101
|
Ávalos Y, Paz Hernández-Cáceres M, Toledo L, Morselli E. Loss of Autophagy in Hypothalamic Neurons May Be Involved in the Pathogenesis of Obesity. AUTOPHAGY: CANCER, OTHER PATHOLOGIES, INFLAMMATION, IMMUNITY, INFECTION, AND AGING 2017:295-312. [DOI: 10.1016/b978-0-12-812146-7.00013-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
102
|
Bruce KD, Zsombok A, Eckel RH. Lipid Processing in the Brain: A Key Regulator of Systemic Metabolism. Front Endocrinol (Lausanne) 2017; 8:60. [PMID: 28421037 PMCID: PMC5378716 DOI: 10.3389/fendo.2017.00060] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/17/2017] [Indexed: 12/25/2022] Open
Abstract
Metabolic disorders, particularly aberrations in lipid homeostasis, such as obesity, type 2 diabetes mellitus, and hypertriglyceridemia often manifest together as the metabolic syndrome (MetS). Despite major advances in our understanding of the pathogenesis of these disorders, the prevalence of the MetS continues to rise. It is becoming increasingly apparent that intermediary metabolism within the central nervous system is a major contributor to the regulation of systemic metabolism. In particular, lipid metabolism within the brain is tightly regulated to maintain neuronal structure and function and may signal nutrient status to modulate metabolism in key peripheral tissues such as the liver. There is now a growing body of evidence to suggest that fatty acid (FA) sensing in hypothalamic neurons via accumulation of FAs or FA metabolites may signal nutritional sufficiency and may decrease hepatic glucose production, lipogenesis, and VLDL-TG secretion. In addition, recent studies have highlighted the existence of liver-related neurons that have the potential to direct such signals through parasympathetic and sympathetic nervous system activity. However, to date whether these liver-related neurons are FA sensitive remain to be determined. The findings discussed in this review underscore the importance of the autonomic nervous system in the regulation of systemic metabolism and highlight the need for further research to determine the key features of FA neurons, which may serve as novel therapeutic targets for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Kimberley D. Bruce
- University of Colorado School of Medicine, Division of Endocrinology, Metabolism and Diabetes, Aurora, CO, USA
- *Correspondence: Kimberley D. Bruce,
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Robert H. Eckel
- University of Colorado School of Medicine, Division of Endocrinology, Metabolism and Diabetes, Aurora, CO, USA
| |
Collapse
|
103
|
Tran DQ, Tse EK, Kim MH, Belsham DD. Diet-induced cellular neuroinflammation in the hypothalamus: Mechanistic insights from investigation of neurons and microglia. Mol Cell Endocrinol 2016; 438:18-26. [PMID: 27208620 DOI: 10.1016/j.mce.2016.05.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/17/2016] [Indexed: 12/31/2022]
Abstract
Diet-induced obesity can lead to detrimental chronic disorders. The severity of this global epidemic has encouraged ongoing research to characterize the mechanisms underlying obesity and its comorbidities. Recent evidence suggests that saturated fatty acids (SFA) in high-fat diets rapidly generate inflammation in the arcuate nucleus of the hypothalamus (ARC), which centrally regulates whole-body energy homeostasis. Herein, we will review the roles of hypothalamic neurons and resident microglia in the initiation of SFA-induced hypothalamic inflammation. Particularly, we focus on neuronal and microglial free fatty acid-sensing and capacity to produce inflammatory signaling. We also outline a potential role of peripherally-derived monocytes in this inflammation. And finally, we explore synaptic plasticity as a mechanism through which hypothalamic inflammation can modulate ARC circuitry, and thus disrupt energy homeostasis.
Collapse
Affiliation(s)
- Dean Q Tran
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Erika K Tse
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Mun Heui Kim
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
104
|
Matias I, Belluomo I, Cota D. The Fat Side of the Endocannabinoid System: Role of Endocannabinoids in the Adipocyte. Cannabis Cannabinoid Res 2016. [DOI: 10.1089/can.2016.0014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Isabelle Matias
- Neurocentre Magendie, Physiophatologie de la Plasticité Neuronale, U1215, INSERM, Bordeaux, France
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, University of Bordeaux, Bordeaux, France
| | - Ilaria Belluomo
- Neurocentre Magendie, Physiophatologie de la Plasticité Neuronale, U1215, INSERM, Bordeaux, France
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, University of Bordeaux, Bordeaux, France
| | - Daniela Cota
- Neurocentre Magendie, Physiophatologie de la Plasticité Neuronale, U1215, INSERM, Bordeaux, France
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, University of Bordeaux, Bordeaux, France
| |
Collapse
|
105
|
Yue JTY, Abraham MA, Bauer PV, LaPierre MP, Wang P, Duca FA, Filippi BM, Chan O, Lam TKT. Inhibition of glycine transporter-1 in the dorsal vagal complex improves metabolic homeostasis in diabetes and obesity. Nat Commun 2016; 7:13501. [PMID: 27874011 PMCID: PMC5121412 DOI: 10.1038/ncomms13501] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/10/2016] [Indexed: 12/14/2022] Open
Abstract
Impaired glucose homeostasis and energy balance are integral to the pathophysiology of diabetes and obesity. Here we show that administration of a glycine transporter 1 (GlyT1) inhibitor, or molecular GlyT1 knockdown, in the dorsal vagal complex (DVC) suppresses glucose production, increases glucose tolerance and reduces food intake and body weight gain in healthy, obese and diabetic rats. These findings provide proof of concept that GlyT1 inhibition in the brain improves glucose and energy homeostasis. Considering the clinical safety and efficacy of GlyT1 inhibitors in raising glycine levels in clinical trials for schizophrenia, we propose that GlyT1 inhibitors have the potential to be repurposed as a treatment of both obesity and diabetes.
Collapse
Affiliation(s)
- Jessica T Y Yue
- Toronto General Hospital Research Institute and Department of Medicine, UHN, Toronto, Ontario, Canada M5G 1L7
| | - Mona A Abraham
- Toronto General Hospital Research Institute and Department of Medicine, UHN, Toronto, Ontario, Canada M5G 1L7.,Departments of Physiology, Toronto, Ontario, Canada M5S 1A8
| | - Paige V Bauer
- Toronto General Hospital Research Institute and Department of Medicine, UHN, Toronto, Ontario, Canada M5G 1L7.,Departments of Physiology, Toronto, Ontario, Canada M5S 1A8
| | - Mary P LaPierre
- Toronto General Hospital Research Institute and Department of Medicine, UHN, Toronto, Ontario, Canada M5G 1L7.,Departments of Physiology, Toronto, Ontario, Canada M5S 1A8
| | - Peili Wang
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Frank A Duca
- Toronto General Hospital Research Institute and Department of Medicine, UHN, Toronto, Ontario, Canada M5G 1L7
| | - Beatrice M Filippi
- Toronto General Hospital Research Institute and Department of Medicine, UHN, Toronto, Ontario, Canada M5G 1L7
| | - Owen Chan
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Tony K T Lam
- Toronto General Hospital Research Institute and Department of Medicine, UHN, Toronto, Ontario, Canada M5G 1L7.,Departments of Physiology, Toronto, Ontario, Canada M5S 1A8.,Departments of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada M5G 2C4
| |
Collapse
|
106
|
Caron A, Richard D. Neuronal systems and circuits involved in the control of food intake and adaptive thermogenesis. Ann N Y Acad Sci 2016; 1391:35-53. [PMID: 27768821 DOI: 10.1111/nyas.13263] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 12/27/2022]
Abstract
With the still-growing prevalence of obesity worldwide, major efforts are made to understand the various behavioral, environmental, and genetic factors that promote excess fat gain. Obesity results from an imbalance between energy intake and energy expenditure, which emphasizes the importance of deciphering the mechanisms behind energy balance regulation to understand its physiopathology. The control of energy balance is assured by brain systems/circuits capable of generating adequate ingestive and thermogenic responses to maintain the stability of energy reserves, which implies a proper integration of the homeostatic signals that inform about the status of the energy stores. In this article, we overview the organization and functionality of key neuronal circuits or pathways involved in the control of food intake and energy expenditure. We review the role of the corticolimbic (executive and reward) and autonomic systems that integrate their activities to regulate energy balance. We also describe the mechanisms and pathways whereby homeostatic sensing is achieved in response to variations of homeostatic hormones, such as leptin, insulin, and ghrelin, while putting some emphasis on the prominent importance of the mechanistic target of the rapamycin signaling pathway in coordinating the homeostatic sensing process.
Collapse
Affiliation(s)
- Alexandre Caron
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec and Faculty of Medicine, Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Denis Richard
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec and Faculty of Medicine, Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
107
|
Hofmann K, Lamberz C, Piotrowitz K, Offermann N, But D, Scheller A, Al-Amoudi A, Kuerschner L. Tanycytes and a differential fatty acid metabolism in the hypothalamus. Glia 2016; 65:231-249. [PMID: 27726181 DOI: 10.1002/glia.23088] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/31/2016] [Accepted: 09/28/2016] [Indexed: 11/12/2022]
Abstract
Although the brain controls all main metabolic pathways in the whole organism, its lipid metabolism is partially separated from the rest of the body. Circulating lipids and other metabolites are taken up into brain areas like the hypothalamus and are locally metabolized and sensed involving several hypothalamic cell types. In this study we show that saturated and unsaturated fatty acids are differentially processed in the murine hypothalamus. The observed differences involve both lipid distribution and metabolism. Key findings were: (i) hypothalamic astrocytes are targeted by unsaturated, but not saturated lipids in lean mice; (ii) in obese mice labeling of these astrocytes by unsaturated oleic acid cannot be detected unless β-oxidation or ketogenesis is inhibited; (iii) the hypothalamus of obese animals increases ketone body and neutral lipid synthesis while tanycytes, hypothalamic cells facing the ventricle, increase their lipid droplet content; and (iv) tanycytes show different labeling for saturated or unsaturated lipids. Our data support a metabolic connection between tanycytes and astrocytes likely to impact hypothalamic lipid sensing. GLIA 2017;65:231-249.
Collapse
Affiliation(s)
- Kristina Hofmann
- Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, D-53115, Germany
| | - Christian Lamberz
- German Center for Neurodegenerative Diseases (DZNE), Bonn, D-53175, Germany
| | - Kira Piotrowitz
- Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, D-53115, Germany
| | - Nina Offermann
- Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, D-53115, Germany
| | - Diana But
- Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, D-53115, Germany
| | - Anja Scheller
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, D-66421, Germany
| | - Ashraf Al-Amoudi
- German Center for Neurodegenerative Diseases (DZNE), Bonn, D-53175, Germany
| | - Lars Kuerschner
- Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, D-53115, Germany
| |
Collapse
|
108
|
Araujo EP, Moraes JC, Cintra DE, Velloso LA. MECHANISMS IN ENDOCRINOLOGY: Hypothalamic inflammation and nutrition. Eur J Endocrinol 2016; 175:R97-R105. [PMID: 27006108 DOI: 10.1530/eje-15-1207] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/22/2016] [Indexed: 12/29/2022]
Abstract
Selected subpopulations of hypothalamic neurons play important roles in the regulation of whole body energy homeostasis. Studies have shown that the saturated fats present in large amounts in western diets can activate an inflammatory response in the hypothalamus, affecting the capacity of such neurons to respond appropriately to satiety and adipostatic signals. In the first part of this review, we will explore the mechanisms behind saturated fatty acid-induced hypothalamic dysfunction. Next, we will present and discuss recent studies that have identified the mechanisms that mediate some of the anti-inflammatory actions of unsaturated fatty acids in the hypothalamus and the potential for exploring these mechanisms to prevent or treat obesity.
Collapse
Affiliation(s)
- Eliana P Araujo
- Laboratory of Cell SignalingUniversity of Campinas, Campinas, São Paulo, Brazil Faculty of NursingUniversity of Campinas, Campinas, São Paulo, Brazil
| | - Juliana C Moraes
- Laboratory of Cell SignalingUniversity of Campinas, Campinas, São Paulo, Brazil
| | - Dennys E Cintra
- Laboratory of Cell SignalingUniversity of Campinas, Campinas, São Paulo, Brazil Faculty of Applied SciencesUniversity of Campinas, Campinas, São Paulo, Brazil
| | - Licio A Velloso
- Laboratory of Cell SignalingUniversity of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
109
|
Schwartz SS, Zangeneh F. Evidence-based practice use of quick-release bromocriptine across the natural history of type 2 diabetes mellitus. Postgrad Med 2016; 128:828-838. [PMID: 27458683 DOI: 10.1080/00325481.2016.1214059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To provide an evidence-based practice overview on the clinical use of bromocriptine-quick release (QR) across the natural history of type 2 diabetes mellitus (T2DM). METHODS Articles for inclusion were selected after a comprehensive literature search of English-language PubMed articles and identification of other relevant references through other sources. Inclusion criteria were animal studies examining the mechanism of action and efficacy of bromocriptine, and clinical studies examining the safety and efficacy of bromocriptine-QR in patients with T2DM, without a time limitation. RESULTS The brain plays a key role in total body metabolism, in particular ensuring that sufficient levels of glucose are available for proper neural functioning. The hypothalamic suprachiasmatic nucleus (SCN), the body's biological clock, plays a key role in the regulation of seasonal and diurnal variations of insulin sensitivity. A daily surge of dopaminergic activity in the SCN upon waking enables insulin sensitivity throughout the day. When this is disrupted (e.g. by a high fat/sugar diet, stress, altered [diminished] exercise, altered sleep/wake cycle, diabetes), insulin resistance persists throughout the day and overnight. Improving the morning surge in dopaminergic activity with the short-acting dopamine D2 receptor agonist bromocriptine-QR can safely and effectively improve glycemic control, while improving cardiovascular disease risk factors and related adverse events, and reducing sympathetic tone, as demonstrated by 5 reports of the Cycloset Safety Trial and 3 additional clinical studies of bromocriptine-QR. CONCLUSIONS In patients with T2DM, the dopamine D2 receptor agonist bromocriptine-QR has been shown to be well tolerated, efficacious, and a logical treatment option.
Collapse
Affiliation(s)
- Stanley S Schwartz
- a Main Line Health System , Wynnewood , PA , USA.,b University of Pennsylvania , Philadelphia , PA , USA
| | - Farhad Zangeneh
- c Endocrine, Diabetes & Osteoporosis Clinic , Sterling , VA , USA
| |
Collapse
|
110
|
Arrieta-Cruz I, Gutiérrez-Juárez R. The Role of Circulating Amino Acids in the Hypothalamic Regulation of Liver Glucose Metabolism. Adv Nutr 2016; 7:790S-7S. [PMID: 27422516 PMCID: PMC4942863 DOI: 10.3945/an.115.011171] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A pandemic of diabetes and obesity has been developing worldwide in close association with excessive nutrient intake and a sedentary lifestyle. Variations in the protein content of the diet have a direct impact on glucose homeostasis because amino acids (AAs) are powerful modulators of insulin action. In this work we review our recent findings on how elevations in the concentration of the circulating AAs leucine and proline activate a metabolic mechanism located in the mediobasal hypothalamus of the brain that sends a signal to the liver via the vagus nerve, which curtails glucose output. This neurogenic signal is strictly dependent on the metabolism of leucine and proline to acetyl-coenzyme A (CoA) and the subsequent production of malonyl-CoA; the signal also requires functional neuronal ATP-sensitive potassium channels. The liver then responds by lowering the rate of gluconeogenesis and glycogenolysis, ultimately leading to a net decrease in glucose production and in concentrations of circulating glucose. Furthermore, we review here how our work with proline suggests a new role of astrocytes in the central regulation of glycemia. Last, we outline how factors such as the consumption of fat-rich diets can interfere with glucoregulatory mechanisms and, in the long term, may contribute to the development of hyperglycemia, a hallmark of type 2 diabetes.
Collapse
Affiliation(s)
- Isabel Arrieta-Cruz
- Department of Basic Research, National Institute of Geriatrics, Mexico City, Mexico; and
| | - Roger Gutiérrez-Juárez
- Department of Medicine and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
111
|
Luo X, Li K, Zhang C, Yang G, Yang M, Jia Y, Zhang L, Ma ZA, Boden G, Li L. Central administration of vaspin inhibits glucose production and augments hepatic insulin signaling in high-fat-diet-fed rat. Int J Obes (Lond) 2016; 40:947-954. [PMID: 26975443 DOI: 10.1038/ijo.2016.24] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/27/2015] [Accepted: 12/22/2015] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To investigate the effects of vaspin signaling conveyed by the brain on liver glucose fluxes in rats. METHODS To determine the effects and underlying mechanisms of central vaspin signaling, normal-chow-diet- and high-fat-diet (HFD)-fed rats with or without hepatic branch vagotomy (HBV) received acute infusion of vaspin to the third cerebral ventricle or MK801, a dorsal vagal complex (DVC) N-methyl-D-aspartate (NMDA) receptor inhibitor, to the DVC during the pancreatic euglycemic clamp. RESULTS Central administration of vaspin in HFD-fed rats significantly increased glucose infusion required to maintain euglycemia owing to an inhibition of glucose production during the clamps. These changes were accompanied by decreased hepatic phosphoenolpyruatecarboxykinase and G6Pase expression levels and increased hepatic insulin receptor, insulin receptor substrate-1, Akt kinase and the forkhead box-containing protein of the O subfamily-1 phosphorylation, suggesting improving hepatic insulin sensitivity in these animals. Conversely, selective HBV or DVC MK-801 infusion in HFD-fed rats blocked the effect of central vaspin on glucose production and hepatic insulin sensitivity. CONCLUSIONS Our findings suggest that brain vaspin inhibited hepatic glucose production and improved insulin sensitivity via DVC to the hepatic branch of the vagus nerve in insulin resistance rats induced by HFD.
Collapse
Affiliation(s)
- X Luo
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - K Li
- Department of Endocrinology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - C Zhang
- Department of Endocrinology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - G Yang
- Department of Endocrinology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - M Yang
- Department of Endocrinology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Y Jia
- Department of Endocrinology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - L Zhang
- Department of Endocrinology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Z A Ma
- Technology Transfer Center, University of Michigan, Ann Arbor, MI, USA
| | - G Boden
- The Division of Endocrinology/Diabetes/Metabolism and The Clinical Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - L Li
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
112
|
Edwards A, Abizaid A. Driving the need to feed: Insight into the collaborative interaction between ghrelin and endocannabinoid systems in modulating brain reward systems. Neurosci Biobehav Rev 2016; 66:33-53. [PMID: 27136126 DOI: 10.1016/j.neubiorev.2016.03.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 03/08/2016] [Accepted: 03/31/2016] [Indexed: 01/29/2023]
Abstract
Independent stimulation of either the ghrelin or endocannabinoid system promotes food intake and increases adiposity. Given the similar distribution of their receptors in feeding associated brain regions and organs involved in metabolism, it is not surprising that evidence of their interaction and its importance in modulating energy balance has emerged. This review documents the relationship between ghrelin and endocannabinoid systems within the periphery and hypothalamus (HYP) before presenting evidence suggesting that these two systems likewise work collaboratively within the ventral tegmental area (VTA) to modulate non-homeostatic feeding. Mechanisms, consistent with current evidence and local infrastructure within the VTA, will be proposed.
Collapse
Affiliation(s)
- Alexander Edwards
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
113
|
Berland C, Cansell C, Hnasko TS, Magnan C, Luquet S. Dietary triglycerides as signaling molecules that influence reward and motivation. Curr Opin Behav Sci 2016; 9:126-135. [PMID: 28191490 DOI: 10.1016/j.cobeha.2016.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The reinforcing and motivational aspects of food are tied to the release of the dopamine in the mesolimbic system (ML). Free fatty acids from triglyceride (TG)-rich particles are released upon action of TG-lipases found at high levels in peripheral oxidative tissue (muscle, heart), but also in the ML. This suggests that local TG-hydrolysis in the ML might regulate food seeking and reward. Indeed, evidence now suggests that dietary TG directly target the ML to regulate amphetamine-induced locomotion and reward seeking behavior. Though the cellular mechanisms of TG action are unresolved, TG act in part through ML lipoprotein lipase, upstream of dopamine 2 receptor (D2R), and show desensitization in conditions of chronically elevated plasma TG as occur in obesity. TG sensing in the ML therefore represents a new mechanism by which chronic consumption of dietary fat might lead to adaptations in the ML and dysregulated feeding behaviors.
Collapse
Affiliation(s)
- Chloé Berland
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France; Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, München/Neuherberg, Germany; Div. of Metabolic Diseases, Dept. of Medicine, Technische Universität München, Germany
| | - Céline Cansell
- Université de Nice Sophia Antipolis, IPMC, Sophia Antipolis, F-06560, France; CNRS, IPMC, Sophia Antipolis, F-06560, France
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla CA, USA
| | - Christophe Magnan
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Serge Luquet
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| |
Collapse
|
114
|
Yasrebi A, Hsieh A, Mamounis KJ, Krumm EA, Yang JA, Magby J, Hu P, Roepke TA. Differential gene regulation of GHSR signaling pathway in the arcuate nucleus and NPY neurons by fasting, diet-induced obesity, and 17β-estradiol. Mol Cell Endocrinol 2016; 422:42-56. [PMID: 26577678 PMCID: PMC4742417 DOI: 10.1016/j.mce.2015.11.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 12/20/2022]
Abstract
Ghrelin's receptor, growth hormone secretagogue receptor (GHSR), is highly expressed in the arcuate nucleus (ARC) and in neuropeptide Y (NPY) neurons. Fasting, diet-induced obesity (DIO), and 17β-estradiol (E2) influence ARC Ghsr expression. It is unknown if these effects occur in NPY neurons. Therefore, we examined the expression of Npy, Agrp, and GHSR signaling pathway genes after fasting, DIO, and E2 replacement in ARC and pools of NPY neurons. In males, fasting increased ARC Ghsr and NPY Foxo1 but decreased NPY Ucp2. In males, DIO decreased ARC and NPY Ghsr and Cpt1c. In fed females, E2 increased Agrp, Ghsr, Cpt1c, and Foxo1 in ARC. In NPY pools, E2 decreased Foxo1 in fed females but increased Foxo1 in fasted females. DIO in females suppressed Agrp and augmented Cpt1c in NPY neurons. In summary, genes involved in GHSR signaling are differentially regulated between the ARC and NPY neurons in a sex-dependent manner.
Collapse
Affiliation(s)
- Ali Yasrebi
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Anna Hsieh
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Kyle J Mamounis
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Nutritional Sciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Elizabeth A Krumm
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Jennifer A Yang
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Jason Magby
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Pu Hu
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Nutritional Sciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
115
|
Abstract
PURPOSE OF REVIEW In response to nutrient availability, the small intestine and brain closely communicate to modulate energy homeostasis and metabolism. The gut-brain axis involves complex nutrient sensing mechanisms and an integration of neuronal and hormonal signaling. This review summarizes recent evidence implicating the gut-brain axis in regulating lipoprotein metabolism, with potential implications for the dyslipidemia of insulin resistant states. RECENT FINDINGS The intestine and brain possess distinct mechanisms for sensing lipid availability, which triggers subsequent regulation of feeding, glucose homeostasis, and adipose tissue metabolism. More recently, central receptors, neuropeptides, and gut hormones that communicate with the brain have been shown to modulate hepatic and intestinal lipoprotein metabolism via parasympathetic and sympathetic signaling. Gut-derived glucagon-like peptides appear to be particularly important in modulating the intestinal secretion of chylomicron particles via a novel brain-gut axis. Dysregulation of these pathways may contribute to postprandial diabetic dyslipidemia. SUMMARY Emerging evidence implicates the central and enteric nervous systems in controlling many aspects of lipid and lipoprotein metabolism. Bidirectional communication between the gut and brain involving neuronal pathways and gut peptides is critical for regulating feeding and metabolism, and forms a neuroendocrine circuit to modulate dietary fat absorption and intestinal production of atherogenic chylomicron particles.
Collapse
Affiliation(s)
- Sarah Farr
- aMolecular Structure and Function, Research Institute, The Hospital for Sick Children bDepartment of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
116
|
Florian JP, Baisch FJ, Heer M, Pawelczyk JA. Caloric restriction diminishes the pressor response to static exercise. EXTREME PHYSIOLOGY & MEDICINE 2016; 5:2. [PMID: 26793301 PMCID: PMC4719559 DOI: 10.1186/s13728-016-0043-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 01/05/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Astronauts in space consume fewer calories and return to earth predisposed to orthostatic intolerance. The role that caloric deficit plays in the modulation of autonomic control of the cardiovascular system is unknown. Therefore, the purpose of this study was to determine the effects of 6° head-down bedrest (an analog of spaceflight) with a hypocaloric diet (25 % caloric restriction) (CR) on autonomic neural control during static handgrip (HG) and cold pressor (CP) tests. Nine healthy young men participated in a randomized crossover bedrest (BR) study, consisting of four, two-week interventions (hypocaloric ambulatory, hypocaloric bedrest, normocaloric ambulatory, and normocaloric bedrest), each separated by 5 months. Heart rate (HR), arterial pressure, and muscle sympathetic nerve activity (MSNA) were recorded before, during, and after HG (40 % of maximum voluntary contraction to fatigue), post-exercise muscle ischemia (forearm occlusion), and CP. Bedrest and nutritional combinations were compared using two-way ANOVA with repeated measures. RESULTS HR, MSNA, and the change in systolic blood pressure during HG were attenuated with caloric restriction, but post-intervention responses for all groups were similar during post-exercise muscle ischemia. CR was associated with a higher diastolic blood pressure during CP; however, HR was directionally opposite (i.e., increase with BR, decrease with CR). CONCLUSIONS In summary 14-day caloric/fat restriction attenuated MSNA and pressor responses during isometric exercise to fatigue but not to post-exercise muscle ischemia. This indicates that the integrity of the metaboreflex is maintained whereas the influence of the mechanoreflex and/or central command may be reduced.
Collapse
Affiliation(s)
- John P Florian
- Navy Experimental Diving Unit, 321 Bullfinch Rd., Panama City, FL 32407 USA
| | | | - Martina Heer
- DLR-Institute of Aerospace Medicine, Cologne, Germany
| | - James A Pawelczyk
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
117
|
Cansell C, Luquet S. Triglyceride sensing in the reward circuitry: A new insight in feeding behaviour regulation. Biochimie 2016; 120:75-80. [PMID: 26159487 DOI: 10.1016/j.biochi.2015.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/03/2015] [Indexed: 12/17/2022]
|
118
|
Magnan C, Levin BE, Luquet S. Brain lipid sensing and the neural control of energy balance. Mol Cell Endocrinol 2015; 418 Pt 1:3-8. [PMID: 26415589 DOI: 10.1016/j.mce.2015.09.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 09/14/2015] [Accepted: 09/22/2015] [Indexed: 12/29/2022]
Abstract
Fatty acid (FA) -sensitive neurons are present in the brain, especially the hypothalamus, and play a key role in the neural control of energy and glucose homeostasis including feeding behavior, secretion insulin and action. Subpopulations of neurons in the arcuate and ventromedial hypothalamic nuclei are selectively either activated or inhibited by FA. Molecular effectors of these FA effects include ion channels such as chloride, potassium or calcium. In addition, at least half of the responses in the hypothalamic ventromedial FA neurons are mediated through interaction with the FA translocator/receptor, FAT/CD36, that does not require metabolism to activate intracellular signaling downstream. Recently, an important role of lipoprotein lipase in FA detection has also been demonstrated not only in the hypothalamus, but also in the hippocampus and striatum. Finally, FA could overload energy homeostasis via increased hypothalamic ceramide synthesis which could, in turn, contribute to the pathogenesis of diabetes of obesity and/or type 2 in predisposed individuals by disrupting the endocrine signaling pathways of insulin and/or leptin.
Collapse
Affiliation(s)
- Christophe Magnan
- Univ Paris Diderot, Sorbonne Paris Cité, CNRS UMR 8251, F-75205, Paris, France.
| | - Barry E Levin
- Neurology Service, VA Medical Center, East Orange, NJ, USA; Department of Neurology, Rutgers, NJ Medical School, Newark, NJ, USA
| | - Serge Luquet
- Univ Paris Diderot, Sorbonne Paris Cité, CNRS UMR 8251, F-75205, Paris, France
| |
Collapse
|
119
|
Abstract
The compact nervous system of Caenorhabditis elegans and its genetic tractability are features that make this organism highly suitable for investigating energy balance in an animal system. Here, we focus on molecular components and organizational principles emerging from the investigation of pathways that largely originate in the nervous system and regulate feeding behavior but also peripheral fat regulation through neuroendocrine signaling. We provide an overview of studies aimed at understanding how C. elegans integrate internal and external cues in feeding behavior. We highlight some of the similarities and differences in energy balance between C. elegans and mammals. We also provide our perspective on unresolved issues, both conceptual and technical, that we believe have hampered critical evaluation of findings relevant to fat regulation in C. elegans.
Collapse
Affiliation(s)
- George A Lemieux
- Department of Physiology, University of California, San Francisco, California 94158;
| | - Kaveh Ashrafi
- Department of Physiology, University of California, San Francisco, California 94158;
| |
Collapse
|
120
|
Sundaresan S, Abumrad NA. Dietary Lipids Inform the Gut and Brain about Meal Arrival via CD36-Mediated Signal Transduction. J Nutr 2015; 145:2195-200. [PMID: 26269236 PMCID: PMC4580959 DOI: 10.3945/jn.115.215483] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sensing mechanisms for nutrients, in particular dietary fat, operate in the mouth, brain, and gastrointestinal tract and play a key role in regulating feeding behavior and energy balance. Critical to these regulatory mechanisms are the specialized receptors present on taste buds on the tongue, on neurons in specialized centers in the brain, and on epithelial and enteroendocrine cells in the intestinal mucosa. These receptors recognize nutrients and respond by inducing intracellular signals that trigger release of bioactive compounds that influence other organs and help coordinate the response to the meal. Components of dietary fat that are recognized by these receptors are the long-chain fatty acids that act as ligands for 2 G protein-coupled receptors, GPR40 and GPR120, and the fatty acid (FA) translocase/CD36. Recent evidence that emphasizes the important role of CD36 in orosensory, intestinal, and neuronal sensing of FAs under physiologic conditions is highlighted in the review. How this role intersects with that of GPR120 and GPR40 in the regulation of food preference and energy balance is briefly discussed.
Collapse
Affiliation(s)
- Sinju Sundaresan
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO; and Department of Internal Medicine, Gastroenterology Division, University of Michigan, Ann Arbor, MI
| | - Nada A Abumrad
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO; and
| |
Collapse
|
121
|
Abstract
Metabolic impairments play an important role in the development and progression of heart failure. The use of metabolic modulators, the number of which is steadily increasing, may be particularly effective in the treatment of heart failure. Recent evidence suggests that modulating cardiac energy metabolism by reducing fatty acid oxidation and/or increasing glucose oxidation represents a promising approach to the treatment of patients with heart failure. This review focuses on the role of metabolic modulators, in particular trimetazidine, as a potential additional medication to conventional medical therapy in heart failure.
Collapse
Affiliation(s)
- Yury Lopatin
- Volgograd State Medical University, Volgograd Regional Cardiology Centre,Volgograd, Russia
| |
Collapse
|
122
|
Kurita H, Xu KY, Maejima Y, Nakata M, Dezaki K, Santoso P, Yang Y, Arai T, Gantulga D, Muroya S, Lefor AK, Kakei M, Watanabe E, Yada T. Arcuate Na+,K+-ATPase senses systemic energy states and regulates feeding behavior through glucose-inhibited neurons. Am J Physiol Endocrinol Metab 2015; 309:E320-33. [PMID: 26081283 DOI: 10.1152/ajpendo.00446.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 06/12/2015] [Indexed: 01/13/2023]
Abstract
Feeding is regulated by perception in the hypothalamus, particularly the first-order arcuate nucleus (ARC) neurons, of the body's energy state. However, the cellular device for converting energy states to the activity of critical neurons in ARC is less defined. We here show that Na(+),K(+)-ATPase (NKA) in ARC senses energy states to regulate feeding. Fasting-induced systemic ghrelin rise and glucose lowering reduced ATP-hydrolyzing activity of NKA and its substrate ATP level, respectively, preferentially in ARC. Lowering glucose concentration (LG), which mimics fasting, decreased intracellular NAD(P)H and increased Na(+) concentration in single ARC neurons that subsequently exhibited [Ca(2+)]i responses to LG, showing that they were glucose-inhibited (GI) neurons. Third ventricular injection of the NKA inhibitor ouabain induced c-Fos expression in agouti-related protein (AgRP) neurons in ARC and evoked neuropeptide Y (NPY)-dependent feeding. When injected focally into ARC, ouabain stimulated feeding and mRNA expressions for NPY and AgRP. Ouabain increased [Ca(2+)]i in single NPY/AgRP neurons with greater amplitude than in proopiomelanocortin neurons in ARC. Conversely, the specific NKA activator SSA412 suppressed fasting-induced feeding and LG-induced [Ca(2+)]i increases in ARC GI neurons. NPY/AgRP neurons highly expressed NKAα3, whose knockdown impaired feeding behavior. These results demonstrate that fasting, via ghrelin rise and LG, suppresses NKA enzyme/pump activity in ARC and thereby promotes the activation of GI neurons and NPY/AgRP-dependent feeding. This study identifies ARC NKA as a hypothalamic sensor and converter of metabolic states to key neuronal activity and feeding behaviour, providing a new target to treat hyperphagic obesity and diabetes.
Collapse
Affiliation(s)
- Hideharu Kurita
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan; Department of Neurosurgery, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Kai Y Xu
- Department of Surgery, Division of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yuko Maejima
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Masanori Nakata
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Katsuya Dezaki
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Putra Santoso
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Yifei Yang
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Takeshi Arai
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Darambazar Gantulga
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Shinji Muroya
- Department of Psychiatry, Imamura-bunin Hospital, Kagoshima, Kagoshima, Japan
| | - Alan K Lefor
- Department of Surgery, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Masafumi Kakei
- First Department of Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Saitama, Japan; and
| | - Eiju Watanabe
- Department of Neurosurgery, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Toshihiko Yada
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan; Department of Developmental Physiology, Division of Adaptation Development, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| |
Collapse
|
123
|
García AP, Aitta-aho T, Schaaf L, Heeley N, Heuschmid L, Bai Y, Barrantes FJ, Apergis-Schoute J. Nicotinic α4 Receptor-Mediated Cholinergic Influences on Food Intake and Activity Patterns in Hypothalamic Circuits. PLoS One 2015; 10:e0133327. [PMID: 26247203 PMCID: PMC4527587 DOI: 10.1371/journal.pone.0133327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/24/2015] [Indexed: 12/22/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) play an important role in regulating appetite and have been shown to do so by influencing neural activity in the hypothalamus. To shed light on the hypothalamic circuits governing acetylcholine's (ACh) regulation of appetite this study investigated the influence of hypothalamic nAChRs expressing the α4 subunit. We found that antagonizing the α4β2 nAChR locally in the lateral hypothalamus with di-hydro-ß-erythroidine (DHβE), an α4 nAChR antagonist with moderate affinity, caused an increase in food intake following free access to food after a 12 hour fast, compared to saline-infused animals. Immunocytochemical analysis revealed that orexin/hypocretin (HO), oxytocin, and tyrosine hydroxylase (TH)-containing neurons in the A13 and A12 of the hypothalamus expressed the nAChR α4 subunit in varying amounts (34%, 42%, 50%, and 51%, respectively) whereas melanin concentrating hormone (MCH) neurons did not, suggesting that DHβE-mediated increases in food intake may be due to a direct activation of specific hypothalamic circuits. Systemic DHβE (2 mg/kg) administration similarly increased food intake following a 12 hour fast. In these animals a subpopulation of orexin/hypocretin neurons showed elevated activity compared to control animals and MCH neuronal activity was overall lower as measured by expression of the immediate early gene marker for neuronal activity cFos. However, oxytocin neurons in the paraventricular hypothalamus and TH-containing neurons in the A13 and A12 did not show differential activity patterns. These results indicate that various neurochemically distinct hypothalamic populations are under the influence of α4β2 nAChRs and that cholinergic inputs to the lateral hypothalamus can affect satiety signals through activation of local α4β2 nAChR-mediated transmission.
Collapse
Affiliation(s)
- Ana P. García
- Department of Pharmacology, University of Cambridge; Cambridge, United Kingdom
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED) UCA–CONICET, Faculty of Medical Sciences, Catholic University of Argentina, Buenos Aires, Argentina
| | - Teemu Aitta-aho
- Department of Pharmacology, University of Cambridge; Cambridge, United Kingdom
| | - Laura Schaaf
- Department of Pharmacology, University of Cambridge; Cambridge, United Kingdom
| | - Nicholas Heeley
- Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Lena Heuschmid
- Department of Pharmacology, University of Cambridge; Cambridge, United Kingdom
| | - Yunjing Bai
- Department of Pharmacology, University of Cambridge; Cambridge, United Kingdom
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED) UCA–CONICET, Faculty of Medical Sciences, Catholic University of Argentina, Buenos Aires, Argentina
| | - John Apergis-Schoute
- Department of Pharmacology, University of Cambridge; Cambridge, United Kingdom
- Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
124
|
Diet-induced obesity impairs hypothalamic glucose sensing but not glucose hypothalamic extracellular levels, as measured by microdialysis. Nutr Diabetes 2015; 5:e162. [PMID: 26075639 PMCID: PMC4491853 DOI: 10.1038/nutd.2015.12] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 04/09/2015] [Accepted: 04/22/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/OBJECTIVES Glucose from the diet may signal metabolic status to hypothalamic sites controlling energy homeostasis. Disruption of this mechanism may contribute to obesity but its relevance has not been established. The present experiments aimed at evaluating whether obesity induced by chronic high-fat intake affects the ability of hypothalamic glucose to control feeding. We hypothesized that glucose transport to the hypothalamus as well as glucose sensing and signaling could be impaired by high-fat feeding. SUBJECTS/METHODS Female Wistar rats were studied after 8 weeks on either control or high-lard diet. Daily food intake was measured after intracerebroventricular (i.c.v.) glucose. Glycemia and glucose content of medial hypothalamus microdialysates were measured in response to interperitoneal (i.p.) glucose or meal intake after an overnight fast. The effect of refeeding on whole hypothalamus levels of glucose transporter proteins (GLUT) 1, 2 and 4, AMPK and phosphorylated AMPK levels was determined by immunoblotting. RESULTS High-fat rats had higher body weight and fat content and serum leptin than control rats, but normal insulin levels and glucose tolerance. I.c.v. glucose inhibited food intake in control but failed to do so in high-fat rats. Either i.p. glucose or refeeding significantly increased glucose hypothalamic microdialysate levels in the control rats. These levels showed exacerbated increases in the high-fat rats. GLUT1 and 4 levels were not affected by refeeding. GLUT2 levels decreased and phosphor-AMPK levels increased in the high-fat rats but not in the controls. CONCLUSIONS The findings suggest that, in the high-fat rats, a defective glucose sensing by decreased GLUT2 levels contributed to an inappropriate activation of AMPK after refeeding, despite increased extracellular glucose levels. These derangements were probably involved in the abolition of hypophagia in response to i.c.v. glucose. It is proposed that 'glucose resistance' in central sites of feeding control may be relevant in the disturbances of energy homeostasis induced by high-fat feeding.
Collapse
|
125
|
Stoll EA, Makin R, Sweet IR, Trevelyan AJ, Miwa S, Horner PJ, Turnbull DM. Neural Stem Cells in the Adult Subventricular Zone Oxidize Fatty Acids to Produce Energy and Support Neurogenic Activity. Stem Cells 2015; 33:2306-19. [PMID: 25919237 PMCID: PMC4478223 DOI: 10.1002/stem.2042] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 03/24/2015] [Indexed: 01/09/2023]
Abstract
Neural activity is tightly coupled to energy consumption, particularly sugars such as glucose. However, we find that, unlike mature neurons and astrocytes, neural stem/progenitor cells (NSPCs) do not require glucose to sustain aerobic respiration. NSPCs within the adult subventricular zone (SVZ) express enzymes required for fatty acid oxidation and show sustained increases in oxygen consumption upon treatment with a polyunsaturated fatty acid. NSPCs also demonstrate sustained decreases in oxygen consumption upon treatment with etomoxir, an inhibitor of fatty acid oxidation. In addition, etomoxir decreases the proliferation of SVZ NSPCs without affecting cellular survival. Finally, higher levels of neurogenesis can be achieved in aged mice by ectopically expressing proliferator‐activated receptor gamma coactivator 1 alpha (PGC1α), a factor that increases cellular aerobic capacity by promoting mitochondrial biogenesis and metabolic gene transcription. Regulation of metabolic fuel availability could prove a powerful tool in promoting or limiting cellular proliferation in the central nervous system. Stem Cells2015;33:2306–2319
Collapse
Affiliation(s)
- Elizabeth A Stoll
- Centre for Brain Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom.,Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom.,Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom.,Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rebecca Makin
- Undergraduate Programme in Biomedical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ian R Sweet
- Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, USA
| | - Andrew J Trevelyan
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Satomi Miwa
- Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Philip J Horner
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| | - Douglass M Turnbull
- Centre for Brain Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom.,Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom.,Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom.,Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
126
|
Abstract
Circadian clocks optimize the timing of physiological processes in synchrony with daily recurring and therefore predictable changes in the environment. Until the late 1990s, circadian clocks were thought to exist only in the central nervous systems of animals; elegant studies in cultured fibroblasts and using genetically encoded reporters in Drosophila melanogaster and in mice showed that clocks are ubiquitous and cell autonomous. These findings inspired investigations of the advantages construed by enabling each organ to independently adjust its function to the time of day. Studies of rhythmic gene expression in several organs suggested that peripheral organ clocks might play an important role in optimizing metabolic physiology by synchronizing tissue-intrinsic metabolic processes to cycles of nutrient availability and energy requirements. The effects of clock disruption in liver, pancreas, muscle, and adipose tissues support that hypothesis. Adipose tissues coordinate energy storage and utilization and modulate behavior and the physiology of other organs by secreting hormones known as "adipokines." Due to behavior- and environment-driven diurnal variations in supply and demand for chemical and thermal energy, adipose tissues might represent an important peripheral location for coordinating circadian energy balance (intake, storage, and utilization) over the whole organism. Given the complexity of adipose cell types and depots, the sensitivity of adipose tissue biology to age and diet composition, and the plethora of known and yet-to-be-discovered adipokines and lipokines, we have just begun to scratch the surface of understanding the role of circadian clocks in adipose tissues.
Collapse
Affiliation(s)
- Emma Henriksson
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA Department of Clinical Sciences, Lund University, CRC, Malmö, Sweden
| | - Katja A Lamia
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
127
|
Caloric restriction decreases orthostatic tolerance independently from 6° head-down bedrest. PLoS One 2015; 10:e0118812. [PMID: 25915488 PMCID: PMC4411149 DOI: 10.1371/journal.pone.0118812] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/09/2015] [Indexed: 11/19/2022] Open
Abstract
Astronauts consume fewer calories during spaceflight and return to earth with an increased risk of orthostatic intolerance. Whether a caloric deficiency modifies orthostatic responses is not understood. Thus, we determined the effects of a hypocaloric diet (25% caloric restriction) during 6° head down bedrest (an analog of spaceflight) on autonomic neural control during lower body negative pressure (LBNP). Nine healthy young men completed a randomized crossover bedrest study, consisting of four (2 weeks each) interventions (normocaloric bedrest, normocaloric ambulatory, hypocaloric bedrest, hypocaloric ambulatory), each separated by 5 months. Muscle sympathetic nerve activity (MSNA) was recorded at baseline following normocaloric and hypocaloric interventions. Heart rate (HR) and arterial pressure were recorded before, during, and after 3 consecutive stages (7 min each) of LBNP (-15, -30, -45 mmHg). Caloric and posture effects during LBNP were compared using two-way ANOVA with repeated measures. There was a strong trend toward reduced basal MSNA following caloric restriction alone (normcaloric vs. hypocaloric: 22±3 vs. 14±4 burst/min, p = 0.06). Compared to the normocaloric ambulatory, both bedrest and caloric restriction were associated with lower systolic blood pressure during LBNP (p<0.01); however, HR responses were directionally opposite (i.e., increase with bedrest, decrease with caloric restriction). Survival analysis revealed a significant reduction in orthostatic tolerance following caloric restriction (normocaloric finishers: 12/16; hypocaloric finishers: 6/16; χ2, p = 0.03). Caloric restriction modifies autonomic responses to LBNP, which may decrease orthostatic tolerance after spaceflight.
Collapse
|
128
|
Dietrich MO, Zimmer MR, Bober J, Horvath TL. Hypothalamic Agrp neurons drive stereotypic behaviors beyond feeding. Cell 2015; 160:1222-32. [PMID: 25748653 PMCID: PMC4484787 DOI: 10.1016/j.cell.2015.02.024] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/16/2015] [Accepted: 01/30/2015] [Indexed: 02/07/2023]
Abstract
The nervous system evolved to coordinate flexible goal-directed behaviors by integrating interoceptive and sensory information. Hypothalamic Agrp neurons are known to be crucial for feeding behavior. Here, however, we show that these neurons also orchestrate other complex behaviors in adult mice. Activation of Agrp neurons in the absence of food triggers foraging and repetitive behaviors, which are reverted by food consumption. These stereotypic behaviors that are triggered by Agrp neurons are coupled with decreased anxiety. NPY5 receptor signaling is necessary to mediate the repetitive behaviors after Agrp neuron activation while having minor effects on feeding. Thus, we have unmasked a functional role for Agrp neurons in controlling repetitive behaviors mediated, at least in part, by neuropeptidergic signaling. The findings reveal a new set of behaviors coupled to the energy homeostasis circuit and suggest potential therapeutic avenues for diseases with stereotypic behaviors.
Collapse
Affiliation(s)
- Marcelo O Dietrich
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035, Brazil.
| | - Marcelo R Zimmer
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035, Brazil
| | - Jeremy Bober
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Kavli Institute for Neuroscience at Yale University, New Haven, CT 06520, USA
| |
Collapse
|
129
|
Kao YT, Chang BL, Liang JJ, Tsai HJ, Lee YL, Lin RJ, Lin YL. Japanese encephalitis virus nonstructural protein NS5 interacts with mitochondrial trifunctional protein and impairs fatty acid β-oxidation. PLoS Pathog 2015; 11:e1004750. [PMID: 25816318 PMCID: PMC4376648 DOI: 10.1371/journal.ppat.1004750] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/17/2015] [Indexed: 01/16/2023] Open
Abstract
Infection with Japanese encephalitis virus (JEV) can induce the expression of pro-inflammatory cytokines and cause acute encephalitis in humans. β-oxidation breaks down fatty acids for ATP production in mitochondria, and impaired β-oxidation can induce pro-inflammatory cytokine expression. To address the role of fatty-acid β-oxidation in JEV infection, we measured the oxygen consumption rate of mock- and JEV-infected cells cultured with or without long chain fatty acid (LCFA) palmitate. Cells with JEV infection showed impaired LCFA β-oxidation and increased interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) expression. JEV nonstructural protein 5 (NS5) interacted with hydroxyacyl-CoA dehydrogenase α and β subunits, two components of the mitochondrial trifunctional protein (MTP) involved in LCFA β-oxidation, and NS5 proteins were detected in mitochondria and co-localized with MTP. LCFA β-oxidation was impaired and higher cytokines were induced in cells overexpressing NS5 protein as compared with control cells. Deletion and mutation studies showed that the N-terminus of NS5 was involved in the MTP association, and a single point mutation of NS5 residue 19 from methionine to alanine (NS5-M19A) reduced its binding ability with MTP. The recombinant JEV with NS5-M19A mutation (JEV-NS5-M19A) was less able to block LCFA β-oxidation and induced lower levels of IL-6 and TNF-α than wild-type JEV. Moreover, mice challenged with JEV-NS5-M19A showed less neurovirulence and neuroinvasiveness. We identified a novel function of JEV NS5 in viral pathogenesis by impairing LCFA β-oxidation and inducing cytokine expression by association with MTP.
Collapse
Affiliation(s)
- Yu-Ting Kao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Bi-Lan Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hang-Jen Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ling Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ren-Jye Lin
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Primary Care Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yi-Ling Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
130
|
Piaggi P, Thearle MS, Bogardus C, Krakoff J. Fasting hyperglycemia predicts lower rates of weight gain by increased energy expenditure and fat oxidation rate. J Clin Endocrinol Metab 2015; 100:1078-87. [PMID: 25559400 PMCID: PMC4333033 DOI: 10.1210/jc.2014-3582] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
CONTEXT Increased adiposity and insulin resistance are associated with hyperglycemia and previous studies have reported that higher glucoses are associated with lower rates of weight gain. One possible mechanism is via increased energy expenditure (EE). OBJECTIVE To assess the relationships between changes in EE during spontaneous weight gain and concomitant changes in glucose levels. DESIGN AND PARTICIPANTS Body composition, metabolic, and glycemic data were available from nondiabetic Native Americans who underwent two measurements of 24-h EE during eucaloric feeding in a metabolic chamber (N = 144; time between measurements: 5.0 ± 3.3 years) or resting EE by ventilated hood system during the euglycemic-hyperinsulinemic clamp (N = 261; 4.5 ± 3.2 years). Long-term follow-up data (8.3 ± 4.3 years) for weight and body composition were available in 131 and 122 subjects, respectively. MAIN OUTCOME MEASURES Twenty four hour EE and respiratory quotient (RQ), resting (RMR), and sleeping (SMR) metabolic rates, glucose, and insulin levels, basal glucose output (BGO). RESULTS Weight gain-associated increase in fasting plasma glucose (FPG) levels was accompanied with decreased 24-h RQ (partial R = -0.24, P = .002) and increased 24-h EE, RMR, SMR, and fat oxidation after accounting for changes in body composition (partial R: 0.12 to 0.19, all P ≤ .05). Upon weight gain, BGO tended to increase (P = .07), while insulin infusion induced a decrease in EE (P = .04). Higher baseline FPG predicted lower rates of future weight gain (partial R = -0.18, P = .04). CONCLUSIONS Higher FPG after weight gain was associated with greater-than-expected increase in EE. The rise in BGO and the insulin-induced EE suppression at follow-up indicate that increased hepatic gluconeogenesis may be an important mediator of EE changes associated with weight gain.
Collapse
Affiliation(s)
- Paolo Piaggi
- Obesity and Diabetes Clinical Research Section (P.P., M.S.T., C.B., J.K.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona 85016; and Obesity Research Center, Endocrinology Unit (P.P.), University Hospital of Pisa, Pisa, Italy, 56124
| | | | | | | |
Collapse
|
131
|
Drougard A, Fournel A, Valet P, Knauf C. Impact of hypothalamic reactive oxygen species in the regulation of energy metabolism and food intake. Front Neurosci 2015; 9:56. [PMID: 25759638 PMCID: PMC4338676 DOI: 10.3389/fnins.2015.00056] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/07/2015] [Indexed: 12/31/2022] Open
Abstract
Hypothalamus is a key area involved in the control of metabolism and food intake via the integrations of numerous signals (hormones, neurotransmitters, metabolites) from various origins. These factors modify hypothalamic neurons activity and generate adequate molecular and behavioral responses to control energy balance. In this complex integrative system, a new concept has been developed in recent years, that includes reactive oxygen species (ROS) as a critical player in energy balance. ROS are known to act in many signaling pathways in different peripheral organs, but also in hypothalamus where they regulate food intake and metabolism by acting on different types of neurons, including proopiomelanocortin (POMC) and agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons. Hypothalamic ROS release is under the influence of different factors such as pancreatic and gut hormones, adipokines (leptin, apelin,…), neurotransmitters and nutrients (glucose, lipids,…). The sources of ROS production are multiple including NADPH oxidase, but also the mitochondria which is considered as the main ROS producer in the brain. ROS are considered as signaling molecules, but conversely impairment of this neuronal signaling ROS pathway contributes to alterations of autonomic nervous system and neuroendocrine function, leading to metabolic diseases such as obesity and type 2 diabetes. In this review we focus our attention on factors that are able to modulate hypothalamic ROS release in order to control food intake and energy metabolism, and whose deregulations could participate to the development of pathological conditions. This novel insight reveals an original mechanism in the hypothalamus that controls energy balance and identify hypothalamic ROS signaling as a potential therapeutic strategy to treat metabolic disorders.
Collapse
Affiliation(s)
- Anne Drougard
- NeuroMicrobiota, European Associated Laboratory, INSERM/UCL, Institut National de la Santé et de la Recherche Médicale, U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, Université Paul SabatierToulouse, France
| | | | | | - Claude Knauf
- NeuroMicrobiota, European Associated Laboratory, INSERM/UCL, Institut National de la Santé et de la Recherche Médicale, U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, Université Paul SabatierToulouse, France
| |
Collapse
|
132
|
Cheng L, Yu Y, Szabo A, Wu Y, Wang H, Camer D, Huang XF. Palmitic acid induces central leptin resistance and impairs hepatic glucose and lipid metabolism in male mice. J Nutr Biochem 2015; 26:541-8. [PMID: 25724108 DOI: 10.1016/j.jnutbio.2014.12.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/19/2014] [Accepted: 12/08/2014] [Indexed: 12/12/2022]
Abstract
The consumption of diets rich in saturated fat largely contributes to the development of obesity in modern societies. A diet high in saturated fats can induce inflammation and impair leptin signaling in the hypothalamus. However, the role of saturated fatty acids on hypothalamic leptin signaling, and hepatic glucose and lipid metabolism remains largely undiscovered. In this study, we investigated the effects of intracerebroventricular (icv) administration of a saturated fatty acid, palmitic acid (PA, C16:0), on central leptin sensitivity, hypothalamic leptin signaling, inflammatory molecules and hepatic energy metabolism in C57BL/6J male mice. We found that the icv administration of PA led to central leptin resistance, evidenced by the inhibition of central leptin's suppression of food intake. Central leptin resistance was concomitant with impaired hypothalamic leptin signaling (JAK2-STAT3, PKB/Akt-FOXO1) and a pro-inflammatory response (TNF-α, IL1-β, IL-6 and pIκBa) in the mediobasal hypothalamus and paraventricular hypothalamic nuclei. Furthermore, the pre-administration of icv PA blunted the effect of leptin-induced decreases in mRNA expression related to gluconeogenesis (G6Pase and PEPCK), glucose transportation (GLUT2) and lipogenesis (FAS and SCD1) in the liver of mice. Therefore, elevated central PA concentrations can induce pro-inflammatory responses and leptin resistance, which are associated with disorders of energy homeostasis in the liver as a result of diet-induced obesity.
Collapse
Affiliation(s)
- Licai Cheng
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia
| | - Yinghua Yu
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia; Schizophrenia Research Institute (SRI), 405 Liverpool St, Sydney, NSW 2010, Australia
| | - Alexander Szabo
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia; ANSTO Life Sciences, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| | - Yizhen Wu
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia
| | - Hongqin Wang
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia
| | - Danielle Camer
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia
| | - Xu-Feng Huang
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia; Schizophrenia Research Institute (SRI), 405 Liverpool St, Sydney, NSW 2010, Australia.
| |
Collapse
|
133
|
McFadden JW, Aja S, Li Q, Bandaru VVR, Kim EK, Haughey NJ, Kuhajda FP, Ronnett GV. Increasing fatty acid oxidation remodels the hypothalamic neurometabolome to mitigate stress and inflammation. PLoS One 2014; 9:e115642. [PMID: 25541737 PMCID: PMC4277346 DOI: 10.1371/journal.pone.0115642] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/25/2014] [Indexed: 11/18/2022] Open
Abstract
Modification of hypothalamic fatty acid (FA) metabolism can improve energy homeostasis and prevent hyperphagia and excessive weight gain in diet-induced obesity (DIO) from a diet high in saturated fatty acids. We have shown previously that C75, a stimulator of carnitine palmitoyl transferase-1 (CPT-1) and fatty acid oxidation (FAOx), exerts at least some of its hypophagic effects via neuronal mechanisms in the hypothalamus. In the present work, we characterized the effects of C75 and another anorexigenic compound, the glycerol-3-phosphate acyltransferase (GPAT) inhibitor FSG67, on FA metabolism, metabolomics profiles, and metabolic stress responses in cultured hypothalamic neurons and hypothalamic neuronal cell lines during lipid excess with palmitate. Both compounds enhanced palmitate oxidation, increased ATP, and inactivated AMP-activated protein kinase (AMPK) in hypothalamic neurons in vitro. Lipidomics and untargeted metabolomics revealed that enhanced catabolism of FA decreased palmitate availability and prevented the production of fatty acylglycerols, ceramides, and cholesterol esters, lipids that are associated with lipotoxicity-provoked metabolic stress. This improved metabolic signature was accompanied by increased levels of reactive oxygen species (ROS), and yet favorable changes in oxidative stress, overt ER stress, and inflammation. We propose that enhancing FAOx in hypothalamic neurons exposed to excess lipids promotes metabolic remodeling that reduces local inflammatory and cell stress responses. This shift would restore mitochondrial function such that increased FAOx can produce hypothalamic neuronal ATP and lead to decreased food intake and body weight to improve systemic metabolism.
Collapse
Affiliation(s)
- Joseph W. McFadden
- Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Susan Aja
- Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| | - Qun Li
- Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Veera V. R. Bandaru
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Eun-Kyoung Kim
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Norman J. Haughey
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Francis P. Kuhajda
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Gabriele V. Ronnett
- Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| |
Collapse
|
134
|
Valdearcos M, Robblee MM, Benjamin DI, Nomura DK, Xu AW, Koliwad SK. Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell Rep 2014; 9:2124-38. [PMID: 25497089 DOI: 10.1016/j.celrep.2014.11.018] [Citation(s) in RCA: 473] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 10/30/2014] [Accepted: 11/11/2014] [Indexed: 01/07/2023] Open
Abstract
Diets rich in saturated fat produce inflammation, gliosis, and neuronal stress in the mediobasal hypothalamus (MBH). Here, we show that microglia mediate this process and its functional impact. Although microglia and astrocytes accumulate in the MBH of mice fed a diet rich in saturated fatty acids (SFAs), only the microglia undergo inflammatory activation, along with a buildup of hypothalamic SFAs. Enteric gavage specifically with SFAs reproduces microglial activation and neuronal stress in the MBH, and SFA treatment activates murine microglia, but not astrocytes, in culture. Moreover, depleting microglia abrogates SFA-induced inflammation in hypothalamic slices. Remarkably, depleting microglia from the MBH of mice abolishes inflammation and neuronal stress induced by excess SFA consumption, and in this context, microglial depletion enhances leptin signaling and reduces food intake. We thus show that microglia sense SFAs and orchestrate an inflammatory process in the MBH that alters neuronal function when SFA consumption is high.
Collapse
Affiliation(s)
- Martin Valdearcos
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Megan M Robblee
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daniel I Benjamin
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel K Nomura
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Allison W Xu
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Suneil K Koliwad
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
135
|
Kim JD, Leyva S, Diano S. Hormonal regulation of the hypothalamic melanocortin system. Front Physiol 2014; 5:480. [PMID: 25538630 PMCID: PMC4260486 DOI: 10.3389/fphys.2014.00480] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/24/2014] [Indexed: 01/07/2023] Open
Abstract
Regulation of energy homeostasis is fundamental for life. In animal species and humans, the Central Nervous System (CNS) plays a critical role in such regulation by integrating peripheral signals and modulating behavior and the activity of peripheral organs. A precise interplay between CNS and peripheral signals is necessary for the regulation of food intake and energy expenditure in the maintenance of energy balance. Within the CNS, the hypothalamus is a critical center for monitoring, processing and responding to peripheral signals, including hormones such as ghrelin, leptin, and insulin. Once in the brain, peripheral signals regulate neuronal systems involved in the modulation of energy homeostasis. The main hypothalamic neuronal circuit in the regulation of energy metabolism is the melanocortin system. This review will give a summary of the most recent discoveries on the hormonal regulation of the hypothalamic melanocortin system in the control of energy homeostasis.
Collapse
Affiliation(s)
- Jung D Kim
- Departments of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine New Haven, CT, USA ; Program in Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine New Haven, CT, USA
| | - Stephanie Leyva
- Departments of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine New Haven, CT, USA ; Program in Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine New Haven, CT, USA
| | - Sabrina Diano
- Departments of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine New Haven, CT, USA ; Program in Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine New Haven, CT, USA ; Department of Neurobiology, Yale University School of Medicine New Haven, CT, USA ; Section of Comparative Medicine, Yale University School of Medicine New Haven, CT, USA
| |
Collapse
|
136
|
Hussain S, Richardson E, Ma Y, Holton C, De Backer I, Buckley N, Dhillo W, Bewick G, Zhang S, Carling D, Bloom S, Gardiner J. Glucokinase activity in the arcuate nucleus regulates glucose intake. J Clin Invest 2014; 125:337-49. [PMID: 25485685 DOI: 10.1172/jci77172] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 11/06/2014] [Indexed: 01/21/2023] Open
Abstract
The brain relies on a constant supply of glucose, its primary fuel, for optimal function. A taste-independent mechanism within the CNS that promotes glucose delivery to the brain has been postulated to maintain glucose homeostasis; however, evidence for such a mechanism is lacking. Here, we determined that glucokinase activity within the hypothalamic arcuate nucleus is involved in regulation of dietary glucose intake. In fasted rats, glucokinase activity was specifically increased in the arcuate nucleus but not other regions of the hypothalamus. Moreover, pharmacologic and genetic activation of glucokinase in the arcuate nucleus of rodent models increased glucose ingestion, while decreased arcuate nucleus glucokinase activity reduced glucose intake. Pharmacologic targeting of potential downstream glucokinase effectors revealed that ATP-sensitive potassium channel and P/Q calcium channel activity are required for glucokinase-mediated glucose intake. Additionally, altered glucokinase activity affected release of the orexigenic neurotransmitter neuropeptide Y in response to glucose. Together, our results suggest that glucokinase activity in the arcuate nucleus specifically regulates glucose intake and that appetite for glucose is an important driver of overall food intake. Arcuate nucleus glucokinase activation may represent a CNS mechanism that underlies the oft-described phenomena of the "sweet tooth" and carbohydrate craving.
Collapse
|
137
|
Tang Y, Purkayastha S, Cai D. Hypothalamic microinflammation: a common basis of metabolic syndrome and aging. Trends Neurosci 2014; 38:36-44. [PMID: 25458920 DOI: 10.1016/j.tins.2014.10.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 12/19/2022]
Abstract
Chronic microinflammation is a hallmark of many aging-related neurodegenerative diseases as well as metabolic syndrome-driven diseases. Recent research indicates that chronic caloric excess can lead to hypothalamic microinflammation, which in turn participates in the development and progression of metabolic syndrome disorders such as obesity, glucose intolerance, and hypertension. Additionally, it was recently shown that increasing age after young adulthood can cause hypothalamic microinflammation independently of nutritional status, mediating a central mechanism of systemic aging. Taken together, these findings suggest that the hypothalamus has a fundamental role, via hypothalamic microinflammation, in translating overnutrition and aging into complex outcomes. Here we summarize recent work and suggest a conceptual model in which hypothalamic microinflammation is a common mediator of metabolic syndrome and aging.
Collapse
Affiliation(s)
- Yizhe Tang
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Sudarshana Purkayastha
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, New York, NY 10461, USA.
| |
Collapse
|
138
|
Ibrahim BA, Alenazi FSH, Briski KP. Energy status determines hindbrain signal transduction pathway transcriptional reactivity to AMPK in the estradiol-treated ovariectomized female rat. Neuroscience 2014; 284:888-899. [PMID: 25446360 DOI: 10.1016/j.neuroscience.2014.10.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/13/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
Abstract
Dorsal vagal complex (DVC) AMPK regulation of food intake in the estradiol-treated ovariectomized (OVX) female rat is energy state-dependent. Here, RT-PCR array technology was used to identify estradiol-sensitive AMPK-regulated DVC signal transduction pathways that exhibit differential reactivity to sensor activation during energy balance versus imbalance. The AMP mimetic AICAR correspondingly reduced or stimulated cDVC phosphoAMPK (pAMPK) and estrogen receptor-beta (ERβ) proteins in full-fed (F) versus 12-h food-deprived (D) estradiol-treated ovariectomized (OVX) rats, but elevated ER-alpha (ERα) in F only. Estradiol suppressed DVC ERβ protein and hypoxia, NFκB, STAT3, STAT6, and Hedgehog signaling pathway marker genes against oil-implanted OVX controls. F+(A)ICAR and D+(S)aline groups each exhibited further inhibition of NFκB, STAT3, and Hedgehog pathway genes, and diminished PPAR, Notch, and STAT5 transcripts versus F+S. Conversely, genes in these six pathways were up-regulated by AICAR treatment of D. Results show that in this animal model, acute AMP augmentation or feeding cessation each inhibit both pAMPK and ERβ expression, but in combination increase these protein profiles. pAMPK protein and DVC TNF (NFκB), SOCS3 (JAK/STAT), WNT6 (Hedgehog), and FABP1 (PPAR) mRNAs were down- or upregulated in parallel by AICAR in F versus D states, respectively. Further research is needed to determine the impact of ERβ on opposing directionality of these responses, and to characterize the role of the aforementioned signaling pathways in hyperphagic responses in the female to AICAR-induced DVC AMPK activation during acute interruption of feeding.
Collapse
Affiliation(s)
- B A Ibrahim
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - F S H Alenazi
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - K P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
139
|
Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci 2014; 15:771-85. [PMID: 25387473 DOI: 10.1038/nrn3820] [Citation(s) in RCA: 1030] [Impact Index Per Article: 93.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The brain is highly enriched with fatty acids. These include the polyunsaturated fatty acids (PUFAs) arachidonic acid and docosahexaenoic acid, which are largely esterified to the phospholipid cell membrane. Once PUFAs are released from the membrane, they can participate in signal transduction, either directly or after enzymatic conversion to a variety of bioactive derivatives ('mediators'). PUFAs and their mediators regulate several processes within the brain, such as neurotransmission, cell survival and neuroinflammation, and thereby mood and cognition. PUFA levels and the signalling pathways that they regulate are altered in various neurological disorders, including Alzheimer's disease and major depression. Diet and drugs targeting PUFAs may lead to novel therapeutic approaches for the prevention and treatment of brain disorders.
Collapse
|
140
|
Duca FA, Yue JTY. Fatty acid sensing in the gut and the hypothalamus: in vivo and in vitro perspectives. Mol Cell Endocrinol 2014; 397:23-33. [PMID: 25261798 DOI: 10.1016/j.mce.2014.09.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/19/2014] [Accepted: 09/19/2014] [Indexed: 12/15/2022]
Abstract
The ability to properly sense both ingested and circulating nutrients is crucial for the maintenance of metabolic homeostasis. As such, both the gastrointestinal tract and the hypothalamus have demonstrated the capacity to sense and effectively respond to nutrients, such as fatty acids, to control food intake and glucose production to regulate energy and glucose homeostasis. In modern, Westernized societies, obesity and diabetes rates continue to rise unabated, due in part to an increase in highly palatable high-fat diet consumption. Thus, our understanding in the ability of the body to successfully monitor lipids is more vital than ever. This review details the current understanding of both the gut and the brain, specifically the hypothalamus, in sensing fatty acids. Highlighting both in vivo and in vitro studies, we explore some of the mechanisms upon which different fatty acids activate enteroendocrine and neural lipid-sensing signaling mechanisms to subsequently lower food intake and glucose production to ultimately regulate metabolic homeostasis. A better understanding of these lipid-sensing pathways could lay the groundwork for successful pharmacological targets for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Frank A Duca
- Toronto General Research Institute and Department of Medicine, UHN, Toronto, M5G 1L7, Canada
| | - Jessica T Y Yue
- Toronto General Research Institute and Department of Medicine, UHN, Toronto, M5G 1L7, Canada.
| |
Collapse
|
141
|
Contreras C, González-García I, Martínez-Sánchez N, Seoane-Collazo P, Jacas J, Morgan DA, Serra D, Gallego R, Gonzalez F, Casals N, Nogueiras R, Rahmouni K, Diéguez C, López M. Central ceramide-induced hypothalamic lipotoxicity and ER stress regulate energy balance. Cell Rep 2014; 9:366-377. [PMID: 25284795 PMCID: PMC5157160 DOI: 10.1016/j.celrep.2014.08.057] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 08/07/2014] [Accepted: 08/23/2014] [Indexed: 12/30/2022] Open
Abstract
Hypothalamic endoplasmic reticulum (ER) stress is a key mechanism leading to obesity. Here, we demonstrate that ceramides induce lipotoxicity and hypothalamic ER stress, leading to sympathetic inhibition, reduced brown adipose tissue (BAT) thermogenesis, and weight gain. Genetic overexpression of the chaperone GRP78/BiP (glucose-regulated protein 78 kDa/binding immunoglobulin protein) in the ventromedial nucleus of the hypothalamus (VMH) abolishes ceramide action by reducing hypothalamic ER stress and increasing BAT thermogenesis, which leads to weight loss and improved glucose homeostasis. The pathophysiological relevance of this mechanism is demonstrated in obese Zucker rats, which show increased hypothalamic ceramide levels and ER stress. Overexpression of GRP78 in the VMH of these animals reduced body weight by increasing BAT thermogenesis as well as decreasing leptin and insulin resistance and hepatic steatosis. Overall, these data identify a triangulated signaling network involving central ceramides, hypothalamic lipotoxicity/ER stress, and BAT thermogenesis as a pathophysiological mechanism of obesity.
Collapse
Affiliation(s)
- Cristina Contreras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Ismael González-García
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Noelia Martínez-Sánchez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Patricia Seoane-Collazo
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Jordi Jacas
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain; Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallés, 08195 Barcelona, Spain
| | - Donald A Morgan
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Dolors Serra
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain; Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Rosalía Gallego
- Department of Morphological Sciences, School of Medicine, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Francisco Gonzalez
- Department of Surgery, CIMUS, University of Santiago de Compostela-Instituto de Invesstiagacion Sanitaria, 15782 Santiago de Compostela, Spain; Service of Ophthalmology, Complejo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Núria Casals
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain; Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallés, 08195 Barcelona, Spain
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA; Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain.
| |
Collapse
|
142
|
Cansell C, Castel J, Denis RGP, Rouch C, Delbes AS, Martinez S, Mestivier D, Finan B, Maldonado-Aviles JG, Rijnsburger M, Tschöp MH, DiLeone RJ, Eckel RH, la Fleur SE, Magnan C, Hnasko TS, Luquet S. Dietary triglycerides act on mesolimbic structures to regulate the rewarding and motivational aspects of feeding. Mol Psychiatry 2014; 19:1095-105. [PMID: 24732670 PMCID: PMC4303340 DOI: 10.1038/mp.2014.31] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 12/17/2022]
Abstract
Circulating triglycerides (TGs) normally increase after a meal but are altered in pathophysiological conditions, such as obesity. Although TG metabolism in the brain remains poorly understood, several brain structures express enzymes that process TG-enriched particles, including mesolimbic structures. For this reason, and because consumption of high-fat diet alters dopamine signaling, we tested the hypothesis that TG might directly target mesolimbic reward circuits to control reward-seeking behaviors. We found that the delivery of small amounts of TG to the brain through the carotid artery rapidly reduced both spontaneous and amphetamine-induced locomotion, abolished preference for palatable food and reduced the motivation to engage in food-seeking behavior. Conversely, targeted disruption of the TG-hydrolyzing enzyme lipoprotein lipase specifically in the nucleus accumbens increased palatable food preference and food-seeking behavior. Finally, prolonged TG perfusion resulted in a return to normal palatable food preference despite continued locomotor suppression, suggesting that adaptive mechanisms occur. These findings reveal new mechanisms by which dietary fat may alter mesolimbic circuit function and reward seeking.
Collapse
Affiliation(s)
- Céline Cansell
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Julien Castel
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Raphaël G. P. Denis
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Claude Rouch
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Anne-Sophie Delbes
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Sarah Martinez
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Denis Mestivier
- Université Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, Paris, France
| | - Brian Finan
- Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, München/Neuherberg, Germany
| | | | - Merel Rijnsburger
- Department of Endocrinology and Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Matthias H. Tschöp
- Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, München/Neuherberg, Germany,Div. of Metabolic Diseases, Dept. of Medicine, Technische Universität München, Germany
| | - Ralph J. DiLeone
- Department of Psychiatry, Yale University School of Medicine New Haven, CT, USA
| | - Robert H. Eckel
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| | - Susanne E. la Fleur
- Department of Endocrinology and Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Christophe Magnan
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Thomas S. Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla CA, USA
| | - Serge Luquet
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| |
Collapse
|
143
|
Tamrakar P, Ibrahim BA, Gujar AD, Briski KP. Estrogen regulates energy metabolic pathway and upstream adenosine 5'-monophosphate-activated protein kinase and phosphatase enzyme expression in dorsal vagal complex metabolosensory neurons during glucostasis and hypoglycemia. J Neurosci Res 2014; 93:321-32. [PMID: 25231731 DOI: 10.1002/jnr.23481] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 07/08/2014] [Accepted: 08/14/2014] [Indexed: 01/04/2023]
Abstract
The ability of estrogen to shield the brain from the bioenergetic insult hypoglycemia is unclear. Estradiol (E) prevents hypoglycemic activation of the energy deficit sensor adenosine 5'-monophosphate-activated protein kinase (AMPK) in hindbrain metabolosensory A2 noradrenergic neurons. This study investigates the hypothesis that estrogen regulates A2 AMPK through control of fuel metabolism and/or upstream protein kinase/phosphatase enzyme expression. A2 cells were harvested by laser microdissection after insulin or vehicle (V) injection of E- or oil (O)-implanted ovariectomized female rats. Cell lysates were evaluated by immunoblot for glycolytic, tricarboxylic acid cycle, respiratory chain, and acetyl-CoA-malonyl-CoA pathway enzymes. A2 phosphofructokinase (PFKL), isocitrate dehydrogenase, pyruvate dehydrogenase, and ATP synthase subunit profiles were elevated in E/V vs. O/V; hypoglycemia augmented PFKL and α-ketoglutarate dehydrogenase expression in E only. Hypoglycemia increased A2 Ca(2+) /calmodulin-dependent protein kinase-β in O and reduced protein phosphatase in both groups. A2 phospho-AMPK levels were equivalent in O/V vs. E/V but elevated during hypoglycemia in O only. These results implicate E in compensatory upregulation of substrate catabolism and corresponding maintenance of energy stability of A2 metabolosensory neurons during hypoglycemia, outcomes that support the potential viability of molecular substrates for hormone action as targets for therapies alleviating hypoglycemic brain injury.
Collapse
Affiliation(s)
- Pratistha Tamrakar
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University of Louisiana at Monroe, Monroe, Louisiana
| | | | | | | |
Collapse
|
144
|
Picard A, Moullé VS, Le Foll C, Cansell C, Véret J, Coant N, Le Stunff H, Migrenne S, Luquet S, Cruciani-Guglielmacci C, Levin BE, Magnan C. Physiological and pathophysiological implications of lipid sensing in the brain. Diabetes Obes Metab 2014; 16 Suppl 1:49-55. [PMID: 25200296 DOI: 10.1111/dom.12335] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/06/2014] [Indexed: 12/17/2022]
Abstract
Fatty acid (FA)-sensitive neurons are present in the brain, especially the hypothalamus, and play a key role in the neural control of energy homeostasis. Through neuronal output, FA may modulate feeding behaviour as well as insulin secretion and action. Subpopulations of neurons in the ventromedial and arcuate hypothalamic nuclei are selectively either inhibited or activated by FA. Molecular effectors of these FA effects probably include chloride or potassium ion channels. While intracellular metabolism and activation of the ATP-sensitive K⁺ channel appear to be necessary for some of the signalling effects of FA, at least half of the FA responses in ventromedial hypothalamic neurons are mediated by interaction with FAT/CD36, an FA transporter/receptor that does not require intracellular metabolism to activate downstream signalling. Thus, FA or their metabolites can modulate neuronal activity as a means of directly monitoring ongoing fuel availability by brain nutrient-sensing neurons involved in the regulation of energy and glucose homeostasis. Recently, the role of lipoprotein lipase in FA sensing has also been shown in animal models not only in hypothalamus, but also in hippocampus and striatum. Finally, FA overload might impair neural control of energy homeostasis through enhanced ceramide synthesis and may contribute to obesity and/or type 2 diabetes pathogenesis in predisposed subjects.
Collapse
Affiliation(s)
- A Picard
- CNRS UMR 8251, Unit of Functional and Adaptive Biology, Paris, France; Department of Physiology, Université Paris Diderot, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Diabetes and the brain: oxidative stress, inflammation, and autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:102158. [PMID: 25215171 PMCID: PMC4158559 DOI: 10.1155/2014/102158] [Citation(s) in RCA: 330] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 07/30/2014] [Accepted: 07/30/2014] [Indexed: 12/19/2022]
Abstract
Diabetes mellitus is a common metabolic disorder associated with chronic complications including a state of mild to moderate cognitive impairment, in particular psychomotor slowing and reduced mental flexibility, not attributable to other causes, and shares many symptoms that are best described as accelerated brain ageing. A common theory for aging and for the pathogenesis of this cerebral dysfunctioning in diabetes relates cell death to oxidative stress in strong association to inflammation, and in fact nuclear factor κB (NFκB), a master regulator of inflammation and also a sensor of oxidative stress, has a strategic position at the crossroad between oxidative stress and inflammation. Moreover, metabolic inflammation is, in turn, related to the induction of various intracellular stresses such as mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and autophagy defect. In parallel, blockade of autophagy can relate to proinflammatory signaling via oxidative stress pathway and NFκB-mediated inflammation.
Collapse
|
146
|
Subchronic and mild social defeat stress accelerates food intake and body weight gain with polydipsia-like features in mice. Behav Brain Res 2014; 270:339-48. [DOI: 10.1016/j.bbr.2014.05.040] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/28/2014] [Accepted: 05/19/2014] [Indexed: 01/04/2023]
|
147
|
Kawada N, Nakanishi K, Ohama T, Nishida M, Yamauchi-Takihara K, Moriyama T. Gender differences in the relationship between blood pressure and body mass index during adolescence. Obes Res Clin Pract 2014; 9:141-51. [PMID: 25081807 DOI: 10.1016/j.orcp.2014.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/27/2014] [Accepted: 07/08/2014] [Indexed: 01/27/2023]
Abstract
OBJECTIVE In adults, gender and obesity play significant roles in the regulation of blood pressure (BP). This study investigated the effects of gender and body mass index (BMI) on BP during adolescence. DESIGN AND SETTING A cross-sectional and longitudinal study involving 6838 students under twenty years old (median, eighteen years old; male, 4624; female, 2214) at Osaka University visited the Healthcare Center for their matriculation health examination from April to May in the years 2008, 2009, and 2010, and re-visited the Healthcare Center for their student health examination from May to June in the years 2011, 2012, and 2013. METHODS Height, body weight, and BP were measured in students both on and 3 years after admission to Osaka University. RESULTS On admission, the slope of the regression line for BMI and systolic BP (SBP) in non-underweight students was significantly different between genders. SBP and diastolic BP (DBP) increased in both genders during the observation period. Among male students who had a normal BMI on admission, those who had an increase in BMI of over 4% during the observation period showed a greater increase in SBP than those who had a change in BMI of -4% to 4%. On the other hand, female students showed no change in BP with the increase in BMI. CONCLUSIONS The magnitude of BP elevation with increased BMI was associated with gender during adolescence. This may be a cause of the higher prevalence of hypertension in adult males.
Collapse
Affiliation(s)
| | | | - Tohru Ohama
- Health Care Center, Osaka University, Toyonaka, Japan
| | | | | | | |
Collapse
|
148
|
Aksentijević D, McAndrew DJ, Karlstädt A, Zervou S, Sebag-Montefiore L, Cross R, Douglas G, Regitz-Zagrosek V, Lopaschuk GD, Neubauer S, Lygate CA. Cardiac dysfunction and peri-weaning mortality in malonyl-coenzyme A decarboxylase (MCD) knockout mice as a consequence of restricting substrate plasticity. J Mol Cell Cardiol 2014; 75:76-87. [PMID: 25066696 PMCID: PMC4169183 DOI: 10.1016/j.yjmcc.2014.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 01/21/2023]
Abstract
UNLABELLED Inhibition of malonyl-coenzyme A decarboxylase (MCD) shifts metabolism from fatty acid towards glucose oxidation, which has therapeutic potential for obesity and myocardial ischemic injury. However, ~40% of patients with MCD deficiency are diagnosed with cardiomyopathy during infancy. AIM To clarify the link between MCD deficiency and cardiac dysfunction in early life and to determine the contributing systemic and cardiac metabolic perturbations. METHODS AND RESULTS MCD knockout mice ((-/-)) exhibited non-Mendelian genotype ratios (31% fewer MCD(-/-)) with deaths clustered around weaning. Immediately prior to weaning (18days) MCD(-/-) mice had lower body weights, elevated body fat, hepatic steatosis and glycogen depletion compared to wild-type littermates. MCD(-/-) plasma was hyperketonemic, hyperlipidemic, had 60% lower lactate levels and markers of cellular damage were elevated. MCD(-/-) hearts exhibited hypertrophy, impaired ejection fraction and were energetically compromised (32% lower total adenine nucleotide pool). However differences between WT and MCD(-/-) converged with age, suggesting that, in surviving MCD(-/-) mice, early cardiac dysfunction resolves over time. These observations were corroborated by in silico modelling of cardiomyocyte metabolism, which indicated improvement of the MCD(-/-) metabolic phenotype and improved cardiac efficiency when switched from a high-fat diet (representative of suckling) to a standard post-weaning diet, independent of any developmental changes. CONCLUSIONS MCD(-/-) mice consistently exhibited cardiac dysfunction and severe metabolic perturbations while on a high-fat, low carbohydrate diet of maternal milk and these gradually resolved post-weaning. This suggests that dysfunction is a common feature of MCD deficiency during early development, but that severity is dependent on composition of dietary substrates.
Collapse
Affiliation(s)
- Dunja Aksentijević
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK; British Heart Foundation Centre for Research Excellence, University of Oxford, UK
| | - Debra J McAndrew
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK; British Heart Foundation Centre for Research Excellence, University of Oxford, UK
| | - Anja Karlstädt
- Institute of Gender in Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany; Center for Cardiovascular Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sevasti Zervou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK; British Heart Foundation Centre for Research Excellence, University of Oxford, UK
| | - Liam Sebag-Montefiore
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK; British Heart Foundation Centre for Research Excellence, University of Oxford, UK
| | - Rebecca Cross
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK; British Heart Foundation Centre for Research Excellence, University of Oxford, UK
| | - Gillian Douglas
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK; British Heart Foundation Centre for Research Excellence, University of Oxford, UK
| | - Vera Regitz-Zagrosek
- Institute of Gender in Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany; Center for Cardiovascular Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gary D Lopaschuk
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK; British Heart Foundation Centre for Research Excellence, University of Oxford, UK
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK; British Heart Foundation Centre for Research Excellence, University of Oxford, UK.
| |
Collapse
|
149
|
Lei L, Lixian Z. Effect of 24 h Fasting on Gene Expression of AMPK, Appetite Regulation Peptides and Lipometabolism Related Factors in the Hypothalamus of Broiler Chicks. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 25:1300-8. [PMID: 25049694 PMCID: PMC4092945 DOI: 10.5713/ajas.2012.12153] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/13/2012] [Accepted: 06/02/2012] [Indexed: 12/20/2022]
Abstract
The 5’-adenosine monophosphate-activated protein kinase (AMPK) is a key part of a kinase-signaling cascade that acts to maintain energy homeostasis. The objective of this experiment was to investigate the possible effects of fasting and refeeding on the gene expression of hypothalamic AMPK, some appetitive regulating peptides and lipid metabolism related enzymes. Seven-day-old male broiler (Arbor Acres) chicks were allocated into three equal treatments: fed ad libitum (control); fasted for 24 h; fasted for 24 h and then refed for 24 h. Compared with the control, the hypothalamic gene expression of AMPKα2, AMPKβ1, AMPKβ2, AMPKγ1, Ste20-related adaptor protein β (STRADβ), mouse protein 25α (MO25α) and agouti-related peptide (AgRP) were increased after fasting for 24 h. No significant difference among treatments was observed in mRNA levels of AMPKα1, AMPKγ2, LKB1 and neuropeptide Y (NPY). However, the expression of MO25β, pro-opiomelanocortin (POMC), corticotropin-releasing hormone (CRH), ghrelin, fatty acid synthase (FAS), acetyl-CoA carboxylase α (ACCα), carnitine palmitoyltransferase 1 (CPT-1) and sterol regulatory element binding protein-1 (SREBP-1) were significantly decreased. The present results indicated that 24 h fasting altered gene expression of AMPK subunits, appetite regulation peptides and lipometabolism related factors in chick’s hypothalamus; the hypothalamic FAS signaling pathway might be involved in the AMPK regulated energy homeostasis and/or appetite regulation in poultry.
Collapse
|
150
|
Wardlaw SL, Burant CF, Klein S, Meece K, White A, Kasten T, Lucey BP, Bateman RJ. Continuous 24-hour leptin, proopiomelanocortin, and amino acid measurements in human cerebrospinal fluid: correlations with plasma leptin, soluble leptin receptor, and amino acid levels. J Clin Endocrinol Metab 2014; 99:2540-8. [PMID: 24670082 PMCID: PMC4079306 DOI: 10.1210/jc.2013-4087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
CONTEXT In order to characterize diurnal changes in central leptin and its target neuropeptide, proopiomelanocortin (POMC), we measured leptin and POMC in cerebrospinal fluid (CSF) as related to changes in plasma leptin and soluble leptin receptor (sOB-R) levels. CSF and plasma levels of 20 amino acids (AA) were also measured because AA can affect brain POMC. DESIGN AND PARTICIPANTS Stored CSF and plasma samples obtained from eight healthy subjects who served as controls for a previous study were evaluated. CSF was collected hourly over 33 h via indwelling subarachnoid catheter. Leptin, sOB-R, and POMC were measured by sensitive ELISA and AA by gas chromatography-mass spectrometry. RESULTS There was a diurnal rhythm for plasma leptin with a peak at 2200 h (144% of baseline) and there was a similar diurnal rhythm for CSF leptin with a peak (117%) 3-5 h after the plasma peak. Plasma sOB-R was lowest at 0300 h and correlated negatively with plasma and CSF leptin. A diurnal rhythm for POMC in CSF was also detected with a peak (125%) at 0100 h. A positive correlation existed between CSF POMC and leptin in individual subjects over time. CSF levels of many AA increased at night. There was a significant correlation between CSF POMC and 10 AA, including leucine, isoleucine, tryptophan, and tyrosine. CONCLUSIONS Diurnal changes occur in leptin and POMC in human CSF that likely reflect changes in central leptin and melanocortin activity. Our results suggest that nocturnal elevations in leptin, AA, and POMC may help to suppress appetite and feeding at night.
Collapse
Affiliation(s)
- Sharon L Wardlaw
- Department of Medicine (S.L.W., K.M.), Columbia University College of Physicians & Surgeons, New York, New York 10032; Department of Internal Medicine (C.F.B.), University of Michigan Medical School, Ann Arbor, Michigan 48019; Center for Human Nutrition and Atkins Center for Excellence in Obesity Medicine (S.K.), Washington University School of Medicine, St Louis, Missouri 63110; Faculties of Life Sciences and Medical and Human Sciences (A.W.), University of Manchester, Manchester M13 9PL, United Kingdom; and Department of Neurology (T.K., B.P.L., R.J.B), Washington University School of Medicine, St Louis, Missouri 63110
| | | | | | | | | | | | | | | |
Collapse
|