51
|
Jin S, Kim KK, Park BS, Kim DH, Jeong B, Kang D, Lee TH, Park JW, Kim JG, Lee BJ. Function of astrocyte MyD88 in high-fat-diet-induced hypothalamic inflammation. J Neuroinflammation 2020; 17:195. [PMID: 32560726 PMCID: PMC7304177 DOI: 10.1186/s12974-020-01846-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/19/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND A growing body of evidence shows that hypothalamic inflammation is an important factor in the initiation of obesity. In particular, reactive gliosis accompanied by inflammatory responses in the hypothalamus are pivotal cellular events that elicit metabolic abnormalities. In this study, we examined whether MyD88 signaling in hypothalamic astrocytes controls reactive gliosis and inflammatory responses, thereby contributing to the pathogenesis of obesity. METHODS To analyze the role of astrocyte MyD88 in obesity pathogenesis, we used astrocyte-specific Myd88 knockout (KO) mice fed a high-fat diet (HFD) for 16 weeks or injected with saturated free fatty acids. Astrocyte-specific gene expression in the hypothalamus was determined using real-time PCR with mRNA purified by the Ribo-Tag system. Immunohistochemistry was used to detect the expression of glial fibrillary acidic protein, ionized calcium-binding adaptor molecule 1, phosphorylated signal transducer and activator of transcription 3, and α-melanocyte-stimulating hormone in the hypothalamus. Animals' energy expenditure was measured using an indirect calorimetry system. RESULTS The astrocyte-specific Myd88 KO mice displayed ameliorated hypothalamic reactive gliosis and inflammation induced by injections of saturated free fatty acids and a long-term HFD. Accordingly, the KO mice were resistant to long-term HFD-induced obesity and showed an improvement in HFD-induced leptin resistance. CONCLUSIONS These results suggest that MyD88 in hypothalamic astrocytes is a critical molecular unit for obesity pathogenesis that acts by mediating HFD signals for reactive gliosis and inflammation.
Collapse
Affiliation(s)
- Sungho Jin
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
- Present address: Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Kwang Kon Kim
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Byong Seo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Dong Hee Kim
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Bora Jeong
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Dasol Kang
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Tae Hwan Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea.
| |
Collapse
|
52
|
Lama A, Pirozzi C, Annunziata C, Morgese MG, Senzacqua M, Severi I, Calignano A, Trabace L, Giordano A, Meli R, Mattace Raso G. Palmitoylethanolamide counteracts brain fog improving depressive-like behaviour in obese mice: Possible role of synaptic plasticity and neurogenesis. Br J Pharmacol 2020; 178:845-859. [PMID: 32346865 DOI: 10.1111/bph.15071] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/28/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE High-fat diet (HFD)-induced obesity is accompanied by metabolic and neurochemical changes that have been associated with depression. Recent studies indicate that palmitoylethanolamide (PEA) exerts metabolic effects and holds neuroprotective potential. However, studies on HFD exposure in mice which investigate the effects of PEA on monoamine system and synaptic plasticity are limited. EXPERIMENTAL APPROACH In C57Bl/6J male mice, obesity was established by HFD feeding for 12 weeks. Then, mice were treated with ultra-micronized PEA (30 mg·kg-1 daily p.o.) or vehicle for 7 weeks along with HFD. Mice receiving chow diet and vehicle served as controls. Thereafter, depressive-, anhedonic-like behaviour and cognitive performance were measured. Monoamine analyses were performed on brain areas (nucleus accumbens, Nac; prefrontal cortex, PFC; hippocampus), and markers of synaptic plasticity and neurogenesis were evaluated in hippocampus. KEY RESULTS PEA limited depressive- and anhedonic-like behaviour, and cognitive deficits induced by HFD. PEA induced an increase in 5-HT levels in PFC, and a reduction of dopamine and 5-HT turnover in Nac and PFC, respectively. Moreover, PEA increased dopamine levels in the hippocampus and PFC. At a molecular level, PEA restored brain-derived neurotrophic factor signalling pathway in hippocampus and PFC, indicating an improvement of synaptic plasticity. In particular, PEA counteracted the reduction of glutamatergic synaptic density induced by HFD in the stratum radiatum of the CA1 of the hippocampus, where it also exhibited neurogenesis-promoting abilities. CONCLUSION AND IMPLICATIONS PEA may represent an adjuvant therapy to limit depressive-like behaviours and memory deficit, affecting monoamine homeostasis, synaptic plasticity and neurogenesis. LINKED ARTICLES This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.4/issuetoc.
Collapse
Affiliation(s)
- Adriano Lama
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Claudio Pirozzi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Chiara Annunziata
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Martina Senzacqua
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Antonio Calignano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Rosaria Meli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
53
|
Jagannathan L, Socks E, Balasubramanian P, McGowan R, Herdt TM, Kianian R, MohanKumar SMJ, MohanKumar PS. Oleic acid stimulates monoamine efflux through PPAR-α: Differential effects in diet-induced obesity. Life Sci 2020; 255:117867. [PMID: 32479954 DOI: 10.1016/j.lfs.2020.117867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 01/13/2023]
Abstract
Obesity continues to be a growing health concern around the world, and elevated levels of free fatty acids as a result of high-fat intake might play a role in neuroendocrine alterations leading to obesity. However, it is unclear how fatty acids affect neuroendocrine functions and energy metabolism. Since hypothalamic monoamines play a crucial role in regulating neuroendocrine functions relating to energy balance, we investigated the direct effects of oleic acid on hypothalamic monoamines and hypothesized that oleic acid would activate peroxisome proliferator-activated receptor alpha (PPAR-α), a nuclear transcription factor involved with fatty acid metabolism, to affect monoamines. We also hypothesized that this response would be subdued in diet-induced obesity (DIO). To test these hypotheses, hypothalami from Sprague Dawley and DIO rats were incubated with 0 (Control), 0.00132 mM, 0.132 mM, 1.32 mM oleic acid, 50 μM MK 886 (a selective PPAR- α antagonist), or oleic acid + MK 886 in Krebs Ringers Henseleit (KRH) solution. HPLC-EC was used to measure monoamine levels in perfusates. Oleic acid produced a significant increase in norepinephrine, dopamine, and serotonin levels in a dose-dependent manner, and incubation with MK886 blocked these effects. The effect of oleic acid on hypothalamic monoamines was attenuated in DIO rats. These findings suggest that PPARα probably plays an essential role in fatty acid sensing in the hypothalamus, by affecting monoamine efflux and DIO rats are resistant to the effects of oleic acid.
Collapse
Affiliation(s)
- Lakshmikripa Jagannathan
- Neuroendocrine Research Laboratory, Departments of Pathobiology and Diagnostic Investigation, USA
| | - Emily Socks
- Neuroendocrine Research Laboratory, Departments of Pathobiology and Diagnostic Investigation, USA
| | | | - Robert McGowan
- Neuroendocrine Research Laboratory, Departments of Pathobiology and Diagnostic Investigation, USA
| | - Thomas M Herdt
- Diagnostic Center for Population and Animal Health, Michigan State University, E. Lansing, MI 48824, USA
| | - Reza Kianian
- Neuroendocrine Research Laboratory, Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30606, USA
| | - Sheba M J MohanKumar
- Neuroendocrine Research Laboratory, Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30606, USA
| | - P S MohanKumar
- Neuroendocrine Research Laboratory, Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30606, USA.
| |
Collapse
|
54
|
Interaction of glucose sensing and leptin action in the brain. Mol Metab 2020; 39:101011. [PMID: 32416314 PMCID: PMC7267726 DOI: 10.1016/j.molmet.2020.101011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023] Open
Abstract
Background In response to energy abundant or deprived conditions, nutrients and hormones activate hypothalamic pathways to maintain energy and glucose homeostasis. The underlying CNS mechanisms, however, remain elusive in rodents and humans. Scope of review Here, we first discuss brain glucose sensing mechanisms in the presence of a rise or fall of plasma glucose levels, and highlight defects in hypothalamic glucose sensing disrupt in vivo glucose homeostasis in high-fat fed, obese, and/or diabetic conditions. Second, we discuss brain leptin signalling pathways that impact glucose homeostasis in glucose-deprived and excessed conditions, and propose that leptin enhances hypothalamic glucose sensing and restores glucose homeostasis in short-term high-fat fed and/or uncontrolled diabetic conditions. Major conclusions In conclusion, we believe basic studies that investigate the interaction of glucose sensing and leptin action in the brain will address the translational impact of hypothalamic glucose sensing in diabetes and obesity.
Collapse
|
55
|
White CJ, Lee J, Choi J, Chu T, Scafidi S, Wolfgang MJ. Determining the Bioenergetic Capacity for Fatty Acid Oxidation in the Mammalian Nervous System. Mol Cell Biol 2020; 40:e00037-20. [PMID: 32123009 PMCID: PMC7189099 DOI: 10.1128/mcb.00037-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/16/2020] [Indexed: 12/15/2022] Open
Abstract
The metabolic state of the brain can greatly impact neurologic function. Evidence of this includes the therapeutic benefit of a ketogenic diet in neurologic diseases, including epilepsy. However, brain lipid bioenergetics remain largely uncharacterized. The existence, capacity, and relevance of mitochondrial fatty acid β-oxidation (FAO) in the brain are highly controversial, with few genetic tools available to evaluate the question. We have provided evidence for the capacity of brain FAO using a pan-brain-specific conditional knockout (KO) mouse incapable of FAO due to the loss of carnitine palmitoyltransferase 2, the product of an obligate gene for FAO (CPT2B-/-). Loss of central nervous system (CNS) FAO did not result in gross neuroanatomical changes or systemic differences in metabolism. Loss of CPT2 in the brain did not result in robustly impaired behavior. We demonstrate by unbiased and targeted metabolomics that the mammalian brain oxidizes a substantial quantity of long-chain fatty acids in vitro and in vivo Loss of CNS FAO results in robust accumulation of long-chain acylcarnitines in the brain, suggesting that the mammalian brain mobilizes fatty acids for their oxidation, irrespective of diet or metabolic state. Together, these data demonstrate that the mammalian brain oxidizes fatty acids under normal circumstances with little influence from or on peripheral tissues.
Collapse
Affiliation(s)
- Cory J White
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jieun Lee
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Joseph Choi
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Tiffany Chu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Michael J Wolfgang
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
56
|
Haynes VR, Michael NJ, van den Top M, Zhao FY, Brown RD, De Souza D, Dodd GT, Spanswick D, Watt MJ. A Neural basis for Octanoic acid regulation of energy balance. Mol Metab 2020; 34:54-71. [PMID: 32180560 PMCID: PMC7011014 DOI: 10.1016/j.molmet.2020.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives Nutrient sensing by hypothalamic neurons is critical for the regulation of food intake and energy expenditure. We aimed to identify long- and medium-chain fatty acid species transported into the brain, their effects on energy balance, and the mechanisms by which they regulate activity of hypothalamic neurons. Methods Simultaneous blood and cerebrospinal fluid (CSF) sampling was undertaken in rats and metabolic analyses using radiolabeled fatty acid tracers were performed on mice. Electrophysiological recording techniques were used to investigate signaling mechanisms underlying fatty acid-induced changes in activity of pro-opiomelanocortin (POMC) neurons. Results Medium-chain fatty acid (MCFA) octanoic acid (C8:0), unlike long-chain fatty acids, was rapidly transported into the hypothalamus of mice and almost exclusively oxidized, causing rapid, transient reductions in food intake and increased energy expenditure. Octanoic acid differentially regulates the excitability of POMC neurons, activating these neurons directly via GPR40 and inducing inhibition via an indirect non-synaptic, purine, and adenosine receptor-dependent mechanism. Conclusions MCFA octanoic acid is a central signaling nutrient that targets POMC neurons via distinct direct and indirect signal transduction pathways to instigate changes in energy status. These results could explain the beneficial health effects that accompany MCFA consumption. Octanoic acid (C8:0) is rapidly transported from blood to the cerebrospinal fluid. Octanoic acid rapidly reduces food intake and increases energy expenditure. Octanoic acid targets POMC neurons through direct and indirect signaling pathways. Activation of POMC neurons occurs directly through GPR40. Inhibition occurs through a nonsynaptic, purine and adenosine receptor-dependent mechanism.
Collapse
Affiliation(s)
- Vanessa R Haynes
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, 3010, VIC, Australia; Metabolic Disease, Obesity and Diabetes Program, Biomedicine Discovery Institute and the Department of Physiology, Monash University, Clayton, 3800, VIC, Australia
| | - Natalie J Michael
- Metabolic Disease, Obesity and Diabetes Program, Biomedicine Discovery Institute and the Department of Physiology, Monash University, Clayton, 3800, VIC, Australia; Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | | | - Russell D Brown
- Metabolic Disease, Obesity and Diabetes Program, Biomedicine Discovery Institute and the Department of Physiology, Monash University, Clayton, 3800, VIC, Australia
| | - David De Souza
- Metabolomics Australia, Bio21 Institute, University of Melbourne, Parkville, 3010, VIC, Australia
| | - Garron T Dodd
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, 3010, VIC, Australia
| | - David Spanswick
- Metabolic Disease, Obesity and Diabetes Program, Biomedicine Discovery Institute and the Department of Physiology, Monash University, Clayton, 3800, VIC, Australia; Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK; NeuroSolutions Ltd, Coventry, UK.
| | - Matthew J Watt
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, 3010, VIC, Australia.
| |
Collapse
|
57
|
Bouagnon AD, Lin L, Srivastava S, Liu CC, Panda O, Schroeder FC, Srinivasan S, Ashrafi K. Intestinal peroxisomal fatty acid β-oxidation regulates neural serotonin signaling through a feedback mechanism. PLoS Biol 2019; 17:e3000242. [PMID: 31805041 PMCID: PMC6917301 DOI: 10.1371/journal.pbio.3000242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 12/17/2019] [Accepted: 11/15/2019] [Indexed: 02/02/2023] Open
Abstract
The ability to coordinate behavioral responses with metabolic status is fundamental to the maintenance of energy homeostasis. In numerous species including Caenorhabditis elegans and mammals, neural serotonin signaling regulates a range of food-related behaviors. However, the mechanisms that integrate metabolic information with serotonergic circuits are poorly characterized. Here, we identify metabolic, molecular, and cellular components of a circuit that links peripheral metabolic state to serotonin-regulated behaviors in C. elegans. We find that blocking the entry of fatty acyl coenzyme As (CoAs) into peroxisomal β-oxidation in the intestine blunts the effects of neural serotonin signaling on feeding and egg-laying behaviors. Comparative genomics and metabolomics revealed that interfering with intestinal peroxisomal β-oxidation results in a modest global transcriptional change but significant changes to the metabolome, including a large number of changes in ascaroside and phospholipid species, some of which affect feeding behavior. We also identify body cavity neurons and an ether-a-go-go (EAG)-related potassium channel that functions in these neurons as key cellular components of the circuitry linking peripheral metabolic signals to regulation of neural serotonin signaling. These data raise the possibility that the effects of serotonin on satiety may have their origins in feedback, homeostatic metabolic responses from the periphery.
Collapse
Affiliation(s)
- Aude D. Bouagnon
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Lin Lin
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Shubhi Srivastava
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Chung-Chih Liu
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Oishika Panda
- Boyce Thompson Institute, Cornell University, Ithaca, New York, United States of America
| | - Frank C. Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, New York, United States of America
| | - Supriya Srinivasan
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Kaveh Ashrafi
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
58
|
Park S, Oh TS, Kim S, Kim EK. Palmitate-induced autophagy liberates monounsaturated fatty acids and increases Agrp expression in hypothalamic cells. Anim Cells Syst (Seoul) 2019; 23:384-391. [PMID: 31853375 PMCID: PMC6913639 DOI: 10.1080/19768354.2019.1696407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022] Open
Abstract
Fatty acids regulate food intake, although the exact mechanism remains unknown. Emerging evidence suggests that intracellular free fatty acids generated by starvation-induced autophagy regulate food intake. Starvation for 6 h elevated fatty acids such as palmitate, oleate, arachidonate, eicosatrienoate, and docosahexaenoate in the mouse serum. Among them, palmitate induced lipophagy, an autophagic degradation of cellular lipid droplets, in agouti-related peptide (Agrp)-expressing hypothalamic cells. Palmitate-induced lipophagy increased both Agrp expression and the contents of monounsaturated fatty acids such as palmitoleate, oleate, and (E)-9-octadecanoate, whereas these effects were blunted by autophagy deficiency. These findings support the role of free fatty acids in hypothalamic autophagy that regulates the appetite by changing the expression of orexigenic neuropeptides.
Collapse
Affiliation(s)
- Seokjae Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Tae Seok Oh
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Seolsong Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Eun-Kyoung Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| |
Collapse
|
59
|
Lee SD, Priest C, Bjursell M, Gao J, Arneson DV, Ahn IS, Diamante G, van Veen JE, Massa MG, Calkin AC, Kim J, Andersén H, Rajbhandari P, Porritt M, Carreras A, Ahnmark A, Seeliger F, Maxvall I, Eliasson P, Althage M, Åkerblad P, Lindén D, Cole TA, Lee R, Boyd H, Bohlooly-Y M, Correa SM, Yang X, Tontonoz P, Hong C. IDOL regulates systemic energy balance through control of neuronal VLDLR expression. Nat Metab 2019; 1:1089-1100. [PMID: 32072135 PMCID: PMC7028310 DOI: 10.1038/s42255-019-0127-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Liver X receptors limit cellular lipid uptake by stimulating the transcription of Inducible Degrader of the LDL Receptor (IDOL), an E3 ubiquitin ligase that targets lipoprotein receptors for degradation. The function of IDOL in systemic metabolism is incompletely understood. Here we show that loss of IDOL in mice protects against the development of diet-induced obesity and metabolic dysfunction by altering food intake and thermogenesis. Unexpectedly, analysis of tissue-specific knockout mice revealed that IDOL affects energy balance, not through its actions in peripheral metabolic tissues (liver, adipose, endothelium, intestine, skeletal muscle), but by controlling lipoprotein receptor abundance in neurons. Single-cell RNA sequencing of the hypothalamus demonstrated that IDOL deletion altered gene expression linked to control of metabolism. Finally, we identify VLDLR rather than LDLR as the primary mediator of IDOL effects on energy balance. These studies identify a role for the neuronal IDOL-VLDLR pathway in metabolic homeostasis and diet-induced obesity.
Collapse
Affiliation(s)
- Stephen D Lee
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christina Priest
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mikael Bjursell
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jie Gao
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Douglas V Arneson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - J Edward van Veen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Megan G Massa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anna C Calkin
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jason Kim
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Harriet Andersén
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Prashant Rajbhandari
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michelle Porritt
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Alba Carreras
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Andrea Ahnmark
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Frank Seeliger
- Pathology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Ingela Maxvall
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Pernilla Eliasson
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Magnus Althage
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Peter Åkerblad
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Lindén
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tracy A Cole
- Central Nervous System Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | - Richard Lee
- Central Nervous System Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | - Helen Boyd
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca; Cambridge Science Park, Cambridge, UK
| | | | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Cynthia Hong
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
60
|
Le Foll C. Hypothalamic Fatty Acids and Ketone Bodies Sensing and Role of FAT/CD36 in the Regulation of Food Intake. Front Physiol 2019; 10:1036. [PMID: 31474875 PMCID: PMC6702519 DOI: 10.3389/fphys.2019.01036] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022] Open
Abstract
The obesity and type-2 diabetes epidemic is escalating and represents one of the costliest biomedical challenges confronting modern society. Moreover, the increasing consumption of high fat food is often correlated with an increase in body mass index. In people predisposed to be obese or already obese, the impaired ability of the brain to monitor and respond to alterations in fatty acid (FA) metabolism is increasingly recognized as playing a role in the pathophysiological development of these disorders. The brain senses and regulates metabolism using highly specialized nutrient-sensing neurons located mainly in the hypothalamus. The same neurons are able to detect variation in the extracellular levels of glucose, FA and ketone bodies as a way to monitor nutrient availability and to alter its own activity. In addition, glial cells such as astrocytes create major connections to neurons and form a tight relationship to closely regulate nutrient uptake and metabolism. This review will examine the different pathways by which neurons are able to detect free fatty acids (FFA) to alter its activity and how high fat diet (HFD)-astrocytes induced ketone bodies production interplays with neuronal FA sensing. The role of HFD-induced inflammation and how FA modulate the reward system will also be investigated here.
Collapse
Affiliation(s)
- Christelle Le Foll
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
61
|
Wang A, Luan HH, Medzhitov R. An evolutionary perspective on immunometabolism. Science 2019; 363:363/6423/eaar3932. [PMID: 30630899 DOI: 10.1126/science.aar3932] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metabolism is at the core of all biological functions. Anabolic metabolism uses building blocks that are either derived from nutrients or synthesized de novo to produce the biological infrastructure, whereas catabolic metabolism generates energy to fuel all biological processes. Distinct metabolic programs are required to support different biological functions. Thus, recent studies have revealed how signals regulating cell quiescence, proliferation, and differentiation also induce the appropriate metabolic programs. In particular, a wealth of new studies in the field of immunometabolism has unveiled many examples of the connection among metabolism, cell fate decisions, and organismal physiology. We discuss these findings under a unifying framework derived from the evolutionary and ecological principles of life history theory.
Collapse
Affiliation(s)
- Andrew Wang
- Department of Medicine (Rheumatology), Yale University School of Medicine, New Haven, CT 06520, USA
| | - Harding H Luan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA. .,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
62
|
Vagena E, Ryu JK, Baeza-Raja B, Walsh NM, Syme C, Day JP, Houslay MD, Baillie GS. A high-fat diet promotes depression-like behavior in mice by suppressing hypothalamic PKA signaling. Transl Psychiatry 2019; 9:141. [PMID: 31076569 PMCID: PMC6510753 DOI: 10.1038/s41398-019-0470-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/24/2019] [Indexed: 01/06/2023] Open
Abstract
Obesity is associated with an increased risk of depression. The aim of the present study was to investigate whether obesity is a causative factor for the development of depression and what is the molecular pathway(s) that link these two disorders. Using lipidomic and transcriptomic methods, we identified a mechanism that links exposure to a high-fat diet (HFD) in mice with alterations in hypothalamic function that lead to depression. Consumption of an HFD selectively induced accumulation of palmitic acid in the hypothalamus, suppressed the 3', 5'-cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway, and increased the concentration of free fatty acid receptor 1 (FFAR1). Deficiency of phosphodiesterase 4A (PDE4A), an enzyme that degrades cAMP and modulates stimulatory regulative G protein (Gs)-coupled G protein-coupled receptor signaling, protected animals either from genetic- or dietary-induced depression phenotype. These findings suggest that dietary intake of saturated fats disrupts hypothalamic functions by suppressing cAMP/PKA signaling through activation of PDE4A. FFAR1 inhibition and/or an increase of cAMP signaling in the hypothalamus could offer potential therapeutic targets to counteract the effects of dietary or genetically induced obesity on depression.
Collapse
Affiliation(s)
- Eirini Vagena
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, 94158, USA
- College of Veterinary, Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK
| | - Jae Kyu Ryu
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, 94158, USA
| | - Bernat Baeza-Raja
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, 94158, USA
| | - Nicola M Walsh
- College of Veterinary, Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK
| | - Catriona Syme
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, 94158, USA
| | - Jonathan P Day
- College of Veterinary, Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK
| | - Miles D Houslay
- Institute of Pharmaceutical Science, King's College London, London, England, SE1 9NH, UK
| | - George S Baillie
- College of Veterinary, Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK.
| |
Collapse
|
63
|
Souza ACP, Souza CM, Amaral CL, Lemes SF, Santucci LF, Milanski M, Torsoni AS, Torsoni MA. Short-Term High-Fat Diet Consumption Reduces Hypothalamic Expression of the Nicotinic Acetylcholine Receptor α7 Subunit (α7nAChR) and Affects the Anti-inflammatory Response in a Mouse Model of Sepsis. Front Immunol 2019; 10:565. [PMID: 30967878 PMCID: PMC6438922 DOI: 10.3389/fimmu.2019.00565] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 03/04/2019] [Indexed: 01/01/2023] Open
Abstract
Sepsis is one of the leading causes of death in hospitalized patients and the chronic and low-grade inflammation observed in obesity seems to worsen susceptibility and morbidity of infections. However, little is known with respect to a short-term high-fat diet (HFD) and its role in the development of sepsis. Here, we show for the first time, that short-term HFD consumption impairs early nicotinic acetylcholine receptor α7 subunit (α7nAChR)- mediated signaling, one of the major components of the cholinergic anti-inflammatory pathway, with a focus on hypothalamic inflammation and innate immune response. Mice were randomized to a HFD or standard chow (SC) for 3 days, and sepsis was subsequently induced by a lethal intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) or by cecal ligation and puncture (CLP) surgery. In a separate experiment, both groups received LPS (i.p.) or LPS (i.p.) in conjunction with the selective α7nAChR agonist, PNU-282987 (i.p. or intracerebroventricular; i.c.v.), and were sacrificed 2 h after the challenge. Short-term HFD consumption significantly reduced the α7nAChR mRNA and protein levels in the hypothalamus and liver (p < 0.05). Immunofluorescence microscopy demonstrated lower cholinergic receptor nicotinic α7 subunit (α7nAChR)+ cells in the arcuate nucleus (ARC) (α7nAChR+ cells in SC = 216 and HFD = 84) and increased F4/80+ cells in the ARC (2.6-fold) and median eminence (ME) (1.6-fold), which can contribute to neuronal damage. Glial fibrillary acidic protein (GFAP)+ cells and neuronal nuclear antigen (NeuN)+ cells were also increased following consumption of HFD. The HFD-fed mice died quickly after a lethal dose of LPS or following CLP surgery (2-fold compared with SC). The LPS challenge raised most cytokine levels in both groups; however, higher levels of TNF-α (Spleen and liver), IL-1β and IL-6 (in all tissues evaluated) were observed in HFD-fed mice. Moreover, PNU-282987 administration (i.p. or i.c.v.) reduced the levels of inflammatory markers in the hypothalamus following LPS injection. Nevertheless, when the i.c.v. injection of PNU-282987 was performed the anti-inflammatory effect was much smaller in HFD-fed mice than SC-fed mice. Here, we provide evidence that a short-term HFD impairs early α7nAChR expression in central and peripheral tissues, contributing to a higher probability of death in sepsis.
Collapse
Affiliation(s)
- Anelise Cristina Parras Souza
- School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, State University of Campinas, Limeira, Brazil
| | - Camilla Mendes Souza
- School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, State University of Campinas, Limeira, Brazil
| | - Camila Libardi Amaral
- School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, State University of Campinas, Limeira, Brazil
| | - Simone Ferreira Lemes
- School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, State University of Campinas, Limeira, Brazil
| | - Leticia Foglia Santucci
- School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, State University of Campinas, Limeira, Brazil
| | - Marciane Milanski
- School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, State University of Campinas, Limeira, Brazil
| | - Adriana Souza Torsoni
- School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, State University of Campinas, Limeira, Brazil
| | - Marcio Alberto Torsoni
- School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, State University of Campinas, Limeira, Brazil
| |
Collapse
|
64
|
DiNicolantonio JJ, McCarty M, OKeefe J. Does elevated bilirubin aid weight control by preventing development of hypothalamic leptin resistance? Open Heart 2019; 6:e000897. [PMID: 30997121 PMCID: PMC6443125 DOI: 10.1136/openhrt-2018-000897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/04/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
| | | | - James OKeefe
- Preventive Cardiology, Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
65
|
Hill JW, Elias CF. Neuroanatomical Framework of the Metabolic Control of Reproduction. Physiol Rev 2019; 98:2349-2380. [PMID: 30109817 DOI: 10.1152/physrev.00033.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A minimum amount of energy is required for basic physiological processes, such as protein biosynthesis, thermoregulation, locomotion, cardiovascular function, and digestion. However, for reproductive function and survival of the species, extra energy stores are necessary. Production of sex hormones and gametes, pubertal development, pregnancy, lactation, and parental care all require energy reserves. Thus the physiological systems that control energy homeostasis and reproductive function coevolved in mammals to support both individual health and species subsistence. In this review, we aim to gather scientific knowledge produced by laboratories around the world on the role of the brain in integrating metabolism and reproduction. We describe essential neuronal networks, highlighting key nodes and potential downstream targets. Novel animal models and genetic tools have produced substantial advances, but critical gaps remain. In times of soaring worldwide obesity and metabolic dysfunction, understanding the mechanisms by which metabolic stress alters reproductive physiology has become crucial for human health.
Collapse
Affiliation(s)
- Jennifer W Hill
- Center for Diabetes and Endocrine Research, Departments of Physiology and Pharmacology and of Obstetrics and Gynecology, University of Toledo College of Medicine , Toledo, Ohio ; and Departments of Molecular and Integrative Physiology and of Obstetrics and Gynecology, University of Michigan , Ann Arbor, Michigan
| | - Carol F Elias
- Center for Diabetes and Endocrine Research, Departments of Physiology and Pharmacology and of Obstetrics and Gynecology, University of Toledo College of Medicine , Toledo, Ohio ; and Departments of Molecular and Integrative Physiology and of Obstetrics and Gynecology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
66
|
Bettini S, Favaretto F, Compagnin C, Belligoli A, Sanna M, Fabris R, Serra R, Dal Prà C, Prevedello L, Foletto M, Vettor R, Milan G, Busetto L. Resting Energy Expenditure, Insulin Resistance and UCP1 Expression in Human Subcutaneous and Visceral Adipose Tissue of Patients With Obesity. Front Endocrinol (Lausanne) 2019; 10:548. [PMID: 31440209 PMCID: PMC6692889 DOI: 10.3389/fendo.2019.00548] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/23/2019] [Indexed: 01/31/2023] Open
Abstract
Determinants of resting energy expenditure (REE) in humans are still under investigation, especially the association with insulin resistance. Brown adipose tissue (AT) regulates energy expenditure through the activity of the uncoupling protein 1 (UCP1). White AT browning is the process by which some adipocytes within AT depots acquire properties of brown adipocytes ("brite" adipocytes) and it correlates with metabolic improvement. We analyzed determinants of REE in patients with obesity and assessed UCP1 expression as a "brite" marker in abdominal subcutaneous AT (SAT) and visceral omental AT (VAT). Clinical data, REE, free fat mass (FFM), and fat mass (FM) were determined in 209 patients with obesity. UCP1, PPARG coactivator 1 alpha (PPARGC1A), transcription factor A, mitochondrial (TFAM), T-box transcription factor 1 (TBX1), and solute carrier family 27 member 1 (SLC27A1) expression was assayed in SAT and VAT samples, obtained during sleeve gastrectomy from 62 patients with obesity. REE and body composition data were also available for a subgroup of 35 of whom. In 209 patients with obesity a multiple regression model was computed with REE as the dependent variable and sex, waist, FFM, FM, homeostasis model assessment-insulin resistance (HOMA), interleukin-6 and High Density Lipoprotein-cholesterol as the independent variables. Only FFM, FM and HOMA were independently correlated with REE (r = 0.787, AdjRsqr = 0.602). In each patient VAT displayed a higher UCP1, PPARGC1A, TFAM, TBX1, and SLC27A1 expression than SAT and UCP1 expression in VAT (UCP1-VAT) correlated with Body Mass Index (BMI) (r = 0.287, p < 0.05). Introducing UCP1-VAT in the multivariate model, we showed that FFM, HOMA, interleukin-6, High Density Lipoprotein-cholesterol, and UCP1-VAT were independent factors correlated with REE (r = 0.736, AdjRsqr = 0.612). We confirmed that REE correlates with FFM, FM and HOMA in a large cohort of patients. Our results clearly showed that UCP1-VAT expression was significantly increased in severe human obesity (BMI > 50 kg/m2) and that it behaved as an independent predictor of REE. Lastly, we suggest that an increased REE and browning in metabolically complicated severe obesity could represent an effort to counteract further weight gain.
Collapse
Affiliation(s)
- Silvia Bettini
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
- *Correspondence: Silvia Bettini
| | - Francesca Favaretto
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Chiara Compagnin
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Anna Belligoli
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Marta Sanna
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Roberto Fabris
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Roberto Serra
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Chiara Dal Prà
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Luca Prevedello
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Mirto Foletto
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Roberto Vettor
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Gabriella Milan
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Luca Busetto
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| |
Collapse
|
67
|
Luquet SH, Vaudry H, Granata R. Editorial: Neuroendocrine Control of Feeding Behavior. Front Endocrinol (Lausanne) 2019; 10:399. [PMID: 31297088 PMCID: PMC6593060 DOI: 10.3389/fendo.2019.00399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/05/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Serge H. Luquet
- Paris Diderot University, Paris, France
- *Correspondence: Serge H. Luquet
| | - Hubert Vaudry
- Université de Rouen, Mont-Saint-Aignan, France
- Hubert Vaudry
| | - Riccarda Granata
- Department of Medical Sciences, University of Turin, Turin, Italy
- Riccarda Granata
| |
Collapse
|
68
|
Mendes NF, Kim YB, Velloso LA, Araújo EP. Hypothalamic Microglial Activation in Obesity: A Mini-Review. Front Neurosci 2018; 12:846. [PMID: 30524228 PMCID: PMC6262396 DOI: 10.3389/fnins.2018.00846] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/29/2018] [Indexed: 01/22/2023] Open
Abstract
Emerging data demonstrate that microglia activation plays a pivotal role in the development of hypothalamic inflammation in obesity. Early after the introduction of a high-fat diet, hypothalamic microglia undergo morphological, and functional changes in response to excessive dietary saturated fats. Initially the resident microglia are affected; however, as diet-induced obesity persists, bone marrow-derived myeloid cells gradually replace resident microglia. Genetic and pharmacological approaches aimed at dampening the inflammatory activity in the hypothalamus of experimental models of obesity have proven beneficial to correct the obese phenotype and improve metabolic abnormalities commonly associated with obesity. These approaches provide an experimental proof-of-concept that hypothalamic inflammation is central to the pathophysiology of obesity; understanding the details of the roles played by microglia in this process may help the development of preventive and therapeutic advances in the field. In this review, we discuss the potential mechanisms underlying hypothalamic microglial activation in high-fat induced obesity.
Collapse
Affiliation(s)
- Natália F Mendes
- School of Nursing, State University of Campinas, Campinas, Brazil.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism - Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas, Campinas, Brazil
| | - Young-Bum Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism - Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Lício A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas, Campinas, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| | - Eliana P Araújo
- School of Nursing, State University of Campinas, Campinas, Brazil.,Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas, Campinas, Brazil
| |
Collapse
|
69
|
Abstract
PUFA modulate hypothalamic-pituitary-adrenal (HPA) axis activity and cortisol concentrations and therefore affect physiological stress responses and the regulation of energy balance in the short- and long-term. Especially dietary intake of n-3 PUFA and a lowered n-6:n-3 ratio are highly encouraged due to beneficial and diminishing effects on basal cortisol secretions. However, the time of such effects to occur and how plasma PUFA patterns affect cortisol concentrations in the short-term was rarely investigated. In order to address this, we supplemented forty male and forty female guinea pigs with diets high in the essential PUFA α-linolenic acid (ALA, 18 : 3n-3) and linoleic acid (LA, 18 : 2n-6) for 20 d. Saliva cortisol concentrations in relation to altering plasma PUFA patterns during this time span were analysed in a repeated measurement design both during basal conditions (individual housing) in 5-d intervals and during stressful social confrontations. We detected very fast plasma PUFA accumulation rates, corresponding to the major dietary PUFA, which resulted in plasma PUFA plateau phases after 10 d. ALA negatively and LA positively affected saliva cortisol concentrations throughout the study. A positive effect of the plasma n-6:n-3 ratio on saliva cortisol concentrations was detected during peak plasma PUFA accumulations and social confrontations, while no effects were detected in relation to plasma PUFA plateau phases. These results suggest that the plasma n-6:n-3 ratio diminishes HPA axis activity during altered physiological conditions only and highlights the importance of altering plasma PUFA patterns for HPA axis functions and the control of energy balance and physiological stress.
Collapse
|
70
|
Idelevich A, Baron R. Brain to bone: What is the contribution of the brain to skeletal homeostasis? Bone 2018; 115:31-42. [PMID: 29777919 PMCID: PMC6110971 DOI: 10.1016/j.bone.2018.05.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022]
Abstract
The brain, which governs most, if not all, physiological functions in the body, from the complexities of cognition, learning and memory, to the regulation of basal body temperature, heart rate and breathing, has long been known to affect skeletal health. In particular, the hypothalamus - located at the base of the brain in close proximity to the medial eminence, where the blood-brain-barrier is not as tight as in other regions of the brain but rather "leaky", due to fenestrated capillaries - is exposed to a variety of circulating body cues, such as nutrients (glucose, fatty acids, amino acids), and hormones (insulin, glucagon, leptin, adiponectin) [1-3].Information collected from the body via these peripheral cues is integrated by hypothalamic sensing neurons and glial cells [4-7], which express receptors for these nutrients and hormones, transforming these cues into physiological outputs. Interestingly, many of the same molecules, including leptin, adiponectin and insulin, regulate both energy and skeletal homeostasis. Moreover, they act on a common set of hypothalamic nuclei and their residing neurons, activating endocrine and neuronal systems, which ultimately fine-tune the body to new physiological states. This review will focus exclusively on the brain-to-bone pathway, highlighting the most important anatomical sites within the brain, which are known to affect bone, but not covering the input pathways and molecules informing the brain of the energy and bone metabolic status, covered elsewhere [8-10]. The discussion in each section will present side by side the metabolic and bone-related functions of hypothalamic nuclei, in an attempt to answer some of the long-standing questions of whether energy is affected by bone remodeling and homeostasis and vice versa.
Collapse
Affiliation(s)
- Anna Idelevich
- Department of Medicine, Harvard Medical School and Endocrine Unit MGH, Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Roland Baron
- Department of Medicine, Harvard Medical School and Endocrine Unit MGH, Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
71
|
Tse EK, Salehi A, Clemenzi MN, Belsham DD. Role of the saturated fatty acid palmitate in the interconnected hypothalamic control of energy homeostasis and biological rhythms. Am J Physiol Endocrinol Metab 2018; 315:E133-E140. [PMID: 29631363 DOI: 10.1152/ajpendo.00433.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The brain, specifically the hypothalamus, controls whole body energy and glucose homeostasis through neurons that synthesize specific neuropeptides, whereas hypothalamic dysfunction is linked directly to insulin resistance, obesity, and type 2 diabetes mellitus. Nutrient excess, through overconsumption of a Western or high-fat diet, exposes the hypothalamus to high levels of free fatty acids, which induces neuroinflammation, endoplasmic reticulum stress, and dysregulation of neuropeptide synthesis. Furthermore, exposure to a high-fat diet also disrupts normal circadian rhythms, and conversely, clock gene knockout models have symptoms of metabolic disorders. While whole brain/animal studies have provided phenotypic end points and important clues to the genes involved, there are still major gaps in our understanding of the intracellular pathways and neuron-specific components that ultimately control circadian rhythms and energy homeostasis. Because of its complexity and heterogeneous nature, containing a diverse mix cell types, it is difficult to dissect the critical hypothalamic components involved in these processes. Of significance, we have the capacity to study these individual components using an extensive collection of both embryonic- and adult-derived, immortalized hypothalamic neuronal cell lines from rodents. These defined neuronal cell lines have been used to examine the impact of nutrient excess, such as palmitate, on circadian rhythms and neuroendocrine signaling pathways, as well as changes in vital neuropeptides, leading to the development of neuronal inflammation; the role of proinflammatory molecules in this process; and ultimately, restoration of normal signaling, clock gene expression, and neuropeptide synthesis in disrupted states by beneficial anti-inflammatory compounds in defined hypothalamic neurons.
Collapse
Affiliation(s)
- Erika K Tse
- Department of Physiology, University of Toronto , Toronto, Ontario , Canada
| | - Ashkan Salehi
- Department of Physiology, University of Toronto , Toronto, Ontario , Canada
| | - Matthew N Clemenzi
- Department of Physiology, University of Toronto , Toronto, Ontario , Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto , Toronto, Ontario , Canada
- Department Obstetrics and Gynaecology and Medicine, University of Toronto , Toronto, Ontario , Canada
| |
Collapse
|
72
|
Kjaergaard M, Nilsson C, Nielsen MO, Grove K, Raun K. Hypothalamic oxidative stress and inflammation, and peripheral glucose homeostasis in Sprague-Dawley rat offspring exposed to maternal and postnatal chocolate and soft drink. Nutr Diabetes 2018; 8:44. [PMID: 30026488 PMCID: PMC6053394 DOI: 10.1038/s41387-018-0051-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 05/30/2018] [Accepted: 06/08/2018] [Indexed: 12/21/2022] Open
Abstract
Background Predisposition to obesity and type 2 diabetes can arise during foetal development and in early postnatal life caused by imbalances in maternal nutritional overload. We aimed to investigate the effects of maternal and postnatal intake of chocolate and soft drink on hypothalamic anti-oxidative stress markers, inflammation and peripheral glucose homeostasis. Methods Pregnant Sprague-Dawley rats were fed ad libitum chow diet only (C) or with chocolate and high sucrose soft drink supplements (S). At birth, litter size was adjusted into 10 male offspring per dam. After weaning at 3 weeks of age, offspring from both dietary groups were assigned to either S or C diet, giving four groups until the end of the experiment at 26 weeks of age. Results Offspring exposed to maternal S had up-regulated hypothalamic anti-oxidative markers such as SOD2 and catalase at 3 weeks of age as an indication of oxidative stress. However, at 12 weeks of age these anti-oxidative markers tended to decrease while pro-inflammatory markers such as TNF and IL-1β became up-regulated of all offspring exposed to S diet during some point of their life. Thus, despite an increase in anti-oxidative stress response, offspring exposed to maternal S had a reduced ability to counteract hypothalamic inflammation. At the same time point, postnatal S resulted in increased adiposity, reduced glucose tolerance and insulin sensitivity with no effect on body weight. However, at 25 weeks of age, the impaired glucose tolerance was reversible to the response of the control regardless of increased adiposity and body weight pointing towards a compensatory response of the insulin sensitivity or insulin secretion. Conclusion Indications of hypothalamic oxidative stress was observed prior to the inflammatory response in offspring exposed to maternal S. Both maternal and postnatal S induced hypothalamic inflammation prior to increased weight gain and thus contributing to obese phenotype.
Collapse
Affiliation(s)
- Marina Kjaergaard
- Diabetes and Obesity Research, Novo Nordisk A/S, Måløv, 2760, Denmark. .,Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, 1870, Denmark.
| | - Cecilia Nilsson
- Uppsala University Innovation, Uppsala Science Park, Uppsala, 751 83, Sweden
| | - Mette Olaf Nielsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, 1870, Denmark
| | - Kevin Grove
- Diabetes and Obesity Research, Novo Nordisk A/S, Måløv, 2760, Denmark.,Division of Diabetes, Obesity and Metabolism and Division of Reproductive and Developmental Sciences, Oregon National Primate Research Centre, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Kirsten Raun
- Diabetes and Obesity Research, Novo Nordisk A/S, Måløv, 2760, Denmark
| |
Collapse
|
73
|
Hypothalamic inflammation and malfunctioning glia in the pathophysiology of obesity and diabetes: Translational significance. Biochem Pharmacol 2018; 153:123-133. [PMID: 29337002 DOI: 10.1016/j.bcp.2018.01.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/09/2018] [Indexed: 12/25/2022]
|
74
|
A noncanonical PPARγ/RXRα-binding sequence regulates leptin expression in response to changes in adipose tissue mass. Proc Natl Acad Sci U S A 2018; 115:E6039-E6047. [PMID: 29891714 PMCID: PMC6042069 DOI: 10.1073/pnas.1806366115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Leptin gene expression is highly correlated with the lipid content of individual fat cells, suggesting that it is regulated by a “fat-sensing” signal transduction pathway. This possibility is thus analogous to the identification of a cholesterol-sensing pathway by studying the regulation of the LDL receptor gene by intracellular cholesterol. Several lines of investigation have suggested that, in addition to adipocytes, liver, neurons, and other cell types can sense changes in lipid content, although the molecular mechanisms are unknown. The data here provide a critical step toward elucidating the components of this putative system, which would be of great importance. These studies also identify a previously underappreciated role of the PPARγ/RXRα complex to regulate leptin expression. Leptin expression decreases after fat loss and is increased when obesity develops, and its proper quantitative regulation is essential for the homeostatic control of fat mass. We previously reported that a distant leptin enhancer 1 (LE1), 16 kb upstream from the transcription start site (TSS), confers fat-specific expression in a bacterial artificial chromosome transgenic (BACTG) reporter mouse. However, this and the other elements that we identified do not account for the quantitative changes in leptin expression that accompany alterations of adipose mass. In this report, we used an assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) to identify a 17-bp noncanonical peroxisome proliferator-activated receptor gamma (PPARγ)/retinoid X receptor alpha (RXRα)-binding site, leptin regulatory element 1 (LepRE1), within LE1, and show that it is necessary for the fat-regulated quantitative control of reporter (luciferase) expression. While BACTG reporter mice with mutations in this sequence still show fat-specific expression, luciferase is no longer decreased after food restriction and weight loss. Similarly, the increased expression of leptin reporter associated with obesity in ob/ob mice is impaired. A functionally analogous LepRE1 site is also found in a second, redundant DNA regulatory element 13 kb downstream of the TSS. These data uncouple the mechanisms conferring qualitative and quantitative expression of the leptin gene and further suggest that factor(s) that bind to LepRE1 quantitatively control leptin expression and might be components of a lipid-sensing system in adipocytes.
Collapse
|
75
|
Etchegoyen M, Nobile MH, Baez F, Posesorski B, González J, Lago N, Milei J, Otero-Losada M. Metabolic Syndrome and Neuroprotection. Front Neurosci 2018; 12:196. [PMID: 29731703 PMCID: PMC5919958 DOI: 10.3389/fnins.2018.00196] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/12/2018] [Indexed: 12/17/2022] Open
Abstract
Introduction: Over the years the prevalence of metabolic syndrome (MetS) has drastically increased in developing countries as a major byproduct of industrialization. Many factors, such as the consumption of high-calorie diets and a sedentary lifestyle, bolster the spread of this disorder. Undoubtedly, the massive and still increasing incidence of MetS places this epidemic as an important public health issue. Hereon we revisit another outlook of MetS beyond its classical association with cardiovascular disease (CVD) and Diabetes Mellitus Type 2 (DM2), for MetS also poses a risk factor for the nervous tissue and threatens neuronal function. First, we revise a few essential concepts of MetS pathophysiology. Second, we explore some neuroprotective approaches in MetS pertaining brain hypoxia. The articles chosen for this review range from the years 1989 until 2017; the selection criteria was based on those providing data and exploratory information on MetS as well as those that studied innovative therapeutic approaches. Pathophysiology: The characteristically impaired metabolic pathways of MetS lead to hyperglycemia, insulin resistance (IR), inflammation, and hypoxia, all closely associated with an overall pro-oxidative status. Oxidative stress is well-known to cause the wreckage of cellular structures and tissue architecture. Alteration of the redox homeostasis and oxidative stress alter the macromolecular array of DNA, lipids, and proteins, in turn disrupting the biochemical pathways necessary for normal cell function. Neuroprotection: Different neuroprotective strategies are discussed involving lifestyle changes, medication aimed to mitigate MetS cardinal symptoms, and treatments targeted toward reducing oxidative stress. It is well-known that the routine practice of physical exercise, aerobic activity in particular, and a complete and well-balanced nutrition are key factors to prevent MetS. Nevertheless, pharmacological control of MetS as a whole and pertaining hypertension, dyslipidemia, and endothelial injury contribute to neuronal health improvement. Conclusion: The development of MetS has risen as a risk factor for neurological disorders. The therapeutic strategies include multidisciplinary approaches directed to address different pathological pathways all in concert.
Collapse
Affiliation(s)
- Melisa Etchegoyen
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Mariana H Nobile
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Francisco Baez
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Barbara Posesorski
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Julian González
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Néstor Lago
- Institute of Cardiovascular Pathophysiology, School of Medicine, University of Buenos Aires, UBA-CONICET, Buenos Aires, Argentina
| | - José Milei
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Matilde Otero-Losada
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
76
|
Abstract
Ghrelin, a gastric-derived acylated peptide, regulates energy homeostasis by transmitting information about peripheral nutritional status to the brain, and is essential for protecting organisms against famine. Ghrelin operates brain circuits to regulate homeostatic and hedonic feeding. Recent research advances have shed new light on ghrelin's multifaceted roles in cellular homeostasis, which could maintain the internal environment and overcome metaflammation in metabolic organs. Here, we highlight our current understanding of the regulatory mechanisms of the ghrelin system in energy metabolism and cellular homeostasis and its clinical trials. Future studies of ghrelin will further elucidate how the stomach regulates systemic homeostasis.
Collapse
Affiliation(s)
- Shigehisa Yanagi
- Divisions of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| | - Takahiro Sato
- Molecular Genetics, Institute of Life Science, Kurume University, Kurume 839-0864, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Masamitsu Nakazato
- Divisions of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
77
|
Lizarbe B, Lei H, Duarte JM, Lanz B, Cherix A, Gruetter R. Feasibility of in vivo measurement of glucose metabolism in the mouse hypothalamus by1H-[13C] MRS at 14.1T. Magn Reson Med 2018; 80:874-884. [DOI: 10.1002/mrm.27129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Blanca Lizarbe
- Laboratory of Functional and Metabolic Imaging (LIFMET), École Polytechnique Fédérale de Lausanne; Lausanne Switzerland
| | - Hongxia Lei
- Department of Radiology; University of Geneva, Geneva, Switzerland and Center for Biomedical Imaging (CIBM); Lausanne Switzerland
| | - Joao M.N. Duarte
- Laboratory of Functional and Metabolic Imaging (LIFMET), École Polytechnique Fédérale de Lausanne; Lausanne Switzerland
| | - Bernard Lanz
- Laboratory of Functional and Metabolic Imaging (LIFMET), École Polytechnique Fédérale de Lausanne; Lausanne Switzerland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham; Nottingham United Kingdom
| | - Antoine Cherix
- Laboratory of Functional and Metabolic Imaging (LIFMET), École Polytechnique Fédérale de Lausanne; Lausanne Switzerland
| | - Rolf Gruetter
- Laboratory of Functional and Metabolic Imaging (LIFMET), École Polytechnique Fédérale de Lausanne; Lausanne Switzerland
- Department of Radiology; University of Geneva, Geneva, Switzerland and Center for Biomedical Imaging (CIBM); Lausanne Switzerland
- Department of Radiology; University of Lausanne; Lausanne Switzerland
| |
Collapse
|
78
|
Ramalho AF, Bombassaro B, Dragano NR, Solon C, Morari J, Fioravante M, Barbizan R, Velloso LA, Araujo EP. Dietary fats promote functional and structural changes in the median eminence blood/spinal fluid interface-the protective role for BDNF. J Neuroinflammation 2018; 15:10. [PMID: 29316939 PMCID: PMC5761204 DOI: 10.1186/s12974-017-1046-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 12/20/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The consumption of large amounts of dietary fats activates an inflammatory response in the hypothalamus, damaging key neurons involved in the regulation of caloric intake and energy expenditure. It is currently unknown why the mediobasal hypothalamus is the main target of diet-induced brain inflammation. We hypothesized that dietary fats can damage the median eminence blood/spinal fluid interface. METHODS Swiss mice were fed on a high-fat diet, and molecular and structural studies were performed employing real-time PCR, immunoblot, immunofluorescence, transmission electron microscopy, and metabolic measurements. RESULTS The consumption of a high fat diet was sufficient to increase the expression of inflammatory cytokines and brain-derived neurotrophic factor in the median eminence, preceding changes in other circumventricular regions. In addition, it led to an early loss of the structural organization of the median eminence β1-tanycytes. This was accompanied by an increase in the hypothalamic expression of brain-derived neurotrophic factor. The immunoneutralization of brain-derived neurotrophic factor worsened diet-induced functional damage of the median eminence blood/spinal fluid interface, increased diet-induced hypothalamic inflammation, and increased body mass gain. CONCLUSIONS The median eminence/spinal fluid interface is affected at the functional and structural levels early after introduction of a high-fat diet. Brain-derived neurotrophic factor provides an early protection against damage, which is lost upon a persisting consumption of large amounts of dietary fats.
Collapse
Affiliation(s)
- Albina F Ramalho
- LAV, Laboratory of Cell Signaling, University of Campinas, Campinas, SP, 13084-970, Brazil
| | - Bruna Bombassaro
- LAV, Laboratory of Cell Signaling, University of Campinas, Campinas, SP, 13084-970, Brazil
| | - Nathalia R Dragano
- LAV, Laboratory of Cell Signaling, University of Campinas, Campinas, SP, 13084-970, Brazil
| | - Carina Solon
- LAV, Laboratory of Cell Signaling, University of Campinas, Campinas, SP, 13084-970, Brazil
| | - Joseane Morari
- LAV, Laboratory of Cell Signaling, University of Campinas, Campinas, SP, 13084-970, Brazil
| | - Milena Fioravante
- LAV, Laboratory of Cell Signaling, University of Campinas, Campinas, SP, 13084-970, Brazil
| | - Roberta Barbizan
- LAV, Laboratory of Cell Signaling, University of Campinas, Campinas, SP, 13084-970, Brazil
| | - Licio A Velloso
- LAV, Laboratory of Cell Signaling, University of Campinas, Campinas, SP, 13084-970, Brazil.
| | - Eliana P Araujo
- Faculty of Nursing, University of Campinas, Campinas, SP, 13084-970, Brazil
| |
Collapse
|
79
|
Kroon J, Koorneef LL, van den Heuvel JK, Verzijl CRC, van de Velde NM, Mol IM, Sips HCM, Hunt H, Rensen PCN, Meijer OC. Selective Glucocorticoid Receptor Antagonist CORT125281 Activates Brown Adipose Tissue and Alters Lipid Distribution in Male Mice. Endocrinology 2018; 159:535-546. [PMID: 28938459 DOI: 10.1210/en.2017-00512] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/12/2017] [Indexed: 11/19/2022]
Abstract
Glucocorticoids influence a wide range of metabolic processes in the human body, and excessive glucocorticoid exposure is known to contribute to the development of metabolic disease. We evaluated the utility of the novel glucocorticoid receptor (GR) antagonist CORT125281 for its potential to overcome adiposity, glucose intolerance, and dyslipidemia and compared this head-to-head with the classic GR antagonist RU486 (mifepristone). We show that, although RU486 displays cross-reactivity to the progesterone and androgen receptor, CORT125281 selectively inhibits GR transcriptional activity. In a mouse model for diet-induced obesity, rhythmicity of circulating corticosterone levels was disturbed. CORT125281 restored this disturbed rhythmicity, in contrast to RU486, which further inhibited endogenous corticosterone levels and suppressed adrenal weight. Both CORT125281 and RU486 reduced body weight gain and fat mass. In addition, CORT125281, but not RU486, lowered plasma levels of triglycerides, cholesterol, and free fatty acids and strongly stimulated triglyceride-derived fatty acid uptake by brown adipose tissue depots. In combination with reduced lipid content in brown adipocytes, this indicates that CORT125281 enhances metabolic activity of brown adipose tissue depots. CORT125281 was also found to increase liver lipid accumulation. Taken together, CORT125281 displayed a wide range of beneficial metabolic activities that are in part distinct from RU486, but clinical utility may be limited due to liver lipid accumulation. This warrants further evaluation of GR antagonists or selective modulators that are not accompanied by liver lipid accumulation while preserving their beneficial metabolic activities.
Collapse
Affiliation(s)
- Jan Kroon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa L Koorneef
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jose K van den Heuvel
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Cristy R C Verzijl
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Nienke M van de Velde
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Isabel M Mol
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Hetty C M Sips
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Hazel Hunt
- Corcept Therapeutics, Menlo Park, California
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
80
|
Zhang M, Jiang X, Qu M, Gu H, Sha Q, Hua F. Salubrinal abrogates palmitate-induced leptin resistance and endoplasmic reticulum stress via nuclear factor kappa-light-chain-enhancer of activated B cell pathway in mHypoE-44 hypothalamic neurons. Diabetes Metab Syndr Obes 2018; 11:893-899. [PMID: 30584344 PMCID: PMC6287548 DOI: 10.2147/dmso.s179346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The prevalence of obesity is growing rapidly and has become a global problem that increases the risk for many diseases. It is influenced by many factors, including consumption of the Western-style diet, characterized as a high-fat diet. Within the central nervous system, the hypothalamus is a critical site in maintaining energy homeostasis and sensing nutrient status, including palmitate, the major component of high-fat-diet. METHODS In the present study, we conducted a variety of studies to investigate the specific role of salubrinal on palmitate-induced hypothalamic cell death, leptin signaling, and ER stress in an embryonic hypothalamic cell line. Experiments were also performed to identify the underlying mechanisms of the protective effect of salubrinal. RESULTS Our results indicate that salubrinal protects hypothalamic cells against PA-induced ER stress and improves hypothalamic leptin sensitivity. CONCLUSION Taken together, our findings conclusively reveal that salubrinal abrogates palmitate-induced hypothalamic leptin resistance and ER stress via NF-κB pathway.
Collapse
Affiliation(s)
- Min Zhang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Xiaohong Jiang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China,
| | - Meidi Qu
- Department of Clinical Nutrition, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Hongliu Gu
- Department of Clinical Nutrition, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Qi Sha
- Department of Clinical Nutrition, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Fei Hua
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China,
| |
Collapse
|
81
|
Zinman B, Skyler JS, Riddle MC, Ferrannini E. Diabetes Research and Care Through the Ages. Diabetes Care 2017; 40:1302-1313. [PMID: 28931706 DOI: 10.2337/dci17-0042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 02/03/2023]
Abstract
As has been well established, the Diabetes Care journal's most visible signature event is the Diabetes Care Symposium held each year during the American Diabetes Association's Scientific Sessions. Held this past year on 10 June 2017 in San Diego, California, at the 77th Scientific Sessions, this event has become one of the most attended sessions during the Scientific Sessions. Each year, in order to continue to have the symposium generate interest, we revise the format and content of this event. For this past year, our 6th annual symposium, I felt it was time to provide a comprehensive overview of our efforts in diabetes care to determine, first and foremost, how we arrived at our current state of management. I also felt the narrative needed to include the current status of management, especially with a focus toward cardiovascular disease, and finally, we wanted to ask what the future holds. Toward this goal, I asked four of the most noted experts in the world to provide their opinion on this topic. The symposium started with a very thoughtful presentation by Dr. Jay Skyler entitled "A Look Back as to How We Got Here." That was followed by two lectures on current concepts by Dr. Bernard Zinman entitled "Current Treatment Paradigms Today-How Well Are We Doing?" and by Dr. Matthew Riddle entitled "Evolving Concepts and Future Directions for Cardiovascular Outcomes Trials." The final lecture for the symposium was delivered by Dr. Ele Ferrannini and was entitled "What Does the Future Hold?" As always, a well-attended and well-received symposium is now the norm for our signature event and our efforts were rewarded by the enthusiasm of the attendees. This narrative summarizes the lectures held at the symposium.-William T. CefaluChief Scientific, Medical & Mission Officer, American Diabetes Association.
Collapse
Affiliation(s)
- Bernard Zinman
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Jay S Skyler
- Diabetes Research Institute, University of Miami, Miami, FL
| | - Matthew C Riddle
- Division of Endocrinology, Diabetes & Clinical Nutrition, Oregon Health & Science University, Portland, OR
| | - Ele Ferrannini
- CNR Institute of Clinical Physiology, and the Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
82
|
Rojas-Gutierrez E, Muñoz-Arenas G, Treviño S, Espinosa B, Chavez R, Rojas K, Flores G, Díaz A, Guevara J. Alzheimer's disease and metabolic syndrome: A link from oxidative stress and inflammation to neurodegeneration. Synapse 2017; 71:e21990. [PMID: 28650104 DOI: 10.1002/syn.21990] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and one of the most important causes of morbidity and mortality among the aging population. AD diagnosis is made post-mortem, and the two pathologic hallmarks, particularly evident in the end stages of the illness, are amyloid plaques and neurofibrillary tangles. Currently, there is no curative treatment for AD. Additionally, there is a strong relation between oxidative stress, metabolic syndrome, and AD. The high levels of circulating lipids and glucose imbalances amplify lipid peroxidation that gradually diminishes the antioxidant systems, causing high levels of oxidative metabolism that affects cell structure, leading to neuronal damage. Accumulating evidence suggests that AD is closely related to a dysfunction of both insulin signaling and glucose metabolism in the brain, leading to an insulin-resistant brain state. Four drugs are currently used for this pathology: Three FDA-approved cholinesterase inhibitors and one NMDA receptor antagonist. However, wide varieties of antioxidants are promissory to delay or prevent the symptoms of AD and may help in treating the disease. Therefore, therapeutic efforts to achieve attenuation of oxidative stress could be beneficial in AD treatment, attenuating Aβ-induced neurotoxicity and improve neurological outcomes in AD. The term inflammaging characterizes a widely accepted paradigm that aging is accompanied by a low-grade chronic up-regulation of certain pro-inflammatory responses in the absence of overt infection, and is a highly significant risk factor for both morbidity and mortality in the elderly.
Collapse
Affiliation(s)
- Eduardo Rojas-Gutierrez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Guadalupe Muñoz-Arenas
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Blanca Espinosa
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias-INER, Ciudad de México, Mexico
| | - Raúl Chavez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Karla Rojas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Jorge Guevara
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
83
|
Liu L, Wang X, Jiao H, Lin H. Glucocorticoids induced high fat diet preference via activating hypothalamic AMPK signaling in chicks. Gen Comp Endocrinol 2017; 249:40-47. [PMID: 28263818 DOI: 10.1016/j.ygcen.2017.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 02/21/2017] [Accepted: 02/28/2017] [Indexed: 11/23/2022]
Abstract
Glucocorticoids (GCs) stimulate appetite, contributing to enhanced fat deposition. Our present study was conducted to determine whether GCs could evoke an appetite specifically for fat-rich diets in chicks. Chicks were subjected to a subcutaneous injection of corticosterone (CORT, 2mg/kg body weight/day) or corn oil (control), and food preference was tested. The results showed that CORT-chicks consumed more high-fat diet (HFD) compared with controls. In HFD-fed chicks, hypothalamic phosphorylated AMP-activated protein kinase α (AMPKα) and neuropeptide Y (NPY) mRNA levels were increased by CORT treatment. Activating AMPK with 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside, an AMPK activator, via intracerebroventricular injection further enhanced the CORT-induced HFD consumption and concurrently up-regulated NPY mRNA levels and phosphorylated AMPKα and acetyl-coenzyme A carboxylase levels. The dramatic increase in HFD consumption and upregulation of NPY mRNA levels and phospho-AMPKα levels induced by peripheral CORT injection was not altered by intracerebroventricular infusion of compound C (4-16μg), an AMPK inhibitor. In conclusion, CORT challenge caused a HFD preference by enhancing the AMPK pathway in the hypothalamus.
Collapse
Affiliation(s)
- Lei Liu
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xiaojuan Wang
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hongchao Jiao
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hai Lin
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
84
|
Cruciani-Guglielmacci C, Magnan C. Brain lipoprotein lipase as a regulator of energy balance. Biochimie 2017; 143:51-55. [PMID: 28751218 DOI: 10.1016/j.biochi.2017.07.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/21/2017] [Indexed: 01/17/2023]
Abstract
The central nervous system is an essential actor in the control of the energy balance. Indeed, many signals of nervous (vagal afferent for example) or circulating (hormone, nutrients) origin converge towards the brain to inform it permanently of the energetic status of the organism. In turn, the brain sends information to the periphery (sympathetic vagal balance, thyroid or corticotropic axis) which allows a fine regulation of the energy fluxes by acting on the hepatic glucose production, the secretion of the pancreatic hormones (glucagon, insulin) or food behavior. Among the nutrients, increasing amount of data assigns a signal molecule role to lipids such as fatty acids. These fatty acids may originate from the bloodstream but may also be the product of the hydrolysis of lipoproteins such as chylomicrons or VLDLs. Indeed, the identification of lipoprotein lipase (LPL) in the brain has led to the hypothesis that the LPL-dependent degradation of TG-enriched particles, and the addition of fatty acids, as informative molecules, to sensitive cells (neurons and/or astrocytes), plays a key role in maintaining the energy balance at equilibrium. Other lipases could also participate in these regulatory mechanisms. This review will summarize the state of the art and open up perspectives.
Collapse
Affiliation(s)
- Céline Cruciani-Guglielmacci
- Sorbonne Paris Cité, Université Denis Diderot, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Bâtiment Buffon, P. O. box 7126, 4, rue Marie-Andrée Lagroua Weill-Halle, 75205, Paris Cedex 13, France.
| | - Christophe Magnan
- Sorbonne Paris Cité, Université Denis Diderot, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Bâtiment Buffon, P. O. box 7126, 4, rue Marie-Andrée Lagroua Weill-Halle, 75205, Paris Cedex 13, France
| |
Collapse
|
85
|
Julliard AK, Al Koborssy D, Fadool DA, Palouzier-Paulignan B. Nutrient Sensing: Another Chemosensitivity of the Olfactory System. Front Physiol 2017; 8:468. [PMID: 28747887 PMCID: PMC5506222 DOI: 10.3389/fphys.2017.00468] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/19/2017] [Indexed: 12/31/2022] Open
Abstract
Olfaction is a major sensory modality involved in real time perception of the chemical composition of the external environment. Olfaction favors anticipation and rapid adaptation of behavioral responses necessary for animal survival. Furthermore, recent studies have demonstrated that there is a direct action of metabolic peptides on the olfactory network. Orexigenic peptides such as ghrelin and orexin increase olfactory sensitivity, which in turn, is decreased by anorexigenic hormones such as insulin and leptin. In addition to peptides, nutrients can play a key role on neuronal activity. Very little is known about nutrient sensing in olfactory areas. Nutrients, such as carbohydrates, amino acids, and lipids, could play a key role in modulating olfactory sensitivity to adjust feeding behavior according to metabolic need. Here we summarize recent findings on nutrient-sensing neurons in olfactory areas and delineate the limits of our knowledge on this topic. The present review opens new lines of investigations on the relationship between olfaction and food intake, which could contribute to determining the etiology of metabolic disorders.
Collapse
Affiliation(s)
- A-Karyn Julliard
- Univ Lyon, Université Claude Bernard Lyon1, Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028/Centre National de la Recherche Scientifique UMR5292 Team Olfaction: From Coding to MemoryLyon, France
| | - Dolly Al Koborssy
- Department of Biological Science, Florida State UniversityTallahassee, FL, United States.,Program in Neuroscience, Florida State UniversityTallahassee, FL, United States
| | - Debra A Fadool
- Department of Biological Science, Florida State UniversityTallahassee, FL, United States.,Program in Neuroscience, Florida State UniversityTallahassee, FL, United States.,Institute of Molecular Biophysics, Florida State UniversityTallahassee, FL, United States
| | - Brigitte Palouzier-Paulignan
- Univ Lyon, Université Claude Bernard Lyon1, Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028/Centre National de la Recherche Scientifique UMR5292 Team Olfaction: From Coding to MemoryLyon, France
| |
Collapse
|
86
|
Deem JD, Muta K, Scarlett JM, Morton GJ, Schwartz MW. How Should We Think About the Role of the Brain in Glucose Homeostasis and Diabetes? Diabetes 2017; 66:1758-1765. [PMID: 28603139 PMCID: PMC5482090 DOI: 10.2337/dbi16-0067] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/25/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Jennifer D Deem
- Department of Medicine, University of Washington Diabetes Institute, University of Washington, Seattle, WA
| | - Kenjiro Muta
- Department of Medicine, University of Washington Diabetes Institute, University of Washington, Seattle, WA
| | - Jarrad M Scarlett
- Department of Medicine, University of Washington Diabetes Institute, University of Washington, Seattle, WA
| | - Gregory J Morton
- Department of Medicine, University of Washington Diabetes Institute, University of Washington, Seattle, WA
| | - Michael W Schwartz
- Department of Medicine, University of Washington Diabetes Institute, University of Washington, Seattle, WA
| |
Collapse
|
87
|
Pozo M, Rodríguez-Rodríguez R, Ramírez S, Seoane-Collazo P, López M, Serra D, Herrero L, Casals N. Hypothalamic Regulation of Liver and Muscle Nutrient Partitioning by Brain-Specific Carnitine Palmitoyltransferase 1C in Male Mice. Endocrinology 2017; 158:2226-2238. [PMID: 28472467 DOI: 10.1210/en.2017-00151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/28/2017] [Indexed: 11/19/2022]
Abstract
Carnitine palmitoyltransferase (CPT) 1C, a brain-specific protein localized in the endoplasmic reticulum of neurons, is expressed in almost all brain regions. Based on global knockout (KO) models, CPT1C has demonstrated relevance in hippocampus-dependent spatial learning and in hypothalamic regulation of energy balance. Specifically, it has been shown that CPT1C is protective against high-fat diet-induced obesity (DIO), and that CPT1C KO mice show reduced peripheral fatty acid oxidation (FAO) during both fasting and DIO. However, the mechanisms mediating CPT1C-dependent regulation of energy homeostasis remain unclear. Here, we focus on the mechanistic understanding of hypothalamic CPT1C on the regulation of fuel selection in liver and muscle of male mice during energy deprivation situations, such as fasting. In CPT1C-deficient mice, modulation of the main hypothalamic energy sensors (5' adenosine monophosphate-activated protein kinase, Sirtuin 1, and mammalian target of rapamycin) was impaired and plasma catecholamine levels were decreased. Consequently, CPT1C-deficient mice presented defective fasting-induced FAO in liver, leading to higher triacylglycerol accumulation and lower glycogen levels. Moreover, muscle pyruvate dehydrogenase activity was increased, which was indicative of glycolysis enhancement. The respiratory quotient did not decrease in CPT1C KO mice after 48 hours of fasting, confirming a defective switch on fuel substrate selection under hypoglycemia. Phenotype reversion studies identified the mediobasal hypothalamus (MBH) as the main area mediating CPT1C effects on fuel selection. Overall, our data demonstrate that CPT1C in the MBH is necessary for proper hypothalamic sensing of a negative energy balance and fuel partitioning in liver and muscle.
Collapse
Affiliation(s)
- Macarena Pozo
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Sara Ramírez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Patricia Seoane-Collazo
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Dolors Serra
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Laura Herrero
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
88
|
Kwon YH, Kim J, Kim CS, Tu TH, Kim MS, Suk K, Kim DH, Lee BJ, Choi HS, Park T, Choi MS, Goto T, Kawada T, Ha TY, Yu R. Hypothalamic lipid-laden astrocytes induce microglia migration and activation. FEBS Lett 2017; 591:1742-1751. [PMID: 28542876 DOI: 10.1002/1873-3468.12691] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/27/2017] [Accepted: 05/17/2017] [Indexed: 11/08/2022]
Abstract
Obesity-induced hypothalamic inflammation is closely associated with various metabolic complications and neurodegenerative disorders. Astrocytes, the most abundant glial cells in the central nervous system, play a crucial role in pathological hypothalamic inflammatory processes. Here, we demonstrate that hypothalamic astrocytes accumulate lipid droplets under saturated fatty acid-rich conditions, such as obese environment, and that the lipid-laden astrocytes increase astrogliosis markers and inflammatory cytokines (TNFα, IL-1β, IL-6, MCP-1) at the transcript and/or protein level. Medium conditioned by the lipid-laden astrocytes stimulate microglial chemotactic activity and upregulate transcripts of the microglia activation marker Iba-1 and inflammatory cytokines. These findings indicate that the lipid-laden astrocytes formed in free fatty acid-rich obese condition may participate in obesity-induced hypothalamic inflammation through promoting microglia migration and activation.
Collapse
Affiliation(s)
- Yoon-Hee Kwon
- Department of Food Science and Nutrition, University of Ulsan, South Korea
| | - Jiye Kim
- Department of Food Science and Nutrition, University of Ulsan, South Korea
| | - Chu-Sook Kim
- Department of Food Science and Nutrition, University of Ulsan, South Korea
| | - Thai Hien Tu
- Department of Food Science and Nutrition, University of Ulsan, South Korea
| | - Min-Seon Kim
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, South Korea.,Division of Endocrinology and Metabolism, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kyoungho Suk
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Dong Hee Kim
- Department of Biological Science, University of Ulsan, South Korea
| | - Byung Ju Lee
- Department of Biological Science, University of Ulsan, South Korea
| | - Hye-Seon Choi
- Department of Biological Science, University of Ulsan, South Korea
| | - Taesun Park
- Department of Food and Nutrition, Yonsei University, Seoul, South Korea
| | - Myung-Sook Choi
- Department of Food Science and Nutrition, Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu, South Korea
| | - Tsuyoshi Goto
- Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Teruo Kawada
- Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Tae Youl Ha
- Research Group of Nutrition and Metabolic System, Korea Food Research Institute, Seongnam, South Korea
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, South Korea
| |
Collapse
|
89
|
Binay Ç, Paketçi C, Güzel S, Samancı N. Serum Irisin and Oxytocin Levels as Predictors of Metabolic Parameters in Obese Children. J Clin Res Pediatr Endocrinol 2017; 9:124-131. [PMID: 28077341 PMCID: PMC5463284 DOI: 10.4274/jcrpe.3963] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Irisin and oxytocin can affect energy homeostasis and it has been suggested that they may play an important role in reducing obesity and diabetes. In this study, we aimed to determine the relationship between metabolic parameters (including irisin and oxytocin levels) and anthropometric parameters in obese children. METHODS Ninety obese children (mean age, 13.85±1.63 years) and 30 healthy controls (mean age, 14.32±1.58 years) were enrolled in this study. Anthropometric and laboratory parameters (glucose, insulin, lipid, oxytocin, and irisin levels) were analyzed. The serum irisin and oxytocin levels were measured by enzyme-linked immunosorbent assay. Bioelectrical impedance was used to determine body composition. RESULTS Irisin level was higher in the patients than in the controls (p=0.018), and this higher irisin level was correlated with increased systolic blood pressure, body mass index, waist/hip ratio, fat percentage, fat mass, glucose level, insulin level, and homeostasis model assessment of insulin resistance. Serum oxytocin level was significantly decreased in obese children compared to the controls (p=0.049). Also, among the 60 obese patients, oxytocin level was significantly lower in patients with than in those without metabolic syndrome (8.65±2.69 vs. 10.87±5.93 ng/L, respectively), while irisin levels were comparable (p=0.049 and p=0.104, respectively). There were no statistically significant relationships between oxytocin or irisin levels and lipid levels (p>0.05). CONCLUSION Obese children had significantly higher irisin levels than the healthy controls. Additionally, this study shows for the first time that oxytocin level is significantly lower in obese compared with non-obese children and also lower in obese children with metabolic syndrome compared to those without.
Collapse
Affiliation(s)
- Çiğdem Binay
- Tekirdağ Çorlu State Hospital, Clinic of Pediatric Endocrinology, Tekirdağ, Turkey, Phone: +90 532 377 14 96 E-mail:
| | - Cem Paketçi
- Namık Kemal University Faculty of Medicine, Department of Pediatrics, Tekirdağ, Turkey
| | - Savaş Güzel
- Namık Kemal University Faculty of Medicine, Department of Medical Biochemistry, Tekirdağ, Turkey
| | - Nedim Samancı
- Namık Kemal University Faculty of Medicine, Department of Pediatrics, Tekirdağ, Turkey
| |
Collapse
|
90
|
López-Soldado I, Fuentes-Romero R, Duran J, Guinovart JJ. Effects of hepatic glycogen on food intake and glucose homeostasis are mediated by the vagus nerve in mice. Diabetologia 2017; 60:1076-1083. [PMID: 28299379 DOI: 10.1007/s00125-017-4240-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/14/2017] [Indexed: 10/20/2022]
Abstract
AIMS/HYPOTHESIS Liver glycogen plays a key role in regulating food intake and blood glucose. Mice that accumulate large amounts of this polysaccharide in the liver are protected from high-fat diet (HFD)-induced obesity by reduced food intake. Furthermore, these animals show reversal of the glucose intolerance and hyperinsulinaemia caused by the HFD. The aim of this study was to examine the involvement of the hepatic branch of the vagus nerve in regulating food intake and glucose homeostasis in this model. METHODS We performed hepatic branch vagotomy (HBV) or a sham operation on mice overexpressing protein targeting to glycogen (Ptg OE). Starting 1 week after surgery, mice were fed an HFD for 10 weeks. RESULTS HBV did not alter liver glycogen or ATP levels, thereby indicating that this procedure does not interfere with hepatic energy balance. However, HBV reversed the effect of glycogen accumulation on food intake. In wild-type mice, HBV led to a significant reduction in body weight without a change in food intake. Consistent with their body weight reduction, these animals had decreased fat deposition, adipocyte size, and insulin and leptin levels, together with increased energy expenditure. Ptg OE mice showed an increase in energy expenditure and glucose oxidation, and these differences were abolished by HBV. Moreover, Ptg OE mice showed an improvement in HFD-induced glucose intolerance, which was suppressed by HBV. CONCLUSIONS/INTERPRETATION Our results demonstrate that the regulation of food intake and glucose homeostasis by liver glycogen is dependent on the hepatic branch of the vagus nerve.
Collapse
Affiliation(s)
- Iliana López-Soldado
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Rebeca Fuentes-Romero
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028, Barcelona, Spain
| | - Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Joan J Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
91
|
Eikelis N, Hering D, Marusic P, Duval J, Hammond LJ, Walton AS, Lambert EA, Esler MD, Lambert GW, Schlaich MP. The Effect of Renal Denervation on Plasma Adipokine Profile in Patients with Treatment Resistant Hypertension. Front Physiol 2017; 8:369. [PMID: 28611687 PMCID: PMC5447749 DOI: 10.3389/fphys.2017.00369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/18/2017] [Indexed: 12/16/2022] Open
Abstract
Background: We previously demonstrated the effectiveness of renal denervation (RDN) to lower blood pressure (BP) at least partially via the reduction of sympathetic stimulation to the kidney. A number of adipocyte-derived factors are implicated in BP control in obesity. Aim: The aim of this study was to examine whether RDN may have salutary effects on the adipokine profile in patients with resistant hypertension (RH). Methods: Fifty seven patients with RH undergoing RDN program have been included in this study (65% males, age 60.8 ± 1.5 years, BMI 32.6 ± 0.7 kg/m2, mean ± SEM). Throughout the study, the patients were on an average of 4.5 ± 2.7 antihypertensive drugs. Automated seated office BP measurements and plasma concentrations of leptin, insulin, non-esterified fatty acids (NEFA), adiponectin and resistin were assessed at baseline and the 3 months after RDN. Results: There was a significant reduction in mean office systolic (168.75 ± 2.57 vs. 155.23 ± 3.17 mmHg, p < 0.001) and diastolic (90.68 ± 2.31 vs. 83.74 ± 2.36 mmHg, p < 0.001) BP 3 months after RDN. Body weight, plasma leptin and resistin levels and heart rate remained unchanged. Fasting insulin concentration significantly increased 3 months after the procedure (20.05 ± 1.46 vs. 29.70 ± 2.51 uU/ml, p = 0.002). There was a significant drop in circulating NEFA at follow up (1.01 ± 0.07 vs. 0.47 ± 0.04 mEq/l, p < 0.001). Adiponectin concentration was significantly higher after RDN (5,654 ± 800 vs. 6,644 ± 967 ng/ml, p = 0.024). Conclusions: This is the first study to demonstrate that RDN is associated with potentially beneficial effects on aspects of the adipokine profile. Increased adiponectin and reduced NEFA production may contribute to BP reduction via an effect on metabolic pathways. Clinical Trial Registration Number: NCT00483808, NCT00888433.
Collapse
Affiliation(s)
- Nina Eikelis
- Human Neurotransmitters and Neurovascular Hypertension and Kidney Disease Laboratories, Baker Heart and Diabetes InstituteMelbourne, VIC, Australia.,Iverson Health Innovation Research Institute, Swinburne University of TechnologyMelbourne, VIC, Australia
| | - Dagmara Hering
- Human Neurotransmitters and Neurovascular Hypertension and Kidney Disease Laboratories, Baker Heart and Diabetes InstituteMelbourne, VIC, Australia.,School of Medicine and Pharmacology - Royal Perth Hospital Unit, University of Western AustraliaPerth, WA, Australia
| | - Petra Marusic
- Human Neurotransmitters and Neurovascular Hypertension and Kidney Disease Laboratories, Baker Heart and Diabetes InstituteMelbourne, VIC, Australia.,School of Medicine and Pharmacology - Royal Perth Hospital Unit, University of Western AustraliaPerth, WA, Australia
| | - Jacqueline Duval
- Human Neurotransmitters and Neurovascular Hypertension and Kidney Disease Laboratories, Baker Heart and Diabetes InstituteMelbourne, VIC, Australia
| | - Louise J Hammond
- Human Neurotransmitters and Neurovascular Hypertension and Kidney Disease Laboratories, Baker Heart and Diabetes InstituteMelbourne, VIC, Australia
| | | | - Elisabeth A Lambert
- Human Neurotransmitters and Neurovascular Hypertension and Kidney Disease Laboratories, Baker Heart and Diabetes InstituteMelbourne, VIC, Australia.,Iverson Health Innovation Research Institute, Swinburne University of TechnologyMelbourne, VIC, Australia
| | - Murray D Esler
- Human Neurotransmitters and Neurovascular Hypertension and Kidney Disease Laboratories, Baker Heart and Diabetes InstituteMelbourne, VIC, Australia.,Heart Centre Alfred HospitalMelbourne, VIC, Australia
| | - Gavin W Lambert
- Human Neurotransmitters and Neurovascular Hypertension and Kidney Disease Laboratories, Baker Heart and Diabetes InstituteMelbourne, VIC, Australia.,Iverson Health Innovation Research Institute, Swinburne University of TechnologyMelbourne, VIC, Australia
| | - Markus P Schlaich
- Human Neurotransmitters and Neurovascular Hypertension and Kidney Disease Laboratories, Baker Heart and Diabetes InstituteMelbourne, VIC, Australia.,School of Medicine and Pharmacology - Royal Perth Hospital Unit, University of Western AustraliaPerth, WA, Australia.,Heart Centre Alfred HospitalMelbourne, VIC, Australia
| |
Collapse
|
92
|
Haddad-Tóvolli R, Dragano NRV, Ramalho AFS, Velloso LA. Development and Function of the Blood-Brain Barrier in the Context of Metabolic Control. Front Neurosci 2017; 11:224. [PMID: 28484368 PMCID: PMC5399017 DOI: 10.3389/fnins.2017.00224] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/04/2017] [Indexed: 12/21/2022] Open
Abstract
Under physiological conditions, the brain consumes over 20% of the whole body energy supply. The blood-brain barrier (BBB) allows dynamic interactions between blood capillaries and the neuronal network in order to provide an adequate control of molecules that are transported in and out of the brain. Alterations in the BBB structure and function affecting brain accessibility to nutrients and exit of toxins are found in a number of diseases, which in turn may disturb brain function and nutrient signaling. In this review we explore the major advances obtained in the understanding of the BBB development and how its structure impacts on function. Furthermore, we focus on the particularities of the barrier permeability in the hypothalamus, its role in metabolic control and the potential impact of hypothalamic BBB abnormities in metabolic related diseases.
Collapse
Affiliation(s)
- Roberta Haddad-Tóvolli
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, Faculty of Medical Sciences, University of CampinasCampinas, Brazil
| | | | | | - Licio A. Velloso
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, Faculty of Medical Sciences, University of CampinasCampinas, Brazil
| |
Collapse
|
93
|
Horwath JA, Hurr C, Butler SD, Guruju M, Cassell MD, Mark AL, Davisson RL, Young CN. Obesity-induced hepatic steatosis is mediated by endoplasmic reticulum stress in the subfornical organ of the brain. JCI Insight 2017; 2:90170. [PMID: 28422749 PMCID: PMC5396512 DOI: 10.1172/jci.insight.90170] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/02/2017] [Indexed: 12/15/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), characterized by an excess accumulation of hepatic triglycerides, is a growing health epidemic. While ER stress in the liver has been implicated in the development of NAFLD, the role of brain ER stress - which is emerging as a key contributor to a number of chronic diseases including obesity - in NAFLD remains unclear. These studies reveal that chemical induction of ER stress in the brain caused hepatomegaly and hepatic steatosis in mice. Conversely, pharmacological reductions in brain ER stress in diet-induced obese mice rescued NAFLD independent of body weight, food intake, and adiposity. Evaluation of brain regions involved revealed robust activation of ER stress biomarkers and ER ultrastructural abnormalities in the circumventricular subfornical organ (SFO), a nucleus situated outside of the blood-brain-barrier, in response to high-fat diet. Targeted reductions in SFO-ER stress in obese mice via SFO-specific supplementation of the ER chaperone 78-kDa glucose-regulated protein ameliorated hepatomegaly and hepatic steatosis without altering body weight, food intake, adiposity, or obesity-induced hypertension. Overall, these findings indicate a novel role for brain ER stress, notably within the SFO, in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Julie A. Horwath
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, USA
| | - Chansol Hurr
- Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Scott D. Butler
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Mallikarjun Guruju
- Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, USA
| | | | - Allyn L. Mark
- Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, USA
- Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Robin L. Davisson
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, USA
| | - Colin N. Young
- Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
94
|
Orellana JA, Cerpa W, Carvajal MF, Lerma-Cabrera JM, Karahanian E, Osorio-Fuentealba C, Quintanilla RA. New Implications for the Melanocortin System in Alcohol Drinking Behavior in Adolescents: The Glial Dysfunction Hypothesis. Front Cell Neurosci 2017; 11:90. [PMID: 28424592 PMCID: PMC5380733 DOI: 10.3389/fncel.2017.00090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/15/2017] [Indexed: 12/12/2022] Open
Abstract
Alcohol dependence causes physical, social, and moral harms and currently represents an important public health concern. According to the World Health Organization (WHO), alcoholism is the third leading cause of death worldwide, after tobacco consumption and hypertension. Recent epidemiologic studies have shown a growing trend in alcohol abuse among adolescents, characterized by the consumption of large doses of alcohol over a short time period. Since brain development is an ongoing process during adolescence, short- and long-term brain damage associated with drinking behavior could lead to serious consequences for health and wellbeing. Accumulating evidence indicates that alcohol impairs the function of different components of the melanocortin system, a major player involved in the consolidation of addictive behaviors during adolescence and adulthood. Here, we hypothesize the possible implications of melanocortins and glial cells in the onset and progression of alcohol addiction. In particular, we propose that alcohol-induced decrease in α-MSH levels may trigger a cascade of glial inflammatory pathways that culminate in altered gliotransmission in the ventral tegmental area and nucleus accumbens (NAc). The latter might potentiate dopaminergic drive in the NAc, contributing to increase the vulnerability to alcohol dependence and addiction in the adolescence and adulthood.
Collapse
Affiliation(s)
- Juan A Orellana
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Laboratorio de Neurociencias, Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Waldo Cerpa
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Maria F Carvajal
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Unidad de Neurociencia, Centro de Investigación Biomédica, Universidad Autónoma de ChileSantiago, Chile
| | - José M Lerma-Cabrera
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Unidad de Neurociencia, Centro de Investigación Biomédica, Universidad Autónoma de ChileSantiago, Chile
| | - Eduardo Karahanian
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Unidad de Neurociencia, Centro de Investigación Biomédica, Universidad Autónoma de ChileSantiago, Chile
| | - Cesar Osorio-Fuentealba
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Facultad de Kinesiología, Artes y Educación Física, Universidad Metropolitana de Ciencias de la EducaciónSantiago, Chile
| | - Rodrigo A Quintanilla
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Laboratory of Neurodegenerative Diseases, Universidad Autónoma de ChileSantiago, Chile
| |
Collapse
|
95
|
Tups A, Benzler J, Sergi D, Ladyman SR, Williams LM. Central Regulation of Glucose Homeostasis. Compr Physiol 2017; 7:741-764. [PMID: 28333388 DOI: 10.1002/cphy.c160015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
96
|
Duodenal GLP-1 signaling regulates hepatic glucose production through a PKC-δ-dependent neurocircuitry. Cell Death Dis 2017; 8:e2609. [PMID: 28182013 PMCID: PMC5386475 DOI: 10.1038/cddis.2017.28] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 12/25/2022]
Abstract
Intestinal glucagon-like peptide-1 (GLP-1) is a hormone that stimulates insulin secretion and acts as a neuropeptide to control glucose homeostasis, but little is known whether intestinal GLP-1 has any effect in the control of hepatic glucose production (HGP). Here we found that intraduodenal infusion of GLP-1 activated duodenal PKC-δ, lowered HGP and was accompanied by a decrease in hepatic expression of gluconeogenic enzymes and an increase in hepatic insulin signaling in rats. However, gut co-infusion of either the GLP-1 receptor antagonist Ex-9, or the PKC-δ inhibitor rottlerin with GLP-1, negated the ability of gut GLP-1 to lower HGP and to increase hepatic insulin signaling during clamps. The metabolic and molecular signal effects of duodenal GLP-1 were also negated by co-infusion with tetracaine, pharmacologic inhibition of N-methyl-d-aspartate receptors within the dorsalvagal complex, or hepatic vagotomy in rats. In summary, we identified a neural glucoregulatory function of gut GLP-1 signaling.
Collapse
|
97
|
Yehuda S, Rabinovitz S. The Role of Essential Fatty Acids in Anorexia Nervosa and Obesity. Crit Rev Food Sci Nutr 2017; 56:2021-35. [PMID: 26068122 DOI: 10.1080/10408398.2013.809690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The two basic questions in food intake study are what we eat, and how much do we eat. Most research is directed toward the control of how much is eaten. This is likely the result of the increased number of individuals with eating disorders in the Western world. Feeding behavior is highly complex, and is controlled by many psychological, physiological, biochemical, and immunological factors. The aim of this review is to clarify the involvement of fatty acids in eating disorders such as anorexia and binge eating disorder. The review will describe the modified fatty acid profile observed in individuals with anorexia or binge eating disorder, and discuss on what factors fatty acids can exert beneficial effects. In addition, the differences and similarities between anorexia and binge eating disorder will be discussed. We suggest that beneficial effects of essential fatty acids on both anorexia and binge eating disorder can be explained by the stabilizing effect of those fatty acids on the neuronal membrane fluidity index.
Collapse
Affiliation(s)
- Shlomo Yehuda
- a Psychopharmacology Lab , Department of Psychology, Bar Ilan University , Ramat Gan , Israel
| | - Sharon Rabinovitz
- a Psychopharmacology Lab , Department of Psychology, Bar Ilan University , Ramat Gan , Israel.,b School of Criminology, University of Haifa , Mount Carmel , Israel
| |
Collapse
|
98
|
Dadak S, Beall C, Vlachaki Walker JM, Soutar MPM, McCrimmon RJ, Ashford MLJ. Oleate induces K ATP channel-dependent hyperpolarization in mouse hypothalamic glucose-excited neurons without altering cellular energy charge. Neuroscience 2017; 346:29-42. [PMID: 28087336 PMCID: PMC5346158 DOI: 10.1016/j.neuroscience.2016.12.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/29/2016] [Indexed: 11/29/2022]
Abstract
Oleate and low glucose hyperpolarize and inhibit GT1-7 and mouse GE neurons by activation of KATP. Oleate inhibition of GT1-7 neuron activity is not mediated by AMPK or fatty acid oxidation. Activation of KATP by oleate requires ATP hydrolysis but does not reduce the levels ATP or the ATP:ADP ratio. GT1-7 hyperpolarization by oleate is not dependent on UCP2. Oleate and low glucose depolarize a subpopulation of hypothalamic GI neurons.
The unsaturated fatty acid, oleate exhibits anorexigenic properties reducing food intake and hepatic glucose output. However, its mechanism of action in the hypothalamus has not been fully determined. This study investigated the effects of oleate and glucose on GT1-7 mouse hypothalamic cells (a model of glucose-excited (GE) neurons) and mouse arcuate nucleus (ARC) neurons. Whole-cell and perforated patch-clamp recordings, immunoblotting and cell energy status measures were used to investigate oleate- and glucose-sensing properties of mouse hypothalamic neurons. Oleate or lowered glucose concentration caused hyperpolarization and inhibition of firing of GT1-7 cells by the activation of ATP-sensitive K+ channels (KATP). This effect of oleate was not dependent on fatty acid oxidation or raised AMP-activated protein kinase activity or prevented by the presence of the UCP2 inhibitor genipin. Oleate did not alter intracellular calcium, indicating that CD36/fatty acid translocase may not play a role. However, oleate activation of KATP may require ATP metabolism. The short-chain fatty acid octanoate was unable to replicate the actions of oleate on GT1-7 cells. Although oleate decreased GT1-7 cell mitochondrial membrane potential there was no change in total cellular ATP or ATP/ADP ratios. Perforated patch and whole-cell recordings from mouse hypothalamic slices demonstrated that oleate hyperpolarized a subpopulation of ARC GE neurons by KATP activation. Additionally, in a separate small population of ARC neurons, oleate application or lowered glucose concentration caused membrane depolarization. In conclusion, oleate induces KATP-dependent hyperpolarization and inhibition of firing of a subgroup of GE hypothalamic neurons without altering cellular energy charge.
Collapse
Affiliation(s)
- Selma Dadak
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Craig Beall
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building, Barrack Road, Exeter EX2 5DW, UK
| | - Julia M Vlachaki Walker
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building, Barrack Road, Exeter EX2 5DW, UK
| | - Marc P M Soutar
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Rory J McCrimmon
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Michael L J Ashford
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK.
| |
Collapse
|
99
|
Abstract
Obesity-related co-morbidities decrease life quality, reduce working ability and lead to early death. The total amount of dietary fat consumption may be the most potent food-related risk factor for weight gain. In this respect, dietary intake of high-caloric, high-fat diets due to chronic over-eating and sedentary lifestyle lead to increased storage of triglycerides not only in adipose tissue but also ectopically in other tissues . Increased plasma concentrations of non-esterified free fatty acids and lipid-overloaded hypertrophic adipocytes may cause insulin resistance in an inflammation-independent manner. Even in the absence of metabolic disorders, mismatch between fatty acid uptake and utilization leads to the accumulation of toxic lipid species resulting in organ dysfunction. Lipid-induced apoptosis, ceramide accumulation, reactive oxygen species overproduction, endoplasmic reticulum stress, and mitochondrial dysfunction may play role in the pathogenesis of lipotoxicity. The hypothalamus senses availability of circulating levels of glucose, lipids and amino acids, thereby modifies feeding according to the levels of those molecules. However, the hypothalamus is also similarly vulnerable to lipotoxicity as the other ectopic lipid accumulated tissues. Chronic overnutrition most likely provides repetitive and persistent signals that up-regulate inhibitor of nuclear factor kappa B kinase beta subunit/nuclear factor kappa B (IKKβ/NF-κB) in the hypothalamus before the onset of obesity. However, the mechanisms by which high-fat diet induced peripheral signals affect the hypothalamic arcuate nucleus remain largely unknown. In this chapter, besides lipids and leptin, the role of glucose and insulin on specialized fuel-sensing neurons of hypothalamic neuronal circuits has been debated.
Collapse
|
100
|
The Pathogenesis of Obesity-Associated Adipose Tissue Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:221-245. [PMID: 28585201 DOI: 10.1007/978-3-319-48382-5_9] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|