101
|
Gan Q, Chi H, Liang C, Zhang L, Dalmo RA, Sheng X, Tang X, Xing J, Zhan W. Ontogeny of myeloperoxidase (MPO) positive cells in flounder (Paralichthys olivaceus). Mol Immunol 2024; 170:26-34. [PMID: 38603988 DOI: 10.1016/j.molimm.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/22/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Neutrophils represent an important asset of innate immunity. Neutrophils express myeloperoxidase (MPO) which is a heme-containing peroxidase involved in microbial killing. In this study, by using real-time quantitative PCR and Western blot analysis, the flounder MPO (PoMPO) was observed to be highly expressed in the head kidney, followed by spleen, gill, and intestine during ontogeny - during developmental stages from larvae to adults. Furthermore, PoMPO positive cells were present in major immune organs of flounder at all developmental stages, and the number of neutrophils was generally higher as the fish grew to a juvenile stage. In addition, flow cytometry analysis revealed that the proportion of PoMPO positive cells relative to leukocytes, in the peritoneal cavity, head kidney, and peripheral blood of flounder juvenile stage was 18.3 %, 34.8 %, and 6.0 %, respectively, which is similar to the adult stage in flounder as previously reported. The presence and tissue distribution of PoMPO during ontogeny suggests that PoMPO positive cells are indeed a player of the innate immunity at all developmental stages of flounder.
Collapse
Affiliation(s)
- Qiujie Gan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Chengcheng Liang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Letao Zhang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Roy Ambli Dalmo
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
102
|
Kundu A, Ghosh P, Bishayi B. Verapamil and tangeretin enhances the M1 macrophages to M2 type in lipopolysaccharide-treated mice and inhibits the P-glycoprotein expression by downregulating STAT1/STAT3 and upregulating SOCS3. Int Immunopharmacol 2024; 133:112153. [PMID: 38678669 DOI: 10.1016/j.intimp.2024.112153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
LPS induced sepsis is a complex process involving various immune cells and signaling molecules. Dysregulation of macrophage polarization and ROS production contributed to the pathogenesis of sepsis. PGP is a transmembrane transporter responsible for the efflux of a number of drugs and also expressed in murine macrophages. Natural products have been shown to decrease inflammation and expression of efflux transporters. However, no treatment is currently available to treat LPS induced sepsis. Verapamil and Tangeretin also reported to attenuate lipopolysaccharide-induced inflammation. However, the effects of verapamil or tangeretin on lipopolysaccharide (LPS)-induced sepsis and its detailed anti-inflammatory mechanism have not been reported. Here, we have determined that verapamil and tangeretin protects against LPS-induced sepsis by suppressing M1 macrophages populations and also through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression in macrophages. An hour before LPS (10 mg/kg) was administered; mice were given intraperitoneal injections of either verapamil (5 mg/kg) or tangeretin (5 mg/kg). The peritoneal macrophages from different experimental groups of mice were isolated. Hepatic, pulmonary and splenic morphometric analyses revealed that verapamil and tangeretin decreased the infiltration of neutrophils into the tissues. Verapamil and tangeritin also enhanced the activity of SOD, CAT, GRX and GSH level in all the tissues tested. verapamil or tangeretin pre-treated mice shifted M1 macrophages to M2 type possibly through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression. Hence, both these drugs have shown protective effects in sepsis via suppressing iNOS, COX-2, oxidative stress and NF-κB signaling in macrophages. Therefore, in our study we can summarize that mice were treated with either Vera or Tan before LPS administration cause an elevated IL-10 by the macrophages which enhances the SOCS3 expression, and thereby able to limits STAT1/STAT3 inter-conversion in the macrophages. As a result, NF-κB activity is also getting down regulated and ultimately mitigating the adverse effect of inflammation caused by LPS in resident macrophages. Whether verapamil or tangeretin offers such protection possibly through the inhibition of P-glycoprotein expression in macrophages needs clarification with the bio availability of these drugs under PGP inhibited conditions is a limitation of this study.
Collapse
Affiliation(s)
- Ayantika Kundu
- Department of Physiology, Immunology laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, INDIA
| | - Pratiti Ghosh
- Lab of Lifestyle and Stress Physiology, Head, Department of Physiology, West Bengal State University, North 24 Parganas, Malikapur, Berunanpukuria, Barasat, Kolkata, West Bengal 700126, INDIA.
| | - Biswadev Bishayi
- Professor, Department of Physiology, University of Calcutta. West Bengal, INDIA.
| |
Collapse
|
103
|
Jiang B, Huang J. Influences of bacterial extracellular vesicles on macrophage immune functions. Front Cell Infect Microbiol 2024; 14:1411196. [PMID: 38873097 PMCID: PMC11169721 DOI: 10.3389/fcimb.2024.1411196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Bacterial extracellular vesicles (EVs) are crucial mediators of information transfer between bacteria and host cells. Macrophages, as key effector cells in the innate immune system, have garnered widespread attention for their interactions with bacterial EVs. Increasing evidence indicates that bacterial EVs can be internalized by macrophages through multiple pathways, thereby influencing their immune functions. These functions include inflammatory responses, antimicrobial activity, antigen presentation, and programmed cell death. Therefore, this review summarizes current research on the interactions between bacterial EVs and macrophages. This will aid in the deeper understanding of immune modulation mediated by pathogenic microorganisms and provide a basis for developing novel antibacterial therapeutic strategies.
Collapse
Affiliation(s)
- Bowei Jiang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Junyun Huang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
104
|
Dai X, Li Y, Liu X, Zhang Y, Gao F. Intracellular infection-responsive macrophage-targeted nanoparticles for synergistic antibiotic immunotherapy of bacterial infection. J Mater Chem B 2024; 12:5248-5260. [PMID: 38712662 DOI: 10.1039/d4tb00409d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Intracellular bacteria are considered to play a key role in the failure of bacterial infection therapy and increase of antibiotic resistance. Nanotechnology-based drug delivery carriers have been receiving increasing attention for improving the intracellular antibacterial activity of antibiotics, but are accompanied by disadvantages such as complex preparation procedures, lack of active targeting, and monotherapy, necessitating further design improvements. Herein, nanoparticles targeting bacteria-infected macrophages are fabricated to eliminate intracellular bacterial infections via antibiotic release and upregulation of intracellular reactive oxygen species (ROS) levels and proinflammatory responses. These nanoparticles were formed through the reaction of the amino group on selenocystamine dihydrochloride and the aldehyde group on oxidized dextran (ox-Dex), which encapsulates vancomycin (Van) through hydrophobic interactions. These nanoparticles could undergo targeted uptake by macrophages via endocytosis and respond to the bacteria-infected intracellular microenvironment (ROS and glutathione (GSH)) for controlled release of antibiotics. Furthermore, these nanoparticles could consume intracellular GSH and promote a significant increase in the level of ROS in macrophages, subsequently up-regulating the proinflammatory response to reinforce antibacterial activity. These nanoparticles can accelerate bacteria-infected wound healing. In this work, nanoparticles were fabricated for bacteria-infected macrophage-targeted and microenvironment-responsive antibiotic delivery, cellular ROS generation, and proinflammatory up-regulation activity to eliminate intracellular bacteria, which opens up a new possibility for multifunctional drug delivery against intracellular infection.
Collapse
Affiliation(s)
- Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Yu Li
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Xiaojun Liu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Yongjie Zhang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| |
Collapse
|
105
|
Maltz-Matyschsyk M, Melchiorre CK, Knecht DA, Lynes MA. Bacterial metallothionein, PmtA, a novel stress protein found on the bacterial surface of Pseudomonas aeruginosa and involved in management of oxidative stress and phagocytosis. mSphere 2024; 9:e0021024. [PMID: 38712943 PMCID: PMC11237414 DOI: 10.1128/msphere.00210-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Metallothioneins (MTs) are small cysteine-rich proteins that play important roles in homeostasis and protection against heavy metal toxicity and oxidative stress. The opportunistic pathogen, Pseudomonas aeruginosa, expresses a bacterial MT known as PmtA. Utilizing genetically modified P. aeruginosa PAO1 strains (a human clinical wound isolate), we show that inducing pmtA increases levels of pyocyanin and biofilm compared to other PAO1 isogenic strains, supporting previous results that pmtA is important for pyocyanin and biofilm production. We also show that overexpression of pmtA in vitro provides protection for cells exposed to oxidants, which is a characteristic of inflammation, indicating a role for PmtA as an antioxidant in inflammation. We found that a pmtA clean deletion mutant is phagocytized faster than other PAO1 isogenic strains in THP-1 human macrophage cells, indicating that PmtA provides protection from the phagocytic attack. Interestingly, we observed that monoclonal anti-PmtA antibody binds to PmtA, which is accessible on the surface of PAO1 strains using both flow cytometry and enzyme-linked immunosorbent assay techniques. Finally, we investigated intracellular persistence of these PAO1 strains within THP-1 macrophages cells and found that the phagocytic endurance of PAO1 strains is affected by pmtA expression. These data show for the first time that a bacterial MT (pmtA) can play a role in the phagocytic process and can be found on the outer surface of PAO1. Our results suggest that PmtA plays a role both in protection from oxidative stress and in the resistance to the host's innate immune response, identifying PmtA as a potential therapeutic target in P. aeruginosa infection. IMPORTANCE The pathogen Pseudomonas aeruginosa is a highly problematic multidrug-resistant (MDR) pathogen with complex virulence networks. MDR P. aeruginosa infections have been associated with increased clinical visits, very poor healthcare outcomes, and these infections are ranked as critical on priority lists of both the Centers for Disease Control and Prevention and the World Health Organization. Known P. aeruginosa virulence factors have been extensively studied and are implicated in counteracting host defenses, causing direct damage to the host tissues, and increased microbial competitiveness. Targeting virulence factors has emerged as a new line of defense in the battle against MDR P. aeruginosa strains. Bacterial metallothionein is a newly recognized virulence factor that enables evasion of the host immune response. The studies described here identify mechanisms in which bacterial metallothionein (PmtA) plays a part in P. aeruginosa pathogenicity and identifies PmtA as a potential therapeutic target.
Collapse
Affiliation(s)
| | - Clare K Melchiorre
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - David A Knecht
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Michael A Lynes
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
106
|
Tkacz K, Rolski F, Stefańska M, Węglarczyk K, Szatanek R, Siedlar M, Kania G, Błyszczuk P. TGF-β Signalling Regulates Cytokine Production in Inflammatory Cardiac Macrophages during Experimental Autoimmune Myocarditis. Int J Mol Sci 2024; 25:5579. [PMID: 38891767 PMCID: PMC11171962 DOI: 10.3390/ijms25115579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Myocarditis is characterized by an influx of inflammatory cells, predominantly of myeloid lineage. The progression of myocarditis to a dilated cardiomyopathy is markedly influenced by TGF-β signalling. Here, we investigate the role of TGF-β signalling in inflammatory cardiac macrophages in the development of myocarditis and post-inflammatory fibrosis. Experimental autoimmune myocarditis (EAM) was induced in the LysM-Cre × R26-stop-EYFP × Tgfbr2-fl/fl transgenic mice showing impaired TGF-β signalling in the myeloid lineage and the LysM-Cre × R26-stop-EYFP control mice. In EAM, immunization led to acute myocarditis on day 21, followed by cardiac fibrosis on day 40. Both strains showed a similar severity of myocarditis and the extent of cardiac fibrosis. On day 21 of EAM, an increase in cardiac inflammatory macrophages was observed in both strains. These cells were sorted and analysed for differential gene expression using whole-genome transcriptomics. The analysis revealed activation and regulation of the inflammatory response, particularly the production of both pro-inflammatory and anti-inflammatory cytokines and cytokine receptors as TGF-β-dependent processes. The analysis of selected cytokines produced by bone marrow-derived macrophages confirmed their suppressed secretion. In conclusion, our findings highlight the regulatory role of TGF-β signalling in cytokine production within inflammatory cardiac macrophages during myocarditis.
Collapse
Affiliation(s)
- Karolina Tkacz
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Cracow, Poland (M.S.); (K.W.); (M.S.)
| | - Filip Rolski
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Cracow, Poland (M.S.); (K.W.); (M.S.)
| | - Monika Stefańska
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Cracow, Poland (M.S.); (K.W.); (M.S.)
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Cracow, Poland (M.S.); (K.W.); (M.S.)
| | - Rafał Szatanek
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Cracow, Poland (M.S.); (K.W.); (M.S.)
| | - Maciej Siedlar
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Cracow, Poland (M.S.); (K.W.); (M.S.)
| | - Gabriela Kania
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, 8952 Schlieren, Switzerland
| | - Przemysław Błyszczuk
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Cracow, Poland (M.S.); (K.W.); (M.S.)
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, 8952 Schlieren, Switzerland
| |
Collapse
|
107
|
David CAW, Vermeulen JP, Gioria S, Vandebriel RJ, Liptrott NJ. Nano(bio)Materials Do Not Affect Macrophage Phenotype-A Study Conducted by the REFINE Project. Int J Mol Sci 2024; 25:5491. [PMID: 38791527 PMCID: PMC11121830 DOI: 10.3390/ijms25105491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Macrophages are well known for their involvement in the biocompatibility, as well as biodistribution, of nano(bio)materials. Although there are a number of rodent cell lines, they may not fully recapitulate primary cell responses, particularly those of human cells. Isolation of tissue-resident macrophages from humans is difficult and may result in insufficient cells with which to determine the possible interaction with nano(bio)materials. Isolation of primary human monocytes and differentiation to monocyte-derived macrophages may provide a useful tool with which to further study these interactions. To that end, we developed a standard operating procedure for this differentiation, as part of the Regulatory Science Framework for Nano(bio)material-based Medical Products and Devices (REFINE) project, and used it to measure the secretion of bioactive molecules from M1 and M2 differentiated monocytes in response to model nano(bio)materials, following an initial assessment of pyrogenic contamination, which may confound potential observations. The SOP was deployed in two partner institutions with broadly similar results. The work presented here shows the utility of this assay but highlights the relevance of donor variability in responses to nano(bio)materials. Whilst donor variability can provide some logistical challenges to the application of such assays, this variability is much closer to the heterogeneous cells that are present in vivo, compared to homogeneous non-human cell lines.
Collapse
Affiliation(s)
- Christopher A. W. David
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK;
- Centre of Excellence for Long-Acting Therapeutics (CELT), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 8TX, UK
| | - Jolanda P. Vermeulen
- National Institute for Public Health & the Environment, 3720 BA Bilthoven, The Netherlands; (J.P.V.); (R.J.V.)
| | - Sabrina Gioria
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy;
| | - Rob J. Vandebriel
- National Institute for Public Health & the Environment, 3720 BA Bilthoven, The Netherlands; (J.P.V.); (R.J.V.)
| | - Neill J. Liptrott
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK;
- Centre of Excellence for Long-Acting Therapeutics (CELT), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 8TX, UK
| |
Collapse
|
108
|
Ahator SD, Hegstad K, Lentz CS, Johannessen M. Deciphering Staphylococcus aureus-host dynamics using dual activity-based protein profiling of ATP-interacting proteins. mSystems 2024; 9:e0017924. [PMID: 38656122 PMCID: PMC11097646 DOI: 10.1128/msystems.00179-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
The utilization of ATP within cells plays a fundamental role in cellular processes that are essential for the regulation of host-pathogen dynamics and the subsequent immune response. This study focuses on ATP-binding proteins to dissect the complex interplay between Staphylococcus aureus and human cells, particularly macrophages (THP-1) and keratinocytes (HaCaT), during an intracellular infection. A snapshot of the various protein activity and function is provided using a desthiobiotin-ATP probe, which targets ATP-interacting proteins. In S. aureus, we observe enrichment in pathways required for nutrient acquisition, biosynthesis and metabolism of amino acids, and energy metabolism when located inside human cells. Additionally, the direct profiling of the protein activity revealed specific adaptations of S. aureus to the keratinocytes and macrophages. Mapping the differentially activated proteins to biochemical pathways in the human cells with intracellular bacteria revealed cell-type-specific adaptations to bacterial challenges where THP-1 cells prioritized immune defenses, autophagic cell death, and inflammation. In contrast, HaCaT cells emphasized barrier integrity and immune activation. We also observe bacterial modulation of host processes and metabolic shifts. These findings offer valuable insights into the dynamics of S. aureus-host cell interactions, shedding light on modulating host immune responses to S. aureus, which could involve developing immunomodulatory therapies. IMPORTANCE This study uses a chemoproteomic approach to target active ATP-interacting proteins and examines the dynamic proteomic interactions between Staphylococcus aureus and human cell lines THP-1 and HaCaT. It uncovers the distinct responses of macrophages and keratinocytes during bacterial infection. S. aureus demonstrated a tailored response to the intracellular environment of each cell type and adaptation during exposure to professional and non-professional phagocytes. It also highlights strategies employed by S. aureus to persist within host cells. This study offers significant insights into the human cell response to S. aureus infection, illuminating the complex proteomic shifts that underlie the defense mechanisms of macrophages and keratinocytes. Notably, the study underscores the nuanced interplay between the host's metabolic reprogramming and immune strategy, suggesting potential therapeutic targets for enhancing host defense and inhibiting bacterial survival. The findings enhance our understanding of host-pathogen interactions and can inform the development of targeted therapies against S. aureus infections.
Collapse
Affiliation(s)
- Stephen Dela Ahator
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Kristin Hegstad
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Christian S. Lentz
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Mona Johannessen
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
109
|
Li L, Liu Y, Qian X, Zhou L, Fan Y, Yang X, Luo K, Chen Y. Modulating the phenotype and function of bone marrow-derived macrophages via mandible and femur osteoblasts. Int Immunopharmacol 2024; 132:112000. [PMID: 38583238 DOI: 10.1016/j.intimp.2024.112000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Various studies have been investigated the phenotypic and functional distinctions of craniofacial and long bone cells involved in bone regeneration. However, the process of bone tissue regeneration after bone grafting involves complicated interactions between different cell types at the donor-recipient site. Additionally, differences in alterations of the immune microenvironment at the recipient site remained to be explored. Osteoblasts (OBs) and macrophages (MØ) play essential roles in the bone restoration and regeneration processes in the bone and immune systems, respectively. The modulation of MØ on OBs has been extensively explored in the literature, whereas limited research has been conducted on the influence of OBs on the MØ phenotype and function. In the present study, OBs from the mandible and femur (MOBs and FOBs, respectively) promoted cranial defect regeneration in rats, with better outcomes noted in the MOBs-treated group. After MOBs transplantation, a significant inflammatory response was induced, accompanied by an early increase in IL-10 secretion. And then, there was an upregulation in M2-MØ-related cell markers and inflammatory factor expression. Condition media (CM) of OBs mildly inhibited apoptosis in MØ, enhanced their migration and phagocytic functions, and concurrently increased iNOS and Arg1 expression, with MOB-CM demonstrating more pronounced effects compared to FOB-CM. In conclusion, our investigation showed that MOBs and FOBs have the ability to modulate MØ phenotype and function, with MOBs exhibiting a stronger regulatory potential. These findings provide a new direction for improving therapeutic strategies for bone regeneration in autologous bone grafts from the perspective of the immune microenvironment.
Collapse
Affiliation(s)
- Li Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, People's Republic of China; Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
| | - Yijuan Liu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, People's Republic of China; Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
| | - Xueshen Qian
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, People's Republic of China; Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
| | - Ling Zhou
- Fujian Provincial Governmental Hospital, Fuzhou 350003, People's Republic of China
| | - Yujie Fan
- The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, People's Republic of China
| | - Xue Yang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, People's Republic of China; Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, People's Republic of China; Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China.
| | - Yuling Chen
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China.
| |
Collapse
|
110
|
Valverde A, Naqvi RA, Naqvi AR. Macrophage-enriched novel functional long noncoding RNAs LRRC75A-AS1 and GAPLINC regulate polarization and innate immune responses. Inflamm Res 2024; 73:771-792. [PMID: 38592458 DOI: 10.1007/s00011-024-01865-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/29/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024] Open
Abstract
INTRODUCTION Macrophages (Mφs) are functionally dynamic immune cells that bridge innate and adaptive immune responses; however, the underlying epigenetic mechanisms that control Mφ plasticity and innate immune functions are not well elucidated. OBJECTIVE To identify novel functions of macrophage-enriched lncRNAs in regulating polarization and innate immune responses. METHODS Total RNA isolated from differentiating monocyte-derived M1 and M2 Mφs was profiled for lncRNAs expression using RNAseq. Impact of LRRC75A-AS1, GAPLINC and AL139099.5 knockdown was examined on macrophage differentiation, polarization markers, phagocytosis, and antigen processing by flow cytometry and florescence microscopy. Cytokine profiles were examined by multiplex bead array and cytoskeletal signaling pathway genes were quantified by PCR-based array. Gingival biopsies were collected from periodontally healthy and diseased subjects to examine lncRNAs, M1/M2 marker expression. RESULTS Transcriptome profiling of M1 and M2 Mφs identified thousands of differentially expressed known and novel lncRNAs. We characterized three Mφ-enriched lncRNAs LRRC75A-AS1, GAPLINC and AL139099.5 in polarization and innate immunity. Knockdown of LRRC75A-AS1 and GAPLINC downregulated the Mφ differentiation markers and skewed Mφ polarization by decreasing M1 markers without a significant impact on M2 markers. LRRC75A-AS1 and GAPLINC knockdown also attenuated bacterial phagocytosis, antigen processing and inflammatory cytokine secretion in Mφs, supporting their functional role in potentiating innate immune functions. Mechanistically, LRRC75A-AS1 and GAPLINC knockdown impaired Mφ migration by downregulating the expression of multiple cytoskeletal signaling pathways suggesting their critical role in regulating Mφ migration. Finally, we showed that LRRC75A-AS1 and GAPLINC were upregulated in periodontitis and their expression correlates with higher M1 markers suggesting their role in macrophage polarization in vivo. CONCLUSION Our results show that polarized Mφs acquire a unique lncRNA repertoire and identified many previously unknown lncRNA sequences. LRRC75A-AS1 and GAPLINC, which are induced in periodontitis, regulate Mφ polarization and innate immune functions supporting their critical role in inflammation.
Collapse
Affiliation(s)
- Araceli Valverde
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL, 60612, USA.
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA.
| | - Raza Ali Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL, 60612, USA
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Afsar R Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL, 60612, USA.
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
111
|
Valverde A, Naqvi RA, Naqvi AR. Non-coding RNA LINC01010 regulates macrophage polarization and innate immune functions by modulating NFκB signaling pathway. J Cell Physiol 2024; 239:e31225. [PMID: 38403999 PMCID: PMC11096022 DOI: 10.1002/jcp.31225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024]
Abstract
Innate immune response is regulated by tissue resident or infiltrating immune cells such as macrophages (Mφ) that play critical role in tissue development, homeostasis, and repair of damaged tissue. However, the epigenetic mechanisms that regulate Mφ plasticity and innate immune functions are not well understood. Long non-coding RNA (lncRNA) are among the most abundant class of transcriptome but their function in myeloid cell biology is less explored. In this study, we deciphered the regulatory role of previously uncharacterized lncRNAs in Mφ polarization and innate immune responses. Two lncRNAs showed notable changes in their levels during M1 and M2 Mφ differentiation. Our findings indicate that LINC01010 expression increased and AC007032 expression decreased significantly. LINC01010 exhibit myeloid cell-specificity, while AC007032.1 is ubiquitous and expressed in both myeloid and lymphoid (T cells, B cells and NK cells) cells. Expression of these lncRNAs is dysregulated in periodontal disease (PD), a microbial biofilm-induced immune disease, and responsive to lipopolysaccharide (LPS) from different oral and non-oral bacteria. Knockdown of LINC01010 but not AC007032.1 reduced the surface expression of Mφ differentiation markers CD206 and CD68, and M1Mφ polarization markers MHCII and CD32. Furthermore, LINC01010 RNAi attenuated bacterial phagocytosis, antigen processing and cytokine secretion suggesting its key function in innate immunity. Mechanistically, LINC01010 knockdown Mφ treated with Escherichia coli LPS exhibit significantly reduced expression of multiple nuclear factor kappa B pathway genes. Together, our data highlight functional role of a PD-associated lncRNA LINC01010 in shaping macrophage differentiation, polarization, and innate immune activation.
Collapse
Affiliation(s)
- Araceli Valverde
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, United States
| | - Raza Ali Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, United States
| | - Afsar R. Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, United States
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, Illinois, United States
| |
Collapse
|
112
|
Lopes N, Pereira RB, Correia A, Vilanova M, Cerca N, França A. Deletion of codY impairs Staphylococcus epidermidis biofilm formation, generation of viable but non-culturable cells and stimulates cytokine production in human macrophages. J Med Microbiol 2024; 73. [PMID: 38743043 DOI: 10.1099/jmm.0.001837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Introduction. Staphylococcus epidermidis biofilms are one of the major causes of bloodstream infections related to the use of medical devices. The diagnosis of these infections is challenging, delaying their treatment and resulting in increased morbidity and mortality rates. As such, it is urgent to characterize the mechanisms employed by this bacterium to endure antibiotic treatments and the response of the host immune system, to develop more effective therapeutic strategies. In several bacterial species, the gene codY was shown to encode a protein that regulates the expression of genes involved in biofilm formation and immune evasion. Additionally, in a previous study, our group generated evidence indicating that codY is involved in the emergence of viable but non-culturable (VBNC) cells in S. epidermidis.Gap statement/Hypothesis. As such, we hypothesized that the gene codY has have an important role in this bacterium virulence.Aim. This study aimed to assess, for the first time, the impact of the deletion of the gene codY in S. epidermidis virulence, namely, in antibiotic susceptibility, biofilm formation, VBNC state emergence and in vitro host immune system response.Methodology. Using an allelic replacement strategy, we constructed and then characterized an S. epidermidis strain lacking codY, in regards to biofilm and VBNC cell formation, susceptibility to antibiotics as well as their role in the interaction with human blood and plasma. Additionally, we investigate whether the codY gene can impact the activation of innate immune cells by evaluating the production of both pro- and anti-inflammatory cytokines by THP-1 macrophages.Results. We demonstrated that the deletion of the gene codY resulted in biofilms with less c.f.u. counts and fewer VBNC cells. Furthermore, we show that although WT and mutant cells were similarly internalized in vitro by human macrophages, a stronger cytokine response was elicited by the mutant in a toll-like receptor 4-dependent manner.Conclusion. Our results indicate that codY contributes to S. epidermidis virulence, which in turn may have an impact on our ability to manage the biofilm-associated infections caused by this bacterium.
Collapse
Affiliation(s)
- Nathalie Lopes
- Laboratório de Investigação em Biofilmes Rosário Oliveira (LIBRO), Centro de Engenharia Biológica (CEB), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Renato B Pereira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Alexandra Correia
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Manuel Vilanova
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Nuno Cerca
- Laboratório de Investigação em Biofilmes Rosário Oliveira (LIBRO), Centro de Engenharia Biológica (CEB), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- LABBELS-Laboratório Associado, Braga, Guimarães, Portugal
| | - Angela França
- Laboratório de Investigação em Biofilmes Rosário Oliveira (LIBRO), Centro de Engenharia Biológica (CEB), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- LABBELS-Laboratório Associado, Braga, Guimarães, Portugal
| |
Collapse
|
113
|
Kloc M, Halasa M, Ghobrial RM. Macrophage niche imprinting as a determinant of macrophage identity and function. Cell Immunol 2024; 399-400:104825. [PMID: 38648700 DOI: 10.1016/j.cellimm.2024.104825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Macrophage niches are the anatomical locations within organs or tissues consisting of various cells, intercellular and extracellular matrix, transcription factors, and signaling molecules that interact to influence macrophage self-maintenance, phenotype, and behavior. The niche, besides physically supporting macrophages, imposes a tissue- and organ-specific identity on the residing and infiltrating monocytes and macrophages. In this review, we give examples of macrophage niches and the modes of communication between macrophages and surrounding cells. We also describe how macrophages, acting against their immune defensive nature, can create a hospitable niche for pathogens and cancer cells.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX, USA; Houston Methodist Hospital, Department of Surgery, Houston, TX, USA; University of Texas, MD Anderson Cancer Center, Department of Genetics, Houston, TX, USA.
| | - Marta Halasa
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX, USA; Houston Methodist Hospital, Department of Surgery, Houston, TX, USA
| | - Rafik M Ghobrial
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX, USA; Houston Methodist Hospital, Department of Surgery, Houston, TX, USA
| |
Collapse
|
114
|
Davidson E, Pereira J, Leon S, Navarro E, Kavalappara SR, Murphy Z, Anagnostopoulos V, Bag S, Santra S. Chitosan coated selenium: A versatile nano-delivery system for molecular cargoes. Int J Biol Macromol 2024; 267:131176. [PMID: 38599433 DOI: 10.1016/j.ijbiomac.2024.131176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
The use of nanoscale delivery platforms holds tremendous potential to overcome the current limitations associated with the conventional delivery of genetic materials and hydrophobic compounds. Therefore, there is an imperative need to develop a suitable alternative nano-enabled delivery platform to overcome these limitations. This work reports the first one-step hydrothermal synthesis of chitosan functionalized selenium nanoparticles (Selenium-chitosan, SeNP) that are capable of serving as a versatile nanodelivery platform for different types of active ingredients. The chitosan functionalization modified the surface charge to allow the loading of active ingredients and improve biocompatibility. The effective loading of the SeNP was demonstrated using genetic material, a hydrophobic small molecule, and an antibiotic. Furthermore, the loading of active ingredients showed no detrimental effect on the specific properties (fluorescence and bactericidal) of the studied active ingredients. In vitro antimicrobial inhibitory studies exhibited good compatibility between the SeNP delivery platform and Penicillin G (Pen), resulting in a reduction of the minimum inhibitory concentration (MIC) from 32 to 16 ppm. Confocal microscopy images showed the uptake of the SeNP by a macrophage cell line (J774A.1), demonstrating trackability and intracellular delivery of an active ingredient. In summary, the present work demonstrates the potential of SeNP as a suitable delivery platform for biomedical and agricultural applications.
Collapse
Affiliation(s)
- Edwin Davidson
- Department of Chemistry, University of Central Florida, Orlando, FL, 32826, USA.; NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA
| | - Jorge Pereira
- Department of Chemistry, University of Central Florida, Orlando, FL, 32826, USA.; NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA
| | - Sebastian Leon
- NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA
| | - Ernesto Navarro
- NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA.; Department of Physiology, Neuroscience and Behavioral Sciences, School of Medicine, St. George's University, St. George, Grenada
| | | | - Zachary Murphy
- Department of Chemistry, University of Central Florida, Orlando, FL, 32826, USA
| | | | - Sudeep Bag
- Department of Plant Pathology, University of Georgia, Tifton, GA, USA
| | - Swadeshmukul Santra
- Department of Chemistry, University of Central Florida, Orlando, FL, 32826, USA.; NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA.; Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32826, USA..
| |
Collapse
|
115
|
Denison M, Garcia SP, Ullrich A, Podgorski I, Gibson H, Turro C, Kodanko JJ. Ruthenium-Cathepsin Inhibitor Conjugates for Green Light-Activated Photodynamic Therapy and Photochemotherapy. Inorg Chem 2024; 63:7973-7983. [PMID: 38616353 PMCID: PMC11066580 DOI: 10.1021/acs.inorgchem.4c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Dysregulated cathepsin activity is linked to various human diseases including metabolic disorders, autoimmune conditions, and cancer. Given the overexpression of cathepsin in the tumor microenvironment, cathepsin inhibitors are promising pharmacological agents and drug delivery vehicles for cancer treatment. In this study, we describe the synthesis and photochemical and biological assessment of a dual-action agent based on ruthenium that is conjugated with a cathepsin inhibitor, designed for both photodynamic therapy (PDT) and photochemotherapy (PCT). The ruthenium-cathepsin inhibitor conjugate was synthesized through an oxime click reaction, combining a pan-cathepsin inhibitor based on E64d with the Ru(II) PCT/PDT fragment [Ru(dqpy)(dppn)], where dqpy = 2,6-di(quinoline-2-yl)pyridine and dppn = benzo[i]dipyrido[3,2-a:2',3'-c]phenazine. Photochemical investigations validated the conjugate's ability to release a triazole-containing cathepsin inhibitor for PCT and to generate singlet oxygen for PDT upon exposure to green light. Inhibition studies demonstrated the conjugate's potent and irreversible inactivation of purified and intracellular cysteine cathepsins. Two Ru(II) PCT/PDT agents based on the [Ru(dqpy)(dppn)] moiety were evaluated for photoinduced cytotoxicity in 4T1 murine triple-negative breast cancer cells, L929 fibroblasts, and M0, M1, and M2 macrophages. The cathepsin inhibitor conjugate displayed notable selectivity for inducing cell death under irradiation compared to dark conditions, mitigating toxicity in the dark observed with the triazole control complex [Ru(dqpy)(dppn)(MeTz)]2+ (MeTz = 1-methyl-1H-1,2,4-triazole). Notably, our lead complex is among a limited number of dual PCT/PDT agents activated with green light.
Collapse
Affiliation(s)
- Madeline Denison
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
| | - Santana P Garcia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexander Ullrich
- Department of Oncology, Wayne State University, Detroit, Michigan 48201, United States
| | - Izabela Podgorski
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan 48201, United States
- Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Heather Gibson
- Department of Oncology, Wayne State University, Detroit, Michigan 48201, United States
- Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
- Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
116
|
Nikiema WA, Ouédraogo M, Ouédraogo WP, Fofana S, Ouédraogo BHA, Delma TE, Amadé B, Abdoulaye GM, Sawadogo AS, Ouédraogo R, Semde R. Systematic Review of Chemical Compounds with Immunomodulatory Action Isolated from African Medicinal Plants. Molecules 2024; 29:2010. [PMID: 38731500 PMCID: PMC11085867 DOI: 10.3390/molecules29092010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 05/13/2024] Open
Abstract
A robust, well-functioning immune system is the cornerstone of good health. Various factors may influence the immune system's effectiveness, potentially leading to immune system failure. This review aims to provide an overview of the structure and action of immunomodulators isolated from African medicinal plants. The research was conducted according to PRISMA guidelines. Full-text access research articles published in English up to December 2023, including plant characteristics, isolated phytochemicals, and immuno-modulatory activities, were screened. The chemical structures of the isolated compounds were generated using ChemDraw® (version 12.0.1076), and convergent and distinctive signaling pathways were highlighted. These phytochemicals with demonstrated immunostimulatory activity include alkaloids (berberine, piperine, magnoflorine), polysaccharides (pectin, glucan, acemannan, CALB-4, GMP90-1), glycosides (syringin, cordifolioside, tinocordiside, aucubin), phenolic compounds (ferulic acid, vanillic acid, eupalitin), flavonoids (curcumin, centaurein, kaempferin, luteolin, guajaverin, etc.), terpenoids (oleanolic acid, ursolic acid, betulinic acid, boswellic acids, corosolic acid, nimbidin, andrographolides). These discussed compounds exert their effects through various mechanisms, targeting the modulation of MAPKs, PI3K-Akt, and NF-kB. These mechanisms can support the traditional use of medicinal plants to treat immune-related diseases. The outcomes of this overview are to provoke structural action optimization, to orient research on particular natural chemicals for managing inflammatory, infectious diseases and cancers, or to boost vaccine immunogenicity.
Collapse
Affiliation(s)
- Wendwaoga Arsène Nikiema
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Moussa Ouédraogo
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
- Unité de Formation et de Recherche, Sciences de la Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso;
| | - Windbedma Prisca Ouédraogo
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
- Unité de Formation et de Recherche, Sciences de la Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso;
| | - Souleymane Fofana
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
- Institut des Sciences de la Santé, Université NAZI Boni, 01 BP 1091 Bobo-Dioulasso 01, Burkina Faso
| | - Boris Honoré Amadou Ouédraogo
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Talwendpanga Edwige Delma
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Belem Amadé
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Gambo Moustapha Abdoulaye
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Aimé Serge Sawadogo
- Unité de Formation et de Recherche, Sciences de la Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso;
| | - Raogo Ouédraogo
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Rasmané Semde
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
- Unité de Formation et de Recherche, Sciences de la Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso;
| |
Collapse
|
117
|
Cerkezi S, Nakova M, Gorgoski I, Ferati K, Bexheti-Ferati A, Palermo A, Inchingolo AD, Ferrante L, Inchingolo AM, Inchingolo F, Dipalma G. The Role of Sulfhydryl (Thiols) Groups in Oral and Periodontal Diseases. Biomedicines 2024; 12:882. [PMID: 38672236 PMCID: PMC11048028 DOI: 10.3390/biomedicines12040882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
AIM The sulfhydryl (thiols) group of glutathione plays an important role in the neutralization of foreign organic compounds and the reduction in peroxides. The purpose of the study is to evaluate the concentration of sulfhydryl groups in the gingival tissue of healthy individuals and those with gingivitis or periodontitis, and to examine the differences between these groups. MATERIAL AND METHODS To assess the concentration of sulfhydryl groups (thiols) in the gingival tissue of healthy individuals and those with gingivitis or periodontitis, we used spectrophotometric analysis using dithionitrobenzoate (DTNB) as a reagent to measure the accessible sulfhydryl groups present in gingival tissue proteins. The sample was divided into three distinct groups: individuals with periodontal health, gingivitis, and periodontitis, and different indices were used to assess the periodontal status of the participants. Next, a statistical analysis was conducted to compare the concentrations of sulfhydryl groups among the different groups of patients. CONCLUSIONS The results of this study showed significantly decreased levels of sulfhydryl (thiols) groups in gingival tissue from patients with gingivitis and periodontitis, compared with healthy people (control group). These results confirm the role of sulfhydryl (thiols) groups in defense against free radicals. They share a significant role in detoxification, signal transduction, apoptosis, and various other functions at the molecular level.
Collapse
Affiliation(s)
- Sabetim Cerkezi
- Orthodontic Department, Dentristy School, Medical Science Faculty, State University of Tetova, 1220 Tetova, North Macedonia;
| | - Marija Nakova
- Periodontology Department, Dentistry School, Medical Science Faculty, State University of Tetova, 1220 Tetova, North Macedonia;
| | - Icko Gorgoski
- Faculty of Natural Sciences and Mathematics, University St. Cyril and Methodius, 1000 Skopje, North Macedonia;
| | - Kenan Ferati
- Faculty of Medicine, State University of Tetova, 1220 Tetovo, North Macedonia; (K.F.); (A.B.-F.)
| | - Arberesha Bexheti-Ferati
- Faculty of Medicine, State University of Tetova, 1220 Tetovo, North Macedonia; (K.F.); (A.B.-F.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (L.F.); (G.D.)
| | - Laura Ferrante
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (L.F.); (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (L.F.); (G.D.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (L.F.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (L.F.); (G.D.)
| |
Collapse
|
118
|
Ferreira EA, Clements JE, Veenhuis RT. HIV-1 Myeloid Reservoirs - Contributors to Viral Persistence and Pathogenesis. Curr HIV/AIDS Rep 2024; 21:62-74. [PMID: 38411842 DOI: 10.1007/s11904-024-00692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
PURPOSE OF REVIEW HIV reservoirs are the main barrier to cure. CD4+ T cells have been extensively studied as the primary HIV-1 reservoir. However, there is substantial evidence that HIV-1-infected myeloid cells (monocytes/macrophages) also contribute to viral persistence and pathogenesis. RECENT FINDINGS Recent studies in animal models and people with HIV-1 demonstrate that myeloid cells are cellular reservoirs of HIV-1. HIV-1 genomes and viral RNA have been reported in circulating monocytes and tissue-resident macrophages from the brain, urethra, gut, liver, and spleen. Importantly, viral outgrowth assays have quantified persistent infectious virus from monocyte-derived macrophages and tissue-resident macrophages. The myeloid cell compartment represents an important target of HIV-1 infection. While myeloid reservoirs may be more difficult to measure than CD4+ T cell reservoirs, they are long-lived, contribute to viral persistence, and, unless specifically targeted, will prevent an HIV-1 cure.
Collapse
Affiliation(s)
- Edna A Ferreira
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Rebecca T Veenhuis
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.
| |
Collapse
|
119
|
Chang X, Zhu Z, Weng L, Tang X, Liu T, Zhu M, Liu J, Tang W, Zhang Y, Chen X. Selective Manipulation of the Mitochondria Oxidative Stress in Different Cells Using Intelligent Mesoporous Silica Nanoparticles to Activate On-Demand Immunotherapy for Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307310. [PMID: 38039438 DOI: 10.1002/smll.202307310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/03/2023] [Indexed: 12/03/2023]
Abstract
Herein, the vitamin K2 (VK2)/maleimide (MA) coloaded mesoporous silica nanoparticles (MSNs), functional molecules including folic acid (FA)/triphenylphosphine (TPP)/tetrapotassium hexacyanoferrate trihydrate (THT), as well as CaCO3 are explored to fabricate a core-shell-corona nanoparticle (VMMFTTC) for on-demand anti-tumor immunotherapy. After application, the tumor-specific acidic environment first decomposed CaCO3 corona, which significantly levitates the pH value of tumor tissue to convert M2 type macrophage to the antitumor M1 type. The resulting VMMFTT would then internalize in both tumor cells and macrophages via FA-assisted endocytosis and free endocytosis, respectively. These distinct processes generate different amount of VMMFTT in above two cells followed by 1) TPP-induced accumulation in the mitochondria, 2) THT-mediated effective capture of various signal ions to cut off signal transmission and further inhibit glutathione (GSH) generation, 3) ions catalyzed reactive oxygen species (ROS) production through Fenton reaction, 4) sustained release of VK2 and MA to further enhance the ROS production and GSH depletion, which caused significant apoptosis of tumor cells and additional M2-to-M1 macrophage polarization via different processes of oxidative stress. Moreover, the primary tumor apoptosis further matures surrounding immature dendritic cells and activates T cells to continuously promote the antitumor immunotherapy.
Collapse
Affiliation(s)
- Xiaowei Chang
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zeren Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Lin Weng
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyu Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Tao Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jie Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenjun Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
120
|
Bolduan V, Palzer KA, Hieber C, Schunke J, Fichter M, Schneider P, Grabbe S, Pautz A, Bros M. The mRNA-Binding Protein KSRP Limits the Inflammatory Response of Macrophages. Int J Mol Sci 2024; 25:3884. [PMID: 38612694 PMCID: PMC11011855 DOI: 10.3390/ijms25073884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
KH-type splicing regulatory protein (KSRP) is a single-stranded nucleic acid-binding protein with multiple functions. It is known to bind AU-rich motifs within the 3'-untranslated region of mRNA species, which in many cases encode dynamically regulated proteins like cytokines. In the present study, we investigated the role of KSRP for the immunophenotype of macrophages using bone marrow-derived macrophages (BMDM) from wild-type (WT) and KSRP-/- mice. RNA sequencing revealed that KSRP-/- BMDM displayed significantly higher mRNA expression levels of genes involved in inflammatory and immune responses, particularly type I interferon responses, following LPS stimulation. In line, time kinetics studies revealed increased levels of interferon-γ (IFN-γ), interleukin (IL)-1β and IL-6 mRNA in KSRP-/- macrophages after 6 h subsequent to LPS stimulation as compared to WT cultures. At the protein level, KSRP-/- BMDM displayed higher levels of these cytokines after overnight stimulation. Matching results were observed for primary peritoneal macrophages of KSRP-/- mice. These showed higher IL-6, tumor necrosis factor-α (TNF-α), C-X-C motif chemokine 1 (CXCL1) and CC-chemokine ligand 5 (CCL5) protein levels in response to LPS stimulation than the WT controls. As macrophages play a key role in sepsis, the in vivo relevance of KSRP deficiency for cytokine/chemokine production was analyzed in an acute inflammation model. In agreement with our in vitro findings, KSRP-deficient animals showed higher cytokine production upon LPS administration in comparison to WT mice. Taken together, these findings demonstrate that KSRP constitutes an important negative regulator of cytokine expression in macrophages.
Collapse
Affiliation(s)
- Vanessa Bolduan
- Department of Dermatology, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Kim-Alicia Palzer
- Department of Pharmacology, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany (A.P.)
| | - Christoph Hieber
- Department of Dermatology, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Jenny Schunke
- Department of Dermatology, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Michael Fichter
- Department of Dermatology, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Paul Schneider
- Department of Dermatology, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany (A.P.)
| | - Matthias Bros
- Department of Dermatology, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
121
|
Linh NV, Lubis AR, Dinh-Hung N, Wannavijit S, Montha N, Fontana CM, Lengkidworraphiphat P, Srinual O, Jung WK, Paolucci M, Doan HV. Effects of Shrimp Shell-Derived Chitosan on Growth, Immunity, Intestinal Morphology, and Gene Expression of Nile Tilapia ( Oreochromis niloticus) Reared in a Biofloc System. Mar Drugs 2024; 22:150. [PMID: 38667767 PMCID: PMC11050815 DOI: 10.3390/md22040150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Chitosan (CH) shows great potential as an immunostimulatory feed additive in aquaculture. This study evaluates the effects of varying dietary CH levels on the growth, immunity, intestinal morphology, and antioxidant status of Nile tilapia (Oreochromis niloticus) reared in a biofloc system. Tilapia fingerlings (mean weight 13.54 ± 0.05 g) were fed diets supplemented with 0 (CH0), 5 (CH5), 10 (CH10), 20 (CH20), and 40 (CH40) mL·kg-1 of CH for 8 weeks. Parameters were assessed after 4 and 8 weeks. Their final weight was not affected by CH supplementation, but CH at 10 mL·kg-1 significantly improved weight gain (WG) and specific growth rate (SGR) compared to the control (p < 0.05) at 8 weeks. Skin mucus lysozyme and peroxidase activities were lower in the chitosan-treated groups at weeks 4 and 8. Intestinal villi length and width were enhanced by 10 and 20 mL·kg-1 CH compared to the control. However, 40 mL·kg-1 CH caused detrimental impacts on the villi and muscular layer. CH supplementation, especially 5-10 mL·kg-1, increased liver and intestinal expressions of interleukin 1 (IL-1), interleukin 8 (IL-8), LPS-binding protein (LBP), glutathione reductase (GSR), glutathione peroxidase (GPX), and glutathione S-transferase (GST-α) compared to the control group. Overall, dietary CH at 10 mL·kg-1 can effectively promote growth, intestinal morphology, innate immunity, and antioxidant capacity in Nile tilapia fingerlings reared in biofloc systems.
Collapse
Affiliation(s)
- Nguyen Vu Linh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (N.V.L.); (S.W.); (N.M.); (C.M.F.); (O.S.)
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Anisa Rilla Lubis
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (N.V.L.); (S.W.); (N.M.); (C.M.F.); (O.S.)
| | - Nguyen Dinh-Hung
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biochemical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Supreya Wannavijit
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (N.V.L.); (S.W.); (N.M.); (C.M.F.); (O.S.)
| | - Napatsorn Montha
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (N.V.L.); (S.W.); (N.M.); (C.M.F.); (O.S.)
| | - Camilla Maria Fontana
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (N.V.L.); (S.W.); (N.M.); (C.M.F.); (O.S.)
| | - Phattawin Lengkidworraphiphat
- Multidisciplinary Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai 50200, Thailand;
| | - Orranee Srinual
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (N.V.L.); (S.W.); (N.M.); (C.M.F.); (O.S.)
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea;
| | - Marina Paolucci
- Department of Science and Technologies, University of Sannio, 82100 Benevento, Italy;
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (N.V.L.); (S.W.); (N.M.); (C.M.F.); (O.S.)
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
122
|
Chua R, Wang L, Singaraja R, Ghosh S. Functional and Multi-Omics Effects of an Optimized CRISPR-Mediated FURIN Depletion in U937 Monocytes. Cells 2024; 13:588. [PMID: 38607027 PMCID: PMC11154428 DOI: 10.3390/cells13070588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
The pro-protein convertase FURIN (PCSK3) is implicated in a wide range of normal and pathological biological processes such as infectious diseases, cancer and cardiovascular diseases. Previously, we performed a systemic inhibition of FURIN in a mouse model of atherosclerosis and demonstrated significant plaque reduction and alterations in macrophage function. To understand the cellular mechanisms affected by FURIN inhibition in myeloid cells, we optimized a CRISPR-mediated gene deletion protocol for successfully deriving hemizygous (HZ) and nullizygous (NZ) FURIN knockout clones in U937 monocytic cells using lipotransfection-based procedures and a dual guide RNA delivery strategy. We observed differences in monocyte and macrophage functions involving phagocytosis, lipid accumulation, cell migration, inflammatory gene expression, cytokine release patterns, secreted proteomics (cytokines) and whole-genome transcriptomics between wild-type, HZ and NZ FURIN clones. These studies provide a mechanistic basis on the possible roles of myeloid cell FURIN in cardiovascular disorders.
Collapse
Affiliation(s)
- Ruiming Chua
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Lijin Wang
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Roshni Singaraja
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore;
| | - Sujoy Ghosh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore;
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore;
- Laboratory of Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| |
Collapse
|
123
|
Al-Najjar MAA, Abdulrazzaq SB, Alzaghari LF, Mahmod AI, Omar A, Hasen E, Athamneh T, Talib WH, Chellappan DK, Barakat M. Evaluation of immunomodulatory potential of probiotic conditioned medium on murine macrophages. Sci Rep 2024; 14:7126. [PMID: 38531887 DOI: 10.1038/s41598-024-56622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Probiotics are a mixture of beneficial live bacteria and/or yeasts that naturally exist in our bodies. Recently, numerous studies have focused on the immunostimulatory effects of single-species or killed multi-species probiotic conditioned mediums on macrophages. This study investigates the immunostimulatory effect of commercially available active, multi-species probiotic conditioned medium (CM) on RAW264.7 murine macrophages. The probiotic CM was prepared by culturing the commercially available probiotic in a cell-culture medium overnight at 37 °C, followed by centrifugation and filter-sterilization to be tested on macrophages. The immunostimulatory effect of different dilution percentages (50%, 75%, 100%) of CM was examined using the MTT assay, proinflammatory cytokine (tumor necrosis factor TNF-alpha) production in macrophages, migration, and phagocytosis assays. For all the examined CM ratios, the percentages of cell viability were > 80%. Regarding the migration scratch, TNF-alpha and phagocytosis assays, CM demonstrated a concentration-dependent immunostimulatory effect. However, the undiluted CM (100%) showed a significant (p-value < 0.05) stimulatory effect compared to the positive and negative controls. The findings suggest that the secretions and products of probiotics, as measured in the CM, may be closely associated with their immune-boosting effects. Understanding this relationship between probiotic secretions and immune function is crucial for further exploring the potential benefits of probiotics in enhancing overall health and well-being.
Collapse
Affiliation(s)
| | | | | | | | - Amin Omar
- Faculty of Pharmacy, Applied Science Private University, 11937, Amman, Jordan
| | - Eliza Hasen
- MEA Research Center, Middle East University, Amman, Jordan
| | - Tamara Athamneh
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid, Jordan
| | - Wamidh H Talib
- Faculty of Allied Medical Sciences, Applied Science Private University, 11937, Amman, Jordan
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Muna Barakat
- Faculty of Pharmacy, Applied Science Private University, 11937, Amman, Jordan.
| |
Collapse
|
124
|
Li R, Galindo CC, Davidson D, Guo H, Zhong MC, Qian J, Li B, Ruzsics Z, Lau CM, O'Sullivan TE, Vidal SM, Sun JC, Veillette A. Suppression of adaptive NK cell expansion by macrophage-mediated phagocytosis inhibited by 2B4-CD48. Cell Rep 2024; 43:113800. [PMID: 38386559 DOI: 10.1016/j.celrep.2024.113800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Infection of mice by mouse cytomegalovirus (MCMV) triggers activation and expansion of Ly49H+ natural killer (NK) cells, which are virus specific and considered to be "adaptive" or "memory" NK cells. Here, we find that signaling lymphocytic activation molecule family receptors (SFRs), a group of hematopoietic cell-restricted receptors, are essential for the expansion of Ly49H+ NK cells after MCMV infection. This activity is largely mediated by CD48, an SFR broadly expressed on NK cells and displaying augmented expression after MCMV infection. It is also dependent on the CD48 counter-receptor, 2B4, expressed on host macrophages. The 2B4-CD48 axis promotes expansion of Ly49H+ NK cells by repressing their phagocytosis by virus-activated macrophages through inhibition of the pro-phagocytic integrin lymphocyte function-associated antigen-1 (LFA-1) on macrophages. These data identify key roles of macrophages and the 2B4-CD48 pathway in controlling the expansion of adaptive NK cells following MCMV infection. Stimulation of the 2B4-CD48 axis may be helpful in enhancing adaptive NK cell responses for therapeutic purposes.
Collapse
Affiliation(s)
- Rui Li
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada; Department of Medicine, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Cristian Camilo Galindo
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada; Department of Medicine, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Dominique Davidson
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Huaijian Guo
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada; Department of Medicine, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Ming-Chao Zhong
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Jin Qian
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Bin Li
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada; Molecular Biology Program, University of Montréal, Montréal, QC H3T 1J4, Canada
| | - Zsolt Ruzsics
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Colleen M Lau
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Silvia M Vidal
- Department of Human Genetics, McGill University, Montréal, QC H3A 0C7, Canada; Dahdaleh Institute of Genomic Medicine, McGill University, Montréal, QC H3A 0G1, Canada
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, USA
| | - André Veillette
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada; Department of Medicine, McGill University, Montréal, QC H3G 1Y6, Canada; Molecular Biology Program, University of Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
125
|
Chaurasia RK, Sapra BK, Aswal DK. Interplay of immune modulation, adaptive response and hormesis: Suggestive of threshold for clinical manifestation of effects of ionizing radiation at low doses? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170178. [PMID: 38280586 DOI: 10.1016/j.scitotenv.2024.170178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/26/2023] [Accepted: 01/13/2024] [Indexed: 01/29/2024]
Abstract
The health impacts of low-dose ionizing radiation exposures have been a subject of debate over the last three to four decades. While there has been enough evidence of "no adverse observable" health effects at low doses and low dose rates, the hypothesis of "Linear No Threshold" continues to rule and govern the principles of radiation protection and the formulation of regulations and public policies. In adopting this conservative approach, the role of the biological processes underway in the human body is kept at abeyance. This review consolidates the available studies that discuss all related biological pathways and repair mechanisms that inhibit the progression of deleterious effects at low doses and low dose rates of ionizing radiation. It is pertinent that, taking cognizance of these processes, there is a need to have a relook at policies of radiation protection, which as of now are too stringent, leading to undue economic losses and negative public perception about radiation.
Collapse
Affiliation(s)
- R K Chaurasia
- Radiological Physics and Advisory Division, India; Health, Safety and Environment Group,Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| | - B K Sapra
- Radiological Physics and Advisory Division, India; Health, Safety and Environment Group,Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| | - D K Aswal
- Health, Safety and Environment Group,Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| |
Collapse
|
126
|
de Sales-Neto JM, Rodrigues-Mascarenhas S. Immunosuppressive effects of the mycotoxin patulin in macrophages. Arch Microbiol 2024; 206:166. [PMID: 38485821 DOI: 10.1007/s00203-024-03928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Patulin (PAT) is a fungi-derived secondary metabolite produced by numerous fungal species, especially within Aspergillus, Byssochlamys, and Penicillium genera, amongst which P. expansum is the foremost producer. Similar to other fungi-derived metabolites, PAT has been shown to have diverse biological features. Initially, PAT was used as an effective antimicrobial agent against Gram-negative and Gram-positive bacteria. Then, PAT has been shown to possess immunosuppressive properties encompassing humoral and cellular immune response, immune cell function and activation, phagocytosis, nitric oxide and reactive oxygen species production, cytokine release, and nuclear factor-κB and mitogen-activated protein kinases activation. Macrophages are a heterogeneous population of immune cells widely distributed throughout organs and connective tissue. The chief function of macrophages is to engulf and destroy foreign bodies through phagocytosis; this ability was fundamental to his discovery. However, macrophages play other well-established roles in immunity. Thus, considering the central role of macrophages in the immune response, we review the immunosuppressive effects of PAT in macrophages and provide the possible mechanisms of action.
Collapse
Affiliation(s)
- José Marreiro de Sales-Neto
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, CEP: 58051-900, PB, BR, Brazil
| | - Sandra Rodrigues-Mascarenhas
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, CEP: 58051-900, PB, BR, Brazil.
| |
Collapse
|
127
|
Chen Z, Zhang J, Pan Y, Hao Z, Li S. Extracellular vesicles as carriers for noncoding RNA-based regulation of macrophage/microglia polarization: an emerging candidate regulator for lung and traumatic brain injuries. Front Immunol 2024; 15:1343364. [PMID: 38558799 PMCID: PMC10978530 DOI: 10.3389/fimmu.2024.1343364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Macrophage/microglia function as immune defense and homeostatic cells that originate from bone marrow progenitor cells. Macrophage/microglia activation is historically divided into proinflammatory M1 or anti-inflammatory M2 states based on intracellular dynamics and protein production. The polarization of macrophages/microglia involves a pivotal impact in modulating the development of inflammatory disorders, namely lung and traumatic brain injuries. Recent evidence indicates shared signaling pathways in lung and traumatic brain injuries, regulated through non-coding RNAs (ncRNAs) loaded into extracellular vesicles (EVs). This packaging protects ncRNAs from degradation. These vesicles are subcellular components released through a paracellular mechanism, constituting a group of nanoparticles that involve exosomes, microvesicles, and apoptotic bodies. EVs are characterized by a double-layered membrane and are abound with proteins, nucleic acids, and other bioactive compounds. ncRNAs are RNA molecules with functional roles, despite their absence of coding capacity. They actively participate in the regulation of mRNA expression and function through various mechanisms. Recent studies pointed out that selective packaging of ncRNAs into EVs plays a role in modulating distinct facets of macrophage/microglia polarization, under conditions of lung and traumatic brain injuries. This study will explore the latest findings regarding the role of EVs in the progression of lung and traumatic brain injuries, with a specific focus on the involvement of ncRNAs within these vesicles. The conclusion of this review will emphasize the clinical opportunities presented by EV-ncRNAs, underscoring their potential functions as both biomarkers and targets for therapeutic interventions.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Respiratory Medicine, The Third People’s Hospital of Longgang District, Shenzhen, China
| | - Jingang Zhang
- Department of Orthopedic, The Third People’s Hospital of Longgang District, Shenzhen, China
| | - Yongli Pan
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Zhongnan Hao
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, Göttingen, Lower Saxony, Germany
| | - Shuang Li
- Department of Respiratory Medicine, The Third People’s Hospital of Longgang District, Shenzhen, China
| |
Collapse
|
128
|
Vatandoust D, Ahmadi H, Amini A, Mostafavinia A, Fathabady FF, Moradi A, Fridoni M, Hamblin MR, Ebrahimpour-Malekshah R, Chien S, Bayat M. Photobiomodulation preconditioned diabetic adipose derived stem cells with additional photobiomodulation: an additive approach for enhanced wound healing in diabetic rats with a delayed healing wound. Lasers Med Sci 2024; 39:86. [PMID: 38438583 DOI: 10.1007/s10103-024-04034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
In this preclinical investigation, we examined the effects of combining preconditioned diabetic adipose-derived mesenchymal stem cells (AD-MSCs) and photobiomodulation (PBM) on a model of infected ischemic delayed healing wound (injury), (IIDHWM) in rats with type I diabetes (TIDM). During the stages of wound healing, we examined multiple elements such as stereology, macrophage polarization, and the mRNA expression levels of stromal cell-derived factor (SDF)-1α, vascular endothelial growth factor (VEGF), hypoxia-induced factor 1α (HIF-1α), and basic fibroblast growth factor (bFGF) to evaluate proliferation and inflammation. The rats were grouped into: (1) control group; (2) diabetic-stem cells were transversed into the injury site; (3) diabetic-stem cells were transversed into the injury site then the injury site exposed to PBM; (4) diabetic stem cells were preconditioned with PBM and implanted into the wound; (5) diabetic stem cells were preconditioned with PBM and transferred into the injury site, then the injury site exposed additional PBM. While on both days 4, and 8, there were advanced histological consequences in groups 2-5 than in group 1, we found better results in groups 3-5 than in group 2 (p < 0.05). M1 macrophages in groups 2-5 were lower than in group 1, while groups 3-5 were reduced than in group 2 (p < 0.01). M2 macrophages in groups 2-5 were greater than in group 1, and groups 3-5 were greater than in group 2. (p ≤ 0.001). Groups 2-5 revealed greater expression levels of bFGF, VEGF, SDF- 1α, and HIF- 1α genes than in group 1 (p < 0.001). Overall group 5 had the best results for histology (p < 0.05), and macrophage polarization (p < 0.001). AD-MSC, PBM, and AD-MSC + PBM treatments all enhanced the proliferative stage of injury repairing in the IIDHWM in TIDM rats. While AD-MSC + PBM was well than the single use of AD-MSC or PBM, the best results were achieved with PBM preconditioned AD-MSC, plus additional PBM of the injury.
Collapse
Affiliation(s)
- Dorsa Vatandoust
- Student Research Committee at Shahid Beheshti University of Medical Sciences (SBMU) in, Tehran, Iran
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences, Arabi Ave, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences, Arabi Ave, Iran.
| | - Atarodalsadat Mostafavinia
- Department of Anatomical Sciences and Cognitive Neuroscience at the Faculty of Medicine, Tehran Medical Sciences, Islamic Aza University in Tehran, Tehran, Iran
| | - Fatemeh Fadaei Fathabady
- Student Research Committee at Shahid Beheshti University of Medical Sciences (SBMU) in, Tehran, Iran
| | - Ali Moradi
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences, Arabi Ave, Iran
| | - Mohammadjavad Fridoni
- Department of Biology and Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Michael R Hamblin
- Laser Research Centre at the Faculty of Health Science, University of Johannesburg in Doornfontein 2028, Johannesburg, South Africa
| | | | - Sufan Chien
- Price Institute of Surgical Research at the University of Louisville and Noveratech LLC of Louisville in Louisville, KY, USA.
| | - Mohammad Bayat
- Price Institute of Surgical Research at the University of Louisville and Noveratech LLC of Louisville in Louisville, KY, USA.
| |
Collapse
|
129
|
Karabay AZ, Ozkan T, Koc A, Hekmatshoar Y, Gurkan-Alp AS, Sunguroglu A. Nilotinib exhibits less toxicity than imatinib and influences the immune state by modulating iNOS, p-p38 and p-JNK in LPS/IFN gamma-activated macrophages. Toxicol In Vitro 2024; 95:105754. [PMID: 38061604 DOI: 10.1016/j.tiv.2023.105754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/03/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024]
Abstract
In this study, we aimed to analyze the effects of first and second-generation Bcr-Abl tyrosine kinase inhibitors, imatinib and nilotinib on LPS/IFN gamma activated RAW 264.7 macrophages. Our data revealed that imatinib was less effective on nitrite levels and more toxic on macrophages compared to nilotinib. Therefore, we further analysed the effect of nilotinib on various inflammatory markers including iNOS, COX-2, NFkB, IL-6, p-ERK, p-p38 and p-JNK in LPS/IFN gamma activated RAW264.7 macrophages. Spectrophotometric viability test and Griess assay,western blot, RT-PCR and luciferase reporter assays were used to analyze the biological activity of nilotinib. Our findings revealed that nilotinib decreases nitrite levels, iNOS mRNA, iNOS and p-p38 protein expressions significantly whereas induces IL-6 mRNA and p-JNK protein expressions at particular doses. We did not find significant effect of nilotinib on COX-2, p-ERK and nuclear p65 proteins and NFkB transcriptional activity. In addition, the binding mode of nilotinib to iNOS protein was predicted by molecular docking. According to the docking analyses, nilotinib exhibited hydrophobic interactions between MET349, ALA191, VAL346, PHE363, TYR367, MET368, CYS194, TRP366 residues at the binding pocket and the molecule as well as van der Waals interactions at specific residues. In conclusion, our results reveal that, in addition to its anticancer activity, nilotinib can exhibit immune modulatory effects on macrophages through its effects on iNOS, IL-6, p-p38 and p-JNK.
Collapse
Affiliation(s)
- Arzu Zeynep Karabay
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
| | - Tulin Ozkan
- Department of Medical Biology, School of Medicine, Ankara University, Ankara, Turkey.
| | - Asli Koc
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
| | - Yalda Hekmatshoar
- Department of Medical Biology, School of Medicine, Altinbas University, Istanbul, Turkey.
| | - A Selen Gurkan-Alp
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
| | - Asuman Sunguroglu
- Department of Medical Biology, School of Medicine, Ankara University, Ankara, Turkey.
| |
Collapse
|
130
|
Cooley MB, Wegierak D, Exner AA. Using imaging modalities to predict nanoparticle distribution and treatment efficacy in solid tumors: The growing role of ultrasound. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1957. [PMID: 38558290 PMCID: PMC11006412 DOI: 10.1002/wnan.1957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Nanomedicine in oncology has not had the success in clinical impact that was anticipated in the early stages of the field's development. Ideally, nanomedicines selectively accumulate in tumor tissue and reduce systemic side effects compared to traditional chemotherapeutics. However, this has been more successful in preclinical animal models than in humans. The causes of this failure to translate may be related to the intra- and inter-patient heterogeneity of the tumor microenvironment. Predicting whether a patient will respond positively to treatment prior to its initiation, through evaluation of characteristics like nanoparticle extravasation and retention potential in the tumor, may be a way to improve nanomedicine success rate. While there are many potential strategies to accomplish this, prediction and patient stratification via noninvasive medical imaging may be the most efficient and specific strategy. There have been some preclinical and clinical advances in this area using MRI, CT, PET, and other modalities. An alternative approach that has not been studied as extensively is biomedical ultrasound, including techniques such as multiparametric contrast-enhanced ultrasound (mpCEUS), doppler, elastography, and super-resolution processing. Ultrasound is safe, inexpensive, noninvasive, and capable of imaging the entire tumor with high temporal and spatial resolution. In this work, we summarize the in vivo imaging tools that have been used to predict nanoparticle distribution and treatment efficacy in oncology. We emphasize ultrasound imaging and the recent developments in the field concerning CEUS. The successful implementation of an imaging strategy for prediction of nanoparticle accumulation in tumors could lead to increased clinical translation of nanomedicines, and subsequently, improved patient outcomes. This article is categorized under: Diagnostic Tools In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery Emerging Technologies.
Collapse
Affiliation(s)
- Michaela B Cooley
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dana Wegierak
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Agata A Exner
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio, USA
| |
Collapse
|
131
|
Chakraborty C, Bhattacharya M, Lee SS. Regulatory role of miRNAs in the human immune and inflammatory response during the infection of SARS-CoV-2 and other respiratory viruses: A comprehensive review. Rev Med Virol 2024; 34:e2526. [PMID: 38446531 DOI: 10.1002/rmv.2526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/11/2024] [Accepted: 02/22/2024] [Indexed: 03/07/2024]
Abstract
miRNAs are single-stranded ncRNAs that act as regulators of different human body processes. Several miRNAs have been noted to control the human immune and inflammatory response during severe acute respiratory infection syndrome (SARS-CoV-2) infection. Similarly, many miRNAs were upregulated and downregulated during different respiratory virus infections. Here, an attempt has been made to capture the regulatory role of miRNAs in the human immune and inflammatory response during the infection of SARS-CoV-2 and other respiratory viruses. Firstly, the role of miRNAs has been depicted in the human immune and inflammatory response during the infection of SARS-CoV-2. In this direction, several significant points have been discussed about SARS-CoV-2 infection, such as the role of miRNAs in human innate immune response; miRNAs and its regulation of granulocytes; the role of miRNAs in macrophage activation and polarisation; miRNAs and neutrophil extracellular trap formation; miRNA-related inflammatory response; and miRNAs association in adaptive immunity. Secondly, the miRNAs landscape has been depicted during human respiratory virus infections such as human coronavirus, respiratory syncytial virus, influenza virus, rhinovirus, and human metapneumovirus. The article will provide more understanding of the miRNA-controlled mechanism of the immune and inflammatory response during COVID-19, which will help more therapeutics discoveries to fight against the future pandemic.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| | | | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Gangwon-do, Republic of Korea
| |
Collapse
|
132
|
Jeong B, Pahan K. IL-12p40 Monomer: A Potential Player in Macrophage Regulation. IMMUNO 2024; 4:77-90. [PMID: 38435456 PMCID: PMC10907066 DOI: 10.3390/immuno4010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Macrophages are myeloid phagocytic leukocytes whose functions are to protect against infections, mediate T-cell responses, and maintain tissue homeostasis. IL-12p40 monomer is a cytokine that is largely produced by macrophages, and it has, for the longest time, been considered a largely non-functional cytokine of the IL-12 family. However, new research has emerged that demonstrates that this p40 monomer may play a bigger role in shaping immune environments. To shed light on the specific effects of p40 monomer on macrophages and their surrounding environment, we showed, through cell culture studies, qPCR, ELISA, and immunofluorescence analyses, that the direct administration of recombinant p40 monomer to RAW 264.7 cells and primary lung macrophages stimulated the production of both pro-inflammatory (TNFα) and anti-inflammatory (IL-10) signals. Accordingly, p40 monomer prevented the full pro-inflammatory effects of LPS, and the neutralization of p40 monomer by mAb a3-3a stimulated the pro-inflammatory effects of LPS. Furthermore, we demonstrated that the intranasal administration of p40 monomer upregulated TNFα+IL-10+ macrophages in vivo in the lungs of mice. Collectively, these results indicate an important immunoregulatory function of p40 monomer in the upregulation of both pro- and anti-inflammatory molecules in macrophages.
Collapse
Affiliation(s)
- Brian Jeong
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
133
|
Dinwoodie OM, Tucker AS, Fons JM. Tracking cell layer contribution during repair of the tympanic membrane. Dis Model Mech 2024; 17:dmm050466. [PMID: 38390727 PMCID: PMC10985735 DOI: 10.1242/dmm.050466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
The tympanic membrane (i.e. eardrum) sits at the interface between the middle and external ear. The tympanic membrane is composed of three layers: an outer ectoderm-derived layer, a middle neural crest-derived fibroblast layer with contribution from the mesoderm-derived vasculature, and an inner endoderm-derived mucosal layer. These layers form a thin sandwich that is often perforated following trauma, pressure changes or middle ear inflammation. During healing, cells need to bridge the perforation in the absence of an initial scaffold. Here, we assessed the contribution, timing and interaction of the different layers during membrane repair by using markers and reporter mice. We showed that the ectodermal layer is retracted after perforation, before proliferating away from the wound edge, with keratin 5 basal cells migrating over the hole to bridge the gap. The mesenchymal and mucosal layers then used this scaffold to complete the repair, followed by advancement of the vasculature. Finally, differentiation of the epithelium led to formation of a scab. Our results reveal the dynamics and interconnections between the embryonic germ layers during repair and highlight how defects might occur.
Collapse
Affiliation(s)
- Olivia M. Dinwoodie
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Abigail S. Tucker
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Juan M. Fons
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| |
Collapse
|
134
|
Chung YC, Song SJ, Lee A, Jang CH, Kim CS, Hwang YH. Isobavachin, a main bioavailable compound in Psoralea corylifolia, alleviates lipopolysaccharide-induced inflammatory responses in macrophages and zebrafish by suppressing the MAPK and NF-κB signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117501. [PMID: 38012970 DOI: 10.1016/j.jep.2023.117501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoralea corylifolia L. (PC) is widely used in traditional medicines to treat inflammatory and infectious diseases. Isobavachin (IBC) is a bioavailable prenylated flavonoid derived from PC that has various biological properties. However, little information is available on its anti-inflammatory effects and mechanisms of action. AIM OF THE STUDY In this study, we aimed to determine the anti-inflammatory effects of IBC in vitro and in vivo by conducting a mechanistic study using murine macrophages. MATERIALS AND METHODS We evaluated the modulatory effects of IBC on the production of pro-inflammatory cytokines and mediators in murine macrophages. In addition, we examined whether IBC inhibits lipopolysaccharide (LPS)-induced inflammatory responses in a zebrafish model. Alterations in inflammatory response-associated genes and proteins were determined using quantitative reverse transcriptional polymerase chain reaction (RT-qPCR) and Western blotting analysis. RESULTS IBC markedly reduced the overproduction of inflammatory mediators, pro-inflammatory cytokines, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear translocation of nuclear factor-kappa B (NF-κB) in macrophages induced by lipopolysaccharides (LPS). In addition, excessive NO, ROS, and neutrophil level induced by LPS, were suppressed by IBC treatment in a zebrafish inflammation model. CONCLUSIONS Collectively, bioavailable IBC inhibited on the inflammatory responses by LPS via MAPK and NF-κB signaling pathways in vitro and in vivo, suggesting that it may be a potential modulatory agent against inflammatory disorders.
Collapse
Affiliation(s)
- You Chul Chung
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea
| | - Su Jeong Song
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea; Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
| | - Ami Lee
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea; Korean Convergence Medical Science Major, KIOM Campus, University of Science & Technology (UST), Deajeon, 34054, Republic of Korea
| | - Chan Ho Jang
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea
| | - Chan-Sik Kim
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea; Korean Convergence Medical Science Major, KIOM Campus, University of Science & Technology (UST), Deajeon, 34054, Republic of Korea
| | - Youn-Hwan Hwang
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea; Korean Convergence Medical Science Major, KIOM Campus, University of Science & Technology (UST), Deajeon, 34054, Republic of Korea.
| |
Collapse
|
135
|
Premarathna AD, Ahmed TAE, Rjabovs V, Hammami R, Critchley AT, Tuvikene R, Hincke MT. Immunomodulation by xylan and carrageenan-type polysaccharides from red seaweeds: Anti-inflammatory, wound healing, cytoprotective, and anticoagulant activities. Int J Biol Macromol 2024; 260:129433. [PMID: 38232891 DOI: 10.1016/j.ijbiomac.2024.129433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
The immunomodulatory properties of the polysaccharides (carrageenan, xylan) from Chondrus crispus (CC), Ahnfeltiopsis devoniensis (AD), Sarcodiotheca gaudichaudii (SG) and Palmaria palmata (PP) algal species were studied. Using RAW264.7 macrophages, we investigated the proliferation and migration capacity of different extracts along with their immunomodulatory activities, including nitric oxide (NO) production, phagocytosis, and secretion of pro-inflammatory cytokines. Polysaccharides from C. crispus and S. gaudichaudii effectively mitigated inflammation and improved scratch-wound healing. Polysaccharide fractions extracted under cold conditions (25 °C), including CC-1A, SG-1A and SG-1B stimulated cell proliferation, while fractions extracted under hot conditions (95 °C), including CC-3A, CC-2B and A. devoniensis (AD-3A), inhibited cell proliferation after 48 h. Furthermore, RAW264.7 cells treated with the fractions CC-3A, AD-1A, and SG-2A significantly reduced LPS-stimulated NO secretion over 24 h. Phagocytosis was significantly improved by treatment with C. crispus (CC-2B, CC-3B) and A. devoniensis (AD-3A) fractions. RAW264.7 cells treated with the CC-2A and SG-1A fractions showed elevated TGF-β1 expression without affecting TNF-α expression at 24 h. Polysaccharide fractions of A. devoniensis (ι/κ hybrid carrageenan; AD-2A, AD-3A) showed the highest anti-coagulation activity. CC-2A and SG-1A fractions enhanced various bioactivities, suggesting they are candidates for skin-health applications. The carrageenan fractions (CC-3A: λ-, μ-carrageenan, SG-2A: ν-, ι-carrageenan) tested herein showed great potential for developing anti-inflammatory and upscaled skin-health applications.
Collapse
Affiliation(s)
- Amal D Premarathna
- School of Natural Sciences and Health, Tallinn University, Narva mnt 29, 10120 Tallinn, Estonia.
| | - Tamer A E Ahmed
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario K1H 8M5, Canada; School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ontario K1H 8M5, Canada
| | - Vitalijs Rjabovs
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; Institute of Technology of Organic Chemistry, Riga Technical University, Paula Valdena iela 3/7, LV-1048 Riga, Latvia
| | - Riadh Hammami
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ontario K1H 8M5, Canada
| | - Alan T Critchley
- Verschuren Centre for Sustainability in Energy and Environment, Sydney, NS B1M 1A2, Canada
| | - Rando Tuvikene
- School of Natural Sciences and Health, Tallinn University, Narva mnt 29, 10120 Tallinn, Estonia.
| | - Maxwell T Hincke
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario K1H 8M5, Canada; Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
136
|
Baig MS, Barmpoutsi S, Bharti S, Weigert A, Hirani N, Atre R, Khabiya R, Sharma R, Sarup S, Savai R. Adaptor molecules mediate negative regulation of macrophage inflammatory pathways: a closer look. Front Immunol 2024; 15:1355012. [PMID: 38482001 PMCID: PMC10933033 DOI: 10.3389/fimmu.2024.1355012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/22/2024] [Indexed: 04/13/2024] Open
Abstract
Macrophages play a central role in initiating, maintaining, and terminating inflammation. For that, macrophages respond to various external stimuli in changing environments through signaling pathways that are tightly regulated and interconnected. This process involves, among others, autoregulatory loops that activate and deactivate macrophages through various cytokines, stimulants, and other chemical mediators. Adaptor proteins play an indispensable role in facilitating various inflammatory signals. These proteins are dynamic and flexible modulators of immune cell signaling and act as molecular bridges between cell surface receptors and intracellular effector molecules. They are involved in regulating physiological inflammation and also contribute significantly to the development of chronic inflammatory processes. This is at least partly due to their involvement in the activation and deactivation of macrophages, leading to changes in the macrophages' activation/phenotype. This review provides a comprehensive overview of the 20 adaptor molecules and proteins that act as negative regulators of inflammation in macrophages and effectively suppress inflammatory signaling pathways. We emphasize the functional role of adaptors in signal transduction in macrophages and their influence on the phenotypic transition of macrophages from pro-inflammatory M1-like states to anti-inflammatory M2-like phenotypes. This endeavor mainly aims at highlighting and orchestrating the intricate dynamics of adaptor molecules by elucidating the associated key roles along with respective domains and opening avenues for therapeutic and investigative purposes in clinical practice.
Collapse
Affiliation(s)
- Mirza S. Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Spyridoula Barmpoutsi
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Shreya Bharti
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
| | - Nik Hirani
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rajat Atre
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rakhi Khabiya
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rahul Sharma
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Shivmuni Sarup
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rajkumar Savai
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
137
|
He F, Wang L, Umrath F, Naros A, Reinert S, Alexander D. Three-Dimensionally Cultured Jaw Periosteal Cells Attenuate Macrophage Activation of CD4 + T Cells and Inhibit Osteoclastogenesis. Int J Mol Sci 2024; 25:2355. [PMID: 38397031 PMCID: PMC10889513 DOI: 10.3390/ijms25042355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
The implementation of a successful therapeutic approach that includes tissue-engineered grafts requires detailed analyses of graft-immune cell interactions in order to predict possible immune reactions after implantation. The phenotypic plasticity of macrophages plays a central role in immune cell chemotaxis, inflammatory regulation and bone regeneration. The present study addresses effects emanating from JPC-seeded β-TCP constructs (3DJPCs) co-cultivated with THP-1 derived M1/M2 macrophages within a horizontal co-culture system. After five days of co-culture, macrophage phenotype and chemokine secretion were analyzed by flow cytometry, quantitative PCR and proteome arrays. The results showed that pro-inflammatory factors in M1 macrophages were inhibited by 3DJPCs, while anti-inflammatory factors were activated, possibly affected by the multiple chemokines secreted by 3D-cultured JPCs. In addition, osteoclast markers of polarized macrophages were inhibited by osteogenically induced 3DJPCs. Functional assays revealed a significantly lower percentage of proliferating CD4+ T cells in the groups treated with secretomes from M1/M2 macrophages previously co-cultured with 3DJPCs compared to controls without secretomes. Quantifications of pit area resorption assays showed evidence that supernatants from 3DJPCs co-cultured with M1/M2 macrophages were able to completely suppress osteoclast maturation, compared to the control group without secretomes. These findings demonstrate the ability of 3D cultured JPCs to modulate macrophage plasticity.
Collapse
Affiliation(s)
- Fang He
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.H.); (L.W.); (F.U.); (A.N.); (S.R.)
| | - Liuran Wang
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.H.); (L.W.); (F.U.); (A.N.); (S.R.)
| | - Felix Umrath
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.H.); (L.W.); (F.U.); (A.N.); (S.R.)
- Clinic for Orthopaedic Surgery, University Hospital Tübingen, 72072 Tübingen, Germany
| | - Andreas Naros
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.H.); (L.W.); (F.U.); (A.N.); (S.R.)
| | - Siegmar Reinert
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.H.); (L.W.); (F.U.); (A.N.); (S.R.)
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.H.); (L.W.); (F.U.); (A.N.); (S.R.)
| |
Collapse
|
138
|
Woottum M, Yan S, Sayettat S, Grinberg S, Cathelin D, Bekaddour N, Herbeuval JP, Benichou S. Macrophages: Key Cellular Players in HIV Infection and Pathogenesis. Viruses 2024; 16:288. [PMID: 38400063 PMCID: PMC10893316 DOI: 10.3390/v16020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Although cells of the myeloid lineages, including tissue macrophages and conventional dendritic cells, were rapidly recognized, in addition to CD4+ T lymphocytes, as target cells of HIV-1, their specific roles in the pathophysiology of infection were initially largely neglected. However, numerous studies performed over the past decade, both in vitro in cell culture systems and in vivo in monkey and humanized mouse animal models, led to growing evidence that macrophages play important direct and indirect roles as HIV-1 target cells and in pathogenesis. It has been recently proposed that macrophages are likely involved in all stages of HIV-1 pathogenesis, including virus transmission and dissemination, but above all, in viral persistence through the establishment, together with latently infected CD4+ T cells, of virus reservoirs in many host tissues, the major obstacle to virus eradication in people living with HIV. Infected macrophages are indeed found, very often as multinucleated giant cells expressing viral antigens, in almost all lymphoid and non-lymphoid tissues of HIV-1-infected patients, where they can probably persist for long period of time. In addition, macrophages also likely participate, directly as HIV-1 targets or indirectly as key regulators of innate immunity and inflammation, in the chronic inflammation and associated clinical disorders observed in people living with HIV, even in patients receiving effective antiretroviral therapy. The main objective of this review is therefore to summarize the recent findings, and also to revisit older data, regarding the critical functions of tissue macrophages in the pathophysiology of HIV-1 infection, both as major HIV-1-infected target cells likely found in almost all tissues, as well as regulators of innate immunity and inflammation during the different stages of HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Marie Woottum
- Institut Cochin, Inserm U1016, CNRS UMR-8104, Université Paris Cité, 75014 Paris, France; (M.W.); (S.Y.); (S.S.)
| | - Sen Yan
- Institut Cochin, Inserm U1016, CNRS UMR-8104, Université Paris Cité, 75014 Paris, France; (M.W.); (S.Y.); (S.S.)
| | - Sophie Sayettat
- Institut Cochin, Inserm U1016, CNRS UMR-8104, Université Paris Cité, 75014 Paris, France; (M.W.); (S.Y.); (S.S.)
| | - Séverine Grinberg
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France; (S.G.); (D.C.); (N.B.); (J.-P.H.)
| | - Dominique Cathelin
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France; (S.G.); (D.C.); (N.B.); (J.-P.H.)
| | - Nassima Bekaddour
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France; (S.G.); (D.C.); (N.B.); (J.-P.H.)
| | - Jean-Philippe Herbeuval
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France; (S.G.); (D.C.); (N.B.); (J.-P.H.)
| | - Serge Benichou
- Institut Cochin, Inserm U1016, CNRS UMR-8104, Université Paris Cité, 75014 Paris, France; (M.W.); (S.Y.); (S.S.)
| |
Collapse
|
139
|
Kraiem M, Ben Hamouda S, Eleroui M, Ajala M, Feki A, Dghim A, Boujhoud Z, Bouhamed M, Badraoui R, Pujo JM, Essafi-Benkhadir K, Kallel H, Ben Amara I. Anti-Inflammatory and Immunomodulatory Properties of a Crude Polysaccharide Derived from Green Seaweed Halimeda tuna: Computational and Experimental Evidences. Mar Drugs 2024; 22:85. [PMID: 38393056 PMCID: PMC10890560 DOI: 10.3390/md22020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, we investigated for the first time the anti-inflammatory and immunomodulatory properties of crude polysaccharide (PSHT) extracted from green marine algae Halimeda tuna. PSHT exhibited anti-oxidant activity in vitro through scavenging 1, 1-diphenyl-2-picryl hydroxyl free radical, reducing Fe3+/ferricyanide complex, and inhibiting nitric oxide. PSHT maintained the erythrocyte membrane integrity and prevented hemolysis. Our results also showed that PSHT exerted a significant anti-edematic effect in vivo by decreasing advanced oxidation protein products and malondialdehyde levels and increasing the superoxide dismutase and glutathione peroxidase activities in rat's paw model and erythrocytes. Interestingly, PSHT increased the viability of murine RAW264.7 macrophages and exerted an anti-inflammatory effect on lipopolysaccharide-stimulated cells by decreasing pro-inflammatory molecule levels, including nitric oxide, granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor-alpha (TNF-α). Our findings indicate that PSHT could be used as a potential immunomodulatory, anti-inflammatory, anti-hemolytic, and anti-oxidant agent. These results could be explained by the computational findings showing that polysaccharide building blocks bound both cyclooxygenase-2 (COX-2) and TNF-α with acceptable affinities.
Collapse
Affiliation(s)
- Marwa Kraiem
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 3000, Tunisia; (M.K.); (M.E.); (M.A.); (A.F.); (A.D.)
| | - Sonia Ben Hamouda
- Laboratory of Molecular Epidemiology and Experimental Pathology–LR16IPT04, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia; (S.B.H.); (K.E.-B.)
| | - Malek Eleroui
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 3000, Tunisia; (M.K.); (M.E.); (M.A.); (A.F.); (A.D.)
| | - Marwa Ajala
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 3000, Tunisia; (M.K.); (M.E.); (M.A.); (A.F.); (A.D.)
| | - Amal Feki
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 3000, Tunisia; (M.K.); (M.E.); (M.A.); (A.F.); (A.D.)
| | - Amel Dghim
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 3000, Tunisia; (M.K.); (M.E.); (M.A.); (A.F.); (A.D.)
| | - Zakaria Boujhoud
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences of Settat, Hassan First University of Settat, Settat 26000, Morocco;
| | - Marwa Bouhamed
- Laboratory of Anatomopathology, CHU Habib Bourguiba, University of Sfax, Sfax 3029, Tunisia;
| | - Riadh Badraoui
- Department of General Biology, University of Ha’il, Ha’il 81451, Saudi Arabia;
- Section of Histology–Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta 1007, Tunisia
| | - Jean Marc Pujo
- Emergency Department, Cayenne General Hospital, Cayenne 97300, French Guiana;
| | - Khadija Essafi-Benkhadir
- Laboratory of Molecular Epidemiology and Experimental Pathology–LR16IPT04, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia; (S.B.H.); (K.E.-B.)
| | - Hatem Kallel
- Intensive Care Unit, Cayenne General Hospital, Cayenne 97300, French Guiana;
- Tropical Biome and Immunopathology CNRS UMR-9017, Inserm U 1019, University of Guiana, Cayenne 97300, French Guiana
| | - Ibtissem Ben Amara
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 3000, Tunisia; (M.K.); (M.E.); (M.A.); (A.F.); (A.D.)
| |
Collapse
|
140
|
Zhao M, Qiao C, Cui Z, Zhang W, Yang S, Zhu C, Du F, Ning T, Xie S, Liu S, Li P, Xu J, Zhu S. Moluodan promotes DSS-induced intestinal inflammation involving the reprogram of macrophage function and polarization. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117393. [PMID: 37952735 DOI: 10.1016/j.jep.2023.117393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moluodan (MLD) is a traditional Chinese medicine that is composed of 18 herbal medicines based on traditional Chinese medicine theory and practice. It has long been used in treating chronic gastritis and its components were traditionally used in dealing with intestinal inflammation. However, its specific pharmacological mechanism is still unclear. AIM OF THE STUDY The upper and lower digestive tract diseases are correlated. In clinical practice, some chronic gastritis patients are also accompanied by intestinal inflammation. Due to the unclear pharmacological mechanism of MLD and its effect on intestinal inflammation, there is doubt whether MLD is still suitable for this type of patient. Therefore, this study aims to elucidate the pharmacological mechanism of MLD and identify its effect in the mouse model of intestinal inflammation. MATERIALS AND METHODS Mice intestinal inflammation model was induced by 2.5% dextran sulfate sodium (DSS). The mice were given different concentrations of MLD via oral gavage (0.25, 0.5 g/kg b.w.). Pharmacodynamic indicators were assessed including body weight, colon length, disease activity index (DAI), bloody stool score, inflammatory factors, histological change, etc. RAW264.7 macrophage cells were used for in vitro experiments that illuminated the role of MLD in reprogramming macrophage function and polarization. RT-qPCR and western blots were performed to measure the mRNA and protein levels of macrophage polarization marker and effector molecules. The functions of polarized macrophages were tested using ROS detection probes, Edu assay and wound healing assay. RESULTS The administration of MLD exhibited obvious hemostatic effects, while unexpectedly accentuating various aspects of the DSS-induced intestinal inflammation in mice, including increased body weight loss and colon shortening, elevated disease activity index, and intensified colonic tissue damage. Additionally, MLD treatment induced more severe inflammatory cell infiltration and higher proinflammatory cytokines expression in colon tissue. Further results showed that MLD promoted M1 macrophage polarization and stimulated its proinflammatory cytokines expression, while only slightly affecting the function of M2 macrophage. Western blot analysis revealed that MLD induced the phosphorylation of AKT and NF-κB. The polarization of M1 macrophages induced by MLD was inhibited by either an Akt inhibitor or a NF-κB inhibitor. CONCLUSIONS Although MLD has an obvious hemostatic effect, it generally promoted the severity of DSS-induced colitis in mice by facilitating macrophage polarization toward the M1 phenotype through the AKT/NF-κB pathway. Our study suggested that MLD may not be suitable for colitis, especially during the acute inflammation stage.
Collapse
Affiliation(s)
- Mengran Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, 100050, China
| | - Chen Qiao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, 100050, China
| | - Zilu Cui
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, 100050, China
| | - Wen Zhang
- Department of Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Shuyue Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, 100050, China
| | - Congmin Zhu
- School of Biomedical Engineering, Capital Medical University, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Beijing, China
| | - Feng Du
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, 100050, China
| | - Tingting Ning
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, 100050, China
| | - Sian Xie
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, 100050, China
| | - Si Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, 100050, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, 100050, China
| | - Junxuan Xu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, 100050, China.
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, 100050, China.
| |
Collapse
|
141
|
Chen Y, Markov N, Gigon L, Hosseini A, Yousefi S, Stojkov D, Simon HU. The BK Channel Limits the Pro-Inflammatory Activity of Macrophages. Cells 2024; 13:322. [PMID: 38391935 PMCID: PMC10886595 DOI: 10.3390/cells13040322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Macrophages play a crucial role in the innate immune response, serving as key effector cells in the defense against pathogens. Although the role of the large-conductance voltage and calcium-activated potassium channel, also known as the KCa1.1 or BK channel, in regulating neurotransmitter release and smooth muscle contraction is well known, its potential involvement in immune regulation remains unclear. We employed BK-knockout macrophages and noted that the absence of a BK channel promotes the polarization of macrophages towards a pro-inflammatory phenotype known as M1 macrophages. Specifically, the absence of the BK channel resulted in a significant increase in the secretion of the pro-inflammatory cytokine IL-6 and enhanced the activity of extracellular signal-regulated kinases 1 and 2 (Erk1/2 kinases), Ca2+/calmodulin-dependent protein kinase II (CaMKII), and the transcription factor ATF-1 within M1 macrophages. Additionally, the lack of the BK channel promoted the activation of the AIM2 inflammasome without affecting the activation of the NLRC4 and NLRP3 inflammasomes. To further investigate the role of the BK channel in regulating AIM2 inflammasome activation, we utilized BK channel inhibitors, such as paxilline and iberiotoxin, along with the BK channel activator NS-11021. Pharmacological inactivation of the BK channel increased, and its stimulation inhibited IL-1β production following AIM2 inflammasome activation in wild-type macrophages. Moreover, wild-type macrophages displayed increased calcium influx when activated with the AIM2 inflammasome, whereas BK-knockout macrophages did not due to the impaired extracellular calcium influx upon activation. Furthermore, under conditions of a calcium-free medium, IL-1β production following AIM2 inflammasome activation was increased in both wild-type and BK-knockout macrophages. This suggests that the BK channel is required for the influx of extracellular calcium in macrophages, thus limiting AIM2 inflammasome activation. In summary, our study reveals a regulatory role of the BK channel in macrophages under inflammatory conditions.
Collapse
Affiliation(s)
- Yihe Chen
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Nikita Markov
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Lea Gigon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Aref Hosseini
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Darko Stojkov
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, 16816 Neuruppin, Germany
| |
Collapse
|
142
|
Chen H, Hu Q, Wen T, Luo L, Liu L, Wang L, Shen X. Arteannuin B, a sesquiterpene lactone from Artemisia annua, attenuates inflammatory response by inhibiting the ubiquitin-conjugating enzyme UBE2D3-mediated NF-κB activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155263. [PMID: 38181532 DOI: 10.1016/j.phymed.2023.155263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/15/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Anomalous activation of NF-κB signaling is associated with many inflammatory disorders, such as ulcerative colitis (UC) and acute lung injury (ALI). NF-κB activation requires the ubiquitination of receptor-interacting protein 1 (RIP1) and NF-κB essential modulator (NEMO). Therefore, inhibition of ubiquitation of RIP1 and NEMO may serve as a potential approach for inhibiting NF-κB activation and alleviating inflammatory disorders. PURPOSE Here, we identified arteannuin B (ATB), a sesquiterpene lactone found in the traditional Chinese medicine Artemisia annua that is used to treat malaria and inflammatory diseases, as a potent anti-inflammatory compound, and then characterized the putative mechanisms of its anti-inflammatory action. METHODS Detections of inflammatory mediators and cytokines in LPS- or TNF-α-stimulated murine macrophages using RT-qPCR, ELISA, and western blotting, respectively. Western blotting, CETSA, DARTS, MST, gene knockdown, LC-MS/MS, and molecular docking were used to determine the potential target and molecular mechanism of ATB. The pharmacological effects of ATB were further evaluated in DSS-induced colitis and LPS-induced ALI in vivo. RESULTS ATB effectively diminished the generation of NO and PGE2 by down-regulating iNOS and COX2 expression, and decreased the mRNA expression and release of IL-1β, IL-6, and TNF-α in LPS-exposed RAW264.7 macrophages. The anti-inflammatory effect of ATB was further demonstrated in LPS-treated BMDMs and TNF-α-activated RAW264.7 cells. We further found that ATB obviously inhibited NF-κB activation induced by LPS or TNF-α in vitro. Moreover, compared with ATB, dihydroarteannuin B (DATB) which lost the unsaturated double bond, completely failed to repress LPS-induced NO release and NF-κB activation in vitro. Furthermore, UBE2D3, a ubiquitin-conjugating enzyme, was identified as the functional target of ATB, but not DATB. UBE2D3 knockdown significantly abolished ATB-mediated inhibition on LPS-induced NO production. Mechanistically, ATB could covalently bind to the catalytic cysteine 85 of UBE2D3, thereby inhibiting the function of UBE2D3 and preventing ubiquitination of RIP1 and NEMO. In vivo, ATB treatment exhibited robust protective effects against DSS-induced UC and LPS-induced ALI. CONCLUSION Our findings first demonstrated that ATB exerted anti-inflammatory functions by repression of NF-κB pathway via covalently binding to UBE2D3, and raised the possibility that ATB could be effective in the treatment of inflammatory diseases and other diseases associated with abnormal NF-κB activation.
Collapse
Affiliation(s)
- Hongqing Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiongying Hu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Wen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuling Luo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lun Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaofei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
143
|
Saad EE, Michel R, Borahay MA. Immunosuppressive tumor microenvironment and uterine fibroids: Role in collagen synthesis. Cytokine Growth Factor Rev 2024; 75:93-100. [PMID: 37839993 PMCID: PMC10922281 DOI: 10.1016/j.cytogfr.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Uterine fibroids (UF), also called uterine leiomyoma, is one of the most prevalent uterine tumors. UF represents a serious women's health global problem with a significant physical, emotional, and socioeconomic impact. Risk factors for UF include racial disparities, age, race, hormonal factors, obesity, and lifestyle (diet, physical activity, and stress. There are several biological contributors to UF pathogenesis such as cellular proliferation, angiogenesis, and extracellular matrix (ECM) accumulation. This review addresses tumor immune microenvironment as a novel mediator of ECM deposition. Polarization of immune microenvironment towards the immunosuppressive phenotype has been associated with ECM deposition. Immunosuppressive cells include M2 macrophage, myeloid-derived suppressor cells (MDSCs), and Th17 cells, and their secretomes include interleukin 4 (IL-4), IL-10, IL-13, IL-17, IL-22, arginase 1, and transforming growth factor-beta (TGF-β1). The change in the immune microenvironment not only increase tumor growth but also aids in collagen synthesis and ECM disposition, which is one of the main hallmarks of UF pathogenesis. This review invites further investigations on the change in the UF immune microenvironment as well as a novel targeting approach instead of the traditional UF hormonal and supportive treatment.
Collapse
Affiliation(s)
- Eslam E Saad
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rachel Michel
- Department of Population, Family, and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, MD 21205, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
144
|
Hartupee C, Nagalo BM, Chabu CY, Tesfay MZ, Coleman-Barnett J, West JT, Moaven O. Pancreatic cancer tumor microenvironment is a major therapeutic barrier and target. Front Immunol 2024; 15:1287459. [PMID: 38361931 PMCID: PMC10867137 DOI: 10.3389/fimmu.2024.1287459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is projected to become the 2nd leading cause of cancer-related deaths in the United States. Limitations in early detection and treatment barriers contribute to the lack of substantial success in the treatment of this challenging-to-treat malignancy. Desmoplasia is the hallmark of PDAC microenvironment that creates a physical and immunologic barrier. Stromal support cells and immunomodulatory cells face aberrant signaling by pancreatic cancer cells that shifts the complex balance of proper repair mechanisms into a state of dysregulation. The product of this dysregulation is the desmoplastic environment that encases the malignant cells leading to a dense, hypoxic environment that promotes further tumorigenesis, provides innate systemic resistance, and suppresses anti-tumor immune invasion. This desmoplastic environment combined with the immunoregulatory events that allow it to persist serve as the primary focus of this review. The physical barrier and immune counterbalance in the tumor microenvironment (TME) make PDAC an immunologically cold tumor. To convert PDAC into an immunologically hot tumor, tumor microenvironment could be considered alongside the tumor cells. We discuss the complex network of microenvironment molecular and cellular composition and explore how they can be targeted to overcome immuno-therapeutic challenges.
Collapse
Affiliation(s)
- Conner Hartupee
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, LA, United States
| | - Bolni Marius Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Chiswili Y. Chabu
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
- Siteman Cancer Center, Washington University, St. Louis, MO, United States
| | - Mulu Z. Tesfay
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Joycelynn Coleman-Barnett
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, LA, United States
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University (LSU) Health, New Orleans, LA, United States
| | - John T. West
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University (LSU) Health, New Orleans, LA, United States
| | - Omeed Moaven
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, LA, United States
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University (LSU) Health, New Orleans, LA, United States
- Louisiana State University - Louisiana Children's Medical Center (LSU - LCMC) Cancer Center, New Orleans, LA, United States
| |
Collapse
|
145
|
Zhou G, Zhang L, Shao S. The application of MARCO for immune regulation and treatment. Mol Biol Rep 2024; 51:246. [PMID: 38300385 DOI: 10.1007/s11033-023-09201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
Macrophage receptor with collagen structure (MARCO) is a member of scavenger receptor class A (SR-A) and shares structural and functional similarities with SR-A1. In recent years, many studies have shown that MARCO can trigger an immune response and has therapeutic potential as a target for immunotherapy. Studies have shown that alterations in MARCO expression following pathogen infection cause changes in the functions of innate and adaptive immune cells, including macrophages, dendritic cells, B cells, and T cells, affecting the body's immune response to invading pathogens; thus, MARCO plays a crucial role in triggering the immune response, bridging innate and adaptive immunity, and eliminating pathogens. This paper is a comprehensive summary of the recent research on MARCO. This review focuses on the multiple functions of MARCO, including adhesion, migration, phagocytosis, and cytokine secretion with special emphasis on the complex interactions between MARCO and various types of cells involved in the immune response, as well as possible immune-related mechanisms. In summary, in this review, we discuss the structure and function of MARCO and its role in the immune response and highlight the therapeutic potential of MARCO as a target for immunotherapy. We hope that this review provides a theoretical basis for future research on MARCO.
Collapse
Affiliation(s)
- Guiyuan Zhou
- Department of Histology and Embryology, Hebei Medical University, No. 361, Zhongshan East Road, Chang'an District, Shijiazhuang, 050017, China
| | - Lei Zhang
- Shijiazhuang Vocational College of City Economy, No. 12, Wenming Road, Economic and Technological Development Zone, Shijiazhuang, 050017, China.
| | - Suxia Shao
- Department of Histology and Embryology, Hebei Medical University, No. 361, Zhongshan East Road, Chang'an District, Shijiazhuang, 050017, China.
| |
Collapse
|
146
|
Ghosh R, Bishayi B. Endogenous blocking of TLR2 along with TNF-α and IL-1β ameliorates the severity of the S. aureus arthritis via modulating STAT3/SOCS3 expressions in tissue resident macrophages. Microb Pathog 2024; 187:106518. [PMID: 38160988 DOI: 10.1016/j.micpath.2023.106518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
In vivo studies identifying a role of TLR2 in septic arthritis models are lacking. TNF-α played as the most important proinflammatory cytokine, and connected directly to the pathogenesis of bacterial arthritis. IL-1β is another central mediator cytokine in arthritis. It is therefore reasonable to question the role of neutralization of endogenous TNF-α and IL-1β along with TLR2 and associated downstream signaling as crucial mediators in the S. aureus -induced inflammatory arthritis. In reaction to an injury or a pathogen encounter, innate immune cells serve as the initial line of defense. TLR2 mediated entry of S. aureus into macrophage cells initiates an array of inflammatory cascades. After macrophage cell gets activated at the site inflammation, they generate elevated number of cytokines which includes TNF-α, IL-1β. This cytokines signals through STAT1/STAT3 mediated pathways. Thus, aim of this study was to discover how This bone damage could be altered by altering the STAT/STAT3/SOCS3 ratio by blocking TLR2, a particular S. aureus binding site, in conjunction with the use of IL-1 and TNF- antibodies for neutralizing endogenous IL-1β and TNF-α. Additionally, the role of local macrophages in therapy of arthritis was investigated in synovial and Splenic tissue. To comprehend the inflammatory milieu within the system, ROS and other antioxidant enzymes, along with the expression of mTOR in macrophage cells, were also taken into consideration. The detrimental impact of bacterial burden on synovial joints was reduced by simultaneously inhibiting TLR2, TNF-α, and IL-1β. Lowered IFN-γ decreases its sensitivity to STAT1 and lowered IL-6 reduces STAT3 expressions. Whereas, elevated IL-10 enhances SOSC3 expression, which thereby able to limits STAT1/STAT3 inter-conversion. As a result, NF-κB activity was downregulated.
Collapse
Affiliation(s)
- Rituparna Ghosh
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, 700009, West Bengal, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, 700009, West Bengal, India.
| |
Collapse
|
147
|
Cornice J, Verzella D, Arboretto P, Vecchiotti D, Capece D, Zazzeroni F, Franzoso G. NF-κB: Governing Macrophages in Cancer. Genes (Basel) 2024; 15:197. [PMID: 38397187 PMCID: PMC10888451 DOI: 10.3390/genes15020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are the major component of the tumor microenvironment (TME), where they sustain tumor progression and or-tumor immunity. Due to their plasticity, macrophages can exhibit anti- or pro-tumor functions through the expression of different gene sets leading to distinct macrophage phenotypes: M1-like or pro-inflammatory and M2-like or anti-inflammatory. NF-κB transcription factors are central regulators of TAMs in cancers, where they often drive macrophage polarization toward an M2-like phenotype. Therefore, the NF-κB pathway is an attractive therapeutic target for cancer immunotherapy in a wide range of human tumors. Hence, targeting NF-κB pathway in the myeloid compartment is a potential clinical strategy to overcome microenvironment-induced immunosuppression and increase anti-tumor immunity. In this review, we discuss the role of NF-κB as a key driver of macrophage functions in tumors as well as the principal strategies to overcome tumor immunosuppression by targeting the NF-κB pathway.
Collapse
Affiliation(s)
- Jessica Cornice
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK; (J.C.); (P.A.)
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.C.); (F.Z.)
| | - Paola Arboretto
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK; (J.C.); (P.A.)
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.C.); (F.Z.)
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.C.); (F.Z.)
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.C.); (F.Z.)
| | - Guido Franzoso
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK; (J.C.); (P.A.)
| |
Collapse
|
148
|
Ahn W, Burnett FN, Pandey A, Ghoshal P, Singla B, Simon AB, Derella CC, A. Addo S, Harris RA, Lucas R, Csányi G. SARS-CoV-2 Spike Protein Stimulates Macropinocytosis in Murine and Human Macrophages via PKC-NADPH Oxidase Signaling. Antioxidants (Basel) 2024; 13:175. [PMID: 38397773 PMCID: PMC10885885 DOI: 10.3390/antiox13020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While recent studies have demonstrated that SARS-CoV-2 may enter kidney and colon epithelial cells by inducing receptor-independent macropinocytosis, it remains unknown whether this process also occurs in cell types directly relevant to SARS-CoV-2-associated lung pneumonia, such as alveolar epithelial cells and macrophages. The goal of our study was to investigate the ability of SARS-CoV-2 spike protein subunits to stimulate macropinocytosis in human alveolar epithelial cells and primary human and murine macrophages. Flow cytometry analysis of fluid-phase marker internalization demonstrated that SARS-CoV-2 spike protein subunits S1, the receptor-binding domain (RBD) of S1, and S2 stimulate macropinocytosis in both human and murine macrophages in an angiotensin-converting enzyme 2 (ACE2)-independent manner. Pharmacological and genetic inhibition of macropinocytosis substantially decreased spike-protein-induced fluid-phase marker internalization in macrophages both in vitro and in vivo. High-resolution scanning electron microscopy (SEM) imaging confirmed that spike protein subunits promote the formation of membrane ruffles on the dorsal surface of macrophages. Mechanistic studies demonstrated that SARS-CoV-2 spike protein stimulated macropinocytosis via NADPH oxidase 2 (Nox2)-derived reactive oxygen species (ROS) generation. In addition, inhibition of protein kinase C (PKC) and phosphoinositide 3-kinase (PI3K) in macrophages blocked SARS-CoV-2 spike-protein-induced macropinocytosis. To our knowledge, these results demonstrate for the first time that SARS-CoV-2 spike protein subunits stimulate macropinocytosis in macrophages. These results may contribute to a better understanding of SARS-CoV-2 infection and COVID-19 pathogenesis.
Collapse
Affiliation(s)
- WonMo Ahn
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.A.); (F.N.B.); (A.P.); (B.S.); (S.A.A.); (R.L.)
| | - Faith N. Burnett
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.A.); (F.N.B.); (A.P.); (B.S.); (S.A.A.); (R.L.)
| | - Ajay Pandey
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.A.); (F.N.B.); (A.P.); (B.S.); (S.A.A.); (R.L.)
| | - Pushpankur Ghoshal
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.A.); (F.N.B.); (A.P.); (B.S.); (S.A.A.); (R.L.)
| | - Bhupesh Singla
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.A.); (F.N.B.); (A.P.); (B.S.); (S.A.A.); (R.L.)
| | - Abigayle B. Simon
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.B.S.); (C.C.D.); (R.A.H.)
| | - Cassandra C. Derella
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.B.S.); (C.C.D.); (R.A.H.)
| | - Stephen A. Addo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.A.); (F.N.B.); (A.P.); (B.S.); (S.A.A.); (R.L.)
| | - Ryan A. Harris
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.B.S.); (C.C.D.); (R.A.H.)
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.A.); (F.N.B.); (A.P.); (B.S.); (S.A.A.); (R.L.)
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Gábor Csányi
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.A.); (F.N.B.); (A.P.); (B.S.); (S.A.A.); (R.L.)
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
149
|
Mahmoud ME, Farooq M, Isham IM, Ali A, Hassan MSH, Herath-Mudiyanselage H, Ranaweera HA, Najimudeen SM, Abdul-Careem MF. Cyclooxygenase-2/prostaglandin E2 pathway regulates infectious bronchitis virus replication in avian macrophages. J Gen Virol 2024; 105. [PMID: 38189432 DOI: 10.1099/jgv.0.001949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Infectious bronchitis virus (IBV) is a significant respiratory pathogen that affects chickens worldwide. As an avian coronavirus, IBV leads to productive infection in chicken macrophages. However, the effects of IBV infection in macrophages on cyclooxygenase-2 (COX-2) expression are still to be elucidated. Therefore, we investigated the role of IBV infection on the production of COX-2, an enzyme involved in the synthesis of prostaglandin E2 (PGE2) in chicken macrophages. The chicken macrophage cells were infected with two IBV strains, and the cells and culture supernatants were harvested at predetermined time points to measure intracellular and extracellular IBV infection. IBV infection was quantified as has been the COX-2 and PGE2 productions. We found that IBV infection enhances COX-2 production at both mRNA and protein levels in chicken macrophages. When a selective COX-2 antagonist was used to reduce the COX-2 expression in macrophages, we observed that IBV replication decreased. When IBV-infected macrophages were treated with PGE2 receptor (EP2 and EP4) inhibitors, IBV replication was reduced. Upon utilizing a selective COX-2 antagonist to diminish PGE2 expression in macrophages, a discernible decrease in IBV replication was observed. Treatment of IBV-infected macrophages with a PGE2 receptor (EP2) inhibitor resulted in a reduction in IBV replication, whereas the introduction of exogenous PGE2 heightened viral replication. Additionally, pretreatment with a Janus-kinase two antagonist attenuated the inhibitory effect of recombinant chicken interferon (IFN)-γ on viral replication. The evaluation of immune mediators, such as inducible nitric oxide (NO) synthase (iNOS), NO, and interleukin (IL)-6, revealed enhanced expression following IBV infection of macrophages. In response to the inhibition of COX-2 and PGE2 receptors, we observed a reduction in the expressions of iNOS and IL-6 in macrophages, correlating with reduced IBV infection. Overall, IBV infection increased COX-2 and PGE2 production in addition to iNOS, NO, and IL-6 expression in chicken macrophages in a time-dependent manner. Inhibition of the COX-2/PGE2 pathway may lead to increased macrophage defence mechanisms against IBV infection, resulting in a reduction in viral replication and iNOS and IL-6 expressions. Understanding the molecular mechanisms underlying these processes may shed light on potential antiviral targets for controlling IBV infection.
Collapse
Affiliation(s)
- Motamed Elsayed Mahmoud
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Department of Animal Husbandry, Faculty of Veterinary Medicine, Sohag University, Sohag 84524, Egypt
| | - Muhammad Farooq
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Ishara M Isham
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Ahmed Ali
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, 62521, Egypt
| | - Mohamed S H Hassan
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | | | - Hiruni A Ranaweera
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Shahnas M Najimudeen
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | | |
Collapse
|
150
|
Priyadarshini NP, Gopamma D, Srinivas N, Malla RR, Kumar KS. Particulate Matter and Its Impact on Macrophages: Unraveling the Cellular Response for Environmental Health. Crit Rev Oncog 2024; 29:33-42. [PMID: 38989736 DOI: 10.1615/critrevoncog.2024053305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Particulate matter (PM) imposes a significant impact to environmental health with deleterious effects on the human pulmonary and cardiovascular systems. Macrophages (Mφ), key immune cells in lung tissues, have a prominent role in responding to inhaled cells, accommodating inflammation, and influencing tissue repair processes. Elucidating the critical cellular responses of Mφ to PM exposure is essential to understand the mechanisms underlying PM-induced health effects. The present review aims to give a glimpse on literature about the PM interaction with Mφ, triggering the cellular events causing the inflammation, oxidative stress (OS) and tissue damage. The present paper reviews the different pathways involved in Mφ activation upon PM exposure, including phagocytosis, intracellular signaling cascades, and the release of pro-inflammatory mediators. Potential therapeutic strategies targeting Mφ-mediated responses to reduce PM-induced health effects are also discussed. Overall, unraveling the complex interplay between PM and Mφ sheds light on new avenues for environmental health research and promises to develop targeted interventions to reduce the burden of PM-related diseases on global health.
Collapse
Affiliation(s)
- Nyayapathi Priyanka Priyadarshini
- Department of Environmental Science, GITAM School of Science, GITAM Deemed to be University, Visakhapatnam, Andhra Pradesh 530045, India
| | - Daka Gopamma
- Department of Environmental Science, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Namuduri Srinivas
- Department of Environmental Science, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India; Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Kolli Suresh Kumar
- Department of Environmental Science, GITAM School of Science, GITAM Deemed to be University, Visakhapatnam, Andhra Pradesh 530045, India
| |
Collapse
|