51
|
de Paula Rodrigues BM, Coimbra NC. CB 1 receptor signalling mediates cannabidiol-induced panicolytic-like effects and defensive antinociception impairment in mice threatened by Bothrops jararaca lancehead pit vipers. J Psychopharmacol 2022; 36:1384-1396. [PMID: 35946605 DOI: 10.1177/02698811221115755] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Cannabis sativa-derived substances such as cannabidiol (CBD) have attracted increasing clinical interest and consist in a new perspective for treating some neurological and psychiatric diseases. AIMS The aim of this work was to investigate the effect of acute treatment with CBD on panic-like defensive responses displayed by mice threatened by the venomous snake Bothrops jararaca. METHODS Mice were habituated in the enriched polygonal arena for snake panic test. After recording the baseline responses of the tail-flick test, the prey were pretreated with intraperitoneal (i.p.) administrations of the endocannabinoid type 1 receptor (CB1) antagonist AM251 (selective cannabinoid 1 receptor antagonist with an IC50 of 8 nM) at different doses, which were followed after 10 min by i.p. treatment with CBD (3 mg/kg). Thirty minutes after treatment with CBD, mice were subjected to confrontations by B. jararaca for 5 min, and the following defensive responses were recorded: risk assessment, oriented escape behaviour, inhibitory avoidance and prey-versus-snake interactions. Immediately after the escape behaviour was exhibited, the tail-flick latencies were recorded every 5 min for 30 min. OUTCOMES Mice threatened by snakes displayed several anti-predatory defensive and innate fear-induced antinociception responses in comparison to the control. CBD significantly decreased the risk assessment and escape responses, with a consequent decrease in defensive antinociception. The CBD panicolytic effect was reversed by i.p. treatment with AM251. CONCLUSIONS These findings suggest that the anti-aversive effect of CBD depends at least in part on the recruitment of CB1 receptors.
Collapse
Affiliation(s)
- Bruno Mangili de Paula Rodrigues
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
52
|
Radhakrishnan R, Worhunsky PD, Zheng MQ, Najafzadeh S, Gallezot JD, Planeta B, Henry S, Nabulsi N, Ranganathan M, Skosnik PD, Pittman B, Cyril D'Souza D, Carson RE, Huang Y, Potenza MN, Matuskey D. Age, gender and body-mass-index relationships with in vivo CB 1 receptor availability in healthy humans measured with [ 11C]OMAR PET. Neuroimage 2022; 264:119674. [PMID: 36243269 DOI: 10.1016/j.neuroimage.2022.119674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/07/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Brain cannabinoid 1 receptors (CB1Rs) contribute importantly to the regulation of autonomic tone, appetite, mood and cognition. Inconsistent results have been reported from positron emission tomography (PET) studies using different radioligands to examine relationships between age, gender and body mass index (BMI) and CB1R availability in healthy individuals. In this study, we examined these variables in 58 healthy individuals (age range: 18-55 years; 44 male; BMI=27.01±5.56), the largest cohort of subjects studied to date using the CB1R PET ligand [11C]OMAR. There was a significant decline in CB1R availability (VT) with age in the pallidum, cerebellum and posterior cingulate. Adjusting for BMI, age-related decline in VT remained significant in the posterior cingulate among males, and in the cerebellum among women. CB1R availability was higher in women compared to men in the thalamus, pallidum and posterior cingulate. Adjusting for age, CB1R availability negatively correlated with BMI in women but not men. These findings differ from those reported using [11C]OMAR and other radioligands such as [18F]FMPEP-d2 and [18F]MK-9470. Although reasons for these seemingly divergent findings are unclear, the choice of PET radioligand and range of BMI in the current dataset may contribute to the observed differences. This study highlights the need for cross-validation studies using both [11C]OMAR and [18F]FMPEP-d2 within the same cohort of subjects.
Collapse
Affiliation(s)
- Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicinev, New Haven, CT 06511, United States.
| | - Patrick D Worhunsky
- Department of Psychiatry, Yale University School of Medicinev, New Haven, CT 06511, United States
| | - Ming-Qiang Zheng
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, United States
| | - Soheila Najafzadeh
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, United States
| | - Jean-Dominique Gallezot
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, United States
| | - Beata Planeta
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, United States
| | - Shannan Henry
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, United States
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, United States
| | - Mohini Ranganathan
- Department of Psychiatry, Yale University School of Medicinev, New Haven, CT 06511, United States
| | - Patrick D Skosnik
- Department of Psychiatry, Yale University School of Medicinev, New Haven, CT 06511, United States
| | - Brian Pittman
- Department of Psychiatry, Yale University School of Medicinev, New Haven, CT 06511, United States
| | - Deepak Cyril D'Souza
- Department of Psychiatry, Yale University School of Medicinev, New Haven, CT 06511, United States
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, United States
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, United States
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicinev, New Haven, CT 06511, United States; Child Study Center, Yale University School of Medicine, United States; Connecticut Mental Health Center, United States; Department of Neuroscience, Yale University, United States
| | - David Matuskey
- Department of Psychiatry, Yale University School of Medicinev, New Haven, CT 06511, United States; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, United States; Department of Neurology, Yale University School of Medicine, United States
| |
Collapse
|
53
|
Dasram MH, Walker RB, Khamanga SM. Recent Advances in Endocannabinoid System Targeting for Improved Specificity: Strategic Approaches to Targeted Drug Delivery. Int J Mol Sci 2022; 23:13223. [PMID: 36362014 PMCID: PMC9658826 DOI: 10.3390/ijms232113223] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022] Open
Abstract
Opportunities for developing innovative and intelligent drug delivery technologies by targeting the endocannabinoid system are becoming more apparent. This review provides an overview of strategies to develop targeted drug delivery using the endocannabinoid system (ECS). Recent advances in endocannabinoid system targeting showcase enhanced pharmaceutical therapy specificity while minimizing undesirable side effects and overcoming formulation challenges associated with cannabinoids. This review identifies advances in targeted drug delivery technologies that may permit access to the full pharmacotherapeutic potential of the ECS. The design of optimized nanocarriers that target specific tissues can be improved by understanding the nature of the signaling pathways, distribution in the mammalian body, receptor structure, and enzymatic degradation of the ECS. A closer look at ligand-receptor complexes, endocannabinoid tone, tissue distribution, and G-protein activity leads to a better understanding of the potential of the ECS toolkit for therapeutics. The signal transduction pathways examine the modulation of downstream effector proteins, desensitization, signaling cascades, and biased signaling. An in-depth and overall view of the targeted system is achieved through homology modeling where mutagenesis and ligand binding examine the binding site and allow sequence analysis and the formation of libraries for molecular docking and molecular dynamic simulations. Internalization routes exploring receptor-mediated endocytosis and lipid rafts are also considered for explicit signaling. Furthermore, the review highlights nanotechnology and surface modification aspects as a possible future approach for specific targeting.
Collapse
Affiliation(s)
| | | | - Sandile M. Khamanga
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|
54
|
Srivastava RK, Ruiz de Azua I, Conrad A, Purrio M, Lutz B. Cannabinoid CB1 Receptor Deletion from Catecholaminergic Neurons Protects from Diet-Induced Obesity. Int J Mol Sci 2022; 23:ijms232012635. [PMID: 36293486 PMCID: PMC9604114 DOI: 10.3390/ijms232012635] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
High-calorie diets and chronic stress are major contributors to the development of obesity and metabolic disorders. These two risk factors regulate the activity of the sympathetic nervous system (SNS). The present study showed a key role of the cannabinoid type 1 receptor (CB1) in dopamine β-hydroxylase (dbh)-expressing cells in the regulation of SNS activity. In a diet-induced obesity model, CB1 deletion from these cells protected mice from diet-induced weight gain by increasing sympathetic drive, resulting in reduced adipogenesis in white adipose tissue and enhanced thermogenesis in brown adipose tissue. The deletion of CB1 from catecholaminergic neurons increased the plasma norepinephrine levels, norepinephrine turnover, and sympathetic activity in the visceral fat, which coincided with lowered neuropeptide Y (NPY) levels in the visceral fat of the mutant mice compared with the controls. Furthermore, the mutant mice showed decreased plasma corticosterone levels. Our study provided new insight into the mechanisms underlying the roles of the endocannabinoid system in regulating energy balance, where the CB1 deletion in dbh-positive cells protected from diet-induced weight gain via multiple mechanisms, such as increased SNS activity, reduced NPY activity, and decreased basal hypothalamic-pituitary-adrenal (HPA) axis activity.
Collapse
Affiliation(s)
- Raj Kamal Srivastava
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
- Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Anuppur 484887, India
| | - Inigo Ruiz de Azua
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
| | - Andrea Conrad
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Martin Purrio
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
- Correspondence:
| |
Collapse
|
55
|
Miranda K, Becker W, Busbee PB, Dopkins N, Abdulla OA, Zhong Y, Zhang J, Nagarkatti M, Nagarkatti PS. Yin and yang of cannabinoid CB1 receptor: CB1 deletion in immune cells causes exacerbation while deletion in non-immune cells attenuates obesity. iScience 2022; 25:104994. [PMID: 36093055 PMCID: PMC9460165 DOI: 10.1016/j.isci.2022.104994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/26/2022] [Accepted: 08/18/2022] [Indexed: 12/21/2022] Open
Abstract
While blockade of cannabinoid receptor 1 (CB1) has been shown to attenuate diet-induced obesity (DIO), its relative role in different cell types has not been tested. The current study investigated the role of CB1 in immune vs non-immune cells during DIO by generating radiation-induced bone marrow chimeric mice that expressed functional CB1 in all cells except the immune cells or expressed CB1 only in immune cells. CB1−/− recipient hosts were resistant to DIO, indicating that CB1 in non-immune cells is necessary for induction of DIO. Interestingly, chimeras with CB1−/− in immune cells showed exacerbation in DIO combined with infiltration of bone-marrow-derived macrophages to the brain and visceral adipose tissue, elevated food intake, and increased glucose intolerance. These results demonstrate the opposing role of CB1 in hematopoietic versus non-hematopoietic cells during DIO and suggests that targeting immune CB1 receptors provides a new pathway to ameliorate obesity and related metabolic disorders. Cannabinoid Receptor 1 (CB1), and not CB2, regulates diet-induced obesity (DIO) CB1 deficiency in non-immune cell types promotes DIO resistance CB1 deficiency in immune cells exacerbates DIO disease phenotype CB1 activation in immune cells is a potential therapeutic target for DIO attenuation
Collapse
|
56
|
Pagano Zottola AC, Severi I, Cannich A, Ciofi P, Cota D, Marsicano G, Giordano A, Bellocchio L. Expression of Functional Cannabinoid Type-1 (CB 1) Receptor in Mitochondria of White Adipocytes. Cells 2022; 11:cells11162582. [PMID: 36010658 PMCID: PMC9406404 DOI: 10.3390/cells11162582] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Via activation of the cannabinoid type-1 (CB1) receptor, endogenous and exogenous cannabinoids modulate important biochemical and cellular processes in adipocytes. Several pieces of evidence suggest that alterations of mitochondrial physiology might be a possible mechanism underlying cannabinoids' effects on adipocyte biology. Many reports suggest the presence of CB1 receptor mRNA in both white and brown adipose tissue, but the detailed subcellular localization of CB1 protein in adipose cells has so far been scarcely addressed. In this study, we show the presence of the functional CB1 receptor at different subcellular locations of adipocytes from epididymal white adipose tissue (eWAT) depots. We observed that CB1 is located at different subcellular levels, including the plasma membrane and in close association with mitochondria (mtCB1). Functional analysis in tissue homogenates and isolated mitochondria allowed us to reveal that cannabinoids negatively regulate complex-I-dependent oxygen consumption in eWAT. This effect requires mtCB1 activation and consequent regulation of the intramitochondrial cAMP-PKA pathway. Thus, CB1 receptors are functionally present at the mitochondrial level in eWAT adipocytes, adding another possible mechanism for peripheral regulation of energy metabolism.
Collapse
Affiliation(s)
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Astrid Cannich
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
| | - Philippe Ciofi
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
| | - Daniela Cota
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
| | - Giovanni Marsicano
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Luigi Bellocchio
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
- Correspondence: ; Tel.: +33-557-573-754
| |
Collapse
|
57
|
Busquets-García A, Bolaños JP, Marsicano G. Metabolic Messengers: endocannabinoids. Nat Metab 2022; 4:848-855. [PMID: 35817852 DOI: 10.1038/s42255-022-00600-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Arnau Busquets-García
- Cell-type mechanisms in normal and pathological behavior Research Group. IMIM-Hospital del Mar Medical Research Institute, PRBB, Barcelona, Spain.
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain.
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain.
| | - Giovanni Marsicano
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France.
- University of Bordeaux, Bordeaux, France.
| |
Collapse
|
58
|
Piper NBC, Whitfield EA, Stewart GD, Xu X, Furness SGB. Targeting appetite and satiety in diabetes and obesity, via G protein-coupled receptors. Biochem Pharmacol 2022; 202:115115. [PMID: 35671790 DOI: 10.1016/j.bcp.2022.115115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes and obesity have reached pandemic proportions throughout the world, so much so that the World Health Organisation coined the term "Globesity" to help encapsulate the magnitude of the problem. G protein-coupled receptors (GPCRs) are highly tractable drug targets due to their wide involvement in all aspects of physiology and pathophysiology, indeed, GPCRs are the targets of approximately 30% of the currently approved drugs. GPCRs are also broadly involved in key physiologies that underlie type 2 diabetes and obesity including feeding reward, appetite and satiety, regulation of blood glucose levels, energy homeostasis and adipose function. Despite this, only two GPCRs are the target of approved pharmaceuticals for treatment of type 2 diabetes and obesity. In this review we discuss the role of these, and select other candidate GPCRs, involved in various facets of type 2 diabetic or obese pathophysiology, how they might be targeted and the potential reasons why pharmaceuticals against these targets have not progressed to clinical use. Finally, we provide a perspective on the current development pipeline of anti-obesity drugs that target GPCRs.
Collapse
Affiliation(s)
- Noah B C Piper
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Emily A Whitfield
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Gregory D Stewart
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia
| | - Xiaomeng Xu
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia
| | - Sebastian G B Furness
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia; Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
59
|
Meah F, Lundholm M, Emanuele N, Amjed H, Poku C, Agrawal L, Emanuele MA. The effects of cannabis and cannabinoids on the endocrine system. Rev Endocr Metab Disord 2022; 23:401-420. [PMID: 34460075 DOI: 10.1007/s11154-021-09682-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/15/2021] [Indexed: 01/24/2023]
Abstract
With the increase in cannabis use due to policy changes and areas of decriminalization, it is important to recognize the potential impact of these substances on endocrine processes. Cannabinoids have many effects by activating the endocannabinoid system. This system plays a role in the normal functioning of nearly every organ and consists of the body's natural endocannabinoids, the cannabinoid receptors, and the enzymes and processes that regulate endocannabinoids. Exogenous cannabinoids such as Δ9-tetrahydrocannabinol (THC) are known to act through cannabinoid type 1 and 2 receptors, and have been shown to mimic endocannabinoid signaling and affect receptor expression. This review summarizes the known impacts of cannabis on thyroid, adrenal, and gonadal function in addition to glucose control, lipids, and bone metabolism, including: reduced female fertility, increased risk of adverse pregnancy outcomes, reduced sperm counts and function, lower thyroid hormone levels with acute use, blunting of stress response with chronic use, increased risk of prediabetes but lower risk of diabetes, suggested improvement of high density lipoproteins and triglycerides, and modest increase in fracture risk. The known properties of endocannabinoids, animal data, population data, and the possible benefits and concerns of cannabinoid use on hormonal function are discussed. The interconnectivity of the endocrine and endocannabinoid systems suggests opportunities for future therapeutic modalities which are an area of active investigation.
Collapse
Affiliation(s)
- Farah Meah
- Endocrinology Section, Medical Service, VA Hospital, Hines, Illinois, USA
| | - Michelle Lundholm
- Department of Internal Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Nicholas Emanuele
- Endocrinology Section, Medical Service, VA Hospital, Hines, Illinois, USA
| | - Hafsa Amjed
- Department of Medicine, Division of Endocrinology, Loyola University Health Care System, Maywood, Illinois, USA
| | - Caroline Poku
- Department of Medicine, Division of Endocrinology, Loyola University Health Care System, Maywood, Illinois, USA
| | - Lily Agrawal
- Endocrinology Section, Medical Service, VA Hospital, Hines, Illinois, USA
| | - Mary Ann Emanuele
- Department of Medicine, Division of Endocrinology, Loyola University Health Care System, Maywood, Illinois, USA.
| |
Collapse
|
60
|
Mechanisms of podocyte injury and implications for diabetic nephropathy. Clin Sci (Lond) 2022; 136:493-520. [PMID: 35415751 PMCID: PMC9008595 DOI: 10.1042/cs20210625] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Albuminuria is the hallmark of both primary and secondary proteinuric glomerulopathies, including focal segmental glomerulosclerosis (FSGS), obesity-related nephropathy, and diabetic nephropathy (DN). Moreover, albuminuria is an important feature of all chronic kidney diseases (CKDs). Podocytes play a key role in maintaining the permselectivity of the glomerular filtration barrier (GFB) and injury of the podocyte, leading to foot process (FP) effacement and podocyte loss, the unifying underlying mechanism of proteinuric glomerulopathies. The metabolic insult of hyperglycemia is of paramount importance in the pathogenesis of DN, while insults leading to podocyte damage are poorly defined in other proteinuric glomerulopathies. However, shared mechanisms of podocyte damage have been identified. Herein, we will review the role of haemodynamic and oxidative stress, inflammation, lipotoxicity, endocannabinoid (EC) hypertone, and both mitochondrial and autophagic dysfunction in the pathogenesis of the podocyte damage, focussing particularly on their role in the pathogenesis of DN. Gaining a better insight into the mechanisms of podocyte injury may provide novel targets for treatment. Moreover, novel strategies for boosting podocyte repair may open the way to podocyte regenerative medicine.
Collapse
|
61
|
Silvério R, Barth R, Heimann AS, Reckziegel P, dos Santos GJ, Romero-Zerbo SY, Bermúdez-Silva FJ, Rafacho A, Ferro ES. Pep19 Has a Positive Effect on Insulin Sensitivity and Ameliorates Both Hepatic and Adipose Tissue Phenotype of Diet-Induced Obese Mice. Int J Mol Sci 2022; 23:ijms23084082. [PMID: 35456900 PMCID: PMC9030859 DOI: 10.3390/ijms23084082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/10/2022] Open
Abstract
Peptide DIIADDEPLT (Pep19) has been previously suggested to improve metabolic parameters, without adverse central nervous system effects, in a murine model of diet-induced obesity. Here, we aimed to further evaluate whether Pep19 oral administration has anti-obesogenic effects, in a well-established high-fat diet-induced obesity model. Male Swiss mice, fed either a standard diet (SD) or high-fat diet (HFD), were orally administrated for 30 consecutive days, once a day, with saline vehicle or Pep19 (1 mg/kg). Next, several metabolic, morphological, and behavioral parameters were evaluated. Oral administration of Pep19 attenuated HFD body-weight gain, reduced in approximately 40% the absolute mass of the endocrine pancreas, and improved the relationship between circulating insulin and peripheral insulin sensitivity. Pep19 treatment of HFD-fed mice attenuated liver inflammation, hepatic fat distribution and accumulation, and lowered plasma alanine aminotransferase activity. The inguinal fat depot from the SD group treated with Pep19 showed multilocular brown-fat-like cells and increased mRNA expression of uncoupling protein 1 (UCP1), suggesting browning on inguinal white adipose cells. Morphological analysis of brown adipose tissue (BAT) from HFD mice showed the presence of larger white-like unilocular cells, compared to BAT from SD, Pep19-treated SD or HFD mice. Pep19 treatment produced no alterations in mice behavior. Oral administration of Pep19 ameliorates some metabolic traits altered by diet-induced obesity in a Swiss mice model.
Collapse
Affiliation(s)
- Renata Silvério
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil;
- Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil; (R.B.); (G.J.d.S.)
| | - Robson Barth
- Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil; (R.B.); (G.J.d.S.)
- Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil
| | - Andrea S. Heimann
- Proteimax BioTechnology Israel LTD, 4 Duvdevan Street, Pardes Hana, Haifa 3708973, Israel;
| | - Patrícia Reckziegel
- Department of Pharmacology, Biomedical Science Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Gustavo J. dos Santos
- Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil; (R.B.); (G.J.d.S.)
- Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil
| | - Silvana Y. Romero-Zerbo
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición Hospital Regional Universitario de Málaga, Universidad de Málaga, 29009 Málaga, Spain; (S.Y.R.-Z.); (F.J.B.-S.)
- Biomedical Research Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain
| | - Francisco J. Bermúdez-Silva
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición Hospital Regional Universitario de Málaga, Universidad de Málaga, 29009 Málaga, Spain; (S.Y.R.-Z.); (F.J.B.-S.)
- Biomedical Research Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain
| | - Alex Rafacho
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil;
- Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil; (R.B.); (G.J.d.S.)
- Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil
- Correspondence: (A.R.); (E.S.F.)
| | - Emer S. Ferro
- Department of Pharmacology, Biomedical Science Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
- Correspondence: (A.R.); (E.S.F.)
| |
Collapse
|
62
|
Cavalheiro EKFF, Costa AB, Salla DH, da Silva MR, Mendes TF, da Silva LE, Turatti CDR, de Bitencourt RM, Rezin GT. Cannabis sativa as a Treatment for Obesity: From Anti-Inflammatory Indirect Support to a Promising Metabolic Re-Establishment Target. Cannabis Cannabinoid Res 2022; 7:135-151. [PMID: 34242511 PMCID: PMC9070748 DOI: 10.1089/can.2021.0016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Introduction: Obesity is defined as an excess of accumulation of fat that can be harmful to health. Storage of excess fat in the adipose tissue triggers an inflammatory process, which makes obesity a low-grade chronic inflammatory disease. Obesity is considered a complex and multifactorial disease; hence, no intervention strategy appears to be an ideal treatment for all individuals. Therefore, new therapeutic alternatives are often studied for the treatment of this disease. Currently, herbal medicines are gaining ground in the treatment of obesity and its comorbidities. In this context, much attention is being paid to Cannabis sativa derivatives, and their therapeutic functions are being widely studied, including in treating obesity. Objective: Highlight the pharmacological properties of Δ9-tetrahydrocannabivarin (THCV), Δ9-tetrahydrocannabidinol (THC), and cannabidiol (CBD), the predominant isolated components of Cannabis sativa, as well as its therapeutic potential in the treatment of obesity. Methods: This is a narrative review that shows the existing scientific evidence on the clinical application of Cannabis sativa as a possible treatment for obesity. Data collection was performed in the PubMed electronic database. The following word combinations were used: Cannabis and obesity, Cannabis sativa and obesity, THCV and obesity, THC and obesity, CBD and obesity, and Cannabis sativa and inflammation. Results: Evidence shows that Cannabis sativa derivatives have therapeutic potential due to their anti-inflammatory properties. In addition, people who use cannabis have a lower body mass index than those who do not, making the plant an option to reduce and reverse inflammation and comorbidities in obesity. Conclusion: It is concluded that phytocannabinoids derived from Cannabis sativa have therapeutic potential due to its anti-inflammatory, antioxidant, and neuroprotective properties, making the plant a study option to reduce and reverse inflammation and comorbidities associated with obesity.
Collapse
Affiliation(s)
| | - Ana Beatriz Costa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Daniéle Hendler Salla
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Mariella Reinol da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Talita Farias Mendes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Larissa Espindola da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Cristini da Rosa Turatti
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Rafael Mariano de Bitencourt
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
- Laboratory of Behavioral Neuroscience, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| |
Collapse
|
63
|
Kra G, Daddam JR, Moallem U, Kamer H, Ahmad M, Nemirovski A, Contreras GA, Tam J, Zachut M. Effects of Environmental Heat Load on Endocannabinoid System Components in Adipose Tissue of High Yielding Dairy Cows. Animals (Basel) 2022; 12:795. [PMID: 35327191 PMCID: PMC8944798 DOI: 10.3390/ani12060795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Environmental heat load (HL) adversely affects the performance of dairy cows. The endocannabinoid system (ECS) regulates metabolism and the stress response, thus we hypothesized that HL may affect the ECS of dairy cows. Our objective was to determine the levels of endocannabinoids (eCBs) and gene and protein expressions of the ECS components in adipose tissue (AT) and plasma of early postpartum (PP) and late-lactation cows. In addition, we examined eCBs in milk, and studied the interaction of eCBs with bovine cannabinoids receptors CB1 and CB2. In the first experiment, plasma and AT were sampled from cows calving during summer (S, n = 9) or winter (W, n = 9). Dry matter intake (DMI) and energy balance (EB) were lower in S vs. W, and relative gene expressions of transient-receptor-potential-cation-channel-subfamily-V-member-1 (TRPV1), the cannabinoid receptors CNR1 (CB1) and CNR2 (CB2), and monoglyceride lipase (MGLL) were decreased in AT of S compared to W. Protein abundance of peroxisome proliferator-activated-receptor-alpha (PPAR-α) was decreased, while tumor-necrosis factor-α (TNF-α) was increased in AT of S vs. W. Other components of the ECS were not different between S and W calving cows. To study whether the degree of HL may affect the ECS, we performed a second experiment with 24 late-lactation cows that were either cooled (CL) or not cooled (heat-stressed; HS) during summer. DMI was lower in HS vs. CL, AT protein abundance of PPAR-α was lower, and TRPV1 tended to be lower in HS vs. CL, but other components of the ECS were not different between groups. Milk levels of 2-arachidonoylglycerol (2-AG) tended to increase in HS vs. CL. Additionally, modeling of the bovine cannabinoid receptors demonstrated their binding to anandamide and 2-AG. Environmental HL, possibly via lower intake, is associated with limited alterations in ECS components in AT of dairy cows.
Collapse
Affiliation(s)
- Gitit Kra
- Department of Ruminant Science, Institute of Animal Sciences, Agriculture Research Organization, Volcani Institute, Rishon Lezion 7505101, Israel; (G.K.); (J.R.D.); (U.M.); (H.K.)
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Jayasimha Rayalu Daddam
- Department of Ruminant Science, Institute of Animal Sciences, Agriculture Research Organization, Volcani Institute, Rishon Lezion 7505101, Israel; (G.K.); (J.R.D.); (U.M.); (H.K.)
| | - Uzi Moallem
- Department of Ruminant Science, Institute of Animal Sciences, Agriculture Research Organization, Volcani Institute, Rishon Lezion 7505101, Israel; (G.K.); (J.R.D.); (U.M.); (H.K.)
| | - Hadar Kamer
- Department of Ruminant Science, Institute of Animal Sciences, Agriculture Research Organization, Volcani Institute, Rishon Lezion 7505101, Israel; (G.K.); (J.R.D.); (U.M.); (H.K.)
| | - Majdoleen Ahmad
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (M.A.); (A.N.); (J.T.)
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (M.A.); (A.N.); (J.T.)
| | - G. Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (M.A.); (A.N.); (J.T.)
| | - Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, Agriculture Research Organization, Volcani Institute, Rishon Lezion 7505101, Israel; (G.K.); (J.R.D.); (U.M.); (H.K.)
| |
Collapse
|
64
|
The Endocannabinoid System and Physical Activity—A Robust Duo in the Novel Therapeutic Approach against Metabolic Disorders. Int J Mol Sci 2022; 23:ijms23063083. [PMID: 35328503 PMCID: PMC8948925 DOI: 10.3390/ijms23063083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
Rapidly increasing worldwide prevalence of obesity and related pathologies encompassing coronary heart disease, hypertension, metabolic syndrome, or type 2 diabetes constitute serious threats to global health and are associated with a significantly elevated risk of premature death. Considering the enormous burden of these pathologies, novel therapeutic and preventive patterns are indispensable. Dysregulation of one of the most complex biological systems in the human body namely, the endocannabinoid system (ECS) may result in metabolic imbalance and development of insulin resistance, type 2 diabetes, or non-alcoholic fatty liver disease. Furthermore, many studies showed that physical exercises, depending on their type, intensity, and frequency, exert various alterations within the ECS. Emerging evidence suggests that targeting the ECS via physical activity may produce robust beneficial effects on the course of metabolic pathologies. However, the data showing a direct correlation between the ECS and physical activity in the aspect of metabolic health are very scarce. Therefore, the aim of this review was to provide the most up-to-date state of knowledge about the interplay between the ECS activity and physical exercises in the novel therapeutic and preventive approach toward metabolic pathologies. We believe that this paper, at least in part, will fulfill the existing gap in knowledge and encourage researchers to further explore this very complex yet interesting link between the ECS, its action in physical activity, and subsequent positive outcomes for metabolic health.
Collapse
|
65
|
Cisbani G, Koppel A, Metherel AH, Smith ME, Aji KN, Andreazza AC, Mizrahi R, Bazinet RP. Serum lipid analysis and isotopic enrichment is suggestive of greater lipogenesis in young long-term cannabis users: A secondary analysis of a case-control study. Lipids 2022; 57:125-140. [PMID: 35075659 PMCID: PMC8923992 DOI: 10.1002/lipd.12336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 01/15/2023]
Abstract
Cannabis is now legal in many countries and while numerous studies have reported on its impact on cognition and appetite regulation, none have examined fatty acid metabolism in young cannabis users. We conducted an exploratory analysis to evaluate cannabis impact on fatty acid metabolism in cannabis users (n = 21) and non-cannabis users (n = 16). Serum levels of some saturated and monounsaturated fatty acids, including palmitic, palmitoleic, and oleic acids were higher in cannabis users compared to nonusers. As palmitic acid can be derived from diet or lipogenesis from sugars, we evaluated lipogenesis using a de novo lipogenesis index (palmitate/linoleic acid) and carbon-specific isotope analysis, which allows for the determination of fatty acid 13 C signature. The significantly higher de novo lipogenesis index in the cannabis users group along with a more enriched 13 C signature of palmitic acid suggested an increase in lipogenesis. In addition, while serum glucose concentration did not differ between groups, pyruvate and lactate were lower in the cannabis user group, with pyruvate negatively correlating with palmitic acid. Furthermore, the endocannabinoid 2-arachidonoylglycerol was elevated in cannabis users and could contribute to lipogenesis by activating the cannabinoid receptor 1. Because palmitic acid has been suggested to increase inflammation, we measured peripheral cytokines and observed no changes in inflammatory cytokines. Finally, an anti-inflammatory metabolite of palmitic acid, palmitoylethanolamide was elevated in cannabis users. Our results suggest that lipogenic activity is increased in cannabis users; however, future studies, including prospective studies that control dietary intake are required.
Collapse
Affiliation(s)
- Giulia Cisbani
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Alex Koppel
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario
| | - Adam H. Metherel
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Mackenzie E. Smith
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Kankana N. Aji
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario
| | - Ana C. Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario
| | - Romina Mizrahi
- Department of Psychiatry, McGill University, Montreal, Canada,Douglas Research Center, Montreal, Canada,Corresponding author: Richard P. Bazinet, Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Canada, Medical Sciences Building, 5th Floor, Room 5358, 1 King’s College Circle, Toronto, ON, M5S 1A8, , Phone number: (416) 946-8276, Romina Mizrahi, Department of Psychiatry, McGill University, 6875 Boulevard Lasalle, Montréal, QC H4H 1R3,
| | - Richard P. Bazinet
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Canada,Corresponding author: Richard P. Bazinet, Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Canada, Medical Sciences Building, 5th Floor, Room 5358, 1 King’s College Circle, Toronto, ON, M5S 1A8, , Phone number: (416) 946-8276, Romina Mizrahi, Department of Psychiatry, McGill University, 6875 Boulevard Lasalle, Montréal, QC H4H 1R3,
| |
Collapse
|
66
|
Abstract
The endocannabinoid system is found in most, if not all, mammalian organs and is involved in a variety of physiological functions, ranging from the control of synaptic plasticity in the brain to the modulation of smooth muscle motility in the gastrointestinal tract. This signaling complex consists of G protein-coupled cannabinoid receptors, endogenous ligands for those receptors (endocannabinoids) and enzymes/transporters responsible for the formation and deactivation of these ligands. There are two subtypes of cannabinoid receptors, CB1 and CB2, and two major endocannabinoids, arachidonoylethanolamide (anandamide) and 2-arachidonoyl-sn-glycerol (2-AG), which are produced upon demand through cleavage of distinct phospholipid precursors. All molecular components of the endocannabinoid system are represented in the adipose organ, where endocannabinoid signals are thought to regulate critical homeostatic processes, including adipogenesis, lipogenesis and thermogenesis. Importantly, obesity was found to be associated with excess endocannabinoid activity in visceral fat depots, and the therapeutic potential of normalizing such activity by blocking CB1 receptors has been the focus of substantial preclinical and clinical research. Results have been mixed thus far, mostly owing to the emergence of psychiatric side effects rooted in the protective functions served by brain endocannabinoids in mood and affect regulation. Further studies about the roles played by the endocannabinoid system in the adipose organ will offer new insights into the pathogenesis of obesity and might help identify new ways to leverage this signaling complex for therapeutic benefit.
Collapse
Affiliation(s)
- Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California, Irvine, 3101 Gillespie NRF, Irvine, CA, 92697-1275, USA
| | - Lin Lin
- Department of Anatomy and Neurobiology, University of California, Irvine, 3101 Gillespie NRF, Irvine, CA, 92697-1275, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, 3101 Gillespie NRF, Irvine, CA, 92697-1275, USA.
- Department of Pharmacology, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
67
|
Raux PL, Drutel G, Revest JM, Vallée M. New perspectives on the role of the neurosteroid pregnenolone as an endogenous regulator of type-1 cannabinoid receptor (CB1R) activity and function. J Neuroendocrinol 2022; 34:e13034. [PMID: 34486765 DOI: 10.1111/jne.13034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Pregnenolone is a steroid with specific characteristics, being the first steroid to be synthesised from cholesterol at all sites of steroidogenesis, including the brain. For many years, pregnenolone was defined as an inactive precursor of all steroids because no specific target had been discovered. However, over the last decade, it has become a steroid of interest because it has been recognised as being a biomarker for brain-related disorders through the development of metabolomic approaches and advanced analytical methods. In addition, physiological roles for pregnenolone emerged when specific targets were discovered. In this review, we highlight the discovery of the selective interaction of pregnenolone with the type-1 cannabinoid receptor (CB1R). After describing the specific characteristic of CB1Rs, we discuss the newly discovered mechanisms of their regulation by pregnenolone. In particular, we describe the action of pregnenolone as a negative allosteric modulator and a specific signalling inhibitor of the CB1R. These particular characteristics of pregnenolone provide a great strategic opportunity for therapeutic development in CB1-related disorders. Finally, we outline new perspectives using innovative genetic tools for the discovery of original regulatory mechanisms of pregnenolone on CB1-related functions.
Collapse
Affiliation(s)
- Pierre-Louis Raux
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | - Guillaume Drutel
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | - Jean-Michel Revest
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | - Monique Vallée
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", Bordeaux, France
- University of Bordeaux, Bordeaux, France
| |
Collapse
|
68
|
Effects of endocannabinoids on feed intake, stress response and whole-body energy metabolism in dairy cows. Sci Rep 2021; 11:23657. [PMID: 34880316 PMCID: PMC8655048 DOI: 10.1038/s41598-021-02970-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/24/2021] [Indexed: 11/12/2022] Open
Abstract
Endocannabinoids, particularly anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are instrumental in regulating energy homeostasis and stress response. However, little is known about the endocannabinoid system (ECS) in ruminants, although EC could improve dairy health and productivity, at least by increasing feed intake. In this study, we report if intraperitoneal (i.p.) AEA and 2-AG administration affects feed intake, whole-body macronutrient metabolism, isolation and restraint stress, and whether diet composition modulates circulating endocannabinoid concentrations in cows. Twenty Simmental cows in late lactation were fed a grass silage and a corn silage based diet. On each diet, cows received daily i.p. injections with either AEA (5 µg/kg; n = 7), 2-AG (2.5 µg/kg; n = 6) or saline (n = 7) for 8 days. Endocannabinoid administration for 5 days under free-ranging (non-stressed) conditions had no effect on feed intake or energy balance, but attenuated the stress-induced suppression of feed intake when housing changed to individual tie-stalls without social or tactile interaction. Endocannabinoids increased whole-body carbohydrate oxidation, reduced fat oxidation, and affected plasma non-esterified fatty acid concentrations and fatty acid contents of total lipids. There was no effect of endocannabinoids on plasma triglyceride concentrations or hepatic lipogenesis. Plasma AEA concentrations were not affected by diet, however, plasma 2-AG concentrations tended to be lower on the corn silage based diet. In conclusion, endocannabinoids attenuate stress-induced hypophagia, increase short-term feed intake and whole-body carbohydrate oxidation and decrease whole-body fat oxidation in cows.
Collapse
|
69
|
Pourrahimi AM, Abbasnejad M, Raoof M, Esmaeili-Mahani S, Kooshki R. The involvement of orexin 1 and cannabinoid 1 receptors within the ventrolateral periaqueductal gray matter in the modulation of migraine-induced anxiety and social behavior deficits of rats. Peptides 2021; 146:170651. [PMID: 34560171 DOI: 10.1016/j.peptides.2021.170651] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 11/26/2022]
Abstract
Orexin 1 receptors (Orx1R) and cannabinoid 1 receptors (CB1R) are implicated in migraine pathophysiology. This study evaluated the potential involvement of Orx1R and CB1R within the ventrolateral periaqueductal gray matter (vlPAG) in the modulation of anxiety-like behavior and social interaction of migraineurs rats. A rat model of migraine induced by recurrent administration of nitroglycerin (NTG) (5 mg/kg/i.p.). The groups of rats (n = 6) were then subjected to intra-vlPAG microinjection of orexin-A (25, 50 pM), and Orx1R antagonist SB334867 (20, 40 nM) or AM 251 (2, 4 μg) as a CB1R antagonist. Behavioral responses were evaluated in elevated plus maze (EPM), open field (OF) and three-chambered social test apparatus. NTG produced a marked anxiety like behaviors, in both EPM and OF tasks. It did also decrease social performance. NTG-related anxiety and social conflicts were attenuated by orexin-A (25, 50 pM). However, NTG effects were exacerbated by SB334867 (40 nM) and AM251 (2, 4 μg). The orexin-A-mediated suppression of NTG-induced anxiety and social conflicts were prevented by either SB334867 (20 nM) or AM251 (2 μg). The findings suggest roles for Orx1R and CB1R signaling within vlPAG in the modulation of migraine-induced anxiety-like behavior and social dysfunction in rats.
Collapse
Affiliation(s)
- Ali Mohammad Pourrahimi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Raoof
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Endodontology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Razieh Kooshki
- Department of Biology, Faculty of Sciences, Lorestan University, Khorramabad, Iran.
| |
Collapse
|
70
|
Miralpeix C, Reguera AC, Fosch A, Zagmutt S, Casals N, Cota D, Rodríguez-Rodríguez R. Hypothalamic endocannabinoids in obesity: an old story with new challenges. Cell Mol Life Sci 2021; 78:7469-7490. [PMID: 34718828 PMCID: PMC8557709 DOI: 10.1007/s00018-021-04002-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022]
Abstract
The crucial role of the hypothalamus in the pathogenesis of obesity is widely recognized, while the precise molecular and cellular mechanisms involved are the focus of intense research. A disrupted endocannabinoid system, which critically modulates feeding and metabolic functions, through central and peripheral mechanisms, is a landmark indicator of obesity, as corroborated by investigations centered on the cannabinoid receptor CB1, considered to offer promise in terms of pharmacologically targeted treatment for obesity. In recent years, novel insights have been obtained, not only into relation to the mode of action of CB receptors, but also CB ligands, non-CB receptors, and metabolizing enzymes considered to be part of the endocannabinoid system (particularly the hypothalamus). The outcome has been a substantial expansion in knowledge of this complex signaling system and in drug development. Here we review recent literature, providing further evidence on the role of hypothalamic endocannabinoids in regulating energy balance and the implication for the pathophysiology of obesity. We discuss how these lipids are dynamically regulated in obesity onset, by diet and metabolic hormones in specific hypothalamic neurons, the impact of gender, and the role of endocannabinoid metabolizing enzymes as promising targets for tackling obesity and related diseases.
Collapse
Affiliation(s)
- Cristina Miralpeix
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 3300, Bordeaux, France.
| | - Ana Cristina Reguera
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta S/N, 08195, Sant Cugat del Vallès, Spain
| | - Anna Fosch
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta S/N, 08195, Sant Cugat del Vallès, Spain
| | - Sebastian Zagmutt
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta S/N, 08195, Sant Cugat del Vallès, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta S/N, 08195, Sant Cugat del Vallès, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad Y La Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 3300, Bordeaux, France
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta S/N, 08195, Sant Cugat del Vallès, Spain.
| |
Collapse
|
71
|
Soti M, Ranjbar H, Kohlmeier KA, Shabani M. Parkinson's disease related alterations in cannabinoid transmission. Brain Res Bull 2021; 178:82-96. [PMID: 34808322 DOI: 10.1016/j.brainresbull.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic (DAergic) neurons of the substantia nigra pars compacta (SNc) by neurodegeneration. Recent findings in animal models of PD propose tonic inhibition of the remaining DA neurons through GABA release from reactive glial cells. Movement dysfunctions could be ameliorated by promotion of activity in dormant DA cells. The endocannabinoid system (ECS) is extensively present in basal ganglia (BG) and is known as an indirect modulator of DAergic neurotransmission, thus drugs designed to target this system have shown promising therapeutic potential in PD patients. Interestingly, down/up-regulation of cannabinoid receptors (CBRs) varies across the different stages of PD, suggesting that some of the motor/ non-motor deficits may be related to changes in CBRs. Determination of the profile of changes of these receptors across the different stages of PD as well as their neural distribution within the BG could improve understanding of PD and identify pathways important in disease pathobiology. In this review, we focus on temporal and spatial alterations of CBRs during PD in the BG. At present, as inconclusive, but suggestive results have been obtained, future investigations should be conducted to extend preclinical studies examining CBRs changes within each stage in controlled clinical trials in order to determine the potential of targeting CBRs in management of PD.
Collapse
Affiliation(s)
- Monavareh Soti
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Hoda Ranjbar
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
72
|
Ruat J, Hartmann A, Heinz DE, Nemcova P, Stoffel R, Deussing JM, Chen A, Wotjak CT. CB1 receptors in corticotropin-releasing factor neurons selectively control the acoustic startle response in male mice. GENES BRAIN AND BEHAVIOR 2021; 20:e12775. [PMID: 34672092 DOI: 10.1111/gbb.12775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022]
Abstract
The endocannabinoid system is an important regulator of the hormonal and behavioral stress responses, which critically involve corticotropin-releasing factor (CRF) and its receptors. While it has been shown that CRF and the cannabinoid type 1 (CB1) receptor are co-localized in several brain regions, the physiological relevance of this co-expression remains unclear. Using double in situ hybridization, we confirmed co-localization in the piriform cortex, the lateral hypothalamic area, the paraventricular nucleus, and the Barrington's nucleus, albeit at low levels. To study the behavioral and physiological implications of this co-expression, we generated a conditional knockout mouse line that selectively lacks the expression of CB1 receptors in CRF neurons. We found no effects on fear and anxiety-related behaviors under basal conditions nor after a traumatic experience. Additionally, plasma corticosterone levels were unaffected at baseline and after restraint stress. Only acoustic startle responses were significantly enhanced in male, but not female, knockout mice. Taken together, the consequences of depleting CB1 in CRF-positive neurons caused a confined hyperarousal phenotype in a sex-dependent manner. The current results suggest that the important interplay between the central endocannabinoid and CRF systems in regulating the organism's stress response is predominantly taking place at the level of CRF receptor-expressing neurons.
Collapse
Affiliation(s)
- Julia Ruat
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Max Planck Institute of Psychiatry, Munich, Germany.,Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alice Hartmann
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Daniel E Heinz
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany.,Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Paulina Nemcova
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rainer Stoffel
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M Deussing
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Scientific Core Unit Genetically Engineered Mouse Models, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alon Chen
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Carsten T Wotjak
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany.,Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Central Nervous System Diseases Research (CNSDR), Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| |
Collapse
|
73
|
Endogenous cannabinoids are required for MC4R-mediated control of energy homeostasis. Proc Natl Acad Sci U S A 2021; 118:2015990118. [PMID: 34654741 DOI: 10.1073/pnas.2015990118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2021] [Indexed: 01/13/2023] Open
Abstract
Hypothalamic regulation of feeding and energy expenditure is a fundamental and evolutionarily conserved neurophysiological process critical for survival. Dysregulation of these processes, due to environmental or genetic causes, can lead to a variety of pathological conditions ranging from obesity to anorexia. Melanocortins and endogenous cannabinoids (eCBs) have been implicated in the regulation of feeding and energy homeostasis; however, the interaction between these signaling systems is poorly understood. Here, we show that the eCB 2-arachidonoylglycerol (2-AG) regulates the activity of melanocortin 4 receptor (MC4R) cells in the paraventricular nucleus of the hypothalamus (PVNMC4R) via inhibition of afferent GABAergic drive. Furthermore, the tonicity of eCBs signaling is inversely proportional to energy state, and mice with impaired 2-AG synthesis within MC4R neurons weigh less, are hypophagic, exhibit increased energy expenditure, and are resistant to diet-induced obesity. These mice also exhibit MC4R agonist insensitivity, suggesting that the energy state-dependent, 2-AG-mediated suppression of GABA input modulates PVNMC4R neuron activity to effectively respond to the MC4R natural ligands to regulate energy homeostasis. Furthermore, post-developmental disruption of PVN 2-AG synthesis results in hypophagia and death. These findings illustrate a functional interaction at the cellular level between two fundamental regulators of energy homeostasis, the melanocortin and eCB signaling pathways in the hypothalamic feeding circuitry.
Collapse
|
74
|
Wei Q, Lee JH, Wu CS, Zang QS, Guo S, Lu HC, Sun Y. Metabolic and inflammatory functions of cannabinoid receptor type 1 are differentially modulated by adiponectin. World J Diabetes 2021; 12:1750-1764. [PMID: 34754376 PMCID: PMC8554371 DOI: 10.4239/wjd.v12.i10.1750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/07/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Antagonists of cannabinoid type 1 receptor (CB1) have been shown to promote body weight loss and improve insulin sensitivity. Cannabinoids decrease adiponectin, and CB1 blocker increase adiponectin. However, the mediators of CB1 actions are not well defined. AIM To investigate whether the beneficial effects of CB1 inhibition are, at least in part, mediated by adiponectin. METHODS We compared metabolic and inflammatory phenotypes of wild-type (WT) mice, CB1-null (CB1 -/-) and CB1/adiponectin double-knockout (DKO) mice. We assessed the insulin sensitivity using insulin tolerance test and glucose tolerance test, and inflammation using flow cytometry analysis of macrophages. RESULTS CB1 -/- mice exhibited significantly reduced body weight and fat mass when compared to WT mice. While no significance was found in total daily food intake and locomotor activity, CB1 -/- mice showed increased energy expenditure, enhanced thermogenesis in brown adipose tissue (BAT), and improved insulin sensitivity compared to WT mice. DKO showed no difference in body weight, adiposity, nor insulin sensitivity; only showed a modestly elevated thermogenesis in BAT compared to CB1 -/- mice. The metabolic phenotype of DKO is largely similar to CB1 -/- mice, suggesting that adiponectin is not a key mediator of the metabolic effects of CB1. Interestingly, CB1 -/- mice showed reduced pro-inflammatory macrophage polarization in both peritoneal macrophages and adipose tissue macrophages compared to WT mice; in contrast, DKO mice exhibited increased pro-inflammatory macrophage polarization in these macrophages compared to CB1 -/- mice, suggesting that adiponectin is an important mediator of the inflammatory effect of CB1. CONCLUSION Our findings reveal that CB1 functions through both adiponectin-dependent and adiponectin-independent mechanisms: CB1 regulates energy metabolism in an adiponectin-independent manner, and inflammation in an adiponectin-dependent manner. The differential effects of adiponectin on CB1-mediated metabolic and inflammatory functions should be taken into consideration in CB1 antagonist utilization.
Collapse
Affiliation(s)
- Qiong Wei
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, United States
| | - Jong Han Lee
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, United States
- Department of Marine Bioindustry, Hanseo University, Seosan 31962, South Korea
| | - Chia-Shan Wu
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, United States
- Department of Nutrition, Texas A and M University, College Station, TX 7743, United States
| | - Qun S Zang
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Science Campus, Maywood, IL 60153, United States
| | - Shaodong Guo
- Department of Nutrition, Texas A and M University, College Station, TX 7743, United States
| | - Hui-Chen Lu
- Department of Psychological and Brain Sciences, Linda and Jack Gill Center of for Biomolecular Science, Bloomington, IN 47405, United States
| | - Yuxiang Sun
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, United States
- Department of Nutrition, Texas A and M University, College Station, TX 7743, United States
| |
Collapse
|
75
|
The Peripheral Cannabinoid Receptor Type 1 (CB 1) as a Molecular Target for Modulating Body Weight in Man. Molecules 2021; 26:molecules26206178. [PMID: 34684760 PMCID: PMC8538448 DOI: 10.3390/molecules26206178] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/14/2023] Open
Abstract
The cannabinoid 1 (CB1) receptor regulates appetite and body weight; however, unwanted central side effects of both agonists (in wasting disorders) or antagonists (in obesity and diabetes) have limited their therapeutic utility. At the peripheral level, CB1 receptor activation impacts the energy balance of mammals in a number of different ways: inhibiting satiety and emesis, increasing food intake, altering adipokine and satiety hormone levels, altering taste sensation, decreasing lipolysis (fat break down), and increasing lipogenesis (fat generation). The CB1 receptor also plays an important role in the gut–brain axis control of appetite and satiety. The combined effect of peripheral CB1 activation is to promote appetite, energy storage, and energy preservation (and the opposite is true for CB1 antagonists). Therefore, the next generation of CB1 receptor medicines (agonists and antagonists, and indirect modulators of the endocannabinoid system) have been peripherally restricted to mitigate these issues, and some of these are already in clinical stage development. These compounds also have demonstrated potential in other conditions such as alcoholic steatohepatitis and diabetic nephropathy (peripherally restricted CB1 antagonists) and pain conditions (peripherally restricted CB1 agonists and FAAH inhibitors). This review will discuss the mechanisms by which peripheral CB1 receptors regulate body weight, and the therapeutic utility of peripherally restricted drugs in the management of body weight and beyond.
Collapse
|
76
|
Bariani MV, Correa F, Rubio APD, Wolfson ML, Schander JA, Cella M, Aisemberg J, Franchi AM. Maternal obesity reverses the resistance to LPS-induced adverse pregnancy outcome and increases female offspring metabolic alterations in cannabinoid receptor 1 knockout mice. J Nutr Biochem 2021; 96:108805. [PMID: 34147601 DOI: 10.1016/j.jnutbio.2021.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022]
Abstract
Maternal overnutrition negatively impacts the offspring's health leading to an increased risk of developing chronic diseases or metabolic syndrome in adulthood. What we eat affects the endocannabinoid system (eCS) activity, which in turn modulates lipogenesis and fatty acids utilization in hepatic, muscle, and adipose tissues. This study aimed to evaluate the transgenerational effect of maternal obesity on cannabinoid receptor 1 knock-out (CB1 KO) animals in combination with a postnatal obesogenic diet on the development of metabolic disturbances on their offspring. CB1 KO mice were fed a control diet (CD) or a high-fat diet (HFD; 33% more energy from fat) for 3 months. Offspring born to control and obese mothers were also fed with CD or HFD. We observed that pups born to an HFD-fed mother presented higher postnatal weight, lower hepatic fatty acid amide hydrolase activity, and increased blood cholesterol levels when compared to the offspring born to CD-fed mothers. When female mice born to HFD-fed CB1 KO mothers were exposed to an HFD, they gained more weight, presented elevated blood cholesterol levels, and more abdominal adipose tissue accumulation than control-fed adult offspring. The eCS is involved in several reproductive physiological processes. Interestingly, we showed that CB1 KO mice in gestational day 15 presented resistance to LPS-induced deleterious effects on pregnancy outcome, which was overcome when these mice were obese. Our results suggest that an HFD in CB1 receptor-deficient mice contributes to a "nutritional programming" of the offspring resulting in increased susceptibility to metabolic challenges both perinatally and during adulthood.
Collapse
Affiliation(s)
- María Victoria Bariani
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando Correa
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Paula Domínguez Rubio
- Departamento de Química Biológica. Intendente Güiraldes, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica. Intendente Güiraldes, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Manuel Luis Wolfson
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Aylen Schander
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maximiliano Cella
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Aisemberg
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Ana María Franchi
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
77
|
Leo LM, Abood ME. CB1 Cannabinoid Receptor Signaling and Biased Signaling. Molecules 2021; 26:molecules26175413. [PMID: 34500853 PMCID: PMC8433814 DOI: 10.3390/molecules26175413] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
The CB1 cannabinoid receptor is a G-protein coupled receptor highly expressed throughout the central nervous system that is a promising target for the treatment of various disorders, including anxiety, pain, and neurodegeneration. Despite the wide therapeutic potential of CB1, the development of drug candidates is hindered by adverse effects, rapid tolerance development, and abuse potential. Ligands that produce biased signaling—the preferential activation of a signaling transducer in detriment of another—have been proposed as a strategy to dissociate therapeutic and adverse effects for a variety of G-protein coupled receptors. However, biased signaling at the CB1 receptor is poorly understood due to a lack of strongly biased agonists. Here, we review studies that have investigated the biased signaling profile of classical cannabinoid agonists and allosteric ligands, searching for a potential therapeutic advantage of CB1 biased signaling in different pathological states. Agonist and antagonist bound structures of CB1 and proposed mechanisms of action of biased allosteric modulators are used to discuss a putative molecular mechanism for CB1 receptor activation and biased signaling. Current studies suggest that allosteric binding sites on CB1 can be explored to yield biased ligands that favor or hinder conformational changes important for biased signaling.
Collapse
|
78
|
Deal CK, Volkoff H. Effects of thyroxine and propylthiouracil on feeding behavior and the expression of hypothalamic appetite-regulating peptides and thyroid function in goldfish (Carassius auratus). Peptides 2021; 142:170578. [PMID: 34033875 DOI: 10.1016/j.peptides.2021.170578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 11/29/2022]
Abstract
There is poor evidence for an association between thyroidal state, feeding and appetite regulation in fish. We assessed how an altered thyroid state influences feeding behavior, food intake and expression of hypothalamic appetite-regulating peptides (Klotho-α and Klotho-β; orexin, OX; cholecystokinin, CCK; agouti-related peptide, AgRP; cannabinoid receptor 1, CB1) in goldfish. We also measured the expressions of hypothalamic, pituitary and liver transcripts that regulate the thyroid [thyrotropin-releasing hormone (TRH), thyrotropin-releasing hormone receptor (TRH-R) type 1, thyroid stimulating hormone beta (TSHβ), deiodinases (DIO2, DIO3), UDP-glucuronosyltransferase (UGT1A1), thyroid receptor alpha and beta (TRα, TRβ)], and circulating levels of total thyroxine (tT4) and total triiodothyronine (tT3). Goldfish were implanted with propylthiouracil (PTU) or T4 osmotic pumps for 12 days. T4- treatment increased feeding behavior but not food intake, increased central TSHβ and DIO2, and hepatic DIO2 transcript expression and increased central DIO3 mRNA. Under hyperthyroid conditions, hypothalamic Klotho and CCK expressions were downregulated, suggesting an increased metabolic state and a hypothalamic response to regulate energy balance. AgRP, OX and CB1 were not affected by T4 treatment. PTU had no effect on any of the parameters examined, suggesting it is not a sensitive thyroid inhibitor in fish. Overall, we show that unlike in mammals, hyperthyroid conditions in goldfish do not lead to an increased desire or need to consume food, furthering evidence for a weak link between the thyroid and appetite.
Collapse
Affiliation(s)
- Cole K Deal
- Departments of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Helene Volkoff
- Departments of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada; Departments of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
79
|
Association of CNR1 and INSIG2 polymorphisms with antipsychotics-induced weight gain: a prospective nested case-control study. Sci Rep 2021; 11:15304. [PMID: 34315947 PMCID: PMC8316361 DOI: 10.1038/s41598-021-94700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Weight gain is a frequent and severe adverse reaction in patients taking antipsychotics. The objective was to further investigate in a natural setting influential risk factors associated with clinically significant weight gain. An observational follow-up study was conducted. Patients when initiating treatment with whatever antipsychotic were included; a structured questionnaire was applied at baseline, 3 and 6 months later; a blood sample was obtained. In a nested case-control approach, patients with an increase ≥ 7% of their initial weight were considered as cases, the remaining, as controls. The results showed that, out of 185 patients, 137 completed the 6-month follow-up (cases, 38; controls, 99). Weight gain gradually and significantly increased in cases (baseline, 65.0 kg; 6 months, 74.0 kg) but not in controls (65.6 kg and 65.8 kg, respectively). Age (adjusted OR = 0.97, 95% CI = 0.96-0.99, p = 0.004), olanzapine (adjusted OR = 2.98, 95% CI = 1.13-7.80, p = 0.027) and quetiapine (adjusted OR = 0.25, 95% = 0.07-0.92, p = 0.037) significantly associated with weight gain. An association was also found for the CNR1 (rs1049353) and INSIG2 (rs7566605) polymorphisms. In conclusion, an increased risk of antipsychotics-induced weight gain was observed for younger age and olanzapine, and a relative lower risk for quetiapine. A potential role of CNR1 rs1049353 and INSIG2 rs7566605 polymorphisms is suggested.
Collapse
|
80
|
Metabolomics in Bariatric Surgery: Towards Identification of Mechanisms and Biomarkers of Metabolic Outcomes. Obes Surg 2021; 31:4564-4574. [PMID: 34318371 DOI: 10.1007/s11695-021-05566-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 12/27/2022]
Abstract
Bariatric surgery has been widely performed for the treatment of obesity and type 2 diabetes. Efforts have been made to investigate the mechanisms underlying the metabolic effects achieved by bariatric surgery and to identify candidates who will benefit from this surgery. Metabolomics, which includes comprehensive profiling of metabolites in biological samples, has been utilized for various disease entities to discover pathophysiological metabolic pathways and biomarkers predicting disease progression or prognosis. Over the last decade, metabolomic studies on patients undergoing bariatric surgery have identified significant biomarkers related to metabolic effects. This review describes the significance, progress, and challenges for the future of metabolomics in the area of bariatric surgery.
Collapse
|
81
|
Han JH, Kim W. Peripheral CB1R as a modulator of metabolic inflammation. FASEB J 2021; 35:e21232. [PMID: 33715173 DOI: 10.1096/fj.202001960r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/30/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Obesity is associated with chronic inflammation in insulin-sensitive tissues, including liver and adipose tissue, and causes hormonal/metabolic complications, such as insulin resistance. There is growing evidence that peripheral cannabinoid-type 1 receptor (CB1R) is a crucial participant in obesity-induced pro-inflammatory responses in insulin-target tissues, and its selective targeting could be a novel therapeutic strategy to break the link between insulin resistance and metabolic inflammation. In this review, we introduce the role of peripheral CB1R in metabolic inflammation and as a mediator of hormonal/metabolic complications that underlie metabolic syndrome, including fatty liver, insulin resistance, and dyslipidemia. We also discuss the therapeutic potential of second- and third-generation peripherally restricted CB1R antagonists for treating obesity-induced metabolic inflammation without eliciting central CB1R-mediated neurobehavioral effects, predictive of neuropsychiatric side effects, in humans.
Collapse
Affiliation(s)
- Ji Hye Han
- Department of Molecular Science & Technology, Ajou University, Suwon, South Korea
| | - Wook Kim
- Department of Molecular Science & Technology, Ajou University, Suwon, South Korea
| |
Collapse
|
82
|
Tovar R, Vargas A, Aranda J, Sánchez-Salido L, González-González L, Chowen JA, Rodríguez de Fonseca F, Suárez J, Rivera P. Analysis of Both Lipid Metabolism and Endocannabinoid Signaling Reveals a New Role for Hypothalamic Astrocytes in Maternal Caloric Restriction-Induced Perinatal Programming. Int J Mol Sci 2021; 22:ijms22126292. [PMID: 34208173 PMCID: PMC8230792 DOI: 10.3390/ijms22126292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/29/2022] Open
Abstract
Maternal malnutrition in critical periods of development increases the risk of developing short- and long-term diseases in the offspring. The alterations induced by this nutritional programming in the hypothalamus of the offspring are of special relevance due to its role in energy homeostasis, especially in the endocannabinoid system (ECS), which is involved in metabolic functions. Since astrocytes are essential for neuronal energy efficiency and are implicated in brain endocannabinoid signaling, here we have used a rat model to investigate whether a moderate caloric restriction (R) spanning from two weeks prior to the start of gestation to its end induced changes in offspring hypothalamic (a) ECS, (b) lipid metabolism (LM) and/or (c) hypothalamic astrocytes. Monitorization was performed by analyzing both the gene and protein expression of proteins involved in LM and ECS signaling. Offspring born from caloric-restricted mothers presented hypothalamic alterations in both the main enzymes involved in LM and endocannabinoids synthesis/degradation. Furthermore, most of these changes were similar to those observed in hypothalamic offspring astrocytes in culture. In conclusion, a maternal low caloric intake altered LM and ECS in both the hypothalamus and its astrocytes, pointing to these glial cells as responsible for a large part of the alterations seen in the total hypothalamus and suggesting a high degree of involvement of astrocytes in nutritional programming.
Collapse
Affiliation(s)
- Rubén Tovar
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (R.T.); (A.V.); (J.A.); (L.S.-S.); (L.G.-G.); (F.R.d.F.)
- UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Andalucia Tech, Facultad de Medicina, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Antonio Vargas
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (R.T.); (A.V.); (J.A.); (L.S.-S.); (L.G.-G.); (F.R.d.F.)
- UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Jesús Aranda
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (R.T.); (A.V.); (J.A.); (L.S.-S.); (L.G.-G.); (F.R.d.F.)
- Andalucia Tech, Facultad de Medicina, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Lourdes Sánchez-Salido
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (R.T.); (A.V.); (J.A.); (L.S.-S.); (L.G.-G.); (F.R.d.F.)
- UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Laura González-González
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (R.T.); (A.V.); (J.A.); (L.S.-S.); (L.G.-G.); (F.R.d.F.)
| | - Julie A. Chowen
- Department of Endocrinology, Instituto de Investigación Biomédica la Princesa, Fundación Investigación Biomédica del Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain;
- CIBEROBN (Centro de Investigación Biomédica en Red Sobre Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, 28009 Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, 28009 Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (R.T.); (A.V.); (J.A.); (L.S.-S.); (L.G.-G.); (F.R.d.F.)
- UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (R.T.); (A.V.); (J.A.); (L.S.-S.); (L.G.-G.); (F.R.d.F.)
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Universidad de Málaga, 29071 Málaga, Spain
- Correspondence: (J.S.); (P.R.); Tel.: +34-952614012 (J.S.); +34-952614012 (P.R.)
| | - Patricia Rivera
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (R.T.); (A.V.); (J.A.); (L.S.-S.); (L.G.-G.); (F.R.d.F.)
- UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Correspondence: (J.S.); (P.R.); Tel.: +34-952614012 (J.S.); +34-952614012 (P.R.)
| |
Collapse
|
83
|
Role of the Endocannabinoid System in the Adipose Tissue with Focus on Energy Metabolism. Cells 2021; 10:cells10061279. [PMID: 34064024 PMCID: PMC8224009 DOI: 10.3390/cells10061279] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system is involved in a wide range of processes including the control of energy acquisition and expenditure. Endocannabinoids and their receptors are present in the central nervous system but also in peripheral tissues, notably the adipose tissues. The endocannabinoid system interacts with two main hormones regulating appetite, namely leptin and ghrelin. The inhibitory effect of the cannabinoid receptor 1 (CB1) antagonist rimonabant on fat mass suggested that the endocannabinoid system can also have a peripheral action in addition to its effect on appetite reduction. Thus, several investigations have focused on the peripheral role of the endocannabinoid system in the regulation of metabolism. The white adipose tissue stores energy as triglycerides while the brown adipose tissue helps to dissipate energy as heat. The endocannabinoid system regulates several functions of the adipose tissues to favor energy accumulation. In this review we will describe the presence of the endocannabinoid system in the adipose tissue. We will survey the role of the endocannabinoid system in the regulation of white and brown adipose tissue metabolism and how the eCB system participates in obesity and metabolic diseases.
Collapse
|
84
|
Cignarella A, Busetto L, Vettor R. Pharmacotherapy of obesity: An update. Pharmacol Res 2021; 169:105649. [PMID: 33962014 DOI: 10.1016/j.phrs.2021.105649] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/14/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022]
Abstract
Several pharmacological approaches to controlling body weight have been developed over the last decades, albeit with limited success. Currently available agents include centrally acting appetite suppressants and peripherally acting compounds. Efficacy and safety of these agents in the clinical setting require a difficult balance. Further strategies including multiagonists able to simultaneously target multiple actors involved in obesity initiation and expansion such as the glucagon receptor family are under investigation. The results of recent clinical trials are encouraging and highlight emerging compounds as potential game changers. In view of the rising prevalence of obesity and the associated burden of comorbidities worldwide, and compared with other areas of pharmacological intervention, we feel that the field of obesity has been affected by therapeutic inertia. Of note, obesity may also affect the response to concomitant medications such as low-dose aspirin. Lessons from withdrawn agents such as the cannabinoid receptor antagonist rimonabant include developing compounds with a more targeted action profile (i.e., central vs peripheral, or antagonist versus inverse agonist) as well as careful selection of patients based on individual risk factors. We anticipate that the expanding knowledge base and clinical testing will result in improved outcomes for patients with obesity in the near future.
Collapse
Affiliation(s)
- Andrea Cignarella
- Department of Medicine, University of Padova Medical School, Via Giustiniani 2, 35128 Padova, Italy.
| | - Luca Busetto
- Center for the Study and the Integrated Management of Obesity, Padova University Hospital, Via Giustiniani 2, 35128 Padova, Italy; Department of Medicine, Internal Medicine 3,University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Roberto Vettor
- Center for the Study and the Integrated Management of Obesity, Padova University Hospital, Via Giustiniani 2, 35128 Padova, Italy; Department of Medicine, Internal Medicine 3,University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| |
Collapse
|
85
|
Liu R, Liu X, Bai X, Xiao C, Dong Y. A Study of the Regulatory Mechanism of the CB1/PPARγ2/PLIN1/HSL Pathway for Fat Metabolism in Cattle. Front Genet 2021; 12:631187. [PMID: 34017353 PMCID: PMC8129027 DOI: 10.3389/fgene.2021.631187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Fat metabolism is closely related to the economic characteristics of beef cattle. Therefore, regulating fat deposition and increasing intramuscular fat deposition are among the main goals of breeders. In this study, we aim to explore the regulatory role of CB1 gene on PPARγ2/PLIN1/HSL pathway in fat metabolism, and to further explore the differential expression of regulatory factors of this pathway in Shandong black cattle and Luxi cattle. In this study, CB1 overexpression stimulated lipid synthesis in adipocytes to some extent by increasing the levels of FASN and ACSL1. CB1 inhibitors reduce the lipid content in adipocytes and reduce the expression of GLUT1 and Insig1. In addition, overexpression of CB1 decreased the expression of PPARγ2 and led to an increase in PLIN1 expression and a decrease in HSL expression in adipocytes. We also found that the CB1/PPARγ2/PLIN1/HSL was differentially expressed in the different breeds of cattle and was involved in the regulation of fat metabolism, which affected the fatty acid content in the longissimus dorsi muscle of the two breeds. In short, CB1 participates in lipid metabolism by regulating HSL in the PPARγ2 and PLIN1 pathways, and improves lipid formation in adipocytes. In conclusion, CB1/PPARγ2/PLIN1/HSL pathway may be involved in the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Ruili Liu
- Laboratory of Animal Physiology and Biochemistry, Animal Embryo Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| | - Xianxun Liu
- Laboratory of Animal Molecular Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| | - Xuejin Bai
- Laboratory of Animal Physiology and Biochemistry, Animal Embryo Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China.,Laboratory of Animal Molecular Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| | - Chaozhu Xiao
- Laboratory of Animal Physiology and Biochemistry, Animal Embryo Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China.,Laboratory of Animal Molecular Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| | - Yajuan Dong
- Laboratory of Animal Physiology and Biochemistry, Animal Embryo Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China.,Laboratory of Animal Molecular Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
86
|
Tam FI, Steding J, Steinhäuser JL, Ritschel F, Gao W, Weidner K, Roessner V, Kirschbaum C, Ehrlich S. Hair endocannabinoid concentrations in individuals with acute and weight-recovered anorexia nervosa. Prog Neuropsychopharmacol Biol Psychiatry 2021; 107:110243. [PMID: 33444649 DOI: 10.1016/j.pnpbp.2021.110243] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND The endocannabinoid system has been suggested to modulate energy metabolism and stress response and could be an important factor in the pathophysiology of anorexia nervosa (AN). In the context of AN, excessive physical activity may influence endocannabinoid concentrations. The objective of this study was to investigate hair endocannabinoid concentrations at different stages of the disorder. Measurement in hair allows for a cumulative assessment of endocannabinoid concentrations independent of circadian rhythms. METHODS In a combined cross-sectional and longitudinal design, we measured hair concentrations of the endocannabinoids anandamide and 2-arachidonoylglycerol and the endocannabinoid-related compounds palmitoylethanolamide, oleoylethanolamide, and stearoylethanolamide in female underweight patients with acute AN (n = 67, reassessment of n = 47 after short-term weight restoration with a body mass index increase of at least 14%), individuals long-term recovered from AN (n = 27), and healthy control participants (n = 84). RESULTS Hair concentrations of anandamide and all endocannabinoid-related compounds were elevated in acute AN and decreased over the course of short-term weight restoration. Anandamide concentrations remained elevated in long-term recovered AN patients. In long-term recovered patients, physical activity correlated positively with the concentrations of all endocannabinoid-related compounds. CONCLUSION The current study provides evidence for a significant alteration of the endocannabinoid system in acute AN, which may partly persist into long-term recovery. The endocannabinoid system may be a possible target for pharmaceutical interventions in AN, which should be explored in further preclinical and subsequently clinical randomized controlled trials.
Collapse
Affiliation(s)
- Friederike I Tam
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Eating Disorder Treatment and Research Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Julius Steding
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Jonas L Steinhäuser
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Franziska Ritschel
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Wei Gao
- Biopsychology, Technische Universität Dresden, Dresden, Germany
| | - Kerstin Weidner
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, University Hospital C. G. Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Eating Disorder Treatment and Research Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
87
|
DiPatrizio NV. Endocannabinoids and the Gut-Brain Control of Food Intake and Obesity. Nutrients 2021; 13:nu13041214. [PMID: 33916974 PMCID: PMC8067588 DOI: 10.3390/nu13041214] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Gut-brain signaling controls food intake and energy homeostasis, and its activity is thought to be dysregulated in obesity. We will explore new studies that suggest the endocannabinoid (eCB) system in the upper gastrointestinal tract plays an important role in controlling gut-brain neurotransmission carried by the vagus nerve and the intake of palatable food and other reinforcers. A focus will be on studies that reveal both indirect and direct interactions between eCB signaling and vagal afferent neurons. These investigations identify (i) an indirect mechanism that controls nutrient-induced release of peptides from the gut epithelium that directly interact with corresponding receptors on vagal afferent neurons, and (ii) a direct mechanism via interactions between eCBs and cannabinoid receptors expressed on vagal afferent neurons. Moreover, the impact of diet-induced obesity on these pathways will be considered.
Collapse
Affiliation(s)
- Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
88
|
Cannabinoid CB1 receptor in dorsal telencephalic glutamatergic neurons drives overconsumption of palatable food and obesity. Neuropsychopharmacology 2021; 46:982-991. [PMID: 33558679 PMCID: PMC8105345 DOI: 10.1038/s41386-021-00957-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 01/30/2023]
Abstract
Palatable food can promote overfeeding beyond homeostatic requirements, thereby constituting a major risk to obesity. Here, the lack of cannabinoid type 1 receptor (CB1) in dorsal telencephalic glutamatergic neurons (Glu-CB1-KO) abrogated the overconsumption of palatable food and the development of obesity. On low-fat diet, no genotype differences were observed. However, under palatable food conditions, Glu-CB1-KO mice showed decreased body weight and food intake. Notably, Glu-CB1-KO mice were protected from alterations in the reward system after high-fat diet feeding. Interestingly, obese wild-type mice showed a superior olfactory detection as compared to mutant mice, suggesting a link between overconsumption of palatable food and olfactory function. Reconstitution of CB1 expression in olfactory cortex in high-fat diet-fed Glu-CB1-KO mice using viral gene delivery partially reversed the lean phenotype concomitantly with improved odor perception. These findings indicate that CB1 in cortical glutamatergic neurons regulates hedonic feeding, whereby a critical role of the olfactory cortex was uncovered as an underlying mechanism.
Collapse
|
89
|
Functional Fine-Tuning of Metabolic Pathways by the Endocannabinoid System-Implications for Health and Disease. Int J Mol Sci 2021; 22:ijms22073661. [PMID: 33915889 PMCID: PMC8036872 DOI: 10.3390/ijms22073661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) employs a huge network of molecules (receptors, ligands, and enzymatic machinery molecules) whose interactions with other cellular networks have still not been fully elucidated. Endogenous cannabinoids are molecules with the primary function of control of multiple metabolic pathways. Maintenance of tissue and cellular homeostasis by functional fine-tuning of essential metabolic pathways is one of the key characteristics of the ECS. It is implicated in a variety of physiological and pathological states and an attractive pharmacological target yet to reach its full potential. This review will focus on the involvement of ECS in glucose and lipid metabolism, food intake regulation, immune homeostasis, respiratory health, inflammation, cancer and other physiological and pathological states will be substantiated using freely available data from open-access databases, experimental data and literature review. Future directions should envision capturing its diversity and exploiting pharmacological options beyond the classical ECS suspects (exogenous cannabinoids and cannabinoid receptor monomers) as signaling through cannabinoid receptor heteromers offers new possibilities for different biochemical outcomes in the cell.
Collapse
|
90
|
Barella LF, Jain S, Kimura T, Pydi SP. Metabolic roles of G protein-coupled receptor signaling in obesity and type 2 diabetes. FEBS J 2021; 288:2622-2644. [PMID: 33682344 DOI: 10.1111/febs.15800] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/31/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022]
Abstract
The incidence of obesity and type 2 diabetes (T2D) has been increasing steadily worldwide. It is estimated that by 2045 more than 800 million people will be suffering from diabetes. Despite the advancements in modern medicine, more effective therapies for treating obesity and T2D are needed. G protein-coupled receptors (GPCRs) have emerged as important drug targets for various chronic diseases, including obesity, T2D, and liver diseases. During the past two decades, many laboratories worldwide focused on understanding the role of GPCR signaling in regulating glucose metabolism and energy homeostasis. The information gained from these studies can guide the development of novel therapeutic agents. In this review, we summarize recent studies providing insights into the role of GPCR signaling in peripheral, metabolically important tissues such as pancreas, liver, skeletal muscle, and adipose tissue, focusing primarily on the use of mutant animal models and human data.
Collapse
Affiliation(s)
- Luiz F Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.,Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Takefumi Kimura
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.,Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| |
Collapse
|
91
|
Oral Signals of Short and Long Chain Fatty Acids: Parallel Taste Pathways to Identify Microbes and Triglycerides. CURRENT OPINION IN PHYSIOLOGY 2021; 20:126-133. [PMID: 33738372 DOI: 10.1016/j.cophys.2021.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Both short chain fatty acids (SCFAs) and long chain fatty acids (LCFAs) rely on free fatty acid receptors to signal their presence to the body, but their individual detection and putative reward systems are different. These separate, yet parallel, taste signaling pathways allow us to distinguish microbe-produced from triglyceride-based fatty acids. Free SCFAs indicate that the food has been fermented and may still contain living, probiotic microbes that can colonize the gut. Free LCFAs indicate the presence of calorie-rich triglycerides in foods. By contrast, LCFAs stimulate endocannabinoids, which reinforce overconsumption of triglycerides. Here we examine the separate oral detection and putative reward systems for both LCFA and SCFAs, and introduce a novel dietary LC:SC ratio as a guideline to improve metabolism and health.
Collapse
|
92
|
Laksmidewi AAAP, Soejitno A. Endocannabinoid and dopaminergic system: the pas de deux underlying human motivation and behaviors. J Neural Transm (Vienna) 2021; 128:615-630. [PMID: 33712975 PMCID: PMC8105194 DOI: 10.1007/s00702-021-02326-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/04/2021] [Indexed: 01/11/2023]
Abstract
Endocannabinoid system (ECS) has been identified ever since cannabinoid, an active substance of Cannabis, was known to interact with endogenous cannabinoid (endocannabinoid/eCB) receptors. It later turned out that eCB was more intricate than previously thought. It has a pervasive role and exerts a multitude of cellular signaling mechanisms, regulating various physiological neurotransmission pathways in the human brain, including the dopaminergic (DA) system. eCB roles toward DA system were robust, clearly delineated, and reproducible with respect to physiological as well as pathological neurochemical and neurobehavioral manifestations of DA system, particularly those involving the nigrostriatal and mesocorticolimbic pathways. The eCB–DA system regulates the basics in the Maslow’s pyramid of hierarchy of needs required for individual survival such as food and sexual activity for reproductive purpose to those of higher needs in the pyramid, including self-actualization behaviors leading to achievement and reward (e.g., academic- and/or work-related performance and achievements). It is, thus, interesting to specifically discuss the eCB–DA system, not only on the molecular level, but also its tremendous potential to be developed as a future therapeutic strategy for various neuropsychiatric problems, including obesity, drug addiction and withdrawal, pathological hypersexuality, or low motivation behaviors.
Collapse
Affiliation(s)
- A A A Putri Laksmidewi
- Neurobehavioral and Cognitive Division, Neurology Department, Faculty of Medicine, Udayana University/Sanglah Hospital, Denpasar, Bali, Indonesia.
| | - Andreas Soejitno
- Neurobehavioral and Cognitive Division, Neurology Department, Faculty of Medicine, Udayana University/Sanglah Hospital, Denpasar, Bali, Indonesia
| |
Collapse
|
93
|
Myers MN, Zachut M, Tam J, Contreras GA. A proposed modulatory role of the endocannabinoid system on adipose tissue metabolism and appetite in periparturient dairy cows. J Anim Sci Biotechnol 2021; 12:21. [PMID: 33663611 PMCID: PMC7934391 DOI: 10.1186/s40104-021-00549-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
To sustain the nutrient demands of rapid fetal growth, parturition, and milk synthesis, periparturient dairy cows mobilize adipose tissue fatty acid stores through lipolysis. This process induces an inflammatory response within AT that is resolved as lactation progresses; however, excessive and protracted lipolysis compounds the risk for metabolic and inflammatory diseases. The suppression of lipolytic action and inflammation, along with amplification of adipogenesis and lipogenesis, serve as prospective therapeutic targets for improving the health of periparturient dairy cows. Generally, the activation of cannabinoid receptors by endocannabinoids enhances adipogenesis and lipogenesis, suppresses lipolysis, and increases appetite in mammals. These biological effects of activating the endocannabinoid system open the possibility of harnessing the endocannabinoid system through nutritional intervention in dairy herds as a potential tool to improve dairy cows' health, although much is still to be revealed in this context. This review summarizes the current knowledge surrounding the components of the endocannabinoid system, elaborates on the metabolic effects of its activation, and explores the potential to modulate its activity in periparturient dairy cows.
Collapse
Affiliation(s)
- Madison N Myers
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization / Volcani Center, 7505101, Rishon LeZion, Israel.
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 9112001, Jerusalem, Israel
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
94
|
Late effects of early weaning on food preference and the dopaminergic and endocannabinoid systems in male and female rats. J Dev Orig Health Dis 2021; 13:90-100. [PMID: 33650480 DOI: 10.1017/s2040174421000039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Early weaning (EW) is associated with obesity later in life. Here, using an EW model in rats, we investigated changes in feeding behavior and the dopaminergic and endocannabinoid systems (ECS) in the adult offspring. Lactating Wistar rats were divided into two groups: EW, dams were wrapped with a bandage to interrupt suckling during the last 3 days of breastfeeding; CONT; dams fed the pups throughout the period without hindrances. EW animals were compared with CONT animals of the same sex. At PN175, male and female offspring of both groups could freely self-select between high-fat and high-sugar diets (food challenge test). EW males preferred the high-fat diet at 30 min and more of the high-sugar diet after 12 h compared to CONT males. EW females did not show differences in their preference for the palatable diets compared to CONT females. Total intake of standard diet from PN30-PN180 was higher in both male and female EW animals, indicating hyperphagia. At PN180, EW males showed lower type 2 dopamine receptor (D2r) in the nucleus accumbens (NAc) and dorsal striatum, while EW females had lower tyrosine hydroxylase in the ventral tegmental area and NAc, D1r in the NAc, and D2r in the prefrontal cortex. In the lateral hypothalamus, EW males had lower fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase, whereas EW females showed lower N-arachidonoyl-phosphatidylethanolamine phospholipase-D and increased FAAH. Early weaning altered both the dopaminergic and ECS parameters at adulthood, contributing to the eating behavior changes of the progeny in a sex-dependent manner.
Collapse
|
95
|
Rohbeck E, Eckel J, Romacho T. Cannabinoid Receptors in Metabolic Regulation and Diabetes. Physiology (Bethesda) 2021; 36:102-113. [PMID: 33595385 DOI: 10.1152/physiol.00029.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is an urgent need for developing effective drugs to combat the obesity and Type 2 diabetes mellitus epidemics. The endocannabinoid system plays a major role in energy homeostasis. It comprises the cannabinoid receptors 1 and 2 (CB1 and CB2), endogenous ligands called endocannabinoids and their metabolizing enzymes. Because the CB1 receptor is overactivated in metabolic alterations, pharmacological blockade of the CB1 receptor arose as a promising candidate to treat obesity. However, because of the wide distribution of CB1 receptors in the central nervous system, their negative central effects halted further therapeutic use. Although the CB2 receptor is mostly peripherally expressed, its role in metabolic homeostasis remains unclear. This review discusses the potential of CB1 and CB2 receptors at the peripheral level to be therapeutic targets in metabolic diseases. We focus on the impact of pharmacological intervention and/or silencing on peripheral cannabinoid receptors in organs/tissues relevant for energy homeostasis. Moreover, we provide a perspective on novel therapeutic strategies modulating these receptors. Targeting CB1 with peripherally restricted antagonists, neutral antagonists, inverse agonists, or monoclonal antibodies could represent successful strategies. CB2 agonism has shown promising results at preclinical level. Beyond classic antagonism and agonism targeting orthosteric sites, the recently described crystal structures of CB1 and CB2 open new possibilities for therapeutic interventions with negative and positive allosteric modulators. The challenge of simultaneously targeting CB1 and CB2 might be possible by developing dual-steric ligands. The future will tell whether these promising strategies result in a renaissance of the cannabinoid receptors as therapeutic targets in metabolic diseases.
Collapse
Affiliation(s)
- Elisabeth Rohbeck
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Juergen Eckel
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tania Romacho
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
96
|
Oppong-Damoah A, Gannon BM, Murnane KS. The Endocannabinoid System and Alcohol Dependence: Will Cannabinoid Receptor 2 Agonism be More Fruitful than Cannabinoid Receptor 1 Antagonism? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2021; 21:3-13. [PMID: 33573565 DOI: 10.2174/1871527320666210211115007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022]
Abstract
Alcohol-use disorder (AUD) remains a major public health concern. In recent years, there has been a heightened interest in components of the endocannabinoid system for the treatment of AUD. Cannabinoid type 1 (CB1) receptors have been shown to modulate the rewarding effects of alcohol, reduce the abuse-related effects of alcohol, improve cognition, exhibit anti-inflammatory, and neuroprotective effects, which are all favorable properties of potential therapeutic candidates for the treatment of AUD. However, CB1 agonists have not been investigated for the treatment of AUD because they stimulate the motivational properties of alcohol, increase alcohol intake, and have the tendency to be abused. Preclinical data suggest significant potential for the use of CB1 antagonists to treat AUD; however, a clinical phase I/II trial with SR14716A (rimonabant), a CB1 receptor antagonist/inverse agonist showed that it produced serious neuropsychiatric adverse events such as anxiety, depression, and even suicidal ideation. This has redirected the field to focus on alternative components of the endocannabinoid system, including cannabinoid type 2 (CB2) receptor agonists as a potential therapeutic target for AUD. CB2 receptor agonists are of particular interest because they can modulate the reward pathway, reduce abuse-related effects of alcohol, reverse neuroinflammation, improve cognition, and exhibit anti-inflammatory and neuroprotective effects, without exhibiting the psychiatric side effects seen with CB1 antagonists. Accordingly, this article presents an overview of the studies reported in the literature that have investigated CB2 receptor agonists with regards to AUD and provides commentary as to whether this receptor is a worthy target for continued investigation.
Collapse
Affiliation(s)
- Aboagyewaah Oppong-Damoah
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center,United States
| | - Brenda Marie Gannon
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center,United States
| | - Kevin Sean Murnane
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center,United States
| |
Collapse
|
97
|
Fondevila MF, Fernandez U, Gonzalez-Rellan MJ, Da Silva Lima N, Buque X, Gonzalez-Rodriguez A, Alonso C, Iruarrizaga-Lejarreta M, Delgado TC, Varela-Rey M, Senra A, Garcia-Outeiral V, Novoa E, Iglesias C, Porteiro B, Beiroa D, Folgueira C, Tojo M, Torres JL, Hernández-Cosido L, Blanco Ó, Arab JP, Barrera F, Guallar D, Fidalgo M, López M, Dieguez C, Marcos M, Martinez-Chantar ML, Arrese M, Garcia-Monzon C, Mato JM, Aspichueta P, Nogueiras R. The L-α-Lysophosphatidylinositol/G Protein-Coupled Receptor 55 System Induces the Development of Nonalcoholic Steatosis and Steatohepatitis. Hepatology 2021; 73:606-624. [PMID: 32329085 PMCID: PMC7894478 DOI: 10.1002/hep.31290] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/24/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS G protein-coupled receptor (GPR) 55 is a putative cannabinoid receptor, and l-α-lysophosphatidylinositol (LPI) is its only known endogenous ligand. Although GPR55 has been linked to energy homeostasis in different organs, its specific role in lipid metabolism in the liver and its contribution to the pathophysiology of nonalcoholic fatty liver disease (NAFLD) remains unknown. APPROACH AND RESULTS We measured (1) GPR55 expression in the liver of patients with NAFLD compared with individuals without obesity and without liver disease, as well as animal models with steatosis and nonalcoholic steatohepatitis (NASH), and (2) the effects of LPI and genetic disruption of GPR55 in mice, human hepatocytes, and human hepatic stellate cells. Notably, we found that circulating LPI and liver expression of GPR55 were up-regulated in patients with NASH. LPI induced adenosine monophosphate-activated protein kinase activation of acetyl-coenzyme A carboxylase (ACC) and increased lipid content in human hepatocytes and in the liver of treated mice by inducing de novo lipogenesis and decreasing β-oxidation. The inhibition of GPR55 and ACCα blocked the effects of LPI, and the in vivo knockdown of GPR55 was sufficient to improve liver damage in mice fed a high-fat diet and in mice fed a methionine-choline-deficient diet. Finally, LPI promoted the initiation of hepatic stellate cell activation by stimulating GPR55 and activation of ACC. CONCLUSIONS The LPI/GPR55 system plays a role in the development of NAFLD and NASH by activating ACC.
Collapse
Affiliation(s)
- Marcos F Fondevila
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain.,Centro de Fisiopatología de la Obesidad y NutriciónCentro de Investigación Biomédica en RedSantiago de CompostelaSpain
| | - Uxia Fernandez
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain
| | - Maria J Gonzalez-Rellan
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain
| | - Natalia Da Silva Lima
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain
| | - Xabier Buque
- Department of PhysiologyUniversity of the Basque Country UPV/EHULeioaSpain.,Biocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Agueda Gonzalez-Rodriguez
- Liver Research UnitSanta Cristina University HospitalInstituto de Investigación Sanitaria PrincesaMadridSpain
| | | | | | - Teresa C Delgado
- Liver Disease LaboratoryCenter for Cooperative Research in BiosciencesBasque Research and Technology Alliance-Centro de Enfermedades Hepáticas y DigestivasCentro de Investigación Biomédica en RedDerioSpain
| | - Marta Varela-Rey
- Liver Disease LaboratoryCenter for Cooperative Research in BiosciencesBasque Research and Technology Alliance-Centro de Enfermedades Hepáticas y DigestivasCentro de Investigación Biomédica en RedDerioSpain
| | - Ana Senra
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain
| | - Vera Garcia-Outeiral
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain
| | - Eva Novoa
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain
| | - Cristina Iglesias
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain
| | - Begoña Porteiro
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain.,Centro de Fisiopatología de la Obesidad y NutriciónCentro de Investigación Biomédica en RedSantiago de CompostelaSpain
| | - Daniel Beiroa
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain.,Centro de Fisiopatología de la Obesidad y NutriciónCentro de Investigación Biomédica en RedSantiago de CompostelaSpain
| | - Cintia Folgueira
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain
| | - Marta Tojo
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain
| | - Jorge L Torres
- Department of Internal MedicineUniversity Hospital of Salamanca-Institute of Biomedical Research of SalamancaUniversity of SalamancaSalamancaSpain
| | - Lourdes Hernández-Cosido
- Department of General and Gastrointestinal SurgeryUniversity Hospital of Salamanca-Institute of Biomedical Research of SalamancaUniversity of SalamancaSalamancaSpain
| | - Óscar Blanco
- Department of PathologyUniversity Hospital of Salamanca-Institute of Biomedical Research of SalamancaUniversity of SalamancaSalamancaSpain
| | - Juan Pablo Arab
- Departament of GastroenterologyEscuela de MedicinaPontificia Universidad Católica de Chile, Santiago, ChileChile and Centro de Envejecimiento y Regeneración (CARE) Facultad de Ciencias Biológicaspontificia Universidad Católica de ChileSantiagoChile
| | - Francisco Barrera
- Departament of GastroenterologyEscuela de MedicinaPontificia Universidad Católica de Chile, Santiago, ChileChile and Centro de Envejecimiento y Regeneración (CARE) Facultad de Ciencias Biológicaspontificia Universidad Católica de ChileSantiagoChile
| | - Diana Guallar
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain
| | - Miguel Fidalgo
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain
| | - Miguel López
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain.,Centro de Fisiopatología de la Obesidad y NutriciónCentro de Investigación Biomédica en RedSantiago de CompostelaSpain
| | - Carlos Dieguez
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain.,Centro de Fisiopatología de la Obesidad y NutriciónCentro de Investigación Biomédica en RedSantiago de CompostelaSpain
| | - Miguel Marcos
- Department of Internal MedicineUniversity Hospital of Salamanca-Institute of Biomedical Research of SalamancaUniversity of SalamancaSalamancaSpain
| | - Maria L Martinez-Chantar
- Liver Disease LaboratoryCenter for Cooperative Research in BiosciencesBasque Research and Technology Alliance-Centro de Enfermedades Hepáticas y DigestivasCentro de Investigación Biomédica en RedDerioSpain
| | - Marco Arrese
- Departament of GastroenterologyEscuela de MedicinaPontificia Universidad Católica de Chile, Santiago, ChileChile and Centro de Envejecimiento y Regeneración (CARE) Facultad de Ciencias Biológicaspontificia Universidad Católica de ChileSantiagoChile
| | - Carmelo Garcia-Monzon
- Liver Research UnitSanta Cristina University HospitalInstituto de Investigación Sanitaria PrincesaMadridSpain
| | - Jose M Mato
- Liver Disease LaboratoryCenter for Cooperative Research in BiosciencesBasque Research and Technology Alliance-Centro de Enfermedades Hepáticas y DigestivasCentro de Investigación Biomédica en RedDerioSpain.,Liver Metabolism LaboratoryCenter for Cooperative Research in Biosciences, Basque Research and Technology Alliance-Centro de Enfermedades Hepáticas y DigestivasCentro de Investigación Biomédica en RedDerioSpain
| | - Patricia Aspichueta
- Department of PhysiologyUniversity of the Basque Country UPV/EHULeioaSpain.,Biocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Ruben Nogueiras
- Department of PhysiologyResearch Centre of Molecular Medicine and Chronic DiseasesUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain.,Centro de Fisiopatología de la Obesidad y NutriciónCentro de Investigación Biomédica en RedSantiago de CompostelaSpain.,Galician Agency of Innovation (GAIN)Xunta de GaliciaSantiago de CompostelaSpain
| |
Collapse
|
98
|
What Role Does the Endocannabinoid System Play in the Pathogenesis of Obesity? Nutrients 2021; 13:nu13020373. [PMID: 33530406 PMCID: PMC7911032 DOI: 10.3390/nu13020373] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
The endocannabinoid system (ECS) is an endogenous signaling system formed by specific receptors (cannabinoid type 1 and type 2 (CB1 and CB2)), their endogenous ligands (endocannabinoids), and enzymes involved in their synthesis and degradation. The ECS, centrally and peripherally, is involved in various physiological processes, including regulation of energy balance, promotion of metabolic process, food intake, weight gain, promotion of fat accumulation in adipocytes, and regulation of body homeostasis; thus, its overactivity may be related to obesity. In this review, we try to explain the role of the ECS and the impact of genetic factors on endocannabinoid system modulation in the pathogenesis of obesity, which is a global and civilizational problem affecting the entire world population regardless of age. We also emphasize that the search for potential new targets for health assessment, treatment, and the development of possible therapies in obesity is of great importance.
Collapse
|
99
|
Aseer KR, Egan JM. An Autonomous Cannabinoid System in Islets of Langerhans. Front Endocrinol (Lausanne) 2021; 12:699661. [PMID: 34290671 PMCID: PMC8287299 DOI: 10.3389/fendo.2021.699661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/08/2021] [Indexed: 12/31/2022] Open
Abstract
While endocannabinoids (ECs) and cannabis were primarily studied for their nervous system effects, it is now clear that ECs are also produced in the periphery where they regulate several physiological processes, including energy storage, glucose and lipid metabolism, insulin secretion and synthesis, and hepatocyte function. Within islet of Langerhans there is an autonomous EC system (ECS). Beta (β)-cells contain all the enzymes necessary for EC synthesis and degradation; ECs are generated in response to cellular depolarization; their paracrine influence on β-cells is mostly through the cannabinoid 1 receptor (CB1R) that is present on all β-cells; they modulate basal and glucose- and incretin-induced insulin secretion, and β-cell responses to various stressors. Furthermore, there is now accumulating evidence from preclinical studies that the autonomous islet ECS is a key player in obesity-induced inflammation in islets, and β-cell damage and apoptosis from many causes can be mitigated by CB1R blockers. We will thoroughly review the literature relevant to the effects of ECs and their receptors on β-cells and the other cell types within islets. Therapeutic potential of agents targeting EC/CB1R and CB2R is highly relevant because the receptors belong to the druggable G protein-coupled receptor superfamily. Present research in the ECS must be considered preliminary, especially with regards to human islet physiology, and further research is needed in order to translate basic cellular findings into clinical practice and the use of safe, clinically approved CBR modulators with and without glucose lowering combinations presently in therapeutic use for diabetes and obesity needs to be studied.
Collapse
|
100
|
On the Role of Central Type-1 Cannabinoid Receptor Gene Regulation in Food Intake and Eating Behaviors. Int J Mol Sci 2021; 22:ijms22010398. [PMID: 33401515 PMCID: PMC7796374 DOI: 10.3390/ijms22010398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Different neuromodulatory systems are involved in long-term energy balance and body weight and, among these, evidence shows that the endocannabinoid system, in particular the activation of type-1 cannabinoid receptor, plays a key role. We here review current literature focusing on the role of the gene encoding type-1 cannabinoid receptors in the CNS and on the modulation of its expression by food intake and specific eating behaviors. We point out the importance to further investigate how environmental cues might have a role in the development of obesity as well as eating disorders through the transcriptional regulation of this gene in order to prevent or to treat these pathologies.
Collapse
|