101
|
Le Foll C, Levin BE. Fatty acid-induced astrocyte ketone production and the control of food intake. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1186-92. [PMID: 27122369 PMCID: PMC4935491 DOI: 10.1152/ajpregu.00113.2016] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/22/2016] [Indexed: 11/22/2022]
Abstract
Obesity and Type 2 diabetes are major worldwide public health issues today. A relationship between total fat intake and obesity has been found. In addition, the mechanisms of long-term and excessive high-fat diet (HFD) intake in the development of obesity still need to be elucidated. The ventromedial hypothalamus (VMH) is a major site involved in the regulation of glucose and energy homeostasis where "metabolic sensing neurons" integrate metabolic signals from the periphery. Among these signals, fatty acids (FA) modulate the activity of VMH neurons using the FA translocator/CD36, which plays a critical role in the regulation of energy and glucose homeostasis. During low-fat diet (LFD) intake, FA are oxidized by VMH astrocytes to fuel their ongoing metabolic needs. However, HFD intake causes VMH astrocytes to use FA to generate ketone bodies. We postulate that these astrocyte-derived ketone bodies are exported to neurons where they produce excess ATP and reactive oxygen species, which override CD36-mediated FA sensing and act as a signal to decrease short-term food intake. On a HFD, VMH astrocyte-produced ketones reduce elevated caloric intake to LFD levels after 3 days in rats genetically predisposed to resist (DR) diet-induced obesity (DIO), but not leptin-resistant DIO rats. This suggests that, while VMH ketone production on a HFD can contribute to protection from obesity, the inherent leptin resistance overrides this inhibitory action of ketone bodies on food intake. Thus, astrocytes and neurons form a tight metabolic unit that is able to monitor circulating nutrients to alter food intake and energy homeostasis.
Collapse
Affiliation(s)
- Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; and
| | - Barry E Levin
- Department of Neurology, Rutgers, New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
102
|
Zhang ZY, Dodd GT, Tiganis T. Protein Tyrosine Phosphatases in Hypothalamic Insulin and Leptin Signaling. Trends Pharmacol Sci 2016; 36:661-674. [PMID: 26435211 DOI: 10.1016/j.tips.2015.07.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/01/2015] [Accepted: 07/10/2015] [Indexed: 12/22/2022]
Abstract
The hypothalamus is critical to the coordination of energy balance and glucose homeostasis. It responds to peripheral factors, such as insulin and leptin, that convey to the brain the degree of adiposity and the metabolic status of the organism. The development of leptin and insulin resistance in hypothalamic neurons appears to have a key role in the exacerbation of diet-induced obesity. In rodents, this has been attributed partly to the increased expression of the tyrosine phosphatases Protein Tyrosine Phosphatase 1B (PTP1B) and T cell protein tyrosine phosphatase (TCPTP), which attenuate leptin and insulin signaling. Deficiencies in PTP1B and TCPTP in the brain, or specific neurons, promote insulin and leptin signaling and prevent diet-induced obesity, type 2 diabetes mellitus (T2DM), and fatty liver disease. Although targeting phosphatases and hypothalamic circuits remains challenging, recent advances indicate that such hurdles might be overcome. Here, we focus on the roles of PTP1B and TCPTP in insulin and leptin signaling and explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Garron T Dodd
- Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| | - Tony Tiganis
- Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia.
| |
Collapse
|
103
|
Geer EB, Lalazar Y, Couto LM, Cohen V, Lipton LR, Shi W, Bagiella E, Conwell I, Bederson J, Kostadinov J, Post KD, Freda PU. A prospective study of appetite and food craving in 30 patients with Cushing's disease. Pituitary 2016; 19:117-26. [PMID: 26496766 PMCID: PMC4799764 DOI: 10.1007/s11102-015-0690-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CONTEXT Glucocorticoid (GC) exposure increases food intake, but the mechanisms in humans are not known. Investigation of appetite and food craving has not been done in patients with chronic GC exposure due to Cushing's disease (CD), either before or after treatment, and could provide insight into mechanisms of food intake and obesity in these patients. PURPOSE To examine whether surgical remission of CD changes appetite (prospective consumption, hunger, satisfaction, and fullness) and food cravings (sweet, salty, fatty, and savory); and to identify predictors of appetite and craving in CD remission. METHODS 30 CD patients, mean age 40.0 years (range 17-70), mean BMI 32.3 ± 6.4, were prospectively studied before and at a mean of 17.4 mo. after remission. At each visit fasting and post-test meal (50% carbohydrate, 35% protein, 15% fat) appetite and craving scores were assessed. RESULTS Remission decreased prospective consumption, sweet and savory craving (p < 0.05), but did not change hunger, satisfaction, fullness, or fat craving, despite decreases in BMI and fat mass. In CD remission, serum cortisol predicted lower satisfaction and fullness, and masses of abdominal fat depots predicted higher hunger and consumption (p < 0.05). CONCLUSIONS Chronic GC exposure in CD patients may stimulate the drive to eat by enhancing craving, rather than regulating the sensation of hunger. Continued alterations in appetite regulation due to abdominal fat mass and circulating cortisol could play a role in the cardiovascular and metabolic risk that has been reported in CD patients despite remission.
Collapse
Affiliation(s)
- Eliza B Geer
- Department of Medicine, Division of Endocrinology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1055, New York, NY, 10029, USA.
- Department of Neurosurgery, Mount Sinai Medical Center, New York, NY, 10029, USA.
| | - Yelena Lalazar
- Department of Neurosurgery, Mount Sinai Medical Center, New York, NY, 10029, USA
| | - Lizette M Couto
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vanessa Cohen
- Department of Neurosurgery, Mount Sinai Medical Center, New York, NY, 10029, USA
| | - Lianna R Lipton
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wei Shi
- Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Emilia Bagiella
- Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Irene Conwell
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Joshua Bederson
- Department of Neurosurgery, Mount Sinai Medical Center, New York, NY, 10029, USA
| | - Jane Kostadinov
- Department of Neurosurgery, Mount Sinai Medical Center, New York, NY, 10029, USA
| | - Kalmon D Post
- Department of Neurosurgery, Mount Sinai Medical Center, New York, NY, 10029, USA
| | - Pamela U Freda
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| |
Collapse
|
104
|
Chowen JA, Argente-Arizón P, Freire-Regatillo A, Frago LM, Horvath TL, Argente J. The role of astrocytes in the hypothalamic response and adaptation to metabolic signals. Prog Neurobiol 2016; 144:68-87. [PMID: 27000556 DOI: 10.1016/j.pneurobio.2016.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/09/2016] [Accepted: 03/04/2016] [Indexed: 12/19/2022]
Abstract
The hypothalamus is crucial in the regulation of homeostatic functions in mammals, with the disruption of hypothalamic circuits contributing to chronic conditions such as obesity, diabetes mellitus, hypertension, and infertility. Metabolic signals and hormonal inputs drive functional and morphological changes in the hypothalamus in attempt to maintain metabolic homeostasis. However, the dramatic increase in the incidence of obesity and its secondary complications, such as type 2 diabetes, have evidenced the need to better understand how this system functions and how it can go awry. Growing evidence points to a critical role of astrocytes in orchestrating the hypothalamic response to metabolic cues by participating in processes of synaptic transmission, synaptic plasticity and nutrient sensing. These glial cells express receptors for important metabolic signals, such as the anorexigenic hormone leptin, and determine the type and quantity of nutrients reaching their neighboring neurons. Understanding the mechanisms by which astrocytes participate in hypothalamic adaptations to changes in dietary and metabolic signals is fundamental for understanding the neuroendocrine control of metabolism and key in the search for adequate treatments of metabolic diseases.
Collapse
Affiliation(s)
- Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III, Madrid, Spain.
| | - Pilar Argente-Arizón
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
105
|
Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism. Exp Mol Med 2016; 48:e216. [PMID: 26964832 PMCID: PMC4892882 DOI: 10.1038/emm.2016.4] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 12/12/2022] Open
Abstract
Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism.
Collapse
|
106
|
Juan De Solis A, Baquero AF, Bennett CM, Grove KL, Zeltser LM. Postnatal undernutrition delays a key step in the maturation of hypothalamic feeding circuits. Mol Metab 2016; 5:198-209. [PMID: 26977392 PMCID: PMC4770263 DOI: 10.1016/j.molmet.2016.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/06/2016] [Accepted: 01/11/2016] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE Humans and animals exposed to undernutrition (UN) during development often experience accelerated "catch-up" growth when food supplies are plentiful. Little is known about the mechanisms regulating early growth rates. We previously reported that actions of leptin and presynaptic inputs to orexigenic NPY/AgRP/GABA (NAG) neurons in the arcuate nucleus of the hypothalamus are almost exclusively excitatory during the lactation period, since neuronal and humoral inhibitory systems do not develop until after weaning. Moreover, we identified a critical step that regulates the maturation of electrophysiological responses of NAG neurons at weaning - the onset of genes encoding ATP-dependent potassium (KATP) channel subunits. We explored the possibility that UN promotes subsequent catch-up growth, in part, by delaying the maturation of negative feedback systems to neuronal circuits driving food intake. METHODS We used the large litter (LL) size model to study the impacts of postnatal UN followed by catch-up growth. We evaluated the maturation of presynaptic and postsynaptic inhibitory systems in NAG neurons using a combination of electrophysiological and molecular criteria, in conjunction with leptin's ability to suppress fasting-induced hyperphagia. RESULTS The onset of KATP channel subunit expression and function, the switch in leptin's effect on NAG neurons, the ingrowth of inhibitory inputs to NAG neurons, and the development of homeostatic feedback to feeding circuits were delayed in LL offspring relative to controls. The development of functional KATP channels and the establishment of leptin-mediated suppression of food intake in the peri-weaning period were tightly linked and were not initiated until growth and adiposity of LL offspring caught up to controls. CONCLUSIONS Our data support the idea that initiation of KATP channel subunit expression in NAG neurons serves as a molecular gatekeeper for the maturation of homeostatic feeding circuits.
Collapse
Key Words
- ARH, arcuate nucleus of the hypothalamus
- AgRP
- AgRP, agouti-related peptide
- EPSC, excitatory postsynaptic current
- Feeding circuits
- GABA, gamma-aminobutyric acid
- IPSC, inhibitory postsynaptic current
- KATP channel
- KATP, ATP-sensitive potassium channel
- Kir, potassium inward rectifiying channel subunit
- LL, large litter
- Lepr, leptin receptor
- Leptin
- NAG, NPY, AgRP, GABA, NPY, neuropeptide Y
- NPY
- P, postnatal day
- PVH, paraventricular nucleus of the hypothalamus
- Pomc, pro-opiomelanocortin
- SUR, sulfonylurea receptor
- UN, undernutrition
- Undernutrition
- pSTAT3, phosphorylated signal transducer and activator of transcription 3
Collapse
Affiliation(s)
- Alain Juan De Solis
- Division of Molecular Genetics, Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA.
| | - Arian F Baquero
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| | - Camdin M Bennett
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| | - Kevin L Grove
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| | - Lori M Zeltser
- Division of Molecular Genetics, Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
107
|
Witham E, Comunian C, Ratanpal H, Skora S, Zimmer M, Srinivasan S. C. elegans Body Cavity Neurons Are Homeostatic Sensors that Integrate Fluctuations in Oxygen Availability and Internal Nutrient Reserves. Cell Rep 2016; 14:1641-1654. [PMID: 26876168 DOI: 10.1016/j.celrep.2016.01.052] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/16/2015] [Accepted: 01/14/2016] [Indexed: 12/28/2022] Open
Abstract
It is known that internal physiological state, or interoception, influences CNS function and behavior. However, the neurons and mechanisms that integrate sensory information with internal physiological state remain largely unknown. Here, we identify C. elegans body cavity neurons called URX(L/R) as central homeostatic sensors that integrate fluctuations in oxygen availability with internal metabolic state. We show that depletion of internal body fat reserves increases the tonic activity of URX neurons, which influences the magnitude of the evoked sensory response to oxygen. These responses are integrated via intracellular cGMP and Ca(2+). The extent of neuronal activity thus reflects the balance between the perception of oxygen and available fat reserves. The URX homeostatic sensor ensures that neural signals that stimulate fat loss are only deployed when there are sufficient fat reserves to do so. Our results uncover an interoceptive neuroendocrine axis that relays internal state information to the nervous system.
Collapse
Affiliation(s)
- Emily Witham
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Dorris Neuroscience Center, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Claudio Comunian
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Harkaranveer Ratanpal
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Dorris Neuroscience Center, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Susanne Skora
- Research Institute of Molecular Pathology IMP, Vienna Biocenter VBC, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Manuel Zimmer
- Research Institute of Molecular Pathology IMP, Vienna Biocenter VBC, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Supriya Srinivasan
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Dorris Neuroscience Center, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
108
|
O'Hare JD, Zsombok A. Brain-liver connections: role of the preautonomic PVN neurons. Am J Physiol Endocrinol Metab 2016; 310:E183-9. [PMID: 26646097 PMCID: PMC4838125 DOI: 10.1152/ajpendo.00302.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/01/2015] [Indexed: 12/28/2022]
Abstract
Diabetes mellitus and the coexisting conditions and complications, including hypo- and hyperglycemic events, obesity, high cholesterol levels, and many more, are devastating problems. Undoubtedly, there is a huge demand for treatment and prevention of these conditions that justifies the search for new approaches and concepts for better management of whole body metabolism. Emerging evidence demonstrates that the autonomic nervous system is largely involved in the regulation of glucose homeostasis; however, the underlying mechanisms are still under investigation. Within the hypothalamus, the paraventricular nucleus (PVN) is in a unique position to integrate neural and hormonal signals to command both the autonomic and neuroendocrine outflow. This minireview will provide a brief overview on the role of preautonomic PVN neurons and the importance of the PVN-liver pathway in the regulation of glucose homeostasis.
Collapse
Affiliation(s)
- James D O'Hare
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
109
|
Cansell C, Luquet S. Triglyceride sensing in the reward circuitry: A new insight in feeding behaviour regulation. Biochimie 2016; 120:75-80. [PMID: 26159487 DOI: 10.1016/j.biochi.2015.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/03/2015] [Indexed: 12/17/2022]
|
110
|
Stark R, Reichenbach A, Andrews ZB. Hypothalamic carnitine metabolism integrates nutrient and hormonal feedback to regulate energy homeostasis. Mol Cell Endocrinol 2015; 418 Pt 1:9-16. [PMID: 26261054 DOI: 10.1016/j.mce.2015.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 01/11/2023]
Abstract
The maintenance of energy homeostasis requires the hypothalamic integration of nutrient feedback cues, such as glucose, fatty acids, amino acids, and metabolic hormones such as insulin, leptin and ghrelin. Although hypothalamic neurons are critical to maintain energy homeostasis research efforts have focused on feedback mechanisms in isolation, such as glucose alone, fatty acids alone or single hormones. However this seems rather too simplistic considering the range of nutrient and endocrine changes associated with different metabolic states, such as starvation (negative energy balance) or diet-induced obesity (positive energy balance). In order to understand how neurons integrate multiple nutrient or hormonal signals, we need to identify and examine potential intracellular convergence points or common molecular targets that have the ability to sense glucose, fatty acids, amino acids and hormones. In this review, we focus on the role of carnitine metabolism in neurons regulating energy homeostasis. Hypothalamic carnitine metabolism represents a novel means for neurons to facilitate and control both nutrient and hormonal feedback. In terms of nutrient regulation, carnitine metabolism regulates hypothalamic fatty acid sensing through the actions of CPT1 and has an underappreciated role in glucose sensing since carnitine metabolism also buffers mitochondrial matrix levels of acetyl-CoA, an allosteric inhibitor of pyruvate dehydrogenase and hence glucose metabolism. Studies also show that hypothalamic CPT1 activity also controls hormonal feedback. We hypothesis that hypothalamic carnitine metabolism represents a key molecular target that can concurrently integrate nutrient and hormonal information, which is critical to maintain energy homeostasis. We also suggest this is relevant to broader neuroendocrine research as it predicts that hormonal signaling in the brain varies depending on current nutrient status. Indeed, the metabolic action of ghrelin, leptin or insulin at POMC or NPY neurons may depend on appropriate nutrient-sensing in these neurons and we hypothesize carnitine metabolism is critical in the integrative processing. Future research is required to examine the neuron-specific effects of carnitine metabolism on concurrent nutrient- and hormonal-sensing in AgRP and POMC neurons.
Collapse
Affiliation(s)
- Romana Stark
- Department of Physiology, Monash University, Clayton, Victoria 3183, Australia
| | - Alex Reichenbach
- Department of Physiology, Monash University, Clayton, Victoria 3183, Australia
| | - Zane B Andrews
- Department of Physiology, Monash University, Clayton, Victoria 3183, Australia.
| |
Collapse
|
111
|
Magnan C, Levin BE, Luquet S. Brain lipid sensing and the neural control of energy balance. Mol Cell Endocrinol 2015; 418 Pt 1:3-8. [PMID: 26415589 DOI: 10.1016/j.mce.2015.09.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 09/14/2015] [Accepted: 09/22/2015] [Indexed: 12/29/2022]
Abstract
Fatty acid (FA) -sensitive neurons are present in the brain, especially the hypothalamus, and play a key role in the neural control of energy and glucose homeostasis including feeding behavior, secretion insulin and action. Subpopulations of neurons in the arcuate and ventromedial hypothalamic nuclei are selectively either activated or inhibited by FA. Molecular effectors of these FA effects include ion channels such as chloride, potassium or calcium. In addition, at least half of the responses in the hypothalamic ventromedial FA neurons are mediated through interaction with the FA translocator/receptor, FAT/CD36, that does not require metabolism to activate intracellular signaling downstream. Recently, an important role of lipoprotein lipase in FA detection has also been demonstrated not only in the hypothalamus, but also in the hippocampus and striatum. Finally, FA could overload energy homeostasis via increased hypothalamic ceramide synthesis which could, in turn, contribute to the pathogenesis of diabetes of obesity and/or type 2 in predisposed individuals by disrupting the endocrine signaling pathways of insulin and/or leptin.
Collapse
Affiliation(s)
- Christophe Magnan
- Univ Paris Diderot, Sorbonne Paris Cité, CNRS UMR 8251, F-75205, Paris, France.
| | - Barry E Levin
- Neurology Service, VA Medical Center, East Orange, NJ, USA; Department of Neurology, Rutgers, NJ Medical School, Newark, NJ, USA
| | - Serge Luquet
- Univ Paris Diderot, Sorbonne Paris Cité, CNRS UMR 8251, F-75205, Paris, France
| |
Collapse
|
112
|
Møller CL, Pedersen SB, Richelsen B, Conde-Frieboes KW, Raun K, Grove KL, Wulff BS. Melanocortin agonists stimulate lipolysis in human adipose tissue explants but not in adipocytes. BMC Res Notes 2015; 8:559. [PMID: 26459134 PMCID: PMC4604100 DOI: 10.1186/s13104-015-1539-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/02/2015] [Indexed: 01/12/2023] Open
Abstract
Background The central melanocortin system is broadly involved in the regulation of mammalian nutrient utilization. However, the function of melanocortin receptors (MCRs) expressed directly in peripheral metabolic tissues is still unclear. The objective of this study was to investigate the lipolytic capacity of MC1-5R in differentiated adipocytes versus intact white adipose tissue. Results Non-selective MCR agonist α-MSH, MC5R-selective agonist PG-901 and MC4R-selective agonist LY2112688 significantly stimulated lipolysis in intact white adipose tissue, whereas stimulation of MCRs in differentiated adipocytes failed to do so. The lipolytic response of MC5R was decreased in intact human white adipose tissue when co-treating with β-adrenergic antagonist propranolol, suggesting that the effect may be dependent on neuronal innervation via noradrenalin release. Conclusion When developing an anti-obesity therapeutic drug with selective MC4R/MC5R properties, effects on lipolysis in white adipose tissue may be physiologically relevant.
Collapse
Affiliation(s)
- Cathrine Laustrup Møller
- Diabetes and Obesity Biology, Novo Nordisk A/S, 2760, Maaloev, Denmark. .,Steno Diabetes Center, Niels Steensensvej 2-4, 2820, Gentofte, Denmark.
| | - Steen B Pedersen
- Department of Endocrinology MEA, Aarhus University Hospital, 8000, Aarhus, Denmark.
| | - Bjørn Richelsen
- Department of Endocrinology MEA, Aarhus University Hospital, 8000, Aarhus, Denmark.
| | | | - Kirsten Raun
- Type 2 Diabetes, Novo Nordisk A/S, 2760, Maaloev, Denmark.
| | - Kevin L Grove
- Diabetes, Obesity and Metabolism, Oregon National Primate Research Centre, Oregon Health & Science University, Portland, OR, 97006, USA. .,Obesity Research, Novo Nordisk A/S, Seattle, WA, 98109, USA.
| | | |
Collapse
|
113
|
Xiao C, Dash S, Morgantini C, Koulajian K, Lewis GF. Evaluation of the Effect of Enteral Lipid Sensing on Endogenous Glucose Production in Humans. Diabetes 2015; 64:2939-43. [PMID: 25754959 DOI: 10.2337/db15-0148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/04/2015] [Indexed: 11/13/2022]
Abstract
Administration of lipids into the upper intestine of rats has been shown to acutely decrease endogenous glucose production (EGP) in the preabsorptive state, postulated to act through a gut-brain-liver axis involving accumulation of long-chain fatty acyl-CoA, release of cholecystokinin, and subsequent neuronal signaling. It remains unknown, however, whether a similar gut-brain-liver axis is operative in humans. Here, we infused 20% Intralipid (a synthetic lipid emulsion) or saline intraduodenally for 90 min at 30 mL/h, 4 to 6 weeks apart, in random order, in nine healthy men. EGP was assessed under pancreatic clamp conditions with stable isotope enrichment techniques. Under these experimental conditions, intraduodenal infusion of Intralipid, compared with saline, did not affect plasma glucose concentration or EGP throughout the study period. We conclude that Intralipid infusion into the duodenum at this rate does not elicit detectable effects on glucose homeostasis or EGP in healthy men, which may reflect important interspecies differences between rodents and humans with respect to the putative gut-brain-liver axis.
Collapse
Affiliation(s)
- Changting Xiao
- Division of Endocrinology & Metabolism, Departments of Medicine and Physiology, University of Toronto, Toronto, Canada, and Banting & Best Diabetes Centre, University of Toronto, Toronto, Canada
| | - Satya Dash
- Division of Endocrinology & Metabolism, Departments of Medicine and Physiology, University of Toronto, Toronto, Canada, and Banting & Best Diabetes Centre, University of Toronto, Toronto, Canada
| | - Cecilia Morgantini
- Division of Endocrinology & Metabolism, Departments of Medicine and Physiology, University of Toronto, Toronto, Canada, and Banting & Best Diabetes Centre, University of Toronto, Toronto, Canada
| | - Khajag Koulajian
- Division of Endocrinology & Metabolism, Departments of Medicine and Physiology, University of Toronto, Toronto, Canada, and Banting & Best Diabetes Centre, University of Toronto, Toronto, Canada
| | - Gary F Lewis
- Division of Endocrinology & Metabolism, Departments of Medicine and Physiology, University of Toronto, Toronto, Canada, and Banting & Best Diabetes Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
114
|
Kälin S, Heppner FL, Bechmann I, Prinz M, Tschöp MH, Yi CX. Hypothalamic innate immune reaction in obesity. Nat Rev Endocrinol 2015; 11:339-51. [PMID: 25824676 DOI: 10.1038/nrendo.2015.48] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Findings from rodent and human studies show that the presence of inflammatory factors is positively correlated with obesity and the metabolic syndrome. Obesity-associated inflammatory responses take place not only in the periphery but also in the brain. The hypothalamus contains a range of resident glial cells including microglia, macrophages and astrocytes, which are embedded in highly heterogenic groups of neurons that control metabolic homeostasis. This complex neural-glia network can receive information directly from blood-borne factors, positioning it as a metabolic sensor. Following hypercaloric challenge, mediobasal hypothalamic microglia and astrocytes enter a reactive state, which persists during diet-induced obesity. In established mouse models of diet-induced obesity, the hypothalamic vasculature displays angiogenic alterations. Moreover, proopiomelanocortin neurons, which regulate food intake and energy expenditure, are impaired in the arcuate nucleus, where there is an increase in local inflammatory signals. The sum total of these events is a hypothalamic innate immune reactivity, which includes temporal and spatial changes to each cell population. Although the exact role of each participant of the neural-glial-vascular network is still under exploration, therapeutic targets for treating obesity should probably be linked to individual cell types and their specific signalling pathways to address each dysfunction with cell-selective compounds.
Collapse
Affiliation(s)
- Stefanie Kälin
- Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment &Technische Universität München, 85748, Munich, Germany
| | - Frank L Heppner
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, Breisacher Str. 64, D-79106 Freiburg, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment &Technische Universität München, 85748, Munich, Germany
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| |
Collapse
|
115
|
Abstract
The ability to "see" both incoming and circulating nutrients plays an essential role in the maintenance of energy homeostasis. As such, nutrient-sensing mechanisms in both the gastrointestinal tract and the brain have been implicated in the regulation of energy intake and glucose homeostasis. The intestinal wall is able to differentiate individual nutrients through sensory machinery expressed in the mucosa and provide feedback signals, via local gut peptide action, to maintain energy balance. Furthermore, both the hypothalamus and hindbrain detect circulating nutrients and respond by controlling energy intake and glucose levels. Conversely, nutrient sensing in the intestine plays a role in stimulating food intake and preferences. In this review, we highlight the emerging evidence for the regulation of energy balance through nutrient-sensing mechanisms in the intestine and the brain, and how disruption of these pathways could result in the development of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Sophie C Hamr
- Department of Physiology, University of Toronto, Toronto, M5S 1A8, Canada,
| | | | | | | |
Collapse
|
116
|
Coppari R. Hypothalamic neurones governing glucose homeostasis. J Neuroendocrinol 2015; 27:399-405. [PMID: 25778859 DOI: 10.1111/jne.12276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 12/24/2022]
Abstract
The notion that the brain directly controls the level of glucose in the blood (glycaemia) independent of its known action on food intake and body weight has been known ever since 1849. That year, the French physiologist Dr Claude Bernard reported that physical puncture of the floor of the fourth cerebral ventricle rapidly leads to an increased level of sugar in the blood (and urine) in rabbits. Despite this important discovery, it took approximately 150 years before significant efforts aimed at understanding the underlying mechanism of brain-mediated control of glucose metabolism were made. Technological developments allowing for genetically-mediated manipulation of selected molecular pathways in a neurone-type-specific fashion unravelled the importance of specific molecules in specific neuronal populations. These neuronal pathways govern glucose metabolism in the presence and even in the absence of insulin. Also, a peculiarity of these pathways is that certain biochemically-defined neurones govern glucose metabolism in a tissue-specific fashion.
Collapse
Affiliation(s)
- R Coppari
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
117
|
Gao X, van der Veen JN, Zhu L, Chaba T, Ordoñez M, Lingrell S, Koonen DPY, Dyck JRB, Gomez-Muñoz A, Vance DE, Jacobs RL. Vagus nerve contributes to the development of steatohepatitis and obesity in phosphatidylethanolamine N-methyltransferase deficient mice. J Hepatol 2015; 62:913-20. [PMID: 25433161 DOI: 10.1016/j.jhep.2014.11.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/18/2014] [Accepted: 11/18/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Phosphatidylethanolamine N-methyltransferase (PEMT), a liver enriched enzyme, is responsible for approximately one third of hepatic phosphatidylcholine biosynthesis. When fed a high-fat diet (HFD), Pemt(-/-) mice are protected from HF-induced obesity; however, they develop steatohepatitis. The vagus nerve relays signals between liver and brain that regulate peripheral adiposity and pancreas function. Here we explore a possible role of the hepatic branch of the vagus nerve in the development of diet induced obesity and steatohepatitis in Pemt(-/-) mice. METHODS 8-week old Pemt(-/-) and Pemt(+/+) mice were subjected to hepatic vagotomy (HV) or capsaicin treatment, which selectively disrupts afferent nerves, and were compared to sham-operated or vehicle-treatment, respectively. After surgery, mice were fed a HFD for 10 weeks. RESULTS HV abolished the protection against the HFD-induced obesity and glucose intolerance in Pemt(-/-) mice. HV normalized phospholipid content and prevented steatohepatitis in Pemt(-/-) mice. Moreover, HV increased the hepatic anti-inflammatory cytokine interleukin-10, reduced chemokine monocyte chemotactic protein-1 and the ER stress marker C/EBP homologous protein. Furthermore, HV normalized the expression of mitochondrial electron transport chain proteins and of proteins involved in fatty acid synthesis, acetyl-CoA carboxylase and fatty acid synthase in Pemt(-/-) mice. However, disruption of the hepatic afferent vagus nerve by capsaicin failed to reverse either the protection against the HFD-induced obesity or the development of HF-induced steatohepatitis in Pemt(-/-) mice. CONCLUSIONS Neuronal signals via the hepatic vagus nerve contribute to the development of steatohepatitis and protection against obesity in HFD fed Pemt(-/-) mice.
Collapse
Affiliation(s)
- Xia Gao
- Group on the Molecular and Cell Biology of Lipids, and Department of Biochemistry, University of Alberta, Edmonton, Canada
| | - Jelske N van der Veen
- Group on the Molecular and Cell Biology of Lipids, and Department of Biochemistry, University of Alberta, Edmonton, Canada
| | - Linfu Zhu
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Todd Chaba
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Marta Ordoñez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Susanne Lingrell
- Group on the Molecular and Cell Biology of Lipids, and Department of Biochemistry, University of Alberta, Edmonton, Canada
| | - Debby P Y Koonen
- Department of Pediatrics, Section Molecular Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jason R B Dyck
- Cardiovascular Research Centre and Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Antonio Gomez-Muñoz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Dennis E Vance
- Group on the Molecular and Cell Biology of Lipids, and Department of Biochemistry, University of Alberta, Edmonton, Canada
| | - René L Jacobs
- Group on the Molecular and Cell Biology of Lipids, and Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada.
| |
Collapse
|
118
|
Magnan C, Luquet S. [Role of fatty acids in the nervous control of energy balance]. Biol Aujourdhui 2015; 209:309-15. [PMID: 27021049 DOI: 10.1051/jbio/2016002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 11/14/2022]
Abstract
Fatty acid (FA)-sensitive neurons are present in the brain, especially the hypothalamus, and play a key role in the neural control of energy and glucose homeostasis including feeding behavior, insulin secretion and action. Subpopulations of neurons in the ventromedial and arcuate hypothalamic nuclei are selectively either inhibited or activated by FA. Molecular effectors of these FA effects include ion channels such as chloride, potassium or calcium. In addition at least half of the FA responses in ventromedial hypothalamic neurons are mediated by interaction with FAT/CD36, a FA translocator/receptor that does not require intracellular metabolism to activate downstream signaling. Recently, an important role of lipoprotein lipase in FA sensing has also been demonstrated not only in hypothalamus, but also in the hippocampus and striatum. Finally, FA overload might impair neural control of energy homeostasis through enhanced ceramide synthesis and may contribute to obesity and/or type 2 diabetes pathogenesis in predisposed subjects.
Collapse
Affiliation(s)
- Christophe Magnan
- UniversitéParis Diderot, Sorbonne Paris Cité, CNRS UMR 8251, 75205 Paris, France - Université Paris Diderot, case courrier 7126, Bâtiment Buffon, 5e étage, 4 rue Marie-Andrée Lagroua Weill-Hallé, 75205 Paris Cedex 13, France
| | - Serge Luquet
- UniversitéParis Diderot, Sorbonne Paris Cité, CNRS UMR 8251, 75205 Paris, France - Université Paris Diderot, case courrier 7126, Bâtiment Buffon, 5e étage, 4 rue Marie-Andrée Lagroua Weill-Hallé, 75205 Paris Cedex 13, France
| |
Collapse
|
119
|
Sartorius T, Häring HU. The Metabolic Role of Saturated and Monounsaturated Dietary Fatty Acids. MODULATION OF SLEEP BY OBESITY, DIABETES, AGE, AND DIET 2015:203-210. [DOI: 10.1016/b978-0-12-420168-2.00022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
120
|
Chen TT, Maevsky EI, Uchitel ML. Maintenance of homeostasis in the aging hypothalamus: the central and peripheral roles of succinate. Front Endocrinol (Lausanne) 2015; 6:7. [PMID: 25699017 PMCID: PMC4313775 DOI: 10.3389/fendo.2015.00007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/14/2015] [Indexed: 12/20/2022] Open
Abstract
Aging is the phenotype resulting from accumulation of genetic, cellular, and molecular damages. Many factors have been identified as either the cause or consequence of age-related decline in functions and repair mechanisms. The hypothalamus is the source and a target of many of these factors and hormones responsible for the overall homeostasis in the body. With advanced age, the sensitivity of the hypothalamus to various feedback signals begins to decline. In recent years, several aging-related genes have been identified and their signaling pathways elucidated. These gene products include mTOR, IKK-β/NF-κB complex, and HIF-1α, an important cellular survival signal. All of these activators/modulators of the aging process have also been identified in the hypothalamus and shown to play crucial roles in nutrient sensing, metabolic regulation, energy balance, reproductive function, and stress adaptation. This illustrates the central role of the hypothalamus in aging. Inside the mitochondria, succinate is one of the most prominent intermediates of the Krebs cycle. Succinate oxidation in mitochondria provides the most powerful energy output per unit time. Extra-mitochondrial succinate triggers a host of succinate receptor (SUCN1 or GPR91)-mediated signaling pathways in many peripheral tissues including the hypothalamus. One of the actions of succinate is to stabilize the hypoxia and cellular stress conditions by inducing the transcriptional regulator HIF-1α. Through these actions, it is hypothesized that succinate has the potential to restore the gradual but significant loss in functions associated with cellular senescence and systemic aging.
Collapse
Affiliation(s)
- Thomas T. Chen
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Thomas T. Chen, Department of Life Sciences, Santa Monica College, 1900 Pico Boulevard, Santa Monica, CA 90405, USA e-mail:
| | - Eugene I. Maevsky
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail L. Uchitel
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
121
|
Argente-Arizón P, Freire-Regatillo A, Argente J, Chowen JA. Role of non-neuronal cells in body weight and appetite control. Front Endocrinol (Lausanne) 2015; 6:42. [PMID: 25859240 PMCID: PMC4374626 DOI: 10.3389/fendo.2015.00042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/11/2015] [Indexed: 12/14/2022] Open
Abstract
The brain is composed of neurons and non-neuronal cells, with the latter encompassing glial, ependymal and endothelial cells, as well as pericytes and progenitor cells. Studies aimed at understanding how the brain operates have traditionally focused on neurons, but the importance of non-neuronal cells has become increasingly evident. Once relegated to supporting roles, it is now indubitable that these diverse cell types are fundamental for brain development and function, including that of metabolic circuits, and they may play a significant role in obesity onset and complications. They participate in processes of neurogenesis, synaptogenesis, and synaptic plasticity of metabolic circuits both during development and in adulthood. Some glial cells, such as tanycytes and astrocytes, transport circulating nutrients and metabolic factors that are fundamental for neuronal viability and activity into and within the hypothalamus. All of these cell types express receptors for a variety of metabolic factors and hormones, suggesting that they participate in metabolic function. They are the first line of defense against any assault to neurons. Indeed, microglia and astrocytes participate in the hypothalamic inflammatory response to high fat diet (HFD)-induced obesity, with this process contributing to inflammatory-related insulin and leptin resistance. Moreover, HFD-induced obesity and hyperleptinemia modify hypothalamic astroglial morphology, which is associated with changes in the synaptic inputs to neuronal metabolic circuits. Astrocytic contact with the microvasculature is increased by HFD intake and this could modify nutrient/hormonal uptake into the brain. In addition, progenitor cells in the hypothalamus are now known to have the capacity to renew metabolic circuits, and this can be affected by HFD intake and obesity. Here, we discuss our current understanding of how non-neuronal cells participate in physiological and physiopathological metabolic control.
Collapse
Affiliation(s)
- Pilar Argente-Arizón
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Julie A. Chowen, Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Avda. Menéndez Pelayo, 65, Madrid E-28009, Spain e-mail: ;
| |
Collapse
|
122
|
Abstract
The liver is an essential metabolic organ, and its metabolic function is controlled by insulin and other metabolic hormones. Glucose is converted into pyruvate through glycolysis in the cytoplasm, and pyruvate is subsequently oxidized in the mitochondria to generate ATP through the TCA cycle and oxidative phosphorylation. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and/or cholesterol esters in hepatocytes. These complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as very low-density lipoprotein particles. In the fasted state, the liver secretes glucose through both glycogenolysis and gluconeogenesis. During pronged fasting, hepatic gluconeogenesis is the primary source for endogenous glucose production. Fasting also promotes lipolysis in adipose tissue, resulting in release of nonesterified fatty acids which are converted into ketone bodies in hepatic mitochondria though β-oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver energy metabolism is tightly regulated by neuronal and hormonal signals. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis but suppresses gluconeogenesis, and glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze key steps of metabolic pathways, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases.
Collapse
Affiliation(s)
- Liangyou Rui
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
123
|
Le Foll C, Dunn-Meynell AA, Levin BE. Role of FAT/CD36 in fatty acid sensing, energy, and glucose homeostasis regulation in DIO and DR rats. Am J Physiol Regul Integr Comp Physiol 2014; 308:R188-98. [PMID: 25477422 DOI: 10.1152/ajpregu.00367.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Hypothalamic fatty acid (FA) sensing neurons alter their activity utilizing the FA translocator/receptor, FAT/CD36. Depletion of ventromedial hypothalamus (VMH) CD36 with adeno-associated viral vector expressing CD36 shRNA (AAV CD36 shRNA) leads to redistribution of adipose stores and insulin resistance in outbred rats. This study assessed the requirement of VMH CD36-mediated FA sensing for the regulation of energy and glucose homeostasis in postnatal day 5 (P5) and P21 selectively bred diet-induced obese (DIO) and diet-resistant (DR) rats using VMH AAV CD36 shRNA injections. P5 CD36 depletion altered VMH neuronal FA sensing predominantly in DIO rats. After 10 wk on a 45% fat diet, DIO rats injected with VMH AAV CD36 shRNA at P21 ate more and gained more weight than DIO AAV controls, while DR AAV CD36 shRNA-injected rats gained less weight than DR AAV controls. VMH CD36 depletion increased inguinal fat pad weights and leptin levels in DIO and DR rats. Although DR AAV CD36 shRNA-injected rats became as obese as DIO AAV controls, only DIO control and CD36 depleted rats became insulin-resistant on a 45% fat diet. VMH CD36 depletion stunted linear growth in DIO and DR rats. DIO rats injected with AAV CD36 shRNA at P5 had increased fat mass, mostly due to a 45% increase in subcutaneous fat. They were also insulin-resistant with an associated 71% increase of liver triglycerides. These results demonstrate that VMH CD36-mediated FA sensing is a critical factor in the regulation of energy and glucose homeostasis and fat deposition in DIO and DR rats.
Collapse
Affiliation(s)
- Christelle Le Foll
- Department of Neurology and Neurosciences, Rutgers New Jersey Medical School, Newark, New Jersey; and
| | | | - Barry E Levin
- Department of Neurology and Neurosciences, Rutgers New Jersey Medical School, Newark, New Jersey; and Neurology Service, Veterans Affairs Medical Center, East Orange, New Jersey
| |
Collapse
|
124
|
Abstract
Overconsumption of dietary fat contributes to the development of obesity and metabolic syndrome. Recent evidence suggests that high dietary fat may promote these metabolic states not only by providing calories but also by inducing impaired control of energy balance. In normal metabolic states, fat interacts with various organs or receptors to generate signals for the regulation of energy balance. Many of these interactions are impaired by high-fat diets or in obesity, contributing to the development or maintenance of obesity. These impairments may arise largely from fundamental alterations in the hypothalamus where all peripheral signals are integrated to regulate energy balance. This review focuses on various mechanisms by which fat is sensed at different stages of ingestion, circulation, storage, and utilization to regulate food intake, and how these individual mechanisms are altered by high-fat diets or in obesity.
Collapse
Affiliation(s)
- Jang H Youn
- Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, CA, USA,
| |
Collapse
|
125
|
Shin AC, Fasshauer M, Filatova N, Grundell LA, Zielinski E, Zhou JY, Scherer T, Lindtner C, White PJ, Lapworth AL, Ilkayeva O, Knippschild U, Wolf AM, Scheja L, Grove KL, Smith RD, Qian WJ, Lynch CJ, Newgard CB, Buettner C. Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism. Cell Metab 2014; 20:898-909. [PMID: 25307860 PMCID: PMC4254305 DOI: 10.1016/j.cmet.2014.09.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/06/2014] [Accepted: 09/05/2014] [Indexed: 12/31/2022]
Abstract
Circulating branched-chain amino acid (BCAA) levels are elevated in obesity/diabetes and are a sensitive predictor for type 2 diabetes. Here we show in rats that insulin dose-dependently lowers plasma BCAA levels through induction of hepatic protein expression and activity of branched-chain α-keto acid dehydrogenase (BCKDH), the rate-limiting enzyme in the BCAA degradation pathway. Selective induction of hypothalamic insulin signaling in rats and genetic modulation of brain insulin receptors in mice demonstrate that brain insulin signaling is a major regulator of BCAA metabolism by inducing hepatic BCKDH. Short-term overfeeding impairs the ability of brain insulin to lower BCAAs in rats. High-fat feeding in nonhuman primates and obesity and/or diabetes in humans is associated with reduced BCKDH protein in liver. These findings support the concept that decreased hepatic BCKDH is a major cause of increased plasma BCAAs and that hypothalamic insulin resistance may account for impaired BCAA metabolism in obesity and diabetes.
Collapse
Affiliation(s)
- Andrew C Shin
- Diabetes, Obesity, and Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Martin Fasshauer
- Diabetes, Obesity, and Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Nika Filatova
- Diabetes, Obesity, and Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Linus A Grundell
- Diabetes, Obesity, and Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Elizabeth Zielinski
- Diabetes, Obesity, and Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jian-Ying Zhou
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, USA
| | - Thomas Scherer
- Diabetes, Obesity, and Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Claudia Lindtner
- Diabetes, Obesity, and Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Phillip J White
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC 27710, USA
| | - Amanda L Lapworth
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC 27710, USA
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC 27710, USA
| | - Uwe Knippschild
- Department of General and Visceral Surgery, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Anna M Wolf
- Department of General and Visceral Surgery, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Kevin L Grove
- Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, USA
| | - Christopher J Lynch
- Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC 27710, USA
| | - Christoph Buettner
- Diabetes, Obesity, and Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
126
|
Duca FA, Yue JTY. Fatty acid sensing in the gut and the hypothalamus: in vivo and in vitro perspectives. Mol Cell Endocrinol 2014; 397:23-33. [PMID: 25261798 DOI: 10.1016/j.mce.2014.09.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/19/2014] [Accepted: 09/19/2014] [Indexed: 12/15/2022]
Abstract
The ability to properly sense both ingested and circulating nutrients is crucial for the maintenance of metabolic homeostasis. As such, both the gastrointestinal tract and the hypothalamus have demonstrated the capacity to sense and effectively respond to nutrients, such as fatty acids, to control food intake and glucose production to regulate energy and glucose homeostasis. In modern, Westernized societies, obesity and diabetes rates continue to rise unabated, due in part to an increase in highly palatable high-fat diet consumption. Thus, our understanding in the ability of the body to successfully monitor lipids is more vital than ever. This review details the current understanding of both the gut and the brain, specifically the hypothalamus, in sensing fatty acids. Highlighting both in vivo and in vitro studies, we explore some of the mechanisms upon which different fatty acids activate enteroendocrine and neural lipid-sensing signaling mechanisms to subsequently lower food intake and glucose production to ultimately regulate metabolic homeostasis. A better understanding of these lipid-sensing pathways could lay the groundwork for successful pharmacological targets for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Frank A Duca
- Toronto General Research Institute and Department of Medicine, UHN, Toronto, M5G 1L7, Canada
| | - Jessica T Y Yue
- Toronto General Research Institute and Department of Medicine, UHN, Toronto, M5G 1L7, Canada.
| |
Collapse
|
127
|
Qiu NC, Liu ME, Wang B, Song X, Jiang Y, Wang J, Gu ZQ, Shan CX, Qiu M. Does the hepatic branch of vagus mediate the secretion of glucagon-like peptide-1 during the Roux-en-Y gastric bypass surgery? J Gastrointest Surg 2014; 18:1957-64. [PMID: 25183408 DOI: 10.1007/s11605-014-2632-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 08/12/2014] [Indexed: 01/31/2023]
Abstract
OBJECTIVES The purpose of this study is to investigate the impact of the hepatic branch of the vagus and Roux-en-Y gastric bypass (RYGB) on the level of fasting and postprandial serum glucagon-like peptide-1 (GLP-1) in type 2 diabetic mellitus rats. METHODS Randomized block design, factorial experiment. Forty-five type 2 diabetic rats were divided into four groups: sham operation (S, n = 10) and sham operation with the hepatic branch of the vagotomy (SV, n = 11), Roux-en-Y gastric bypass (RYGB, n = 12) and RYGB without preservation of the vagus (RYGBV, n = 12). Levels of fasting and postprandial serum GLP-1 30 min after 50 % glucose solution (2 g/kg) by gavage were determined before surgery and postoperatively at 1, 4, and 8 weeks. Interactions between RYGB and the common hepatic branch were also assessed. RESULTS Roux-en-Y gastric bypass surgery significantly increased the concentration of postprandial serum GLP-1 and maintained it at a higher level (P < 0.05). Preservation of vagus hepatic branch only increased the concentration of postprandial serum GLP-1 at the initial stage (P < 0.05), which gradually weakened over time (P > 0.05). Both RYGB and vagotomy of the hepatic branch had no influence on fasting serum GLP-1 (P > 0.05). CONCLUSIONS During RYGB surgery for the long-term treatment of T2DM, preservation of the hepatic branch of the vagus might have no impact on serum GLP-1 level.
Collapse
Affiliation(s)
- Nian-Cun Qiu
- Department of General Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
D’Addario C, Micioni Di Bonaventura M, Pucci M, Romano A, Gaetani S, Ciccocioppo R, Cifani C, Maccarrone M. Endocannabinoid signaling and food addiction. Neurosci Biobehav Rev 2014; 47:203-24. [DOI: 10.1016/j.neubiorev.2014.08.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/28/2014] [Accepted: 08/18/2014] [Indexed: 10/24/2022]
|
129
|
Lai E, Pettersson U, Verdugo AD, Carlsson PO, Bodin B, Källskog Ö, Persson AEG, Sandberg M, Jansson L. Blood lipids affect rat islet blood flow regulation through β₃-adrenoceptors. Am J Physiol Endocrinol Metab 2014; 307:E653-63. [PMID: 25139049 DOI: 10.1152/ajpendo.00680.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic islet blood perfusion varies according to the needs for insulin secretion. We examined the effects of blood lipids on pancreatic islet blood flow in anesthetized rats. Acute administration of Intralipid to anesthetized rats increased both triglycerides and free fatty acids, associated with a simultaneous increase in total pancreatic and islet blood flow. A preceding abdominal vagotomy markedly potentiated this and led acutely to a 10-fold increase in islet blood flow associated with a similar increase in serum insulin concentrations. The islet blood flow and serum insulin response could be largely prevented by pretreatment with propranolol and the selective β₃-adrenergic inhibitor SR-59230A. The nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester prevented the blood flow increase but was less effective in reducing serum insulin. Increased islet blood flow after Intralipid administration was also seen in islet and whole pancreas transplanted rats, i.e., models with different degrees of chronic islet denervation, but the effect was not as pronounced. In isolated vascularly perfused single islets Intralipid dilated islet arterioles, but this was not affected by SR-59230A. Both the sympathetic and parasympathetic nervous system are important for the coordination of islet blood flow and insulin release during hyperlipidemia, with a previously unknown role for β₃-adrenoceptors.
Collapse
Affiliation(s)
- Enyin Lai
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ulrika Pettersson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Birgitta Bodin
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Örjan Källskog
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - A Erik G Persson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Monica Sandberg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Leif Jansson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden;
| |
Collapse
|
130
|
Brankatschk M, Dunst S, Nemetschke L, Eaton S. Delivery of circulating lipoproteins to specific neurons in the Drosophila brain regulates systemic insulin signaling. eLife 2014; 3. [PMID: 25275323 PMCID: PMC4210815 DOI: 10.7554/elife.02862] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 10/01/2014] [Indexed: 12/16/2022] Open
Abstract
The Insulin signaling pathway couples growth, development and lifespan to nutritional conditions. Here, we demonstrate a function for the Drosophila lipoprotein LTP in conveying information about dietary lipid composition to the brain to regulate Insulin signaling. When yeast lipids are present in the diet, free calcium levels rise in Blood Brain Barrier glial cells. This induces transport of LTP across the Blood Brain Barrier by two LDL receptor-related proteins: LRP1 and Megalin. LTP accumulates on specific neurons that connect to cells that produce Insulin-like peptides, and induces their release into the circulation. This increases systemic Insulin signaling and the rate of larval development on yeast-containing food compared with a plant-based food of similar nutritional content.
Collapse
Affiliation(s)
- Marko Brankatschk
- Department of Molecular, Cell and Developmental Biology, Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sebastian Dunst
- Department of Molecular, Cell and Developmental Biology, Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Linda Nemetschke
- Department of Molecular, Cell and Developmental Biology, Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Suzanne Eaton
- Department of Molecular, Cell and Developmental Biology, Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
131
|
Cansell C, Castel J, Denis RGP, Rouch C, Delbes AS, Martinez S, Mestivier D, Finan B, Maldonado-Aviles JG, Rijnsburger M, Tschöp MH, DiLeone RJ, Eckel RH, la Fleur SE, Magnan C, Hnasko TS, Luquet S. Dietary triglycerides act on mesolimbic structures to regulate the rewarding and motivational aspects of feeding. Mol Psychiatry 2014; 19:1095-105. [PMID: 24732670 PMCID: PMC4303340 DOI: 10.1038/mp.2014.31] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 12/17/2022]
Abstract
Circulating triglycerides (TGs) normally increase after a meal but are altered in pathophysiological conditions, such as obesity. Although TG metabolism in the brain remains poorly understood, several brain structures express enzymes that process TG-enriched particles, including mesolimbic structures. For this reason, and because consumption of high-fat diet alters dopamine signaling, we tested the hypothesis that TG might directly target mesolimbic reward circuits to control reward-seeking behaviors. We found that the delivery of small amounts of TG to the brain through the carotid artery rapidly reduced both spontaneous and amphetamine-induced locomotion, abolished preference for palatable food and reduced the motivation to engage in food-seeking behavior. Conversely, targeted disruption of the TG-hydrolyzing enzyme lipoprotein lipase specifically in the nucleus accumbens increased palatable food preference and food-seeking behavior. Finally, prolonged TG perfusion resulted in a return to normal palatable food preference despite continued locomotor suppression, suggesting that adaptive mechanisms occur. These findings reveal new mechanisms by which dietary fat may alter mesolimbic circuit function and reward seeking.
Collapse
Affiliation(s)
- Céline Cansell
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Julien Castel
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Raphaël G. P. Denis
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Claude Rouch
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Anne-Sophie Delbes
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Sarah Martinez
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Denis Mestivier
- Université Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, Paris, France
| | - Brian Finan
- Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, München/Neuherberg, Germany
| | | | - Merel Rijnsburger
- Department of Endocrinology and Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Matthias H. Tschöp
- Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, München/Neuherberg, Germany,Div. of Metabolic Diseases, Dept. of Medicine, Technische Universität München, Germany
| | - Ralph J. DiLeone
- Department of Psychiatry, Yale University School of Medicine New Haven, CT, USA
| | - Robert H. Eckel
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| | - Susanne E. la Fleur
- Department of Endocrinology and Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Christophe Magnan
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Thomas S. Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla CA, USA
| | - Serge Luquet
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| |
Collapse
|
132
|
Xiao F, Xia T, Lv Z, Zhang Q, Xiao Y, Yu J, Liu H, Deng J, Guo Y, Wang C, Li K, Liu B, Chen S, Guo F. Central prolactin receptors (PRLRs) regulate hepatic insulin sensitivity in mice via signal transducer and activator of transcription 5 (STAT5) and the vagus nerve. Diabetologia 2014; 57:2136-44. [PMID: 25064125 DOI: 10.1007/s00125-014-3336-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/24/2014] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS Recent studies have revealed the crucial role of the central nervous system (CNS), especially the hypothalamus, in the regulation of insulin sensitivity in peripheral tissues. The aim of our current study was to investigate the possible involvement of hypothalamic prolactin receptors (PRLRs) in the regulation of hepatic insulin sensitivity. METHODS We employed overexpression of PRLRs in mouse hypothalamus via intracerebroventricular injection of adenovirus expressing PRLR and inhibition of PRLRs via adenovirus expressing short-hairpin RNA (shRNA) specific for PRLRs in vivo. Selective hepatic vagotomy was employed to verify the important role of the vagus nerve in mediating signals from the brain to peripheral organs. In addition, a genetic insulin-resistant animal model, the db/db mouse, was used in our study to investigate the role of hypothalamic PRLRs in regulating whole-body insulin sensitivity. RESULTS Overexpression of PRLRs in the hypothalamus improved hepatic insulin sensitivity in mice and inhibition of hypothalamic PRLRs had the opposite effect. In addition, we demonstrated that hypothalamic PRLR-improved insulin sensitivity was significantly attenuated by inhibiting the activity of signal transducer and activator of transcription 5 (STAT5) in the CNS and by selective hepatic vagotomy. Finally, overexpression of PRLRs significantly ameliorated insulin resistance in db/db mice. CONCLUSIONS/INTERPRETATION Our study identifies a novel central pathway involved in the regulation of hepatic insulin sensitivity, mediated by hypothalamic PRLR/STAT5 signalling and the vagus nerve, thus demonstrating an important role for hypothalamic PRLRs under conditions of insulin resistance.
Collapse
Affiliation(s)
- Fei Xiao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
|
134
|
Jastroch M, Morin S, Tschöp MH, Yi CX. The hypothalamic neural-glial network and the metabolic syndrome. Best Pract Res Clin Endocrinol Metab 2014; 28:661-71. [PMID: 25256762 DOI: 10.1016/j.beem.2014.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite numerous educational interventions and biomedical research efforts, modern society continues to suffer from obesity and its associated metabolic diseases, such as type 2 diabetes mellitus, and these diseases show little sign of abating. One reason for this is an incomplete understanding of the pathology of the metabolic syndrome, which obstructs the development of effective therapeutic strategies. While hypothalamic neuropathy is a potential candidate that may contribute to the pathogenesis of the metabolic syndrome, the specific causes of hypothalamic neuropathy remain largely unknown. During different stages of high-calorie diet-induced metabolic syndrome, the hypothalamus undergoes gliosis and angiogenesis, both of which potentially reflect ongoing inflammatory processes. This overview discusses current data suggesting a role for hypothalamic inflammation-like processes in diet-induced metabolic diseases and provides a perspective on how to unravel molecular mechanisms of "hypothalamic inflammation" in order to develop anti-obesity therapeutic strategies.
Collapse
Affiliation(s)
- Martin Jastroch
- Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment & Technische Universität München, Munich 85748, Germany
| | - Silke Morin
- Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment & Technische Universität München, Munich 85748, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment & Technische Universität München, Munich 85748, Germany
| | - Chun-Xia Yi
- Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment & Technische Universität München, Munich 85748, Germany.
| |
Collapse
|
135
|
Yan J, Zhang H, Yin Y, Li J, Tang Y, Purkayastha S, Li L, Cai D. Obesity- and aging-induced excess of central transforming growth factor-β potentiates diabetic development via an RNA stress response. Nat Med 2014; 20:1001-1008. [PMID: 25086906 PMCID: PMC4167789 DOI: 10.1038/nm.3616] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/28/2014] [Indexed: 12/12/2022]
Abstract
The brain, in particular the hypothalamus, plays a role in regulating glucose homeostasis; however, it remains unclear whether this organ is causally and etiologically involved in the development of diabetes. Here, we found that hypothalamic transforming growth factor-β (TGF-β) production is excessive under conditions of not only obesity but also aging, which are two general etiological factors of type 2 diabetes. Pharmacological and genetic approaches revealed that central TGF-β excess caused hyperglycemia and glucose intolerance independent of a change in body weight. Further, using cell-specific genetic analyses in vivo, we found that astrocytes and proopiomelanocortin neurons are responsible for the production and prodiabetic effect of central TGF-β, respectively. Mechanistically, TGF-β excess induced a hypothalamic RNA stress response, resulting in accelerated mRNA decay of IκBα, an inhibitor of proinflammatory nuclear factor-κB. These results reveal an atypical, mRNA metabolism-driven hypothalamic nuclear factor-κB activation, a mechanism that links obesity as well as aging to hypothalamic inflammation and ultimately to type 2 diabetes.
Collapse
Affiliation(s)
- Jingqi Yan
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Hai Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Ye Yin
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Juxue Li
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Yizhe Tang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Sudarshana Purkayastha
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Lianxi Li
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
136
|
Picard A, Moullé VS, Le Foll C, Cansell C, Véret J, Coant N, Le Stunff H, Migrenne S, Luquet S, Cruciani-Guglielmacci C, Levin BE, Magnan C. Physiological and pathophysiological implications of lipid sensing in the brain. Diabetes Obes Metab 2014; 16 Suppl 1:49-55. [PMID: 25200296 DOI: 10.1111/dom.12335] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/06/2014] [Indexed: 12/17/2022]
Abstract
Fatty acid (FA)-sensitive neurons are present in the brain, especially the hypothalamus, and play a key role in the neural control of energy homeostasis. Through neuronal output, FA may modulate feeding behaviour as well as insulin secretion and action. Subpopulations of neurons in the ventromedial and arcuate hypothalamic nuclei are selectively either inhibited or activated by FA. Molecular effectors of these FA effects probably include chloride or potassium ion channels. While intracellular metabolism and activation of the ATP-sensitive K⁺ channel appear to be necessary for some of the signalling effects of FA, at least half of the FA responses in ventromedial hypothalamic neurons are mediated by interaction with FAT/CD36, an FA transporter/receptor that does not require intracellular metabolism to activate downstream signalling. Thus, FA or their metabolites can modulate neuronal activity as a means of directly monitoring ongoing fuel availability by brain nutrient-sensing neurons involved in the regulation of energy and glucose homeostasis. Recently, the role of lipoprotein lipase in FA sensing has also been shown in animal models not only in hypothalamus, but also in hippocampus and striatum. Finally, FA overload might impair neural control of energy homeostasis through enhanced ceramide synthesis and may contribute to obesity and/or type 2 diabetes pathogenesis in predisposed subjects.
Collapse
Affiliation(s)
- A Picard
- CNRS UMR 8251, Unit of Functional and Adaptive Biology, Paris, France; Department of Physiology, Université Paris Diderot, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Pereira S, Park E, Mori Y, Haber CA, Han P, Uchida T, Stavar L, Oprescu AI, Koulajian K, Ivovic A, Yu Z, Li D, Bowman TA, Dewald J, El-Benna J, Brindley DN, Gutierrez-Juarez R, Lam TKT, Najjar SM, McKay RA, Bhanot S, Fantus IG, Giacca A. FFA-induced hepatic insulin resistance in vivo is mediated by PKCδ, NADPH oxidase, and oxidative stress. Am J Physiol Endocrinol Metab 2014; 307:E34-46. [PMID: 24824652 PMCID: PMC4080148 DOI: 10.1152/ajpendo.00436.2013] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fat-induced hepatic insulin resistance plays a key role in the pathogenesis of type 2 diabetes in obese individuals. Although PKC and inflammatory pathways have been implicated in fat-induced hepatic insulin resistance, the sequence of events leading to impaired insulin signaling is unknown. We used Wistar rats to investigate whether PKCδ and oxidative stress play causal roles in this process and whether this occurs via IKKβ- and JNK-dependent pathways. Rats received a 7-h infusion of Intralipid plus heparin (IH) to elevate circulating free fatty acids (FFA). During the last 2 h of the infusion, a hyperinsulinemic-euglycemic clamp with tracer was performed to assess hepatic and peripheral insulin sensitivity. An antioxidant, N-acetyl-L-cysteine (NAC), prevented IH-induced hepatic insulin resistance in parallel with prevention of decreased IκBα content, increased JNK phosphorylation (markers of IKKβ and JNK activation, respectively), increased serine phosphorylation of IRS-1 and IRS-2, and impaired insulin signaling in the liver without affecting IH-induced hepatic PKCδ activation. Furthermore, an antisense oligonucleotide against PKCδ prevented IH-induced phosphorylation of p47(phox) (marker of NADPH oxidase activation) and hepatic insulin resistance. Apocynin, an NADPH oxidase inhibitor, prevented IH-induced hepatic and peripheral insulin resistance similarly to NAC. These results demonstrate that PKCδ, NADPH oxidase, and oxidative stress play a causal role in FFA-induced hepatic insulin resistance in vivo and suggest that the pathway of FFA-induced hepatic insulin resistance is FFA → PKCδ → NADPH oxidase and oxidative stress → IKKβ/JNK → impaired hepatic insulin signaling.
Collapse
Affiliation(s)
- Sandra Pereira
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Edward Park
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Yusaku Mori
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - C Andrew Haber
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Ping Han
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Toyoyoshi Uchida
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Laura Stavar
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Andrei I Oprescu
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Khajag Koulajian
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Alexander Ivovic
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Zhiwen Yu
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Deling Li
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Thomas A Bowman
- Center for Diabetes and Endocrine Research and the Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio; and
| | - Jay Dewald
- Metabolic and Cardiovascular Diseases Laboratory, Alberta Institute for Human Nutrition, University of Alberta, Edmonton, Alberta, Canada
| | - Jamel El-Benna
- Inserm, U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France; Laboratoire d'Excellence Inflamex, Faculté de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Site Xavier Bichat, Paris, France
| | - David N Brindley
- Metabolic and Cardiovascular Diseases Laboratory, Alberta Institute for Human Nutrition, University of Alberta, Edmonton, Alberta, Canada
| | - Roger Gutierrez-Juarez
- Department of Medicine, Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York
| | - Tony K T Lam
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Sonia M Najjar
- Center for Diabetes and Endocrine Research and the Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio; and
| | | | | | - I George Fantus
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Adria Giacca
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada;
| |
Collapse
|
138
|
Lips MA, de Groot GH, van Klinken JB, Aarts E, Berends FJ, Janssen IM, Van Ramshorst B, Van Wagensveld BA, Swank DJ, Van Dielen F, Willems van Dijk K, Pijl H. Calorie restriction is a major determinant of the short-term metabolic effects of gastric bypass surgery in obese type 2 diabetic patients. Clin Endocrinol (Oxf) 2014; 80:834-42. [PMID: 23711328 DOI: 10.1111/cen.12254] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 05/02/2013] [Accepted: 05/23/2013] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Roux-en-Y gastric bypass (RYGB) and restrictive weight loss interventions, such as gastric banding (GB) and very-low-calorie diets (VLCD) directly impact glucose metabolism, possibly by calorie restriction and/or altered secretion of gut hormones. We aimed to establish the direct endocrine and metabolic effects of RYGB compared to restrictive interventions in obese glucose-tolerant (NGT) subjects and subjects with type 2 diabetes (T2DM). DESIGN Controlled, nonrandomized observational trial. PATIENTS AND MEASUREMENTS Four groups of obese females received a mixed meal at baseline and 3 weeks after intervention; NGT-GB (n = 11), NGT-RYGB (n = 16), T2DM-RYGB (n = 15) and T2DM-VLCD (n = 12). Normal weight controls (n = 12) were studied once. RESULTS At baseline, all obese subjects were hyperinsulinemic. T2DM was associated with hyperglycaemia and decreased GLP-1 levels. RYGB and VLCD reduced glucose levels to a similar extent in T2DM, insulin levels decreased only after VLCD. Comparison of restrictive intervention vs RYGB showed a more pronounced decrease in glucose and insulin AUC after restriction. In NGT and T2DM subjects, RYGB increased GLP-1 and PYY levels and decreased ghrelin levels, whereas VLCD and GB only increased GIP levels. CONCLUSIONS These data indicate that deterioration of glucose metabolism in T2DM is associated with a decline of GLP-1 levels. Calorie restriction facilitates glucose metabolism and blunts hyperinsulinemia in obese (diabetic) humans. Additional duodenal exclusion through RYGB induces gut hormone release and hyperinsulinemia but does not improve postprandial glucose levels any further. Our data thus strongly suggest that calorie restriction underlies the short-term metabolic benefits of RYGB in obese T2DM patients.
Collapse
Affiliation(s)
- Mirjam A Lips
- Department of Endocrinology and Metabolism, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
LaPierre MP, Abraham MA, Filippi BM, Yue JTY, Lam TKT. Glucagon and lipid signaling in the hypothalamus. Mamm Genome 2014; 25:434-41. [DOI: 10.1007/s00335-014-9510-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/25/2014] [Indexed: 12/12/2022]
|
140
|
Le Foll C, Dunn-Meynell AA, Miziorko HM, Levin BE. Regulation of hypothalamic neuronal sensing and food intake by ketone bodies and fatty acids. Diabetes 2014; 63:1259-69. [PMID: 24379353 PMCID: PMC3964505 DOI: 10.2337/db13-1090] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metabolic sensing neurons in the ventromedial hypothalamus (VMH) alter their activity when ambient levels of metabolic substrates, such as glucose and fatty acids (FA), change. To assess the relationship between a high-fat diet (HFD; 60%) intake on feeding and serum and VMH FA levels, rats were trained to eat a low-fat diet (LFD; 13.5%) or an HFD in 3 h/day and were monitored with VMH FA microdialysis. Despite having higher serum levels, HFD rats had lower VMH FA levels but ate less from 3 to 6 h of refeeding than did LFD rats. However, VMH β-hydroxybutyrate (β-OHB) and VMH-to-serum β-OHB ratio levels were higher in HFD rats during the first 1 h of refeeding, suggesting that VMH astrocyte ketone production mediated their reduced intake. In fact, using calcium imaging in dissociated VMH neurons showed that ketone bodies overrode normal FA sensing, primarily by exciting neurons that were activated or inhibited by oleic acid. Importantly, bilateral inhibition of VMH ketone production with a 3-hydroxy-3-methylglutaryl-CoA synthase inhibitor reversed the 3- to 6-h HFD-induced inhibition of intake but had no effect in LFD-fed rats. These data suggest that a restricted HFD intake regimen inhibits caloric intake as a consequence of FA-induced VMH ketone body production by astrocytes.
Collapse
Affiliation(s)
- Christelle Le Foll
- Department of Neurology and Neurosciences, Rutgers New Jersey Medical School, Newark, NJ
- Corresponding author: Christelle Le Foll,
| | | | - Henri M. Miziorko
- School of Biological Sciences, University of Missouri–Kansas City, Kansas City, MO
| | - Barry E. Levin
- Department of Neurology and Neurosciences, Rutgers New Jersey Medical School, Newark, NJ
- Neurology Service, Veterans Affairs Medical Center, East Orange, NJ
| |
Collapse
|
141
|
Abstract
Glucose metabolism is normally regulated by a feedback loop including islet β cells and insulin-sensitive tissues, in which tissue sensitivity to insulin affects magnitude of β-cell response. If insulin resistance is present, β cells maintain normal glucose tolerance by increasing insulin output. Only when β cells cannot release sufficient insulin in the presence of insulin resistance do glucose concentrations rise. Although β-cell dysfunction has a clear genetic component, environmental changes play an essential part. Modern research approaches have helped to establish the important role that hexoses, aminoacids, and fatty acids have in insulin resistance and β-cell dysfunction, and the potential role of changes in the microbiome. Several new approaches for treatment have been developed, but more effective therapies to slow progressive loss of β-cell function are needed. Recent findings from clinical trials provide important information about methods to prevent and treat type 2 diabetes and some of the adverse effects of these interventions. However, additional long-term studies of drugs and bariatric surgery are needed to identify new ways to prevent and treat type 2 diabetes and thereby reduce the harmful effects of this disease.
Collapse
Affiliation(s)
- Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System, University of Washington, Seattle, WA, USA.
| | - Mark E Cooper
- Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, University of Pisa School of Medicine, Pisa, Italy
| |
Collapse
|
142
|
Trung VN, Yamamoto H, Yamaguchi T, Murata S, Aimi Y, Kuwahara A, Tani T. Intact neural system of the portal vein is important for maintaining normal glucose metabolism by regulating glucagon-like peptide-1 and insulin sensitivity. Peptides 2014; 52:38-43. [PMID: 24333288 DOI: 10.1016/j.peptides.2013.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 01/24/2023]
Abstract
The portal neural system may have an important role on the regulation of glucose homeostasis since activation of the gut-brain-liver neurocircuit by nutrient sensing in the proximal intestine reduces hepatic glucose production through enhanced liver insulin sensitivity. Although there have been many studies investigating the role of portal neural system, surgical denervation of the sole portal vein has not been reported to date. The aim of this study was to clarify the role of the portal neural system on the regulation of glucose homeostasis and food intake in the physiological condition. Surgical denervation of portal vein (DV) was performed in 10 male 12 week-old Wistar rats. The control was a sham operation (SO). One week after surgery, food intake and body weight were monitored; an oral glucose tolerance test (OGTT) was performed; and glucagon-like peptide-1 (GLP-1) and insulin levels during OGTT were assayed. In addition, insulinogenic index, homeostatic model assessment, and Matsuda index were calculated. All rats regained the preoperative body weight at one week after surgery. There was no significant difference in food intake between DV and SO rats. DV rats exhibited increased blood glucose levels associated with decreased insulin sensitivity but increased GLP-1 and insulin secretion during OGTT. In summary, in the physiological state, loss of the portal neural system leads to decreased insulin sensitivity and increased blood glucose levels but does not affect food intake. These data indicate that an intact portal neural system is important for maintaining normal glucose metabolism.
Collapse
Affiliation(s)
- Vo Nguyen Trung
- Department of Surgery, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga, Japan
| | - Hiroshi Yamamoto
- Department of Surgery, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga, Japan.
| | - Tsuyoshi Yamaguchi
- Department of Surgery, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga, Japan
| | - Satoshi Murata
- Department of Surgery, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga, Japan
| | - Yoshinari Aimi
- Department of Anatomy, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga, Japan
| | - Atsukazu Kuwahara
- Laboratory of Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences & Institute for Environmental Sciences, University of Shizuoka, Yata, Suruga-ku, Shizuoka, Japan
| | - Tohru Tani
- Department of Surgery, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga, Japan
| |
Collapse
|
143
|
Moullé VS, Picard A, Le Foll C, Levin BE, Magnan C. Lipid sensing in the brain and regulation of energy balance. DIABETES & METABOLISM 2014; 40:29-33. [DOI: 10.1016/j.diabet.2013.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 10/26/2022]
|
144
|
Byerly MS, Petersen PS, Ramamurthy S, Seldin MM, Lei X, Provost E, Wei Z, Ronnett GV, Wong GW. C1q/TNF-related protein 4 (CTRP4) is a unique secreted protein with two tandem C1q domains that functions in the hypothalamus to modulate food intake and body weight. J Biol Chem 2013; 289:4055-69. [PMID: 24366864 DOI: 10.1074/jbc.m113.506956] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
CTRP4 is a unique member of the C1q family, possessing two tandem globular C1q domains. Its physiological function is poorly defined. Here, we show that CTRP4 is an evolutionarily conserved, ∼34-kDa secretory protein expressed in the brain. In human, mouse, and zebrafish brain, CTRP4 expression begins early in development and is widespread in the central nervous system. Neurons, but not astrocytes, express and secrete CTRP4, and secreted proteins form higher-order oligomeric complexes. CTRP4 is also produced by peripheral tissues and circulates in blood. Its serum levels are increased in leptin-deficient obese (ob/ob) mice. Functional studies suggest that CTRP4 acts centrally to modulate energy metabolism. Refeeding following an overnight fast induced the expression of CTRP4 in the hypothalamus. Central administration of recombinant protein suppressed food intake and altered the whole-body energy balance in both chow-fed and high-fat diet-fed mice. Suppression of food intake by CTRP4 is correlated with a decreased expression of orexigenic neuropeptide (Npy and Agrp) genes in the hypothalamus. These results establish CTRP4 as a novel nutrient-responsive central regulator of food intake and energy balance.
Collapse
|
145
|
Oral leucine supplementation is sensed by the brain but neither reduces food intake nor induces an anorectic pattern of gene expression in the hypothalamus. PLoS One 2013; 8:e84094. [PMID: 24349566 PMCID: PMC3862776 DOI: 10.1371/journal.pone.0084094] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/15/2013] [Indexed: 11/19/2022] Open
Abstract
Leucine activates the intracellular mammalian target of the rapamycin (mTOR) pathway, and hypothalamic mTOR signaling regulates food intake. Although central infusion of leucine reduces food intake, it is still uncertain whether oral leucine supplementation is able to affect the hypothalamic circuits that control energy balance. We observed increased phosphorylation of p70s6k in the mouse hypothalamus after an acute oral gavage of leucine. We then assessed whether acute oral gavage of leucine induces the activation of neurons in several hypothalamic nuclei and in the brainstem. Leucine did not induce the expression of Fos in hypothalamic nuclei, but it increased the number of Fos-immunoreactive neurons in the area postrema. In addition, oral gavage of leucine acutely increased the 24 h food intake of mice. Nonetheless, chronic leucine supplementation in the drinking water did not change the food intake and the weight gain of ob/ob mice and of wild-type mice consuming a low- or a high-fat diet. We assessed the hypothalamic gene expression and observed that leucine supplementation increased the expression of enzymes (BCAT1, BCAT2 and BCKDK) that metabolize branched-chain amino acids. Despite these effects, leucine supplementation did not induce an anorectic pattern of gene expression in the hypothalamus. In conclusion, our data show that the brain is able to sense oral leucine intake. However, the food intake is not modified by chronic oral leucine supplementation. These results question the possible efficacy of leucine supplementation as an appetite suppressant to treat obesity.
Collapse
|
146
|
Santos GA, Moura RF, Vitorino DC, Roman EAFR, Torsoni AS, Velloso LA, Torsoni MA. Hypothalamic AMPK activation blocks lipopolysaccharide inhibition of glucose production in mice liver. Mol Cell Endocrinol 2013; 381:88-96. [PMID: 23916575 DOI: 10.1016/j.mce.2013.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/28/2013] [Accepted: 07/19/2013] [Indexed: 01/17/2023]
Abstract
Endotoxic hypoglycaemia has an important role in the survival rates of septic patients. Previous studies have demonstrated that hypothalamic AMP-activated protein kinase (hyp-AMPK) activity is sufficient to modulate glucose homeostasis. However, the role of hyp-AMPK in hypoglycaemia associated with endotoxemia is unknown. The aims of this study were to examine hyp-AMPK dephosphorylation in lipopolysaccharide (LPS)-treated mice and to determine whether pharmacological hyp-AMPK activation could reduce the effects of endotoxemia on blood glucose levels. LPS-treated mice showed reduced food intake, diminished basal glycemia, increased serum TNF-α and IL-1β levels and increased hypothalamic p-TAK and TLR4/MyD88 association. These effects were accompanied by hyp-AMPK/ACC dephosphorylation. LPS-treated mice also showed diminished liver expression of PEPCK/G6Pase, reduction in p-FOXO1, p-AMPK, p-STAT3 and p-JNK level and glucose production. Pharmacological hyp-AMPK activation blocked the effects of LPS on the hyp-AMPK phosphorylation, liver PEPCK expression and glucose production. Furthermore, the effects of LPS were TLR4-dependent because hyp-AMPK phosphorylation, liver PEPCK expression and fasting glycemia were not affected in TLR4-mutant mice. These results suggest that hyp-AMPK activity may be an important pharmacological target to control glucose homeostasis during endotoxemia.
Collapse
Affiliation(s)
- G A Santos
- Departamento de Medicina Interna, Faculdade de Ciências Médicas, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
147
|
Abraham MA, Yue JTY, LaPierre MP, Rutter GA, Light PE, Filippi BM, Lam TKT. Hypothalamic glucagon signals through the KATP channels to regulate glucose production. Mol Metab 2013; 3:202-8. [PMID: 24634823 DOI: 10.1016/j.molmet.2013.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 12/11/2022] Open
Abstract
Insulin, leptin and GLP-1 signal in the mediobasal hypothalamus (MBH) to lower hepatic glucose production (GP). MBH glucagon action also inhibits GP but the downstream signaling mediators remain largely unknown. In parallel, a lipid-sensing pathway involving MBH AMPK→malonyl-CoA→CPT-1→LCFA-CoA→PKC-δ leading to the activation of KATP channels lowers GP. Given that glucagon signals through the MBH PKA to lower GP, and PKA inhibits AMPK in hypothalamic cell lines, a possibility arises that MBH glucagon-PKA inhibits AMPK, elevates LCFA-CoA levels to activate PKC-δ, and activates KATP channels to lower GP. We here report that neither molecular or chemical activation of MBH AMPK nor inhibition of PKC-δ negated the effect of MBH glucagon. In contrast, molecular and chemical inhibition of MBH KATP channels negated MBH glucagon's effect to lower GP. Thus, MBH glucagon signals through a lipid-sensing independent but KATP channel-dependent pathway to regulate GP.
Collapse
Affiliation(s)
- Mona A Abraham
- Toronto General Research Institute, University Health Network, Toronto, Canada ; Departments of Physiology, University of Toronto, Toronto, Canada
| | - Jessica T Y Yue
- Toronto General Research Institute, University Health Network, Toronto, Canada ; Departments of Medicine, University of Toronto, Toronto, Canada
| | - Mary P LaPierre
- Toronto General Research Institute, University Health Network, Toronto, Canada ; Departments of Physiology, University of Toronto, Toronto, Canada
| | - Guy A Rutter
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College of London, South Kensington, London, UK
| | - Peter E Light
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Beatrice M Filippi
- Toronto General Research Institute, University Health Network, Toronto, Canada ; Departments of Medicine, University of Toronto, Toronto, Canada
| | - Tony K T Lam
- Toronto General Research Institute, University Health Network, Toronto, Canada ; Departments of Physiology, University of Toronto, Toronto, Canada ; Departments of Medicine, University of Toronto, Toronto, Canada ; Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
148
|
Picard A, Rouch C, Kassis N, Moullé VS, Croizier S, Denis RG, Castel J, Coant N, Davis K, Clegg DJ, Benoit SC, Prévot V, Bouret S, Luquet S, Le Stunff H, Cruciani-Guglielmacci C, Magnan C. Hippocampal lipoprotein lipase regulates energy balance in rodents. Mol Metab 2013; 3:167-76. [PMID: 24634821 DOI: 10.1016/j.molmet.2013.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/07/2013] [Accepted: 11/13/2013] [Indexed: 01/22/2023] Open
Abstract
Brain lipid sensing is necessary to regulate energy balance. Lipoprotein lipase (LPL) may play a role in this process. We tested if hippocampal LPL regulated energy homeostasis in rodents by specifically attenuating LPL activity in the hippocampus of rats and mice, either by infusing a pharmacological inhibitor (tyloxapol), or using a genetic approach (adeno-associated virus expressing Cre-GFP injected into Lpl (lox/lox) mice). Decreased LPL activity by either method led to increased body weight gain due to decreased locomotor activity and energy expenditure, concomitant with increased parasympathetic tone (unchanged food intake). Decreased LPL activity in both models was associated with increased de novo ceramide synthesis and neurogenesis in the hippocampus, while intrahippocampal infusion of de novo ceramide synthesis inhibitor myriocin completely prevented body weight gain. We conclude that hippocampal lipid sensing might represent a core mechanism for energy homeostasis regulation through de novo ceramide synthesis.
Collapse
Key Words
- AAV, adeno-associated virus
- ANS, autonomic nervous system
- CERS, ceramide synthase
- CNS, central nervous system
- Ceramides
- Energy expenditure
- GFP, green fluorescent protein
- LPL, lipoprotein lipase
- Lipid sensing
- Obesity
- Parasympathetic nervous system
- RQ, respiratory quotient
- SMPD1, acid sphingomyelin phosphodiesterase 1
- SPHK1, sphingosine kinase 1
- SPT, serine palmitoyltransferase
- TG, triglycerides
Collapse
Affiliation(s)
- Alexandre Picard
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France
| | - Claude Rouch
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France ; Centre National de la Recherche Scientifique-CNRS EAC 4413, F-75205 Paris, France
| | - Nadim Kassis
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France ; Centre National de la Recherche Scientifique-CNRS EAC 4413, F-75205 Paris, France
| | - Valentine S Moullé
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France
| | - Sophie Croizier
- Jean-Pierre Aubert Research Center, Development and Plasticity of the Postnatal Brain, INSERM U837, 59045 Lille Cedex, France
| | - Raphaël G Denis
- Jean-Pierre Aubert Research Center, Development and Plasticity of the Postnatal Brain, INSERM U837, 59045 Lille Cedex, France
| | - Julien Castel
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France ; Centre National de la Recherche Scientifique-CNRS EAC 4413, F-75205 Paris, France
| | - Nicolas Coant
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France
| | - Kathryn Davis
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Deborah J Clegg
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephen C Benoit
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, USA
| | - Vincent Prévot
- Jean-Pierre Aubert Research Center, Development and Plasticity of the Postnatal Brain, INSERM U837, 59045 Lille Cedex, France
| | - Sébastien Bouret
- Jean-Pierre Aubert Research Center, Development and Plasticity of the Postnatal Brain, INSERM U837, 59045 Lille Cedex, France ; The Saban Research Institute, Neuroscience Program, Children's Hospital Los Angeles, University of Southern California, Los Angeles, USA
| | - Serge Luquet
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France ; Centre National de la Recherche Scientifique-CNRS EAC 4413, F-75205 Paris, France
| | - Hervé Le Stunff
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France
| | - Céline Cruciani-Guglielmacci
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France
| | - Christophe Magnan
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France
| |
Collapse
|
149
|
Taïb B, Bouyakdan K, Hryhorczuk C, Rodaros D, Fulton S, Alquier T. Glucose regulates hypothalamic long-chain fatty acid metabolism via AMP-activated kinase (AMPK) in neurons and astrocytes. J Biol Chem 2013; 288:37216-29. [PMID: 24240094 DOI: 10.1074/jbc.m113.506238] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypothalamic controls of energy balance rely on the detection of circulating nutrients such as glucose and long-chain fatty acids (LCFA) by the mediobasal hypothalamus (MBH). LCFA metabolism in the MBH plays a key role in the control of food intake and glucose homeostasis, yet it is not known if glucose regulates LCFA oxidation and esterification in the MBH and, if so, which hypothalamic cell type(s) and intracellular signaling mechanisms are involved. The aim of this study was to determine the impact of glucose on LCFA metabolism, assess the role of AMP-activated Kinase (AMPK), and to establish if changes in LCFA metabolism and its regulation by glucose vary as a function of the kind of LCFA, cell type, and brain region. We show that glucose inhibits palmitate oxidation via AMPK in hypothalamic neuronal cell lines, primary hypothalamic astrocyte cultures, and MBH slices ex vivo but not in cortical astrocytes and slice preparations. In contrast, oleate oxidation was not affected by glucose or AMPK inhibition in MBH slices. In addition, our results show that glucose increases palmitate, but not oleate, esterification into neutral lipids in neurons and MBH slices but not in hypothalamic astrocytes. These findings reveal for the first time the metabolic fate of different LCFA in the MBH, demonstrate AMPK-dependent glucose regulation of LCFA oxidation in both astrocytes and neurons, and establish metabolic coupling of glucose and LCFA as a distinguishing feature of hypothalamic nuclei critical for the control of energy balance.
Collapse
Affiliation(s)
- Bouchra Taïb
- From the Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Universite de Montreal and
| | | | | | | | | | | |
Collapse
|
150
|
Morton GJ, Matsen ME, Bracy DP, Meek TH, Nguyen HT, Stefanovski D, Bergman RN, Wasserman DH, Schwartz MW. FGF19 action in the brain induces insulin-independent glucose lowering. J Clin Invest 2013; 123:4799-808. [PMID: 24084738 PMCID: PMC3809800 DOI: 10.1172/jci70710] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/01/2013] [Indexed: 12/17/2022] Open
Abstract
Insulin-independent glucose disposal (referred to as glucose effectiveness [GE]) is crucial for glucose homeostasis and, until recently, was thought to be invariable. However, GE is reduced in type 2 diabetes and markedly decreased in leptin-deficient ob/ob mice. Strategies aimed at increasing GE should therefore be capable of improving glucose tolerance in these animals. The gut-derived hormone FGF19 has previously been shown to exert potent antidiabetic effects in ob/ob mice. In ob/ob mice, we found that systemic FGF19 administration improved glucose tolerance through its action in the brain and that a single, low-dose i.c.v. injection of FGF19 dramatically improved glucose intolerance within 2 hours. Minimal model analysis of glucose and insulin data obtained during a frequently sampled i.v. glucose tolerance test showed that the antidiabetic effect of i.c.v. FGF19 was solely due to increased GE and not to changes of either insulin secretion or insulin sensitivity. The mechanism underlying this effect appears to involve increased metabolism of glucose to lactate. Together, these findings implicate the brain in the antidiabetic action of systemic FGF19 and establish the brain’s capacity to rapidly, potently, and selectively increase insulin-independent glucose disposal.
Collapse
Affiliation(s)
- Gregory J. Morton
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington, USA.
Department of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee, USA.
Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Miles E. Matsen
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington, USA.
Department of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee, USA.
Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Deanna P. Bracy
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington, USA.
Department of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee, USA.
Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Thomas H. Meek
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington, USA.
Department of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee, USA.
Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Hong T. Nguyen
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington, USA.
Department of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee, USA.
Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Darko Stefanovski
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington, USA.
Department of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee, USA.
Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Richard N. Bergman
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington, USA.
Department of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee, USA.
Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - David H. Wasserman
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington, USA.
Department of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee, USA.
Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Michael W. Schwartz
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington, USA.
Department of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee, USA.
Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|