D, Han FJ, Guo Y, Zeng L, Lu X, Wang F. A short review on human exposure to and tissue distribution of per- and polyfluoroalkyl substances (PFASs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:1058-1069. [PMID: 29913568 DOI: 10.1016/j.scitotenv.2018.04.380] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/28/2018] [Accepted: 04/27/2018] [Indexed: 05/05/2023]
Abstract
PFASs are widely distributed in natural and living environment and can enter human bodies via different routes. Many studies have reported that PFASs may be associated with human diseases, such as urine acid and thyroid diseases. In this study, we reviewed PFAS levels in human bodies reported in past seven years, including blood, urine, milk, and tissues (hair and nails). Most studies focused on human blood. Blood type, spatiality, human age, and gender were found to have a strong relationship with PFAS levels in blood samples. The PFAS distribution in urine samples was reported to be associated with the chain length of PFASs and human gender. Urinary excretion was found to be an important pathway of PFAS elimination. PFAS levels in human milk might be affected by various factors, such as mothers' age, dietary habit, parity of mothers and the interval of interpregnancy. Data in hair and nails remain very limited, but these matrices offer a non-invasive approach to evaluate human exposure to PFASs.
Collapse
Affiliation(s)
- Jun-Meng Jian
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Da Chen
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Fu-Juan Han
- Nuclear and Radiation Safety Center, Ministry of Environmental Protection of the People's Republic of China, Beijing 100082, China
| | - Ying Guo
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Lixi Zeng
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xingwen Lu
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Fei Wang
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
97
|
Goss KU, Bittermann K, Henneberger L, Linden L. Equilibrium biopartitioning of organic anions - A case study for humans and fish. CHEMOSPHERE 2018; 199:174-181. [PMID: 29438944 DOI: 10.1016/j.chemosphere.2018.02.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/31/2018] [Accepted: 02/04/2018] [Indexed: 05/21/2023]
Abstract
In this work we combine partition coefficients between water and membrane lipid, storage lipid, the plasma protein albumin as well as structural protein with the tissue dependent fraction of the respective phases in order to obtain a clearer picture on the relevance of various biological tissues for the bioaccumulation of 31 organic anions. Most of the partition coefficients are based on experimental data, supplemented by some predicted ones. The data suggest that the plasma protein, albumin, will be the major sorption matrix in mammals. Only small fractions of the studied chemicals will occur freely dissolved in an organism. For the investigated acids with pKa <5, partitioning is dominated by the ionic species rather than the corresponding neutral species. Bioconcentration in fish is not expected to occur for many of these acids unless pH in the aqueous environment is low or specific sorption mechanisms are relevant. In contrast, biomagnification in terrestrial mammals would be expected for most organic anions if they are not sufficiently metabolized. We conclude that sorption is important for the toxicokinetics of ionizable organic chemicals and the dominating sorbing matrices are quite different from those for neutral species.
Collapse
Affiliation(s)
- Kai-Uwe Goss
- Helmholtz Centre for Environmental Research UFZ, Department of Analytical Environmental Chemistry, Permoserstr. 15, D-04318 Leipzig, Germany; University of Halle-Wittenberg, Institute of Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle, Germany.
| | - Kai Bittermann
- Helmholtz Centre for Environmental Research UFZ, Department of Analytical Environmental Chemistry, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Luise Henneberger
- Helmholtz Centre for Environmental Research UFZ, Department of Cell Toxicology, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Lukas Linden
- Helmholtz Centre for Environmental Research UFZ, Department of Analytical Environmental Chemistry, Permoserstr. 15, D-04318 Leipzig, Germany
| |
Collapse
|
98
|
Convertino M, Church TR, Olsen GW, Liu Y, Doyle E, Elcombe CR, Barnett AL, Samuel LM, MacPherson IR, Evans TRJ. Stochastic Pharmacokinetic-Pharmacodynamic Modeling for Assessing the Systemic Health Risk of Perfluorooctanoate (PFOA). Toxicol Sci 2018; 163:293-306. [PMID: 29462473 PMCID: PMC5920327 DOI: 10.1093/toxsci/kfy035] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A phase 1 dose-escalation trial assessed the chemotherapeutic potential of ammonium perfluorooctanoate (APFO). Forty-nine primarily solid-tumor cancer patients who failed standard therapy received weekly APFO doses (50-1200 mg) for 6 weeks. Clinical chemistries and plasma PFOA (anionic APFO) were measured predose and weekly thereafter. Several clinical measures including total cholesterol, high-density lipoproteins (HDLs), thyroid stimulating hormone (TSH), and free thyroxine (fT4), relative to PFOA concentrations were examined by: Standard statistical analyses using generalized estimating equations (GEE) and a probabilistic analysis using probability distribution functions (pdf) at various PFOA concentrations; and a 2-compartment pharmacokinetic/pharmacodynamic (PK/PD) model to directly estimate mean changes. Based on the GEE, the average rates of change in total cholesterol and fT4 associated with increasing PFOA were approximately -1.2×10-3 mmol/l/μM and 2.8×10-3 pmol/l/μM, respectively. The PK/PD model predicted more closely the trends observed in the data as well as the pdfs of biomarkers. A decline in total cholesterol was observed, with a clear transition in shape and range of the pdfs, manifested by the maximum value of the Kullback-Leibler (KL) divergence, that occurred at plasma PFOA between 420 and 565 μM (175 000-230 000 ng/ml). High-density lipoprotein was unchanged. An increase in fT4 was observed at a higher PFOA transition point, albeit TSH was unchanged. Our findings are consistent with some animal models and may motivate re-examination of the epidemiologic studies to PFOA at levels several orders of magnitude lower than this study. These observational studies have reported contrary associations, but currently understood biology does not support the existence of such conflicting effects.
Collapse
Affiliation(s)
- Matteo Convertino
- Division of Environmental Health Sciences and Public Health Informatics Program, HumNat Lab, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455
- Institute on the Environment, University of Minnesota, St. Paul, Minnesota 55455
- Institute for Engineering in Medicine
- Biomedical Informatics and Computational Biology Program
| | - Timothy R Church
- Division of Environmental Health Sciences, School of Public Health
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455
| | - Geary W Olsen
- Medical Department, 3M Company, St. Paul, Minnesota 55144
| | - Yang Liu
- Division of Environmental Health Sciences and Public Health Informatics Program, HumNat Lab, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455
| | | | | | | | | | - Iain R MacPherson
- Institute of Cancer Sciences, CR-UK Beatson Institute, University of Glasgow, Glasgow G12 8Q, UK
| | - Thomas R J Evans
- Institute of Cancer Sciences, CR-UK Beatson Institute, University of Glasgow, Glasgow G12 8Q, UK
| |
Collapse
|
99
|
Fliedner A, Rüdel H, Lohmann N, Buchmeier G, Koschorreck J. Biota monitoring under the Water Framework Directive: On tissue choice and fish species selection. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:129-140. [PMID: 29276959 DOI: 10.1016/j.envpol.2017.12.052] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
The study addresses the topic of suitable matrices for chemical analysis in fish monitoring and discusses the effects of data normalization in the context of the European Water Framework Directive (WFD). Differences between species are considered by comparing three frequently monitored species of different trophic levels, i.e., chub (Squalius cephalus, n = 28), (bream, Abramis brama, n = 11), and perch (Perca fluviatilis, n = 19) sampled in the German Danube. The WFD priority substances dioxins, furans and dioxin-like polychlorinated biphenyls (PCDD/F + dl-PCB), polybrominated diphenyl ethers (PBDE), α-hexabromocyclododecane (α-HBCDD), hexachlorobenzene (HCB), mercury (Hg), and perfluorooctane sulfonic acid (PFOS) as well as non-dioxin-like (ndl)-PCB were analyzed separately in fillet and carcass and whole body concentrations were calculated. Hg was analyzed in individual fish fillets and carcasses, all other substances were determined in pool samples, which were compiled on the basis of fish size (3 chub pools, 1 bream pool, 2 perch pools). The data were normalized to 5% lipid weight (or 26% dry mass in the case of Hg and PFOS) for comparison between matrices and species. Hg concentrations were generally higher in fillet than in whole fish (mean whole fish-to-fillet ratio: 0.7) whereas all other substances were mostly higher in whole fish. In the case of lipophilic substances these differences leveled after lipid normalization. Significant correlations (p ≤ .05) were detected between Hg and fish weight and age. Hg concentrations varied least among younger fish. PCDD/F, dl-PCB, ndl-PCB, PBDE, α-HBCDD and HCB correlated significantly (p ≤ .05) with lipid concentrations. Fillet-to-whole fish conversion equations and/or conversion factors were derived for all substances except α-HCBDD. Although more data also for individual fish would be desirable the results are nevertheless a step on the way to translate fillet concentrations of priority substances to whole fish concentrations.
Collapse
Affiliation(s)
- Annette Fliedner
- Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME), Department Environmental Specimen Bank and Elemental Analysis, 57392 Schmallenberg, Germany.
| | - Heinz Rüdel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME), Department Environmental Specimen Bank and Elemental Analysis, 57392 Schmallenberg, Germany
| | - Nina Lohmann
- Eurofins GfA Lab Service GmbH, Neulaender Kamp 1a, 21079 Hamburg, Germany
| | - Georgia Buchmeier
- Bavarian Environment Agency (LfU), Demollstr. 31, 82407 Wielenbach, Germany
| | - Jan Koschorreck
- German Environment Agency (Umweltbundesamt), 06813 Dessau-Rosslau, Germany
| |
Collapse
|
100
|
Gomis MI, Vestergren R, Borg D, Cousins IT. Comparing the toxic potency in vivo of long-chain perfluoroalkyl acids and fluorinated alternatives. ENVIRONMENT INTERNATIONAL 2018; 113:1-9. [PMID: 29421396 DOI: 10.1016/j.envint.2018.01.011] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 05/19/2023]
Abstract
Since 2000, long-chain perfluoroalkyl acids (PFAAs) and their respective precursors have been replaced by numerous fluorinated alternatives. The main rationale for this industrial transition was that these alternatives were considered less bioaccumulative and toxic than their predecessors. In this study, we evaluated to what extent differences in toxicological effect thresholds for PFAAs and fluorinated alternatives, expressed as administered dose, were confounded by differences in their distribution and elimination kinetics. A dynamic one-compartment toxicokinetic (TK) model for male rats was constructed and evaluated using test data from toxicity studies for perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorobutane sulfonic acid (PFBS), perfluorooctanoic acid (PFOA), perfluoroctanesulfonic acid (PFOS) and ammonium 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate (GenX). Dose-response curves of liver enlargement from sub-chronic oral toxicity studies in male rats were converted to internal dose in serum and in liver to examine the toxicity ranking of PFAAs and fluorinated alternatives. Converting administered doses into equivalent serum and liver concentrations reduced the variability in the dose-response curves for PFBA, PFHxA, PFOA and GenX. The toxicity ranking using modeled serum (GenX > PFOA > PFHxA > PFBA) and liver (GenX > PFOA ≈ PFHxA ≈ PFBA) concentrations indicated that some fluorinated alternatives have similar or higher toxic potency than their predecessors when correcting for differences in toxicokinetics. For PFOS and perfluorobutane sulfonic acid (PFBS) the conversion from administered dose to serum concentration equivalents did not change the toxicity ranking. In conclusion, hazard assessment based on internal exposure allows evaluation of toxic potency and bioaccumulation potential independent of kinetics and should be considered when comparing fluorinated alternatives with their predecessors.
Collapse
Affiliation(s)
- Melissa I Gomis
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-10691 Stockholm, Sweden
| | - Robin Vestergren
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-10691 Stockholm, Sweden; IVL Swedish Environmental Research Institute, SE-100 31 Stockholm, Sweden
| | - Daniel Borg
- Swedish Chemicals Agency, 172 13 Sundbyberg, Sweden
| | - Ian T Cousins
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-10691 Stockholm, Sweden.
| |
Collapse
|