151
|
Sardu C, Trotta MC, Sasso FC, Sacra C, Carpinella G, Mauro C, Minicucci F, Calabrò P, D' Amico M, D' Ascenzo F, De Filippo O, Iannaccone M, Pizzi C, Paolisso G, Marfella R. SGLT2-inhibitors effects on the coronary fibrous cap thickness and MACEs in diabetic patients with inducible myocardial ischemia and multi vessels non-obstructive coronary artery stenosis. Cardiovasc Diabetol 2023; 22:80. [PMID: 37005586 PMCID: PMC10067292 DOI: 10.1186/s12933-023-01814-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND Sodium-glucose transporter 2 inhibitors (SGLT2-I) could modulate atherosclerotic plaque progression, via down-regulation of inflammatory burden, and lead to reduction of major adverse cardiovascular events (MACEs) in type 2 diabetes mellitus (T2DM) patients with ischemic heart disease (IHD). T2DM patients with multivessel non-obstructive coronary stenosis (Mv-NOCS) have over-inflammation and over-lipids' plaque accumulation. This could reduce fibrous cap thickness (FCT), favoring plaque rupture and MACEs. Despite this, there is not conclusive data about the effects of SGLT2-I on atherosclerotic plaque phenotype and MACEs in Mv-NOCS patients with T2DM. Thus, in the current study, we evaluated SGLT2-I effects on Mv-NOCS patients with T2DM in terms of FCT increase, reduction of systemic and coronary plaque inflammation, and MACEs at 1 year of follow-up. METHODS In a multi-center study, we evaluated 369 T2DM patients with Mv-NOCS divided in 258 (69.9%) patients that did not receive the SGLT2-I therapy (Non-SGLT2-I users), and 111 (30.1%) patients that were treated with SGLT2-I therapy (SGLT2-I users) after percutaneous coronary intervention (PCI) and optical coherence tomography (OCT) evaluation. As the primary study endpoint, we evaluated the effects of SGLT2-I on FCT changes at 1 year of follow-up. As secondary endpoints, we evaluated at baseline and at 12 months follow-up the inflammatory systemic and plaque burden and rate of MACEs, and predictors of MACE through multivariable analysis. RESULTS At 6 and 12 months of follow-up, SGLT2-I users vs. Non-SGLT2-I users showed lower body mass index (BMI), glycemia, glycated hemoglobin, B-type natriuretic peptide, and inflammatory cells/molecules values (p < 0.05). SGLT2-I users vs. Non-SGLT2-I users, as evaluated by OCT, evidenced the highest values of minimum FCT, and lowest values of lipid arc degree and macrophage grade (p < 0.05). At the follow-up end, SGLT2-I users vs. Non-SGLT2-I users had a lower rate of MACEs [n 12 (10.8%) vs. n 57 (22.1%); p < 0.05]. Finally, Hb1Ac values (1.930, [CI 95%: 1.149-2.176]), macrophage grade (1.188, [CI 95%: 1.073-1.315]), and SGLT2-I therapy (0.342, [CI 95%: 0.180-0.651]) were independent predictors of MACEs at 1 year of follow-up. CONCLUSIONS SGLT2-I therapy may reduce about 65% the risk to have MACEs at 1 year of follow-up, via ameliorative effects on glucose homeostasis, and by the reduction of systemic inflammatory burden, and local effects on the atherosclerotic plaque inflammation, lipids' deposit, and FCT in Mv-NOCS patients with T2DM.
Collapse
Affiliation(s)
- Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy.
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy
| | - Cosimo Sacra
- Department of Cardiology, Gemelli Molise, Campobasso, Italy
| | | | - Ciro Mauro
- Department of Cardiology, Hospital Cardarelli, Naples, Italy
| | - Fabio Minicucci
- Department of Cardiology, San Leonardo Hospital, Naples, Italy
| | - Paolo Calabrò
- Department of Cardio-Thoracic and Respiratory Sciences, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Michele D' Amico
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fabrizio D' Ascenzo
- Division of Cardiology, Cardiovascular and Thoracic Department, "Città della Salute e della Scienza", Turin, Italy
| | - Ovidio De Filippo
- Division of Cardiology, Cardiovascular and Thoracic Department, "Città della Salute e della Scienza", Turin, Italy
| | - Mario Iannaccone
- Department of Cardiology, San Giovanni Bosco Hospital, ASL Città di Torino, Turin, Italy
| | - Carmine Pizzi
- Unit of Cardiology, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Bologna, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy
| |
Collapse
|
152
|
Abstract
The ketone bodies beta-hydroxybutyrate and acetoacetate are hepatically produced metabolites catabolized in extrahepatic organs. Ketone bodies are a critical cardiac fuel and have diverse roles in the regulation of cellular processes such as metabolism, inflammation, and cellular crosstalk in multiple organs that mediate disease. This review focuses on the role of cardiac ketone metabolism in health and disease with an emphasis on the therapeutic potential of ketosis as a treatment for heart failure (HF). Cardiac metabolic reprogramming, characterized by diminished mitochondrial oxidative metabolism, contributes to cardiac dysfunction and pathologic remodeling during the development of HF. Growing evidence supports an adaptive role for ketone metabolism in HF to promote normal cardiac function and attenuate disease progression. Enhanced cardiac ketone utilization during HF is mediated by increased availability due to systemic ketosis and a cardiac autonomous upregulation of ketolytic enzymes. Therapeutic strategies designed to restore high-capacity fuel metabolism in the heart show promise to address fuel metabolic deficits that underpin the progression of HF. However, the mechanisms involved in the beneficial effects of ketone bodies in HF have yet to be defined and represent important future lines of inquiry. In addition to use as an energy substrate for cardiac mitochondrial oxidation, ketone bodies modulate myocardial utilization of glucose and fatty acids, two vital energy substrates that regulate cardiac function and hypertrophy. The salutary effects of ketone bodies during HF may also include extra-cardiac roles in modulating immune responses, reducing fibrosis, and promoting angiogenesis and vasodilation. Additional pleotropic signaling properties of beta-hydroxybutyrate and AcAc are discussed including epigenetic regulation and protection against oxidative stress. Evidence for the benefit and feasibility of therapeutic ketosis is examined in preclinical and clinical studies. Finally, ongoing clinical trials are reviewed for perspective on translation of ketone therapeutics for the treatment of HF.
Collapse
Affiliation(s)
- Timothy R. Matsuura
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Patrycja Puchalska
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Peter A. Crawford
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Daniel P. Kelly
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
153
|
|
154
|
Jayarathne H, Liu W, Sadagurski M. Repurposing Canagliflozin to target brain aging. Aging (Albany NY) 2023; 15:2367-2368. [PMID: 36971696 PMCID: PMC10120889 DOI: 10.18632/aging.204624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/24/2023] [Indexed: 04/22/2023]
Affiliation(s)
- Hashan Jayarathne
- Department of Biological Sciences, IBio (Integrative Biosciences Center), Wayne State University, Detroit, MI 48202, USA
| | - Wanqing Liu
- Department of Pharmaceutical Science, IBio (Integrative Biosciences Center), Wayne State University, Detroit, MI 48202, USA
| | - Marianna Sadagurski
- Department of Biological Sciences, IBio (Integrative Biosciences Center), Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
155
|
Fender AC, Dobrev D. Evolving insights into the pleiotropic cardioprotective mechanisms of SGLT2 inhibitors. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:589-592. [PMID: 36943455 PMCID: PMC10042952 DOI: 10.1007/s00210-023-02459-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Affiliation(s)
- Anke C Fender
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany.
| |
Collapse
|
156
|
Hao H, Li Z, Qiao SY, Qi Y, Xu XY, Si JY, Liu YH, Chang L, Shi YF, Xu B, Wei ZH, Kang LN. Empagliflozin ameliorates atherosclerosis via regulating the intestinal flora. Atherosclerosis 2023; 371:32-40. [PMID: 36990029 DOI: 10.1016/j.atherosclerosis.2023.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND AND AIMS Sodium-glucose cotransporter 2 inhibitor (SGLT2i) has been reported to attenuate atherosclerosis. Further, it has been suggested that intestinal flora influences atherosclerosis progression. Herein we aimed to investigate whether SGLT2i can alleviate atherosclerosis through intestinal flora. METHODS Six-week-old male ApoE-/- mice fed a high-fat diet were gavaged either empagliflozin (SGLT2i group, n = 9) or saline (Ctrl group, n = 6) for 12 weeks. Feces were collected from both groups at the end of the experiment for fecal microbiota transplantation (FMT). Another 12 six-week-old male ApoE-/- mice were fed a high-fat diet and received FMT with feces either from SGLT2i (FMT-SGLT2i group, n = 6) or from Ctrl (FMT-Ctrl group, n = 6) groups. Blood, tissue, and fecal samples were collected for subsequent analyses. RESULTS In comparison with Ctrl group, atherosclerosis was less severe in the SGLT2i group (p < 0.0001), and the richness of probiotic, such as f_Coriobacteriaceae, f_S24-7, f_Lachnospiraceae, and f_Adlercreutzia, was higher in feces. Besides, empagliflozin resulted in a significant reduction in the inflammatory response and altered intestinal flora metabolism. Interestingly, compared with FMT-Ctrl, FMT-SGLT2i also showed a reduction in atherosclerosis and systemic inflammatory response, as well as changes in the component of intestinal flora and pertinent metabolites similar to SGLT2i group. CONCLUSIONS Empagliflozin seems to mitigate atherosclerosis partly by regulating intestinal microbiota, and this anti-atherosclerotic effect can be transferred through intestinal flora transplantation.
Collapse
Affiliation(s)
- Han Hao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No.321, Zhongshan Road, Nanjing, 210008, China
| | - Zhu Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No.321, Zhongshan Road, Nanjing, 210008, China
| | - Shi-Yang Qiao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No.321, Zhongshan Road, Nanjing, 210008, China
| | - Yu Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No.321, Zhongshan Road, Nanjing, 210008, China
| | - Xiao-Ying Xu
- Department of Cardiology, Nanjing Drum Hospital, Nanjing University of Chinese Medicine, No.138, Xian-Lin Avenue, Nanjing, 210008, China
| | - Jia-Yi Si
- Department of Cardiology, Nanjing Drum Hospital, Nanjing University of Chinese Medicine, No.138, Xian-Lin Avenue, Nanjing, 210008, China
| | - Yi-Hai Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No.321, Zhongshan Road, Nanjing, 210008, China
| | - Lei Chang
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Yi-Fan Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No.321, Zhongshan Road, Nanjing, 210008, China
| | - Biao Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No.321, Zhongshan Road, Nanjing, 210008, China.
| | - Zhong-Hai Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No.321, Zhongshan Road, Nanjing, 210008, China.
| | - Li-Na Kang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No.321, Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
157
|
Lu S, Li Y, Qian Z, Zhao T, Feng Z, Weng X, Yu L. Role of the inflammasome in insulin resistance and type 2 diabetes mellitus. Front Immunol 2023; 14:1052756. [PMID: 36993972 PMCID: PMC10040598 DOI: 10.3389/fimmu.2023.1052756] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
The inflammasome is a protein complex composed of a variety of proteins in cells and which participates in the innate immune response of the body. It can be activated by upstream signal regulation and plays an important role in pyroptosis, apoptosis, inflammation, tumor regulation, etc. In recent years, the number of metabolic syndrome patients with insulin resistance (IR) has increased year by year, and the inflammasome is closely related to the occurrence and development of metabolic diseases. The inflammasome can directly or indirectly affect conduction of the insulin signaling pathway, involvement the occurrence of IR and type 2 diabetes mellitus (T2DM). Moreover, various therapeutic agents also work through the inflammasome to treat with diabetes. This review focuses on the role of inflammasome on IR and T2DM, pointing out the association and utility value. Briefly, we have discussed the main inflammasomes, including NLRP1, NLRP3, NLRC4, NLRP6 and AIM2, as well as their structure, activation and regulation in IR were described in detail. Finally, we discussed the current therapeutic options-associated with inflammasome for the treatment of T2DM. Specially, the NLRP3-related therapeutic agents and options are widely developed. In summary, this article reviews the role of and research progress on the inflammasome in IR and T2DM.
Collapse
Affiliation(s)
- Shen Lu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Yanrong Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhaojun Qian
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Tiesuo Zhao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaogang Weng
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- *Correspondence: Lili Yu, ; Xiaogang Weng,
| | - Lili Yu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, China
- *Correspondence: Lili Yu, ; Xiaogang Weng,
| |
Collapse
|
158
|
Özkan U, Gürdoğan M. The Effect of SGLT2 Inhibitors on the Development of Contrast-Induced Nephropathy in Diabetic Patients with Non-ST Segment Elevation Myocardial Infarction. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:505. [PMID: 36984506 PMCID: PMC10057721 DOI: 10.3390/medicina59030505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Background and Objectives: Percutaneous procedures using contrast agents are modern diagnosis and treatment methods for cardiovascular diseases. Contrast use may cause nephropathy, especially in diabetic patients. SGLT2 inhibitors have strong cardioprotective and renal protective effects. In our study, we investigated the effectiveness of this drug group in preventing the development of Contrast-Induced Nephropathy (CIN). Materials and Methods: The results of 312 diabetic patients who underwent CAG were analyzed. The study group included 104 DM patients using SGLT2 and the control group did not use SGLT2. These groups were compared with each other in terms of clinical, demographic, and laboratory parameters. Results: The groups were similar characteristics. However, post-CAG creatinine values compared with before the procedure, the development of CIN was observed to be significantly less in the group using SGLT2 inhibitor (p = 0.03). When the results of the multivariate analysis were examined, it was seen that the use of SGLT2 inhibitors significantly reduced the risk of CIN (odds ratio (OR): 0.41, 95% confidence interval (CI): 0,142-0.966, p = 0.004). Conclusions: Our study showed that SGLT2 inhibitors may be protective against the development of CIN, especially in patients with comorbid conditions such as diabetes.
Collapse
Affiliation(s)
- Uğur Özkan
- Department of Cardiology, School of Medicine, Trakya University, Edirne 22030, Turkey
| | | |
Collapse
|
159
|
Li X, Kerindongo RP, Preckel B, Kalina JO, Hollmann MW, Zuurbier CJ, Weber NC. Canagliflozin inhibits inflammasome activation in diabetic endothelial cells - Revealing a novel calcium-dependent anti-inflammatory effect of canagliflozin on human diabetic endothelial cells. Biomed Pharmacother 2023; 159:114228. [PMID: 36623448 DOI: 10.1016/j.biopha.2023.114228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Canagliflozin (CANA) shows anti-inflammatory and anti-oxidative effects on endothelial cells (ECs). In diabetes mellitus (DM), excessive reactive oxygen species (ROS) generation, increased intracellular calcium (Ca2+) and enhanced extracellular signal regulated kinase (ERK) 1/2 phosphorylation are crucial precursors for inflammasome activation. We hypothesized that: (1) CANA prevents the TNF-α triggered ROS generation in ECs from diabetic donors and in turn suppresses the inflammasome activation; and (2) the anti-inflammatory effect of CANA is mediated via intracellular Ca2+ and ERK1/2. METHODS Human coronary artery endothelial cells from donors with DM (D-HCAECs) were pre-incubated with either CANA or vehicle for 2 h before exposure to 50 ng/ml TNF-α for 2-48 h. NAC was applied to scavenge ROS, BAPTA-AM to chelate intracellular Ca2+, and PD 98059 to inhibit the activation of ERK1/2. Live cell imaging was performed at 6 h to measure ROS and intracellular Ca2+. At 48 h, ELISA and infra-red western blot were applied to detect IL-1β, NLRP3, pro-caspase-1 and ASC. RESULTS 10 µM CANA significantly reduced TNF-α related ROS generation, IL-1β production and NLRP3 expression (P all <0.05), but NAC did not alter the inflammasome activation (P > 0.05). CANA and BAPTA both prevented intracellular Ca2+ increase in cells exposed to TNF-α (P both <0.05). Moreover, BAPTA and PD 98059 significantly reduced the TNF-α triggered IL-1β production as well as NLRP3 and pro-caspase-1 expression (P all <0.05). CONCLUSION CANA suppresses inflammasome activation by inhibition of (1) intracellular Ca2+ and (2) ERK1/2 phosphorylation, but not by ROS reduction.
Collapse
Affiliation(s)
- Xiaoling Li
- Amsterdam, University Medical Centers, location AMC, Department of Anesthesiology - L.E.I.C.A, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, the Netherlands.
| | - Raphaela P Kerindongo
- Amsterdam, University Medical Centers, location AMC, Department of Anesthesiology - L.E.I.C.A, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, the Netherlands.
| | - Benedikt Preckel
- Amsterdam, University Medical Centers, location AMC, Department of Anesthesiology - L.E.I.C.A, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, the Netherlands.
| | - Jan-Ole Kalina
- Amsterdam, University Medical Centers, location AMC, Department of Anesthesiology - L.E.I.C.A, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, the Netherlands.
| | - Markus W Hollmann
- Amsterdam, University Medical Centers, location AMC, Department of Anesthesiology - L.E.I.C.A, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, the Netherlands.
| | - Coert J Zuurbier
- Amsterdam, University Medical Centers, location AMC, Department of Anesthesiology - L.E.I.C.A, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, the Netherlands.
| | - Nina C Weber
- Amsterdam, University Medical Centers, location AMC, Department of Anesthesiology - L.E.I.C.A, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
160
|
Sun L, Lu WX, Li H, Feng DY, Nie JX. Total saponins of Aralia elata (Miq.) Seem. alleviate myocardial ischemia-reperfusion injury by promoting NLRP3-inflammasome inactivation via PI3K/Akt signaling. Kaohsiung J Med Sci 2023; 39:290-301. [PMID: 36408810 DOI: 10.1002/kjm2.12627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
Total saponins of Aralia elata (Miq.) Seem. (TSAE) have been shown to play a significant role in cardiovascular protection, anti-tumor, liver protection, anti-oxidant stress, and anti-inflammation. However, the specific mechanisms of TSAE in myocardial ischemia-reperfusion injury (MIRI) remain largely elusive. Hearts from male Wistar rats were used to establish the isolated heart MIRI model. Using a multichannel physiological recorder, the whole course heart rate (HR), left ventricular development pressure (LVDP), and maximum rise/decrease rate of left ventricular pressure (±dp/dtmax ) were recorded. 2,3,5-triphenyl-2H-tetrazolium chloride staining observed the infarct area, while hematoxylin & eosin staining detected pathological changes in myocardial tissue. Creatine kinase, lactate dehydrogenase, total superoxide dismutase, and malondialdehyde concentrations were determined by enzyme-linked immunosorbent assay. Immunohistochemistry, quantitative PCR, and western blot assay were used to assess the amounts of IL-18 and IL-1β, NLR family protein (NLRP3) inflammasome- and apoptosis-related proteins, respectively. Treatment with TSAE or MCC950 (NLRP3-specific inhibitor) significantly reduced the myocardial infarction area, alleviated pathological changes in myocardial tissues, enhanced LVDP and ±dp/dtmax levels, prevented myocardial oxidative damage, and inhibited NLRP3 inflammasome formation. In addition, TSAE enhanced Akt and GSK3β phosphorylation, and LY29004 co-reperfusion markedly diminished the protective role of TSAE reperfusion on cardiac function, oxidative damage, and inflammatory responses. Collectively, TSAE treatment exhibited a protective effect on I/R-triggered inflammatory responses, cell necrosis, and oxidative stress injury by stimulating PI3K/Akt signaling-mediated NLRP3 inflammasome inhibition.
Collapse
Affiliation(s)
- Li Sun
- Department of General Medicine, Dongfang Hospital Beijing University of Chinese Medicine (Western Section), Beijing, China
| | - Wei-Xing Lu
- Department of Cardiology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Hui Li
- Department of General Medicine, Dongfang Hospital Beijing University of Chinese Medicine (Western Section), Beijing, China
| | - Ding-Ya Feng
- Department of General Medicine, Dongfang Hospital Beijing University of Chinese Medicine (Western Section), Beijing, China
| | - Jing-Xiao Nie
- Department of General Medicine, Dongfang Hospital Beijing University of Chinese Medicine (Western Section), Beijing, China
| |
Collapse
|
161
|
Arefin A, Gage MC. Metformin, Empagliflozin, and Their Combination Modulate Ex-Vivo Macrophage Inflammatory Gene Expression. Int J Mol Sci 2023; 24:ijms24054785. [PMID: 36902218 PMCID: PMC10003317 DOI: 10.3390/ijms24054785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/09/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Type-2 Diabetes Mellitus is a complex, chronic illness characterized by persistent high blood glucose levels. Patients can be prescribed anti-diabetes drugs as single agents or in combination depending on the severity of their condition. Metformin and empagliflozin are two commonly prescribed anti-diabetes drugs which reduce hyperglycemia, however their direct effects on macrophage inflammatory responses alone or in combination are unreported. Here, we show that metformin and empagliflozin elicit proinflammatory responses on mouse bone-marrow-derived macrophages with single agent challenge, which are modulated when added in combination. In silico docking experiments suggested that empagliflozin can interact with both TLR2 and DECTIN1 receptors, and we observed that both empagliflozin and metformin increase expression of Tlr2 and Clec7a. Thus, findings from this study suggest that metformin and empagliflozin as single agents or in combination can directly modulate inflammatory gene expression in macrophages and upregulate the expression of their receptors.
Collapse
Affiliation(s)
- Adittya Arefin
- Wolfson Institute for Biomedical Research, Division of Medicine, University College London, Gower Street, London WC1E 6BT, UK
| | - Matthew C. Gage
- Department of Comparative Biomedical Sciences, Royal Veterinary College, 4 Royal College Street, London NW1 0TU, UK
- Correspondence:
| |
Collapse
|
162
|
Capone F, Sotomayor-Flores C, Bode D, Wang R, Rodolico D, Strocchi S, Schiattarella GG. Cardiac metabolism in HFpEF: from fuel to signalling. Cardiovasc Res 2023; 118:3556-3575. [PMID: 36504368 DOI: 10.1093/cvr/cvac166] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022] Open
Abstract
Heart failure (HF) is marked by distinctive changes in myocardial uptake and utilization of energy substrates. Among the different types of HF, HF with preserved ejection fraction (HFpEF) is a highly prevalent, complex, and heterogeneous condition for which metabolic derangements seem to dictate disease progression. Changes in intermediate metabolism in cardiometabolic HFpEF-among the most prevalent forms of HFpEF-have a large impact both on energy provision and on a number of signalling pathways in the heart. This dual, metabolic vs. signalling, role is played in particular by long-chain fatty acids (LCFAs) and short-chain carbon sources [namely, short-chain fatty acids (SCFAs) and ketone bodies (KBs)]. LCFAs are key fuels for the heart, but their excess can be harmful, as in the case of toxic accumulation of lipid by-products (i.e. lipotoxicity). SCFAs and KBs have been proposed as a potential major, alternative source of energy in HFpEF. At the same time, both LCFAs and short-chain carbon sources are substrate for protein post-translational modifications and other forms of direct and indirect signalling of pivotal importance in HFpEF pathogenesis. An in-depth molecular understanding of the biological functions of energy substrates and their signalling role will be instrumental in the development of novel therapeutic approaches to HFpEF. Here, we summarize the current evidence on changes in energy metabolism in HFpEF, discuss the signalling role of intermediate metabolites through, at least in part, their fate as substrates for post-translational modifications, and highlight clinical and translational challenges around metabolic therapy in HFpEF.
Collapse
Affiliation(s)
- Federico Capone
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Division of Internal Medicine, Department of Medicine, University of Padua, Padua, Italy
| | - Cristian Sotomayor-Flores
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - David Bode
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Rongling Wang
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Daniele Rodolico
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Stefano Strocchi
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Gabriele G Schiattarella
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| |
Collapse
|
163
|
Engström A, Wintzell V, Melbye M, Hviid A, Eliasson B, Gudbjörnsdottir S, Hveem K, Jonasson C, Svanström H, Pasternak B, Ueda P. Sodium-Glucose Cotransporter 2 Inhibitor Treatment and Risk of Atrial Fibrillation: Scandinavian Cohort Study. Diabetes Care 2023; 46:351-360. [PMID: 36508322 DOI: 10.2337/dc22-0714] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To assess the association between use of sodium-glucose cotransporter 2 (SGLT2) inhibitors and the risk of new-onset atrial fibrillation (AF) in routine clinical practice. RESEARCH DESIGN AND METHODS We used nationwide registers in Denmark, Norway, and Sweden from 2013 to 2018 in order to include patients without a history of AF who were newly prescribed an SGLT2 inhibitor or an active comparator (glucagon-like peptide 1 [GLP-1] receptor agonist). We performed a cohort study to assess new-onset AF in intention-to-treat analyses using Cox regression, adjusted for baseline covariates with propensity score weighting. RESULTS We identified 79,343 new users of SGLT2 inhibitors (59.2% dapagliflozin, 40.0% empagliflozin, 0.8% canagliflozin, <0.1% ertugliflozin) and 57,613 new users of GLP-1 receptor agonists. Mean age of the study cohort was 61 years and 60% were men. The adjusted incidence rate of new-onset AF was 8.6 per 1,000 person-years for new users of SGLT2 inhibitors compared with 10.0 per 1,000 person-years for new users of GLP-1 receptor agonists. The adjusted hazard ratio (aHR) was 0.89 (95% CI 0.81-0.96), and the rate difference was 1.4 fewer events per 1,000 person-years (95% CI 0.6-2.1). Using an as-treated exposure definition, the aHR for new-onset AF was 0.87 (95% CI 0.76-0.99). No statistically significant heterogeneity of the aHRs was observed between subgroups of patients with and without a history of heart failure or major cardiovascular disease. CONCLUSIONS In this cohort study using nationwide data from three countries, use of SGLT2 inhibitors, compared with GLP-1 receptor agonists, was associated with a modestly reduced risk of new-onset AF.
Collapse
Affiliation(s)
- Arvid Engström
- Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institute, Stockholm, Sweden
| | - Viktor Wintzell
- Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institute, Stockholm, Sweden
| | - Mads Melbye
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Anders Hviid
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Pharmacovigilance Research Center, Department of Drug Development and Clinical Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Björn Eliasson
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Soffia Gudbjörnsdottir
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Swedish National Diabetes Register, Vastra Gotalandsregionen, Gothenburg, Sweden
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Faculty of Medicine, Norwegian University of Science and Technology, Levanger, Norway
- Division of Health Data and Digitalization, The Norwegian Institute of Public Health, Oslo, Norway
| | - Christian Jonasson
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Faculty of Medicine, Norwegian University of Science and Technology, Levanger, Norway
| | - Henrik Svanström
- Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institute, Stockholm, Sweden
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Björn Pasternak
- Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institute, Stockholm, Sweden
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Ueda
- Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
164
|
Paolisso P, Bergamaschi L, Gragnano F, Gallinoro E, Cesaro A, Sardu C, Mileva N, Foà A, Armillotta M, Sansonetti A, Amicone S, Impellizzeri A, Esposito G, Morici N, Andrea OJ, Casella G, Mauro C, Vassilev D, Galie N, Santulli G, Marfella R, Calabrò P, Pizzi C, Barbato E. Outcomes in diabetic patients treated with SGLT2-Inhibitors with acute myocardial infarction undergoing PCI: The SGLT2-I AMI PROTECT Registry. Pharmacol Res 2023; 187:106597. [PMID: 36470546 PMCID: PMC9946774 DOI: 10.1016/j.phrs.2022.106597] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
AIMS To investigate in-hospital and long-term prognosis in T2DM patients presenting with acute myocardial infarction (AMI) treated with SGLT2-I versus other oral anti-diabetic agents (non-SGLT2-I users). METHODS In this multicenter international registry all consecutive diabetic AMI patients undergoing percutaneous coronary intervention between 2018 and 2021 were enrolled and, based on the admission anti-diabetic therapy, divided into SGLT-I users versus non-SGLT2-I users. The primary endpoint was defined as a composite of cardiovascular death, recurrent AMI, and hospitalization for HF (MACE). Secondary outcomes included i) in-hospital cardiovascular death, recurrent AMI, occurrence of arrhythmias, and contrast-induced acute kidney injury (CI-AKI); ii) long-term cardiovascular mortality, recurrent AMI, heart failure (HF) hospitalization. RESULTS The study population consisted of 646 AMI patients (with or without ST-segment elevation): 111 SGLT2-I users and 535 non-SGLT-I users. The use of SGLT2-I was associated with a significantly lower in-hospital cardiovascular death, arrhythmic burden, and occurrence of CI-AKI (all p < 0.05). During a median follow-up of 24 ± 13 months, the primary composite endpoint, as well as cardiovascular mortality and HF hospitalization were lower for SGLT2-I users compared to non-SGLT2-I patients (p < 0.04 for all). After adjusting for confounding factors, the use of SGLT2-I was identified as independent predictor of reduced MACE occurrence (HR=0.57; 95%CI:0.33-0.99; p = 0.039) and HF hospitalization (HR=0.46; 95%CI:0.21-0.98; p = 0.041). CONCLUSIONS In T2DM AMI patients, the use of SGLT2-I was associated with a lower risk of adverse cardiovascular outcomes during index hospitalization and long-term follow-up. Our findings provide new insights into the cardioprotective effects of SGLT2-I in the setting of AMI. REGISTRATION Data are part of the observational international registry: SGLT2-I AMI PROTECT. CLINICALTRIALS gov Identifier: NCT05261867.
Collapse
Affiliation(s)
- Pasquale Paolisso
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Dept. of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Luca Bergamaschi
- Unit of Cardiology, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Sant'Orsola-Malpighi Hospital, IRCCS, Bologna, Italy
| | - Felice Gragnano
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy; Division of Cardiology, A.O.R.N. "Sant'Anna e San Sebastiano", Caserta, Italy
| | - Emanuele Gallinoro
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Arturo Cesaro
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy; Division of Cardiology, A.O.R.N. "Sant'Anna e San Sebastiano", Caserta, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Niya Mileva
- Cardiology Clinic, "Alexandrovska" University Hospital, Medical University of Sofia, Sofia, Bulgaria
| | - Alberto Foà
- Unit of Cardiology, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Sant'Orsola-Malpighi Hospital, IRCCS, Bologna, Italy
| | - Matteo Armillotta
- Unit of Cardiology, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Sant'Orsola-Malpighi Hospital, IRCCS, Bologna, Italy
| | - Angelo Sansonetti
- Unit of Cardiology, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Sant'Orsola-Malpighi Hospital, IRCCS, Bologna, Italy
| | - Sara Amicone
- Unit of Cardiology, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Sant'Orsola-Malpighi Hospital, IRCCS, Bologna, Italy
| | - Andrea Impellizzeri
- Unit of Cardiology, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Sant'Orsola-Malpighi Hospital, IRCCS, Bologna, Italy
| | - Giuseppe Esposito
- Dept. of Advanced Biomedical Sciences, University Federico II, Naples, Italy; Interventional Cardiology Unit, De Gasperis Cardio Center, Niguarda Hospital, Milan, Italy
| | - Nuccia Morici
- IRCCS S. Maria Nascente - Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Oreglia Jacopo Andrea
- Interventional Cardiology Unit, De Gasperis Cardio Center, Niguarda Hospital, Milan, Italy
| | | | - Ciro Mauro
- Department of Cardiology, Hospital Cardarelli, Naples, Italy
| | | | - Nazzareno Galie
- Unit of Cardiology, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Sant'Orsola-Malpighi Hospital, IRCCS, Bologna, Italy
| | - Gaetano Santulli
- Dept. of Advanced Biomedical Sciences, University Federico II, Naples, Italy; International Translational Research and Medical Education (ITME) Consortium, Naples, Italy; Department of Medicine (Division of Cardiology) and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, USA
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Mediterranea Cardiocentro, Naples, Italy
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy; Division of Cardiology, A.O.R.N. "Sant'Anna e San Sebastiano", Caserta, Italy
| | - Carmine Pizzi
- Unit of Cardiology, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Sant'Orsola-Malpighi Hospital, IRCCS, Bologna, Italy.
| | | |
Collapse
|
165
|
Gao Z, Bao J, Hu Y, Tu J, Ye L, Wang L. Sodium-glucose Cotransporter 2 Inhibitors and Pathological Myocardial Hypertrophy. Curr Drug Targets 2023; 24:1009-1022. [PMID: 37691190 PMCID: PMC10879742 DOI: 10.2174/1389450124666230907115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new type of oral hypoglycemic drugs that exert a hypoglycemic effect by blocking the reabsorption of glucose in the proximal renal tubules, thus promoting the excretion of glucose from urine. Their hypoglycemic effect is not dependent on insulin. Increasing data shows that SGLT2 inhibitors improve cardiovascular outcomes in patients with type 2 diabetes. Previous studies have demonstrated that SGLT2 inhibitors can reduce pathological myocardial hypertrophy with or without diabetes, but the exact mechanism remains to be elucidated. To clarify the relationship between SGLT2 inhibitors and pathological myocardial hypertrophy, with a view to providing a reference for the future treatment thereof, this study reviewed the possible mechanisms of SGLT2 inhibitors in attenuating pathological myocardial hypertrophy. We focused specifically on the mechanisms in terms of inflammation, oxidative stress, myocardial fibrosis, mitochondrial function, epicardial lipids, endothelial function, insulin resistance, cardiac hydrogen and sodium exchange, and autophagy.
Collapse
Affiliation(s)
- Zhicheng Gao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiaqi Bao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yilan Hu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Junjie Tu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Lifang Ye
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lihong Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
166
|
Monitoring Cardiovascular Problems in Heart Patients Using Machine Learning. JOURNAL OF HEALTHCARE ENGINEERING 2023; 2023:9738123. [PMID: 36818386 PMCID: PMC9931474 DOI: 10.1155/2023/9738123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/06/2022] [Accepted: 11/25/2022] [Indexed: 02/10/2023]
Abstract
The World Health Organization reports that heart disease is the most common cause of death globally, accounting for 17.9 million fatalities annually. The fundamentals of a cure, it is thought, are important symptoms and recognition of the illness. Traditional techniques are facing many challenges, ranging from delayed or unnecessary treatment to incorrect diagnoses, which can affect treatment progress, increase the bill, and give the disease more time to spread and harm the patient's body. Such errors could be avoided and minimized by employing ML and AI techniques. Many significant efforts have been made in recent years to increase computer-aided diagnosis and detection applications, which is a rapidly growing area of research. Machine learning algorithms are especially important in CAD, which is used to detect patterns in medical data sources and make nontrivial predictions to assist doctors and clinicians in making timely decisions. This study aims to develop multiple methods for machine learning using the UCI set of data based on individuals' medical attributes to aid in the early detection of cardiovascular disease. Various machine learning techniques are used to evaluate and review the results of the UCI machine learning heart disease dataset. The proposed algorithms had the highest accuracy, with the random forest classifier achieving 96.72% and the extreme gradient boost achieving 95.08%. This will assist the doctor in taking appropriate actions. The proposed technology will only be able to determine whether or not a person has a heart issue. The severity of heart disease cannot be determined using this method.
Collapse
|
167
|
Dong M, Chen H, Wen S, Yuan Y, Yang L, Xu D, Zhou L. The Mechanism of Sodium-Glucose Cotransporter-2 Inhibitors in Reducing Uric Acid in Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2023; 16:437-445. [PMID: 36820272 PMCID: PMC9938669 DOI: 10.2147/dmso.s399343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Hyperuricemia is a common comorbidity in patients with type 2 diabetes mellitus (T2DM), as insulin resistance (IR) or hyperinsulinemia is associated with higher serum uric acid (SUA) levels due to decreased uric acid (UA) secretion, and SUA vice versa is an important risk factor that promotes the occurrence and progression of T2DM and its complications. Growing evidence suggests that sodium-glucose cotransporter 2 inhibitors (SGLT-2i), a novel anti-diabetic drug initially developed to treat T2DM, may exert favorable effects in reducing SUA. Currently, one of the possible mechanisms is that SGLT2i increases urinary glucose excretion, probably inhibiting glucose transport 9 (GLUT9)-mediated uric acid reabsorption in the collecting duct, resulting in increased uric acid excretion in exchange for glucose reabsorption. Regardless of this possible mechanism, the underlying comprehensive mechanisms remain poorly elucidated. Therefore, in the present review, a variety of other potential mechanisms will be covered to identify the therapeutic role of SGLT-2i in hyperuricemia.
Collapse
Affiliation(s)
- Meiyuan Dong
- Graduate School of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Huiling Chen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yue Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Liling Yang
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Dongxiang Xu
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Ligang Zhou
- Graduate School of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
- Correspondence: Ligang Zhou, Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China, Tel +8613611927616, Email
| |
Collapse
|
168
|
Toll-like receptors 2 and 4 stress signaling and sodium-glucose cotransporter-2 in kidney disease. Mol Cell Biochem 2022:10.1007/s11010-022-04652-5. [PMID: 36586092 DOI: 10.1007/s11010-022-04652-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
Kidney disease is the 6th fastest-growing cause of death and a serious global health concern that urges effective therapeutic options. The inflammatory response is an initial reaction from immune and parenchymal cells in kidney diseases. Toll-like receptors (TLR) 2 and 4 are highly expressed by various kidney cells and respond to 'signaling danger' proteins, such as high mobility group box binding protein 1 (HMGB1) and prompt the progression of kidney disease by releasing inflammatory mediators. Burgeoning reports suggest that both SGLT2 and ER stress elevates TLR2/4 signaling via different axis. Moreover, SGLT2 signaling aggravates inflammation under the disease condition by promoting the NLR family pyrin domain-containing three inflammasomes and ER stress. Intriguingly, TLR2/4 downstream adaptors activate ER stress regulators. The above-discussed interactions imply that TLR2/4 does more than immune response during kidney disease. Here, we discuss in detail evidence of the roles and regulation of TLR2/4 in the context of a relationship between ER stress and SGLT2. Also, we highlighted different preclinical studies of SGLT2 inhibitors against TLR2/4 signaling in various kidney diseases. Moreover, we discuss the observational and interventional evidence about the relation between TLR2/4, ER stress, and SGLT2, which may represent the TLR2/4 as a potential therapeutic target for kidney disease.
Collapse
|
169
|
Chen X, Wang J, Lin Y, Liu Y, Zhou T. Signaling Pathways of Podocyte Injury in Diabetic Kidney Disease and the Effect of Sodium-Glucose Cotransporter 2 Inhibitors. Cells 2022; 11:3913. [PMID: 36497173 PMCID: PMC9736207 DOI: 10.3390/cells11233913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the most important comorbidities for patients with diabetes, and its incidence has exceeded one tenth, with an increasing trend. Studies have shown that diabetes is associated with a decrease in the number of podocytes. Diabetes can induce apoptosis of podocytes through several apoptotic pathways or induce autophagy of podocytes through related pathways. At the same time, hyperglycemia can also directly lead to apoptosis of podocytes, and the related inflammatory reactions are all harmful to podocytes. Podocyte damage is often accompanied by the production of proteinuria and the progression of DKD. As a new therapeutic agent for diabetes, sodium-glucose cotransporter 2 inhibitors (SGLT2i) have been demonstrated to be effective in the treatment of diabetes and the improvement of terminal outcomes in many rodent experiments and clinical studies. At the same time, SGLT2i can also play a protective role in diabetes-induced podocyte injury by improving the expression of nephrotic protein defects and inhibiting podocyte cytoskeletal remodeling. Some studies have also shown that SGLT2i can play a role in inhibiting the apoptosis and autophagy of cells. However, there is no relevant study that clearly indicates whether SGLT2i can also play a role in the above pathways in podocytes. This review mainly summarizes the damage to podocyte structure and function in DKD patients and related signaling pathways, as well as the possible protective mechanism of SGLT2i on podocyte function.
Collapse
Affiliation(s)
- Xiutian Chen
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Jiali Wang
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Yongda Lin
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Yiping Liu
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Tianbiao Zhou
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
170
|
Avogaro A, de Kreutzenberg SV, Morieri ML, Fadini GP, Del Prato S. Glucose-lowering drugs with cardiovascular benefits as modifiers of critical elements of the human life history. Lancet Diabetes Endocrinol 2022; 10:882-889. [PMID: 36182702 DOI: 10.1016/s2213-8587(22)00247-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022]
Abstract
The life history theory assumes that all organisms are under selective pressure to harvest external resources and allocate them to maximise fitness: only organisms making the best use of energy obtain the greatest fitness benefits. The trade-off of energy spans four functions: maintenance, growth, reproduction, and defence against pathogens. The innovative antihyperglycaemic agents glucagon-like peptide 1 (GLP-1) receptor agonists and sodium-glucose cotransporter 2 (SGLT2) inhibitors decrease bodyweight and have the potential to counter low-grade inflammation. These key activities could rewire two components of the life history theory operative in adulthood-ie, maintenance and defence. In this Personal View, we postulate that the benefits of these medications on the cardiovascular system, beyond their glucose-lowering effects, could be mediated by the reduction of the maintenance cost driven by obesity and efforts spent on blunting low-grade inflammation.
Collapse
Affiliation(s)
- Angelo Avogaro
- Section of Diabetes and Metabolic Diseases, Department of Medicine, University of Padova, Padova, Italy.
| | | | - Mario Luca Morieri
- Section of Diabetes and Metabolic Diseases, Department of Medicine, University of Padova, Padova, Italy
| | - Gian Paolo Fadini
- Section of Diabetes and Metabolic Diseases, Department of Medicine, University of Padova, Padova, Italy
| | - Stefano Del Prato
- Section of Diabetes and Metabolic Diseases, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
171
|
Anan G, Hirose T, Kikuchi D, Takahashi C, Endo A, Ito H, Sato S, Nakayama S, Hashimoto H, Ishiyama K, Kimura T, Takahashi K, Sato M, Mori T. Inhibition of sodium-glucose cotransporter 2 suppresses renal stone formation. Pharmacol Res 2022; 186:106524. [PMID: 36349594 DOI: 10.1016/j.phrs.2022.106524] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND AIMS Nephrolithiasis is a common renal disease with no effective medication. Sodium-glucose cotransporter-2 (SGLT2) inhibitors, an anti-diabetic agent, have diuretic and anti-inflammatory properties and could prevent nephrolithiasis. Here, we investigated the potential of SGLT2 inhibition against nephrolithiasis using large-scale epidemiological data, animal models, and cell culture experiments. METHODS This study included the data of diabetic patients (n = 1,538,198) available in the Japanese administrative database and divided them according to SGLT2 inhibitor prescription status. For animal experiments, renal calcium oxalate stones were induced by ethylene glycol in Sprague-Dawley rats, and phlorizin, an SGLT1/2 inhibitor, was used for the treatment. The effects of SGLT2-specific inhibition for renal stone formation were assessed in SGLT2-deficient mice and a human proximal tubular cell line, HK-2. RESULTS Nephrolithiasis prevalence in diabetic men was significantly lower in the SGLT2 inhibitor prescription group than in the non-SGLT2 inhibitor prescription group. Phlorizin attenuated renal stone formation and downregulated the kidney injury molecule 1 (Kim1) and osteopontin (Opn) expression in rats, with unchanged water intake and urine volume. It suppressed inflammation and macrophage marker expression, suggesting the role of the SGLT2 inhibitor in reducing inflammation. SGLT2-deficient mice were resistant to glyoxylic acid-induced calcium oxalate stone formation with reduced Opn expression and renal damages. High glucose-induced upregulation of OPN and CD44 and cell surface adhesion of calcium oxalate reduced upon SGLT2-silencing in HK-2 cells. CONCLUSION Overall, our findings identified that SGLT2 inhibition prevents renal stone formation and may be a promising therapeutic approach against nephrolithiasis.
Collapse
Affiliation(s)
- Go Anan
- Department of Urology, Tohoku Medical and Pharmaceutical University, Sendai, Japan; Department of Urology, Yotsuya Medical Cube, Tokyo, Japan
| | - Takuo Hirose
- Division of Nephrology and Endocrinology, Tohoku Medical and Pharmaceutical University, Sendai, Japan; Division of Integrative Renal Replacement Therapy, Tohoku Medical and Pharmaceutical University, Sendai, Japan; Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Daisuke Kikuchi
- Department of Pharmacy, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Japan
| | - Chika Takahashi
- Division of Integrative Renal Replacement Therapy, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Akari Endo
- Division of Nephrology and Endocrinology, Tohoku Medical and Pharmaceutical University, Sendai, Japan; Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroki Ito
- Division of Nephrology and Endocrinology, Tohoku Medical and Pharmaceutical University, Sendai, Japan; Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigemitsu Sato
- Division of Integrative Renal Replacement Therapy, Tohoku Medical and Pharmaceutical University, Sendai, Japan; Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shingo Nakayama
- Division of Nephrology and Endocrinology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Hideaki Hashimoto
- Division of Nephrology and Endocrinology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Katsuya Ishiyama
- Division of Nephrology and Endocrinology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomoyoshi Kimura
- Division of Nephrology and Endocrinology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kazuhiro Takahashi
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Sato
- Department of Urology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Takefumi Mori
- Division of Nephrology and Endocrinology, Tohoku Medical and Pharmaceutical University, Sendai, Japan; Division of Integrative Renal Replacement Therapy, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
172
|
Negishi Y, Shima Y, Kato M, Ichikawa T, Ino H, Horii Y, Suzuki S, Morita R. Inflammation in preterm birth: Novel mechanism of preterm birth associated with innate and acquired immunity. J Reprod Immunol 2022; 154:103748. [PMID: 36126439 DOI: 10.1016/j.jri.2022.103748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/26/2022] [Accepted: 09/11/2022] [Indexed: 12/14/2022]
Abstract
Preterm birth (PB) is the most-frequent complication occurring during pregnancy, with a significant impact on neonatal morbidity and mortality. Chorioamnionitis (CAM), the neutrophil infiltration into chorioamniotic membranes, is a major cause of PB. However, several cases of PB have also been reported without apparent pathogenic infection or CAM. Such cases are now attributed to "sterile inflammation." The concept of sterile inflammation has already attracted attention in various diseases, like cardiovascular diseases, diabetes, and autoimmune diseases; recently been discussed for obstetric complications such as miscarriage, PB, gestational hypertension, and gestational diabetes. Sterile inflammation is induced by alarmins, such as high-mobility group box 1 (HMGB1), interleukins (IL-33 and IL-1α), and S100 proteins, that are released by cellular damage without apparent pathogenic infection. These antigens are recognized by pattern-recognition receptors, expressed mainly on antigen-presenting cells of decidua, placenta, amnion, and myometrium, which consequently trigger inflammation. In reproduction, these alarmins are associated with the development of various pregnancy complications, including PB. In this review, we have summarized the development of PB related to acute CAM, chronic CAM, and sterile inflammation as well as proposed a new mechanism for PB that involves innate immunity, acquired immunity, and sterile inflammation.
Collapse
Affiliation(s)
- Yasuyuki Negishi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan; Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan.
| | - Yoshio Shima
- Department of Pediatrics, Nippon Medical School Musashikosugi Hospital, Kanagawa, Japan.
| | - Masahiko Kato
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan.
| | - Tomoko Ichikawa
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan.
| | - Hajime Ino
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan; Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan.
| | - Yumi Horii
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan; Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan.
| | - Shunji Suzuki
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan.
| | - Rimpei Morita
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan.
| |
Collapse
|
173
|
Kim D, Jang G, Hwang J, Wei X, Kim H, Son J, Rhee SJ, Yun KH, Oh SK, Oh CM, Park R. Combined Therapy of Low-Dose Angiotensin Receptor-Neprilysin Inhibitor and Sodium-Glucose Cotransporter-2 Inhibitor Prevents Doxorubicin-Induced Cardiac Dysfunction in Rodent Model with Minimal Adverse Effects. Pharmaceutics 2022; 14:pharmaceutics14122629. [PMID: 36559124 PMCID: PMC9788442 DOI: 10.3390/pharmaceutics14122629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Although cancer-therapy-related cardiac dysfunction (CTRCD) is a critical issue in clinical practice, there is a glaring lack of evidence regarding cardiotoxicity management. To determine an effective and suitable dosage of treatment using angiotensin receptor-neprilysin inhibitors (ARNI) with sodium-glucose cotransporter 2 inhibitors (SGLT2i), we adopted a clinically relevant rodent model with doxorubicin, which would mimic cardiac dysfunction in CTRCD patients. After the oral administration of drugs (vehicle, SGLT2i, ARNI, Low-ARNI/SGLT2i, ARNI/SGLT2i), several physiologic parameters, including hemodynamic change, cardiac function, and histopathology, were evaluated. Bulk RNA-sequencing was performed to obtain insights into the molecular basis of a mouse heart response to Low-ARNI/SGLT2i treatment. For the first time, we report that the addition of low-dose ARNI with SGLT2i resulted in greater benefits than ARNI, SGLT2i alone or ARNI/SGLT2i combination in survival rate, cardiac function, hemodynamic change, and kidney function against doxorubicin-induced cardiotoxicity through peroxisome proliferator-activated receptor signaling pathway. Low-dose ARNI with SGLT2i combination treatment would be practically beneficial for improving cardiac functions against doxorubicin-induced heart failure with minimal adverse effects. Our findings suggest the Low-ARNI/SGLT2i combination as a feasible novel strategy in managing CTRCD patients.
Collapse
Affiliation(s)
- Donghyun Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Gyuho Jang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jaetaek Hwang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Xiaofan Wei
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyunsoo Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jinbae Son
- CNCure Biotech, Hwasun 58128, Republic of Korea
| | - Sang-Jae Rhee
- Department of Cardiovascular Medicine, Regional Cardiocerebrovascular Center, Wonkwang University Hospital, Iksan 54538, Republic of Korea
| | - Kyeong-Ho Yun
- Department of Cardiovascular Medicine, Regional Cardiocerebrovascular Center, Wonkwang University Hospital, Iksan 54538, Republic of Korea
| | - Seok-Kyu Oh
- Department of Cardiovascular Medicine, Regional Cardiocerebrovascular Center, Wonkwang University Hospital, Iksan 54538, Republic of Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
- Correspondence: ; Tel.: +82-62-715-5361; Fax: +82-62-715-3244
| |
Collapse
|
174
|
Lee H, Kim H, Jeon JS, Noh H, Park R, Byun DW, Kim HJ, Suh K, Park HK, Kwon SH. Empagliflozin suppresses urinary mitochondrial DNA copy numbers and interleukin-1β in type 2 diabetes patients. Sci Rep 2022; 12:19103. [PMID: 36351983 PMCID: PMC9646895 DOI: 10.1038/s41598-022-22083-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors improve cardiovascular and renal outcomes in type 2 diabetes mellitus (T2DM) patients. However, the mechanisms by which SGLT2 inhibitors improve the clinical outcomes remain elusive. We evaluated whether empagliflozin, an SGLT2 inhibitor, ameliorates mitochondrial dysfunction and inflammatory milieu of the kidneys in T2DM patients. We prospectively measured copy numbers of urinary and serum mitochondrial DNA (mtDNA) nicotinamide adenine dinucleotide dehydrogenase subunit-1 (mtND-1) and cytochrome-c oxidase 3 (mtCOX-3) and urinary interleukin-1β (IL-1β) in healthy volunteers (n = 22), in SGLT2 inhibitor-naïve T2DM patients (n = 21) at baseline, and in T2DM patients after 3 months of treatment with empagliflozin (10 mg, n = 17 or 25 mg, n = 4). Both urinary mtDNA copy numbers and IL-1β levels were higher in the T2DM group than in healthy volunteers. Baseline copy numbers of serum mtCOX-3 in the T2DM group were lower than those in healthy volunteers. Empagliflozin induced marked reduction in both urinary and serum mtND-1 and mtCOX-3 copy numbers, as well as in urinary IL-1β. Empagliflozin could attenuate mitochondrial damage and inhibit inflammatory response in T2DM patients. This would explain the beneficial effects of SGLT2 inhibitors on cardiovascular and renal outcomes.
Collapse
Affiliation(s)
- Haekyung Lee
- grid.412678.e0000 0004 0634 1623Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Hyoungnae Kim
- grid.412678.e0000 0004 0634 1623Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea ,grid.412678.e0000 0004 0634 1623Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Jin Seok Jeon
- grid.412678.e0000 0004 0634 1623Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea ,grid.412678.e0000 0004 0634 1623Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Hyunjin Noh
- grid.412678.e0000 0004 0634 1623Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea ,grid.412678.e0000 0004 0634 1623Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Rojin Park
- grid.412678.e0000 0004 0634 1623Department of Laboratory Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Dong Won Byun
- grid.412678.e0000 0004 0634 1623Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Hye Jeong Kim
- grid.412678.e0000 0004 0634 1623Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Kyoil Suh
- grid.412678.e0000 0004 0634 1623Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Hyeong Kyu Park
- grid.412678.e0000 0004 0634 1623Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Soon Hyo Kwon
- grid.412678.e0000 0004 0634 1623Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea ,grid.412678.e0000 0004 0634 1623Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| |
Collapse
|
175
|
Zhang J, Zhang F, Ge J. SGLT2 inhibitors protect cardiomyocytes from myocardial infarction: a direct mechanism? Future Cardiol 2022; 18:867-882. [PMID: 36111579 DOI: 10.2217/fca-2022-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
SGLT2 inhibitors have been developed as a novel class of glucose-lowering drugs affecting reabsorption of glucose and metabolic processes. They have been recently identified to be remarkably favorable in treating cardiovascular diseases, especially heart failure. Preclinical experiments have shown that SGLT2 inhibitors could hinder the progression of myocardial infarction and alleviate cardiac remodeling by mechanisms of metabolism influence, autophagy induction, inflammation attenuation and fibrosis reduction. Here we summarize the direct mechanism of SGLT2 inhibitors on myocardial infarction and investigate whether it could be applied to the clinic in improving cardiac function and healing after myocardial infarction.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Feng Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
176
|
Chen X, Huang L, Cui L, Xiao Z, Xiong X, Chen C. Sodium-glucose cotransporter 2 inhibitor ameliorates high fat diet-induced hypothalamic-pituitary-ovarian axis disorders. J Physiol 2022; 600:4549-4568. [PMID: 36048516 PMCID: PMC9826067 DOI: 10.1113/jp283259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/16/2022] [Indexed: 01/11/2023] Open
Abstract
High-fat diet (HFD) consumption is known to be associated with ovulatory disorders among women of reproductive age. Previous studies in animal models suggest that HFD-induced microglia activation contributes to hypothalamic inflammation. This causes the dysfunction of the hypothalamic-pituitary-ovarian (HPO) axis, leading to subfertility. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a novel class of lipid-soluble antidiabetic drugs that target primarily the early proximal tubules in kidney. Recent evidence revealed an additional expression site of SGLT2 in the central nervous system (CNS), indicating a promising role of SGLT2 inhibitors in the CNS. In type 2 diabetes patients and rodent models, SGLT2 inhibitors exhibit neuroprotective properties through reduction of oxidative stress, alleviation of cerebral atherosclerosis and suppression of microglia-induced neuroinflammation. Furthermore, clinical observations in patients with polycystic ovary syndrome (PCOS) demonstrated that SGLT2 inhibitors ameliorated patient anthropometric parameters, body composition and insulin resistance. Therefore, it is of importance to explore the central mechanism of SGLT2 inhibitors in the recovery of reproductive function in patients with PCOS and obesity. Here, we review the hypothalamic inflammatory mechanisms of HFD-induced microglial activation, with a focus on the clinical utility and possible mechanism of SGLT2 inhibitors in promoting reproductive fitness.
Collapse
Affiliation(s)
- Xiaolin Chen
- Department of EndocrinologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Lili Huang
- School of Biomedical ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Ling Cui
- Department of Reproduction and InfertilityChengdu Women's and Children's Central HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Zhuoni Xiao
- Reproductive Medical CenterRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xiaoxing Xiong
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Chen Chen
- School of Biomedical ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
177
|
Arai T, Atsukawa M, Tsubota A, Mikami S, Haruki U, Yoshikata K, Ono H, Kawano T, Yoshida Y, Tanabe T, Okubo T, Hayama K, Nakagawa‐Iwashita A, Itokawa N, Kondo C, Kaneko K, Nagao M, Inagaki K, Fukuda I, Sugihara H, Iwakiri K. Antifibrotic effect and long-term outcome of SGLT2 inhibitors in patients with NAFLD complicated by diabetes mellitus. Hepatol Commun 2022; 6:3073-3082. [PMID: 36039537 PMCID: PMC9592771 DOI: 10.1002/hep4.2069] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this retrospective multicenter study was to clarify the antifibrotic effect and long-term outcome of sodium glucose cotransporter 2 inhibitors (SGLT2-Is) in patients with nonalcoholic fatty liver disease (NAFLD) complicated by type 2 diabetes mellitus (T2DM). Of the 1262 consecutive patients with T2DM who recently received SGLT2-Is, 202 patients with NAFLD had been receiving SGLT2-Is for more than 48 weeks and were subjected to this analysis. Furthermore, 109 patients who had been on SGLT2-I therapy for more than 3 years at the time of analysis were assessed for the long-term effects of SGLT2-Is. Significant decreases in body weight, liver transaminases, plasma glucose, hemoglobin A1c, and Fibrosis-4 (FIB-4) index were found at week 48. Overall, the median value of FIB-4 index decreased from 1.42 at baseline to 1.25 at week 48 (p < 0.001). In the low-risk group (FIB-4 index < 1.3), there was no significant change in the FIB-4 index. In the intermediate-risk (≥1.3 and <2.67) and high-risk (≥2.67) groups, the median levels significantly decreased from 1.77 and 3.33 at baseline to 1.58 and 2.75 at week 48, respectively (p < 0.001 for both). Improvements in body weight, glucose control, liver transaminases, and FIB-4 index were found at 3 years of SGLT2-I treatment. In the intermediate-risk and high-risk groups (≥1.3 FIB-4 index), the FIB-4 index maintained a significant reduction from baseline throughout the 3 years of treatment. Conclusion: This study showed that SGLT2-Is offered a favorable effect on improvement in FIB-4 index as a surrogate marker of liver fibrosis in patient with NAFLD complicated by T2DM, especially those with intermediate and high risks of advanced fibrosis, and this antifibrotic effect is sustained for the long term.
Collapse
Affiliation(s)
- Taeang Arai
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Masanori Atsukawa
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Akihito Tsubota
- Core Research Facilities for Basic Science, Research Center for Medical SciencesThe Jikei University School of MedicineTokyoJapan
| | - Shigeru Mikami
- Division of Gastroenterology, Department of Internal MedicineKikkoman General HospitalMiyazaki NodaJapan
| | - Uojima Haruki
- Department of Gastroenterology, Internal MedicineKitasato University School of MedicineSagamiharaJapan
| | | | - Hiroki Ono
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Tadamichi Kawano
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Yuji Yoshida
- Division of GastroenterologyNippon Medical School Chiba Hokusoh HospitalChibaJapan
| | - Tomohide Tanabe
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Tomomi Okubo
- Division of GastroenterologyNippon Medical School Chiba Hokusoh HospitalChibaJapan
| | - Korenobu Hayama
- Division of GastroenterologyNippon Medical School Chiba Hokusoh HospitalChibaJapan
| | | | - Norio Itokawa
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Chisa Kondo
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Keiko Kaneko
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Mototsugu Nagao
- Division of Endocrinology, Diabetes and MetabolismNippon Medical SchoolTokyoJapan
| | - Kyoko Inagaki
- Division of Endocrinology, Diabetes and MetabolismNippon Medical SchoolTokyoJapan
| | - Izumi Fukuda
- Division of Endocrinology, Diabetes and MetabolismNippon Medical SchoolTokyoJapan
| | - Hitoshi Sugihara
- Division of Endocrinology, Diabetes and MetabolismNippon Medical SchoolTokyoJapan
| | - Katsuhiko Iwakiri
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| |
Collapse
|
178
|
Wu YJ, Wang SB, Wang LS. SGLT2 Inhibitors: New Hope for the Treatment of Acute Myocardial Infarction? Am J Cardiovasc Drugs 2022; 22:601-613. [PMID: 35947249 DOI: 10.1007/s40256-022-00545-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 11/01/2022]
Abstract
Among all of the new antidiabetic drugs, an increasing number of studies have evaluated the relationship between the sodium-glucose cotransporter 2 inhibitors (SGLT2i) and acute myocardial infarction (AMI). Since SGLT2i like empagliflozin, canagliflozin, and recently, dapagliflozin have shown impressive positive effects in patients with chronic heart failure with reduced ejection fraction (HFrEF), it has increased research interest to explore the cardiac molecular mechanisms underlying the clinical benefits and attracted more attention to the effects of SGLT2i on a series of cardiovascular events. Experimental and clinical data on SGLT2i treatment after AMI is limited. This is a review of the clinical and preclinical effects of SGLT2i, focusing on available data on the effects of SGLT2i in AMI patients with a brief overview of ongoing trials.
Collapse
Affiliation(s)
- Yu-Jie Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Si-Bo Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Lian-Sheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
179
|
Lee CH, Wu MZ, Lui DTW, Chan DSH, Fong CHY, Shiu SWM, Wong Y, Lee ACH, Lam JKY, Woo YC, Lam KSL, Yiu KKH, Tan KCB. Comparison of Serum Ketone Levels and Cardiometabolic Efficacy of Dapagliflozin versus Sitagliptin among Insulin-Treated Chinese Patients with Type 2 Diabetes Mellitus. Diabetes Metab J 2022; 46:843-854. [PMID: 35483674 PMCID: PMC9723203 DOI: 10.4093/dmj.2021.0319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/16/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Insulin-treated patients with long duration of type 2 diabetes mellitus (T2DM) are at increased risk of ketoacidosis related to sodium-glucose co-transporter 2 inhibitor (SGLT2i). The extent of circulating ketone elevation in these patients remains unknown. We conducted this study to compare the serum ketone response between dapagliflozin, an SGLT2i, and sitagliptin, a dipeptidyl peptidase-4 inhibitor, among insulin-treated T2DM patients. METHODS This was a randomized, open-label, active comparator-controlled study involving 60 insulin-treated T2DM patients. Participants were randomized 1:1 for 24-week of dapagliflozin 10 mg daily or sitagliptin 100 mg daily. Serum β-hydroxybutyrate (BHB) levels were measured at baseline, 12 and 24 weeks after intervention. Comprehensive cardiometabolic assessments were performed with measurements of high-density lipoprotein cholesterol (HDL-C) cholesterol efflux capacity (CEC), vibration-controlled transient elastography and echocardiography. RESULTS Among these 60 insulin-treated participants (mean age 58.8 years, diabetes duration 18.2 years, glycosylated hemoglobin 8.87%), as compared with sitagliptin, serum BHB levels increased significantly after 24 weeks of dapagliflozin (P=0.045), with a median of 27% increase from baseline. Change in serum BHB levels correlated significantly with change in free fatty acid levels. Despite similar glucose lowering, dapagliflozin led to significant improvements in body weight (P=0.006), waist circumference (P=0.028), HDL-C (P=0.041), CEC (P=0.045), controlled attenuation parameter (P=0.007), and liver stiffness (P=0.022). Average E/e', an echocardiographic index of left ventricular diastolic dysfunction, was also significantly lower at 24 weeks in participants treated with dapagliflozin (P=0.037). CONCLUSION Among insulin-treated T2DM patients with long diabetes duration, compared to sitagliptin, dapagliflozin modestly increased ketone levels and was associated with cardiometabolic benefits.
Collapse
Affiliation(s)
- Chi-Ho Lee
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
| | - Mei-Zhen Wu
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - David Tak-Wai Lui
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Darren Shing-Hei Chan
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Carol Ho-Yi Fong
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Sammy Wing-Ming Shiu
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Ying Wong
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Alan Chun-Hong Lee
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Joanne King-Yan Lam
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Yu-Cho Woo
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Karen Siu-Ling Lam
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
| | - Kelvin Kai-Hang Yiu
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Kathryn Choon-Beng Tan
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
- Corresponding author: Kathryn Choon-Beng Tan https://orcid.org/0000-0001-9037-0416 Department of Medicine, Queen Mary Hospital, University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong, China E-mail:
| |
Collapse
|
180
|
Repurposing SGLT-2 Inhibitors to Target Aging: Available Evidence and Molecular Mechanisms. Int J Mol Sci 2022; 23:ijms232012325. [PMID: 36293181 PMCID: PMC9604287 DOI: 10.3390/ijms232012325] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Caloric restriction promotes longevity in multiple animal models. Compounds modulating nutrient-sensing pathways have been suggested to reproduce part of the beneficial effect of caloric restriction on aging. However, none of the commonly studied caloric restriction mimetics actually produce a decrease in calories. Sodium-glucose cotransporter 2 inhibitors (SGLT2-i) are a class of drugs which lower glucose by promoting its elimination through urine, thus inducing a net loss of calories. This effect promotes a metabolic shift at the systemic level, fostering ketones and fatty acids utilization as glucose-alternative substrates, and is accompanied by a modulation of major nutrient-sensing pathways held to drive aging, e.g., mTOR and the inflammasome, overall resembling major features of caloric restriction. In addition, preliminary experimental data suggest that SGLT-2i might also have intrinsic activities independent of their systemic effects, such as the inhibition of cellular senescence. Consistently, evidence from both preclinical and clinical studies have also suggested a marked ability of SGLT-2i to ameliorate low-grade inflammation in humans, a relevant driver of aging commonly referred to as inflammaging. Considering also the amount of data from clinical trials, observational studies, and meta-analyses suggesting a tangible effect on age-related outcomes, such as cardiovascular diseases, heart failure, kidney disease, and all-cause mortality also in patients without diabetes, here we propose a framework where at least part of the benefit provided by SGLT-2i is mediated by their ability to blunt the drivers of aging. To support this postulate, we synthesize available data relative to the effect of this class on: 1- animal models of healthspan and lifespan; 2- selected molecular pillars of aging in preclinical models; 3- biomarkers of aging and especially inflammaging in humans; and 4- COVID-19-related outcomes. The burden of evidence might prompt the design of studies testing the potential employment of this class as anti-aging drugs.
Collapse
|
181
|
Prameswari HS, Putra ICS, Raffaello WM, Nathaniel M, Suhendro AS, Khalid AF, Pranata R. Managing Covid-19 in patients with heart failure: current status and future prospects. Expert Rev Cardiovasc Ther 2022; 20:807-828. [PMID: 36185009 DOI: 10.1080/14779072.2022.2132230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION COVID-19 may contribute to decompensation of previously stable chronic HF or cause a de-novo heart failure, which may come from the hyperinflammatory response and subsequent increase in metabolic demand. AREAS COVERED Two independent investigators searched MEDLINE (via PubMed), Europe PMC, and ScienceDirect databases with the following search terms: COVID-19, heart failure, COVID-19 drugs, heart failure drugs, and device therapy. All of the included full-text articles were rigorously evaluated by both authors in case there was disagreement about whether research should be included or not. In total, 157 studies were included and underwent extensive reading by the authors. EXPERT OPINION The World Health Organization (WHO) and the National Institute of Health (NIH) have published COVID-19 drug recommendations, although recommendations for HF-specific drug choices in COVID-19 are still lacking. We hope that this review can answer the void of comprehensive research data regarding the management options of HF in the COVID-19 condition so that clinicians can at least choose a more beneficial therapy or avoid combination therapies that have a high burden of side effects on HF; thus, morbidity and mortality in COVID-19 patients with HF may be reduced.
Collapse
Affiliation(s)
- Hawani Sasmaya Prameswari
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Iwan Cahyo Santosa Putra
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Michael Nathaniel
- School of Medicine and Health Sciences Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Adrian Sebastian Suhendro
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Achmad Fitrah Khalid
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Raymond Pranata
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
182
|
Sodium-Glucose Cotransporter-2 Inhibitors: Impact on Atherosclerosis and Atherosclerotic Cardiovascular Disease Events. Heart Fail Clin 2022; 18:597-607. [DOI: 10.1016/j.hfc.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
183
|
Zannad F, Ferreira JP, Gregson J, Kraus BJ, Mattheus M, Hauske SJ, Butler J, Filippatos G, Wanner C, Anker SD, Pocock SJ, Packer M. Early changes in estimated glomerular filtration rate post-initiation of empagliflozin in EMPEROR-Reduced. Eur J Heart Fail 2022; 24:1829-1839. [PMID: 35711093 DOI: 10.1002/ejhf.2578] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 11/06/2022] Open
Abstract
AIMS Sodium-glucose cotransporter 2 inhibitors (SGLT2i) may induce an early post-initiation decrease of estimated glomerular filtration rate (eGFR), which does not impact the SGLT2i benefits. The occurrence, characteristics, determinants, and clinical significance of an initial eGFR change among patients with heart failure with reduced ejection fraction require further study. In this study we aimed to describe eGFR change from randomization to week 4 (as percent of change relative to randomization) and assess its impact in EMPEROR-Reduced. METHODS AND RESULTS Landmark analyses (week 4) were performed. eGFR change was available in 3547 patients out of 3730 (95%). The tertiles of post-initiation % eGFR change for empagliflozin were: tertile 1 (T1) ≤-11.4%; T2 ≥-11.4% to ≤-1.0% and T3 ≥0.0%. The placebo group tertiles were: T1 ≤-6.5%; T2 ≥-6.4% to ≤+3.6%; and T3 ≥+3.6%. On average, empagliflozin induced a leftward distributional shift of initial eGFR changes of -2.5 ml/min/1.73 m2 versus placebo. In the empagliflozin group, after covariate adjustment, the risk of cardiovascular and renal outcomes did not differ between patients in whom early post-treatment initiation eGFR decreased (T1) and patients in whom it increased (T3). However, in the placebo group, patients in whom early post-treatment initiation eGFR decreased (T1) had a higher risk of sustained worsening kidney function and all-cause mortality compared to patients in whom eGFR increased (T3) (hazard ratio [HR] 2.38, 95% confidence interval [CI] 1.25-4.55 and HR 1.37, 95% CI 1.01-1.85, respectively). CONCLUSION A mild eGFR decrease may be expected after the initiation of empagliflozin, and it is not associated with untoward heart failure, mortality, or kidney safety events. Clinicians should not be concerned with early eGFR changes post-initiation of empagliflozin.
Collapse
Affiliation(s)
- Faiez Zannad
- Université de Lorraine, Inserm, Center d'Investigations Cliniques, - Plurithématique 14-33, and Inserm U1116, CHRU, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - João Pedro Ferreira
- Université de Lorraine, Inserm, Center d'Investigations Cliniques, - Plurithématique 14-33, and Inserm U1116, CHRU, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
- Cardiovascular Research and Development Center, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - John Gregson
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Bettina Johanna Kraus
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany
- Würzburg University Clinic, Würzburg, Germany
| | - Michaela Mattheus
- Biostatistics, Boehringer Ingelheim Pharma GmbH & Co KG, Ingelheim, Germany
| | - Sibylle Jenny Hauske
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
- Vth Department of Medicine, University Medical Center Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Javed Butler
- Baylor Scott and White Research Institute, TX and University of Mississippi, Jackson, MS, USA
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | | | - Stefan D Anker
- Department of Cardiology (CVK), and Berlin Institute of Health Center for Regenerative Therapies, German Center for Cardiovascular Research Partner Site Berlin, Charité Universitätsmedizin, Berlin, Germany
| | - Stuart J Pocock
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX, USA
- Imperial College, London, UK
| |
Collapse
|
184
|
Elrakaybi A, Laubner K, Zhou Q, Hug MJ, Seufert J. Cardiovascular protection by SGLT2 inhibitors - Do anti-inflammatory mechanisms play a role? Mol Metab 2022; 64:101549. [PMID: 35863639 PMCID: PMC9352970 DOI: 10.1016/j.molmet.2022.101549] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Metabolic syndrome and related metabolic disturbances represent a state of low-grade inflammation, which accelerates insulin resistance, type 2 diabetes (T2D) and cardiovascular disease (CVD) progression. Among antidiabetic medications, sodium glucose co-transporter (SGLT) 2 inhibitors are the only agents which showed remarkable reductions in heart failure (HF) hospitalizations and major cardiovascular endpoints (MACE) as well as renal endpoints regardless of diabetes status in large randomized clinical outcome trials (RCTs). Although the exact mechanisms underlying these benefits are yet to be established, growing evidence suggests that modulating inflammation by SGLT2 inhibitors may play a key role. SCOPE OF REVIEW In this manuscript, we summarize the current knowledge on anti-inflammatory effects of SGLT2 inhibitors as one of the mechanisms potentially mediating their cardiovascular (CV) benefits. We introduce the different metabolic and systemic actions mediated by these agents which could mitigate inflammation, and further present the signalling pathways potentially responsible for their proposed direct anti-inflammatory effects. We also discuss controversies surrounding some of these mechanisms. MAJOR CONCLUSIONS SGLT2 inhibitors are promising anti-inflammatory agents by acting either indirectly via improving metabolism and reducing stress conditions or via direct modulation of inflammatory signalling pathways. These effects were achieved, to a great extent, in a glucose-independent manner which established their clinical use in HF patients with and without diabetes.
Collapse
Affiliation(s)
- Asmaa Elrakaybi
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Department of Clinical Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Katharina Laubner
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Qian Zhou
- Department of Cardiology and Angiology I, Heart Centre, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Department of Cardiology, University Hospital Basel, 4031 Basel, Switzerland
| | - Martin J Hug
- Pharmacy, Medical Centre - University of Freiburg, 79106 Freiburg, Germany
| | - Jochen Seufert
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
185
|
Zhao SS, Rajasundaram S, Karhunen V, Alam U, Gill D. Sodium-glucose cotransporter 1 inhibition and gout: Mendelian randomisation study. Semin Arthritis Rheum 2022; 56:152058. [PMID: 35839537 DOI: 10.1016/j.semarthrit.2022.152058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/03/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Sodium-glucose cotransporter 2 inhibitors (SGLT2i) reduce serum urate, but their efficacy depends on renal function which is often impaired in people with gout. SGLT1 is primarily expressed in the small intestine and its inhibition may be a more suitable therapeutic target. We aimed to investigate the association of genetically proxied SGLT1i with gout risk, serum urate levels and cardiovascular safety using Mendelian randomisation (MR). METHODS Leveraging data from a genome-wide association study of 344,182 individuals in the UK Biobank, we identified a missense variant in the SLC5A1 gene that associated with glycated haemoglobin (HbA1c) to proxy SGLT1i. Outcome genetic data comprised 13,179 gout cases and 750,634 controls, 457,690 individuals for serum urate levels, and up to 977,323 individuals for cardiovascular safety outcomes. We applied the Wald ratio method and investigated potential genetic confounding using colocalization. RESULTS The rs17683430 missense variant was selected to instrument SGLT1i. Genetically proxied SGLT1i was associated with 75% reduction in gout risk (OR 0.25; 95%CI 0.06, 0.99; p = 0.048) and 32.0 μmol/L reduction in serum urate (95%CI -56.7, -7.3; p = 0.01), per 6.7 mmol/mol reduction in HbA1c. SGLT1i was associated with increased levels of low-density lipoprotein cholesterol (0.37 mmol/L; 95%CI 0.17, 0.56; p = 0.0002) but not risk of coronary heart disease, stroke, or chronic kidney disease. Colocalization did not suggest that results are attributable to genetic confounding. CONCLUSION SGLT1 inhibition may represent a novel therapeutic option for preventing gout in people with or without comorbid diabetes. Randomised trials are needed to formally investigate efficacy and safety.
Collapse
Affiliation(s)
- Sizheng Steven Zhao
- Centre for Epidemiology Versus Arthritis, Division of Musculoskeletal and Dermatological Science, School of Biological Sciences, Faculty of Biological Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| | - Skanda Rajasundaram
- Centre for Evidence-Based Medicine, University of Oxford, Oxford, UK; Faculty of Medicine, Imperial College London, London, UK
| | - Ville Karhunen
- Research Unit of Mathematical Sciences, University of Oulu, Oulu, Finland; Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Uazman Alam
- Institute of Life Course and Medical Sciences and the Pain Research Institute, University of Liverpool, Liverpool, UK; Department of Diabetes & Endocrinology, Liverpool University Hospital NHS Foundation Trust, Liverpool, UK; Division of Diabetes, Endocrinology and Gastroenterology, Institute of Human Development, University of Manchester, Manchester, UK
| | - Dipender Gill
- Centre of Excellence in Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK; Department of Epidemiology and Biostatistics, Imperial College London, London, UK; Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
186
|
Bone marrow-derived naïve B lymphocytes improve heart function after myocardial infarction: a novel cardioprotective mechanism for empagliflozin. Basic Res Cardiol 2022; 117:47. [PMID: 36171393 DOI: 10.1007/s00395-022-00956-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 01/31/2023]
Abstract
The role of adaptive immunity in myocardial recovery post myocardial infarction (MI), particularly the immune response by B lymphocytes, remains elusive. Bone marrow immune microenvironment in response to MI is remotely regulated by the hypothalamic pituitary adrenal (HPA) axis. We utilized the cardioprotective actions of SGLT2 inhibitor to identify and characterize bone marrow B cell subsets that respond to myocardial injury. Initially, we preformed ligation of left anterior descendant (LAD) coronary artery in male C57BL/6J mice to monitor the dynamic changes of immune cells across tissues. Mechanistic insights from mouse models demonstrated arrest of bone marrow B cell maturation and function 24 h post MI. A secondary MI model (twice MIs) in mice was established for the first time to evaluate the dosage-dependent cardioprotection of empagliflozin (EMPA). Single-cell RNA-Seq further demonstrated that EMPA restored bone marrow naïve B cell (B220+CD19+CD43-IgM+IgD+) counts and function. Additionally, we recruited 14 acute MI patients with single LAD disease, and profiled B cells post percutaneous coronary intervention (PCI) (compared to 18 matched no-MI controls). We revealed a positive correlation of increased B cell counts with enhanced ejection fraction in MI patients with PCI while lymphopenia was associated with patients with heart failure. Mechanistically, MI triggers the release of glucocorticoids from neuroendocrine system, inducing NHE1-mediated autophagic death of bone marrow B cells while repressing B cell progenitor proliferation and differentiation. Infusion of B cells derived from bone marrow significantly improved cardiac function and diminished infarct size post MI. These findings provide new mechanistic insights into regulation of adaptive immune response post MI, and support targeting bone marrow B cell development for improved ventricular remodeling and reduced heart failure after MI.
Collapse
|
187
|
Lecamwasam A, Ekinci EI. Novel Associations of Empagliflozin on the Gut Microbiome and Metabolome in Type 2 Diabetes. J Clin Endocrinol Metab 2022; 107:e4246-e4247. [PMID: 35674101 DOI: 10.1210/clinem/dgac329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Ashani Lecamwasam
- Department of Endocrinology, Austin Health, Victoria, Australia
- Department of Medicine, University of Melbourne, Victoria, Australia
- Department of Nephrology, Northern Health, Victoria, Australia
| | - Elif I Ekinci
- Department of Endocrinology, Austin Health, Victoria, Australia
- Department of Medicine, University of Melbourne, Victoria, Australia
- Australian Centre for Accelerating Diabetes Innovations (ACADI), The University of Melbourne, Australia
| |
Collapse
|
188
|
Li J, Zhou L, Gong H. New insights and advances of sodium-glucose cotransporter 2 inhibitors in heart failure. Front Cardiovasc Med 2022; 9:903902. [PMID: 36186974 PMCID: PMC9520058 DOI: 10.3389/fcvm.2022.903902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2is) are newly emerging insulin-independent anti-hyperglycemic agents that work independently of β-cells. Quite a few large-scale clinical trials have proven the cardiovascular protective function of SGLT2is in both diabetic and non-diabetic patients. By searching all relevant terms related to our topics over the previous 3 years, including all the names of agents and their brands in PubMed, here we review the mechanisms underlying the improvement of heart failure. We also discuss the interaction of various mechanisms proposed by diverse works of literature, including corresponding and opposing viewpoints to support each subtopic. The regulation of diuresis, sodium excretion, weight loss, better blood pressure control, stimulation of hematocrit and erythropoietin, metabolism remodeling, protection from structural dysregulation, and other potential mechanisms of SGLT2i contributing to heart failure improvement have all been discussed in this manuscript. Although some remain debatable or even contradictory, those newly emerging agents hold great promise for the future in cardiology-related therapies, and more research needs to be conducted to confirm their functionality, particularly in metabolism, Na+-H+ exchange protein, and myeloid angiogenic cells.
Collapse
Affiliation(s)
- Juexing Li
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Zhou
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Gong
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Hui Gong
| |
Collapse
|
189
|
Gliozzi M, Macrì R, Coppoletta AR, Musolino V, Carresi C, Scicchitano M, Bosco F, Guarnieri L, Cardamone A, Ruga S, Scarano F, Nucera S, Mollace R, Bava I, Caminiti R, Serra M, Maiuolo J, Palma E, Mollace V. From Diabetes Care to Heart Failure Management: A Potential Therapeutic Approach Combining SGLT2 Inhibitors and Plant Extracts. Nutrients 2022; 14:nu14183737. [PMID: 36145112 PMCID: PMC9504067 DOI: 10.3390/nu14183737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetes is a complex chronic disease, and among the affected patients, cardiovascular disease (CVD)is the most common cause of death. Consequently, the evidence for the cardiovascular benefit of glycaemic control may reduce long-term CVD rates. Over the years, multiple pharmacological approaches aimed at controlling blood glucose levels were unable to significantly reduce diabetes-related cardiovascular events. In this view, a therapeutic strategy combining SGLT2 inhibitors and plant extracts might represent a promising solution. Indeed, countering the main cardiometabolic risk factor using plant extracts could potentiate the cardioprotective action of SGLT2 inhibitors. This review highlights the main molecular mechanisms underlying these beneficial effects that could contribute to the better management of diabetic patients.
Collapse
Affiliation(s)
- Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Rita Coppoletta
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (V.M.); (C.C.); Tel./Fax: +39-0961-3694301 (V.M. & C.C.)
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (V.M.); (C.C.); Tel./Fax: +39-0961-3694301 (V.M. & C.C.)
| | - Miriam Scicchitano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Lorenza Guarnieri
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Cardamone
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Stefano Ruga
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Saverio Nucera
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Irene Bava
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Rosamaria Caminiti
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Serra
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Jessica Maiuolo
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Renato Dulbecco Institute, Lamezia Terme, 88046 Catanzaro, Italy
| |
Collapse
|
190
|
Lee SG, Kim D, Lee JJ, Lee HJ, Moon RK, Lee YJ, Lee SJ, Lee OH, Kim C, Oh J, Lee CJ, Lee YH, Park S, Jeon OH, Choi D, Hong GR, Kim JS. Dapagliflozin attenuates diabetes-induced diastolic dysfunction and cardiac fibrosis by regulating SGK1 signaling. BMC Med 2022; 20:309. [PMID: 36068525 PMCID: PMC9450279 DOI: 10.1186/s12916-022-02485-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/14/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Recent studies have reported improved diastolic function in patients administered sodium-glucose cotransporter 2 inhibitors (SGLT2i). We aimed to investigate the effect of dapagliflozin on left ventricular (LV) diastolic function in a diabetic animal model and to determine the molecular and cellular mechanisms underlying its function. METHODS A total of 30 male New Zealand white rabbits were randomized into control, diabetes, or diabetes+dapagliflozin groups (n = 10/per each group). Diabetes was induced by intravenous alloxan. Cardiac function was evaluated using echocardiography. Myocardial samples were obtained for histologic and molecular evaluation. For cellular evaluation, fibrosis-induced cardiomyoblast (H9C2) cells were obtained, and transfection was performed for mechanism analysis (serum and glucocorticoid-regulated kinase 1 (SGK1) signaling analysis). RESULTS The diabetes+dapagliflozin group showed attenuation of diastolic dysfunction compared with the diabetes group. Dapagliflozin inhibited myocardial fibrosis via inhibition of SGK1 and epithelial sodium channel (ENaC) protein, which was observed both in myocardial tissue and H9C2 cells. In addition, dapagliflozin showed an anti-inflammatory effect and ameliorated mitochondrial disruption. Inhibition of SGK1 expression by siRNA decreased and ENaC and Na+/H+ exchanger isoform 1 (NHE1) expression was confirmed as significantly reduced as siSGK1 in the diabetes+dapagliflozin group. CONCLUSIONS Dapagliflozin attenuated left ventricular diastolic dysfunction and cardiac fibrosis via regulation of SGK1 signaling. Dapagliflozin also reduced macrophages and inflammatory proteins and ameliorated mitochondrial disruption.
Collapse
Affiliation(s)
- Seul-Gee Lee
- Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Darae Kim
- Division of Cardiology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jung-Jae Lee
- Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyun-Ju Lee
- Graduate Yonsei University, Seoul, South Korea
| | - Ro-Kyung Moon
- College of Medicine, Yonsei University Seoul, Seoul, South Korea
| | - Yong-Joon Lee
- Division of Cardiology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung-Jun Lee
- Division of Cardiology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Oh-Hyun Lee
- Division of Cardiology, Yongin Severance Hospital, Yonsei University College of Medicine, Gyeonggi-do, South Korea
| | - Choongki Kim
- Department of Cardiology, Ewha Womans University College of Medicine, Seoul Hospital, Seoul, South Korea
| | - Jaewon Oh
- Division of Cardiology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Chan Joo Lee
- Division of Cardiology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong-Ho Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Seil Park
- Cardiovascular Product Evaluation Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Ok-Hee Jeon
- Cardiovascular Product Evaluation Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Donghoon Choi
- Division of Cardiology, Yongin Severance Hospital, Yonsei University College of Medicine, Gyeonggi-do, South Korea
| | - Geu-Ru Hong
- Division of Cardiology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| | - Jung-Sun Kim
- Division of Cardiology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
191
|
Scisciola L, Cataldo V, Taktaz F, Fontanella RA, Pesapane A, Ghosh P, Franzese M, Puocci A, De Angelis A, Sportiello L, Marfella R, Barbieri M. Anti-inflammatory role of SGLT2 inhibitors as part of their anti-atherosclerotic activity: Data from basic science and clinical trials. Front Cardiovasc Med 2022; 9:1008922. [PMID: 36148061 PMCID: PMC9485634 DOI: 10.3389/fcvm.2022.1008922] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 01/10/2023] Open
Abstract
Atherosclerosis is a progressive inflammatory disease leading to mortality and morbidity in the civilized world. Atherosclerosis manifests as an accumulation of plaques in the intimal layer of the arterial wall that, by its subsequent erosion or rupture, triggers cardiovascular diseases. Diabetes mellitus is a well-known risk factor for atherosclerosis. Indeed, Type 2 diabetes mellitus patients have an increased risk of atherosclerosis and its associated-cardiovascular complications than non-diabetic patients. Sodium-glucose co-transport 2 inhibitors (SGLT2i), a novel anti-diabetic drugs, have a surprising advantage in cardiovascular effects, such as reducing cardiovascular death in a patient with or without diabetes. Numerous studies have shown that atherosclerosis is due to a significant inflammatory burden and that SGLT2i may play a role in inflammation. In fact, several experiment results have demonstrated that SGLT2i, with suppression of inflammatory mechanism, slows the progression of atherosclerosis. Therefore, SGLT2i may have a double benefit in terms of glycemic control and control of the atherosclerotic process at a myocardial and vascular level. This review elaborates on the anti-inflammatory effects of sodium-glucose co-transporter 2 inhibitors on atherosclerosis.
Collapse
Affiliation(s)
- Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- *Correspondence: Lucia Scisciola
| | - Vittoria Cataldo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ada Pesapane
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Puja Ghosh
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Martina Franzese
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Armando Puocci
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Liberata Sportiello
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Mediterranea Cardiocentro, Napoli, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
192
|
The Role of NLRP3 Inflammasome in Diabetic Cardiomyopathy and Its Therapeutic Implications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3790721. [PMID: 36111168 PMCID: PMC9470324 DOI: 10.1155/2022/3790721] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022]
Abstract
Diabetic cardiomyopathy (DCM) is a serious complication of diabetes mellitus (DM). However, the precise molecular mechanisms remain largely unclear, and it is still a challenging disease to diagnose and treat. The nucleotide-binding oligomerization domain and leucine-rich repeat pyrin 3 domain (NLRP3) inflammasome is a critical part of the innate immune system in the host to defend against endogenous danger and pathogenic microbial infections. Dysregulated NLRP3 inflammasome activation results in the overproduction of cytokines, primarily IL-1β and IL-18, and eventually, inflammatory cell death-pyroptosis. A series of studies have indicated that NLRP3 inflammasome activation participates in the development of DCM, and that corresponding interventions could mitigate disease progression. Accordingly, this narrative review is aimed at briefly summarizing the cell-specific role of the NLRP3 inflammasome in DCM and provides novel insights into developing DCM therapeutic strategies targeting the NLRP3 inflammasome.
Collapse
|
193
|
Targeting innate immunity-driven inflammation in CKD and cardiovascular disease. Nat Rev Nephrol 2022; 18:762-778. [PMID: 36064794 DOI: 10.1038/s41581-022-00621-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 11/08/2022]
Abstract
Mortality among patients with chronic kidney disease (CKD) is largely a consequence of cardiovascular disease (CVD) and is a particular concern given the increasing prevalence of CKD. Sterile inflammation triggered by activation of the innate immune system is an important driver of both CKD and associated CVD. Several endogenous mediators, including lipoproteins, crystals such as silica, urate and cholesterol crystals, or compounds released from dying cells interact with pattern recognition receptors expressed on a variety of different cell types, leading to the release of pro-inflammatory cytokines. Disturbed regulation of the haematopoietic system by damage-associated molecular patterns, or as a consequence of clonal haematopoiesis or trained innate immunity, also contributes to the development of inflammation. In observational and genetic association studies, inflammation is linked to the progression of CKD and cardiovascular events. In 2017, the CANTOS trial of canakinumab provided evidence that inhibiting inflammation driven by NLRP3-IL-1-IL-6-mediated signalling significantly reduced cardiovascular event rates in individuals with and without CKD. Other approaches to target innate immune pathways are now under investigation for their ability to reduce cardiovascular events and slow disease progression among patients with atherosclerosis and stage 3 and 4 CKD. This Review summarizes current understanding of the role of inflammation in the pathogenesis of CKD and its associated CVD, and how this knowledge may translate into novel therapeutics.
Collapse
|
194
|
Xu Y, Zhang C, Jiang K, Yang X, Chen F, Cheng Z, Zhao J, Cheng J, Li X, Chen X, Zhou L, Duan H, Huang Y, Xiang Y, Li J. Structural repurposing of SGLT2 inhibitor empagliflozin for strengthening anti-heart failure activity with lower glycosuria. Acta Pharm Sin B 2022; 13:1671-1685. [PMID: 37139418 PMCID: PMC10149898 DOI: 10.1016/j.apsb.2022.08.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have been reapproved for heart failure (HF) therapy in patients with and without diabetes. However, the initial glucose-lowering indication of SGLT2i has impeded their uses in cardiovascular clinical practice. A challenge of SGLT2i then becomes how to separate their anti-HF activity from glucose-lowering side-effect. To address this issue, we conducted structural repurposing of EMPA, a representative SGLT2 inhibitor, to strengthen anti-HF activity and reduce the SGLT2-inhibitory activity according to structural basis of inhibition of SGLT2. Compared to EMPA, the optimal derivative JX01, which was produced by methylation of C2-OH of the glucose ring, exhibited weaker SGLT2-inhibitory activity (IC50 > 100 nmol/L), and lower glycosuria and glucose-lowering side-effect, better NHE1-inhibitory activity and cardioprotective effect in HF mice. Furthermore, JX01 showed good safety profiles in respect of single-dose/repeat-dose toxicity and hERG activity, and good pharmacokinetic properties in both mouse and rat species. Collectively, the present study provided a paradigm of drug repurposing to discover novel anti-HF drugs, and indirectly demonstrated that SGLT2-independent molecular mechanisms play an important role in cardioprotective effects of SGLT2 inhibitors.
Collapse
Affiliation(s)
- Yixiang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chao Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Kai Jiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xinchun Yang
- East China University of Science and Technology-Tengbai Pharmaceutical Innovative Drugs Joint Research Institute, Zhuhai Tengbai Pharmaceutical Co., Ltd., Zhuhai 519000, China
| | - Feng Chen
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhiyang Cheng
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jinlong Zhao
- East China University of Science and Technology-Tengbai Pharmaceutical Innovative Drugs Joint Research Institute, Zhuhai Tengbai Pharmaceutical Co., Ltd., Zhuhai 519000, China
| | - Jiaxing Cheng
- East China University of Science and Technology-Tengbai Pharmaceutical Innovative Drugs Joint Research Institute, Zhuhai Tengbai Pharmaceutical Co., Ltd., Zhuhai 519000, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Luoyifan Zhou
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Duan
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yunyuan Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
- Corresponding authors. Tel./fax: +86 21 64252584 (Jian Li and Yunyuan Huang), +86 21 65981041 (Yaozu Xiang).
| | - Yaozu Xiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Corresponding authors. Tel./fax: +86 21 64252584 (Jian Li and Yunyuan Huang), +86 21 65981041 (Yaozu Xiang).
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from West Yunnan, College of Pharmacy, Dali University, Dali 671000, China
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Pharmacy, Hainan University, Haikou 570228, China
- Corresponding authors. Tel./fax: +86 21 64252584 (Jian Li and Yunyuan Huang), +86 21 65981041 (Yaozu Xiang).
| |
Collapse
|
195
|
Su YC, Hung JH, Chang KC, Sun CC, Huang YH, Lee CN, Hung MJ, Lai CC, Shao SC, Lai ECC. Comparison of Sodium-Glucose Cotransporter 2 Inhibitors vs Glucagonlike Peptide-1 Receptor Agonists and Incidence of Dry Eye Disease in Patients With Type 2 Diabetes in Taiwan. JAMA Netw Open 2022; 5:e2232584. [PMID: 36136333 PMCID: PMC9500553 DOI: 10.1001/jamanetworkopen.2022.32584] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
IMPORTANCE Sodium-glucose cotransporter 2 (SGLT2) inhibitors have been found to improve low-grade systemic and tissue inflammation; however, the association between SGLT2 inhibitor use and the incidence of dry eye disease (DED) has not been explored. OBJECTIVE To investigate the association between SGLT2 inhibitor use and dry eye disease in patients with type 2 diabetes (T2D). DESIGN, SETTING, AND PARTICIPANTS A retrospective cohort analysis of the largest multi-institutional electronic medical records database in Taiwan was conducted to identify patients with T2D newly receiving SGLT2 inhibitors or glucagonlike peptide-1 receptor agonists (GLP-1 RAs) from 2016 to 2018. Data analysis was performed from March 1 to May 31, 2022. Propensity scores with inverse probability of treatment weighting were generated to enable homogeneous comparisons between the 2 groups. EXPOSURES Treatment with SGLT2 inhibitors or GLP-1 RAs. MAIN OUTCOMES AND MEASURES Incident dry eye disease, which was defined by clinical diagnoses, plus the related drug prescription. Cox proportional hazards regression models were used to estimate hazard ratios with 95% CIs for the risk of DED. RESULTS A total of 10 038 and 1077 T2D patients newly receiving SGLT2 inhibitors (mean [SD] age, 59.5 [12.1] years; 5689 [56.7%] men) or GLP-1 RAs (mean [SD] age, 58.5 [41.2] years; 587 [54.5%] men), respectively, were included in the analysis. The incidence of DED was lower in patients newly receiving SGLT2 inhibitors (9.0 events per 1000 person-years) compared with those receiving GLP-1 RAs (11.5 events per 1000 person-years), yielding a hazard ratio of 0.78 (95% CI, 0.68-0.89). Subgroup analyses indicated that the lowered DED risks associated with SGLT2 inhibitors in patients with T2D were similar across different age, sex, blood glucose level, and kidney function groups. Results from the sensitivity analyses (including the propensity score-matching approach, on-treatment analyses, and different follow-up periods of 1, 2, and 3 years) were similar to the main analyses. CONCLUSIONS AND RELEVANCE The findings of this study suggest that patients with T2D newly receiving SGLT2 inhibitors may have a lower risk for DED compared with those receiving GLP-1 RAs. Prospective studies are needed to analyze these results.
Collapse
Affiliation(s)
- Yu-Chen Su
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jia-Horung Hung
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kai-Cheng Chang
- School of Pharmacy, Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Pharmacy, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chi-Chin Sun
- Department of Ophthalmology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hsun Huang
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chaw-Ning Lee
- School of Pharmacy, Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Jui Hung
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chi-Chun Lai
- Department of Ophthalmology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Chieh Shao
- School of Pharmacy, Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Pharmacy, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Edward Chia-Cheng Lai
- School of Pharmacy, Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
196
|
Gan T, Song Y, Guo F, Qin G. Emerging roles of Sodium-glucose cotransporter 2 inhibitors in Diabetic kidney disease. Mol Biol Rep 2022; 49:10915-10924. [PMID: 36002651 DOI: 10.1007/s11033-022-07758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 10/15/2022]
Abstract
Diabetic kidney disease (DKD), a severe microvascular complication of diabetes mellitus, is the primary cause of end stage renal disease (ESRD). Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a class of novel anti-diabetic drugs for DKD, which have the potential to prevent renal function from failing. The involved mechanisms have garnered considerable attention. Besides hypoglycemic effect, it seems that various glucose-independent nephroprotective mechanisms also have a role. Among them, improvement in tubuloglomerular feedback is considered as the main reason, followed by reduced intraglomerular pressure and fluid load. In addition, reduced blood pressure, anti-inflammatory effects, nutrient deprivation signaling as well as improved endothelial function are also important. In the future, clinical trials and mechanistic studies might further complement the current knowledge on SGLT2 inhibitors and facilitate to translate these agents to clinical use. Here, we review these mechanisms of SGLT2 inhibitors with an emphasis on kidney protective effects.
Collapse
Affiliation(s)
- Tian Gan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yi Song
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Feng Guo
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Guijun Qin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| |
Collapse
|
197
|
Jia Y, Li D, Yu J, Jiang W, Liao X, Zhao Q. Potential diabetic cardiomyopathy therapies targeting pyroptosis: A mini review. Front Cardiovasc Med 2022; 9:985020. [PMID: 36061533 PMCID: PMC9433721 DOI: 10.3389/fcvm.2022.985020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Pyroptosis is primarily considered a pro-inflammatory class of caspase-1- and gasdermin D (GSDMD)-dependent programmed cell death. Inflammasome activation promotes the maturation and release of interleukin (IL)-1β and IL-18, cleavage of GSDMD, and development of pyroptosis. Recent studies have reported that NLRP3 inflammasome activation-mediated pyroptosis aggravates the formation and development of diabetes cardiomyopathy (DCM). These studies provide theoretical mechanisms for exploring a novel approach to treat DCM-associated cardiac dysfunction. Accordingly, this review aims to summarize studies that investigated possible DCM therapies targeting pyroptosis and elucidate the molecular mechanisms underlying NLRP3 inflammasome-mediated pyroptosis, and its potential association with the pathogenesis of DCM. This review may serve as a basis for the development of potential pharmacological agents as novel and effective treatments for managing and treating DCM.
Collapse
Affiliation(s)
- Yu Jia
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dongze Li
- Department of Emergency Medicine and National Clinical Research Center for Geriatrics, Disaster Medicine Center, West China Hospital, Sichuan University West China School of Medicine, Chengdu, China
| | - Jing Yu
- Department of Emergency Medicine and National Clinical Research Center for Geriatrics, Disaster Medicine Center, West China Hospital, Sichuan University West China School of Medicine, Chengdu, China
| | - Wenli Jiang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaoyang Liao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zhao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qian Zhao,
| |
Collapse
|
198
|
Liang B, Li R, Zhang P, Gu N. Empagliflozin for Patients with Heart Failure and Type 2 Diabetes Mellitus: Clinical Evidence in Comparison with Other Sodium-Glucose Co-transporter-2 Inhibitors and Potential Mechanism. J Cardiovasc Transl Res 2022; 16:327-340. [PMID: 35969357 DOI: 10.1007/s12265-022-10302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022]
Abstract
Heart failure remains a leading cause of morbidity and mortality globally and has been recognized as a common complication of diabetes, especially type 2 diabetes mellitus. Heart failure occurs in diabetic patients even in the absence of hypertension, coronary heart disease, or valvular heart disease, and is, therefore, a major cardiovascular complication in this vulnerable population. Given the continued rise in the prevalence of type 2 diabetes mellitus worldwide, the burden of heart failure on the healthcare system will continue to increase. Recent evidence demonstrates that empagliflozin, a sodium-glucose co-transporter-2 inhibitor, brings clinical benefit to patients with established heart failure and type 2 diabetes mellitus. Herein, we critically reviewed the clinical evidence of empagliflozin for patients with heart failure and type 2 diabetes mellitus with the comparison with other sodium-glucose co-transporter-2 inhibitors and potential mechanism to provide the optimal and evidence-based management for patients with established heart failure and type 2 diabetes mellitus with the goal to be conducive to the mechanism exploration of empagliflozin to advance a more comprehensive understanding of empagliflozin.
Collapse
Affiliation(s)
- Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Li
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Zhang
- Neijiang Health Vocational College, Neijiang, China
| | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
199
|
Wicik Z, Nowak A, Jarosz-Popek J, Wolska M, Eyileten C, Siller-Matula JM, von Lewinski D, Sourij H, Filipiak KJ, Postuła M. Characterization of the SGLT2 Interaction Network and Its Regulation by SGLT2 Inhibitors: A Bioinformatic Analysis. Front Pharmacol 2022; 13:901340. [PMID: 36046822 PMCID: PMC9421436 DOI: 10.3389/fphar.2022.901340] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Sodium–glucose cotransporter 2 (SGLT2), also known as solute carrier family 5 member 2 (SLC5A2), is a promising target for a new class of drugs primarily established as kidney-targeting, effective glucose-lowering agents used in diabetes mellitus (DM) patients. Increasing evidence indicates that besides renal effects, SGLT2 inhibitors (SGLT2i) have also a systemic impact via indirectly targeting the heart and other tissues. Our hypothesis states that the pleiotropic effects of SGLT2i are associated with their binding force, location of targets in the SGLT2 networks, targets involvement in signaling pathways, and their tissue-specific expression. Methods: Thus, to investigate differences in SGLT2i impact on human organisms, we re-created the SGLT2 interaction network incorporating its inhibitors and metformin and analyzed its tissue-specific expression using publicly available datasets. We analyzed it in the context of the so-called key terms ( autophagy, oxidative stress, aging, senescence, inflammation, AMPK pathways, and mTOR pathways) which seem to be crucial to elucidating the SGLT2 role in a variety of clinical manifestations. Results: Analysis of SGLT2 and its network components’ expression confidence identified selected organs in the following order: kidney, liver, adipose tissue, blood, heart, muscle, intestine, brain, and artery according to the TISSUES database. Drug repurposing analysis of known SGLT2i pointed out the influence of SGLT1 regulators on the heart and intestine tissue. Additionally, dapagliflozin seems to also have a stronger impact on brain tissue through the regulation of SGLT3 and SLC5A11. The shortest path analysis identified interaction SIRT1-SGLT2 among the top five interactions across six from seven analyzed networks associated with the key terms. Other top first-level SGLT2 interactors associated with key terms were not only ADIPOQ, INS, GLUT4, ACE, and GLUT1 but also less recognized ILK and ADCY7. Among other interactors which appeared in multiple shortest-path analyses were GPT, COG2, and MGAM. Enrichment analysis of SGLT2 network components showed the highest overrepresentation of hypertensive disease, DM-related diseases for both levels of SGLT2 interactors. Additionally, for the extended SGLT2 network, we observed enrichment in obesity (including SGLT1), cancer-related terms, neuroactive ligand–receptor interaction, and neutrophil-mediated immunity. Conclusion: This study provides comprehensive and ranked information about the SGLT2 interaction network in the context of tissue expression and can help to predict the clinical effects of the SGLT2i.
Collapse
Affiliation(s)
- Zofia Wicik
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Nowak
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Jarosz-Popek
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Marta Wolska
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Ceren Eyileten
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Jolanta M. Siller-Matula
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Dirk von Lewinski
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | | | - Marek Postuła
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Marek Postuła,
| |
Collapse
|
200
|
Mechanisms of cardio-renal protection of sodium-glucose cotransporter-2 inhibitors. Curr Opin Pharmacol 2022; 66:102272. [PMID: 35964531 DOI: 10.1016/j.coph.2022.102272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/25/2022] [Accepted: 07/01/2022] [Indexed: 12/17/2022]
Abstract
Sodium-glucose cotransporter-2 inhibitors (SGLT2i) are glucose-lowering drugs used in the treatment of type 2 diabetes (T2D) that have shown additional cardiac and renal benefits. The mechanisms of SGLT2i-mediated cardiorenal protection include blood pressure lowering and endothelial function improvements, enhancement of cardiac and renal hemodynamics, optimization of energetic efficiency through metabolic changes and cellular ion exchanges, reduction of inflammation and oxidative stress with consequent fibrosis reduction, and sympathetic activity modulation. This review explores the most recent data regarding the physiological mechanisms of SGLT2i cardiac and renal benefits, which lie at the root of the solid clinical evidence on cardiorenal protection, making SGLT2i a promising new pharmacological approach to the treatment of patients at high risk of cardiorenal syndrome.
Collapse
|