151
|
Seo Y, Park J, Choi W, Ju Son D, Sung Kim Y, Kim MK, Yoon BE, Pyee J, Tae Hong J, Go YM, Park H. Antiatherogenic Effect of Resveratrol Attributed to Decreased Expression of ICAM-1 (Intercellular Adhesion Molecule-1). Arterioscler Thromb Vasc Biol 2020; 39:675-684. [PMID: 30786743 DOI: 10.1161/atvbaha.118.312201] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Objective- Increasing evidence shows that resveratrol has antiatherogenic effects, but its underlying mechanisms are unknown. Thus, we evaluated the molecular mechanisms underlying the antiatherogenic effect of resveratrol. Approach and Results- Using the previously established mouse atherosclerosis model of partial ligation of the left carotid artery, we evaluated the role of resveratrol in antiatherosclerosis. We attempted to determine the mechanisms associated with focal adhesions using vascular endothelial cells. The results showed that resveratrol stimulated focal adhesion kinase cleavage via resveratrol-increased expression of lactoferrin in endothelial cells. Furthermore, we found that an N-terminal focal adhesion kinase fragment cleaved by resveratrol contained the FERM (band 4.1, ezrin, radixin, and moesin)-kinase domain. Furthermore, resveratrol inhibited lipopolysaccharide-stimulated adhesion of THP-1 human monocytes by decreased expression of ICAM-1 (intercellular adhesion molecule-1). A decreased ICAM-1 level was also observed in the left carotid artery of mice treated with resveratrol. To understand the relationship between resveratrol-induced antiinflammation and focal adhesion disruption, endothelial cells were transfected with FERM-kinase. Ectopically expressed FERM-kinase, the resveratrol-cleaved focal adhesion kinase fragment, was found in the nuclear fraction and inhibited the transcription level of icam-1 via the Nrf2 (nuclear factor erythroid 2-related factor 2)-antioxidant response element complex. Finally, ectopically expressed FERM-kinase blocked tumor necrosis factor-α- or IL- (interleukin) stimulated monocytic binding to endothelial cells. Conclusions- Our results show that resveratrol inhibits the expression of ICAM-1 via transcriptional regulation of the FERM-kinase and Nrf2 interaction, thereby blocking monocyte adhesion. These suppressive effects on the inflammatory mechanism suggest that resveratrol delayed the onset of atherosclerosis.
Collapse
Affiliation(s)
- Youngsik Seo
- From the Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Chungnam, South Korea (Y.S., J. Park, W.C., Y.S.K., M.-K.K., B.-E.Y., J. Pyee, H.P.)
| | - Jinsun Park
- From the Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Chungnam, South Korea (Y.S., J. Park, W.C., Y.S.K., M.-K.K., B.-E.Y., J. Pyee, H.P.)
| | - Woosoung Choi
- From the Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Chungnam, South Korea (Y.S., J. Park, W.C., Y.S.K., M.-K.K., B.-E.Y., J. Pyee, H.P.)
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, South Korea (D.J.S., J.T.H.)
| | - Yoo Sung Kim
- From the Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Chungnam, South Korea (Y.S., J. Park, W.C., Y.S.K., M.-K.K., B.-E.Y., J. Pyee, H.P.)
| | - Min-Kyun Kim
- From the Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Chungnam, South Korea (Y.S., J. Park, W.C., Y.S.K., M.-K.K., B.-E.Y., J. Pyee, H.P.)
| | - Bo-Eun Yoon
- From the Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Chungnam, South Korea (Y.S., J. Park, W.C., Y.S.K., M.-K.K., B.-E.Y., J. Pyee, H.P.)
| | - Jaeho Pyee
- From the Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Chungnam, South Korea (Y.S., J. Park, W.C., Y.S.K., M.-K.K., B.-E.Y., J. Pyee, H.P.)
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, South Korea (D.J.S., J.T.H.)
| | - Young-Mi Go
- Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, GA (Y.-M.G.)
| | - Heonyong Park
- From the Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Chungnam, South Korea (Y.S., J. Park, W.C., Y.S.K., M.-K.K., B.-E.Y., J. Pyee, H.P.)
| |
Collapse
|
152
|
Wu C, Daugherty A, Lu HS. Updates on Approaches for Studying Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 39:e108-e117. [PMID: 30917052 DOI: 10.1161/atvbaha.119.312001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Congqing Wu
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.), University of Kentucky, Lexington
| | - Hong S Lu
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.), University of Kentucky, Lexington
| |
Collapse
|
153
|
Kukida M, Sawada H, Daugherty A, Lu HS. Megalin: A bridge connecting kidney, the renin-angiotensin system, and atherosclerosis. Pharmacol Res 2020; 151:104537. [PMID: 31707037 PMCID: PMC6980733 DOI: 10.1016/j.phrs.2019.104537] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/05/2019] [Indexed: 01/21/2023]
Abstract
Megalin is a member of the low-density lipoprotein receptor superfamily. It has been recognized as an endocytic receptor for a large spectrum of ligands. As a consequence, megalin regulates homeostasis of many molecules and affects multiple physiological and pathophysiological functions. The renin-angiotensin system is a hormonal system. A number of studies have reported contributions of the renin-angiotensin system to atherosclerosis. There is evolving evidence that megalin is a regulator of the renin-angiotensin system, and contributes to atherosclerosis. This brief review provides contemporary insights into effects of megalin on renal functions, the renin-angiotensin system, and atherosclerosis.
Collapse
Affiliation(s)
- Masayoshi Kukida
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Hisashi Sawada
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Alan Daugherty
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Hong S Lu
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
154
|
Ishida N, Ishida T, Morisawa S, Iizuka M, Yagi Y, Jobu K, Morita Y, Oishi M, Moriyama H, Shimamura T, Ukeda H, Miyamura M. Inhibitory Effects of Goishi Tea on Atherosclerosis in Apolipoprotein E Deficient Mice. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2020. [DOI: 10.3136/fstr.26.509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Nanao Ishida
- Kochi Medical Graduate School
- Department of Pharmacy, Kochi Medical School Hospital
| | - Tomoaki Ishida
- Kochi Medical Graduate School
- Department of Pharmacy, Kochi Medical School Hospital
| | - Shumpei Morisawa
- Kochi Medical Graduate School
- Department of Pharmacy, Kochi Medical School Hospital
| | | | - Yusuke Yagi
- Department of Pharmacy, Kochi Medical School Hospital
| | - Kohei Jobu
- Department of Pharmacy, Kochi Medical School Hospital
| | - Yasuyo Morita
- Department of Pharmacy, Kochi Medical School Hospital
| | | | | | | | | | - Mitsuhiko Miyamura
- Kochi Medical Graduate School
- Department of Pharmacy, Kochi Medical School Hospital
| |
Collapse
|
155
|
Sutton NR, Bouïs D, Mann KM, Rashid IM, McCubbrey AL, Hyman MC, Goldstein DR, Mei A, Pinsky DJ. CD73 Promotes Age-Dependent Accretion of Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 40:61-71. [PMID: 31619062 PMCID: PMC7956240 DOI: 10.1161/atvbaha.119.313002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE CD73 is an ectonucleotidase which catalyzes the conversion of AMP (adenosine monophosphate) to adenosine. Adenosine has been shown to be anti-inflammatory and vasorelaxant. The impact of ectonucleotidases on age-dependent atherosclerosis remains unclear. Our aim was to investigate the role of CD73 in age-dependent accumulation of atherosclerosis. Approach and results: Mice doubly deficient in CD73 and ApoE (apolipoprotein E; (cd73-/-/apoE-/-) were generated, and the extent of aortic atherosclerotic plaque was compared with apoE-/- controls at 12, 20, 32, and 52 weeks. By 12 weeks of age, cd73-/-/apoE-/- mice exhibited a significant increase in plaque (1.4±0.5% of the total vessel surface versus 0.4±0.1% in apoE-/- controls, P<0.005). By 20 weeks of age, this difference disappeared (2.9±0.4% versus 3.3±0.7%). A significant reversal in phenotype emerged at 32 weeks (9.8±1.2% versus 18.3±1.4%; P<0.0001) and persisted at the 52 week timepoint (22.4±2.1% versus 37.0±2.1%; P<0.0001). The inflammatory response to aging was found to be comparable between cd73-/-/apoE-/- mice and apoE-/- controls. A reduction in lipolysis in CD73 competent mice was observed, even with similar plasma lipid levels (cd73-/-/apoE-/- versus apoE-/- at 12 weeks [16.2±0.7 versus 9.5±1.4 nmol glycerol/well], 32 weeks [24.1±1.5 versus 7.4±0.4 nmol/well], and 52 weeks [13.8±0.62 versus 12.7±2.0 nmol/well], P<0.001). CONCLUSIONS At early time points, CD73 exerts a subtle antiatherosclerotic influence, but with age, the pattern reverses, and the presence of CD73 promoted suppression of lipid catabolism.
Collapse
Affiliation(s)
- Nadia R. Sutton
- From the Department of Internal Medicine, Division of Cardiovascular Medicine (N.R.S., D.B., K.M.M., A.M., I.M.R., D.R.G., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Diane Bouïs
- From the Department of Internal Medicine, Division of Cardiovascular Medicine (N.R.S., D.B., K.M.M., A.M., I.M.R., D.R.G., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Kris M. Mann
- From the Department of Internal Medicine, Division of Cardiovascular Medicine (N.R.S., D.B., K.M.M., A.M., I.M.R., D.R.G., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Imran M. Rashid
- From the Department of Internal Medicine, Division of Cardiovascular Medicine (N.R.S., D.B., K.M.M., A.M., I.M.R., D.R.G., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Alexandra L. McCubbrey
- Division of Pulmonary and Critical Care (A.L.M.), University of Michigan Medical Center, Ann Arbor
| | - Matt C. Hyman
- the Department of Molecular and Integrative Physiology (M.C.H., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Daniel R. Goldstein
- From the Department of Internal Medicine, Division of Cardiovascular Medicine (N.R.S., D.B., K.M.M., A.M., I.M.R., D.R.G., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Annie Mei
- From the Department of Internal Medicine, Division of Cardiovascular Medicine (N.R.S., D.B., K.M.M., A.M., I.M.R., D.R.G., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - David J. Pinsky
- From the Department of Internal Medicine, Division of Cardiovascular Medicine (N.R.S., D.B., K.M.M., A.M., I.M.R., D.R.G., D.J.P.), University of Michigan Medical Center, Ann Arbor
- the Department of Molecular and Integrative Physiology (M.C.H., D.J.P.), University of Michigan Medical Center, Ann Arbor
| |
Collapse
|
156
|
Ma C, Xia R, Yang S, Liu L, Zhang J, Feng K, Shang Y, Qu J, Li L, Chen N, Xu S, Zhang W, Mao J, Han J, Chen Y, Yang X, Duan Y, Fan G. Formononetin attenuates atherosclerosis via regulating interaction between KLF4 and SRA in apoE -/- mice. Am J Cancer Res 2020; 10:1090-1106. [PMID: 31938053 PMCID: PMC6956811 DOI: 10.7150/thno.38115] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022] Open
Abstract
Background and Purpose: Atherosclerosis is an underlying cause of coronary heart disease. Foam cell, a hallmark of atherosclerosis, is prominently derived from monocyte-differentiated macrophage, and vascular smooth muscle cells (VSMCs) through unlimitedly phagocytizing oxidized low-density lipoprotein (oxLDL). Therefore, the inhibition of monocyte adhesion to endothelium and uptake of oxLDL might be a breakthrough point for retarding atherosclerosis. Formononetin, an isoflavone extracted from Astragalus membranaceus, has exhibited multiple inhibitory effects on proatherogenic factors, such as obesity, dyslipidemia, and inflammation in different animal models. However, its effect on atherosclerosis remains unknown. In this study, we determined if formononetin can inhibit atherosclerosis and elucidated the underlying molecular mechanisms. Methods: ApoE deficient mice were treated with formononetin contained in high-fat diet for 16 weeks. After treatment, mouse aorta, macrophage and serum samples were collected to determine lesions, immune cell profile, lipid profile and expression of related molecules. Concurrently, we investigated the effect of formononetin on monocyte adhesion, foam cell formation, endothelial activation, and macrophage polarization in vitro and in vivo. Results: Formononetin reduced en face and aortic root sinus lesions size. Formononetin enhanced lesion stability by changing the composition of plaque. VSMC- and macrophage-derived foam cell formation and its accumulation in arterial wall were attenuated by formononetin, which might be attributed to decreased SRA expression and reduced monocyte adhesion. Formononetin inhibited atherogenic monocyte adhesion and inflammation. KLF4 negatively regulated the expression of SRA at transcriptional and translational level. Conclusions: Our study demonstrate that formononetin can substantially attenuate the development of atherosclerosis via regulation of interplay between KLF4 and SRA, which suggests the formononetin might be a novel therapeutic approach for inhibition of atherosclerosis.
Collapse
|
157
|
Cherepanova OA, Srikakulapu P, Greene ES, Chaklader M, Haskins RM, McCanna ME, Bandyopadhyay S, Ban B, Leitinger N, McNamara CA, Owens GK. Novel Autoimmune IgM Antibody Attenuates Atherosclerosis in IgM Deficient Low-Fat Diet-Fed, but Not Western Diet-Fed Apoe-/- Mice. Arterioscler Thromb Vasc Biol 2020; 40:206-219. [PMID: 31645128 PMCID: PMC7006879 DOI: 10.1161/atvbaha.119.312771] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Oxidized phospholipids (OxPL), such as the oxidized derivatives of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine, 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphorylcholine, and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphorylcholine, have been shown to be the principal biologically active components of minimally oxidized LDL (low-density lipoprotein). The role of OxPL in cardiovascular diseases is well recognized, including activation of inflammation within vascular cells. Atherosclerotic Apoe-/- mice fed a high-fat diet develop antibodies to OxPL, and hybridoma B-cell lines producing natural anti-OxPL autoantibodies have been successfully generated and characterized. However, as yet, no studies have been reported demonstrating that treatment with OxPL neutralizing antibodies can be used to prevent or reverse advanced atherosclerosis. Approach and Results: Here, using a screening against 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphorylcholine/1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphorylcholine, we generated a novel IgM autoantibody, 10C12, from the spleens of Apoe-/- mice fed a long-term Western diet, that demonstrated potent OxPL neutralizing activity in vitro and the ability to inhibit macrophage accumulation within arteries of Apoe-/- mice fed a Western diet for 4 weeks. Of interest, 10C12 failed to inhibit atherosclerosis progression in Apoe-/- mice treated between 18 and 26 weeks of Western diet feeding likely due at least in part to high levels of endogenous anti-OxPL antibodies. However, 10C12 treatment caused a 40% decrease in lipid accumulation within aortas of secreted IgM deficient, sIgM-/-Apoe-/-, mice fed a low-fat diet, when the antibody was administrated between 32-40 weeks of age. CONCLUSIONS Taken together, these results provide direct evidence showing that treatment with a single autoimmune anti-OxPL IgM antibody during advanced disease stages can have an atheroprotective outcome.
Collapse
Affiliation(s)
- Olga A. Cherepanova
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, USA
| | - Prasad Srikakulapu
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Elizabeth S. Greene
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Malay Chaklader
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, USA
| | - Ryan M. Haskins
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Mary E. McCanna
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Smarajit Bandyopadhyay
- Molecular Biotechnology Core, Research Core Services, Lerner Research Institute, Cleveland Clinic, USA
| | - Bhupal Ban
- Antibody Engineering and Technology Core, University of Virginia, USA
- Department of Cell Biology, University of Virginia, USA
- Indiana Biosciences Research Institute, USA
| | - Norbert Leitinger
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Coleen A. McNamara
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Gary K. Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
158
|
Lian Z, Perrard XYD, Peng X, Raya JL, Hernandez AA, Johnson CG, Lagor WR, Pownall HJ, Hoogeveen RC, Simon SI, Sacks FM, Ballantyne CM, Wu H. Replacing Saturated Fat With Unsaturated Fat in Western Diet Reduces Foamy Monocytes and Atherosclerosis in Male Ldlr-/- Mice. Arterioscler Thromb Vasc Biol 2020; 40:72-85. [PMID: 31619061 PMCID: PMC6991890 DOI: 10.1161/atvbaha.119.313078] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 09/29/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE A Mediterranean diet supplemented with olive oil and nuts prevents cardiovascular disease in clinical studies, but the underlying mechanisms are incompletely understood. We investigated whether the preventive effect of the diet could be due to inhibition of atherosclerosis and foamy monocyte formation in Ldlr-/- mice fed with a diet in which milkfat in a Western diet (WD) was replaced with extra-virgin olive oil and nuts (EVOND). Approach and Results: Ldlr-/- mice were fed EVOND or a Western diet for 3 (or 6) months. Compared with the Western diet, EVOND decreased triglyceride and cholesterol levels but increased unsaturated fatty acid concentrations in plasma. EVOND also lowered intracellular lipid accumulation in circulating monocytes, indicating less formation of foamy monocytes, compared with the Western diet. In addition, compared with the Western diet, EVOND reduced monocyte expression of inflammatory cytokines, CD36, and CD11c, with decreased monocyte uptake of oxLDL (oxidized LDL [low-density lipoprotein]) ex vivo and reduced CD11c+ foamy monocyte firm arrest on vascular cell adhesion molecule-1 and E-selectin-coated slides in an ex vivo shear flow assay. Along with these changes, EVOND compared with the Western diet reduced the number of CD11c+ macrophages in atherosclerotic lesions and lowered atherosclerotic lesion area of the whole aorta and aortic sinus. CONCLUSIONS A diet enriched in extra-virgin olive oil and nuts, compared with a Western diet high in saturated fat, lowered plasma cholesterol and triglyceride levels, inhibited foamy monocyte formation, inflammation, and adhesion, and reduced atherosclerosis in Ldlr-/- mice.
Collapse
Affiliation(s)
- Zeqin Lian
- From the Department of Medicine (Z.L., X.D.P., X.P., J.L.R., C.G.J., R.C.H., C.M.B., H.W.), Baylor College of Medicine, Houston, TX
| | - Xiao-Yuan Dai Perrard
- From the Department of Medicine (Z.L., X.D.P., X.P., J.L.R., C.G.J., R.C.H., C.M.B., H.W.), Baylor College of Medicine, Houston, TX
| | - Xueying Peng
- From the Department of Medicine (Z.L., X.D.P., X.P., J.L.R., C.G.J., R.C.H., C.M.B., H.W.), Baylor College of Medicine, Houston, TX
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.P)
| | - Joe L Raya
- From the Department of Medicine (Z.L., X.D.P., X.P., J.L.R., C.G.J., R.C.H., C.M.B., H.W.), Baylor College of Medicine, Houston, TX
| | - Alfredo A Hernandez
- Department of Biomedical Engineering, University of California, Davis (A.A.H, S.I.S.)
| | - Collin G Johnson
- From the Department of Medicine (Z.L., X.D.P., X.P., J.L.R., C.G.J., R.C.H., C.M.B., H.W.), Baylor College of Medicine, Houston, TX
| | - William R Lagor
- Department of Molecular Physiology and Biophysics (W.R.L.), Baylor College of Medicine, Houston, TX
| | - Henry J Pownall
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX (H.J.P.)
| | - Ron C Hoogeveen
- From the Department of Medicine (Z.L., X.D.P., X.P., J.L.R., C.G.J., R.C.H., C.M.B., H.W.), Baylor College of Medicine, Houston, TX
| | - Scott I Simon
- Department of Biomedical Engineering, University of California, Davis (A.A.H, S.I.S.)
| | - Frank M Sacks
- Department of Nutrition, Harvard School of Public Health, and Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA (F.M.S.)
| | - Christie M Ballantyne
- From the Department of Medicine (Z.L., X.D.P., X.P., J.L.R., C.G.J., R.C.H., C.M.B., H.W.), Baylor College of Medicine, Houston, TX
- Department of Pediatrics (C.M.B., H.W.), Baylor College of Medicine, Houston, TX
- Center for Cardiometabolic Disease Prevention (C.M.B.), Baylor College of Medicine, Houston, TX
| | - Huaizhu Wu
- From the Department of Medicine (Z.L., X.D.P., X.P., J.L.R., C.G.J., R.C.H., C.M.B., H.W.), Baylor College of Medicine, Houston, TX
- Department of Pediatrics (C.M.B., H.W.), Baylor College of Medicine, Houston, TX
| |
Collapse
|
159
|
Rao C, Liu B, Huang D, Chen R, Huang K, Li F, Dong N. Nucleophosmin contributes to vascular inflammation and endothelial dysfunction in atherosclerosis progression. J Thorac Cardiovasc Surg 2019; 161:e377-e393. [PMID: 32007256 DOI: 10.1016/j.jtcvs.2019.10.152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 01/27/2023]
Abstract
OBJECTIVE It is unclear whether nucleophosmin (NPM) participates in cardiovascular disease. The present study aimed to investigate the role and underlying mechanisms of NPM in atherosclerosis. METHODS Levels and location of NPM in human carotid atherosclerotic plaques and healthy controls were detected by real-time polymerase chain reaction, immunoblots, and immunofluorescence. Atherosclerotic prone ApoE-/- mice were fed with a Western diet for 16 weeks as an in vivo model. Human primary umbilical vein endothelial cells (HUVECs) were cultured as an in vitro model. RESULTS Compared with controls, we found that NPM levels in human carotid atherosclerotic plaques were more than twice as high as in normal arteries, which mainly localized in endothelial cells. In vivo, adenovirus-containing NPM small hairpin RNA attenuated atherosclerotic lesion and promoted plaque stabilization in ApoE-/- mice fed a Western diet by reducing vascular inflammation, maintaining endothelial function, and decreasing macrophage infiltration. Furthermore, NPM knockdown decreased nuclear factor-κB (NF-κB) p65 phosphorylation. In cultured HUVECs, palmitic acid increased the protein levels of NPM and induced the expression of inflammatory cytokines and monocyte adhesion, whereas NPM knockdown attenuated this effect. In HUVECs, NPM protein physically interacted with NF-κB p65 subunit and promoted its nuclear transposition. NPM also increased the transcriptional activity of NF-κB p65 promoter and enhance its binding to target genes, including interleukin-1β, interleukin-6, intercellular adhesion molecule-1, and E-selectin. CONCLUSIONS These data provide novel evidence that NPM promotes atherosclerosis by inducing vascular inflammation and endothelial dysfunction through the NF-κB signaling pathway and suggest that NPM may be a promising target for atherosclerosis prevention and treatment.
Collapse
Affiliation(s)
- Caijun Rao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Center for Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baoqing Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan Huang
- Clinical Center for Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ru Chen
- Clinical Center for Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Clinical Center for Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
160
|
Vanadium Derivative Exposure Promotes Functional Alterations of VSMCs and Consequent Atherosclerosis via ROS/p38/NF-κB-Mediated IL-6 Production. Int J Mol Sci 2019; 20:ijms20246115. [PMID: 31817202 PMCID: PMC6940940 DOI: 10.3390/ijms20246115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/22/2022] Open
Abstract
Vanadium is a transition metal widely distributed in the Earth’s crust, and is a major contaminant in fossil fuels. Its pathological effect and regulation in atherosclerosis remain unclear. We found that intranasal administration of the vanadium derivative NaVO3 significantly increased plasma and urinary vanadium levels and induced arterial lipid accumulation and atherosclerotic lesions in apolipoprotein E-deficient knockout mice (ApoE−/−) murine aorta compared to those in vehicle-exposed mice. This was accompanied by an increase in plasma reactive oxygen species (ROS) and interleukin 6 (IL-6) levels and a decrease in the vascular smooth muscle cell (VSMC) differentiation marker protein SM22α in the atherosclerotic lesions. Furthermore, exposure to NaVO3 or VOSO4 induced cytosolic ROS generation and IL-6 production in VSMCs and promoted VSMC synthetic differentiation, migration, and proliferation. The anti-oxidant N-acetylcysteine (NAC) not only suppresses IL-6 production and VSMC pathological responses including migration and proliferation but also prevents atherosclerosis in ApoE−/− mice. Inhibition experiments with NAC and pharmacological inhibitors demonstrated that NaVO3-induced IL-6 production is signaled by ROS-triggered p38-mediated NF-κB-dependent pathways. Neutralizing anti-IL-6 antibodies impaired NaVO3-mediated VSMC migration and proliferation. We concluded that NaVO3 exposure activates the ROS-triggering p38 signaling to selectively induce NF-κB-mediated IL-6 production. These signaling pathways induce VSMC synthetic differentiation, migration, and proliferation, leading to lipid accumulation and atherosclerosis.
Collapse
|
161
|
Malhotra R, Wunderer F, Barnes HJ, Bagchi A, Buswell MD, O'Rourke CD, Slocum CL, Ledsky CD, Peneyra KM, Sigurslid H, Corman B, Johansson KB, Rhee DK, Bloch KD, Bloch DB. Hepcidin Deficiency Protects Against Atherosclerosis. Arterioscler Thromb Vasc Biol 2019; 39:178-187. [PMID: 30587002 DOI: 10.1161/atvbaha.118.312215] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective- Inflammatory stimuli enhance the progression of atherosclerotic disease. Inflammation also increases the expression of hepcidin, a hormonal regulator of iron homeostasis, which decreases intestinal iron absorption, reduces serum iron levels and traps iron within macrophages. The role of macrophage iron in the development of atherosclerosis remains incompletely understood. The objective of this study was to investigate the effects of hepcidin deficiency and decreased macrophage iron on the development of atherosclerosis. Approach and Results- Hepcidin- and LDL (low-density lipoprotein) receptor-deficient ( Hamp-/-/ Ldlr-/-) mice and Hamp+/+/ Ldlr-/- control mice were fed a high-fat diet for 21 weeks. Compared with control mice, Hamp-/-/ Ldlr-/- mice had decreased aortic macrophage activity and atherosclerosis. Because hepcidin deficiency is associated with both increased serum iron and decreased macrophage iron, the possibility that increased serum iron was responsible for decreased atherosclerosis in Hamp-/-/ Ldlr-/- mice was considered. Hamp+/+/ Ldlr-/- mice were treated with iron dextran so as to produce a 2-fold increase in serum iron. Increased serum iron did not decrease atherosclerosis in Hamp+/+/ Ldlr-/- mice. Aortic macrophages from Hamp-/-/ Ldlr-/- mice had less labile free iron and exhibited a reduced proinflammatory (M1) phenotype compared with macrophages from Hamp+/+/ Ldlr-/- mice. THP1 human macrophages treated with an iron chelator were used to model hepcidin deficiency in vitro. Treatment with an iron chelator reduced LPS (lipopolysaccharide)-induced M1 phenotypic expression and decreased uptake of oxidized LDL. Conclusions- In summary, in a hyperlipidemic mouse model, hepcidin deficiency was associated with decreased macrophage iron, a reduced aortic macrophage inflammatory phenotype and protection from atherosclerosis. The results indicate that decreasing hepcidin activity, with the resulting decrease in macrophage iron, may prove to be a novel strategy for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Rajeev Malhotra
- From the Cardiovascular Research Center and Cardiology Division of the Department of Medicine (R.M., H.J.B., M.D.B., C.L.S., H.S., D.K.R., K.D.B.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Florian Wunderer
- the Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine (F.W., A.B., C.D.O., C.D.L., K.M.P., B.C., K.B.J., K.D.B., D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston.,Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany (F.W.)
| | - Hanna J Barnes
- From the Cardiovascular Research Center and Cardiology Division of the Department of Medicine (R.M., H.J.B., M.D.B., C.L.S., H.S., D.K.R., K.D.B.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Aranya Bagchi
- the Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine (F.W., A.B., C.D.O., C.D.L., K.M.P., B.C., K.B.J., K.D.B., D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Mary D Buswell
- From the Cardiovascular Research Center and Cardiology Division of the Department of Medicine (R.M., H.J.B., M.D.B., C.L.S., H.S., D.K.R., K.D.B.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Caitlin D O'Rourke
- the Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine (F.W., A.B., C.D.O., C.D.L., K.M.P., B.C., K.B.J., K.D.B., D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Charles L Slocum
- From the Cardiovascular Research Center and Cardiology Division of the Department of Medicine (R.M., H.J.B., M.D.B., C.L.S., H.S., D.K.R., K.D.B.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Clara D Ledsky
- the Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine (F.W., A.B., C.D.O., C.D.L., K.M.P., B.C., K.B.J., K.D.B., D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Kathryn M Peneyra
- the Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine (F.W., A.B., C.D.O., C.D.L., K.M.P., B.C., K.B.J., K.D.B., D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Haakon Sigurslid
- From the Cardiovascular Research Center and Cardiology Division of the Department of Medicine (R.M., H.J.B., M.D.B., C.L.S., H.S., D.K.R., K.D.B.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Benjamin Corman
- the Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine (F.W., A.B., C.D.O., C.D.L., K.M.P., B.C., K.B.J., K.D.B., D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Kimberly B Johansson
- the Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine (F.W., A.B., C.D.O., C.D.L., K.M.P., B.C., K.B.J., K.D.B., D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - David K Rhee
- From the Cardiovascular Research Center and Cardiology Division of the Department of Medicine (R.M., H.J.B., M.D.B., C.L.S., H.S., D.K.R., K.D.B.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Kenneth D Bloch
- From the Cardiovascular Research Center and Cardiology Division of the Department of Medicine (R.M., H.J.B., M.D.B., C.L.S., H.S., D.K.R., K.D.B.), Massachusetts General Hospital and Harvard Medical School, Boston.,the Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine (F.W., A.B., C.D.O., C.D.L., K.M.P., B.C., K.B.J., K.D.B., D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Donald B Bloch
- the Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine (F.W., A.B., C.D.O., C.D.L., K.M.P., B.C., K.B.J., K.D.B., D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston.,Division of Rheumatology, Allergy and Immunology of the Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
162
|
Ye F, Wang Y, Wu C, Howatt DA, Wu CH, Balakrishnan A, Mullick AE, Graham MJ, Danser AHJ, Wang J, Daugherty A, Lu HS. Angiotensinogen and Megalin Interactions Contribute to Atherosclerosis-Brief Report. Arterioscler Thromb Vasc Biol 2019; 39:150-155. [PMID: 30567480 DOI: 10.1161/atvbaha.118.311817] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Objective- AGT (Angiotensinogen) is the unique precursor of the renin-angiotensin system that is sequentially cleaved by renin and ACE (angiotensin-converting enzyme) to produce Ang II (angiotensin II). In this study, we determined how these renin-angiotensin components interact with megalin in kidney to promote atherosclerosis. Approach and Results- AGT, renin, ACE, and megalin were present in the renal proximal convoluted tubules of wild-type mice. Hepatocyte-specific AGT deficiency abolished AGT protein accumulation in proximal tubules and diminished Ang II concentrations in kidney, while renin was increased. Megalin was most abundant in kidney and exclusively present on the apical side of proximal tubules. Inhibition of megalin by antisense oligonucleotides (ASOs) led to ablation of AGT and renin proteins in proximal tubules, while leading to striking increases of urine AGT and renin concentrations, and 70% reduction of renal Ang II concentrations. However, plasma Ang II concentrations were unaffected. To determine whether AGT and megalin interaction contributes to atherosclerosis, we used both male and female low-density lipoprotein receptor-/- mice fed a saturated fat-enriched diet and administered vehicles (PBS or control ASO) or megalin ASO. Inhibition of megalin did not affect plasma cholesterol concentrations, but profoundly reduced atherosclerotic lesion size in both male and female mice. Conclusions- These results reveal a regulatory role of megalin in the intrarenal renin-angiotensin homeostasis and atherogenesis, positing renal Ang II to be an important contributor to atherosclerosis that is mediated through AGT and megalin interactions.
Collapse
Affiliation(s)
- Feiming Ye
- From the Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (F.Y., Y.W., J.W.).,Saha Cardiovascular Research Center (F.Y., Y.W., C.W., D.A.H., A.B., A.D., H.S.L.) University of Kentucky, Lexington
| | - Ya Wang
- From the Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (F.Y., Y.W., J.W.).,Saha Cardiovascular Research Center (F.Y., Y.W., C.W., D.A.H., A.B., A.D., H.S.L.) University of Kentucky, Lexington
| | - Congqing Wu
- Saha Cardiovascular Research Center (F.Y., Y.W., C.W., D.A.H., A.B., A.D., H.S.L.) University of Kentucky, Lexington
| | - Deborah A Howatt
- Saha Cardiovascular Research Center (F.Y., Y.W., C.W., D.A.H., A.B., A.D., H.S.L.) University of Kentucky, Lexington
| | - Chia-Hua Wu
- Department of Pharmacology and Nutritional Sciences (C.-H.W., A.D., H.S.L.) University of Kentucky, Lexington
| | - Anju Balakrishnan
- Saha Cardiovascular Research Center (F.Y., Y.W., C.W., D.A.H., A.B., A.D., H.S.L.) University of Kentucky, Lexington
| | | | - Mark J Graham
- Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.)
| | | | - Jian'an Wang
- From the Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (F.Y., Y.W., J.W.)
| | - Alan Daugherty
- Saha Cardiovascular Research Center (F.Y., Y.W., C.W., D.A.H., A.B., A.D., H.S.L.) University of Kentucky, Lexington.,Department of Pharmacology and Nutritional Sciences (C.-H.W., A.D., H.S.L.) University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.) University of Kentucky, Lexington
| | - Hong S Lu
- Saha Cardiovascular Research Center (F.Y., Y.W., C.W., D.A.H., A.B., A.D., H.S.L.) University of Kentucky, Lexington.,Department of Pharmacology and Nutritional Sciences (C.-H.W., A.D., H.S.L.) University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.) University of Kentucky, Lexington
| |
Collapse
|
163
|
Babaev VR, Ding L, Zhang Y, May JM, Ramsey SA, Vickers KC, Linton MF. Loss of 2 Akt (Protein Kinase B) Isoforms in Hematopoietic Cells Diminished Monocyte and Macrophage Survival and Reduces Atherosclerosis in Ldl Receptor-Null Mice. Arterioscler Thromb Vasc Biol 2019; 39:156-169. [PMID: 30567482 DOI: 10.1161/atvbaha.118.312206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective- Macrophages express 3 Akt (protein kinase B) isoforms, Akt1, Akt2, and Akt3, which display isoform-specific functions but may be redundant in terms of Akt survival signaling. We hypothesize that loss of 2 Akt isoforms in macrophages will suppress their ability to survive and modulate the development of atherosclerosis. Approach and Results- To test this hypothesis, we reconstituted male Ldlr-/- mice with double Akt2/Akt3 knockout hematopoietic cells expressing only the Akt1 isoform (Akt1only). There were no differences in body weight and plasma lipid levels between the groups after 8 weeks of the Western diet; however, Akt1only→ Ldlr-/- mice developed smaller (57.6% reduction) atherosclerotic lesions with more apoptotic macrophages than control mice transplanted with WT (wild type) cells. Next, male and female Ldlr-/- mice were reconstituted with double Akt1/Akt2 knockout hematopoietic cells expressing the Akt3 isoform (Akt3only). Female and male Akt3only→ Ldlr-/- recipients had significantly smaller (61% and 41%, respectively) lesions than the control WT→ Ldlr-/- mice. Loss of 2 Akt isoforms in hematopoietic cells resulted in markedly diminished levels of white blood cells, B cells, and monocytes and compromised viability of monocytes and peritoneal macrophages compared with WT cells. In response to lipopolysaccharides, macrophages with a single Akt isoform expressed low levels of inflammatory cytokines; however, Akt1only macrophages were distinct in expressing high levels of antiapoptotic Il10 compared with WT and Akt3only cells. Conclusions- Loss of 2 Akt isoforms in hematopoietic cells, preserving only a single Akt1 or Akt3 isoform, markedly compromises monocyte and macrophage viability and diminishes early atherosclerosis in Ldlr-/- mice.
Collapse
Affiliation(s)
- Vladimir R Babaev
- From the Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine (V.R.B., L.D., Y.Z., J.M.M., K.C.V., M.F.L.), Vanderbilt University School of Medicine, Nashville, TN
| | - Lei Ding
- From the Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine (V.R.B., L.D., Y.Z., J.M.M., K.C.V., M.F.L.), Vanderbilt University School of Medicine, Nashville, TN
| | - Youmin Zhang
- From the Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine (V.R.B., L.D., Y.Z., J.M.M., K.C.V., M.F.L.), Vanderbilt University School of Medicine, Nashville, TN
| | - James M May
- From the Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine (V.R.B., L.D., Y.Z., J.M.M., K.C.V., M.F.L.), Vanderbilt University School of Medicine, Nashville, TN.,Department of Molecular Physiology and Biophysics (J.M.M., K.C.V.), Vanderbilt University School of Medicine, Nashville, TN
| | - Stephen A Ramsey
- Department of Biomedical Sciences, Oregon State University, School of Electrical Engineering and Computer Science, Corvallis (S.A.R.)
| | - Kasey C Vickers
- From the Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine (V.R.B., L.D., Y.Z., J.M.M., K.C.V., M.F.L.), Vanderbilt University School of Medicine, Nashville, TN.,Department of Molecular Physiology and Biophysics (J.M.M., K.C.V.), Vanderbilt University School of Medicine, Nashville, TN
| | - MacRae F Linton
- From the Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine (V.R.B., L.D., Y.Z., J.M.M., K.C.V., M.F.L.), Vanderbilt University School of Medicine, Nashville, TN.,Department of Pharmacology (M.F.L.), Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
164
|
Gao JH, He LH, Yu XH, Zhao ZW, Wang G, Zou J, Wen FJ, Zhou L, Wan XJ, Zhang DW, Tang CK. CXCL12 promotes atherosclerosis by downregulating ABCA1 expression via the CXCR4/GSK3β/β-catenin T120/TCF21 pathway. J Lipid Res 2019; 60:2020-2033. [PMID: 31662443 DOI: 10.1194/jlr.ra119000100] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
CXC chemokine ligand 12 (CXCL12) is a member of the CXC chemokine family and mainly acts on cell chemotaxis. CXCL12 also elicits a proatherogenic role, but the molecular mechanisms have not been fully defined yet. We aimed to reveal if and how CXCL12 promoted atherosclerosis via regulating lipid metabolism. In vitro, our data showed that CXCL12 could reduce ABCA1 expression, and it mediated cholesterol efflux from THP-1-derived macrophages to apoA-I. Data from the luciferase reporter gene and chromatin immunoprecipitation assays revealed that transcription factor 21 (TCF21) stimulated the transcription of ABCA1 via binding to its promoter region, which was repressed by CXCL12. We found that CXCL12 increased the levels of phosphorylated glycogen synthase kinase 3β (GSK3β) and the phosphorylation of β-catenin at the Thr120 position. Inactivation of GSK3β or β-catenin increased the expression of TCF21 and ABCA1. Further, knockdown or inhibition of CXC chemokine receptor 4 (CXCR4) blocked the effects of CXCL12 on TCF21 and ABCA1 expression and the phosphorylation of GSK3β and β-catenin. In vivo, the overexpression of CXCL12 in Apoe-/- mice via lentivirus enlarged the atherosclerotic lesion area and increased macrophage infiltration in atherosclerotic plaques. We further found that the overexpression of CXCL12 reduced the efficiency of reverse cholesterol transport and plasma HDL-C levels, decreased ABCA1 expression in the aorta and mouse peritoneal macrophages (MPMs), and suppressed cholesterol efflux from MPMs to apoA-I in Apoe-/- mice. Collectively, these findings suggest that CXCL12 interacts with CXCR4 and then activates the GSK-3β/β-cateninT120/TCF21 signaling pathway to inhibit ABCA1-dependent cholesterol efflux from macrophages and aggravate atherosclerosis. Targeting CXCL12 may be a novel and promising strategy for the prevention and treatment of atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Jia-Hui Gao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Lin-Hao He
- School of Pharmacy and Life Science College, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Xiao-Hua Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zhen-Wang Zhao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Gang Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Jin Zou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Feng-Jiao Wen
- School of Pharmacy and Life Science College, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Li Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Xiang-Jun Wan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| |
Collapse
|
165
|
Cicha I, Chauvierre C, Texier I, Cabella C, Metselaar JM, Szebeni J, Dézsi L, Alexiou C, Rouzet F, Storm G, Stroes E, Bruce D, MacRitchie N, Maffia P, Letourneur D. From design to the clinic: practical guidelines for translating cardiovascular nanomedicine. Cardiovasc Res 2019; 114:1714-1727. [PMID: 30165574 DOI: 10.1093/cvr/cvy219] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/23/2018] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases (CVD) account for nearly half of all deaths in Europe and almost 30% of global deaths. Despite the improved clinical management, cardiovascular mortality is predicted to rise in the next decades due to the increasing impact of aging, obesity, and diabetes. The goal of emerging cardiovascular nanomedicine is to reduce the burden of CVD using nanoscale medical products and devices. However, the development of novel multicomponent nano-sized products poses multiple technical, ethical, and regulatory challenges, which often obstruct their road to successful approval and use in clinical practice. This review discusses the rational design of nanoparticles, including safety considerations and regulatory issues, and highlights the steps needed to achieve efficient clinical translation of promising nanomedicinal products for cardiovascular applications.
Collapse
Affiliation(s)
- Iwona Cicha
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology und Nanomedicine (SEON), ENT-Department, University Hospital Erlangen, Glückstr. 10a, Erlangen, Germany
| | - Cédric Chauvierre
- INSERM U1148, LVTS, Paris Diderot University, Paris 13 University, X. Bichat Hospital, 46 rue H. Huchard, Paris, France
| | | | - Claudia Cabella
- Centro Ricerche Bracco, Bracco Imaging Spa, Colleretto Giacosa, Italy
| | - Josbert M Metselaar
- Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH-Aachen University, Aachen, Germany
| | - János Szebeni
- Nanomedicine Research and Education Center, Department of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - László Dézsi
- Nanomedicine Research and Education Center, Department of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Christoph Alexiou
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology und Nanomedicine (SEON), ENT-Department, University Hospital Erlangen, Glückstr. 10a, Erlangen, Germany
| | - François Rouzet
- INSERM U1148, LVTS, Paris Diderot University, Paris 13 University, X. Bichat Hospital, 46 rue H. Huchard, Paris, France.,Department of Nuclear Medicine, X. Bichat Hospital, Paris, France
| | - Gert Storm
- Department of Pharmaceutics, University of Utrecht, Utrecht, The Netherlands.,Department of Biomaterials Science and Technology, University of Twente, Enschede, The Netherlands
| | - Erik Stroes
- Department of Vascular Medicine, Amsterdam Medical Center, Amsterdam, The Netherlands
| | | | - Neil MacRitchie
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Pasquale Maffia
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Didier Letourneur
- INSERM U1148, LVTS, Paris Diderot University, Paris 13 University, X. Bichat Hospital, 46 rue H. Huchard, Paris, France
| |
Collapse
|
166
|
Chang HR, Josefs T, Scerbo D, Gumaste N, Hu Y, Huggins LA, Barett T, Chiang S, Grossman J, Bagdasarov S, Fisher EA, Goldberg IJ. Role of LpL (Lipoprotein Lipase) in Macrophage Polarization In Vitro and In Vivo. Arterioscler Thromb Vasc Biol 2019; 39:1967-1985. [PMID: 31434492 PMCID: PMC6761022 DOI: 10.1161/atvbaha.119.312389] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Fatty acid uptake and oxidation characterize the metabolism of alternatively activated macrophage polarization in vitro, but the in vivo biology is less clear. We assessed the roles of LpL (lipoprotein lipase)-mediated lipid uptake in macrophage polarization in vitro and in several important tissues in vivo. Approach and Results: We created mice with both global and myeloid-cell specific LpL deficiency. LpL deficiency in the presence of VLDL (very low-density lipoproteins) altered gene expression of bone marrow-derived macrophages and led to reduced lipid uptake but an increase in some anti- and some proinflammatory markers. However, LpL deficiency did not alter lipid accumulation or gene expression in circulating monocytes nor did it change the ratio of Ly6Chigh/Ly6Clow. In adipose tissue, less macrophage lipid accumulation was found with global but not myeloid-specific LpL deficiency. Neither deletion affected the expression of inflammatory genes. Global LpL deficiency also reduced the numbers of elicited peritoneal macrophages. Finally, we assessed gene expression in macrophages from atherosclerotic lesions during regression; LpL deficiency did not affect the polarity of plaque macrophages. CONCLUSIONS The phenotypic changes observed in macrophages upon deletion of Lpl in vitro is not mimicked in tissue macrophages.
Collapse
Affiliation(s)
- Hye Rim Chang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, New York
| | - Tatjana Josefs
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York
| | - Diego Scerbo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, New York
| | - Namrata Gumaste
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, New York
| | - Yunying Hu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, New York
| | - Lesley-Ann Huggins
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, New York
| | - Tessa Barett
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York; Division of Vascular Surgery, Department of Surgery, New York University School of Medicine, New York, New York
| | - Stephanie Chiang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, New York
| | - Jennifer Grossman
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, New York
| | - Svetlana Bagdasarov
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, New York
| | - Edward A. Fisher
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, New York
| |
Collapse
|
167
|
Nguyen PA, Won JS, Rahman MK, Bae EJ, Cho MK. Modulation of Sirt1/NF-κB interaction of evogliptin is attributed to inhibition of vascular inflammatory response leading to attenuation of atherosclerotic plaque formation. Biochem Pharmacol 2019; 168:452-464. [DOI: 10.1016/j.bcp.2019.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022]
|
168
|
Slack MA, Gordon SM. Protease Activity in Vascular Disease. Arterioscler Thromb Vasc Biol 2019; 39:e210-e218. [PMID: 31553665 PMCID: PMC6764587 DOI: 10.1161/atvbaha.119.312413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/20/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Megan A. Slack
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Scott M. Gordon
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
169
|
Min BK, Oh CJ, Park S, Lee JM, Go Y, Park BY, Kang HJ, Kim DW, Kim JE, Yoo EK, Kim HE, Kim MJ, Jeon YH, Kim YH, Lee CH, Jeon JH, Lee IK. Therapeutic effect of dichloroacetate against atherosclerosis via hepatic FGF21 induction mediated by acute AMPK activation. Exp Mol Med 2019; 51:1-12. [PMID: 31570705 PMCID: PMC6802614 DOI: 10.1038/s12276-019-0315-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/03/2019] [Accepted: 06/17/2019] [Indexed: 12/20/2022] Open
Abstract
Dyslipidemia-induced atherosclerosis, which has a risk of high morbidity and mortality, can be alleviated by metabolic activation associated with mitochondrial function. The effect of dichloroacetate (DCA), a general pyruvate dehydrogenase kinase (PDK) inhibitor, on in vivo energy expenditure in ApoE-/- mice fed a western diet (WD) has not yet been investigated. WD-fed ApoE-/- mice developed atherosclerotic plaques and hyperlipidemia along with obesity, which were significantly ameliorated by DCA administration. Increased oxygen consumption was associated with heat production in the DCA-treated group, with no change in food intake or physical activity compared with those of the control. These processes were correlated with the increased gene expression of Dio2 and Ucp-1, which represents brown adipose tissue (BAT) activation, in both WD-induced atherosclerosis and high-fat-induced obesity models. In addition, we found that DCA stimulated hepatic fibroblast growth factor 21 (Fgf21) mRNA expression, which might be important for lowering lipid levels and insulin sensitization via BAT activation, in a dose- and time-dependent manner associated with serum FGF21 levels. Interestingly, Fgf21 mRNA expression was mediated in an AMP-activated protein kinase (AMPK)-dependent manner within several minutes after DCA treatment independent of peroxisome proliferator-activated receptor alpha (PPARα). Taken together, the results suggest that enhanced glucose oxidation by DCA protects against atherosclerosis by inducing hepatic FGF21 expression and BAT activation, resulting in augmented energy expenditure for heat generation.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/genetics
- AMP-Activated Protein Kinases/metabolism
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/pathology
- Animals
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Atherosclerosis/drug therapy
- Atherosclerosis/etiology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Cardiovascular Agents/pharmacology
- Dichloroacetic Acid/pharmacology
- Diet, Western/adverse effects
- Dyslipidemias/drug therapy
- Dyslipidemias/etiology
- Dyslipidemias/genetics
- Dyslipidemias/pathology
- Energy Metabolism/drug effects
- Enzyme Inhibitors/pharmacology
- Fibroblast Growth Factors/agonists
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/metabolism
- Gene Expression Regulation
- Iodide Peroxidase/genetics
- Iodide Peroxidase/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Mitochondria/drug effects
- Mitochondria/metabolism
- Obesity/drug therapy
- Obesity/etiology
- Obesity/genetics
- Obesity/pathology
- Oxygen Consumption/drug effects
- PPAR alpha/genetics
- PPAR alpha/metabolism
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/etiology
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/pathology
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/antagonists & inhibitors
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction
- Uncoupling Protein 1/genetics
- Uncoupling Protein 1/metabolism
- Iodothyronine Deiodinase Type II
Collapse
Affiliation(s)
- Byong-Keol Min
- Department of Biomedical Science, Graduate School and BK21 plus KNU Biomedical Convergence Programs, Daegu, South Korea
| | - Chang Joo Oh
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, South Korea
| | - Sungmi Park
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, South Korea
| | - Ji-Min Lee
- Department of Biomedical Science, Graduate School and BK21 plus KNU Biomedical Convergence Programs, Daegu, South Korea
| | - Younghoon Go
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, South Korea
| | - Bo-Yoon Park
- Department of Biomedical Science, Graduate School and BK21 plus KNU Biomedical Convergence Programs, Daegu, South Korea
| | - Hyeon-Ji Kang
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, South Korea
| | - Dong Wook Kim
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, South Korea
| | - Jeong-Eun Kim
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, South Korea
| | - Eun Kyung Yoo
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, South Korea
| | - Hui Eon Kim
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, South Korea
| | - Mi-Jin Kim
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, South Korea
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jae-Han Jeon
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, South Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - In-Kyu Lee
- Department of Biomedical Science, Graduate School and BK21 plus KNU Biomedical Convergence Programs, Daegu, South Korea.
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, South Korea.
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, South Korea.
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
170
|
Mueller PA, Yang L, Ubele M, Mao G, Brandon J, Vandra J, Nichols TC, Escalante-Alcalde D, Morris AJ, Smyth SS. Coronary Artery Disease Risk-Associated Plpp3 Gene and Its Product Lipid Phosphate Phosphatase 3 Regulate Experimental Atherosclerosis. Arterioscler Thromb Vasc Biol 2019; 39:2261-2272. [PMID: 31533471 DOI: 10.1161/atvbaha.119.313056] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Genome-wide association studies identified novel loci in PLPP3(phospholipid phosphatase 3) that associate with coronary artery disease risk independently of traditional risk factors. PLPP3 encodes LPP3 (lipid phosphate phosphatase 3), a cell-surface enzyme that can regulate the availability of bioactive lysophopsholipids including lysophosphatidic acid (LPA). The protective allele of PLPP3 increases LPP3 expression during cell exposure to oxidized lipids, however, the role of LPP3 in atherosclerosis remains unclear. Approach and Results: In this study, we sought to validate LPP3 as a determinate of the development of atherosclerosis. In experimental models of atherosclerosis, LPP3 is upregulated and co-localizes with endothelial, smooth muscle cell, and CD68-positive cell markers. Global post-natal reductions in Plpp3 expression in mice substantially increase atherosclerosis, plaque-associated LPA, and inflammation. Although LPP3 expression increases during ox-LDL (oxidized low-density lipoprotein)-induced phenotypic modulation of bone marrow-derived macrophages, myeloid Plpp3 does not appear to regulate lesion formation. Rather, smooth muscle cell LPP3 expression is a critical regulator of atherosclerosis and LPA content in lesions. Moreover, mice with inherited deficiency in LPA receptor signaling are protected from experimental atherosclerosis. CONCLUSIONS Our results identify a novel lipid signaling pathway that regulates inflammation in the context of atherosclerosis and is not related to traditional risk factors. Pharmacological targeting of bioactive LPP3 substrates, including LPA, may offer an orthogonal approach to lipid-lowering drugs for mitigation of coronary artery disease risk.
Collapse
Affiliation(s)
- Paul A Mueller
- From the Division of Cardiovascular Medicine, The Gill Heart & Vascular Institute, University of Kentucky, Lexington (P.A.M., L.Y., M.U., G.M., J.B., J.V., A.J.M., S.S.S.)
| | - Liping Yang
- From the Division of Cardiovascular Medicine, The Gill Heart & Vascular Institute, University of Kentucky, Lexington (P.A.M., L.Y., M.U., G.M., J.B., J.V., A.J.M., S.S.S.)
| | - Margo Ubele
- From the Division of Cardiovascular Medicine, The Gill Heart & Vascular Institute, University of Kentucky, Lexington (P.A.M., L.Y., M.U., G.M., J.B., J.V., A.J.M., S.S.S.)
| | - Guogen Mao
- From the Division of Cardiovascular Medicine, The Gill Heart & Vascular Institute, University of Kentucky, Lexington (P.A.M., L.Y., M.U., G.M., J.B., J.V., A.J.M., S.S.S.)
| | - Jason Brandon
- From the Division of Cardiovascular Medicine, The Gill Heart & Vascular Institute, University of Kentucky, Lexington (P.A.M., L.Y., M.U., G.M., J.B., J.V., A.J.M., S.S.S.)
| | - Julia Vandra
- From the Division of Cardiovascular Medicine, The Gill Heart & Vascular Institute, University of Kentucky, Lexington (P.A.M., L.Y., M.U., G.M., J.B., J.V., A.J.M., S.S.S.)
| | - Timothy C Nichols
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (T.C.N.)
| | - Diana Escalante-Alcalde
- División de Neurociencias, Instituto de Fisiología, Celular Universidad Nacional Autónoma de México, Ciudad de México, CDMX (D.E.-A.)
| | - Andrew J Morris
- From the Division of Cardiovascular Medicine, The Gill Heart & Vascular Institute, University of Kentucky, Lexington (P.A.M., L.Y., M.U., G.M., J.B., J.V., A.J.M., S.S.S.).,Department of Veterans Affairs Medical Center, Lexington, KY (A.J.M., S.S.S.)
| | - Susan S Smyth
- From the Division of Cardiovascular Medicine, The Gill Heart & Vascular Institute, University of Kentucky, Lexington (P.A.M., L.Y., M.U., G.M., J.B., J.V., A.J.M., S.S.S.).,Department of Veterans Affairs Medical Center, Lexington, KY (A.J.M., S.S.S.)
| |
Collapse
|
171
|
Kearns AC, Liu F, Dai S, Robinson JA, Kiernan E, Tesfaye Cheru L, Peng X, Gordon J, Morgello S, Abuova A, Lo J, Zanni MV, Grinspoon S, Burdo TH, Qin X. Caspase-1 Activation Is Related With HIV-Associated Atherosclerosis in an HIV Transgenic Mouse Model and HIV Patient Cohort. Arterioscler Thromb Vasc Biol 2019; 39:1762-1775. [PMID: 31315440 PMCID: PMC6703939 DOI: 10.1161/atvbaha.119.312603] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Atherosclerotic cardiovascular disease (ASCVD) is an increasing cause of morbidity and mortality in people with HIV since the introduction of combination antiretroviral therapy. Despite recent advances in our understanding of HIV ASCVD, controversy still exists on whether this increased risk of ASCVD is due to chronic HIV infection or other risk factors. Mounting biomarker studies indicate a role of monocyte/macrophage activation in HIV ASCVD; however, little is known about the mechanisms through which HIV infection mediates monocyte/macrophage activation in such a way as to engender accelerated atherogenesis. Here, we experimentally investigated whether HIV expression is sufficient to accelerate atherosclerosis and evaluated the role of caspase-1 activation in monocytes/macrophages in HIV ASCVD. Approach and Results: We crossed a well-characterized HIV mouse model, Tg26 mice, which transgenically expresses HIV-1, with ApoE-/- mice to promote atherogenic conditions (Tg26+/-/ApoE-/-). Tg26+/-/ApoE-/- have accelerated atherosclerosis with increased caspase-1 pathway activation in inflammatory monocytes and atherosclerotic vasculature compared with ApoE-/-. Using a well-characterized cohort of people with HIV and tissue-banked aortic plaques, we documented that serum IL (interleukin)-18 was higher in people with HIV compared with non-HIV-infected controls, and in patients with plaques, IL-18 levels correlated with monocyte/macrophage activation markers and noncalcified inflammatory plaques. In autopsy-derived aortic plaques, caspase-1+ cells and CD (clusters of differentiation) 163+ macrophages correlated. CONCLUSIONS These data demonstrate that expression of HIV is sufficient to accelerate atherogenesis. Further, it highlights the importance of caspase-1 and monocyte/macrophage activation in HIV atherogenesis and the potential of Tg26+/-/ApoE-/- as a tool for mechanistic studies of HIV ASCVD.
Collapse
Affiliation(s)
- Alison C. Kearns
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA 19140
- Co-first author, these authors contributed equally to this work
| | - Fengming Liu
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA 19140
- Division of Pathology, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA 70433
- Co-first author, these authors contributed equally to this work
| | - Shen Dai
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA 19140
| | - Jake A. Robinson
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA 19140
| | - Elizabeth Kiernan
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA 19140
| | - Lediya Tesfaye Cheru
- Program in Nutritional Metabolism, Mass General Hospital and Harvard Medical School, Boston, MA
| | - Xiao Peng
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA 19140
| | - Jennifer Gordon
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA 19140
| | - Susan Morgello
- Departments of Neurology, Neuroscience, and Pathology, Mount Sinai Medical Center, New York, NY
| | - Aishazhan Abuova
- Departments of Neurology, Neuroscience, and Pathology, Mount Sinai Medical Center, New York, NY
| | - Janet Lo
- Program in Nutritional Metabolism, Mass General Hospital and Harvard Medical School, Boston, MA
| | - Markella V. Zanni
- Program in Nutritional Metabolism, Mass General Hospital and Harvard Medical School, Boston, MA
| | - Steven Grinspoon
- Program in Nutritional Metabolism, Mass General Hospital and Harvard Medical School, Boston, MA
| | - Tricia H. Burdo
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA 19140
| | - Xuebin Qin
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA 19140
- Division of Pathology, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA 70433
| |
Collapse
|
172
|
Lei W, Deng YF, Hu XY, Ni JN, Jiang M, Bai G. Phthalides, senkyunolide A and ligustilide, show immunomodulatory effect in improving atherosclerosis, through inhibiting AP-1 and NF-κB expression. Biomed Pharmacother 2019; 117:109074. [DOI: 10.1016/j.biopha.2019.109074] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/29/2019] [Accepted: 06/02/2019] [Indexed: 12/12/2022] Open
|
173
|
Federspiel JD, Tandon P, Wilczewski CM, Wasson L, Herring LE, Venkatesh SS, Cristea IM, Conlon FL. Conservation and divergence of protein pathways in the vertebrate heart. PLoS Biol 2019; 17:e3000437. [PMID: 31490923 PMCID: PMC6750614 DOI: 10.1371/journal.pbio.3000437] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 09/18/2019] [Accepted: 08/14/2019] [Indexed: 12/18/2022] Open
Abstract
Heart disease is the leading cause of death in the western world. Attaining a mechanistic understanding of human heart development and homeostasis and the molecular basis of associated disease states relies on the use of animal models. Here, we present the cardiac proteomes of 4 model vertebrates with dual circulatory systems: the pig (Sus scrofa), the mouse (Mus musculus), and 2 frogs (Xenopus laevis and Xenopus tropicalis). Determination of which proteins and protein pathways are conserved and which have diverged within these species will aid in our ability to choose the appropriate models for determining protein function and to model human disease. We uncover mammalian- and amphibian-specific, as well as species-specific, enriched proteins and protein pathways. Among these, we find and validate an enrichment in cell-cycle-associated proteins within Xenopus laevis. To further investigate functional units within cardiac proteomes, we develop a computational approach to profile the abundance of protein complexes across species. Finally, we demonstrate the utility of these data sets for predicting appropriate model systems for studying given cardiac conditions by testing the role of Kielin/chordin-like protein (Kcp), a protein found as enriched in frog hearts compared to mammals. We establish that germ-line mutations in Kcp in Xenopus lead to valve defects and, ultimately, cardiac failure and death. Thus, integrating these findings with data on proteins responsible for cardiac disease should lead to the development of refined, species-specific models for protein function and disease states.
Collapse
Affiliation(s)
| | - Panna Tandon
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Caralynn M. Wilczewski
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lauren Wasson
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Laura E. Herring
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | | | - Ileana M. Cristea
- Princeton University, Princeton, New Jersey, United States of America
| | - Frank L. Conlon
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
174
|
Zhang Q, Hu J, Wu Y, Luo H, Meng W, Xiao B, Xiao X, Zhou Z, Liu F. Rheb (Ras Homolog Enriched in Brain 1) Deficiency in Mature Macrophages Prevents Atherosclerosis by Repressing Macrophage Proliferation, Inflammation, and Lipid Uptake. Arterioscler Thromb Vasc Biol 2019; 39:1787-1801. [DOI: 10.1161/atvbaha.119.312870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective:
Macrophage foam cell formation is an important process in atherosclerotic plaque development. The small GTPase Rheb (Ras homolog enriched in brain 1) regulates endocytic trafficking that is critical for foam cell formation. However, it is unclear whether and how macrophage Rheb regulates atherogenesis, which are the focuses of the current study.
Approach and Results:
Immunofluorescence study confirmed the colocalization of Rheb in F4/80 and Mac-2 (galectin-3)–labeled lesional macrophages. Western blot and fluorescence-activated cell sorting analysis showed that Rheb expression was significantly increased in atherosclerotic lesions of atherosclerosis-prone (apoE
−/−
[apolipoprotein E deficient]) mice fed with Western diet. Increased Rheb expression was also observed in oxidized LDL (low-density lipoprotein)–treated macrophages. To investigate the in vivo role of macrophage Rheb, we established mature Rheb
mKO
(macrophage-specific Rheb knockout) mice by crossing the Rheb floxed mice with
F4/80-cre
mice. Macrophage-specific knockout of Rheb in mice reduced Western diet–induced atherosclerotic lesion by 32%, accompanied with a decrease in macrophage content in plaque. Mechanistically, loss of Rheb in macrophages repressed oxidized LDL–induced lipid uptake, inflammation, and macrophage proliferation. On the contrary, lentivirus-mediated overexpression of Rheb in macrophages increased oxidized LDL–induced lipid uptake and inflammation, and the stimulatory effect of Rheb was suppressed by the mTOR (mammalian target of rapamycin) inhibitor rapamycin or the PKA (protein kinase A) activator forskolin.
Conclusions:
Macrophage Rheb plays important role in Western diet–induced atherosclerosis by promoting macrophage proliferation, inflammation, and lipid uptake. Inhibition of expression and function of Rheb in macrophages is beneficial to prevent diet-induced atherosclerosis.
Collapse
Affiliation(s)
- Qinghai Zhang
- From the Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Q.Z., J.H., Y.W., H.L., W.M., B.X., Z.Z., F.L.)
- Department of Metabolism and Endocrinology, First Affiliated Hospital of University of South China, Hengyang, Hunan (Q.Z.)
| | - Jie Hu
- From the Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Q.Z., J.H., Y.W., H.L., W.M., B.X., Z.Z., F.L.)
| | - Yan Wu
- From the Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Q.Z., J.H., Y.W., H.L., W.M., B.X., Z.Z., F.L.)
| | - Hairong Luo
- From the Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Q.Z., J.H., Y.W., H.L., W.M., B.X., Z.Z., F.L.)
| | - Wen Meng
- From the Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Q.Z., J.H., Y.W., H.L., W.M., B.X., Z.Z., F.L.)
| | - Bo Xiao
- From the Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Q.Z., J.H., Y.W., H.L., W.M., B.X., Z.Z., F.L.)
- Department of Biology, Southern University of Science and Technology, Shenzhen, China (B.X.)
| | - Xianzhong Xiao
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China (X.X.)
| | - Zhiguang Zhou
- From the Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Q.Z., J.H., Y.W., H.L., W.M., B.X., Z.Z., F.L.)
| | - Feng Liu
- From the Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Q.Z., J.H., Y.W., H.L., W.M., B.X., Z.Z., F.L.)
| |
Collapse
|
175
|
Herman AB, Silva Afonso M, Kelemen SE, Ray M, Vrakas CN, Burke AC, Scalia RG, Moore K, Autieri MV. Regulation of Stress Granule Formation by Inflammation, Vascular Injury, and Atherosclerosis. Arterioscler Thromb Vasc Biol 2019; 39:2014-2027. [PMID: 31462091 DOI: 10.1161/atvbaha.119.313034] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Stress granules (SGs) are dynamic cytoplasmic aggregates containing mRNA, RNA-binding proteins, and translation factors that form in response to cellular stress. SGs have been shown to contribute to the pathogenesis of several human diseases, but their role in vascular diseases is unknown. This study shows that SGs accumulate in vascular smooth muscle cells (VSMCs) and macrophages during atherosclerosis. Approach and Results: Immunohistochemical analysis of atherosclerotic plaques from LDLR-/- mice revealed an increase in the stress granule-specific markers Ras-G3BP1 (GTPase-activating protein SH3 domain-binding protein) and PABP (poly-A-binding protein) in intimal macrophages and smooth muscle cells that correlated with disease progression. In vitro, PABP+ and G3BP1+ SGs were rapidly induced in VSMC and bone marrow-derived macrophages in response to atherosclerotic stimuli, including oxidized low-density lipoprotein and mediators of mitochondrial or oxidative stress. We observed an increase in eIF2α (eukaryotic translation initiation factor 2-alpha) phosphorylation, a requisite for stress granule formation, in cells exposed to these stimuli. Interestingly, SG formation, PABP expression, and eIF2α phosphorylation in VSMCs is reversed by treatment with the anti-inflammatory cytokine interleukin-19. Microtubule inhibitors reduced stress granule accumulation in VSMC, suggesting cytoskeletal regulation of stress granule formation. SG formation in VSMCs was also observed in other vascular disease pathologies, including vascular restenosis. Reduction of SG component G3BP1 by siRNA significantly altered expression profiles of inflammatory, apoptotic, and proliferative genes. CONCLUSIONS These results indicate that SG formation is a common feature of the vascular response to injury and disease, and that modification of inflammation reduces stress granule formation in VSMC.
Collapse
Affiliation(s)
- Allison B Herman
- From the Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (A.B.H., S.E.K., M.R., C.N.V., R.G.S., M.V.A.)
| | - Milessa Silva Afonso
- New York University Langone Health, Leon H. Charney Division of Cardiology, New York (M.S.A., A.C.B., K.M.)
| | - Sheri E Kelemen
- From the Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (A.B.H., S.E.K., M.R., C.N.V., R.G.S., M.V.A.)
| | - Mitali Ray
- From the Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (A.B.H., S.E.K., M.R., C.N.V., R.G.S., M.V.A.)
| | - Christine N Vrakas
- From the Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (A.B.H., S.E.K., M.R., C.N.V., R.G.S., M.V.A.)
| | - Amy C Burke
- New York University Langone Health, Leon H. Charney Division of Cardiology, New York (M.S.A., A.C.B., K.M.)
| | - Rosario G Scalia
- From the Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (A.B.H., S.E.K., M.R., C.N.V., R.G.S., M.V.A.)
| | - Kathryn Moore
- New York University Langone Health, Leon H. Charney Division of Cardiology, New York (M.S.A., A.C.B., K.M.)
| | - Michael V Autieri
- From the Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (A.B.H., S.E.K., M.R., C.N.V., R.G.S., M.V.A.)
| |
Collapse
|
176
|
Li F, Shi J, Lu HS, Zhang H. Functional Genomics and CRISPR Applied to Cardiovascular Research and Medicine. Arterioscler Thromb Vasc Biol 2019; 39:e188-e194. [PMID: 31433696 DOI: 10.1161/atvbaha.119.312579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Fang Li
- From the Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York (F.L., J.S., H.Z.)
| | - Jianting Shi
- From the Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York (F.L., J.S., H.Z.)
| | - Hong S Lu
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L.)
| | - Hanrui Zhang
- From the Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York (F.L., J.S., H.Z.)
| |
Collapse
|
177
|
Pahk K, Noh H, Joung C, Jang M, Song HY, Kim KW, Han K, Hwang JI, Kim S, Kim WK. A novel CD147 inhibitor, SP-8356, reduces neointimal hyperplasia and arterial stiffness in a rat model of partial carotid artery ligation. J Transl Med 2019; 17:274. [PMID: 31429778 PMCID: PMC6700999 DOI: 10.1186/s12967-019-2024-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 08/14/2019] [Indexed: 12/20/2022] Open
Abstract
Background Neointimal hyperplasia and its related arterial stiffness are the crucial pathophysiological features in atherosclerosis and in-stent restenosis. Cluster of differentiation 147 (CD147), a member of the immunoglobulin super family that induces the expression of matrix metalloproteinase-9 (MMP-9) by dimerization, may play important roles in neointimal hyperplasia and may therefore be an effective target for the treatment of this condition. Here, we investigated whether a novel CD147 inhibitor SP-8356 ((1S,5R)-4-(3,4-dihydroxy-5-methoxystyryl)-6,6-dimethylbicyclo[3.1.1]hept-3-en-2-one) reduces neointimal hyperplasia and arterial stiffness in a rat model of partial carotid artery ligation. Methods Neointimal hyperplasia was induced in Sprague–Dawley rats by partial ligation of the right carotid artery combined with a high fat diet and vitamin D injection. Rats were subdivided into vehicle, SP-8356 (50 mg/kg), and rosuvastatin (10 mg/kg) groups. The drugs were administrated via intraperitoneal injections for 4 weeks. The elasticity of blood vessels was assessed by measuring pulse wave velocity using Doppler ultrasonography before sacrifice. Histomolecular analysis was carried out on harvested carotid arteries. Results SP-8356 significantly reduced MMP activity by inhibiting CD147 dimerization. SP-8356 reduced neointimal hyperplasia and prevented the deterioration of vascular elasticity. SP-8356 had a greater inhibitory effect on neointimal hyperplasia than did rosuvastatin. Furthermore, rosuvastatin did not improve vascular elasticity. SP-8356 increased the expression of smooth muscle myosin heavy chain (SM-MHC), but decreased the expression of collagen type III and MMP-9 in the neointimal region. In contrast to SP-8356, rosuvastatin did not alter the expression of SM-MHC or MMP-9. Conclusions The ability of SP-8356 to reduce neointimal hyperplasia and improve arterial stiffness in affected carotid artery suggests that SP-8356 could be a promising therapeutic drug for vascular remodeling disorders involving neointimal hyperplasia and arterial stiffness.
Collapse
Affiliation(s)
- Kisoo Pahk
- Institute for Inflammation Control, Korea University, Seoul, South Korea.,Department of Neuroscience, Korea University College of Medicine, 126-1, Anam-Dong 5-Ga, Seongbuk-Gu, Seoul, 136-705, South Korea.,Department of Nuclear Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Hyojin Noh
- Institute for Inflammation Control, Korea University, Seoul, South Korea.,Department of Neuroscience, Korea University College of Medicine, 126-1, Anam-Dong 5-Ga, Seongbuk-Gu, Seoul, 136-705, South Korea
| | - Chanmin Joung
- Institute for Inflammation Control, Korea University, Seoul, South Korea.,Department of Neuroscience, Korea University College of Medicine, 126-1, Anam-Dong 5-Ga, Seongbuk-Gu, Seoul, 136-705, South Korea
| | - Mi Jang
- Institute for Inflammation Control, Korea University, Seoul, South Korea.,Department of Neuroscience, Korea University College of Medicine, 126-1, Anam-Dong 5-Ga, Seongbuk-Gu, Seoul, 136-705, South Korea
| | - Hwa Young Song
- Institute for Inflammation Control, Korea University, Seoul, South Korea.,Department of Neuroscience, Korea University College of Medicine, 126-1, Anam-Dong 5-Ga, Seongbuk-Gu, Seoul, 136-705, South Korea
| | - Kyung Won Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kihoon Han
- Institute for Inflammation Control, Korea University, Seoul, South Korea.,Department of Neuroscience, Korea University College of Medicine, 126-1, Anam-Dong 5-Ga, Seongbuk-Gu, Seoul, 136-705, South Korea
| | - Jong-Ik Hwang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Sungeun Kim
- Department of Nuclear Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Won-Ki Kim
- Institute for Inflammation Control, Korea University, Seoul, South Korea. .,Department of Neuroscience, Korea University College of Medicine, 126-1, Anam-Dong 5-Ga, Seongbuk-Gu, Seoul, 136-705, South Korea.
| |
Collapse
|
178
|
Jean-Charles PY, Wu JH, Zhang L, Kaur S, Nepliouev I, Stiber JA, Brian L, Qi R, Wertman V, Shenoy SK, Freedman NJ. USP20 (Ubiquitin-Specific Protease 20) Inhibits TNF (Tumor Necrosis Factor)-Triggered Smooth Muscle Cell Inflammation and Attenuates Atherosclerosis. Arterioscler Thromb Vasc Biol 2019; 38:2295-2305. [PMID: 30354204 DOI: 10.1161/atvbaha.118.311071] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective- Signaling that activates NFκB (nuclear factor κB) in smooth muscle cells (SMCs) is integral to atherosclerosis and involves reversible ubiquitination that activates proteins downstream of proatherogenic receptors. Deubiquitination of these proteins is mediated by USP20 (ubiquitin-specific protease 20), among other deubiquitinases. We sought to determine whether USP20 activity in SMCs decreases atherosclerosis. Approach and Results- To address this question, we used male Ldlr-/- mice without (control) or with SMC-specific expression of murine USP20 (SMC-USP20-transgenic) or its dominant-negative (DN; C154S/H643Q) mutant (SMC-DN-USP20-transgenic). Before the appearance of intimal macrophages, NFκB activation in aortic medial SMCs was greater in SMC-DN-USP20-transgenic than in control mice. After 16 weeks on a Western diet, SMC-DN-USP20-transgenic mice had 46% greater brachiocephalic artery atheroma area than control mice. Congruently, aortic atherosclerosis assessed en face was 21% greater than control in SMC-DN-USP20-transgenic mice and 13% less than control in SMC-USP20-transgenic mice. In response to TNF (tumor necrosis factor), SMCs from SMC-DN-USP20-transgenic mice showed ≈3-fold greater NFκB activation than control SMCs. Silencing USP20 in SMCs with siRNA (small interfering RNA) augmented NFκB activation by ≈50% in response to either TNF or IL-1β (interleukin-1β). Coimmunoprecipitation experiments revealed that USP20 associates with several components of the TNFR1 (TNF receptor-1) signaling pathway, including RIPK1 (receptor-interacting protein kinase 1), a critical checkpoint in TNF-induced NFκB activation and inflammation. TNF evoked ≈2-fold more RIPK1 ubiquitination in SMC-DN-USP20-transgenic than in control SMCs, and RIPK1 was deubiquitinated by purified USP20 in vitro. Conclusions- USP20 attenuates TNF- and IL-1β-evoked atherogenic signaling in SMCs, by deubiquitinating RIPK1, among other signaling intermediates.
Collapse
Affiliation(s)
- Pierre-Yves Jean-Charles
- From the Departments of Medicine (Cardiology) (P.-Y.J.-C., J.-H.W., L.Z., S.K., I.N., J.A.S., L.B., R.Q., V.W., S.K.S., N.J.F.), Duke University Medical Center, Durham, NC
| | - Jiao-Hui Wu
- From the Departments of Medicine (Cardiology) (P.-Y.J.-C., J.-H.W., L.Z., S.K., I.N., J.A.S., L.B., R.Q., V.W., S.K.S., N.J.F.), Duke University Medical Center, Durham, NC
| | - Lisheng Zhang
- From the Departments of Medicine (Cardiology) (P.-Y.J.-C., J.-H.W., L.Z., S.K., I.N., J.A.S., L.B., R.Q., V.W., S.K.S., N.J.F.), Duke University Medical Center, Durham, NC
| | - Suneet Kaur
- From the Departments of Medicine (Cardiology) (P.-Y.J.-C., J.-H.W., L.Z., S.K., I.N., J.A.S., L.B., R.Q., V.W., S.K.S., N.J.F.), Duke University Medical Center, Durham, NC
| | - Igor Nepliouev
- From the Departments of Medicine (Cardiology) (P.-Y.J.-C., J.-H.W., L.Z., S.K., I.N., J.A.S., L.B., R.Q., V.W., S.K.S., N.J.F.), Duke University Medical Center, Durham, NC
| | - Jonathan A Stiber
- From the Departments of Medicine (Cardiology) (P.-Y.J.-C., J.-H.W., L.Z., S.K., I.N., J.A.S., L.B., R.Q., V.W., S.K.S., N.J.F.), Duke University Medical Center, Durham, NC
| | - Leigh Brian
- From the Departments of Medicine (Cardiology) (P.-Y.J.-C., J.-H.W., L.Z., S.K., I.N., J.A.S., L.B., R.Q., V.W., S.K.S., N.J.F.), Duke University Medical Center, Durham, NC
| | - Rui Qi
- From the Departments of Medicine (Cardiology) (P.-Y.J.-C., J.-H.W., L.Z., S.K., I.N., J.A.S., L.B., R.Q., V.W., S.K.S., N.J.F.), Duke University Medical Center, Durham, NC
| | - Virginia Wertman
- From the Departments of Medicine (Cardiology) (P.-Y.J.-C., J.-H.W., L.Z., S.K., I.N., J.A.S., L.B., R.Q., V.W., S.K.S., N.J.F.), Duke University Medical Center, Durham, NC
| | - Sudha K Shenoy
- From the Departments of Medicine (Cardiology) (P.-Y.J.-C., J.-H.W., L.Z., S.K., I.N., J.A.S., L.B., R.Q., V.W., S.K.S., N.J.F.), Duke University Medical Center, Durham, NC.,Cell Biology (S.K.S., N.J.F.), Duke University Medical Center, Durham, NC
| | - Neil J Freedman
- From the Departments of Medicine (Cardiology) (P.-Y.J.-C., J.-H.W., L.Z., S.K., I.N., J.A.S., L.B., R.Q., V.W., S.K.S., N.J.F.), Duke University Medical Center, Durham, NC.,Cell Biology (S.K.S., N.J.F.), Duke University Medical Center, Durham, NC
| |
Collapse
|
179
|
Lu HS, Schmidt AM, Hegele RA, Mackman N, Rader DJ, Weber C, Daugherty A. Reporting Sex and Sex Differences in Preclinical Studies. Arterioscler Thromb Vasc Biol 2019; 38:e171-e184. [PMID: 30354222 DOI: 10.1161/atvbaha.118.311717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong S Lu
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University Langone Medical Center, New York, NY (A.M.S.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Daniel J Rader
- Department of Medicine (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Department of Genetics (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Christian Weber
- Department of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany (C.W.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Alan Daugherty
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| |
Collapse
|
180
|
Wakabayashi T, Takahashi M, Yamamuro D, Karasawa T, Takei A, Takei S, Yamazaki H, Nagashima S, Ebihara K, Takahashi M, Ishibashi S. Inflammasome Activation Aggravates Cutaneous Xanthomatosis and Atherosclerosis in ACAT1 (Acyl-CoA Cholesterol Acyltransferase 1) Deficiency in Bone Marrow. Arterioscler Thromb Vasc Biol 2019; 38:2576-2589. [PMID: 30354239 DOI: 10.1161/atvbaha.118.311648] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objective- ACAT1 (Acyl-CoA cholesterol acyltransferase 1) esterifies cellular free cholesterol, thereby converting macrophages to cholesteryl ester-laden foam cells in atherosclerotic lesions and cutaneous xanthoma. Paradoxically, however, loss of ACAT1 in bone marrow causes the aggravation of atherosclerosis and the development of severe cutaneous xanthoma in hyperlipidemic mice. Recently, it has been reported that cholesterol crystals activate NLRP3 (NACHT, LRR [leucine-rich repeats], and PYD [pyrin domain] domain-containing protein 3) inflammasomes, thereby contributing to the development of atherosclerosis. The present study aimed to clarify the role of NLRP3 inflammasomes in the worsening of atherosclerosis and cutaneous xanthoma induced by ACAT1 deficiency. Approach and Results- Ldlr-null mice were transplanted with bone marrow from WT (wild type) mice and mice lacking ACAT1, NLRP3, or both. After the 4 types of mice were fed high-cholesterol diets, we compared their atherosclerosis and skin lesions. The mice transplanted with Acat1-null bone marrow developed severe cutaneous xanthoma, which was filled with numerous macrophages and cholesterol clefts and had markedly increased expression of inflammatory cytokines, and increased atherosclerosis. Loss of NLRP3 completely reversed the cutaneous xanthoma, whereas it improved the atherosclerosis only partially. Acat1-null peritoneal macrophages showed enhanced expression of CHOP (C/EBP [CCAAT/enhancer binding protein] homologous protein) and TNF-α (tumor necrosis factor-α) but no evidence of inflammasome activation, after treatment with acetylated LDL (low-density lipoprotein). Conclusions- Elimination of ACAT1 in bone marrow-derived cells aggravates cutaneous xanthoma and atherosclerosis. The development of cutaneous xanthoma is induced mainly via the NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Tetsuji Wakabayashi
- From the Division of Endocrinology and Metabolism, Department of Internal Medicine (T.W., M.T., D.Y., A.T., S.T., H.Y., S.N., K.E., S.I.), Jichi Medical University, Shimotsuke, Japan
| | - Manabu Takahashi
- From the Division of Endocrinology and Metabolism, Department of Internal Medicine (T.W., M.T., D.Y., A.T., S.T., H.Y., S.N., K.E., S.I.), Jichi Medical University, Shimotsuke, Japan
| | - Daisuke Yamamuro
- From the Division of Endocrinology and Metabolism, Department of Internal Medicine (T.W., M.T., D.Y., A.T., S.T., H.Y., S.N., K.E., S.I.), Jichi Medical University, Shimotsuke, Japan
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine (T.K., M.T.), Jichi Medical University, Shimotsuke, Japan
| | - Akihito Takei
- From the Division of Endocrinology and Metabolism, Department of Internal Medicine (T.W., M.T., D.Y., A.T., S.T., H.Y., S.N., K.E., S.I.), Jichi Medical University, Shimotsuke, Japan
| | - Shoko Takei
- From the Division of Endocrinology and Metabolism, Department of Internal Medicine (T.W., M.T., D.Y., A.T., S.T., H.Y., S.N., K.E., S.I.), Jichi Medical University, Shimotsuke, Japan
| | - Hisataka Yamazaki
- From the Division of Endocrinology and Metabolism, Department of Internal Medicine (T.W., M.T., D.Y., A.T., S.T., H.Y., S.N., K.E., S.I.), Jichi Medical University, Shimotsuke, Japan
| | - Shuichi Nagashima
- From the Division of Endocrinology and Metabolism, Department of Internal Medicine (T.W., M.T., D.Y., A.T., S.T., H.Y., S.N., K.E., S.I.), Jichi Medical University, Shimotsuke, Japan
| | - Ken Ebihara
- From the Division of Endocrinology and Metabolism, Department of Internal Medicine (T.W., M.T., D.Y., A.T., S.T., H.Y., S.N., K.E., S.I.), Jichi Medical University, Shimotsuke, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine (T.K., M.T.), Jichi Medical University, Shimotsuke, Japan
| | - Shun Ishibashi
- From the Division of Endocrinology and Metabolism, Department of Internal Medicine (T.W., M.T., D.Y., A.T., S.T., H.Y., S.N., K.E., S.I.), Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
181
|
Sakai K, Nagashima S, Wakabayashi T, Tumenbayar B, Hayakawa H, Hayakawa M, Karasawa T, Ohashi K, Yamazaki H, Takei A, Takei S, Yamamuro D, Takahashi M, Yagyu H, Osuga JI, Takahashi M, Tominaga SI, Ishibashi S. Myeloid HMG-CoA (3-Hydroxy-3-Methylglutaryl-Coenzyme A) Reductase Determines Atherosclerosis by Modulating Migration of Macrophages. Arterioscler Thromb Vasc Biol 2019; 38:2590-2600. [PMID: 30354246 DOI: 10.1161/atvbaha.118.311664] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Objective- Inhibition of HMGCR (3-hydroxy-3-methylglutaryl-coenzyme A reductase) is atheroprotective primarily by decreasing plasma LDL (low-density lipoprotein)-cholesterol. However, it is unknown whether inhibition of HMGCR in myeloid cells contributes to this atheroprotection. We sought to determine the role of myeloid HMGCR in the development of atherosclerosis. Approach and Results- We generated mice with genetically reduced Hmgcr in myeloid cells ( Hmgcr m- /m-) using LysM (Cre) and compared various functions of their macrophages to those of Hmgcr fl/fl control mice. We further compared the extent of atherosclerosis in Hmgcr m-/ m- and Hmgcr fl/fl mice in the absence of Ldlr (LDL receptor). Hmgcr m-/ m- macrophages and granulocytes had significantly lower Hmgcr mRNA expression and cholesterol biosynthesis than Hmgcr fl/fl cells. In vitro, Hmgcr m-/ m- monocytes/macrophages had reduced ability to migrate, proliferate, and survive compared with Hmgcr fl/fl monocytes/macrophages. However, there was no difference in ability to adhere, phagocytose, store lipids, or polarize to M1 macrophages between the 2 types of macrophages. The amounts of plasma membrane-associated small GTPase proteins, such as RhoA (RAS homolog family member A), were increased in Hmgcr m-/ m- macrophages. In the setting of Ldlr deficiency, Hmgcr m-/ m- mice developed significantly smaller atherosclerotic lesions than Hmgcr fl/fl mice. However, there were no differences between the 2 types of mice either in plasma lipoprotein profiles or in the numbers of proliferating or apoptotic cells in the lesions in vivo. The in vivo migration of Hmgcr m-/ m- macrophages to the lesions was reduced compared with Hmgcr fl/fl macrophages. Conclusions- Genetic reduction of HMGCR in myeloid cells may exert atheroprotective effects primarily by decreasing the migratory activity of monocytes/macrophages to the lesions.
Collapse
Affiliation(s)
- Kent Sakai
- From the Division of Endocrinology and Metabolism, Department of Medicine (K.S., S.N., T.W., B.T., H. Yamazaki, A.T., S.T., D.Y., M.T., H. Yagyu, J.-i.O., S.I.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shuichi Nagashima
- From the Division of Endocrinology and Metabolism, Department of Medicine (K.S., S.N., T.W., B.T., H. Yamazaki, A.T., S.T., D.Y., M.T., H. Yagyu, J.-i.O., S.I.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Tetsuji Wakabayashi
- From the Division of Endocrinology and Metabolism, Department of Medicine (K.S., S.N., T.W., B.T., H. Yamazaki, A.T., S.T., D.Y., M.T., H. Yagyu, J.-i.O., S.I.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Bayasgalan Tumenbayar
- From the Division of Endocrinology and Metabolism, Department of Medicine (K.S., S.N., T.W., B.T., H. Yamazaki, A.T., S.T., D.Y., M.T., H. Yagyu, J.-i.O., S.I.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hiroko Hayakawa
- Department of Biochemistry (H.H., M.H., S.-i.T.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Morisada Hayakawa
- Department of Biochemistry (H.H., M.H., S.-i.T.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine (T.K., M.T.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Ken Ohashi
- Department of Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo ward, Japan (K.O.)
| | - Hisataka Yamazaki
- From the Division of Endocrinology and Metabolism, Department of Medicine (K.S., S.N., T.W., B.T., H. Yamazaki, A.T., S.T., D.Y., M.T., H. Yagyu, J.-i.O., S.I.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Akihito Takei
- From the Division of Endocrinology and Metabolism, Department of Medicine (K.S., S.N., T.W., B.T., H. Yamazaki, A.T., S.T., D.Y., M.T., H. Yagyu, J.-i.O., S.I.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shoko Takei
- From the Division of Endocrinology and Metabolism, Department of Medicine (K.S., S.N., T.W., B.T., H. Yamazaki, A.T., S.T., D.Y., M.T., H. Yagyu, J.-i.O., S.I.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Daisuke Yamamuro
- From the Division of Endocrinology and Metabolism, Department of Medicine (K.S., S.N., T.W., B.T., H. Yamazaki, A.T., S.T., D.Y., M.T., H. Yagyu, J.-i.O., S.I.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Manabu Takahashi
- From the Division of Endocrinology and Metabolism, Department of Medicine (K.S., S.N., T.W., B.T., H. Yamazaki, A.T., S.T., D.Y., M.T., H. Yagyu, J.-i.O., S.I.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hiroaki Yagyu
- From the Division of Endocrinology and Metabolism, Department of Medicine (K.S., S.N., T.W., B.T., H. Yamazaki, A.T., S.T., D.Y., M.T., H. Yagyu, J.-i.O., S.I.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Jun-Ichi Osuga
- From the Division of Endocrinology and Metabolism, Department of Medicine (K.S., S.N., T.W., B.T., H. Yamazaki, A.T., S.T., D.Y., M.T., H. Yagyu, J.-i.O., S.I.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine (T.K., M.T.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shin-Ichi Tominaga
- Department of Biochemistry (H.H., M.H., S.-i.T.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shun Ishibashi
- From the Division of Endocrinology and Metabolism, Department of Medicine (K.S., S.N., T.W., B.T., H. Yamazaki, A.T., S.T., D.Y., M.T., H. Yagyu, J.-i.O., S.I.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
182
|
Nishino T, Horie T, Baba O, Sowa N, Hanada R, Kuwabara Y, Nakao T, Nishiga M, Nishi H, Nakashima Y, Nakazeki F, Ide Y, Koyama S, Kimura M, Nagata M, Yoshida K, Takagi Y, Nakamura T, Hasegawa K, Miyamoto S, Kimura T, Ono K. SREBF1/MicroRNA-33b Axis Exhibits Potent Effect on Unstable Atherosclerotic Plaque Formation In Vivo. Arterioscler Thromb Vasc Biol 2019; 38:2460-2473. [PMID: 30354203 DOI: 10.1161/atvbaha.118.311409] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Objective- Atherosclerosis is a common disease caused by a variety of metabolic and inflammatory disturbances. MicroRNA (miR)-33a within SREBF2 (sterol regulatory element-binding factor 2) is a potent target for treatment of atherosclerosis through regulating both aspects; however, the involvement of miR-33b within SREBF1 remains largely unknown. Although their host genes difference could lead to functional divergence of miR-33a/b, we cannot dissect the roles of miR-33a/b in vivo because of lack of miR-33b sequences in mice, unlike human. Approach and Results- Here, we analyzed the development of atherosclerosis using miR-33b knock-in humanized mice under apolipoprotein E-deficient background. MiR-33b is prominent both in human and mice on atheroprone condition. MiR-33b reduced serum high-density lipoprotein cholesterol levels and systemic reverse cholesterol transport. MiR-33b knock-in macrophages showed less cholesterol efflux capacity and higher inflammatory state via regulating lipid rafts. Thus, miR-33b promotes vulnerable atherosclerotic plaque formation. Furthermore, bone marrow transplantation experiments strengthen proatherogenic roles of macrophage miR-33b. Conclusions- Our data demonstrated critical roles of SREBF1-miR-33b axis on both lipid profiles and macrophage phenotype remodeling and indicate that miR-33b is a promising target for treating atherosclerosis.
Collapse
Affiliation(s)
- Tomohiro Nishino
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Takahiro Horie
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Osamu Baba
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Naoya Sowa
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Ritsuko Hanada
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Yasuhide Kuwabara
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Tetsushi Nakao
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Masataka Nishiga
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Hitoo Nishi
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Yasuhiro Nakashima
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Fumiko Nakazeki
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Yuya Ide
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Satoshi Koyama
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Masahiro Kimura
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Manabu Nagata
- Neurosurgery (M.N., K.Y., Y.T., S.M.), Graduate School of Medicine, Kyoto University, Japan
| | - Kazumichi Yoshida
- Neurosurgery (M.N., K.Y., Y.T., S.M.), Graduate School of Medicine, Kyoto University, Japan
| | - Yasushi Takagi
- Neurosurgery (M.N., K.Y., Y.T., S.M.), Graduate School of Medicine, Kyoto University, Japan
| | - Tomoyuki Nakamura
- Department of Pharmacology, Kansai Medical University, Moriguchi, Japan (T.N.)
| | - Koji Hasegawa
- Division of Translational Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Japan (K.H.)
| | - Susumu Miyamoto
- Neurosurgery (M.N., K.Y., Y.T., S.M.), Graduate School of Medicine, Kyoto University, Japan
| | - Takeshi Kimura
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Koh Ono
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
183
|
Tirronen A, Vuorio T, Kettunen S, Hokkanen K, Ramms B, Niskanen H, Laakso H, Kaikkonen MU, Jauhiainen M, Gordts PLSM, Ylä-Herttuala S. Deletion of Lymphangiogenic and Angiogenic Growth Factor VEGF-D Leads to Severe Hyperlipidemia and Delayed Clearance of Chylomicron Remnants. Arterioscler Thromb Vasc Biol 2019; 38:2327-2337. [PMID: 30354205 DOI: 10.1161/atvbaha.118.311549] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- Dyslipidemia is one of the key factors behind coronary heart disease. Blood and lymphatic vessels play pivotal roles in both lipoprotein metabolism and development of atherosclerotic plaques. Recent studies have linked members of VEGF (vascular endothelial growth factor) family to lipid metabolism, but the function of VEGF-D has remained unexplored. Here, we investigated how the deletion of VEGF-D affects lipid and lipoprotein metabolism in atherogenic LDLR-/- ApoB100/100 mice. Approach and Results- Deletion of VEGF-D (VEGF-D-/-LDLR-/-ApoB100/100) led to markedly elevated plasma cholesterol and triglyceride levels without an increase in atherogenesis. Size distribution and hepatic lipid uptake studies confirmed a delayed clearance of large chylomicron remnant particles that cannot easily penetrate through the vascular endothelium. Mechanistically, the inhibition of VEGF-D signaling significantly decreased the hepatic expression of SDC1 (syndecan 1), which is one of the main receptors for chylomicron remnant uptake when LDLR is absent. Immunohistochemical staining confirmed reduced expression of SDC1 in the sinusoidal surface of hepatocytes in VEGF-D deficient mice. Furthermore, hepatic RNA-sequencing revealed that VEGF-D is also an important regulator of genes related to lipid metabolism and inflammation. The lack of VEGF-D signaling via VEGFR3 (VEGF receptor 3) led to lowered expression of genes regulating triglyceride and cholesterol production, as well as downregulation of peroxisomal β-oxidation pathway. Conclusions- These results demonstrate that VEGF-D, a powerful lymphangiogenic and angiogenic growth factor, is also a major regulator of chylomicron metabolism in mice.
Collapse
Affiliation(s)
- Annakaisa Tirronen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Taina Vuorio
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Sanna Kettunen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Krista Hokkanen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Bastian Ramms
- Division of Endocrinology and Metabolism, Department of Medicine (B.R., P.L.S.M.G.), University of California San Diego, La Jolla, CA.,Department of Chemistry, Biochemistry I, Bielefeld University, Germany (B.R.)
| | - Henri Niskanen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Hanne Laakso
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Minna U Kaikkonen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Matti Jauhiainen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Biomedicum, Helsinki, Finland (M.J.)
| | - Philip L S M Gordts
- Division of Endocrinology and Metabolism, Department of Medicine (B.R., P.L.S.M.G.), University of California San Diego, La Jolla, CA.,Glycobiology Research and Training Center (P.L.S.M.G.), University of California San Diego, La Jolla, CA
| | - Seppo Ylä-Herttuala
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.).,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| |
Collapse
|
184
|
Liu L, Zeng P, Yang X, Duan Y, Zhang W, Ma C, Zhang X, Yang S, Li X, Yang J, Liang Y, Han H, Zhu Y, Han J, Chen Y. Inhibition of Vascular Calcification. Arterioscler Thromb Vasc Biol 2019; 38:2382-2395. [PMID: 30354214 DOI: 10.1161/atvbaha.118.311546] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Objective- Vascular calcification is a major risk factor for rupture of atherosclerotic plaques. High expression of BMP2 (bone morphogenetic protein 2) in lesions suggests its importance in vascular calcification during atherosclerosis. Teniposide is a Topo II (DNA topoisomerase II) inhibitor and is used for cancer treatment. Previously, we reported that teniposide activated macrophage ABCA1 (ATP-binding cassette transporter A1) expression and free cholesterol efflux indicating Topo II inhibitors may demonstrate antiatherogenic properties. Herein, we investigated the effects of teniposide on the development of atherosclerosis and vascular calcification in apoE-/- (apoE deficient) mice. Approach and Results- apoE-/- mice were fed high-fat diet containing teniposide for 16 weeks, or prefed high-fat diet for 12 weeks followed by high-fat diet containing teniposide for 4 weeks. Atherosclerosis and vascular calcification were determined. Human aortic smooth muscle cells were used to determine the mechanisms for teniposide-inhibited vascular calcification. Teniposide reduced atherosclerotic lesions. It also substantially reduced vascular calcification without affecting bone structure. Mechanistically, teniposide reduced vascular calcification by inactivating BMP2/(pi-Smad1/5/8 [mothers against decapentaplegic homolog 1, 5, and 8])/RUNX2 (runt-related transcription factor 2) axis in a p53-dependent manner. Furthermore, activated miR-203-3p by teniposide functioned as a link between activated p53 expression and inhibited BMP2 expression in inhibition of calcification. Conclusions- Our study demonstrates that teniposide reduces vascular calcification by regulating p53-(miR-203-3p)-BMP2 signaling pathway, which contributes to the antiatherogenic properties of Topo II inhibitors.
Collapse
Affiliation(s)
- Lipei Liu
- From the Department of Biochemistry and Molecular Biology, the College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (L.L., P.Z., X.Z., S.Y., X.L., J.Y., J.H.)
| | - Peng Zeng
- From the Department of Biochemistry and Molecular Biology, the College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (L.L., P.Z., X.Z., S.Y., X.L., J.Y., J.H.)
| | - Xiaoxiao Yang
- From the Department of Biochemistry and Molecular Biology, the College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (L.L., P.Z., X.Z., S.Y., X.L., J.Y., J.H.).,the Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, Hefei, China (X.Y., Y.D., Y.L., H.H., Y.C., J.H.)
| | - Yajun Duan
- the Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, Hefei, China (X.Y., Y.D., Y.L., H.H., Y.C., J.H.)
| | - Wenwen Zhang
- Research Institute of Obstetrics and Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, China (W.Z.)
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China (C.M.)
| | - Xiaomeng Zhang
- From the Department of Biochemistry and Molecular Biology, the College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (L.L., P.Z., X.Z., S.Y., X.L., J.Y., J.H.)
| | - Shu Yang
- From the Department of Biochemistry and Molecular Biology, the College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (L.L., P.Z., X.Z., S.Y., X.L., J.Y., J.H.)
| | - Xiaoju Li
- From the Department of Biochemistry and Molecular Biology, the College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (L.L., P.Z., X.Z., S.Y., X.L., J.Y., J.H.)
| | - Jie Yang
- From the Department of Biochemistry and Molecular Biology, the College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (L.L., P.Z., X.Z., S.Y., X.L., J.Y., J.H.)
| | - Yu Liang
- the Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, Hefei, China (X.Y., Y.D., Y.L., H.H., Y.C., J.H.)
| | - Hao Han
- the Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, Hefei, China (X.Y., Y.D., Y.L., H.H., Y.C., J.H.)
| | - Yan Zhu
- Tianjin University of Traditional Chinese Medicine, China (Y.Z.)
| | - Jihong Han
- From the Department of Biochemistry and Molecular Biology, the College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (L.L., P.Z., X.Z., S.Y., X.L., J.Y., J.H.).,the Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, Hefei, China (X.Y., Y.D., Y.L., H.H., Y.C., J.H.)
| | - Yuanli Chen
- the Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, Hefei, China (X.Y., Y.D., Y.L., H.H., Y.C., J.H.)
| |
Collapse
|
185
|
Al-Yafeai Z, Yurdagul A, Peretik JM, Alfaidi M, Murphy PA, Orr AW. Endothelial FN (Fibronectin) Deposition by α5β1 Integrins Drives Atherogenic Inflammation. Arterioscler Thromb Vasc Biol 2019; 38:2601-2614. [PMID: 30354234 DOI: 10.1161/atvbaha.118.311705] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- Alterations in extracellular matrix quantity and composition contribute to atherosclerosis, with remodeling of the subendothelial basement membrane to an FN (fibronectin)-rich matrix preceding lesion development. Endothelial cell interactions with FN prime inflammatory responses to a variety of atherogenic stimuli; however, the mechanisms regulating early atherogenic FN accumulation remain unknown. We previously demonstrated that oxLDL (oxidized low-density lipoprotein) promotes endothelial proinflammatory gene expression by activating the integrin α5β1, a classic mediator of FN fibrillogenesis. Approach and Results- We now show that oxLDL drives robust endothelial FN deposition and inhibiting α5β1 (blocking antibodies, α5 knockout cells) completely inhibits oxLDL-induced FN deposition. Consistent with this, inducible endothelial-specific α5 integrin deletion in ApoE knockout mice significantly reduces atherosclerotic plaque formation, associated with reduced early atherogenic inflammation. Unlike TGFβ (transforming growth factor β)-induced FN deposition, oxLDL does not induce FN expression (mRNA, protein) or the endothelial-to-mesenchymal transition phenotype. In addition, we show that cell-derived and plasma-derived FN differentially affect endothelial function, with only cell-derived FN capable of supporting oxLDL-induced VCAM-1 (vascular cell adhesion molecule 1) expression, despite plasma FN deposition by oxLDL. The inclusion of alternative exon EIIIA (EDA) of FN (EIIIA) and alternative exon EIIIB (EDB) of FN (EIIIB) domains in cell-derived FN mediates this effect, as EIIIA/EIIIB knockout endothelial cells show diminished oxLDL-induced inflammation. Furthermore, our data suggest that EIIIA/EIIIB-positive cellular FN is required for maximal α5β1 recruitment to focal adhesions and FN fibrillogenesis. Conclusions- Taken together, our data demonstrate that endothelial α5 integrins drive oxLDL-induced FN deposition and early atherogenic inflammation. Additionally, we show that α5β1-dependent endothelial FN deposition mediates oxLDL-dependent endothelial inflammation and FN fibrillogenesis.
Collapse
Affiliation(s)
- Zaki Al-Yafeai
- From the Department of Cellular and Molecular Physiology (Z.A.-Y., A.W.O.), LSU Health Sciences Center, Shreveport, LA
| | - Arif Yurdagul
- Department of Cell Biology and Anatomy (A.Y., A.W.O.), LSU Health Sciences Center, Shreveport, LA
| | - Jonette M Peretik
- Department of Pathology and Translational Pathobiology (J.M.P., M.A., A.W.O.), LSU Health Sciences Center, Shreveport, LA
| | - Mabruka Alfaidi
- Department of Pathology and Translational Pathobiology (J.M.P., M.A., A.W.O.), LSU Health Sciences Center, Shreveport, LA
| | - Patrick A Murphy
- Center for Vascular Biology, UConn Health, Farmington, CT (P.A.M.)
| | - A Wayne Orr
- From the Department of Cellular and Molecular Physiology (Z.A.-Y., A.W.O.), LSU Health Sciences Center, Shreveport, LA.,Department of Cell Biology and Anatomy (A.Y., A.W.O.), LSU Health Sciences Center, Shreveport, LA.,Department of Pathology and Translational Pathobiology (J.M.P., M.A., A.W.O.), LSU Health Sciences Center, Shreveport, LA
| |
Collapse
|
186
|
Rinne P, Guillamat-Prats R, Rami M, Bindila L, Ring L, Lyytikäinen LP, Raitoharju E, Oksala N, Lehtimäki T, Weber C, van der Vorst EPC, Steffens S. Palmitoylethanolamide Promotes a Proresolving Macrophage Phenotype and Attenuates Atherosclerotic Plaque Formation. Arterioscler Thromb Vasc Biol 2019; 38:2562-2575. [PMID: 30354245 DOI: 10.1161/atvbaha.118.311185] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective- Palmitoylethanolamide is an endogenous fatty acid mediator that is synthetized from membrane phospholipids by N-acyl phosphatidylethanolamine phospholipase D. Its biological actions are primarily mediated by PPAR-α (peroxisome proliferator-activated receptors α) and the orphan receptor GPR55. Palmitoylethanolamide exerts potent anti-inflammatory actions but its physiological role and promise as a therapeutic agent in chronic arterial inflammation, such as atherosclerosis remain unexplored. Approach and Results- First, the polarization of mouse primary macrophages towards a proinflammatory phenotype was found to reduce N-acyl phosphatidylethanolamine phospholipase D expression and palmitoylethanolamide bioavailability. N-acyl phosphatidylethanolamine phospholipase D expression was progressively downregulated in the aorta of apolipoprotein E deficient (ApoE-/-) mice during atherogenesis. N-acyl phosphatidylethanolamine phospholipase D mRNA levels were also downregulated in unstable human plaques and they positively associated with smooth muscle cell markers and negatively with macrophage markers. Second, ApoE-/- mice were fed a high-fat diet for 4 or 16 weeks and treated with either vehicle or palmitoylethanolamide (3 mg/kg per day, 4 weeks) to study the effects of palmitoylethanolamide on early established and pre-established atherosclerosis. Palmitoylethanolamide treatment reduced plaque size in early atherosclerosis, whereas in pre-established atherosclerosis, palmitoylethanolamide promoted signs of plaque stability as evidenced by reduced macrophage accumulation and necrotic core size, increased collagen deposition and downregulation of M1-type macrophage markers. Mechanistically, we found that palmitoylethanolamide, by activating GPR55, increases the expression of the phagocytosis receptor MerTK (proto-oncogene tyrosine-protein kinase MER) and enhances macrophage efferocytosis, indicative of proresolving properties. Conclusions- The present study demonstrates that palmitoylethanolamide protects against atherosclerosis by promoting an anti-inflammatory and proresolving phenotype of lesional macrophages, representing a new therapeutic approach to resolve arterial inflammation.
Collapse
Affiliation(s)
- Petteri Rinne
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU) of Munich, Germany (P.R., R.G.-P., M.R., L.R., C.W., E.P.C.v.d.V., S.S).,Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Finland (P.R.)
| | - Raquel Guillamat-Prats
- Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Finland (P.R.)
| | - Martina Rami
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU) of Munich, Germany (P.R., R.G.-P., M.R., L.R., C.W., E.P.C.v.d.V., S.S)
| | - Laura Bindila
- Institute for Physiological Chemistry, University Medical Center, Johannes Gutenberg University Mainz, Germany (L.B.)
| | - Larisa Ring
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU) of Munich, Germany (P.R., R.G.-P., M.R., L.R., C.W., E.P.C.v.d.V., S.S)
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Finland (L.-P.L., E.R., N.O., T.L.)
| | - Emma Raitoharju
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Finland (L.-P.L., E.R., N.O., T.L.)
| | - Niku Oksala
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Finland (L.-P.L., E.R., N.O., T.L.).,Department of Surgery, Tampere University Hospital, Finland (N.O.)
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Finland (L.-P.L., E.R., N.O., T.L.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU) of Munich, Germany (P.R., R.G.-P., M.R., L.R., C.W., E.P.C.v.d.V., S.S).,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands (C.W.).,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (C.W., S.S.)
| | - Emiel P C van der Vorst
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU) of Munich, Germany (P.R., R.G.-P., M.R., L.R., C.W., E.P.C.v.d.V., S.S)
| | - Sabine Steffens
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU) of Munich, Germany (P.R., R.G.-P., M.R., L.R., C.W., E.P.C.v.d.V., S.S).,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (C.W., S.S.)
| |
Collapse
|
187
|
Sato T, Horikawa M, Takei S, Yamazaki F, Ito TK, Kondo T, Sakurai T, Kahyo T, Ikegami K, Sato S, Sato R, Jinno Y, Kawano H, Naoe S, Arita M, Kashiwagi Y, Setou M. Preferential Incorporation of Administered Eicosapentaenoic Acid Into Thin-Cap Atherosclerotic Plaques. Arterioscler Thromb Vasc Biol 2019; 39:1802-1816. [PMID: 31366219 DOI: 10.1161/atvbaha.119.313093] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE n-3 polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have beneficial effects on atherosclerosis. Although specific salutary actions have been reported, the detailed distribution of n-3 polyunsaturated fatty acids in plaque and their relevance in disease progression are unclear. Our aim was to assess the pharmacodynamics of EPA and DHA and their metabolites in atherosclerotic plaques. Approach and Results: Apolipoprotein E-deficient (Apoe-/-) mice were fed a Western diet supplemented with EPA (1%, w/w) or DHA (1%, w/w) for 3 weeks. Imaging mass spectrometry analyses were performed in the aortic root and arch of the Apoe-/- mice to evaluate the distribution of EPA, DHA, their metabolites and the lipids containing EPA or DHA in the plaques. Liquid chromatography-mass spectrometry and histological analysis were also performed. The intima-media thickness of atherosclerotic plaque decreased in plaques containing free EPA and EPAs attached with several lipids. EPA was distributed more densely in the thin-cap plaques than in the thick-cap plaques, while DHA was more evenly distributed. In the aortic root, the distribution of total EPA level and cholesteryl esters containing EPA followed a concentration gradient from the vascular endothelium to the media. In the aortic arch, free EPA and 12-hydroxy-EPA colocalized with M2 macrophage. CONCLUSIONS Administered EPA tends to be incorporated from the vascular lumen side and preferentially taken into the thin-cap plaque.
Collapse
Affiliation(s)
- Tomohito Sato
- From the Department of Cellular and Molecular Anatomy (T. Sato, M.H., F.Y., T.K.I., T. Kondo, T. Sakurai, T. Kahyo, K.I., S.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan.,International Mass Imaging Center (T. Sato, M.H., F.Y., T.K.I., T. Kondo, T. Sakurai, T. Kahyo, K.I., S.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan.,First Department of Surgery (T. Sato), Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Makoto Horikawa
- From the Department of Cellular and Molecular Anatomy (T. Sato, M.H., F.Y., T.K.I., T. Kondo, T. Sakurai, T. Kahyo, K.I., S.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan.,International Mass Imaging Center (T. Sato, M.H., F.Y., T.K.I., T. Kondo, T. Sakurai, T. Kahyo, K.I., S.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Shiro Takei
- Department of Environmental Biology, College of Bioscience and Biotechnology, Chubu University, Aichi, Japan (S.T.)
| | - Fumiyoshi Yamazaki
- From the Department of Cellular and Molecular Anatomy (T. Sato, M.H., F.Y., T.K.I., T. Kondo, T. Sakurai, T. Kahyo, K.I., S.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan.,International Mass Imaging Center (T. Sato, M.H., F.Y., T.K.I., T. Kondo, T. Sakurai, T. Kahyo, K.I., S.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Takashi K Ito
- From the Department of Cellular and Molecular Anatomy (T. Sato, M.H., F.Y., T.K.I., T. Kondo, T. Sakurai, T. Kahyo, K.I., S.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan.,International Mass Imaging Center (T. Sato, M.H., F.Y., T.K.I., T. Kondo, T. Sakurai, T. Kahyo, K.I., S.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Takeshi Kondo
- From the Department of Cellular and Molecular Anatomy (T. Sato, M.H., F.Y., T.K.I., T. Kondo, T. Sakurai, T. Kahyo, K.I., S.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan.,International Mass Imaging Center (T. Sato, M.H., F.Y., T.K.I., T. Kondo, T. Sakurai, T. Kahyo, K.I., S.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Takanobu Sakurai
- From the Department of Cellular and Molecular Anatomy (T. Sato, M.H., F.Y., T.K.I., T. Kondo, T. Sakurai, T. Kahyo, K.I., S.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan.,International Mass Imaging Center (T. Sato, M.H., F.Y., T.K.I., T. Kondo, T. Sakurai, T. Kahyo, K.I., S.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tomoaki Kahyo
- From the Department of Cellular and Molecular Anatomy (T. Sato, M.H., F.Y., T.K.I., T. Kondo, T. Sakurai, T. Kahyo, K.I., S.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan.,International Mass Imaging Center (T. Sato, M.H., F.Y., T.K.I., T. Kondo, T. Sakurai, T. Kahyo, K.I., S.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Koji Ikegami
- From the Department of Cellular and Molecular Anatomy (T. Sato, M.H., F.Y., T.K.I., T. Kondo, T. Sakurai, T. Kahyo, K.I., S.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan.,International Mass Imaging Center (T. Sato, M.H., F.Y., T.K.I., T. Kondo, T. Sakurai, T. Kahyo, K.I., S.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Shumpei Sato
- From the Department of Cellular and Molecular Anatomy (T. Sato, M.H., F.Y., T.K.I., T. Kondo, T. Sakurai, T. Kahyo, K.I., S.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan.,International Mass Imaging Center (T. Sato, M.H., F.Y., T.K.I., T. Kondo, T. Sakurai, T. Kahyo, K.I., S.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Ryota Sato
- Division of Cardiology, Internal Medicine 3 (R.S.), Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Yasutaka Jinno
- Development Research, Pharmaceutical Research Center, Mochida Pharmaceutical Co, Ltd, Shizuoka, Japan (Y.J., H.K., S.N.)
| | - Hiroyuki Kawano
- Development Research, Pharmaceutical Research Center, Mochida Pharmaceutical Co, Ltd, Shizuoka, Japan (Y.J., H.K., S.N.)
| | - Satoko Naoe
- Development Research, Pharmaceutical Research Center, Mochida Pharmaceutical Co, Ltd, Shizuoka, Japan (Y.J., H.K., S.N.).,Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan (S.N., M.A.)
| | - Makoto Arita
- Preeminent Medical Photonics Education and Research Center, Shizuoka, Japan (M.S.)
| | - Yukiyasu Kashiwagi
- Osaka Research Institute of Industrial Science and Technology, Japan (Y.K., )
| | - Mitsutoshi Setou
- From the Department of Cellular and Molecular Anatomy (T. Sato, M.H., F.Y., T.K.I., T. Kondo, T. Sakurai, T. Kahyo, K.I., S.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan.,International Mass Imaging Center (T. Sato, M.H., F.Y., T.K.I., T. Kondo, T. Sakurai, T. Kahyo, K.I., S.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan.,Department of Anatomy, The University of Hong Kong, China (M.S.)
| |
Collapse
|
188
|
Clement M, Chen X, Chenoweth HL, Teng Z, Thome S, Newland SA, Harrison J, Yu X, Finigan AJ, Mallat Z, Li X. MARK4 (Microtubule Affinity-Regulating Kinase 4)-Dependent Inflammasome Activation Promotes Atherosclerosis—Brief Report. Arterioscler Thromb Vasc Biol 2019; 39:1645-1651. [DOI: 10.1161/atvbaha.119.312478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Objective:
MARK4 (microtubule affinity-regulating kinase 4) regulates NLRP3 (nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3) inflammasome activation. The aim of the study is to examine the role of MARK4 in hematopoietic cells during atherosclerosis.
Methods and Results:
We show increased MARK4 expression in human atherosclerotic lesions compared with adjacent areas. MARK4 is coexpressed with NLRP3, and they colocalize in areas enriched in CD68-positive but α-SMA (α-smooth muscle actin)–negative cells. Expression of MARK4 and NLRP3 in the atherosclerotic lesions is associated with the production of active IL (interleukin)-1β and IL-18. To directly assess the role of hematopoietic MARK4 in NLRP3 inflammasome activation and atherosclerotic plaque formation,
Ldlr
(low-density lipoprotein receptor)-deficient mice were lethally irradiated and reconstituted with either wild-type or
Mark4
-deficient bone marrow cells, and were subsequently fed a high-fat diet and cholesterol diet for 9 weeks.
Mark4
deficiency in bone marrow cells led to a significant reduction of lesion size, together with decreased circulating levels of IL-18 and IFN-γ (interferon-γ). Furthermore,
Mark4
deficiency in primary murine bone marrow–derived macrophages prevented cholesterol crystal–induced NLRP3 inflammasome activation, as revealed by reduced caspase-1 activity together with reduced production of IL-1β and IL-18.
Conclusions:
MARK4-dependent NLRP3 inflammasome activation in the hematopoietic cells regulates the development of atherosclerosis.
Collapse
Affiliation(s)
- Marc Clement
- From the Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (M.C., H.L.C., S.T., S.A.N., J.H., X.Y., A.J.F., Z.M., X.L.)
| | - Xiao Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China (X.C.)
| | - Hannah L. Chenoweth
- From the Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (M.C., H.L.C., S.T., S.A.N., J.H., X.Y., A.J.F., Z.M., X.L.)
| | - Zhongzhao Teng
- Department of Radiology, University of Cambridge, United Kingdom (Z.T.)
| | - Sarah Thome
- From the Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (M.C., H.L.C., S.T., S.A.N., J.H., X.Y., A.J.F., Z.M., X.L.)
| | - Stephen A. Newland
- From the Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (M.C., H.L.C., S.T., S.A.N., J.H., X.Y., A.J.F., Z.M., X.L.)
| | - James Harrison
- From the Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (M.C., H.L.C., S.T., S.A.N., J.H., X.Y., A.J.F., Z.M., X.L.)
| | - Xian Yu
- From the Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (M.C., H.L.C., S.T., S.A.N., J.H., X.Y., A.J.F., Z.M., X.L.)
| | - Alison J. Finigan
- From the Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (M.C., H.L.C., S.T., S.A.N., J.H., X.Y., A.J.F., Z.M., X.L.)
| | - Ziad Mallat
- From the Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (M.C., H.L.C., S.T., S.A.N., J.H., X.Y., A.J.F., Z.M., X.L.)
- Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, France (Z.M.)
| | - Xuan Li
- From the Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (M.C., H.L.C., S.T., S.A.N., J.H., X.Y., A.J.F., Z.M., X.L.)
| |
Collapse
|
189
|
Abstract
TCF21 , a gene associated with coronary heart disease, promotes plaque stability and reduces clinical events by enhancing smooth muscle cell phenotype modulation into “fibromyocytes” in atherosclerosis.
Collapse
Affiliation(s)
- Huize Pan
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA.
| |
Collapse
|
190
|
Cansby E, Magnusson E, Nuñez-Durán E, Amrutkar M, Pedrelli M, Parini P, Hoffmann J, Ståhlman M, Howell BW, Marschall HU, Borén J, Mahlapuu M. STK25 Regulates Cardiovascular Disease Progression in a Mouse Model of Hypercholesterolemia. Arterioscler Thromb Vasc Biol 2019; 38:1723-1737. [PMID: 29930001 DOI: 10.1161/atvbaha.118.311241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective- Recent cohort studies have shown that nonalcoholic fatty liver disease (NAFLD), and especially nonalcoholic steatohepatitis (NASH), associate with atherosclerosis and cardiovascular disease, independently of conventional cardiometabolic risk factors. However, the mechanisms underlying the pathophysiological link between NAFLD/NASH and cardiovascular disease still remain unclear. Our previous studies have identified STK25 (serine/threonine protein kinase 25) as a critical determinant in ectopic lipid storage, meta-inflammation, and progression of NAFLD/NASH. The aim of this study was to assess whether STK25 is also one of the mediators in the complex molecular network controlling the cardiovascular disease risk. Approach and Results- Atherosclerosis was induced in Stk25 knockout and transgenic mice, and their wild-type littermates, by gene transfer of gain-of-function mutant of PCSK9 (proprotein convertase subtilisin/kexin type 9), which induces the downregulation of hepatic LDLR (low-density lipoprotein receptor), combined with an atherogenic western-type diet. We found that Stk25-/- mice displayed reduced atherosclerosis lesion area as well as decreased lipid accumulation, macrophage infiltration, collagen formation, and oxidative stress in aortic lesions compared with wild-type littermates, independently from alterations in dyslipidemia. Reciprocally, Stk25 transgenic mice presented aggravated plaque formation and maturation compared with wild-type littermates despite similar levels of fasting plasma cholesterol. We also found that STK25 protein was expressed in all layers of the aorta, suggesting a possible direct role in cardiovascular disease. Conclusions- This study provides the first evidence that STK25 plays a critical role in regulation of cardiovascular disease risk and suggests that pharmacological inhibition of STK25 function may provide new possibilities for prevention/treatment of atherosclerosis.
Collapse
Affiliation(s)
- Emmelie Cansby
- From the Lundberg Laboratory for Diabetes Research (E.C., E.M., E.N.-D., J.H., M.M.)
| | - Elin Magnusson
- From the Lundberg Laboratory for Diabetes Research (E.C., E.M., E.N.-D., J.H., M.M.)
| | - Esther Nuñez-Durán
- From the Lundberg Laboratory for Diabetes Research (E.C., E.M., E.N.-D., J.H., M.M.)
| | - Manoj Amrutkar
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Sweden; Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, Norway (M.A.)
| | | | - Paolo Parini
- Department of Laboratory Medicine (M.P., P.P.).,Department of Medicine, Metabolism Unit (P.P.)
| | - Jenny Hoffmann
- From the Lundberg Laboratory for Diabetes Research (E.C., E.M., E.N.-D., J.H., M.M.)
| | | | - Brian W Howell
- Karolinska Institute, Stockholm, Sweden; and Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse (B.W.H.)
| | | | - Jan Borén
- Wallenberg Laboratory (M.S., H.-U.M., J.B.)
| | - Margit Mahlapuu
- From the Lundberg Laboratory for Diabetes Research (E.C., E.M., E.N.-D., J.H., M.M.)
| |
Collapse
|
191
|
Xiong W, Zhao X, Villacorta L, Rom O, Garcia-Barrio MT, Guo Y, Fan Y, Zhu T, Zhang J, Zeng R, Chen YE, Jiang Z, Chang L. Brown Adipocyte-Specific PPARγ (Peroxisome Proliferator-Activated Receptor γ) Deletion Impairs Perivascular Adipose Tissue Development and Enhances Atherosclerosis in Mice. Arterioscler Thromb Vasc Biol 2019; 38:1738-1747. [PMID: 29954752 DOI: 10.1161/atvbaha.118.311367] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective- Perivascular adipose tissue (PVAT) contributes to vascular homeostasis by producing paracrine factors. Previously, we reported that selective deletion of PPARγ (peroxisome proliferator-activated receptor γ) in vascular smooth muscle cells resulted in concurrent loss of PVAT and enhanced atherosclerosis in mice. To address the causal relationship between loss of PVAT and atherosclerosis, we used BA-PPARγ-KO (brown adipocyte-specific PPARγ knockout) mice. Approach and Results- Deletion of PPARγ in brown adipocytes did not affect PPARγ in white adipocytes or vascular smooth muscle cells or PPARα and PPARδ expression in brown adipocytes. However, development of PVAT and interscapular brown adipose tissue was remarkably impaired, associated with reduced expression of genes encoding lipogenic enzymes in the BA-PPARγ-KO mice. Thermogenesis in brown adipose tissue was significantly impaired with reduced expression of thermogenesis genes in brown adipose tissue and compensatory increase in subcutaneous and gonadal white adipose tissues. Remarkably, basal expression of inflammatory genes and macrophage infiltration in PVAT and brown adipose tissue were significantly increased in the BA-PPARγ-KO mice. BA-PPARγ-KO mice were crossbred with ApoE KO (apolipoprotein E knockout) mice to investigate the development of atherosclerosis. Flow cytometry analysis confirmed increased systemic and PVAT inflammation. Consequently, atherosclerotic lesions were significantly increased in mice with impaired PVAT development, thus indicating that the lack of normal PVAT is sufficient to drive increased atherosclerosis. Conclusions- PPARγ is required for functional PVAT development. PPARγ deficiency in PVAT, while still expressed in vascular smooth muscle cell, enhances atherosclerosis and results in vascular and systemic inflammation, providing new insights on the specific roles of PVAT in atherosclerosis and cardiovascular disease at large.
Collapse
Affiliation(s)
- Wenhao Xiong
- From the Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang (W.X., Z.J.).,Department of Internal Medicine, Frankel Cardiovascular Center (W.X., X.Z., L.V., O.R., M.T.G.-B., Y.G., Y.F., T.Z., J.Z., L.C.)
| | - Xiangjie Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center (W.X., X.Z., L.V., O.R., M.T.G.-B., Y.G., Y.F., T.Z., J.Z., L.C.)
| | - Luis Villacorta
- Department of Internal Medicine, Frankel Cardiovascular Center (W.X., X.Z., L.V., O.R., M.T.G.-B., Y.G., Y.F., T.Z., J.Z., L.C.)
| | - Oren Rom
- Department of Internal Medicine, Frankel Cardiovascular Center (W.X., X.Z., L.V., O.R., M.T.G.-B., Y.G., Y.F., T.Z., J.Z., L.C.)
| | - Minerva T Garcia-Barrio
- Department of Internal Medicine, Frankel Cardiovascular Center (W.X., X.Z., L.V., O.R., M.T.G.-B., Y.G., Y.F., T.Z., J.Z., L.C.)
| | - Yanhong Guo
- Department of Internal Medicine, Frankel Cardiovascular Center (W.X., X.Z., L.V., O.R., M.T.G.-B., Y.G., Y.F., T.Z., J.Z., L.C.)
| | - Yanbo Fan
- Department of Internal Medicine, Frankel Cardiovascular Center (W.X., X.Z., L.V., O.R., M.T.G.-B., Y.G., Y.F., T.Z., J.Z., L.C.)
| | - Tianqing Zhu
- Department of Internal Medicine, Frankel Cardiovascular Center (W.X., X.Z., L.V., O.R., M.T.G.-B., Y.G., Y.F., T.Z., J.Z., L.C.)
| | - Jifeng Zhang
- Department of Internal Medicine, Frankel Cardiovascular Center (W.X., X.Z., L.V., O.R., M.T.G.-B., Y.G., Y.F., T.Z., J.Z., L.C.)
| | - Rong Zeng
- University of Michigan, Ann Arbor; and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (R.Z.)
| | | | - Zhisheng Jiang
- From the Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang (W.X., Z.J.)
| | - Lin Chang
- Department of Internal Medicine, Frankel Cardiovascular Center (W.X., X.Z., L.V., O.R., M.T.G.-B., Y.G., Y.F., T.Z., J.Z., L.C.)
| |
Collapse
|
192
|
Centa M, Prokopec KE, Garimella MG, Habir K, Hofste L, Stark JM, Dahdah A, Tibbitt CA, Polyzos KA, Gisterå A, Johansson DK, Maeda NN, Hansson GK, Ketelhuth DFJ, Coquet JM, Binder CJ, Karlsson MCI, Malin S. Acute Loss of Apolipoprotein E Triggers an Autoimmune Response That Accelerates Atherosclerosis. Arterioscler Thromb Vasc Biol 2019; 38:e145-e158. [PMID: 29880490 DOI: 10.1161/atvbaha.118.310802] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Objective- Dyslipidemia is a component of the metabolic syndrome, an established risk factor for atherosclerotic cardiovascular disease, and is also observed in various autoimmune and chronic inflammatory conditions. However, there are limited opportunities to study the impact of acquired dyslipidemia on cardiovascular and immune pathology. Approach and Results- We designed a model system that allows for the conversion to a state of acute hyperlipidemia in adult life, so that the consequences of such a transition could be observed, through conditionally deleting APOE (apolipoprotein E) in the adult mouse. The transition to hypercholesterolemia was accompanied by adaptive immune responses, including the expansion of T lymphocyte helper cell 1, T follicular helper cell, and T regulatory subsets and the formation of germinal centers. Unlike steady-state Apoe-/- mice, abrupt loss of APOE induced rapid production of antibodies recognizing rheumatoid disease autoantigens. Genetic ablation of the germinal center reduced both autoimmunity and atherosclerosis, indicating that the immune response that follows loss of APOE is independent of atherosclerosis but nevertheless promotes plaque development. Conclusions- Our findings suggest that immune activation in response to hyperlipidemia could contribute to a wide range of inflammatory autoimmune diseases, including atherosclerosis.
Collapse
Affiliation(s)
- Monica Centa
- From the Department of Medicine and Center for Molecular Medicine, Karolinska University Hospital (M.C., K.E.P., K.H., L.H., A.D., K.A.P., A.G., D.K.J., G.K.H., D.F.J.K., S.M.)
| | - Kajsa E Prokopec
- From the Department of Medicine and Center for Molecular Medicine, Karolinska University Hospital (M.C., K.E.P., K.H., L.H., A.D., K.A.P., A.G., D.K.J., G.K.H., D.F.J.K., S.M.)
| | - Manasa G Garimella
- Department of Microbiology, Tumor, and Cell Biology (M.G.G., J.M.S., C.A.T., J.M.C., M.C.I.K.), Karolinska Institutet, Stockholm, Sweden
| | - Katrin Habir
- From the Department of Medicine and Center for Molecular Medicine, Karolinska University Hospital (M.C., K.E.P., K.H., L.H., A.D., K.A.P., A.G., D.K.J., G.K.H., D.F.J.K., S.M.)
| | - Lisa Hofste
- From the Department of Medicine and Center for Molecular Medicine, Karolinska University Hospital (M.C., K.E.P., K.H., L.H., A.D., K.A.P., A.G., D.K.J., G.K.H., D.F.J.K., S.M.)
| | - Julian M Stark
- Department of Microbiology, Tumor, and Cell Biology (M.G.G., J.M.S., C.A.T., J.M.C., M.C.I.K.), Karolinska Institutet, Stockholm, Sweden
| | - Albert Dahdah
- From the Department of Medicine and Center for Molecular Medicine, Karolinska University Hospital (M.C., K.E.P., K.H., L.H., A.D., K.A.P., A.G., D.K.J., G.K.H., D.F.J.K., S.M.)
| | - Chris A Tibbitt
- Department of Microbiology, Tumor, and Cell Biology (M.G.G., J.M.S., C.A.T., J.M.C., M.C.I.K.), Karolinska Institutet, Stockholm, Sweden
| | - Konstantinos A Polyzos
- From the Department of Medicine and Center for Molecular Medicine, Karolinska University Hospital (M.C., K.E.P., K.H., L.H., A.D., K.A.P., A.G., D.K.J., G.K.H., D.F.J.K., S.M.)
| | - Anton Gisterå
- From the Department of Medicine and Center for Molecular Medicine, Karolinska University Hospital (M.C., K.E.P., K.H., L.H., A.D., K.A.P., A.G., D.K.J., G.K.H., D.F.J.K., S.M.)
| | - Daniel K Johansson
- From the Department of Medicine and Center for Molecular Medicine, Karolinska University Hospital (M.C., K.E.P., K.H., L.H., A.D., K.A.P., A.G., D.K.J., G.K.H., D.F.J.K., S.M.)
| | - Nobuyo N Maeda
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (N.N.M.)
| | - Göran K Hansson
- From the Department of Medicine and Center for Molecular Medicine, Karolinska University Hospital (M.C., K.E.P., K.H., L.H., A.D., K.A.P., A.G., D.K.J., G.K.H., D.F.J.K., S.M.)
| | - Daniel F J Ketelhuth
- From the Department of Medicine and Center for Molecular Medicine, Karolinska University Hospital (M.C., K.E.P., K.H., L.H., A.D., K.A.P., A.G., D.K.J., G.K.H., D.F.J.K., S.M.)
| | - Jonathan M Coquet
- Department of Microbiology, Tumor, and Cell Biology (M.G.G., J.M.S., C.A.T., J.M.C., M.C.I.K.), Karolinska Institutet, Stockholm, Sweden
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Austria (C.J.B.).,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (C.J.B.)
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor, and Cell Biology (M.G.G., J.M.S., C.A.T., J.M.C., M.C.I.K.), Karolinska Institutet, Stockholm, Sweden
| | - Stephen Malin
- From the Department of Medicine and Center for Molecular Medicine, Karolinska University Hospital (M.C., K.E.P., K.H., L.H., A.D., K.A.P., A.G., D.K.J., G.K.H., D.F.J.K., S.M.)
| |
Collapse
|
193
|
Dietary Cholesterol Is Highly Associated with Severity of Hyperlipidemia and Atherosclerotic Lesions in Heterozygous LDLR-Deficient Hamsters. Int J Mol Sci 2019; 20:ijms20143515. [PMID: 31323736 PMCID: PMC6678973 DOI: 10.3390/ijms20143515] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Familial hypercholesterolemia (FH) is a dominant inherited disease caused mainly by low-density lipoprotein receptor (LDLR) gene mutations. To different extents, both heterozygous and homozygous FH patients develop premature coronary heart disease (CHD). However, most of the experimental animal models with LDLR deficiency could not fully recapitulate FH because they develop hyperlipidemia and atherosclerosis only in homozygous, but not in heterozygous, form. In the current study, we investigated the responsiveness of the LDLR+/- hamster to dietary cholesterol and whether plasma cholesterol levels were positively associated with the severity of atherosclerosis. Approach and Methods: wild type WT and LDLR+/- hamsters were fed a high fat diet with different cholesterol contents (HCHF) for 12 or 16 weeks. Plasma lipids, (apo)lipoproteins, and atherosclerosis in both the aorta and coronary arteries were analyzed. After a HCHF diet challenge, the levels of total cholesterol (TC) in WT and LDLR+/- hamsters were significantly elevated, but the latter showed a more pronounced lipoprotein profile, with higher cholesterol levels that were positively correlated with dietary cholesterol contents. The LDLR+/- hamsters also showed accelerated atherosclerotic lesions in the aorta and coronary arteries, whereas only mild aortic lesions were observed in WT hamsters. CONCLUSIONS Our findings demonstrate that, unlike other rodent animals, the levels of plasma cholesterol in hamsters can be significantly modulated by the intervention of dietary cholesterol, which were closely associated with severity of atherosclerosis in LDLR+/- hamsters, suggesting that the LDLR+/- hamster is an ideal animal model for FH and has great potential in the study of FH and atherosclerosis-related CHD.
Collapse
|
194
|
Li Y, Xu Y, Jadhav K, Zhu Y, Yin L, Zhang Y. Hepatic Forkhead Box Protein A3 Regulates ApoA-I (Apolipoprotein A-I) Expression, Cholesterol Efflux, and Atherogenesis. Arterioscler Thromb Vasc Biol 2019; 39:1574-1587. [PMID: 31291759 DOI: 10.1161/atvbaha.119.312610] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To determine the role of hepatic FOXA3 (forkhead box A3) in lipid metabolism and atherosclerosis. Approach and Results: Hepatic FOXA3 expression was reduced in diabetic or high fat diet-fed mice or patients with nonalcoholic steatohepatitis. We then used adenoviruses to overexpress or knock down hepatic FOXA3 expression. Overexpression of FOXA3 in the liver increased hepatic ApoA-I (apolipoprotein A-I) expression, plasma HDL-C (high-density lipoprotein cholesterol) level, macrophage cholesterol efflux, and macrophage reverse cholesterol transport. In contrast, knockdown of hepatic FOXA3 expression had opposite effects. We further showed that FOXA3 directly bound to the promoter of the Apoa1 gene to regulate its transcription. Finally, AAV8 (adeno-associated virus serotype 8)-mediated overexpression of human FOXA3 in the hepatocytes of Apoe-/- (apolipoprotein E-deficient) mice raised plasma HDL-C levels and significantly reduced atherosclerotic lesions. CONCLUSIONS Hepatocyte FOXA3 protects against atherosclerosis by inducing ApoA-I and macrophage reverse cholesterol transport.
Collapse
Affiliation(s)
- Yuanyuan Li
- From the Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown
| | - Yanyong Xu
- From the Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown
| | - Kavita Jadhav
- From the Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown
| | - Yingdong Zhu
- From the Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown
| | - Liya Yin
- From the Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown
| | - Yanqiao Zhang
- From the Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown
| |
Collapse
|
195
|
Kanter JE, Shao B, Kramer F, Barnhart S, Shimizu-Albergine M, Vaisar T, Graham MJ, Crooke RM, Manuel CR, Haeusler RA, Mar D, Bomsztyk K, Hokanson JE, Kinney GL, Snell-Bergeon JK, Heinecke JW, Bornfeldt KE. Increased apolipoprotein C3 drives cardiovascular risk in type 1 diabetes. J Clin Invest 2019; 129:4165-4179. [PMID: 31295146 DOI: 10.1172/jci127308] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) increases the risk of atherosclerotic cardiovascular disease (CVD) in humans by poorly understood mechanisms. Using mouse models of T1DM-accelerated atherosclerosis, we found that relative insulin deficiency rather than hyperglycemia elevated levels of apolipoprotein C3 (APOC3), an apolipoprotein that prevents clearance of triglyceride-rich lipoproteins (TRLs) and their remnants. We then showed that serum APOC3 levels predict incident CVD events in subjects with T1DM in the Coronary Artery Calcification in Type 1 Diabetes (CACTI) study. To explore underlying mechanisms, we investigated the impact of Apoc3 antisense oligonucleotides (ASOs) on lipoprotein metabolism and atherosclerosis in a mouse model of T1DM. Apoc3 ASO treatment abolished the increased hepatic Apoc3 expression in diabetic mice - resulting in lower levels of TRLs - without improving glycemic control. APOC3 suppression also prevented arterial accumulation of APOC3-containing lipoprotein particles, macrophage foam cell formation, and the accelerated atherosclerosis in diabetic mice. Our observations demonstrate that relative insulin deficiency increases APOC3 and that this results in elevated levels of TRLs and accelerated atherosclerosis in a mouse model of T1DM. Because serum levels of APOC3 predicted incident CVD events in the CACTI study, inhibiting APOC3 might reduce CVD risk in T1DM patients.
Collapse
Affiliation(s)
- Jenny E Kanter
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Baohai Shao
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Farah Kramer
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Shelley Barnhart
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Masami Shimizu-Albergine
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Tomas Vaisar
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | | | | | - Clarence R Manuel
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Rebecca A Haeusler
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Daniel Mar
- Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, Washington, USA
| | - Karol Bomsztyk
- Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, Washington, USA
| | - John E Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado, USA
| | - Gregory L Kinney
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado, USA
| | - Janet K Snell-Bergeon
- Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Jay W Heinecke
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Karin E Bornfeldt
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA.,Department of Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
196
|
Moss ME, Lu Q, Iyer SL, Engelbertsen D, Marzolla V, Caprio M, Lichtman AH, Jaffe IZ. Endothelial Mineralocorticoid Receptors Contribute to Vascular Inflammation in Atherosclerosis in a Sex-Specific Manner. Arterioscler Thromb Vasc Biol 2019; 39:1588-1601. [PMID: 31294624 DOI: 10.1161/atvbaha.119.312954] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE MR (mineralocorticoid receptor) activation is associated with cardiovascular ischemia in humans. This study explores the role of the MR in atherosclerotic mice of both sexes and identifies a sex-specific role for endothelial cell (EC)-MR in vascular inflammation. Approach and Results: In the AAV-PCSK9 (adeno-associated virus-proprotein convertase subtilisin/kexin type 9) mouse atherosclerosis model, MR inhibition attenuated vascular inflammation in males but not females. Further studies comparing male and female littermates with intact MR or EC-MR deletion revealed that although EC-MR deletion did not affect plaque size in either sex, it reduced aortic arch inflammation specifically in male mice as measured by flow cytometry. Moreover, MR-intact females had larger plaques but were protected from vascular inflammation compared with males. Intravital microscopy of the mesenteric vasculature demonstrated that EC-MR deletion attenuated TNFα (tumor necrosis factor α)-induced leukocyte slow rolling and adhesion in males, while females exhibited fewer leukocyte-endothelial interactions with no additional effect of EC-MR deletion. These effects corresponded with decreased TNFα-induced expression of the endothelial adhesion molecules ICAM-1 (intercellular adhesion molecule-1) and E-selectin in males with EC-MR deletion compared with MR-intact males and females of both genotypes. These observations were also consistent with MR and estrogen regulation of ICAM-1 transcription and E-selectin expression in primary cultured mouse ECs and human umbilical vein ECs. CONCLUSIONS In male mice, EC-MR deletion attenuates leukocyte-endothelial interactions, plaque inflammation, and expression of E-selectin and ICAM-1, providing a potential mechanism by which the MR promotes vascular inflammation. In females, plaque inflammation and leukocyte-endothelial interactions are decreased relative to males and EC-MR deletion is not protective.
Collapse
Affiliation(s)
- M Elizabeth Moss
- From the Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (M.E.M., Q.L., S.L.I., I.Z.J.)
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA (M.E.M., I.Z.J.)
| | - Qing Lu
- From the Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (M.E.M., Q.L., S.L.I., I.Z.J.)
| | - Surabhi L Iyer
- From the Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (M.E.M., Q.L., S.L.I., I.Z.J.)
| | - Daniel Engelbertsen
- Department of Pathology, Brigham and Women's Hospital, Boston, MA (D.E., A.H.L.)
| | - Vincenzo Marzolla
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy (V.M., M.C.)
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy (V.M., M.C.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (M.C.)
| | - Andrew H Lichtman
- Department of Pathology, Brigham and Women's Hospital, Boston, MA (D.E., A.H.L.)
| | - Iris Z Jaffe
- From the Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (M.E.M., Q.L., S.L.I., I.Z.J.)
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA (M.E.M., I.Z.J.)
| |
Collapse
|
197
|
Yuan F, Woollard JR, Jordan KL, Lerman A, Lerman LO, Eirin A. Mitochondrial targeted peptides preserve mitochondrial organization and decrease reversible myocardial changes in early swine metabolic syndrome. Cardiovasc Res 2019; 114:431-442. [PMID: 29267873 DOI: 10.1093/cvr/cvx245] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/15/2017] [Indexed: 11/14/2022] Open
Abstract
Aims The mechanisms responsible for cardiac damage in the early stages of metabolic syndrome (MetS) remain unknown. Mitochondria are intimately associated with cellular myofibrils, with the cytoskeleton functioning as a linkage coordinator, and closely associated to the calcium release sites of the sarcoplasmic reticulum (SR). We hypothesized that early MetS is characterized by mitochondria-related myocardial damage, associated with altered cytoskeletal-mitochondria-SR interaction. Methods and results Domestic pigs were studied after 16 weeks of diet-induced MetS, MetS treated for the last 4 weeks with the mitochondrial-targeted peptide elamipretide (ELAM; 0.1 mg/kg SC q.d), or Lean controls (n = 6/group). Cardiac remodeling and function were assessed by fast comuted tomography. Myocardial mitochondrial structure, SR-mitochondria interaction, calcium handling, cytoskeletal proteins, oxidative stress, and apoptosis were studied ex-vivo. MetS pigs developed hyperlipidemia, hypertension, and insulin resistance, yet cardiac function was preserved. MetS-induced mitochondrial disorganization, decreased (C18:2)4 cardiolipin, disrupted ATP/ADP balance, and decreased cytochrome-c oxidase (COX)-IV activity. MetS also increased mitochondrial hydrogen peroxide (H2O2) production, decreased nicotinamide adenine dinucleotide phosphate (NADPH)/NADP and GSH/GSSG, and decreased myocardial desmin and β2 tubulin immunoreactivity, and impaired SR-mitochondrial interaction and mitochondrial calcium handling, eliciting myocardial oxidative stress and apoptosis. ELAM improved mitochondrial organization and cardiolipin species profile, restored ATP/ADP ratio and COX-IV activity, decreased H202 production, and improved generation of NADPH and GSH. ELAM also improved cytoskeletal-mitochondria-SR interaction and mitochondrial calcium handling, attenuating oxidative stress, and apoptosis. Conclusions Disorganization of cardiomyocyte cytoskeletal-mitochondria-SR network is associated with cardiac reversible changes in early MetS, preceding overt cardiac dysfunction. These findings may introduce novel therapeutic targets for blunting cardiac damage in early MetS.
Collapse
Affiliation(s)
- Fang Yuan
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Department of Cardiology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan, PR China
| | - John R Woollard
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Kyra L Jordan
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Alfonso Eirin
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
198
|
Daugherty A, Lu HS, Hegele RA, Mackman N, Rader DJ, Schmidt AM, Weber C. Response by Daugherty et al to Letter Regarding Article, "Consideration of Sex Differences in Design and Reporting of Experimental Arterial Pathology Studies: A Statement From the Arteriosclerosis, Thrombosis, and Vascular Biology Council". Arterioscler Thromb Vasc Biol 2019; 38:e101-e102. [PMID: 29793996 DOI: 10.1161/atvbaha.118.310988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington.,Department of Physiology, University of Kentucky, Lexington
| | - Hong S Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington.,Department of Physiology, University of Kentucky, Lexington
| | - Robert A Hegele
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Daniel J Rader
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University Langone Medical Center
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) and German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance
| |
Collapse
|
199
|
Baumer Y, McCurdy S, Jin X, Weatherby TM, Dey AK, Mehta NN, Yap JK, Kruth HS, Boisvert WA. Ultramorphological analysis of plaque advancement and cholesterol crystal formation in Ldlr knockout mouse atherosclerosis. Atherosclerosis 2019; 287:100-111. [PMID: 31247346 DOI: 10.1016/j.atherosclerosis.2019.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/25/2019] [Accepted: 05/29/2019] [Indexed: 01/17/2023]
Abstract
BACKGOUND AND AIMS The low-density lipoprotein receptor-deficient (Ldlr-/-) mouse has been utilized by cardiovascular researchers for more than two decades to study atherosclerosis. However, there has not yet been a systematic effort to document the ultrastructural changes that accompany the progression of atherosclerotic plaque in this model. METHODS Employing several different staining and microscopic techniques, including immunohistochemistry, as well as electron and polarized microscopy, we analyzed atherosclerotic lesion development in Ldlr-/- mice fed an atherogenic diet over time. RESULTS Lipid-like deposits occurred in the subendothelial space after only one week of atherogenic diet. At two weeks, cholesterol crystals (CC) formed and increased thereafter. Lipid, CC, vascular smooth muscles cells, and collagen progressively increased over time, while after 4 weeks, relative macrophage content decreased. Accelerated accumulation of plate- and needle-shaped CC accompanied plaque core necrosis. Lastly, CC were surrounded by cholesterol microdomains, which co-localized with CC through all stages of atherosclerosis, indicating that the cholesterol microdomains may be a source of CC. CONCLUSIONS Here, we have documented, for the first time in a comprehensive way, atherosclerotic plaque morphology and composition from early to advanced stages in the Ldlr-/- mouse, one of the most commonly used animal models utilized in atherosclerosis research.
Collapse
Affiliation(s)
- Yvonne Baumer
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI, 96813, USA
| | - Sara McCurdy
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI, 96813, USA
| | - Xueting Jin
- Section of Experimental Atherosclerosis, National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Tina M Weatherby
- Pacific Biosciences Research Center, Biological Electron Microscope Facility, University of Hawaii, 2538 The Mall, Snyder Hall, Honolulu, HI, 96822, USA
| | - Amit K Dey
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Nehal N Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Jonathan K Yap
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI, 96813, USA
| | - Howard S Kruth
- Section of Experimental Atherosclerosis, National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - William A Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI, 96813, USA; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
200
|
Guillermier C, Doherty SP, Whitney AG, Babaev VR, Linton MF, Steinhauser ML, Brown JD. Imaging mass spectrometry reveals heterogeneity of proliferation and metabolism in atherosclerosis. JCI Insight 2019; 4:128528. [PMID: 31167964 DOI: 10.1172/jci.insight.128528] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/25/2019] [Indexed: 12/25/2022] Open
Abstract
Atherosclerotic plaques feature local proliferation of leukocytes and vascular smooth muscle cells (VSMCs) and changes in cellular metabolism. Yet the relationship between glucose utilization and proliferation has been technically impossible to study directly in cells of atherosclerotic plaques in vivo. We used multi-isotope imaging mass spectrometry (MIMS), a quantitative imaging platform, to measure coincident cell division and glucose utilization at suborganelle resolution in atherosclerotic plaques. In established plaques, 65% of intimal foam cells and only 4% of medial VSMCs were labeled with 15N-thymidine after 1 week of isotope treatment. Dividing cells demonstrated heightened glucose labeling. MIMS detected 2H-glucose label in multiple subcellular compartments within foam cells, including lipid droplets, the cytosol, and chromatin. Unexpectedly, we identified an intensely focal region of 2H-label in VSMCs underlying plaques. This signal diminished in regions of aorta without atherosclerosis. In advanced plaques, 15N-thymidine and 2H-glucose labeling in foam cells and VSMCs significantly decreased. These data demonstrate marked heterogeneity in VSMC glucose metabolism that was dependent on both proliferative status and proximity of VSMCs to plaques. Furthermore, these results reveal how quantitative mass spectrometry coupled with isotope imaging can complement other methods used to study cell biology directly in the growing atherosclerotic plaque in vivo.
Collapse
Affiliation(s)
- Christelle Guillermier
- Harvard Medical School, Boston, Massachusetts, USA.,Center for NanoImaging and.,Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Sean P Doherty
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Adam G Whitney
- Center for NanoImaging and.,Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Vladimir R Babaev
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - MacRae F Linton
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew L Steinhauser
- Harvard Medical School, Boston, Massachusetts, USA.,Center for NanoImaging and.,Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jonathan D Brown
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|