51
|
van Marken Lichtenbelt WD. Human Brown Adipose Tissue-A Decade Later. Obesity (Silver Spring) 2021; 29:1099-1101. [PMID: 34002540 PMCID: PMC8360096 DOI: 10.1002/oby.23166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/10/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Wouter D. van Marken Lichtenbelt
- Department of Nutrition and Movement SciencesSchool for Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht University Medical Center +MaastrichtThe Netherlands
| |
Collapse
|
52
|
McKie GL, Shamshoum H, Hunt KL, Thorpe HHA, Dibe HA, Khokhar JY, Doucette CA, Wright DC. Intermittent cold exposure improves glucose homeostasis despite exacerbating diet-induced obesity in mice housed at thermoneutrality. J Physiol 2021; 600:829-845. [PMID: 34192813 DOI: 10.1113/jp281774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/28/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Ambient cold exposure is often regarded as a promising anti-obesity treatment in mice. However, most preclinical studies aimed at treating obesity via cold-induced thermogenesis have been confounded by subthermoneutral housing temperatures. Therefore, the ability of ambient cold to combat diet-induced obesity in mice housed under humanized thermoneutral conditions is currently unknown. Moreover, mammals such as mice are rarely exposed to chronic ambient cold without reprieve, yet mice are often subjected to experimental conditions of chronic rather than intermittent cold exposure (ICE), despite ICE being more physiologically relevant. In the present study, we provide novel evidence that thermoneutral housing uncouples the effects of ICE on glucose and energy homeostasis suggesting that ICE, despite improving glucose tolerance, is not an effective obesity treatment when mice are housed under humanized thermoneutral conditions. ABSTRACT The present study examines whether a physiologically relevant model of ambient cold exposure, intermittent cold exposure (ICE), could ameliorate the metabolic impairments of diet-induced obesity in male and female mice housed under humanized thermoneutral conditions. Male and female C57BL/6J mice housed at thermoneutrality (29°C) were fed a low-fat diet or high-fat diet for 6 weeks before being weight matched into groups that remained unperturbed or underwent ICE for 4 weeks (4°C for 60 min day-1 ; 5 days week-1 ) when being maintained on their respective diets. ICE induced rapid and persistent hyperphagia exacerbating rather than attenuating high-fat diet-induced obesity over time. These ICE-induced increases in adiposity were found to be energy intake-dependent via pair-feeding. Despite exacerbating high-fat diet-induced obesity, ICE improved glucose tolerance, independent of diet, in a sex-specific manner. The effects of ICE on glucose tolerance were not attributed to improvements in whole-body insulin tolerance, tissue specific insulin action, nor differences in markers of hepatic insulin clearance or pancreatic beta cell proliferation. Instead, ICE increased serum concentrations of insulin and C-peptide in response to glucose, suggesting that ICE may improve glucose tolerance by potentiating pancreatic glucose-stimulated insulin secretion. These data suggest that ICE, despite improving glucose tolerance, is not an effective obesity treatment in mice housed under humanized conditions.
Collapse
Affiliation(s)
- Greg L McKie
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Hesham Shamshoum
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Kristin L Hunt
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Hayley H A Thorpe
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Hana A Dibe
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Jibran Y Khokhar
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Christine A Doucette
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - David C Wright
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
53
|
Gene Expression Analysis of Environmental Temperature and High-Fat Diet-Induced Changes in Mouse Supraclavicular Brown Adipose Tissue. Cells 2021; 10:cells10061370. [PMID: 34199472 PMCID: PMC8226907 DOI: 10.3390/cells10061370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity, a dysregulation of adipose tissue, is a major health risk factor associated with many diseases. Brown adipose tissue (BAT)-mediated thermogenesis can potentially regulate energy expenditure, making it an attractive therapeutic target to combat obesity. Here, we characterize the effects of cold exposure, thermoneutrality, and high-fat diet (HFD) feeding on mouse supraclavicular BAT (scBAT) morphology and BAT-associated gene expression compared to other adipose depots, including the interscapular BAT (iBAT). scBAT was as sensitive to cold induced thermogenesis as iBAT and showed reduced thermogenic effect under thermoneutrality. While both scBAT and iBAT are sensitive to cold, the expression of genes involved in nutrient processing is different. The scBAT also showed less depot weight gain and more single-lipid adipocytes, while the expression of BAT thermogenic genes, such as Ucp1, remained similar or increased more under our HFD feeding regime at ambient and thermoneutral temperatures than iBAT. Together, these findings show that, in addition to its anatomical resemblance to human scBAT, mouse scBAT possesses thermogenic features distinct from those of other adipose depots. Lastly, this study also characterizes a previously unknown mouse deep neck BAT (dnBAT) depot that exhibits similar thermogenic characteristics as scBAT under cold exposure and thermoneutrality.
Collapse
|
54
|
Yurkevicius BR, Alba BK, Seeley AD, Castellani JW. Human cold habituation: Physiology, timeline, and modifiers. Temperature (Austin) 2021; 9:122-157. [PMID: 36106151 PMCID: PMC9467574 DOI: 10.1080/23328940.2021.1903145] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Habituation is an adaptation seen in many organisms, defined by a reduction in the response to repeated stimuli. Evolutionarily, habituation is thought to benefit the organism by allowing conservation of metabolic resources otherwise spent on sub-lethal provocations including repeated cold exposure. Hypermetabolic and/or insulative adaptations may occur after prolonged and severe cold exposures, resulting in enhanced cold defense mechanisms such as increased thermogenesis and peripheral vasoconstriction, respectively. Habituation occurs prior to these adaptations in response to short duration mild cold exposures, and, perhaps counterintuitively, elicits a reduction in cold defense mechanisms demonstrated through higher skin temperatures, attenuated shivering, and reduced cold sensations. These habituated responses likely serve to preserve peripheral tissue temperature and conserve energy during non-life threatening cold stress. The purpose of this review is to define habituation in general terms, present evidence for the response in non-human species, and provide an up-to-date, critical examination of past studies and the potential physiological mechanisms underlying human cold habituation. Our aim is to stimulate interest in this area of study and promote further experiments to understand this physiological adaptation.
Collapse
Affiliation(s)
- Beau R. Yurkevicius
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Billie K. Alba
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Afton D. Seeley
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
- Oak Ridge Institute of Science and Education, Belcamp, MD, USA
| | - John W. Castellani
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| |
Collapse
|
55
|
Wang Z, Wang QA, Liu Y, Jiang L. Energy metabolism in brown adipose tissue. FEBS J 2021; 288:3647-3662. [PMID: 34028971 DOI: 10.1111/febs.16015] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022]
Abstract
Brown adipose tissue (BAT) is well known to burn calories through uncoupled respiration, producing heat to maintain body temperature. This 'calorie wasting' feature makes BAT a special tissue, which can function as an 'energy sink' in mammals. While a combination of high energy intake and low energy expenditure is the leading cause of overweight and obesity in modern society, activating a safe 'energy sink' has been proposed as a promising obesity treatment strategy. Metabolically, lipids and glucose have been viewed as the major energy substrates in BAT, while succinate, lactate, branched-chain amino acids, and other metabolites can also serve as energy substrates for thermogenesis. Since the cataplerotic and anaplerotic reactions of these metabolites interconnect with each other, BAT relies on its dynamic, flexible, and complex metabolism to support its special function. In this review, we summarize how BAT orchestrates the metabolic utilization of various nutrients to support thermogenesis and contributes to whole-body metabolic homeostasis.
Collapse
Affiliation(s)
- Zhichao Wang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA, USA
| | - Qiong A Wang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA, USA.,Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Institute for Advanced Studies, Wuhan University, China
| | - Lei Jiang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA, USA.,Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| |
Collapse
|
56
|
Bjørklund G, Tippairote T, Dadar M, Lizcano F, Aaseth J, Borisova O. The Roles of Dietary, Nutritional and Lifestyle Interventions in Adipose Tissue Adaptation and Obesity. Curr Med Chem 2021; 28:1683-1702. [PMID: 32368968 DOI: 10.2174/0929867327666200505090449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/03/2020] [Accepted: 03/28/2020] [Indexed: 11/22/2022]
Abstract
The obesity and the associated non-communicable diseases (NCDs) are globally increasing in their prevalence. While the modern-day lifestyle required less ventilation of metabolic energy through muscular activities, this lifestyle transition also provided the unlimited accession to foods around the clock, which prolong the daily eating period of foods that contained high calorie and high glycemic load. These situations promote the high continuous flux of carbon substrate availability in mitochondria and induce the indecisive bioenergetic switches. The disrupted bioenergetic milieu increases the uncoupling respiration due to the excess flow of the substrate-derived reducing equivalents and reduces ubiquinones into the respiratory chain. The diversion of the uncoupling proton gradient through adipocyte thermogenesis will then alleviate the damaging effects of free radicals to mitochondria and other organelles. The adaptive induction of white adipose tissues (WAT) to beige adipose tissues (beAT) has shown beneficial effects on glucose oxidation, ROS protection and mitochondrial function preservation through the uncoupling protein 1 (UCP1)-independent thermogenesis of beAT. However, the maladaptive stage can eventually initiate with the persistent unhealthy lifestyles. Under this metabolic gridlock, the low oxygen and pro-inflammatory environments promote the adipose breakdown with sequential metabolic dysregulation, including insulin resistance, systemic inflammation and clinical NCDs progression. It is unlikely that a single intervention can reverse all these complex interactions. A comprehensive protocol that includes dietary, nutritional and all modifiable lifestyle interventions, can be the preferable choice to decelerate, stop, or reverse the NCDs pathophysiologic processes.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Torsak Tippairote
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Olga Borisova
- Odesa I. I. Mechnikov National University, Odessa, Ukraine
| |
Collapse
|
57
|
McNeill BT, Suchacki KJ, Stimson RH. MECHANISMS IN ENDOCRINOLOGY: Human brown adipose tissue as a therapeutic target: warming up or cooling down? Eur J Endocrinol 2021; 184:R243-R259. [PMID: 33729178 PMCID: PMC8111330 DOI: 10.1530/eje-20-1439] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Excessive accumulation of white adipose tissue leads to obesity and its associated metabolic health consequences such as type 2 diabetes and cardiovascular disease. Several approaches to treat or prevent obesity including public health interventions, surgical weight loss, and pharmacological approaches to reduce caloric intake have failed to substantially modify the increasing prevalence of obesity. The (re-)discovery of active brown adipose tissue (BAT) in adult humans approximately 15 years ago led to a resurgence in research into whether BAT activation could be a novel therapy for the treatment of obesity. Upon cold stimulus, BAT activates and generates heat to maintain body temperature, thus increasing energy expenditure. Activation of BAT may provide a unique opportunity to increase energy expenditure without the need for exercise. However, much of the underlying mechanisms surrounding BAT activation are still being elucidated and the effectiveness of BAT as a therapeutic target has not been realised. Research is ongoing to determine how best to expand BAT mass and activate existing BAT; approaches include cold exposure, pharmacological stimulation using sympathomimetics, browning agents that induce formation of thermogenic beige adipocytes in white adipose depots, and the identification of factors secreted by BAT with therapeutic potential. In this review, we discuss the caloric capacity and other metabolic benefits from BAT activation in humans and the role of metabolic tissues such as skeletal muscle in increasing energy expenditure. We discuss the potential of current approaches and the challenges of BAT activation as a novel strategy to treat obesity and metabolic disorders.
Collapse
Affiliation(s)
- Ben T McNeill
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK
| | - Karla J Suchacki
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK
| | - Roland H Stimson
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK
- Correspondence should be addressed to R H Stimson Email
| |
Collapse
|
58
|
Sostre-Colón J, Uehara K, Garcia Whitlock AE, Gavin MJ, Ishibashi J, Potthoff MJ, Seale P, Titchenell PM. Hepatic AKT orchestrates adipose tissue thermogenesis via FGF21-dependent and -independent mechanisms. Cell Rep 2021; 35:109128. [PMID: 34010646 PMCID: PMC8167823 DOI: 10.1016/j.celrep.2021.109128] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 04/02/2021] [Accepted: 04/22/2021] [Indexed: 11/03/2022] Open
Abstract
Organismal stressors such as cold exposure require a systemic response to maintain body temperature. Brown adipose tissue (BAT) is a key thermogenic tissue in mammals that protects against hypothermia in response to cold exposure. Defining the complex interplay of multiple organ systems in this response is fundamental to our understanding of adipose tissue thermogenesis. In this study, we identify a role for hepatic insulin signaling via AKT in the adaptive response to cold stress and show that liver AKT is an essential cell-nonautonomous regulator of adipocyte lipolysis and BAT function. Mechanistically, inhibition of forkhead box O1 (FOXO1) by AKT controls BAT thermogenesis by enhancing catecholamine-induced lipolysis in the white adipose tissue (WAT) and increasing circulating fibroblast growth factor 21 (FGF21). Our data identify a role for hepatic insulin signaling via the AKT-FOXO1 axis in regulating WAT lipolysis, promoting BAT thermogenic capacity, and ensuring a proper thermogenic response to acute cold exposure.
Collapse
Affiliation(s)
- Jaimarie Sostre-Colón
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kahealani Uehara
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Anna E Garcia Whitlock
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew J Gavin
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jeff Ishibashi
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Paul M Titchenell
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
59
|
Chronic cold exposure induces autophagy to promote fatty acid oxidation, mitochondrial turnover, and thermogenesis in brown adipose tissue. iScience 2021; 24:102434. [PMID: 34027318 PMCID: PMC8134067 DOI: 10.1016/j.isci.2021.102434] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/11/2021] [Accepted: 04/13/2021] [Indexed: 01/31/2023] Open
Abstract
Autophagy plays an important role in lipid breakdown, mitochondrial turnover, and mitochondrial function during brown adipose tissue (BAT) activation by thyroid hormone, but its role in BAT during adaptive thermogenesis remains controversial. Here, we examined BAT from mice exposed to 72 h of cold challenge as well as primary brown adipocytes treated with norepinephrine and found increased autophagy as well as increased β-oxidation, mitophagy, mitochondrial turnover, and mitochondrial activity. To further understand the role of autophagy of BAT in vivo, we generated BAT-specific Atg5 knockout (Atg5cKO) mice and exposed them to cold for 72 h. Interestingly, BAT-specific Atg5cKO mice were unable to maintain body temperature after chronic cold exposure and displayed deranged mitochondrial morphology and reactive oxygen species damage in their BAT. Our findings demonstrate the critical role of autophagy in adaptive thermogenesis, fatty acid metabolism, and mitochondrial function in BAT during chronic cold exposure.
Collapse
|
60
|
Ivanova YM, Blondin DP. Examining the benefits of cold exposure as a therapeutic strategy for obesity and type 2 diabetes. J Appl Physiol (1985) 2021; 130:1448-1459. [PMID: 33764169 DOI: 10.1152/japplphysiol.00934.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of metabolic diseases such as obesity and type 2 diabetes are characterized by a progressive dysregulation in energy partitioning, often leading to end-organ complications. One emerging approach proposed to target this metabolic dysregulation is the application of mild cold exposure. In healthy individuals, cold exposure can increase energy expenditure and whole body glucose and fatty acid utilization. Repeated exposures can lower fasting glucose and insulin levels and improve dietary fatty acid handling, even in healthy individuals. Despite its apparent therapeutic potential, little is known regarding the effects of cold exposure in populations for which this stimulation could benefit the most. The few studies available have shown that both acute and repeated exposures to the cold can improve insulin sensitivity and reduce fasting glycemia in individuals with type 2 diabetes. However, critical gaps remain in understanding the prolonged effects of repeated cold exposures on glucose regulation and whole body insulin sensitivity in individuals with metabolic syndrome. Much of the metabolic benefits appear to be attributable to the recruitment of shivering skeletal muscles. However, further work is required to determine whether the broader recruitment of skeletal muscles observed during cold exposure can confer metabolic benefits that surpass what has been historically observed from endurance exercise. In addition, although cold exposure offers unique cardiovascular responses for a physiological stimulus that increases energy expenditure, further work is required to determine how acute and repeated cold exposure can impact cardiovascular responses and myocardial function across a broader scope of individuals.
Collapse
Affiliation(s)
- Yoanna M Ivanova
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada.,Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Denis P Blondin
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada.,Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
61
|
Remie CME, Moonen MPB, Roumans KHM, Nascimento EBM, Gemmink A, Havekes B, Schaart G, Kornips E, Joris PJ, Schrauwen-Hinderling VB, Hoeks J, Kersten S, Hesselink MKC, Phielix E, Lichtenbelt WDVM, Schrauwen P. Metabolic responses to mild cold acclimation in type 2 diabetes patients. Nat Commun 2021; 12:1516. [PMID: 33750795 PMCID: PMC7943816 DOI: 10.1038/s41467-021-21813-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/29/2021] [Indexed: 12/20/2022] Open
Abstract
Mild cold acclimation for 10 days has been previously shown to markedly improve insulin sensitivity in patients with type 2 diabetes. Here we show in a single-arm intervention study (Trialregister.nl ID: NL4469/NTR5711) in nine patients with type 2 diabetes that ten days of mild cold acclimation (16–17 °C) in which observable, overt shivering was prevented, does not result in improved insulin sensitivity, postprandial glucose and lipid metabolism or intrahepatic lipid content and only results in mild effects on overnight fasted fat oxidation, postprandial energy expenditure and aortic augmentation index. The lack of marked metabolic effects in this study is associated with a lack of self-reported shivering and a lack of upregulation of gene expression of muscle activation or muscle contraction pathways in skeletal muscle and suggests that some form of muscle contraction is needed for beneficial effects of mild cold acclimation. Cold acclimation has been shown to have beneficial metabolic effects, including improved insulin sensitivity in patients with type 2 diabetes. Here the authors show that a mild cold acclimation regiment during which overt shivering was prevented did not result in improved insulin sensitivity in a small group of patients with type 2 diabetes.
Collapse
Affiliation(s)
- Carlijn M E Remie
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, MD, The Netherlands
| | - Michiel P B Moonen
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, MD, The Netherlands
| | - Kay H M Roumans
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, MD, The Netherlands
| | - Emmani B M Nascimento
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, MD, The Netherlands
| | - Anne Gemmink
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, MD, The Netherlands
| | - Bas Havekes
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, MD, The Netherlands.,Department of Internal Medicine, Division of Endocrinology and Metabolic Disease, Maastricht University Medical Center, Maastricht, AZ, The Netherlands
| | - Gert Schaart
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, MD, The Netherlands
| | - Esther Kornips
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, MD, The Netherlands
| | - Peter J Joris
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, MD, The Netherlands
| | - Vera B Schrauwen-Hinderling
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, MD, The Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, AZ, The Netherlands
| | - Joris Hoeks
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, MD, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, WE, The Netherlands
| | - Matthijs K C Hesselink
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, MD, The Netherlands
| | - Esther Phielix
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, MD, The Netherlands
| | - Wouter D van Marken Lichtenbelt
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, MD, The Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, MD, The Netherlands.
| |
Collapse
|
62
|
Santhanam P, Rowe SP, Solnes LB, Quainoo B, Ahima RS. A systematic review of imaging studies of human brown adipose tissue. Ann N Y Acad Sci 2021; 1495:5-23. [PMID: 33604891 DOI: 10.1111/nyas.14579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023]
Abstract
Brown adipose tissue (BAT) is involved in energy dissipation and has been linked to weight loss, insulin sensitivity, and reduced risk of atherosclerotic disease. BAT is found most often in the supraclavicular region, as well as mediastinal and paravertebral areas, and it is predominantly seen in young persons. BAT is activated by cold temperature and the sympathetic nervous system. In humans, BAT was initially detected via 2-deoxy-2-[18 F]fluoro-d-glucose (FDG) positron emission tomography/computed tomography (PET/CT), a high-resolution molecular imaging modality used to identify and stage malignancies. Recent studies have shown that BAT can be localized using conventional imaging modalities, such as CT or magnetic resonance imaging, as well as radiotracers used for single-photon emission CT. In this systematic review, we have summarized the evidence for BAT detection in humans using various imaging techniques.
Collapse
Affiliation(s)
- Prasanna Santhanam
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Asthma and Allergy Center, Baltimore, Maryland
| | - Steven P Rowe
- Division of Nuclear Medicine, Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lilja B Solnes
- Division of Nuclear Medicine, Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brittany Quainoo
- Columbian College of Arts and Sciences, George Washington University, Washington, DC
| | - Rexford S Ahima
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Asthma and Allergy Center, Baltimore, Maryland
| |
Collapse
|
63
|
Brown Adipose Tissue and Its Role in Insulin and Glucose Homeostasis. Int J Mol Sci 2021; 22:ijms22041530. [PMID: 33546400 PMCID: PMC7913527 DOI: 10.3390/ijms22041530] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
The increased worldwide prevalence of obesity, insulin resistance, and their related metabolic complications have prompted the scientific world to search for new possibilities to combat obesity. Brown adipose tissue (BAT), due to its unique protein uncoupling protein 1 (UPC1) in the inner membrane of the mitochondria, has been acknowledged as a promising approach to increase energy expenditure. Activated brown adipocytes dissipate energy, resulting in heat production. In other words, BAT burns fat and increases the metabolic rate, promoting a negative energy balance. Moreover, BAT alleviates metabolic complications like dyslipidemia, impaired insulin secretion, and insulin resistance in type 2 diabetes. The aim of this review is to explore the role of BAT in total energy expenditure, as well as lipid and glucose homeostasis, and to discuss new possible activators of brown adipose tissue in humans to treat obesity and metabolic disorders.
Collapse
|
64
|
Central Apolipoprotein A-IV Stimulates Thermogenesis in Brown Adipose Tissue. Int J Mol Sci 2021; 22:ijms22031221. [PMID: 33513710 PMCID: PMC7865537 DOI: 10.3390/ijms22031221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/22/2021] [Indexed: 12/30/2022] Open
Abstract
Stimulation of thermogenesis in brown adipose tissue (BAT) could have far-reaching health benefits in combatting obesity and obesity-related complications. Apolipoprotein A-IV (ApoA-IV), produced by the gut and the brain in the presence of dietary lipids, is a well-known short-term satiating protein. While our previous studies have demonstrated reduced diet-induced thermogenesis in ApoA-IV-deficient mice, it is unclear whether this reduction is due to a loss of peripheral or central effects of ApoA-IV. We hypothesized that central administration of ApoA-IV stimulates BAT thermogenesis and that sympathetic and sensory innervation is necessary for this action. To test this hypothesis, mice with unilateral denervation of interscapular BAT received central injections of recombinant ApoA-IV protein or artificial cerebrospinal fluid (CSF). The effects of central ApoA-IV on BAT temperature and thermogenesis in mice with unilateral denervation of the intrascapular BAT were monitored using transponder probe implantation, qPCR, and immunoblots. Relative to CSF, central administration of ApoA-IV significantly increased temperature and UCP expression in BAT. However, all of these effects were significantly attenuated or prevented in mice with unilateral denervation. Together, these results clearly demonstrate that ApoA-IV regulates BAT thermogenesis centrally, and this effect is mediated through sympathetic and sensory nerves.
Collapse
|
65
|
Monfort-Pires M, U-Din M, Nogueira GA, de Almeida-Faria J, Sidarta-Oliveira D, Sant'Ana MR, De Lima-Júnior JC, Cintra DE, de Souza HP, Ferreira SRG, Sapienza MT, Virtanen KA, Velloso LA. Short Dietary Intervention with Olive Oil Increases Brown Adipose Tissue Activity in Lean but not Overweight Subjects. J Clin Endocrinol Metab 2021; 106:472-484. [PMID: 33180910 DOI: 10.1210/clinem/dgaa824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND The brown adipose tissue (BAT) is a potential target for the treatment of obesity and metabolic disorders. Its activation by cold exposure or adrenergic drugs can increase systemic insulin sensitivity and improve lipid metabolism; however, little is known about the effects of specific dietary components on BAT activity. OBJECTIVES We asked if a short-term (4 weeks) dietary intervention with olive oil could modify BAT activity in lean and overweight/obese volunteers. DESIGN This was a 4-week open clinical trial in which all participants underwent a dietary intervention with extra-virgin olive oil supplementation. As the initial intake of olive oil was controlled all the participants were controls of themselves. RESULTS The intervention resulted in significant increase in blood monounsaturated fatty acid levels, which was accompanied by increased BAT activity in lean but not in overweight/obese volunteers. In the lean group, an increase in leptin was detected after the intervention, and low leptin values at the beginning of the study were predictive of greater BAT activity after intervention. In addition, increase in leptin concentration was associated with increased BAT activity. Three known endogenous mediators of BAT activity, secretin, fibroblast growth factor 21 (FGF21), and 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) were increased by intervention in lean, whereas only secretin and FGF21 were increased in subjects with excessive weight. CONCLUSION This study provides clinical evidence for the impact of monounsaturated fatty acids on BAT activity and an advance in the understanding of the beneficial health effects of olive oil.
Collapse
Affiliation(s)
- Milena Monfort-Pires
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mueez U-Din
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Guilherme A Nogueira
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Juliana de Almeida-Faria
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Davi Sidarta-Oliveira
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marcella Ramos Sant'Ana
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, Limeira, São Paulo, Brazil
| | - José C De Lima-Júnior
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Dennys E Cintra
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, Limeira, São Paulo, Brazil
| | | | - Sandra R G Ferreira
- Department of Epidemiology, School of Public Health - University of São Paulo, São Paulo, SP, Brazil
| | - Marcelo Tatit Sapienza
- Division of Nuclear Medicine, Department of Radiology and Oncology, Medical School of University of São Paulo (FMUSP), São Paulo, Brazil
| | - Kirsi A Virtanen
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland (UEF), Kuopio, Finland
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
66
|
Chen YJ, Lin CW, Peng YJ, Huang CW, Chien YS, Huang TH, Liao PX, Yang WY, Wang MH, Mersmann HJ, Wu SC, Chuang TY, Lin YY, Kuo WH, Ding ST. Overexpression of Adiponectin Receptor 1 Inhibits Brown and Beige Adipose Tissue Activity in Mice. Int J Mol Sci 2021; 22:ijms22020906. [PMID: 33477525 PMCID: PMC7831094 DOI: 10.3390/ijms22020906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 01/05/2023] Open
Abstract
Adult humans and mice possess significant classical brown adipose tissues (BAT) and, upon cold-induction, acquire brown-like adipocytes in certain depots of white adipose tissues (WAT), known as beige adipose tissues or WAT browning/beiging. Activating thermogenic classical BAT or WAT beiging to generate heat limits diet-induced obesity or type-2 diabetes in mice. Adiponectin is a beneficial adipokine resisting diabetes, and causing “healthy obese” by increasing WAT expansion to limit lipotoxicity in other metabolic tissues during high-fat feeding. However, the role of its receptors, especially adiponectin receptor 1 (AdipoR1), on cold-induced thermogenesis in vivo in BAT and in WAT beiging is still elusive. Here, we established a cold-induction procedure in transgenic mice over-expressing AdipoR1 and applied a live 3-D [18F] fluorodeoxyglucose-PET/CT (18F-FDG PET/CT) scanning to measure BAT activity by determining glucose uptake in cold-acclimated transgenic mice. Results showed that cold-acclimated mice over-expressing AdipoR1 had diminished cold-induced glucose uptake, enlarged adipocyte size in BAT and in browned WAT, and reduced surface BAT/body temperature in vivo. Furthermore, decreased gene expression, related to thermogenic Ucp1, BAT-specific markers, BAT-enriched mitochondrial markers, lipolysis and fatty acid oxidation, and increased expression of whitening genes in BAT or in browned subcutaneous inguinal WAT of AdipoR1 mice are congruent with results of PET/CT scanning and surface body temperature in vivo. Moreover, differentiated brown-like beige adipocytes isolated from pre-adipocytes in subcutaneous WAT of transgenic AdipoR1 mice also had similar effects of lowered expression of thermogenic Ucp1, BAT selective markers, and BAT mitochondrial markers. Therefore, this study combines in vitro and in vivo results with live 3-D scanning and reveals one of the many facets of the adiponectin receptors in regulating energy homeostasis, especially in the involvement of cold-induced thermogenesis.
Collapse
MESH Headings
- Adipocytes, Beige/metabolism
- Adipose Tissue, Beige/diagnostic imaging
- Adipose Tissue, Beige/metabolism
- Adipose Tissue, Brown/diagnostic imaging
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/diagnostic imaging
- Adipose Tissue, White/metabolism
- Animals
- Energy Metabolism/genetics
- Gene Expression Regulation, Developmental/genetics
- Mice
- Mice, Transgenic/genetics
- Mice, Transgenic/metabolism
- Mitochondria/genetics
- Obesity/genetics
- Obesity/metabolism
- Obesity/pathology
- Positron-Emission Tomography
- Receptors, Adiponectin/genetics
- Thermogenesis/genetics
- Uncoupling Protein 1/genetics
Collapse
Affiliation(s)
- Yu-Jen Chen
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan; (C.-W.L.); (S.-C.W.)
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.P.); (C.-W.H.); (Y.-S.C.); (T.-H.H.); (P.-X.L.); (W.-Y.Y.); (H.J.M.)
- Correspondence: (Y.-J.C.); (Y.-Y.L.); (W.-H.K.); (S.-T.D.); Tel.: +886-2-3366-4175 (S.-T.D.)
| | - Chiao-Wei Lin
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan; (C.-W.L.); (S.-C.W.)
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.P.); (C.-W.H.); (Y.-S.C.); (T.-H.H.); (P.-X.L.); (W.-Y.Y.); (H.J.M.)
| | - Yu-Ju Peng
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.P.); (C.-W.H.); (Y.-S.C.); (T.-H.H.); (P.-X.L.); (W.-Y.Y.); (H.J.M.)
| | - Chao-Wei Huang
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.P.); (C.-W.H.); (Y.-S.C.); (T.-H.H.); (P.-X.L.); (W.-Y.Y.); (H.J.M.)
| | - Yi-Shan Chien
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.P.); (C.-W.H.); (Y.-S.C.); (T.-H.H.); (P.-X.L.); (W.-Y.Y.); (H.J.M.)
| | - Tzu-Hsuan Huang
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.P.); (C.-W.H.); (Y.-S.C.); (T.-H.H.); (P.-X.L.); (W.-Y.Y.); (H.J.M.)
| | - Pei-Xin Liao
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.P.); (C.-W.H.); (Y.-S.C.); (T.-H.H.); (P.-X.L.); (W.-Y.Y.); (H.J.M.)
| | - Wen-Yuan Yang
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.P.); (C.-W.H.); (Y.-S.C.); (T.-H.H.); (P.-X.L.); (W.-Y.Y.); (H.J.M.)
| | - Mei-Hui Wang
- Institute of Nuclear Energy Research, Taoyuan 325, Taiwan;
| | - Harry J. Mersmann
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.P.); (C.-W.H.); (Y.-S.C.); (T.-H.H.); (P.-X.L.); (W.-Y.Y.); (H.J.M.)
| | - Shinn-Chih Wu
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan; (C.-W.L.); (S.-C.W.)
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.P.); (C.-W.H.); (Y.-S.C.); (T.-H.H.); (P.-X.L.); (W.-Y.Y.); (H.J.M.)
| | - Tai-Yuan Chuang
- Department of Athletics, National Taiwan University, Taipei 10617, Taiwan;
| | - Yuan-Yu Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.P.); (C.-W.H.); (Y.-S.C.); (T.-H.H.); (P.-X.L.); (W.-Y.Y.); (H.J.M.)
- Correspondence: (Y.-J.C.); (Y.-Y.L.); (W.-H.K.); (S.-T.D.); Tel.: +886-2-3366-4175 (S.-T.D.)
| | - Wen-Hung Kuo
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: (Y.-J.C.); (Y.-Y.L.); (W.-H.K.); (S.-T.D.); Tel.: +886-2-3366-4175 (S.-T.D.)
| | - Shih-Torng Ding
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan; (C.-W.L.); (S.-C.W.)
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.P.); (C.-W.H.); (Y.-S.C.); (T.-H.H.); (P.-X.L.); (W.-Y.Y.); (H.J.M.)
- Correspondence: (Y.-J.C.); (Y.-Y.L.); (W.-H.K.); (S.-T.D.); Tel.: +886-2-3366-4175 (S.-T.D.)
| |
Collapse
|
67
|
Ye R, Yan C, Zhou H, Huang Y, Dong M, Zhang H, Jiang X, Yuan S, Chen L, Jiang R, Cheng Z, Zheng K, Zhang Q, Jin W. Brown Adipose Tissue Activation by Cold Treatment Ameliorates Polycystic Ovary Syndrome in Rat. Front Endocrinol (Lausanne) 2021; 12:744628. [PMID: 34721298 PMCID: PMC8552032 DOI: 10.3389/fendo.2021.744628] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disease accompanied by energetic metabolic imbalance. Because the etiology of PCOS is complex and remains unclear, there is no effective and specific treatment for PCOS. It is often accompanied by various metabolic disorders such as obesity, insulin resistances, and others. Activated brown adipose tissue (BAT) consumes excess energy via thermogenesis, which has positive effects on energy metabolism. Our previous research and that of others indicates that BAT activity is decreased in PCOS patients, and exogenous BAT transplantation can improve PCOS rodents. Notably however, it is difficult to apply this therapeutic strategy in clinical practice. Therapeutic strategies of enhancing endogenous BAT activity and restoring whole-body endocrine homeostasis may be more meaningful for PCOS treatment. In the current study, the dehydroepiandrosterone-induced PCOS rat was exposed to low temperature for 20 days. The results show that cold treatment could reverse acyclicity of the estrous cycle and reduce circulating testosterone and luteinizing hormone in PCOS rats by activating endogenous BAT. It also significantly reduced the expression of steroidogenic enzymes as well as inflammatory factors in the ovaries of PCOS rats. Histological investigations revealed that cold treatment could significantly reduce ovary cystic follicles and increase corpus luteum, indicating that ovulation was recovered to a normal level. Concordant with these results, cold treatment also improved fertility in PCOS rats. Collectively, these findings suggest that cold treatment could be a novel therapeutic strategy for PCOS.
Collapse
Affiliation(s)
- Rongcai Ye
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Chunlong Yan
- College of Agriculture, Yanbian University, Yanji, China
| | - Huiqiao Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Huang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Meng Dong
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hanlin Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Jiang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Shouli Yuan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Li Chen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Rui Jiang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Ziyu Cheng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Kexin Zheng
- Institutes of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qiaoli Zhang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
- *Correspondence: Wanzhu Jin, ; Qiaoli Zhang,
| | - Wanzhu Jin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
- *Correspondence: Wanzhu Jin, ; Qiaoli Zhang,
| |
Collapse
|
68
|
Liang J, Jia Y, Yan H, Shen Q, Bian W, Zhao D, Xu Y, Jin Y, Yang M. Prdm16-Mediated Browning is Involved in Resistance to Diet-Induced and Monosodium Glutamate-Induced Obesity. Diabetes Metab Syndr Obes 2021; 14:4351-4360. [PMID: 34737591 PMCID: PMC8558318 DOI: 10.2147/dmso.s335526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To investigate resistance to diet-induced obesity (DIO) and monosodium glutamate (MSG)-induced obesity as well as the underlying mechanisms. METHODS Newborn mice were used to construct DIO and MSG-induced obesity models. Obesity indices, such as body weight, body length, Lee index, body temperature, food intake, fat weight, and leptin level, were examined. Mice that did not exhibit obesity were defined as the obesity-resistant group. The morphological changes of white adipose tissue were observed by hematoxylin and eosin staining, and expression levels of PR domain containing 16 (Prdm16) and uncoupling protein-1 (Ucp-1) in white adipose tissue were measured by Western blot. RESULTS Obesity-resistant mice fed a high-fat diet showed resistance beginning at week 5 along with lower weights and lengths than those in the obesity group from weeks 5 to 12. MSG-induced obesity-resistant mice showed features consistent with resistance to obesity from week 1 along with higher body lengths relative to the obesity group; however, the weight difference was not significant until week 10, when body weights decreased significantly in obesity-resistant mice. The Lee index was lower in obesity-resistant mice than in the obesity group and the normal group, further suggesting obesity resistance. Additionally, obesity-resistant mice showed higher levels of leptin, whereas obese mice induced by a high-fat diet showed leptin resistance. Furthermore, Prdm16 and Ucp-1 levels were both downregulated in the obesity group and upregulated in obesity-resistant mice, showing that white fat browning was highest in obesity-resistant mice. CONCLUSION The phenotypes of mice with DIO and MSG-induced obesity differed. Obesity resistance might be related to Prdm16 and Ucp-1-mediated white adipocyte browning.
Collapse
Affiliation(s)
- Jia Liang
- Department of Pharmacology, Binzhou Medical University, Yantai, People’s Republic of China
| | - Ying Jia
- Department of Pharmacology, Binzhou Medical University, Yantai, People’s Republic of China
| | - Haijing Yan
- Department of Pharmacology, Binzhou Medical University, Yantai, People’s Republic of China
| | - Qingyu Shen
- Department of Pharmacology, Binzhou Medical University, Yantai, People’s Republic of China
| | - Weihua Bian
- Department of Cell Biology, Binzhou Medical University, Yantai, People’s Republic of China
| | - Dongmei Zhao
- Department of Anatomy, Binzhou Medical University, Yantai, People’s Republic of China
| | - Yong Xu
- Department of Pharmacology, Binzhou Medical University, Yantai, People’s Republic of China
| | - Yongjun Jin
- Department of Endocrinology, Binzhou Medical University, Yantai, People’s Republic of China
| | - Meizi Yang
- Department of Pharmacology, Binzhou Medical University, Yantai, People’s Republic of China
- Correspondence: Meizi Yang; Yongjun Jin Department of Pharmacology, Binzhou Medical University, Yantai, 264003, People’s Republic of ChinaTel +86 535 691 9507Fax +86 535 691 3163 Email ;
| |
Collapse
|
69
|
Kaikaew K, Grefhorst A, Visser JA. Sex Differences in Brown Adipose Tissue Function: Sex Hormones, Glucocorticoids, and Their Crosstalk. Front Endocrinol (Lausanne) 2021; 12:652444. [PMID: 33927694 PMCID: PMC8078866 DOI: 10.3389/fendo.2021.652444] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Excessive fat accumulation in the body causes overweight and obesity. To date, research has confirmed that there are two types of adipose tissue with opposing functions: lipid-storing white adipose tissue (WAT) and lipid-burning brown adipose tissue (BAT). After the rediscovery of the presence of metabolically active BAT in adults, BAT has received increasing attention especially since activation of BAT is considered a promising way to combat obesity and associated comorbidities. It has become clear that energy homeostasis differs between the sexes, which has a significant impact on the development of pathological conditions such as type 2 diabetes. Sex differences in BAT activity may contribute to this and, therefore, it is important to address the underlying mechanisms that contribute to sex differences in BAT activity. In this review, we discuss the role of sex hormones in the regulation of BAT activity under physiological and some pathological conditions. Given the increasing number of studies suggesting a crosstalk between sex hormones and the hypothalamic-pituitary-adrenal axis in metabolism, we also discuss this crosstalk in relation to sex differences in BAT activity.
Collapse
Affiliation(s)
- Kasiphak Kaikaew
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Aldo Grefhorst
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, Netherlands
| | - Jenny A. Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- *Correspondence: Jenny A. Visser,
| |
Collapse
|
70
|
Hao M, Guan Z, Gao Y, Xing J, Zhou X, Wang C, Xu J, Li W. Huang-Qi San ameliorates hyperlipidemia with obesity rats via activating brown adipocytes and converting white adipocytes into brown-like adipocytes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 78:153292. [PMID: 32777487 DOI: 10.1016/j.phymed.2020.153292] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/05/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Brown adipose tissue (BAT) activation is a promising therapeutic target to treat hyperlipidemia with obesity. Huang-Qi San (HQS), an traditional Chinese medicine, can ameliorate hyperlipidemia with obesity, but its mechanism of action (MOA) is not understood. PURPOSE To articulate the MOA for HQS with animal models. METHODS The main chemical constituents of HQS were identified by high-performance liquid chromatography (HPLC) based assay. Hyperlipidemia with obesity rat models induced by high-fat diet were employed in the study. The levels of the fasting plasma glucose (FPG), triglyceride (TG), total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C) and high-density lipoprotein-cholesterol (HDL-C) were measured to evaluate the ability of HQS to ameliorate hyperlipidemia with obesity. Pathological analyses of organs were conducted with Oil Red O staining, hematoxylin-eosin (H&E) staining and transmission electron microscopy. The expression of mRNAs related to thermogenic genes, fatty acid oxidation-related genes and mitochondria biogenic genes were examined by quantitative real-time PCR. The protein expressions of uncoupling protein 1 (UCP1) were investigated by immunohistochemistry and western blot. Simultaneously, the protein expression of PR domain containing 16 (PRDM16), ATP synthase F1 subunit alpha (ATP5A) was detected by western blot. RESULTS HQS ameliorates metabolic disorder, lipid ectopic deposition, obesity and maintained glucose homeostasis in hyperlipidemia with obesity rats. HQS can significantly increase the number of mitochondria and reduced the size of the intracellular lipid droplets in BAT, and increase the expression of BAT activation-related genes (UCP1, PGC1α, PGC1β, Prdm16, CD137, TBX1, CPT1a, PPARα, Tfam, NRF1 and NRF2) in vivo. Furthermore, UCP1, PRDM16 and ATP5A proteins of BAT were increased. CONCLUSION HQS can activate BAT and browning of S-WAT (subcutaneous white adipose tissue) through activating the PRDM16/PGC1α/UCP1 pathway, augmenting mitochondrial biogenesis and fatty acid oxidation to increase thermogenesis and energy expenditure, resulting in a significant amelioration of hyperlipidemia with obesity. Therefore, HQS is an effective therapeutic medicine for the treatment of hyperlipidemia with obesity.
Collapse
Affiliation(s)
- Mengjiao Hao
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P.R. China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Zhuoji Guan
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, P.R. China
| | - Ying Gao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Juling Xing
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Xinxin Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Chunyi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P.R. China.
| | - Weimin Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China.
| |
Collapse
|
71
|
Functional characterization of human brown adipose tissue metabolism. Biochem J 2020; 477:1261-1286. [PMID: 32271883 DOI: 10.1042/bcj20190464] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
Abstract
Brown adipose tissue (BAT) has long been described according to its histological features as a multilocular, lipid-containing tissue, light brown in color, that is also responsive to the cold and found especially in hibernating mammals and human infants. Its presence in both hibernators and human infants, combined with its function as a heat-generating organ, raised many questions about its role in humans. Early characterizations of the tissue in humans focused on its progressive atrophy with age and its apparent importance for cold-exposed workers. However, the use of positron emission tomography (PET) with the glucose tracer [18F]fluorodeoxyglucose ([18F]FDG) made it possible to begin characterizing the possible function of BAT in adult humans, and whether it could play a role in the prevention or treatment of obesity and type 2 diabetes (T2D). This review focuses on the in vivo functional characterization of human BAT, the methodological approaches applied to examine these features and addresses critical gaps that remain in moving the field forward. Specifically, we describe the anatomical and biomolecular features of human BAT, the modalities and applications of non-invasive tools such as PET and magnetic resonance imaging coupled with spectroscopy (MRI/MRS) to study BAT morphology and function in vivo, and finally describe the functional characteristics of human BAT that have only been possible through the development and application of such tools.
Collapse
|
72
|
Wang Z, Ning T, Song A, Rutter J, Wang QA, Jiang L. Chronic cold exposure enhances glucose oxidation in brown adipose tissue. EMBO Rep 2020; 21:e50085. [PMID: 33043581 PMCID: PMC7645266 DOI: 10.15252/embr.202050085] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 01/20/2023] Open
Abstract
The cultured brown adipocytes can oxidize glucose in vitro, but it is still not fully clear whether brown adipose tissue (BAT) could completely oxidize glucose in vivo. Although positron emission tomography (PET) with 18F‐fluorodeoxyglucose (18F‐FDG) showed a high level of glucose uptake in the activated BAT, the non‐metabolizable 18F‐FDG cannot fully demonstrate intracellular glucose metabolism. Through in vivo [U‐13C]glucose tracing, here we show that chronic cold exposure dramatically activates glucose oxidation in BAT and the browning/beiging subcutaneous white adipose tissue (sWAT). Specifically, chronic cold exposure enhances glucose flux into the mitochondrial TCA cycle. Metabolic flux analysis models that β3‐adrenergic receptor (β3‐AR) agonist significantly enhances the flux of mitochondrial pyruvate uptake through mitochondrial pyruvate carrier (MPC) in the differentiated primary brown adipocytes. Furthermore, in vivo MPC inhibition blocks cold‐induced glucose oxidation and impairs body temperature maintenance in mice. Together, mitochondrial pyruvate uptake and oxidation serve an important energy source in the chronic cold exposure activated BAT and beige adipose tissue, which supports a role for glucose oxidation in brown fat thermogenesis.
Collapse
Affiliation(s)
- Zhichao Wang
- Department of Molecular & Cellular Endocrinology, Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Tinglu Ning
- Department of Molecular & Cellular Endocrinology, Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Anying Song
- Department of Molecular & Cellular Endocrinology, Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Jared Rutter
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Qiong A Wang
- Department of Molecular & Cellular Endocrinology, Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA.,Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Lei Jiang
- Department of Molecular & Cellular Endocrinology, Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA.,Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| |
Collapse
|
73
|
Xiang AS, Giles C, Loh RK, Formosa MF, Eikelis N, Lambert GW, Meikle PJ, Kingwell BA, Carey AL. Plasma Docosahexaenoic Acid and Eicosapentaenoic Acid Concentrations Are Positively Associated with Brown Adipose Tissue Activity in Humans. Metabolites 2020; 10:metabo10100388. [PMID: 32998426 PMCID: PMC7601733 DOI: 10.3390/metabo10100388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 09/26/2020] [Indexed: 12/12/2022] Open
Abstract
Brown adipose tissue (BAT) activation is a possible therapeutic strategy to increase energy expenditure and improve metabolic homeostasis in obesity. Recent studies have revealed novel interactions between BAT and circulating lipid species—in particular, the non-esterified fatty acid (NEFA) and oxylipin lipid classes. This study aimed to identify individual lipid species that may be associated with cold-stimulated BAT activity in humans. A panel of 44 NEFA and 41 oxylipin species were measured using mass-spectrometry-based lipidomics in the plasma of fourteen healthy male participants before and after 90 min of mild cold exposure. Lipid measures were correlated with BAT activity measured via 18F-fluorodeoxyglucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT), along with norepinephrine (NE) concentration (a surrogate marker of sympathetic activity). The study identified a significant increase in total NEFA concentration following cold exposure that was positively associated with NE concentration change. Individually, 33 NEFA and 11 oxylipin species increased significantly in response to cold exposure. The concentration of the omega-3 NEFA, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) at baseline was significantly associated with BAT activity, and the cold-induced change in 18 NEFA species was significantly associated with BAT activity. No significant associations were identified between BAT activity and oxylipins.
Collapse
Affiliation(s)
- Angie S. Xiang
- Metabolic and Vascular Physiology Laboratory, Baker Heart and Diabetes Institute, Melbourne 3004, Australia; (A.S.X.); (R.K.C.L.); (M.F.F.); (B.A.K.); (A.L.C.)
- Central Clinical School, Monash University, Clayton, Melbourne 3004, Australia
| | - Corey Giles
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne 3004, Australia;
- Correspondence: ; Tel.: +61-3-8532-1536
| | - Rebecca K.C. Loh
- Metabolic and Vascular Physiology Laboratory, Baker Heart and Diabetes Institute, Melbourne 3004, Australia; (A.S.X.); (R.K.C.L.); (M.F.F.); (B.A.K.); (A.L.C.)
- Department of Physiology, Monash University, Clayton, Melbourne 3800, Australia
| | - Melissa F. Formosa
- Metabolic and Vascular Physiology Laboratory, Baker Heart and Diabetes Institute, Melbourne 3004, Australia; (A.S.X.); (R.K.C.L.); (M.F.F.); (B.A.K.); (A.L.C.)
| | - Nina Eikelis
- Iverson Health Innovation Research Institute, Swinburne Institute of Technology, Melbourne 3122, Australia; (N.E.); (G.W.L.)
| | - Gavin W. Lambert
- Iverson Health Innovation Research Institute, Swinburne Institute of Technology, Melbourne 3122, Australia; (N.E.); (G.W.L.)
| | - Peter J. Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne 3004, Australia;
| | - Bronwyn A. Kingwell
- Metabolic and Vascular Physiology Laboratory, Baker Heart and Diabetes Institute, Melbourne 3004, Australia; (A.S.X.); (R.K.C.L.); (M.F.F.); (B.A.K.); (A.L.C.)
- Central Clinical School, Monash University, Clayton, Melbourne 3004, Australia
- Department of Physiology, Monash University, Clayton, Melbourne 3800, Australia
- Research Therapeutic Area, CSL Limited, Parkville 3052, Australia
| | - Andrew L. Carey
- Metabolic and Vascular Physiology Laboratory, Baker Heart and Diabetes Institute, Melbourne 3004, Australia; (A.S.X.); (R.K.C.L.); (M.F.F.); (B.A.K.); (A.L.C.)
- Department of Physiology, Monash University, Clayton, Melbourne 3800, Australia
| |
Collapse
|
74
|
Blondin DP, Nielsen S, Kuipers EN, Severinsen MC, Jensen VH, Miard S, Jespersen NZ, Kooijman S, Boon MR, Fortin M, Phoenix S, Frisch F, Guérin B, Turcotte ÉE, Haman F, Richard D, Picard F, Rensen PCN, Scheele C, Carpentier AC. Human Brown Adipocyte Thermogenesis Is Driven by β2-AR Stimulation. Cell Metab 2020; 32:287-300.e7. [PMID: 32755608 DOI: 10.1016/j.cmet.2020.07.005] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 04/10/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
Stimulation of brown adipose tissue (BAT) thermogenesis in humans has emerged as an attractive target to improve metabolic health. Pharmacological stimulations targeting the β3-adrenergic receptor (β3-AR), the adrenergic receptor believed to mediate BAT thermogenesis, have historically performed poorly in human clinical trials. Here we report that, in contrast to rodents, human BAT thermogenesis is not mediated by the stimulation of β3-AR. Oral administration of the β3-AR agonist mirabegron only elicited increases in BAT thermogenesis when ingested at the maximal allowable dose. This led to off-target binding to β1-AR and β2-AR, thereby increasing cardiovascular responses and white adipose tissue lipolysis, respectively. ADRB2 was co-expressed with UCP1 in human brown adipocytes. Pharmacological stimulation and inhibition of the β2-AR as well as knockdown of ADRB1, ADRB2, or ADRB3 in human brown adipocytes all confirmed that BAT lipolysis and thermogenesis occur through β2-AR signaling in humans (ClinicalTrials.govNCT02811289).
Collapse
Affiliation(s)
- Denis P Blondin
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada; Department of Physiology-Pharmacology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Soren Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Righospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Eline N Kuipers
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Mai C Severinsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Righospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Verena H Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Righospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Stéphanie Miard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
| | - Naja Z Jespersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Righospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Mariëtte R Boon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Mélanie Fortin
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Serge Phoenix
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada; Department of Nuclear Medicine and Radiobiology, Centre d'Imagerie Moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Frédérique Frisch
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Centre d'Imagerie Moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Éric E Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre d'Imagerie Moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - François Haman
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
| | - Frédéric Picard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Camilla Scheele
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Righospitalet, University Hospital of Copenhagen, Copenhagen, Denmark.
| | - André C Carpentier
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
75
|
UCP1-independent thermogenesis. Biochem J 2020; 477:709-725. [PMID: 32059055 DOI: 10.1042/bcj20190463] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/24/2022]
Abstract
Obesity results from energy imbalance, when energy intake exceeds energy expenditure. Brown adipose tissue (BAT) drives non-shivering thermogenesis which represents a powerful mechanism of enhancing the energy expenditure side of the energy balance equation. The best understood thermogenic system in BAT that evolved to protect the body from hypothermia is based on the uncoupling of protonmotive force from oxidative phosphorylation through the actions of uncoupling protein 1 (UCP1), a key regulator of cold-mediated thermogenesis. Similarly, energy expenditure is triggered in response to caloric excess, and animals with reduced thermogenic fat function can succumb to diet-induced obesity. Thus, it was surprising when inactivation of Ucp1 did not potentiate diet-induced obesity. In recent years, it has become clear that multiple thermogenic mechanisms exist, based on ATP sinks centered on creatine, lipid, or calcium cycling, along with Fatty acid-mediated UCP1-independent leak pathways driven by the ADP/ATP carrier (AAC). With a key difference between cold- and diet-induced thermogenesis being the dynamic changes in purine nucleotide (primarily ATP) levels, ATP-dependent thermogenic pathways may play a key role in diet-induced thermogenesis. Additionally, the ubiquitous expression of AAC may facilitate increased energy expenditure in many cell types, in the face of over feeding. Interest in UCP1-independent energy expenditure has begun to showcase the therapeutic potential that lies in refining our understanding of the diversity of biochemical pathways controlling thermogenic respiration.
Collapse
|
76
|
Maurer S, Harms M, Boucher J. The colorful versatility of adipocytes: white-to-brown transdifferentiation and its therapeutic potential in humans. FEBS J 2020; 288:3628-3646. [PMID: 32621398 DOI: 10.1111/febs.15470] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 12/22/2022]
Abstract
Brown and brite adipocytes contribute to energy expenditure through nonshivering thermogenesis. Though these cell types are thought to arise primarily from the de novo differentiation of precursor cells, their abundance is also controlled through the transdifferentiation of mature white adipocytes. Here, we review recent advances in our understanding of the regulation of white-to-brown transdifferentiation, as well as the conversion of brown and brite adipocytes to dormant, white-like fat cells. Converting mature white adipocytes into brite cells or reactivating dormant brown and brite adipocytes has emerged as a strategy to ameliorate human metabolic disorders. We analyze the evidence of learning from mice and how they translate to humans to ultimately scrutinize the relevance of this concept. Moreover, we estimate that converting a small percentage of existing white fat mass in obese subjects into active brite adipocytes could be sufficient to achieve meaningful benefits in metabolism. In conclusion, novel browning agents have to be identified before adipocyte transdifferentiation can be realized as a safe and efficacious therapy.
Collapse
Affiliation(s)
- Stefanie Maurer
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Matthew Harms
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jeremie Boucher
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Lundberg Laboratory for Diabetes Research, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
77
|
Lu KY, Primus Dass KT, Lin SZ, Harn HJ, Liu SP. The application of stem cell therapy and brown adipose tissue transplantation in metabolic disorders. Cytotherapy 2020; 22:521-528. [PMID: 32690364 DOI: 10.1016/j.jcyt.2020.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/22/2020] [Accepted: 06/16/2020] [Indexed: 02/08/2023]
Abstract
The discovery of brown fat in adult humans has led to increased research of the thermogenic function of this tissue in various metabolic diseases. In addition, high levels of brown fat have been correlated with lower body mass index values. Therefore, increasing brown fat mass and/or activity through methods such as the browning of white fat is considered a promising strategy to prevent and treat obesity-associated diseases. Cell-based approaches using mesenchymal stromal cells and brown adipose tissue (BAT) have been utilized to directly increase BAT mass/activity through cell and tissue implantation into animals. In addition, recent studies evaluating the transplantation of human embryonic stem cells and induced pluripotent stem (iPS) cells have shown promising results in terms of positive metabolic function. In this comprehensive review, we provide a summary of the research over the past 10 years with regard to stem cell therapy and brown fat tissue transplantation for the effective treatment of metabolic syndrome. Recent advancements in stem cell methods have allowed for the production of brown adipocytes from human iPS cells, which represent an unlimited source of cellular material with which to study adipocyte development. In addition, this process is expected to be used to further explore drug- and cell-based therapies to treat obesity-related metabolic complications.
Collapse
Affiliation(s)
- Kang-Yun Lu
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien, Taiwan; Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | | | - Shinn-Zong Lin
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien, Taiwan; Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Horng-Jyh Harn
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien, Taiwan; Department of Pathology, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan.
| | - Shih-Ping Liu
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan; Center for Translational Medicine, China Medical University and Hospital, Taichung, Taiwan.
| |
Collapse
|
78
|
Mengel LA, Seidl H, Brandl B, Skurk T, Holzapfel C, Stecher L, Claussnitzer M, Hauner H. Gender Differences in the Response to Short-term Cold Exposure in Young Adults. J Clin Endocrinol Metab 2020; 105:5798990. [PMID: 32144431 DOI: 10.1210/clinem/dgaa110] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/02/2020] [Indexed: 02/03/2023]
Abstract
CONTEXT Cold exposure (CE) has been shown to enhance energy expenditure by activating brown adipose tissue thermogenesis and metabolism in humans. However, it remains to be elucidated if there are gender-specific differences in cold-induced thermogenesis and metabolism. OBJECTIVE To study the impact of mild CE on resting energy expenditure (REE) and metabolism in males compared with females. SETTING A cross-sectional study. PARTICIPANTS 117 healthy young Caucasians participated in this study (58 males). Mean age was 25.1 ± 3.6 years and mean body mass index 22.3 ± 1.7 kg/m2. INTERVENTION Participants underwent a short-term CE using water perfused mattresses to activate nonshivering thermogenesis. MAIN OUTCOME MEASURES REE was assessed before and 2 hours after CE followed by blood sampling. Selected metabolites and hormones were measured. Skin temperatures were monitored at various sites throughout the experiment. RESULTS Participants showed a significant increase in REE after CE (6.5%, P < .001). This increase did not differ between genders (P = .908). However, there were differences between males and females in changes of plasma glucose (-5.1% versus -7.4%, P = .024), leptin (-14.3% versus -30.1%, P < .001) and adiponectin (5.4% versus 12.8%, P = .018) after CE. We observed a significant decrease of the supraclavicular skin temperature in men (-0.3%, P = .034), but not in women (0.3%, P = .326)(P = .019 between genders). CONCLUSIONS We did not observe a difference in the thermogenic response, measured as change of REE, to CE in women compared with men. However, we found that some metabolic and hormonal changes were more pronounced in women than in men suggesting a gender-specific response to cold.
Collapse
Affiliation(s)
- Laura A Mengel
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin, ZIEL-Institute for Food and Health, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Hatti Seidl
- Institute of Nutritional Medicine, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Beate Brandl
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin, ZIEL-Institute for Food and Health, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Thomas Skurk
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin, ZIEL-Institute for Food and Health, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Christina Holzapfel
- Institute of Nutritional Medicine, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Lynne Stecher
- Institute of Nutritional Medicine, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Melina Claussnitzer
- Broad Institute of MIT and Harvard, Cambridge, MA
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
- Institute of Nutritional Science, University of Hohenheim, Germany
- Harvard Medical School, Harvard University, Boston, MA
| | - Hans Hauner
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin, ZIEL-Institute for Food and Health, Technical University of Munich, Freising-Weihenstephan, Germany
- Institute of Nutritional Medicine, TUM School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
79
|
Yau WW, Yen PM. Thermogenesis in Adipose Tissue Activated by Thyroid Hormone. Int J Mol Sci 2020; 21:ijms21083020. [PMID: 32344721 PMCID: PMC7215895 DOI: 10.3390/ijms21083020] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Thermogenesis is the production of heat that occurs in all warm-blooded animals. During cold exposure, there is obligatory thermogenesis derived from body metabolism as well as adaptive thermogenesis through shivering and non-shivering mechanisms. The latter mainly occurs in brown adipose tissue (BAT) and muscle; however, white adipose tissue (WAT) also can undergo browning via adrenergic stimulation to acquire thermogenic potential. Thyroid hormone (TH) also exerts profound effects on thermoregulation, as decreased body temperature and increased body temperature occur during hypothyroidism and hyperthyroidism, respectively. We have termed the TH-mediated thermogenesis under thermoneutral conditions “activated” thermogenesis. TH acts on the brown and/or white adipose tissues to induce uncoupled respiration through the induction of the uncoupling protein (Ucp1) to generate heat. TH acts centrally to activate the BAT and browning through the sympathetic nervous system. However, recent studies also show that TH acts peripherally on the BAT to directly stimulate Ucp1 expression and thermogenesis through an autophagy-dependent mechanism. Additionally, THs can exert Ucp1-independent effects on thermogenesis, most likely through activation of exothermic metabolic pathways. This review summarizes thermogenic effects of THs on adipose tissues.
Collapse
Affiliation(s)
- Winifred W Yau
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke NUS Medical School, Singapore 169857, Singapore
| | - Paul M Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke NUS Medical School, Singapore 169857, Singapore
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27708, USA
| |
Collapse
|
80
|
McInnis K, Haman F, Doucet É. Humans in the cold: Regulating energy balance. Obes Rev 2020; 21:e12978. [PMID: 31863637 DOI: 10.1111/obr.12978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/31/2022]
Abstract
For humans to maintain a stable core temperature in cold environments, an increase in energy expenditure (EE) is required. However, little is known about how cold stimulus impacts energy balance as a whole, as energy intake (EI) has been largely overlooked. This review focuses on the current state of knowledge regarding how cold exposure (CE) impacts both EE and EI, while highlighting key gaps and shortcomings in the literature. Animal models clearly reveal that CE produces large increases in EE, while decreasing environmental temperatures results in a significant negative dose-response effect in EI (r=-.787, P<.001), meaning animals eat more as temperature decreases. In humans, multiple methods are used to administer cold stimuli, which result in consistent yet quantitatively small increases in EE. However, only two studies have measured ad libitum food intake in combination with acute CE in humans. Chronic CE (i.e., cold acclimation) studies have been shown to produce minimal changes in body weight, with an average compensation of ~126%. Although more studies are required to investigate how cold impacts EI in humans, results presented in this review warrant caution before presenting or considering CE as a potential adjunct to weight loss strategies.
Collapse
Affiliation(s)
- Kurt McInnis
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - François Haman
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Éric Doucet
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| |
Collapse
|
81
|
Heinonen S, Jokinen R, Rissanen A, Pietiläinen KH. White adipose tissue mitochondrial metabolism in health and in obesity. Obes Rev 2020; 21:e12958. [PMID: 31777187 DOI: 10.1111/obr.12958] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
White adipose tissue is one of the largest organs of the body. It plays a key role in whole-body energy status and metabolism; it not only stores excess energy but also secretes various hormones and metabolites to regulate body energy balance. Healthy adipose tissue capable of expanding is needed for metabolic well-being and to prevent accumulation of triglycerides to other organs. Mitochondria govern several important functions in the adipose tissue. We review the derangements of mitochondrial function in white adipose tissue in the obese state. Downregulation of mitochondrial function or biogenesis in the white adipose tissue is a central driver for obesity-associated metabolic diseases. Mitochondrial functions compromised in obesity include oxidative functions and renewal and enlargement of the adipose tissue through recruitment and differentiation of adipocyte progenitor cells. These changes adversely affect whole-body metabolic health. Dysfunction of the white adipose tissue mitochondria in obesity has long-term consequences for the metabolism of adipose tissue and the whole body. Understanding the pathways behind mitochondrial dysfunction may help reveal targets for pharmacological or nutritional interventions that enhance mitochondrial biogenesis or function in adipose tissue.
Collapse
Affiliation(s)
- Sini Heinonen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riikka Jokinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Aila Rissanen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Psychiatry, Helsinki University Hospital, Helsinki, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
82
|
Wu M, Junker D, Branca RT, Karampinos DC. Magnetic Resonance Imaging Techniques for Brown Adipose Tissue Detection. Front Endocrinol (Lausanne) 2020; 11:421. [PMID: 32849257 PMCID: PMC7426399 DOI: 10.3389/fendo.2020.00421] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) methods can non-invasively assess brown adipose tissue (BAT) structure and function. Recently, MRI and MRS have been proposed as a means to differentiate BAT from white adipose tissue (WAT) and to extract morphological and functional information on BAT inaccessible by other means. Specifically, proton MR (1H) techniques, such as proton density fat fraction mapping, diffusion imaging, and intermolecular multiple quantum coherence imaging, have been employed to access BAT microstructure; MR thermometry, relaxometry, and MRI and MRS with 31P, 2H, 13C, and 129Xe have shown to provide complementary information on BAT function. The purpose of the present review is to provide a comprehensive overview of MR imaging and spectroscopy techniques used to detect BAT in rodents and in humans. The present work discusses common challenges of current methods and provides an outlook on possible future directions of using MRI and MRS in BAT studies.
Collapse
Affiliation(s)
- Mingming Wu
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
- *Correspondence: Mingming Wu
| | - Daniela Junker
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Rosa Tamara Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
83
|
Saito M, Matsushita M, Yoneshiro T, Okamatsu-Ogura Y. Brown Adipose Tissue, Diet-Induced Thermogenesis, and Thermogenic Food Ingredients: From Mice to Men. Front Endocrinol (Lausanne) 2020; 11:222. [PMID: 32373072 PMCID: PMC7186310 DOI: 10.3389/fendo.2020.00222] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/27/2020] [Indexed: 12/28/2022] Open
Abstract
Since the recent rediscovery of brown adipose tissue (BAT) in adult humans, this thermogenic tissue has been attracting increasing interest. The inverse relationship between BAT activity and body fatness suggests that BAT, because of its energy dissipating activity, is protective against body fat accumulation. Cold exposure activates and recruits BAT, resulting in increased energy expenditure and decreased body fatness. The stimulatory effects of cold exposure are mediated through transient receptor potential (TRP) channels and the sympathetic nervous system (SNS). Most TRP members also function as chemesthetic receptors for various food ingredients, and indeed, agonists of TRP vanilloid 1 such as capsaicin and its analog capsinoids mimic the effects of cold exposure to decrease body fatness through the activation and recruitment of BAT. The antiobesity effect of other food ingredients including tea catechins may be attributable, at least in part, to the activation of the TRP-SNS-BAT axis. BAT is also involved in the facultative thermogenesis induced by meal intake, referred to as diet-induced thermogenesis (DIT), which is a significant component of the total energy expenditure in our daily lives. Emerging evidence suggests a crucial role for the SNS in BAT-associated DIT, particularly during the early phase, but several gut-derived humoral factors may also participate in meal-induced BAT activation. One intriguing factor is bile acids, which activate BAT directly through Takeda G-protein receptor 5 (TGR5) in brown adipocytes. Given the apparent beneficial effects of some TRP agonists and bile acids on whole-body substrate and energy metabolism, the TRP/TGR5-BAT axis represents a promising target for combating obesity and related metabolic disorders in humans.
Collapse
Affiliation(s)
- Masayuki Saito
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- *Correspondence: Masayuki Saito
| | | | - Takeshi Yoneshiro
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
84
|
Hamaoka T, Nirengi S, Fuse S, Amagasa S, Kime R, Kuroiwa M, Endo T, Sakane N, Matsushita M, Saito M, Yoneshiro T, Kurosawa Y. Near-Infrared Time-Resolved Spectroscopy for Assessing Brown Adipose Tissue Density in Humans: A Review. Front Endocrinol (Lausanne) 2020; 11:261. [PMID: 32508746 PMCID: PMC7249345 DOI: 10.3389/fendo.2020.00261] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/08/2020] [Indexed: 01/24/2023] Open
Abstract
Brown adipose tissue (BAT) mediates adaptive thermogenesis upon food intake and cold exposure, thus potentially contributing to the prevention of lifestyle-related diseases. 18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) with computed tomography (CT) (18FDG-PET/CT) is a standard method for assessing BAT activity and volume in humans. 18FDG-PET/CT has several limitations, including high device cost and ionizing radiation and acute cold exposure necessary to maximally stimulate BAT activity. In contrast, near-infrared spectroscopy (NIRS) has been used for measuring changes in O2-dependent light absorption in the tissue in a non-invasive manner, without using radiation. Among NIRS, time-resolved NIRS (NIRTRS) can quantify the concentrations of oxygenated and deoxygenated hemoglobin ([oxy-Hb] and [deoxy-Hb], respectively) by emitting ultrashort (100 ps) light pulses and counts photons, which are scattered and absorbed in the tissue. The basis for assessing BAT density (BAT-d) using NIRTRS is that the vascular density in the supraclavicular region, as estimated using Hb concentration, is higher in BAT than in white adipose tissue. In contrast, relatively low-cost continuous wavelength NIRS (NIRCWS) is employed for measuring relative changes in oxygenation in tissues. In this review, we provide evidence for the validity of NIRTRS and NIRCWS in estimating human BAT characteristics. The indicators (IndNIRS) examined were [oxy-Hb]sup, [deoxy-Hb]sup, total hemoglobin [total-Hb]sup, Hb O2 saturation (StO2sup), and reduced scattering coefficient ( μs sup' ) in the supraclavicular region, as determined by NIRTRS, and relative changes in corresponding parameters, as determined by NIRCWS. The evidence comprises the relationships between the IndNIRS investigated and those determined by 18FDG-PET/CT; the correlation between the IndNIRS and cold-induced thermogenesis; the relationship of the IndNIRS to parameters measured by 18FDG-PET/CT, which responded to seasonal temperature fluctuations; the relationship of the IndNIRS and plasma lipid metabolites; the analogy of the IndNIRS to chronological and anthropometric data; and changes in the IndNIRS following thermogenic food supplementation. The [total-Hb]sup and [oxy-Hb]sup determined by NIRTRS, but not parameters determined by NIRCWS, exhibited significant correlations with cold-induced thermogenesis parameters and plasma androgens in men in winter or analogies to 18FDG-PET. We conclude that NIRTRS can provide useful information for assessing BAT-d in a simple, rapid, non-invasive way, although further validation study is still needed.
Collapse
Affiliation(s)
- Takafumi Hamaoka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, Japan
- *Correspondence: Takafumi Hamaoka
| | - Shinsuke Nirengi
- Division of Preventive Medicine, National Hospital Organization Kyoto Medical Center, Clinical Research Institute, Kyoto, Japan
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Columbus, OH, United States
| | - Sayuri Fuse
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, Japan
| | - Shiho Amagasa
- Department of Preventive Medicine and Public Health, Tokyo Medical University, Tokyo, Japan
| | - Ryotaro Kime
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, Japan
| | - Miyuki Kuroiwa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, Japan
| | - Tasuki Endo
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, Japan
| | - Naoki Sakane
- Division of Preventive Medicine, National Hospital Organization Kyoto Medical Center, Clinical Research Institute, Kyoto, Japan
| | | | - Masayuki Saito
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Yoneshiro
- Diabetes Center, University of California San Francisco, San Francisco, CA, United States
| | - Yuko Kurosawa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
85
|
Scheele C, Wolfrum C. Brown Adipose Crosstalk in Tissue Plasticity and Human Metabolism. Endocr Rev 2020; 41:bnz007. [PMID: 31638161 PMCID: PMC7006230 DOI: 10.1210/endrev/bnz007] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022]
Abstract
Infants rely on brown adipose tissue (BAT) as a primary source of thermogenesis. In some adult humans, residuals of brown adipose tissue are adjacent to the central nervous system and acute activation increases metabolic rate. Brown adipose tissue (BAT) recruitment occurs during cold acclimation and includes secretion of factors, known as batokines, which target several different cell types within BAT, and promote adipogenesis, angiogenesis, immune cell interactions, and neurite outgrowth. All these processes seem to act in concert to promote an adapted BAT. Recent studies have also provided exciting data on whole body metabolic regulation with a broad spectrum of mechanisms involving BAT crosstalk with liver, skeletal muscle, and gut as well as the central nervous system. These widespread interactions might reflect the property of BAT of switching between an active thermogenic state where energy is highly consumed and drained from the circulation, and the passive thermoneutral state, where energy consumption is turned off. (Endocrine Reviews 41: XXX - XXX, 2020).
Collapse
Affiliation(s)
- Camilla Scheele
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, Denmark
| | - Christian Wolfrum
- Institute of Food, Nutrition, and Health, ETH Zürich, Schorenstrasse, Schwerzenbach, Switzerland
| |
Collapse
|
86
|
Pan R, Zhu X, Maretich P, Chen Y. Metabolic Improvement via Enhancing Thermogenic Fat-Mediated Non-shivering Thermogenesis: From Rodents to Humans. Front Endocrinol (Lausanne) 2020; 11:633. [PMID: 33013706 PMCID: PMC7511774 DOI: 10.3389/fendo.2020.00633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/05/2020] [Indexed: 12/28/2022] Open
Abstract
Brown and beige adipose tissues play a large role in non-shivering thermogenesis (NST) in mammals, and subsequently have been studied for decades as potential therapeutic targets to treat obesity and its related metabolic diseases. However, the mechanistic regulation of brown/beige adipose tissue induction and maintenance in humans is very limited due to the ethical reasons. In fact, metabolic signaling has primarily been investigated using rodent models. A better understanding of non-shivering thermogenesis in humans is thus vital and urgent in order to treat obesity by targeting human brown adipose tissue (BAT). In this review, we summarize the anatomical and physiological differences between rodent and human BAT, current useful and mostly non-invasive methods in studying human BAT, as well as recent advancements targeting thermogenic adipocytes as a means to combat metabolic diseases in humans. Furthermore, we also discuss several novel relevant strategies of therapeutic interventions, which has been attempted in rodent experiments, and possible future investigations in humans in this field.
Collapse
Affiliation(s)
- Ruping Pan
- Department of Nuclear Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Pema Maretich
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Yong Chen
- Department of Endocrinology, Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yong Chen
| |
Collapse
|
87
|
McNeill BT, Morton NM, Stimson RH. Substrate Utilization by Brown Adipose Tissue: What's Hot and What's Not? Front Endocrinol (Lausanne) 2020; 11:571659. [PMID: 33101206 PMCID: PMC7545119 DOI: 10.3389/fendo.2020.571659] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
Our understanding of brown adipose tissue (BAT) function in humans has increased rapidly over the past 10 years. This is predominantly due to the development of powerful non-invasive imaging techniques such as positron emission tomography that can quantify BAT mass and function using metabolic tracers. Activation of BAT during cold-induced thermogenesis is an effective way to dissipate energy to generate heat and requires utilization of multiple energy substrates for optimal function. This has led to interest in the activation of BAT as a potential therapeutic target for type 2 diabetes, dyslipidaemia, and obesity. Here, we provide an overview of the current understanding of BAT substrate utilization in humans and highlight additional mechanisms found in rodents, where BAT more prominently contributes to energy expenditure. During thermogenesis, BAT demonstrates substantially increased glucose uptake which appears to be critical for BAT function. However, glucose is not fully oxidized, with a large proportion converted to lactate. The primary energy substrate for thermogenesis is fatty acids, released from brown adipocyte triglyceride stores. Active BAT also sequesters circulating lipids to sustain optimal thermogenesis. Recent evidence reveals that metabolic intermediates from the tricarboxylic acid cycle and glycolytic pathways also play a critical role in BAT function. Understanding the role of these metabolites in regulating thermogenesis and whole body substrate utilization may elucidate novel strategies for therapeutic BAT activation.
Collapse
|
88
|
Oreskovich SM, Ong FJ, Ahmed BA, Konyer NB, Blondin DP, Gunn E, Singh NP, Noseworthy MD, Haman F, Carpentier AC, Punthakee Z, Steinberg GR, Morrison KM. MRI Reveals Human Brown Adipose Tissue Is Rapidly Activated in Response to Cold. J Endocr Soc 2019; 3:2374-2384. [PMID: 31745532 PMCID: PMC6855213 DOI: 10.1210/js.2019-00309] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/08/2019] [Indexed: 01/05/2023] Open
Abstract
CONTEXT In rodents, cold exposure induces the activation of brown adipose tissue (BAT) and the induction of intracellular triacylglycerol (TAG) lipolysis. However, in humans, the kinetics of supraclavicular (SCV) BAT activation and the potential importance of TAG stores remain poorly defined. OBJECTIVE To determine the time course of BAT activation and changes in intracellular TAG using MRI assessment of the SCV (i.e., BAT depot) and fat in the posterior neck region (i.e., non-BAT). DESIGN Cross-sectional. SETTING Clinical research center. PATIENTS OR OTHER PARTICIPANTS Twelve healthy male volunteers aged 18 to 29 years [body mass index = 24.7 ± 2.8 kg/m2 and body fat percentage = 25.0% ± 7.4% (both, mean ± SD)]. INTERVENTIONS Standardized whole-body cold exposure (180 minutes at 18°C) and immediate rewarming (30 minutes at 32°C). MAIN OUTCOME MEASURES Proton density fat fraction (PDFF) and T2* of the SCV and posterior neck fat pads. Acquisitions occurred at 5- to 15-minute intervals during cooling and subsequent warming. RESULTS SCV PDFF declined significantly after only 10 minutes of cold exposure [-1.6% (SE: 0.44%; P = 0.007)] and continued to decline until 35 minutes, after which time it remained stable until 180 minutes. A similar time course was also observed for SCV T2*. In the posterior neck fat (non-BAT), there were no cold-induced changes in PDFF or T2*. Rewarming did not result in a change in SCV PDFF or T2*. CONCLUSIONS The rapid cold-induced decline in SCV PDFF suggests that in humans BAT is activated quickly in response to cold and that TAG is a primary substrate.
Collapse
Affiliation(s)
- Stephan M Oreskovich
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Frank J Ong
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Basma A Ahmed
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Norman B Konyer
- Imaging Research Centre, St. Joseph’s Healthcare, Hamilton, Ontario, Canada
| | - Denis P Blondin
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Elizabeth Gunn
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Nina P Singh
- Department of Radiology, McMaster University Medical Center, Hamilton, Ontario, Canada
| | - Michael D Noseworthy
- Imaging Research Centre, St. Joseph’s Healthcare, Hamilton, Ontario, Canada
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada
- McMaster School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Francois Haman
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Andre C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Zubin Punthakee
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katherine M Morrison
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
89
|
Gomez-Hernandez A, Lopez-Pastor AR, Rubio-Longas C, Majewski P, Beneit N, Viana-Huete V, García-Gómez G, Fernandez S, Hribal ML, Sesti G, Escribano O, Benito M. Specific knockout of p85α in brown adipose tissue induces resistance to high-fat diet-induced obesity and its metabolic complications in male mice. Mol Metab 2019; 31:1-13. [PMID: 31918912 PMCID: PMC6977168 DOI: 10.1016/j.molmet.2019.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/14/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022] Open
Abstract
Objective An increase in mass and/or brown adipose tissue (BAT) functionality leads to an increase in energy expenditure, which may be beneficial for the prevention and treatment of obesity. Moreover, distinct class I PI3K isoforms can participate in metabolic control as well as in systemic dysfunctions associated with obesity. In this regard, we analyzed in vivo whether the lack of p85α in BAT (BATp85αKO) could modulate the activity and insulin signaling of this tissue, thereby improving diet-induced obesity and its associated metabolic complications. Methods We generated BATp85αKO mice using Cre-LoxP technology, specifically deleting p85α in a conditional manner. To characterize this new mouse model, we used mice of 6 and 12 months of age. In addition, BATp85αKO mice were submitted to a high-fat diet (HFD) to challenge BAT functionality. Results Our results suggest that the loss of p85α in BAT improves its thermogenic functionality, high-fat diet–induced adiposity and body weight, insulin resistance, and liver steatosis. The potential mechanisms involved in the improvement of obesity include (1) increased insulin signaling and lower activation of JNK in BAT, (2) enhanced insulin receptor isoform B (IRB) expression and association with IRS-1 in BAT, (3) lower production of proinflammatory cytokines by the adipose organ, (4) increased iWAT browning, and (5) improved liver steatosis. Conclusions Our results provide new mechanisms involved in the resistance to obesity development, supporting the hypothesis that the gain of BAT activity induced by the lack of p85α has a direct impact on the prevention of diet-induced obesity and its associated metabolic complications. The lack of p85α in brown adipose tissue confers obesity resistance. BATp85αKO mice show improved thermogenic function, fatty liver and insulin resistance. High IRB levels in BAT and iWAT browning might explain the improvement of obesity. Increase in BAT functionality has a direct impact on the prevention of obesity.
Collapse
Affiliation(s)
- Almudena Gomez-Hernandez
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Spain; Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Spain.
| | - Andrea R Lopez-Pastor
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Spain; Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.
| | - Carlota Rubio-Longas
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Spain.
| | - Patrik Majewski
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Spain.
| | - Nuria Beneit
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Spain; Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.
| | - Vanesa Viana-Huete
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Spain; Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.
| | - Gema García-Gómez
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Spain.
| | - Silvia Fernandez
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Spain.
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Italy.
| | - Giorgio Sesti
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Italy.
| | - Oscar Escribano
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Spain; Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Spain.
| | - Manuel Benito
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Spain; Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Spain.
| |
Collapse
|
90
|
Frankl J, Sherwood A, Clegg DJ, Scherer PE, Öz OK. Imaging Metabolically Active Fat: A Literature Review and Mechanistic Insights. Int J Mol Sci 2019; 20:E5509. [PMID: 31694216 PMCID: PMC6862590 DOI: 10.3390/ijms20215509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Currently, obesity is one of the leading causes death in the world. Shortly before 2000, researchers began describing metabolically active adipose tissue on cancer-surveillance 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in adult humans. This tissue generates heat through mitochondrial uncoupling and functions similar to classical brown and beige adipose tissue in mice. Despite extensive research, human brown/beige fat's role in resistance to obesity in humans has not yet been fully delineated. FDG uptake is the de facto gold standard imaging technique when studying brown adipose tissue, although it has not been rigorously compared to other techniques. We, therefore, present a concise review of established and emerging methods to image brown adipose tissue activity in humans. Reviewed modalities include anatomic imaging with CT and magnetic resonance imaging (MRI); molecular imaging with FDG, fatty acids, and acetate; and emerging techniques. FDG-PET/CT is the most commonly used modality because of its widespread use in cancer imaging, but there are mechanistic reasons to believe other radiotracers may be more sensitive and accurate at detecting brown adipose tissue activity. Radiation-free modalities may help the longitudinal study of brown adipose tissue activity in the future.
Collapse
Affiliation(s)
- Joseph Frankl
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (J.F.); (A.S.)
| | - Amber Sherwood
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (J.F.); (A.S.)
| | - Deborah J. Clegg
- College of Nursing and Health Professions, Drexel University, 10th Floor, Room 1092, 1601 Cherry Street, Mail Stop 10501, Philadelphia, PA 19102, USA;
| | - Philipp E. Scherer
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA;
| | - Orhan K. Öz
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (J.F.); (A.S.)
| |
Collapse
|
91
|
Manolis AS, Manolis SA, Manolis AA, Manolis TA, Apostolaki N, Melita H. Winter Swimming. Curr Sports Med Rep 2019; 18:401-415. [DOI: 10.1249/jsr.0000000000000653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
92
|
Brychta RJ, Huang S, Wang J, Leitner BP, Hattenbach JD, Bell SL, Fletcher LA, Perron Wood R, Idelson CR, Duckworth CJ, McGehee S, Courville AB, Bernstein SB, Reitman ML, Cypess AM, Chen KY. Quantification of the Capacity for Cold-Induced Thermogenesis in Young Men With and Without Obesity. J Clin Endocrinol Metab 2019; 104:4865-4878. [PMID: 31150063 PMCID: PMC6733495 DOI: 10.1210/jc.2019-00728] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/24/2019] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Cold exposure increases energy expenditure (EE) and could have a role in combating obesity. To understand this potential, we determined the capacity for cold-induced thermogenesis (CIT), the EE increase above the basal metabolic rate at the individualized coldest tolerable temperature before overt shivering. DESIGN During a 13-day inpatient protocol, we quantitated the EE of 12 lean men and 9 men with obesity at various randomly ordered ambient temperatures in a room calorimeter. Subjects underwent brown fat imaging after exposure to their coldest tolerable temperature. RESULTS CIT capacity was 300 ± 218 kcal/d (mean ± SD) or 17 ± 11% in lean men and 125 ± 146 kcal/d or 6 ± 7% in men with obesity (P = 0.01). The temperature below which EE increased, lower critical temperature (Tlc), was warmer in lean men than men with obesity (22.9 ± 1.2 vs 21.1 ± 1.7°C, P = 0.03), but both had similar skin temperature (Tskin) changes and coldest tolerable temperatures. Whereas lean subjects had higher brown fat activity, skeletal muscle activity increased synchronously with CIT beginning at the Tlc in both groups, indicating that muscle is recruited for CIT in parallel with brown fat, not sequentially after nonshivering thermogenesis is maximal. CONCLUSIONS Despite greater insulation from fat, men with obesity had a narrower range of tolerable cool temperatures available for increasing EE and less capacity for CIT than lean men, likely as a result of greater basal heat production and similar perception to Tskin cooling. Further study of the reduced CIT capacity in men with obesity may inform treatment opportunities for obesity.
Collapse
Affiliation(s)
- Robert J Brychta
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
- Correspondence and Reprint Requests: Robert J. Brychta, PhD, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Building 10, Room 5-5740, Bethesda, Maryland 20892. E-mail:
| | - Shan Huang
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Juan Wang
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Brooks P Leitner
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jacob D Hattenbach
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sarah L Bell
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Laura A Fletcher
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Rachel Perron Wood
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Christopher R Idelson
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Courtney J Duckworth
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Suzanne McGehee
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Amber B Courville
- Nutrition Department, Hatfield Clinical Research Center, National Institutes of Health, Bethesda, Maryland
| | - Shanna B Bernstein
- Nutrition Department, Hatfield Clinical Research Center, National Institutes of Health, Bethesda, Maryland
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kong Y Chen
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
93
|
Coolbaugh CL, Damon BM, Bush EC, Welch EB, Towse TF. Cold exposure induces dynamic, heterogeneous alterations in human brown adipose tissue lipid content. Sci Rep 2019; 9:13600. [PMID: 31537877 PMCID: PMC6753098 DOI: 10.1038/s41598-019-49936-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/22/2019] [Indexed: 01/28/2023] Open
Abstract
Brown adipose tissue undergoes a dynamic, heterogeneous response to cold exposure that can include the simultaneous synthesis, uptake, and oxidation of fatty acids. The purpose of this work was to quantify these changes in brown adipose tissue lipid content (fat-signal fraction (FSF)) using fat-water magnetic resonance imaging during individualized cooling to 3 °C above a participant's shiver threshold. Eight healthy men completed familiarization, perception-based cooling, and MRI-cooling visits. FSF maps of the supraclavicular region were acquired in thermoneutrality and during cooling (59.5 ± 6.5 min). Brown adipose tissue regions of interest were defined, and voxels were grouped into FSF decades (0-10%, 10-20%…90-100%) according to their initial value. Brown adipose tissue contained a heterogeneous morphology of lipid content. Voxels with initial FSF values of 60-100% (P < 0.05) exhibited a significant decrease in FSF while a simultaneous increase in FSF occurred in voxels with initial FSF values of 0-30% (P < 0.05). These data suggest that in healthy young men, cold exposure elicits a dynamic and heterogeneous response in brown adipose tissue, with areas initially rich with lipid undergoing net lipid loss and areas of low initial lipid undergoing a net lipid accumulation.
Collapse
Affiliation(s)
- Crystal L Coolbaugh
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bruce M Damon
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| | - Emily C Bush
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - E Brian Welch
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Theodore F Towse
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Physical Medicine and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Sciences, Grand Valley State, Allendale, MI, USA
| |
Collapse
|
94
|
Contribution of brown adipose tissue to human energy metabolism. Mol Aspects Med 2019; 68:82-89. [PMID: 31306668 DOI: 10.1016/j.mam.2019.07.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/24/2022]
Abstract
The present "obesogenic' environment has favored excessive energy intake resulting in the current obesity epidemic and its associated diseases. The epidemic has incentivized scientists to develop novel behavioral and pharmacological strategies that enhance energy expenditure to compensate for excessive energy intake. Although physical activity is effective to increase total energy expenditure, it is insufficient to induce negative energy balance and weight loss. With the discovery of brown adipose tissue (BAT) in adult humans, BAT activation soon emerged as a potential strategy for elevating energy expenditure. BAT is the only tissue that expresses uncoupling protein 1, conferring on this tissue high thermogenic capacity due to a low efficiency for mitochondrial ATP generation. Potential manipulation of BAT mass and activity has fueled the interest in altering whole-body energy balance through increased energy expenditure. Remarkable advances have been made in quantifying the amount and activity of BAT in humans. Many studies have concluded that the amount of active BAT appears insufficient to induce meaningful increases in energy expenditure. Thus, the majority of studies report that BAT activation does not influence body weight and metabolic control in humans. Strategies to increase BAT mass and/or to potentiate BAT activity seem necessary.
Collapse
|
95
|
Sebaa R, Johnson J, Pileggi C, Norgren M, Xuan J, Sai Y, Tong Q, Krystkowiak I, Bondy-Chorney E, Davey NE, Krogan N, Downey M, Harper ME. SIRT3 controls brown fat thermogenesis by deacetylation regulation of pathways upstream of UCP1. Mol Metab 2019; 25:35-49. [PMID: 31060926 PMCID: PMC6601363 DOI: 10.1016/j.molmet.2019.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/27/2019] [Accepted: 04/11/2019] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE Brown adipose tissue (BAT) is important for thermoregulation in many mammals. Uncoupling protein 1 (UCP1) is the critical regulator of thermogenesis in BAT. Here we aimed to investigate the deacetylation control of BAT and to investigate a possible functional connection between UCP1 and sirtuin 3 (SIRT3), the master mitochondrial lysine deacetylase. METHODS We carried out physiological, molecular, and proteomic analyses of BAT from wild-type and Sirt3KO mice when BAT is activated. Mice were either cold exposed for 2 days or were injected with the β3-adrenergic agonist, CL316,243 (1 mg/kg; i.p.). Mutagenesis studies were conducted in a cellular model to assess the impact of acetylation lysine sites on UCP1 function. Cardiac punctures were collected for proteomic analysis of blood acylcarnitines. Isolated mitochondria were used for functional analysis of OXPHOS proteins. RESULTS Our findings showed that SIRT3 absence in mice resulted in impaired BAT lipid use, whole body thermoregulation, and respiration in BAT mitochondria, without affecting UCP1 expression. Acetylome profiling of BAT mitochondria revealed that SIRT3 regulates acetylation status of many BAT mitochondrial proteins including UCP1 and crucial upstream proteins. Mutagenesis work in cells suggested that UCP1 activity was independent of direct SIRT3-regulated lysine acetylation. However, SIRT3 impacted BAT mitochondrial proteins activities of acylcarnitine metabolism and specific electron transport chain complexes, CI and CII. CONCLUSIONS Our data highlight that SIRT3 likely controls BAT thermogenesis indirectly by targeting pathways upstream of UCP1.
Collapse
Affiliation(s)
- Rajaa Sebaa
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Department of Medical Laboratories, College of Applied Medical Sciences, University of Shaqra, Duwadimi, Saudi Arabia
| | - Jeff Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Chantal Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michaela Norgren
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jian Xuan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yuka Sai
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Qiang Tong
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Izabella Krystkowiak
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Emma Bondy-Chorney
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Norman E Davey
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Nevan Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Michael Downey
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
96
|
Abstract
In the midst of an obesity epidemic, the promotion of brown adipose tissue (BAT) function and the browning of white adipose tissue (WAT) have emerged as promising therapeutic targets to increase energy expenditure and counteract weight gain. Despite the fact that the thermogenic potential of bone fide BAT in rodents is several orders of magnitudes higher than white fat containing brite/beige adipocytes, WAT browning represents a particularly intriguing concept in humans given the extreme amount of excess WAT in obese individuals. In addition, the clear distinction between classic brown and beige fat that has been proposed in mice does not exist in humans. In fact, studies of human BAT biopsies found controversial results suggesting both classic brown and beige characteristics. Irrespective of the true ‘color’, accumulating evidence suggests the induction of thermogenic adipocytes in human WAT depots in response to specific stimuli, highlighting that WAT browning may occur in both, mice and humans. These observations also emphasize the great plasticity of human fat depots and raise important questions about the metabolic properties of thermogenically active adipose tissue in humans and the potential therapeutic implications. We will first review the cellular and molecular aspects of selected adipose tissue browning concepts that have been identified in mouse models with emphasis on neuronal factors, the microbiome, immune cells and several hormones. We will also summarize the evidence for adipose tissue browning in humans including some experimental pharmacologic approaches.
Collapse
Affiliation(s)
- Carsten T Herz
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Florian W Kiefer
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
97
|
Gordon K, Blondin DP, Friesen BJ, Tingelstad HC, Kenny GP, Haman F. Seven days of cold acclimation substantially reduces shivering intensity and increases nonshivering thermogenesis in adult humans. J Appl Physiol (1985) 2019; 126:1598-1606. [PMID: 30896355 PMCID: PMC6620656 DOI: 10.1152/japplphysiol.01133.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/21/2019] [Accepted: 03/17/2019] [Indexed: 01/24/2023] Open
Abstract
Daily compensable cold exposure in humans reduces shivering by ~20% without changing total heat production, partly by increasing brown adipose tissue thermogenic capacity and activity. Although acclimation and acclimatization studies have long suggested that daily reductions in core temperature are essential to elicit significant metabolic changes in response to repeated cold exposure, this has never directly been demonstrated. The aim of the present study is to determine whether daily cold-water immersion, resulting in a significant fall in core temperature, can further reduce shivering intensity during mild acute cold exposure. Seven men underwent 1 h of daily cold-water immersion (14°C) for seven consecutive days. Immediately before and following the acclimation protocol, participants underwent a mild cold exposure using a novel skin temperature clamping cold exposure protocol to elicit the same thermogenic rate between trials. Metabolic heat production, shivering intensity, muscle recruitment pattern, and thermal sensation were measured throughout these experimental sessions. Uncompensable cold acclimation reduced total shivering intensity by 36% (P = 0.003), without affecting whole body heat production, double what was previously shown from a 4-wk mild acclimation. This implies that nonshivering thermogenesis increased to supplement the reduction in the thermogenic contribution of shivering. As fuel selection did not change following the 7-day cold acclimation, we suggest that the nonshivering mechanism recruited must rely on a similar fuel mixture to produce this heat. The more significant reductions in shivering intensity compared with a longer mild cold acclimation suggest important differential metabolic responses, resulting from an uncompensable compared with compensable cold acclimation. NEW & NOTEWORTHY Several decades of research have been dedicated to reducing the presence of shivering during cold exposure. The present study aims to determine whether as little as seven consecutive days of cold-water immersion is sufficient to reduce shivering and increase nonshivering thermogenesis. We provide evidence that whole body nonshivering thermogenesis can be increased to offset a reduction in shivering activity to maintain endogenous heat production. This demonstrates that short, but intense cold stimulation can elicit rapid metabolic changes in humans, thereby improving our comfort and ability to perform various motor tasks in the cold. Further research is required to determine the nonshivering processes that are upregulated within this short time period.
Collapse
Affiliation(s)
- Kyle Gordon
- Faculty of Health Sciences, University of Ottawa , Ottawa , Canada
| | - Denis P Blondin
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa , Canada
| | - Brian J Friesen
- Faculty of Health Sciences, University of Ottawa , Ottawa , Canada
| | | | - Glen P Kenny
- Faculty of Health Sciences, University of Ottawa , Ottawa , Canada
| | - François Haman
- Faculty of Health Sciences, University of Ottawa , Ottawa , Canada
| |
Collapse
|
98
|
Nirengi S, Fuse S, Amagasa S, Homma T, Kime R, Kuroiwa M, Endo T, Sakane N, Matsushita M, Saito M, Kurosawa Y, Hamaoka T. Applicability of Supraclavicular Oxygenated and Total Hemoglobin Evaluated by Near-Infrared Time-Resolved Spectroscopy as Indicators of Brown Adipose Tissue Density in Humans. Int J Mol Sci 2019; 20:ijms20092214. [PMID: 31064052 PMCID: PMC6539985 DOI: 10.3390/ijms20092214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/26/2019] [Accepted: 05/04/2019] [Indexed: 01/13/2023] Open
Abstract
Brown adipose tissue (BAT) may potentially be used in strategies for preventing lifestyle-related diseases. We examine evidence that near-infrared time-resolved spectroscopy (NIRTRS) is capable of estimating human BAT density (BAT-d). The parameters examined in this study are total hemoglobin [total-Hb]sup, oxygenated Hb [oxy-Hb]sup, deoxygenated Hb [deoxy-Hb]sup, Hb O2 saturation (StO2sup), and the reduced scattering coefficient in the supraclavicular region (μs’sup), where BAT deposits can be located; corresponding parameters in the control deltoid region are obtained as controls. Among the NIRTRS parameters, [total-Hb]sup and [oxy-Hb]sup show region-specific increases in winter, compared to summer. Further, [total-Hb]sup and [oxy-Hb]sup are correlated with cold-induced thermogenesis in the supraclavicular region. We conclude that NIRTRS-determined [total-Hb]sup and [oxy-Hb]sup are useful parameters for evaluating BAT-d in a simple, rapid, non-invasive manner.
Collapse
Affiliation(s)
- Shinsuke Nirengi
- Division of Preventive Medicine, National Hospital Organization Kyoto Medical Center, Clinical Research Institute, Kyoto 612-8555, Japan.
| | - Sayuri Fuse
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan.
| | - Shiho Amagasa
- Department of Preventive Medicine and Public Health, Tokyo Medical University, Tokyo 160-8402, Japan.
| | - Toshiyuki Homma
- Faculty of Sports and Health Science, Daito Bunka University, Higashimatsuyama-shi, Saitama 355-8501, Japan.
| | - Ryotaro Kime
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan.
| | - Miyuki Kuroiwa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan.
| | - Tasuki Endo
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan.
| | - Naoki Sakane
- Division of Preventive Medicine, National Hospital Organization Kyoto Medical Center, Clinical Research Institute, Kyoto 612-8555, Japan.
| | - Mami Matsushita
- Department of Nutrition, Tenshi College, Sapporo 065-0013, Japan.
| | | | - Yuko Kurosawa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan.
| | - Takafumi Hamaoka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan.
| |
Collapse
|
99
|
Repeatability of brown adipose tissue measurements on FDG PET/CT following a simple cooling procedure for BAT activation. PLoS One 2019; 14:e0214765. [PMID: 30995248 PMCID: PMC6469763 DOI: 10.1371/journal.pone.0214765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
Brown Adipose Tissue (BAT) is present in a significant number of adult humans and can be activated by exposure to cold. Measurement of active BAT presence, activity, and volume are desirable for determining the efficacy of potential treatments intended to activate BAT. The repeatability of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) measurements of BAT presence, activity, and volume under controlled conditions has not been extensively studied. Eleven female volunteers underwent double baseline FDG PET imaging performed following a simple, regional cold intervention intended to activate brown fat. The cold intervention involved the lightly-clothed participants intermittently placing their feet on a block of ice while sitting in a cooled room. A repeat study was performed under the same conditions within a target of two weeks. FDG scans were obtained and maximum standardized uptake value adjusted for lean body mass (SULmax), CT Hounsfield units (HU), BAT metabolic volume (BMV), and total BAT glycolysis (TBG) were determined according to the Brown Adipose Reporting Criteria in Imaging STudies (BARCIST) 1.0. A Lin’s concordance correlation (CCC) of 0.80 was found for BMV between test and retest imaging. Intersession BAT SULmax was significantly correlated (r = 0.54; p < 0.05). The session #1 mean SULmax of 4.92 ± 4.49 g/mL was not significantly different from that of session #2 with a mean SULmax of 7.19 ± 7.34 g/mL (p = 0.16). BAT SULmax was highly correlated with BMV in test and retest studies (r ≥ 0.96, p < 0.001). Using a simplified ice-block cooling method, BAT was activated in the majority (9/11) of a group of young, lean female participants. Quantitative assessments of BAT SUL and BMV were not substantially different between test and retest imaging, but individual BMV could vary considerably. Intrasession BMV and SULmax were strongly correlated. The variability in estimates of BAT activity and volume on test-retest with FDG should inform sample size choice in studies quantifying BAT physiology and support the dynamic metabolic characteristics of this tissue. A more sophisticated cooling method potentially may reduce variations in test-retest BAT studies.
Collapse
|
100
|
Sanchez-Gurmaches J, Martinez Calejman C, Jung SM, Li H, Guertin DA. Brown fat organogenesis and maintenance requires AKT1 and AKT2. Mol Metab 2019; 23:60-74. [PMID: 30833219 PMCID: PMC6480051 DOI: 10.1016/j.molmet.2019.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
Objective Understanding the signaling mechanisms that control brown adipose tissue (BAT) development is relevant to understanding energy homeostasis and obesity. The AKT kinases are insulin effectors with critical in vivo functions in adipocytes; however, their role in adipocyte development remains poorly understood. The goal of this study was to investigate AKT function in BAT development. Methods We conditionally deleted Akt1 and Akt2 either individually or together with Myf5-Cre, which targets early mesenchymal precursors that give rise to brown adipocytes. Because Myf5-Cre also targets skeletal muscle and some white adipocyte lineages, comparisons were made between AKT function in BAT versus white adipose tissue (WAT) and muscle development. We also deleted both Akt1 and Akt2 in mature brown adipocytes with Ucp1-Cre or Ucp1-CreER to investigate AKT1/2 signaling in BAT maintenance. Results AKT1 and AKT2 are individually dispensable in Myf5-Cre lineages in vivo for establishing brown and white adipocyte precursor cell pools and for their ability to differentiate (i.e. induce PPARγ). AKT1 and AKT2 are also dispensable for skeletal muscle development, and AKT3 does not compensate in either the adipocyte or muscle lineages. In contrast, AKT2 is required for adipocyte lipid filling and efficient downstream AKT substrate phosphorylation. Mice in which both Akt1 and Akt2 are deleted with Myf5-Cre lack BAT but have normal muscle mass, and doubly deleting Akt1 and Akt2 in mature brown adipocytes, either congenitally (with Ucp1-Cre), or inducibly in older mice (with Ucp1-CreER), also ablates BAT. Mechanistically, AKT signaling promotes adipogenesis in part by stimulating ChREBP activity. Conclusions AKT signaling is required in vivo for BAT development but dispensable for skeletal muscle development. AKT1 and AKT2 have both overlapping and distinct functions in BAT development with AKT2 being the most critical individual isoform. AKT1 and AKT2 also have distinct and complementary functions in BAT maintenance. AKT1 is dispensable for the differentiation of Myf5-lineage adipocytes. AKT2 regulates adipocyte cell size and body fat distribution. AKT1 and AKT2 exhibit some compensatory functions in BAT development and maintenance. AKT1 and AKT2 are dispensable in the Myf5-lineage for muscle development. ChREBP may function downstream of Akt1/Akt2 in brown adipocyte differentiation.
Collapse
Affiliation(s)
- Joan Sanchez-Gurmaches
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Endocrinology, Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA.
| | - Camila Martinez Calejman
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Su Myung Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Huawei Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Lei Weibo Institute for Rare Diseases, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|