201
|
Sex differences in white adipose tissue expansion: emerging molecular mechanisms. Clin Sci (Lond) 2021; 135:2691-2708. [PMID: 34908104 DOI: 10.1042/cs20210086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/15/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022]
Abstract
The escalating prevalence of individuals becoming overweight and obese is a rapidly rising global health problem, placing an enormous burden on health and economic systems worldwide. Whilst obesity has well described lifestyle drivers, there is also a significant and poorly understood component that is regulated by genetics. Furthermore, there is clear evidence for sexual dimorphism in obesity, where overall risk, degree, subtype and potential complications arising from obesity all differ between males and females. The molecular mechanisms that dictate these sex differences remain mostly uncharacterised. Many studies have demonstrated that this dimorphism is unable to be solely explained by changes in hormones and their nuclear receptors alone, and instead manifests from coordinated and highly regulated gene networks, both during development and throughout life. As we acquire more knowledge in this area from approaches such as large-scale genomic association studies, the more we appreciate the true complexity and heterogeneity of obesity. Nevertheless, over the past two decades, researchers have made enormous progress in this field, and some consistent and robust mechanisms continue to be established. In this review, we will discuss some of the proposed mechanisms underlying sexual dimorphism in obesity, and discuss some of the key regulators that influence this phenomenon.
Collapse
|
202
|
Sagris M, Theofilis P, Antonopoulos AS, Oikonomou E, Paschaliori C, Galiatsatos N, Tsioufis K, Tousoulis D. Inflammation in Coronary Microvascular Dysfunction. Int J Mol Sci 2021; 22:ijms222413471. [PMID: 34948272 PMCID: PMC8703507 DOI: 10.3390/ijms222413471] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic low-grade inflammation is involved in coronary atherosclerosis, presenting multiple clinical manifestations ranging from asymptomatic to stable angina, acute coronary syndrome, heart failure and sudden cardiac death. Coronary microvasculature consists of vessels with a diameter less than 500 μm, whose potential structural and functional abnormalities can lead to inappropriate dilatation and an inability to meet the required myocardium oxygen demands. This review focuses on the pathogenesis of coronary microvascular dysfunction and the capability of non-invasive screening methods to detect the phenomenon. Anti-inflammatory agents, such as statins and immunomodulators, including anakinra, tocilizumab, and tumor necrosis factor-alpha inhibitors, have been assessed recently and may constitute additional or alternative treatment approaches to reduce cardiovascular events in atherosclerotic heart disease characterized by coronary microvascular dysfunction.
Collapse
Affiliation(s)
- Marios Sagris
- Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (C.P.); (N.G.); (K.T.); (D.T.)
- Correspondence: ; Tel.:+30-213-2088099; Fax: +30-213-2088676
| | - Panagiotis Theofilis
- Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (C.P.); (N.G.); (K.T.); (D.T.)
| | - Alexios S. Antonopoulos
- Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (C.P.); (N.G.); (K.T.); (D.T.)
| | - Evangelos Oikonomou
- Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (C.P.); (N.G.); (K.T.); (D.T.)
- Department of Cardiology, “Sotiria” Thoracic Diseases Hospital of Athens, University of Athens Medical School, 11527 Athens, Greece
| | - Christina Paschaliori
- Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (C.P.); (N.G.); (K.T.); (D.T.)
| | - Nikolaos Galiatsatos
- Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (C.P.); (N.G.); (K.T.); (D.T.)
| | - Kostas Tsioufis
- Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (C.P.); (N.G.); (K.T.); (D.T.)
| | - Dimitris Tousoulis
- Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (C.P.); (N.G.); (K.T.); (D.T.)
| |
Collapse
|
203
|
Chorell E, Otten J, Stomby A, Ryberg M, Waling M, Hauksson J, Svensson M, Olsson T. Improved Peripheral and Hepatic Insulin Sensitivity after Lifestyle Interventions in Type 2 Diabetes Is Associated with Specific Metabolomic and Lipidomic Signatures in Skeletal Muscle and Plasma. Metabolites 2021; 11:metabo11120834. [PMID: 34940592 PMCID: PMC8708788 DOI: 10.3390/metabo11120834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 01/15/2023] Open
Abstract
Lifestyle interventions with weight loss can improve insulin sensitivity in type 2 diabetes (T2D), but mechanisms are unclear. We explored circulating and skeletal muscle metabolite signatures of altered peripheral (pIS) and hepatic insulin sensitivity (hIS) in overweight and obese T2D individuals that were randomly assigned a 12-week Paleolithic-type diet with (diet-ex, n = 13) or without (diet, n = 13) supervised exercise. Baseline and post-intervention measures included: mass spectrometry-based metabolomics and lipidomics of skeletal muscle and plasma; pIS and hIS; ectopic lipid deposits in the liver and skeletal muscle; and skeletal muscle fat oxidation rate. Both groups lowered BMI and total % fat mass and increased their pIS. Only the diet-group improved hIS and reduced ectopic lipids in the liver and muscle. The combined improvement in pIS and hIS in the diet-group were associated with decreases in muscle and circulating branched-chain amino acid (BCAA) metabolites, specifically valine. Improved pIS with diet-ex was instead linked to increased diacylglycerol (34:2) and triacylglycerol (56:0) and decreased phosphatidylcholine (34:3) in muscle coupled with improved muscle fat oxidation rate. This suggests a tissue crosstalk involving BCAA-metabolites after diet intervention with improved pIS and hIS, reflecting reduced lipid influx. Increased skeletal muscle lipid utilization with exercise may prevent specific lipid accumulation at sites that perturb insulin signaling.
Collapse
Affiliation(s)
- Elin Chorell
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden; (J.O.); (A.S.); (M.R.); (T.O.)
- Correspondence: ; Tel.: +46-(0)90-785-1326
| | - Julia Otten
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden; (J.O.); (A.S.); (M.R.); (T.O.)
| | - Andreas Stomby
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden; (J.O.); (A.S.); (M.R.); (T.O.)
| | - Mats Ryberg
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden; (J.O.); (A.S.); (M.R.); (T.O.)
| | - Maria Waling
- Department of Food, Nutrition and Culinary Science, Umeå University, 901 87 Umeå, Sweden;
| | - Jon Hauksson
- Department of Radiation Sciences, Umeå University, 901 87 Umeå, Sweden;
| | - Michael Svensson
- Department of Community Medicine and Rehabilitation, Section of Sports Medicine, Umeå University, 901 87 Umeå, Sweden;
| | - Tommy Olsson
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden; (J.O.); (A.S.); (M.R.); (T.O.)
| |
Collapse
|
204
|
Li L, Zhang Y, Speakman JR, Hu S, Song Y, Qin S. The gut microbiota and its products: Establishing causal relationships with obesity related outcomes. Obes Rev 2021; 22:e13341. [PMID: 34490704 DOI: 10.1111/obr.13341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022]
Abstract
Gut microorganisms not only participate in the metabolism of carbohydrate, lipids, protein, and polypeptides in the intestine but also directly affect the metabolic phenotypes of the host. Although many studies have described the apparent effects of gut microbiota on human health, the development of metagenomics and culturomics in the past decade has generated a large amount of evidence suggesting a causal relationship between gut microbiota and obesity. The interaction between the gut microbiota and host is realized by microbial metabolites with multiple biological functions. We concentrated here on several representative beneficial species connected with obesity as well as the mechanisms, with particular emphasis on microbiota-dependent metabolites. Finally, we consider the potential clinical significance of these relationships to fuel the conception and realization of novel therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Lili Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yubing Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,College of Life Sciences, Yantai University, Yantai, China
| | - John Roger Speakman
- Shenzhen Key Laboratory for Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shanliang Hu
- Department of Radiotherapy, Yantai Yuhuangding Hospital, Yantai, China
| | - Yipeng Song
- Department of Radiotherapy, Yantai Yuhuangding Hospital, Yantai, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
205
|
Stefkovich M, Traynor S, Cheng L, Merrick D, Seale P. Dpp4+ interstitial progenitor cells contribute to basal and high fat diet-induced adipogenesis. Mol Metab 2021; 54:101357. [PMID: 34662714 PMCID: PMC8581370 DOI: 10.1016/j.molmet.2021.101357] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE The capacity to generate new adipocytes from precursor cells is critical for maintaining metabolic health. Adipocyte precursor cells (APCs) constitute a heterogenous collection of cell types; however, the contribution of these various cell types to adipose tissue expansion in vivo remains unknown. The aim of the current study is to investigate the contribution of Dpp4+ progenitors to de novo adipogenesis. METHODS Single cell analysis has identified several transcriptionally distinct subpopulations of APCs, including Dpp4+ progenitor cells concentrated in the connective tissue surrounding many organs, including white adipose tissue (WAT). Here, we generated a Dpp4CreER mouse model for in vivo lineage tracing of these cells and their downstream progeny in the setting of basal or high fat diet (HFD)-stimulated adipogenesis. RESULTS Dpp4CreER mice enabled specific temporal labeling of Dpp4+ progenitor cells within their native connective tissue niche. Following a dietary chase period consisting of chow or HFD feeding for 18 weeks, Dpp4+ progenitors differentiated into mature adipocytes within the gonadal and subcutaneous WAT. HFD stimulated adipogenic contribution from Dpp4+ cells in the gonadal but not the subcutaneous depot. Flow cytometry analysis revealed that Dpp4+ progenitors give rise to DPP4(-)/ICAM1+ preadipocytes in vivo. HFD feeding did not perturb the flux of Dpp4+ cell conversion into ICAM1+ preadipocytes in gonadal WAT. Conversely, in subcutaneous WAT, HFD feeding/obesity led to an accumulation of ICAM1+ preadipocytes without a corresponding increase in mature adipocyte differentiation. Examination of non-classical murine visceral depots with relevance to humans, including omentum and retroperitoneal WAT, revealed robust contribution of Dpp4+ progenitors to de novo adipogenesis, which was further stimulated by HFD. CONCLUSION Our data demonstrate that Dpp4+ interstitial progenitor cells contribute to basal adipogenesis in all fat depots and are recruited to support de novo adipogenic expansion of visceral WAT in the setting of HFD-induced obesity.
Collapse
Affiliation(s)
- Megan Stefkovich
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Division of Endocrinology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Sarah Traynor
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Division of Endocrinology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Lan Cheng
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - David Merrick
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Division of Endocrinology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Patrick Seale
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
206
|
Obesity and myosteatosis: the two characteristics of dynapenia in patients with cirrhosis. Eur J Gastroenterol Hepatol 2021; 33:e916-e921. [PMID: 35048658 DOI: 10.1097/meg.0000000000002303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE In patients with liver cirrhosis, the clinical characteristics of dynapenia, a condition in which skeletal muscle mass is maintained but muscle strength is reduced, are not yet known. This study aimed to clarify the characteristics of dynapenia and its impact on quality of life (QOL) in patients with liver cirrhosis. METHODS We retrospectively analyzed 116 patients with cirrhosis. Based on grip strength and skeletal muscle mass measured by the bioelectrical impedance analysis method, patients were divided into four groups: normal muscle status, dynapenia, pre-sarcopenia (a condition involving only low muscle mass), and sarcopenia. The characteristics of dynapenia and its influence on QOL were examined. RESULTS Fourteen patients had dynapenia. Liver function did not differ among the four groups. In patients with dynapenia, BMI was highest and computed tomography attenuation of skeletal muscle at the third lumbar spine vertebra was lowest among the four groups. The percentage of patients with both BMI ≥25 kg/m2 and myosteatosis was significantly higher in patients with dynapenia [9/14 (64.3%)] than in those with sarcopenia [2/23 (8.7%), P = 0.004] and pre-sarcopenia [0/18 (0%), P < 0.001] and tended to be higher than those with normal muscle status [16/61 (26.2%), P = 0.065]. The physical QOL in patients with dynapenia was as low as that in those with sarcopenia and significantly lower than that in those with normal muscle status. CONCLUSION Cirrhotic patients with dynapenia had high BMI and myosteatosis, and impaired physical QOL.
Collapse
|
207
|
Is type 2 diabetes an adiposity-based metabolic disease? From the origin of insulin resistance to the concept of dysfunctional adipose tissue. Eat Weight Disord 2021; 26:2429-2441. [PMID: 33555509 PMCID: PMC8602224 DOI: 10.1007/s40519-021-01109-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
In the last decades of the past century, a remarkable amount of research efforts, money and hopes was generated to unveil the basis of insulin resistance that was believed to be the primary etiological factor in the development of type 2 diabetes. From the Reaven's insulin resistance syndrome to the DeFronzo's triumvirate (skeletal muscle, liver and beta-cell) and to Kahn's discovery (among many others) of insulin receptor downregulation and autophosphorylation, an enthusiastic age of metabolic in vivo and in vitro research took place, making the promise of a resolutory ending. However, from many published data (those of insulin receptoropathies and lipodystrophies, the genome-wide association studies results, the data on reversibility of type 2 diabetes after bariatric surgery or very-low-calorie diets, and many others) it appears that insulin resistance is not a primary defect but it develops secondarily to increased fat mass. In particular, it develops from a mismatch between the surplus caloric intake and the storage capacity of adipose tissue. On this basis, we propose to change the today's definition of type 2 diabetes in adiposity-based diabetes.Level of Evidence as a narrative review a vast array of studies have been included in the analysis, ranging from properly designed randomized controlled trials to case studies; however, the overall conclusion may be regarded as level IV.
Collapse
|
208
|
Kahleova H, Berrien-Lopez R, Holtz D, Green A, Sheinberg R, Gujral H, Holubkov R, Barnard ND. Nutrition for Hospital Workers During a Crisis: Effect of a Plant-Based Dietary Intervention on Cardiometabolic Outcomes and Quality of Life in Healthcare Employees During the COVID-19 Pandemic. Am J Lifestyle Med 2021; 16:399-407. [PMID: 35698577 PMCID: PMC9184832 DOI: 10.1177/15598276211050339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The study tested the effects of a vegan diet on cardiometabolic outcomes and quality of
life among healthcare employees during the COVID-19 pandemic. Overweight hospital
employees were enrolled and randomly assigned (in a 1:1 ratio) to an intervention group,
which was asked to follow a low-fat vegan diet, or a control group, asked to make no diet
changes. However, due to COVID-19 disruptions, all participants remained on their usual
diets from March to June (12 weeks), creating a de facto control period, and all (n = 12)
started the vegan diet with online classes in June, which continued for 12 weeks. Nine
participants completed all final assessments. A crossover ANOVA was used for statistical
analysis of differences in cardiovascular health during the control period and during the
intervention. Despite the ongoing crisis, body weight decreased (treatment effect −5.7 kg
[95% CI −9.7 to −1.7]; P = .01); fasting plasma glucose decreased
(−11.4 mg/dL [95% CI −18.8 to −4.1]; P = .007); total and LDL-cholesterol
decreased (−30.7 mg/dL [95% CI −53.8 to −7.5]; P = .02; and −24.6 mg/dL
[−44.8 to −4.3]; P = .02, respectively); diastolic blood pressure
decreased (−8.5 mm Hg [95% CI −16.3 to −.7]; P = .03); and quality of
life increased (P = .005) during the intervention period, compared with
the control period. A vegan diet improved cardiometabolic outcomes and quality of life in
healthcare workers at the height of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Hana Kahleova
- Physicians Committee for Responsible Medicine, Washington, DC, USA, (HK, DH, AG, NDB); Adjunct Faculty, George Washington University School of Medicine and Health Sciences, Washington, DC, USA, (NDB); University of Maryland School of Medicine, Baltimore City, MD, USA, (RBL); Sibley Memorial Hospital, Washington, DC, USA, (HG, RS); School of Medicine, University of Utah, Salt Lake City, UT, USA, (RH)
| | - Rickisha Berrien-Lopez
- Physicians Committee for Responsible Medicine, Washington, DC, USA, (HK, DH, AG, NDB); Adjunct Faculty, George Washington University School of Medicine and Health Sciences, Washington, DC, USA, (NDB); University of Maryland School of Medicine, Baltimore City, MD, USA, (RBL); Sibley Memorial Hospital, Washington, DC, USA, (HG, RS); School of Medicine, University of Utah, Salt Lake City, UT, USA, (RH)
| | - Danielle Holtz
- Physicians Committee for Responsible Medicine, Washington, DC, USA, (HK, DH, AG, NDB); Adjunct Faculty, George Washington University School of Medicine and Health Sciences, Washington, DC, USA, (NDB); University of Maryland School of Medicine, Baltimore City, MD, USA, (RBL); Sibley Memorial Hospital, Washington, DC, USA, (HG, RS); School of Medicine, University of Utah, Salt Lake City, UT, USA, (RH)
| | - Amber Green
- Physicians Committee for Responsible Medicine, Washington, DC, USA, (HK, DH, AG, NDB); Adjunct Faculty, George Washington University School of Medicine and Health Sciences, Washington, DC, USA, (NDB); University of Maryland School of Medicine, Baltimore City, MD, USA, (RBL); Sibley Memorial Hospital, Washington, DC, USA, (HG, RS); School of Medicine, University of Utah, Salt Lake City, UT, USA, (RH)
| | - Rosanne Sheinberg
- Physicians Committee for Responsible Medicine, Washington, DC, USA, (HK, DH, AG, NDB); Adjunct Faculty, George Washington University School of Medicine and Health Sciences, Washington, DC, USA, (NDB); University of Maryland School of Medicine, Baltimore City, MD, USA, (RBL); Sibley Memorial Hospital, Washington, DC, USA, (HG, RS); School of Medicine, University of Utah, Salt Lake City, UT, USA, (RH)
| | - Harpreet Gujral
- Physicians Committee for Responsible Medicine, Washington, DC, USA, (HK, DH, AG, NDB); Adjunct Faculty, George Washington University School of Medicine and Health Sciences, Washington, DC, USA, (NDB); University of Maryland School of Medicine, Baltimore City, MD, USA, (RBL); Sibley Memorial Hospital, Washington, DC, USA, (HG, RS); School of Medicine, University of Utah, Salt Lake City, UT, USA, (RH)
| | - Richard Holubkov
- Physicians Committee for Responsible Medicine, Washington, DC, USA, (HK, DH, AG, NDB); Adjunct Faculty, George Washington University School of Medicine and Health Sciences, Washington, DC, USA, (NDB); University of Maryland School of Medicine, Baltimore City, MD, USA, (RBL); Sibley Memorial Hospital, Washington, DC, USA, (HG, RS); School of Medicine, University of Utah, Salt Lake City, UT, USA, (RH)
| | - Neal D. Barnard
- Physicians Committee for Responsible Medicine, Washington, DC, USA, (HK, DH, AG, NDB); Adjunct Faculty, George Washington University School of Medicine and Health Sciences, Washington, DC, USA, (NDB); University of Maryland School of Medicine, Baltimore City, MD, USA, (RBL); Sibley Memorial Hospital, Washington, DC, USA, (HG, RS); School of Medicine, University of Utah, Salt Lake City, UT, USA, (RH)
| |
Collapse
|
209
|
Khanna S, Bishnoi M, Kondepudi KK, Shukla G. Synbiotic (Lactiplantibacillus pentosus GSSK2 and isomalto-oligosaccharides) supplementation modulates pathophysiology and gut dysbiosis in experimental metabolic syndrome. Sci Rep 2021; 11:21397. [PMID: 34725349 PMCID: PMC8560755 DOI: 10.1038/s41598-021-00601-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/12/2021] [Indexed: 01/07/2023] Open
Abstract
Metabolic syndrome a lifestyle disease, where diet and gut microbiota play a prodigious role in its initiation and progression. Prophylactic bio-interventions employing probiotics and prebiotics offer an alternate nutritional approach towards attenuating its progression. The present study aimed to evaluate the protective efficacy of a novel synbiotic (Lactiplantibacillus pentosus GSSK2 + isomalto-oligosaccharides) in comparison to orlistat in an experimental model of metabolic syndrome. It was observed that supplementation of synbiotic for 12 weeks to Sprague Dawley rats fed with high fat diet (HFD), ameliorated the morphometric parameters i.e. weight gain, abdominal circumference, Lee's index, BMI and visceral fat deposition along with significantly increased fecal Bacteroidetes to Firmicutes ratio, elevated population of Lactobacillus spp., Akkermansia spp., Faecalibacterium spp., Roseburia spp. and decreased Enterobacteriaceae compared with HFD animals. Additionally, synbiotic administration to HFD animals exhibited improved glucose clearance, lipid biomarkers, alleviated oxidative stress, prevented leaky gut phenotype, reduced serum lipopolysaccharides and modulated the inflammatory, lipid and glucose metabolism genes along with restored histomorphology of adipose tissue, colon and liver compared with HFD animals. Taken together, the study highlights the protective potential of synbiotic in comparison with its individual components in ameliorating HFD-induced metabolic complications.
Collapse
Affiliation(s)
- Sakshi Khanna
- Department of Microbiology, Basic Medical Sciences Block A, South Campus, Panjab University, Chandigarh, 160014, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India.
| | - Geeta Shukla
- Department of Microbiology, Basic Medical Sciences Block A, South Campus, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
210
|
Abstract
Obesity is one of the risk factors for the development and progression of chronic kidney disease (CKD). Several studies have shown the association between increased body mass index and kidney function decline. Obesity leads to CKD directly by acting as an independent risk factor and indirectly through increasing risks for diabetes, hypertension, and atherosclerosis, a group of well-established independent risk factors for CKD. Alterations in renal hemodynamics, inflammation, and in hormones and growth factors results in hyperfiltration injury and focal segmental glomerulosclerosis. In recent years, many studies have shown that the gut microbiome may play a role in the pathogenesis of obesity. Dysbiosis has been noted in obese subjects in both human and animal studies. Changes in the gut microbiome in obese patients promote weight gain by effectively extracting energy from diet, and induction of low-grade inflammation. Evidence also points to the role of inflammation within the adipose tissue in obesity as a key factor in the pathogenesis of obesity-related complications. Thus, obesity is the net result of complex interactions between behavioral, genetic, and environmental factors. In terms of management, conservative approaches are often the first option, but they often are unsuccessful in achieving and/or maintaining weight loss, particularly in severe obesity. Consequently, nonmedical management with bariatric surgery is the most effective treatment option for morbid obesity and has shown mitigation of multiple risk factors for the progression of CKD. The most frequently performed interventions are vertical sleeve gastrectomy and Roux-en-Y gastric bypass. Studies have shown that bariatric surgery is associated with beneficial effects on CKD by mitigating its risk factors by weight loss, reducing insulin resistance, hemoglobin A1c, and proteinuria, in addition to positive long-term outcomes. Because of the epidemic of obesity, the prevalence of obesity in kidney transplant recipients also is increasing. The maximal body mass index (BMI) threshold for kidney transplantation is not clear. The Organ Procurement Transplant Network/Scientific Registry of Transplant Recipients 2019 annual data report showed that the proportion of kidney transplant recipient candidates with a BMI of 30 kg/m2 or greater is increasing steadily. Morbid obesity is linked to adverse graft outcomes including delayed graft function, primary nonfunction, and decreased graft survival. Obesity is also an independent risk factor for cardiovascular death in kidney transplant recipients, suggesting that these patients should not be excluded from transplantation based on their BMI because transplantation is associated with lower mortality compared with dialysis. However, many centers exclude obese patients (with different BMI cut-off values) from transplantation to avoid postoperative complications. To minimize the surgical complications of kidney transplantation in obese patients, our center has adopted the robot-assisted kidney transplantation procedure. Our data show that this approach is comparable with historical nonobese controls in the United Network for Organ Sharing database in terms of patient and graft survival. Another surgical option for this group of patients at our center is a combined robotic sleeve gastrectomy and robotic-assisted kidney transplant. In a recent study, this approach showed promising results in terms of weight loss, patient survival, and graft survival, and might become more common in the future.
Collapse
|
211
|
Abstract
Obesity is a growing human health concern worldwide and imposes adverse effects on many cell types and organ systems, including the kidneys. Obesity interferes with various cellular processes by increasing lipid accumulation and oxidation, insulin resistance, and inflammation. Autophagy is an important cellular process to maintain hemostasis and preserve resources, but might be altered in obesity. Interestingly, experimental studies have shown either an increase or a decrease in the rate of autophagy, and accumulation of byproducts and mediators of this cascade in kidneys of obese individuals. Hence, whether autophagy is beneficial or detrimental under these conditions remains unresolved. This review summarizes emerging evidence linking superfluous fat accumulation to alterations in autophagy. Elucidating the role of autophagy in the pathogenesis and complications of obesity in the kidney might help in the identification of therapeutic targets to prevent or delay the development of chronic kidney disease in obese subjects. Autophagy, kidney, obesity, lipids.
Collapse
Affiliation(s)
- Ramyar Ghandriz
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN.
| |
Collapse
|
212
|
Modi S, Syed Gaggatur N, Sange AH, Srinivas N, Sarnaik MK, Hassan M, Gajjela H, Sange I. An Emerging Facet of Diabetes Mellitus: The Nexus of Gastrointestinal Disorders. Cureus 2021; 13:e18245. [PMID: 34712528 PMCID: PMC8542353 DOI: 10.7759/cureus.18245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 11/05/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder with a multi-systemic involvement, the gastrointestinal (GI) system being one of them. In this study, we have compiled and analyzed findings from various studies to conclude that peripheral insulin resistance and hyperglycemia are the two key factors that play a role in the pathogenesis of the web of disorders associated with diabetes. These two key factors, when clubbed with autoimmunity, autonomic neuropathy, and genetic and environmental factors, play a substantial role in the development of GI disorders in DM. This article examines GI disorders such as gastric autonomic neuropathy, non-alcoholic fatty liver disease (NAFLD), celiac disease (CD), etc. It also highlights the importance of regular screening and assessment of DM in preventing the GI tangent of the disease. A prompt blood glucose control through lifestyle modifications, dietary management, and weight reduction, coupled with pharmacotherapy for existing DM, can lead to a better outcome and an optimistic perspective on the disease.
Collapse
Affiliation(s)
- Srimy Modi
- Research, K.J. Somaiya Medical College, Mumbai, IND
| | | | | | - Natasha Srinivas
- Research, BGS Global Institute of Medical Sciences, Bangalore, IND
| | | | - Mohammad Hassan
- Internal Medicine, Mohiuddin Islamic Medical College, Mirpur, PAK
| | - Harini Gajjela
- Research, Our Lady of Fatima University College of Medicine, Valenzuela, Metro Manila, PHL
| | - Ibrahim Sange
- Research, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA.,Research, K.J. Somaiya Medical College, Mumbai, IND
| |
Collapse
|
213
|
Borer KT. Why We Eat Too Much, Have an Easier Time Gaining Than Losing Weight, and Expend Too Little Energy: Suggestions for Counteracting or Mitigating These Problems. Nutrients 2021; 13:3812. [PMID: 34836068 PMCID: PMC8618649 DOI: 10.3390/nu13113812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022] Open
Abstract
The intent of this review is to survey physiological, psychological, and societal obstacles to the control of eating and body weight maintenance and offer some evidence-based solutions. Physiological obstacles are genetic and therefore not amenable to direct abatement. They include an absence of feedback control against gaining weight; a non-homeostatic relationship between motivations to be physically active and weight gain; dependence of hunger and satiation on the volume of food ingested by mouth and processed by the gastrointestinal tract and not on circulating metabolites and putative hunger or satiation hormones. Further, stomach size increases from overeating and binging, and there is difficulty in maintaining weight reductions due to a decline in resting metabolism, increased hunger, and enhanced efficiency of energy storage. Finally, we bear the evolutionary burden of extraordinary human capacity to store body fat. Of the psychological barriers, human craving for palatable food, tendency to overeat in company of others, and gullibility to overeat when offered large portions, can be overcome consciously. The tendency to eat an unnecessary number of meals during the wakeful period can be mitigated by time-restricted feeding to a 6-10 hour period. Social barriers of replacing individual physical work by labor-saving appliances, designing built environments more suitable for car than active transportation; government food macronutrient advice that increases insulin resistance; overabundance of inexpensive food; and profit-driven efforts by the food industry to market energy-dense and nutritionally compromised food are best overcome by informed individual macronutrient choices and appropriate timing of exercise with respect to meals, both of which can decrease insulin resistance. The best defense against overeating, weight gain, and inactivity is the understanding of factors eliciting them and of strategies that can avoid and mitigate them.
Collapse
Affiliation(s)
- Katarina T Borer
- School of Kinesiology, The University of Michigan, Ann Arbor, MI 48104, USA
| |
Collapse
|
214
|
d-Allulose Ameliorates Skeletal Muscle Insulin Resistance in High-Fat Diet-Fed Rats. Molecules 2021; 26:molecules26206310. [PMID: 34684891 PMCID: PMC8539500 DOI: 10.3390/molecules26206310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/25/2021] [Accepted: 10/10/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND d-Allulose is a rare sugar with antiobesity and antidiabetic activities. However, its direct effect on insulin sensitivity and the underlying mechanism involved are unknown. OBJECTIVE This study aimed to investigate the effect of d-allulose on high-fat diet (HFD)-induced insulin resistance using the hyperinsulinemic-euglycemic (HE)-clamp method and intramuscular signaling analysis. METHODS Wistar rats were randomly divided into three dietary groups: chow diet, HFD with 5% cellulose (HFC), and HFD with 5% d-allulose (HFA). After four weeks of feeding, the insulin tolerance test (ITT), intraperitoneal glucose tolerance test (IPGTT), and HE-clamp study were performed. The levels of plasma leptin, adiponectin, and tumor necrosis factor (TNF)-α were measured using the enzyme-linked immunosorbent assay. We analyzed the levels of cell signaling pathway components in the skeletal muscle using Western blotting. RESULTS d-allulose alleviated the increase in HFD-induced body weight and visceral fat and reduced the area under the curve as per ITT and IPGTT. d-Allulose increased the glucose infusion rate in the two-step HE-clamp test. Consistently, the insulin-induced phosphorylation of serine 307 in the insulin receptor substrate-1 and Akt and expression of glucose transporter 4 (Glut-4) in the muscle were higher in the HFA group than HFC group. Furthermore, d-allulose decreased plasma TNF-α concentration and insulin-induced phosphorylation of stress-activated protein kinase/Jun N-terminal kinase in the muscle and inhibited adiponectin secretion in HFD-fed rats. CONCLUSIONS d-allulose improved HFD-induced insulin resistance in Wistar rats. The reduction of the proinflammatory cytokine production, amelioration of adiponectin secretion, and increase in insulin signaling and Glut-4 expression in the muscle contributed to this effect.
Collapse
|
215
|
Ramírez-Soto MC, Alarcón-Arroyo M, Chilcon-Vitor Y, Chirinos-Pérez Y, Quispe-Vargas G, Solsol-Jacome K, Quintana-Zavaleta E. Association between Obesity and COVID-19 Mortality in Peru: An Ecological Study. Trop Med Infect Dis 2021; 6:tropicalmed6040182. [PMID: 34698315 PMCID: PMC8544728 DOI: 10.3390/tropicalmed6040182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
There is a gap in the epidemiological data on obesity and COVID-19 mortality in low and middle-income countries worst affected by the COVID-19 pandemic, including Peru. In this ecological study, we explored the association between body mass index (BMI), the prevalence of overweight and obesity, and the COVID-19 mortality rates in 25 Peruvian regions, adjusted for confounding factors (mean age in the region, mean income, gender balance and number of Intensive Care Unit (ICU) beds) using multiple linear regression. We retrieved secondary region-level data on the BMI average and prevalence rates of overweight and obesity in individuals aged ≥ 15 years old, from the Peruvian National Demographics and Health Survey (ENDES 2020). COVID-19 death statistics were obtained from the National System of Deaths (SINADEF) from the Peruvian Ministry of Health and were accurate as of 3 June 2021. COVID-19 mortality rates (per 100,000 habitants) were calculated among those aged ≥ 15 years old. During the study period, a total of 190,046 COVID-19 deaths were registered in individuals aged ≥ 15 years in 25 Peruvian regions. There was association between the BMI (r = 0.74; p = 0.00001) and obesity (r = 0.76; p = 0.00001), and the COVID-19 mortality rate. Adjusted for confounding factors, only the prevalence rate of obesity was associated with COVID-19 mortality rate (β = 0.585; p = 0.033). These findings suggest that as obesity prevalence increases, the COVID-19 mortality rates increase in the Peruvian population ≥ 15 years. These findings can help to elucidate the high COVID-19 mortality rates in Peru.
Collapse
|
216
|
Russell N, Grossmann M. Management of bone and metabolic effects of androgen deprivation therapy. Urol Oncol 2021; 39:704-712. [DOI: 10.1016/j.urolonc.2018.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 07/20/2018] [Accepted: 10/03/2018] [Indexed: 12/13/2022]
|
217
|
Nawrot M, Peschard S, Lestavel S, Staels B. Intestine-liver crosstalk in Type 2 Diabetes and non-alcoholic fatty liver disease. Metabolism 2021; 123:154844. [PMID: 34343577 DOI: 10.1016/j.metabol.2021.154844] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes (T2D) and Non-Alcoholic Fatty Liver Disease (NAFLD) are pathologies whose prevalence continues to increase worldwide. Both diseases are precipitated by an excessive caloric intake, which promotes insulin resistance and fatty liver. The role of the intestine and its crosstalk with the liver in the development of these metabolic diseases is receiving increasing attention. Alterations in diet-intestinal microbiota interactions lead to the dysregulation of intestinal functions, resulting in altered metabolite and energy substrate production and increased intestinal permeability. Connected through the portal circulation, these changes in intestinal functions impact the liver and other metabolic organs, such as visceral adipose tissue, hence participating in the development of insulin resistance, and worsening T2D and NAFLD. Thus, targeting the intestine may be an efficient therapeutic approach to cure T2D and NAFLD. In this review, we will first introduce the signaling pathways linking T2D and NAFLD. Next, we will address the role of the gut-liver crosstalk in the development of T2D and NAFLD, with a particular focus on the gut microbiota and the molecular pathways behind the increased intestinal permeability and inflammation. Finally, we will summarize the therapeutic strategies which target the gut and its functions and are currently used or under development to treat T2D and NAFLD.
Collapse
Affiliation(s)
- Margaux Nawrot
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000 Lille, France
| | - Simon Peschard
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000 Lille, France
| | - Sophie Lestavel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000 Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000 Lille, France.
| |
Collapse
|
218
|
Szweda-Gandor N, Śnit M, Grzeszczak W. Association between Selected Polymorphisms rs12086634, rs846910, rs4844880, rs3753519 of 11β-Hydroxysteroid Dehydrogenase Type 1 ( HSD11B1) and the Presence of Insulin Resistance in the Polish Population of People Living in Upper Silesia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910168. [PMID: 34639470 PMCID: PMC8508480 DOI: 10.3390/ijerph181910168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/23/2022]
Abstract
Background: Many factors influence the development of insulin resistance, among other genetic factors. Cortisol is one of the factors that has a significant impact on the development of insulin resistance. The proteins that have a substantial effect on blood cortisol levels include 11β-hydroxysteroid dehydrogenase type 1. HSD11B1 is a microsomal enzyme that catalyzes the conversion of the stress hormone cortisol to the inactive metabolite cortisone. Gene encoding HSD11B1 is located on 1q32.2. This study was designed to assess the association between four polymorphic sides in HSD11B1 (rs12086634, rs846910, rs4844880, rs3753519) between subjects with and without insulin resistance in the Polish population of people living in Upper Silesia. Methods: The study included a total of 507 consecutive patients, 374 (73.77%) with and 133 (26.23%) without insulin resistance. Results: The results show that there were no statistically significant differences in the distribution of genotypes and alleles of the examined polymorphisms of the 11β-hydroxysteroid dehydrogenase type 1 gene between subjects with and without insulin resistance (determined using the HOMA-IR, insulin resistance index) and that rs846910 and rs1208663 polymorphisms of the 11β-hydroxysteroid dehydrogenase type 1 gene in the examined subjects have a significant effect on the magnitude of the HOMA-IR insulin resistance index. Conclusions: The study results suggested that genetic variation of rs846910 and rs1208663 polymorphism of the HSD11B1 gene is related to the susceptibility to insulin resistance. Our results provide a basis to begin basic research on the role of the HSD11B1 gene in the pathogenesis of insulin resistance.
Collapse
|
219
|
FGF-2-dependent signaling activated in aged human skeletal muscle promotes intramuscular adipogenesis. Proc Natl Acad Sci U S A 2021; 118:2021013118. [PMID: 34493647 PMCID: PMC8449320 DOI: 10.1073/pnas.2021013118] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 06/23/2021] [Indexed: 01/07/2023] Open
Abstract
Aged skeletal muscle is markedly affected by fatty muscle infiltration, and strategies to reduce the occurrence of intramuscular adipocytes are urgently needed. Here, we show that fibroblast growth factor-2 (FGF-2) not only stimulates muscle growth but also promotes intramuscular adipogenesis. Using multiple screening assays upstream and downstream of microRNA (miR)-29a signaling, we located the secreted protein and adipogenic inhibitor SPARC to an FGF-2 signaling pathway that is conserved between skeletal muscle cells from mice and humans and that is activated in skeletal muscle of aged mice and humans. FGF-2 induces the miR-29a/SPARC axis through transcriptional activation of FRA-1, which binds and activates an evolutionary conserved AP-1 site element proximal in the miR-29a promoter. Genetic deletions in muscle cells and adeno-associated virus-mediated overexpression of FGF-2 or SPARC in mouse skeletal muscle revealed that this axis regulates differentiation of fibro/adipogenic progenitors in vitro and intramuscular adipose tissue (IMAT) formation in vivo. Skeletal muscle from human donors aged >75 y versus <55 y showed activation of FGF-2-dependent signaling and increased IMAT. Thus, our data highlights a disparate role of FGF-2 in adult skeletal muscle and reveals a pathway to combat fat accumulation in aged human skeletal muscle.
Collapse
|
220
|
Dai W, Zhang Z, Zhao S. The Risk of Type 2 Diabetes and Coronary Artery Disease in Non-obese Patients With Non-alcoholic Fatty Liver Disease: A Cohort Study. Front Cardiovasc Med 2021; 8:680664. [PMID: 34490362 PMCID: PMC8417689 DOI: 10.3389/fcvm.2021.680664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) is not uncommon in non-obese subjects, referred to as non-obese NAFLD. It is not fully determined whether non-obese NAFLD is associated with increased risks of type 2 diabetes (T2D) and coronary artery disease (CAD) in Chinese. This study aimed to examine the association between NAFLD and risks of T2D and CAD in a non-obese Chinese population. Methods: The present cohort study included two stages. In the first cross-sectional study, 16,093 non-obese subjects with a body max index (BMI) < 25.0 kg/m2 were enrolled from The Second Xiangya Hospital, China, from 2011 to 2014. Hepatic steatosis was evaluated by ultrasonography examination. Logistic regression analyses were used to examine the association of non-obese NAFLD with T2D and CAD at baseline. In the subsequent 5-year follow-up study, 12,649 subjects free of T2D and CAD at baseline were included, and the incidence of T2D and CAD were observed. Cox proportional hazard regression analyses were performed to determine the risk of incident T2D and CAD with NAFLD. Results: At baseline, the prevalence of NAFLD, T2D and CAD were 10.7% (1,717/16,093), 3.3% (529/16,093) and 0.7% (113/16,093), respectively. The univariate logistic regression analyses showed NAFLD associated with both T2D and CAD. Moreover, in a multivariate logistic regression model, NAFLD remained independently associated with T2D (OR: 2.7, 95% CI: 2.2-3.3, p < 0.001). However, no significant association was found between NAFLD and CAD by the multivariate logistic regression analyses (OR: 1.1, 95% CI: 0.6-1.8, p = 0.854). During a 5-year follow-up period, 177 (1.4%) patients developed T2D, and 134 (1.1%) developed CAD, respectively. In univariate Cox regression models, NAFLD associated with both T2D and CAD. Moreover, the multivariate Cox regression analysis revealed that NAFLD independently associated with an increased risk of T2D (HR: 2.3, 95% CI: 1.7-3.2, p < 0.001). However, the association between NAFLD and incident CAD was lost in the multivariate Cox regression analysis (HR = 1.5, 95% CI: 1.0-2.4, p = 0.059). Conclusions: NAFLD was an independent risk factor for T2D in non-obese subjects. However, no significant association was observed between non-obese NAFLD and incident CAD after adjusting other traditional cardiovascular risk factors, suggesting these factors might mediate the increased incidence of CAD in non-obese NAFLD patients.
Collapse
Affiliation(s)
- Wen Dai
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Zhang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuiping Zhao
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
221
|
Krassovskaia PM, Chaves AB, Houmard JA, Broskey NT. Exercise during Pregnancy: Developmental Programming Effects and Future Directions in Humans. Int J Sports Med 2021; 43:107-118. [PMID: 34344043 DOI: 10.1055/a-1524-2278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Epidemiological studies show that low birth weight is associated with mortality from cardiovascular disease in adulthood, indicating that chronic diseases could be influenced by hormonal or metabolic insults encountered in utero. This concept, now known as the Developmental Origins of Health and Disease hypothesis, postulates that the intrauterine environment may alter the structure and function of the organs of the fetus as well as the expression of genes that impart an increased vulnerability to chronic diseases later in life. Lifestyle interventions initiated during the prenatal period are crucial as there is the potential to attenuate progression towards chronic diseases. However, how lifestyle interventions such as physical activity directly affect human offspring metabolism and the potential mechanisms involved in regulating metabolic balance at the cellular level are not known. The purpose of this review is to highlight the effects of exercise during pregnancy on offspring metabolic health and emphasize gaps in the current human literature and suggestions for future research.
Collapse
Affiliation(s)
- Polina M Krassovskaia
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, United States
| | - Alec B Chaves
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, United States
| | - Joseph A Houmard
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, United States
| | - Nicholas T Broskey
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, United States
| |
Collapse
|
222
|
Kim HK, Lee MJ, Kim EH, Bae SJ, Kim KW, Kim CH. Comparison of muscle mass and quality between metabolically healthy and unhealthy phenotypes. Obesity (Silver Spring) 2021; 29:1375-1386. [PMID: 34235892 DOI: 10.1002/oby.23190] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The aim of this study was to examine whether higher skeletal muscle mass is associated with a metabolically healthy phenotype and whether muscle quality affects metabolic health. METHODS This cross-sectional analysis included 20,659 participants (7,966 women) who underwent abdominal computed tomography scans during health checkups. The total abdominal muscle area (TAMA) on the third lumbar vertebral level was demarcated. Intermuscular adipose tissue and skeletal muscle area were measured. The skeletal muscle area was divided into normal attenuation muscle area (NAMA) and low attenuation muscle area (LAMA). The NAMA/TAMA index was calculated. The metabolically unhealthy phenotype was defined as having two or more components of metabolic syndrome or the presence of hypertension or diabetes. RESULTS TAMA and skeletal muscle area were not significantly different or even lower in metabolically healthy phenotypes compared with metabolically unhealthy phenotypes. However, metabolically healthy phenotypes had significantly higher NAMA (except in women with obesity) and NAMA/TAMA index than in the metabolically unhealthy phenotypes. In people without obesity, lower NAMA/TAMA index was independently associated with higher risk of the metabolically unhealthy phenotype in the fully adjusted model. CONCLUSIONS The metabolically healthy phenotypes had more good-quality muscles than did the metabolically unhealthy phenotypes. These results suggest that not only muscle mass but also muscle quality (i.e., degree of myosteatosis) are associated with metabolic health.
Collapse
Affiliation(s)
- Hong-Kyu Kim
- Subdivision of Endocrinology and Metabolism, Health Screening and Promotion Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min Jung Lee
- Subdivision of Endocrinology and Metabolism, Health Screening and Promotion Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun Hee Kim
- Subdivision of Endocrinology and Metabolism, Health Screening and Promotion Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung-Jin Bae
- Subdivision of Endocrinology and Metabolism, Health Screening and Promotion Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyung Won Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Biomedical Research Center, Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Chul-Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| |
Collapse
|
223
|
Soluble mannose receptor induces proinflammatory macrophage activation and metaflammation. Proc Natl Acad Sci U S A 2021; 118:2103304118. [PMID: 34326259 DOI: 10.1073/pnas.2103304118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Proinflammatory activation of macrophages in metabolic tissues is critically important in the induction of obesity-induced metaflammation. Here, we demonstrate that the soluble mannose receptor (sMR) plays a direct functional role in both macrophage activation and metaflammation. We show that sMR binds CD45 on macrophages and inhibits its phosphatase activity, leading to an Src/Akt/NF-κB-mediated cellular reprogramming toward an inflammatory phenotype both in vitro and in vivo. Remarkably, increased serum sMR levels were observed in obese mice and humans and directly correlated with body weight. Importantly, enhanced sMR levels increase serum proinflammatory cytokines, activate tissue macrophages, and promote insulin resistance. Altogether, our results reveal sMR as regulator of proinflammatory macrophage activation, which could constitute a therapeutic target for metaflammation and other hyperinflammatory diseases.
Collapse
|
224
|
Changes in abdominal subcutaneous adipose tissue phenotype following menopause is associated with increased visceral fat mass. Sci Rep 2021; 11:14750. [PMID: 34285301 PMCID: PMC8292317 DOI: 10.1038/s41598-021-94189-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Menopause is associated with a redistribution of adipose tissue towards central adiposity, known to cause insulin resistance. In this cross-sectional study of 33 women between 45 and 60 years, we assessed adipose tissue inflammation and morphology in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) across menopause and related this to menopausal differences in adipose tissue distribution and insulin resistance. We collected paired SAT and VAT biopsies from all women and combined this with anthropometric measurements and estimated whole-body insulin sensitivity. We found that menopause was associated with changes in adipose tissue phenotype related to metabolic dysfunction. In SAT, postmenopausal women showed adipocyte hypertrophy, increased inflammation, hypoxia and fibrosis. The postmenopausal changes in SAT was associated with increased visceral fat accumulation. In VAT, menopause was associated with adipocyte hypertrophy, immune cell infiltration and fibrosis. The postmenopausal changes in VAT phenotype was associated with decreased insulin sensitivity. Based on these findings we suggest, that menopause is associated with changes in adipose tissue phenotype related to metabolic dysfunction in both SAT and VAT. Whereas increased SAT inflammation in the context of menopause is associated with VAT accumulation, VAT morphology is related to insulin resistance.
Collapse
|
225
|
Chandra NC. A comprehensive account of insulin and LDL receptor activity over the years: A highlight on their signaling and functional role. J Biochem Mol Toxicol 2021; 35:e22840. [PMID: 34227185 DOI: 10.1002/jbt.22840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 05/13/2021] [Accepted: 06/25/2021] [Indexed: 11/08/2022]
Abstract
Insulin receptor (IR) was discovered in 1970. Shortcomings in IR transcribed signals were found pro-diabetic, which could also inter-relate obesity and atherosclerosis in a time-dependent manner. Low-density lipoprotein receptor (LDLR) was discovered in 1974. Later studies showed that insulin could modulate LDLR expression and activity. Repression of LDLR transcription in the absence or inactivity of insulin showed a direct cause of atherosclerosis. Leptin receptor (OB-R) was found in 1995 and its resistance became responsible for developing obesity. The three interlinked pathologies namely, diabetes, atherosclerosis, and obesity were later on marked as metabolic syndrome-X (MSX). In 2012, the IR-LDLR inter-association was identified. In 2019, the proficiency of signal transmission from this IR-LDLR receptor complex was reported. LDLR was found to mimic IR-generated signaling path when it remains bound to IR in IR-DLR interlocked state. This was the first time LDLR was found sending messages besides its LDL-clearing activity from blood vessels.
Collapse
Affiliation(s)
- Nimai C Chandra
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, India
| |
Collapse
|
226
|
Spetz MR, Isely C, Gower RM. Effect of fabrication parameters on morphology and drug loading of polymer particles for rosiglitazone delivery. J Drug Deliv Sci Technol 2021; 65:S1773-2247(21)00352-X. [PMID: 35096148 PMCID: PMC8793769 DOI: 10.1016/j.jddst.2021.102672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For the past several decades, drug-encapsulated polymer particles have been investigated as locally-delivered, long-acting therapies. The most common method of producing such particles is the oil in water solvent extraction technique. Using this technique, we produced poly(lactide-co-glycolide) (PLG) microparticles encapsulating rosiglitazone, a small molecule anti-diabetic drug. We investigated the impact of modulating fabrication parameters, including choice of organic solvent, concentration of polymer, and speed of homogenization and centrifugation on particle morphology and drug loading. Additionally, we studied the ratio of air-water-interface area to the extraction bath volume, a previously unstudied fabrication parameter, and its impact on rosiglitazone loading when using dichloromethane as the organic solvent. Under the conditions tested, drug loading can be increased 5-fold by increasing this ratio, which may be achieved by simply selecting a larger extraction vessel. By changing the organic solvent from dichloromethane to ethyl acetate, we produced particles with 60% higher rosiglitazone loading. Interestingly, the particles made with ethyl acetate appeared phase dark under light microscopy suggesting the presence of internal pores. By increasing the proportion of organic phase in the emulsion we eliminated the aberrant morphology but did not alter drug loading. As a final step in the development of the particles, we established that rosiglitazone remained stable throughout the encapsulation process and its subsequent release from particles by demonstrating that rosiglitazone loaded particles enhanced adipocyte lipid storage and adiponectin secretion. Taken together, for this system, air-water-interface area to volume ratio of the extraction bath and organic solvent both arose as key parameters in maximizing rosiglitazone loading in PLG microparticles. This study of how fabrication parameters impact drug loading and particle morphology may be useful in other investigations to encapsulate small molecules in polymer particles for controlled release applications.
Collapse
Affiliation(s)
- Madeline R. Spetz
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Christopher Isely
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - R. Michael Gower
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
- Veterans Affairs Medical Center, Columbia SC, 29209, USA
| |
Collapse
|
227
|
Schumann T, König J, von Loeffelholz C, Vatner DF, Zhang D, Perry RJ, Bernier M, Chami J, Henke C, Kurzbach A, El-Agroudy NN, Willmes DM, Pesta D, de Cabo R, O Sullivan JF, Simon E, Shulman GI, Hamilton BS, Birkenfeld AL. Deletion of the diabetes candidate gene Slc16a13 in mice attenuates diet-induced ectopic lipid accumulation and insulin resistance. Commun Biol 2021; 4:826. [PMID: 34211098 PMCID: PMC8249653 DOI: 10.1038/s42003-021-02279-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Genome-wide association studies have identified SLC16A13 as a novel susceptibility gene for type 2 diabetes. The SLC16A13 gene encodes SLC16A13/MCT13, a member of the solute carrier 16 family of monocarboxylate transporters. Despite its potential importance to diabetes development, the physiological function of SLC16A13 is unknown. Here, we validate Slc16a13 as a lactate transporter expressed at the plasma membrane and report on the effect of Slc16a13 deletion in a mouse model. We show that Slc16a13 increases mitochondrial respiration in the liver, leading to reduced hepatic lipid accumulation and increased hepatic insulin sensitivity in high-fat diet fed Slc16a13 knockout mice. We propose a mechanism for improved hepatic insulin sensitivity in the context of Slc16a13 deficiency in which reduced intrahepatocellular lactate availability drives increased AMPK activation and increased mitochondrial respiration, while reducing hepatic lipid content. Slc16a13 deficiency thereby attenuates hepatic diacylglycerol-PKCε mediated insulin resistance in obese mice. Together, these data suggest that SLC16A13 is a potential target for the treatment of type 2 diabetes and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Tina Schumann
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jörg König
- Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Daniel F Vatner
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Rachel J Perry
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Michel Bernier
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jason Chami
- Heart Research Institute, Newtown, NSW, Australia
| | - Christine Henke
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Anica Kurzbach
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Nermeen N El-Agroudy
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Diana M Willmes
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Dominik Pesta
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - John F O Sullivan
- Heart Research Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Eric Simon
- Computational Biology, Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Bradford S Hamilton
- CardioMetabolic Diseases Research, Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Andreas L Birkenfeld
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- King's College London, Department of Diabetes, School of Life Course Science, London, UK.
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany.
- Department of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany.
| |
Collapse
|
228
|
Sharma I, Liao Y, Zheng X, Kanwar YS. New Pandemic: Obesity and Associated Nephropathy. Front Med (Lausanne) 2021; 8:673556. [PMID: 34268323 PMCID: PMC8275856 DOI: 10.3389/fmed.2021.673556] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Incidence of obesity related renal disorders have increased 10-folds in recent years. One of the consequences of obesity is an increased glomerular filtration rate (GFR) that leads to the enlargement of the renal glomerulus, i.e., glomerulomegaly. This heightened hyper-filtration in the setting of type 2 diabetes irreparably damages the kidney and leads to progression of end stage renal disease (ESRD). The patients suffering from type 2 diabetes have progressive proteinuria, and eventually one third of them develop chronic kidney disease (CKD) and ESRD. For ameliorating the progression of CKD, inhibitors of renin angiotensin aldosterone system (RAAS) seemed to be effective, but on a short-term basis only. Long term and stable treatment strategies like weight loss via restricted or hypo-caloric diet or bariatric surgery have yielded better promising results in terms of amelioration of proteinuria and maintenance of normal GFR. Body mass index (BMI) is considered as a traditional marker for the onset of obesity, but apparently, it is not a reliable indicator, and thus there is a need for more precise evaluation of regional fat distribution and amount of muscle mass. With respect to the pathogenesis, recent investigations have suggested perturbation in fatty acid and cholesterol metabolism as the critical mediators in ectopic renal lipid accumulation associated with inflammation, increased generation of ROS, RAAS activation and consequential tubulo-interstitial injury. This review summarizes the renewed approaches for the obesity assessment and evaluation of the pathogenesis of CKD, altered renal hemodynamics and potential therapeutic targets.
Collapse
Affiliation(s)
- Isha Sharma
- Departments of Pathology and Medicine, Northwestern University, Chicago, IL, United States
| | - Yingjun Liao
- Departments of Pathology and Medicine, Northwestern University, Chicago, IL, United States.,Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoping Zheng
- Departments of Pathology and Medicine, Northwestern University, Chicago, IL, United States.,Department of Urology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yashpal S Kanwar
- Departments of Pathology and Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
229
|
Abstract
AbstractThe world is in the grip of an obesity pandemic, with tripling of obesity rates since 1975; it is predicted that one-third of people on Earth will be obese by 2025. The health consequences of obesity are primarily thought to be related to cardiometabolic disorders such as diabetes and cardiovascular diseases. It is less well appreciated that obesity has been related to at least 13 different cancers and in future, (with increasing control over tobacco misuse and infections), obesity will be the main cause of cancers. While this is an area of active research, there are large gaps in the definition of what is an obesity related cancer (JRC) and more importantly, what are the underlying mechanisms. To an extent, this is due to the controversy on what constitutes “unhealthy obesity” which is further related to the causes of obesity. This narrative review examines the causes and measurement of obesity, the types of obesity-related cancers and possible mechanisms. The information has wide implications ranging from prevention, screening, prognosis and therapeutic strategies. Obesity related cancers should be an area of high-priority research. Oncologists can contribute by spreading awareness and instituting management measures for individual patients in their care.
Collapse
Affiliation(s)
- Ajit Venniyoor
- National Oncology Centre, The Royal Hospital, Muscat, Sultanate of Oman
| |
Collapse
|
230
|
Dogru T, Kirik A, Gurel H, Rizvi AA, Rizzo M, Sonmez A. The Evolving Role of Fetuin-A in Nonalcoholic Fatty Liver Disease: An Overview from Liver to the Heart. Int J Mol Sci 2021; 22:ijms22126627. [PMID: 34205674 PMCID: PMC8234007 DOI: 10.3390/ijms22126627] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is strongly associated to the features of metabolic syndrome which can progress to cirrhosis, liver failure and hepatocellular carcinoma. However, the most common cause of mortality in people with NAFLD is not liver-related but stems from atherosclerotic cardiovascular disease (CVD). The prevalence of NAFLD is on the rise, mainly as a consequence of its close association with two major worldwide epidemics, obesity and type 2 diabetes (T2D). The exact pathogenesis of NAFLD and especially the mechanisms leading to disease progression and CVD have not been completely elucidated. Human fetuin-A (alpha-2-Heremans Schmid glycoprotein), a glycoprotein produced by the liver and abundantly secreted into the circulation appears to play a role in insulin resistance, metabolic syndrome and inflammation. This review discusses the links between NAFLD and CVD by specifically focusing on fetuin-A’s function in the pathogenesis of NAFLD and atherosclerotic CVD.
Collapse
Affiliation(s)
- Teoman Dogru
- Department of Gastroenterology, Balikesir University Medical School, Cagis, Balikesir 10145, Turkey;
| | - Ali Kirik
- Department of Internal Medicine, Balikesir University Medical School, Cagis, Balikesir 10145, Turkey;
| | - Hasan Gurel
- Department of Gastroenterology, Samsun Education and Research Hospital, University of Health Sciences, Ilkadim, Samsun 55090, Turkey;
| | - Ali A. Rizvi
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University, Atlanta, GA 30322, USA;
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of South Carolina, Columbia, SC 29208, USA;
| | - Manfredi Rizzo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of South Carolina, Columbia, SC 29208, USA;
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90133 Palermo, Italy
| | - Alper Sonmez
- Department of Endocrinology and Metabolism, Gulhane Medical School, University of Health Sciences, Ankara 06010, Turkey
- Correspondence:
| |
Collapse
|
231
|
Ko J, Skudder-Hill L, Cho J, Bharmal SH, Petrov MS. Pancreatic enzymes and abdominal adipose tissue distribution in new-onset prediabetes/diabetes after acute pancreatitis. World J Gastroenterol 2021; 27:3357-3371. [PMID: 34163117 PMCID: PMC8218354 DOI: 10.3748/wjg.v27.i23.3357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/14/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND New-onset prediabetes/diabetes after acute pancreatitis (NODAP) is the most common sequela of pancreatitis, and it differs from type 2 prediabetes/diabetes mellitus (T2DM).
AIM To study the associations between circulating levels of pancreatic amylase, pancreatic lipase, chymotrypsin and fat phenotypes in NODAP, T2DM, and health.
METHODS Individuals with NODAP (n = 30), T2DM (n = 30), and sex-matched healthy individuals (n = 30) were included. Five fat phenotypes (intra-pancreatic fat, liver fat, skeletal muscle fat, visceral fat, and subcutaneous fat) were determined using the same magnetic resonance imaging protocol and scanner magnet strength for all participants. One-way analysis of covariance, linear regression analysis, and relative importance analysis were conducted.
RESULTS Intra-pancreatic fat deposition (IPFD) was higher in NODAP (9.4% ± 1.8%) and T2DM (9.8% ± 1.1%) compared with healthy controls (7.8% ± 1.9%) after adjusting for covariates (P = 0.003). Similar findings were observed in regards to visceral fat volume (P = 0.005), but not subcutaneous fat volume, liver fat, or skeletal muscle fat. Both IPFD (β = -2.201, P = 0.023) and visceral fat volume (β = -0.004, P = 0.028) were significantly associated with circulating levels of pancreatic amylase in NODAP, but not in T2DM or healthy individuals. Of the five fat phenotypes, IPFD explained the highest amount of variance in pancreatic amylase concentration (R2 = 15.3% out of 41.2%). None of the phenotypes contributed meaningfully to the variance in pancreatic lipase or chymotrypsin.
CONCLUSION Both NODAP and T2DM are characterized by increased IPFD and visceral fat volume. However, only NODAP is characterized by significant inverse associations between the two fat phenotypes and pancreatic amylase.
Collapse
Affiliation(s)
- Juyeon Ko
- School of Medicine, University of Auckland, Auckland 1142, New Zealand
| | | | - Jaelim Cho
- School of Medicine, University of Auckland, Auckland 1142, New Zealand
| | - Sakina H Bharmal
- School of Medicine, University of Auckland, Auckland 1142, New Zealand
| | - Maxim S Petrov
- School of Medicine, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
232
|
Visceral adipose tissue imparts peripheral macrophage influx into the hypothalamus. J Neuroinflammation 2021; 18:140. [PMID: 34154608 PMCID: PMC8218389 DOI: 10.1186/s12974-021-02183-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Obesity is characterized by a systemic inflammation and hypothalamic neuroinflammation. Systemic inflammation is caused by macrophages that infiltrate obese adipose tissues. We previously demonstrated that high-fat diet (HFD)-fed male mice exhibited peripheral macrophage infiltration into the hypothalamus, in addition to activation of resident microglia. Since this infiltration contributes to neuroinflammation and neuronal impairment, herein we characterize the phenotype and origin of these hypothalamic macrophages in HFD mice. METHODS C57BL/6J mice were fed HFD (60% kcal from fat) or control diet with matching sucrose levels, for 12-16 weeks. Males and females were analyzed separately to determine sex-specific responses to HFD. Differences in hypothalamic gene expression in HFD-fed male and female mice, compared to their lean controls, in two different areas of the hypothalamus, were determined using the NanoString neuroinflammation panel. Phenotypic changes in macrophages that infiltrated the hypothalamus in HFD-fed mice were determined by analyzing cell surface markers using flow cytometry and compared to changes in macrophages from the adipose tissue and peritoneal cavity. Adipose tissue transplantation was performed to determine the source of hypothalamic macrophages. RESULTS We determined that hypothalamic gene expression profiles demonstrate sex-specific and region-specific diet-induced changes. Sex-specific changes included larger changes in males, while region-specific changes included larger changes in the area surrounding the median eminence. Several genes were identified that may provide partial protection to female mice. We also identified diet-induced changes in macrophage migration into the hypothalamus, adipose tissue, and peritoneal cavity, specifically in males. Further, we determined that hypothalamus-infiltrating macrophages express pro-inflammatory markers and markers of metabolically activated macrophages that were identical to markers of adipose tissue macrophages in HFD-fed mice. Employing adipose tissue transplant, we demonstrate that hypothalamic macrophages can originate from the visceral adipose tissue. CONCLUSION HFD-fed males experience higher neuroinflammation than females, likely because they accumulate more visceral fat, which provides a source of pro-inflammatory macrophages that migrate to other tissues, including the hypothalamus. Our findings may explain the male bias for neuroinflammation and the metabolic syndrome. Together, our results demonstrate a new connection between the adipose tissue and the hypothalamus in obesity that contributes to neuroinflammation and hypothalamic pathologies.
Collapse
|
233
|
Jang HR, Lee HY. Mechanisms linking gut microbial metabolites to insulin resistance. World J Diabetes 2021; 12:730-744. [PMID: 34168724 PMCID: PMC8192250 DOI: 10.4239/wjd.v12.i6.730] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/23/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Insulin resistance is the rate-limiting step in the development of metabolic diseases, including type 2 diabetes. The gut microbiota has been implicated in host energy metabolism and metabolic diseases and is recognized as a quantitatively important organelle in host metabolism, as the human gut harbors 10 trillion bacterial cells. Gut microbiota break down various nutrients and produce metabolites that play fundamental roles in host metabolism and aid in the identification of possible therapeutic targets for metabolic diseases. Therefore, understanding the various effects of bacterial metabolites in the development of insulin resistance is critical. Here, we review the mechanisms linking gut microbial metabolites to insulin resistance in various insulin-responsive tissues.
Collapse
Affiliation(s)
- Hye Rim Jang
- Laboratory of Mitochondrial and Metabolic Diseases, Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, South Korea
| | - Hui-Young Lee
- Laboratory of Mitochondrial and Metabolic Diseases, Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, South Korea
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea
- Division of Molecular Medicine, Department of Medicine, Gachon University College of Medicine, Incheon 21936, South Korea
| |
Collapse
|
234
|
Mori Ramulus Inhibits Pancreatic β-Cell Apoptosis and Prevents Insulin Resistance by Restoring Hepatic Mitochondrial Function. Antioxidants (Basel) 2021; 10:antiox10060901. [PMID: 34204891 PMCID: PMC8229938 DOI: 10.3390/antiox10060901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/14/2021] [Accepted: 05/31/2021] [Indexed: 01/09/2023] Open
Abstract
Type 2 diabetes mellitus is characterized by insulin resistance and pancreatic beta (β)-cell dysfunction. Accumulating evidence suggests that mitochondrial dysfunction may cause insulin resistance in peripheral tissues. As commercial hypoglycemic drugs have side effects, it is necessary to develop safe and effective natural compound-based hypoglycemic treatments. This study aimed to investigate the hypoglycemic effects of Mori Ramulus ethanol extract (ME) in a high-fat diet (HFD)-induced diabetes mouse model to decipher the underlying mechanisms focusing on apoptosis and mitochondrial function. ME significantly decreased tunicamycin-induced apoptotic cell death and increased insulin secretion following glucose stimulation in NIT-1 pancreatic β-cells. Tunicamycin-exposed NIT-1 pancreatic β-cells showed elevated reactive oxygen species levels and reduced mitochondrial membrane potential, which were reversed by ME treatment. ME inhibited the tunicamycin-induced apoptosis cascade in tunicamycin-exposed NIT-1 pancreatic β-cells. In HFD diabetic mice, the serum-free fatty acid and insulin levels decreased following a 15-week ME administration. Glucose and insulin tolerance tests showed that ME improved insulin sensitivity. Moreover, ME ameliorated pancreatic β-cell mass loss in diabetic mice. Finally, ME-treated HFD-fed mice showed improved hepatic mitochondrial function resulting in insulin sensitivity in target tissues. Thus, ME provides protection against pancreatic β-cell apoptosis and prevents insulin resistance by improving mitochondrial function.
Collapse
|
235
|
Lamprinou A, Willmann C, Machann J, Schick F, Eckstein SS, Dalla Man C, Visentin R, Birkenfeld AL, Peter A, Stefan N, Häring HU, Fritsche A, Heni M, Wagner R. Determinants of hepatic insulin clearance - Results from a Mendelian Randomization study. Metabolism 2021; 119:154776. [PMID: 33862045 DOI: 10.1016/j.metabol.2021.154776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/22/2022]
Abstract
AIMS/HYPOTHESIS Besides insulin resistance, type 2 diabetes associates with decreased hepatic insulin clearance (HIC). We now tested for causal relationship of HIC to liver fat accumulation or features of the metabolic syndrome. METHODS HIC was derived from oral glucose tolerance tests with the "Oral C-peptide and Insulin Minimal Models" (n = 3311). Liver fat was quantified by magnetic resonance spectroscopy (n = 1211). Mendelian Randomization was performed using established single nucleotide polymorphisms (SNPs; 115 for liver fat, 155 alanine-aminotransferase, 37 insulin sensitivity, 37 insulin secretion, 72 fasting insulin, 5285 BMI, 163 visceral fat, 270 waist circumference, 442 triglycerides, 620 HDL-Cholesterol, 193 C-reactive protein, 53 lipodystrophy-like phenotypes). RESULTS HIC associated inversely with liver fat (p < 0.003) and insulin sensitivity (p < 0.0001). Both liver fat and HIC were independently associated with insulin sensitivity (p < 0.0001). Neither liver fat nor alanine-aminotransferase were causally linked to HIC, as indicated by Mendelian Randomization (Nliver fat = 1054, NHIC = 2254; Nalanineaminotranferase = 1985, NHIC = 2251). BMI-related SNPs were causally associated with HIC (NBMI = 2772, NHIC = 2259, p < 0.001) but not waist circumference-SNPs (NSNPs-waist circumference = 2751, NHIC = 2280). Genetically determined insulin sensitivity was not causally related to HIC (Ninsulin sensitivity = 2752, NHIC = 2286). C-reactive protein and HDL were causally associated with HIC, with higher C-reactive protein and lower HDL leading to higher HIC (NC-reactive protein = 2660, NHIC = 2240; NHDL = 2694, NHIC = 2275). CONCLUSIONS This Mendelian Randomization analysis does not support a causal link between hepatic steatosis and HIC. Other components of the metabolic syndrome seem to compensate peripheral hyperinsulinemia by increasing hepatic insulin extraction.
Collapse
Affiliation(s)
- Apostolia Lamprinou
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Caroline Willmann
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jürgen Machann
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Fritz Schick
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sabine S Eckstein
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Roberto Visentin
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Andreas Peter
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital of Tübingen, Tübingen, Germany
| | - Norbert Stefan
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Hans-Ulrich Häring
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Andreas Fritsche
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Heni
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Robert Wagner
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
236
|
Gao M, Piernas C, Astbury NM, Hippisley-Cox J, O'Rahilly S, Aveyard P, Jebb SA. Associations between body-mass index and COVID-19 severity in 6·9 million people in England: a prospective, community-based, cohort study. Lancet Diabetes Endocrinol 2021; 9:350-359. [PMID: 33932335 PMCID: PMC8081400 DOI: 10.1016/s2213-8587(21)00089-9] [Citation(s) in RCA: 326] [Impact Index Per Article: 108.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Obesity is a major risk factor for adverse outcomes after infection with SARS-CoV-2. We aimed to examine this association, including interactions with demographic and behavioural characteristics, type 2 diabetes, and other health conditions. METHODS In this prospective, community-based, cohort study, we used de-identified patient-level data from the QResearch database of general practices in England, UK. We extracted data for patients aged 20 years and older who were registered at a practice eligible for inclusion in the QResearch database between Jan 24, 2020 (date of the first recorded infection in the UK) and April 30, 2020, and with available data on BMI. Data extracted included demographic, clinical, clinical values linked with Public Health England's database of positive SARS-CoV-2 test results, and death certificates from the Office of National Statistics. Outcomes, as a proxy measure of severe COVID-19, were admission to hospital, admission to an intensive care unit (ICU), and death due to COVID-19. We used Cox proportional hazard models to estimate the risk of severe COVID-19, sequentially adjusting for demographic characteristics, behavioural factors, and comorbidities. FINDINGS Among 6 910 695 eligible individuals (mean BMI 26·78 kg/m2 [SD 5·59]), 13 503 (0·20%) were admitted to hospital, 1601 (0·02%) to an ICU, and 5479 (0·08%) died after a positive test for SARS-CoV-2. We found J-shaped associations between BMI and admission to hospital due to COVID-19 (adjusted hazard ratio [HR] per kg/m2 from the nadir at BMI of 23 kg/m2 of 1·05 [95% CI 1·05-1·05]) and death (1·04 [1·04-1·05]), and a linear association across the whole BMI range with ICU admission (1·10 [1·09-1·10]). We found a significant interaction between BMI and age and ethnicity, with higher HR per kg/m2 above BMI 23 kg/m2 for younger people (adjusted HR per kg/m2 above BMI 23 kg/m2 for hospital admission 1·09 [95% CI 1·08-1·10] in 20-39 years age group vs 80-100 years group 1·01 [1·00-1·02]) and Black people than White people (1·07 [1·06-1·08] vs 1·04 [1·04-1·05]). The risk of admission to hospital and ICU due to COVID-19 associated with unit increase in BMI was slightly lower in people with type 2 diabetes, hypertension, and cardiovascular disease than in those without these morbidities. INTERPRETATION At a BMI of more than 23 kg/m2, we found a linear increase in risk of severe COVID-19 leading to admission to hospital and death, and a linear increase in admission to an ICU across the whole BMI range, which is not attributable to excess risks of related diseases. The relative risk due to increasing BMI is particularly notable people younger than 40 years and of Black ethnicity. FUNDING NIHR Oxford Biomedical Research Centre.
Collapse
Affiliation(s)
- Min Gao
- University of Oxford, Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, Oxford, UK; School of Public Health, Peking University Health Science Center, Beijing, China
| | - Carmen Piernas
- University of Oxford, Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, Oxford, UK.
| | - Nerys M Astbury
- University of Oxford, Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals, NHS Foundation Trust, Oxford, UK
| | - Julia Hippisley-Cox
- University of Oxford, Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, Oxford, UK
| | - Stephen O'Rahilly
- University of Cambridge, MRC Metabolic Diseases Unit, Wellcome-MRC, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Paul Aveyard
- University of Oxford, Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals, NHS Foundation Trust, Oxford, UK
| | - Susan A Jebb
- University of Oxford, Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals, NHS Foundation Trust, Oxford, UK
| |
Collapse
|
237
|
Sun C, Kovacs P, Guiu-Jurado E. Genetics of Body Fat Distribution: Comparative Analyses in Populations with European, Asian and African Ancestries. Genes (Basel) 2021; 12:genes12060841. [PMID: 34072523 PMCID: PMC8228180 DOI: 10.3390/genes12060841] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022] Open
Abstract
Preferential fat accumulation in visceral vs. subcutaneous depots makes obese individuals more prone to metabolic complications. Body fat distribution (FD) is regulated by genetics. FD patterns vary across ethnic groups independent of obesity. Asians have more and Africans have less visceral fat compared with Europeans. Consequently, Asians tend to be more susceptible to type 2 diabetes even with lower BMIs when compared with Europeans. To date, genome-wide association studies (GWAS) have identified more than 460 loci related to FD traits. However, the majority of these data were generated in European populations. In this review, we aimed to summarize recent advances in FD genetics with a focus on comparisons between European and non-European populations (Asians and Africans). We therefore not only compared FD-related susceptibility loci identified in three ethnicities but also discussed whether known genetic variants might explain the FD pattern heterogeneity across different ancestries. Moreover, we describe several novel candidate genes potentially regulating FD, including NID2, HECTD4 and GNAS, identified in studies with Asian populations. It is of note that in agreement with current knowledge, most of the proposed FD candidate genes found in Asians belong to the group of developmental genes.
Collapse
Affiliation(s)
- Chang Sun
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Peter Kovacs
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Esther Guiu-Jurado
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
- Deutsches Zentrum für Diabetesforschung, 85764 Neuherberg, Germany
| |
Collapse
|
238
|
Ninomiya Y, Kawasoe S, Kubozono T, Tokushige A, Ichiki H, Miyahara H, Tokushige K, Ohishi M. Sex-specific relationship between abdominal obesity and new-onset atrial fibrillation in the general Japanese population. Heart Vessels 2021; 36:1879-1884. [PMID: 34041588 DOI: 10.1007/s00380-021-01880-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
The incidence of atrial fibrillation (AF) is expected to increase with increasing obesity and number of geriatric patients in Japan. Although higher body mass index and abdominal obesity are associated with an increased risk of AF, the sex-specific relationship between abdominal obesity and new-onset AF is unclear. This study aimed to investigate the sex-specific relationship between abdominal obesity and new-onset AF. This retrospective study evaluated the annual health checkup data of 67,379 adults (33,562 males; age, 54 ± 10 years) without baseline AF from April 2008 to March 2016. Participants were grouped according to waist circumference (WC): large-WC group (males, ≥ 85 cm; females, ≥ 90 cm) and normal-WC group. Logistic regression analyses were performed to determine the strength of the association between abdominal obesity and new-onset AF, overall and separately for males and females. During a median follow-up of 5 years, 280 (0.4%) new cases of AF were recorded. Univariate analysis revealed a significant increase in new-onset AF in males (odds ratio [OR], 1.97; 95% confidence interval [CI], 1.49-2.60; p < 0.001) but not in females (OR, 1.69; 95% CI, 0.96-2.97; p = 0.068) in the large-WC group. After adjusting for clinical variables, multivariate analysis revealed that a large WC was significantly associated with new-onset AF in males (OR, 1.76; 95% CI, 1.31-2.36; p < 0.001) but not in females (OR, 1.22; 95% CI, 0.68-2.18; p = 0.514). Abdominal obesity is associated with an increased risk of new-onset AF in men.
Collapse
Affiliation(s)
- Yuichi Ninomiya
- Department of Cardiovascular Medicine and Hypertension, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan.
| | - Shin Kawasoe
- Department of Cardiovascular Medicine and Hypertension, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Takuro Kubozono
- Department of Cardiovascular Medicine and Hypertension, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Akihiro Tokushige
- Department of Cardiovascular Medicine and Hypertension, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Hitoshi Ichiki
- Department of Cardiovascular Medicine and Hypertension, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | | | | | - Mitsuru Ohishi
- Department of Cardiovascular Medicine and Hypertension, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| |
Collapse
|
239
|
Bjørklund G, Tippairote T, Dadar M, Lizcano F, Aaseth J, Borisova O. The Roles of Dietary, Nutritional and Lifestyle Interventions in Adipose Tissue Adaptation and Obesity. Curr Med Chem 2021; 28:1683-1702. [PMID: 32368968 DOI: 10.2174/0929867327666200505090449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/03/2020] [Accepted: 03/28/2020] [Indexed: 11/22/2022]
Abstract
The obesity and the associated non-communicable diseases (NCDs) are globally increasing in their prevalence. While the modern-day lifestyle required less ventilation of metabolic energy through muscular activities, this lifestyle transition also provided the unlimited accession to foods around the clock, which prolong the daily eating period of foods that contained high calorie and high glycemic load. These situations promote the high continuous flux of carbon substrate availability in mitochondria and induce the indecisive bioenergetic switches. The disrupted bioenergetic milieu increases the uncoupling respiration due to the excess flow of the substrate-derived reducing equivalents and reduces ubiquinones into the respiratory chain. The diversion of the uncoupling proton gradient through adipocyte thermogenesis will then alleviate the damaging effects of free radicals to mitochondria and other organelles. The adaptive induction of white adipose tissues (WAT) to beige adipose tissues (beAT) has shown beneficial effects on glucose oxidation, ROS protection and mitochondrial function preservation through the uncoupling protein 1 (UCP1)-independent thermogenesis of beAT. However, the maladaptive stage can eventually initiate with the persistent unhealthy lifestyles. Under this metabolic gridlock, the low oxygen and pro-inflammatory environments promote the adipose breakdown with sequential metabolic dysregulation, including insulin resistance, systemic inflammation and clinical NCDs progression. It is unlikely that a single intervention can reverse all these complex interactions. A comprehensive protocol that includes dietary, nutritional and all modifiable lifestyle interventions, can be the preferable choice to decelerate, stop, or reverse the NCDs pathophysiologic processes.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Torsak Tippairote
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Olga Borisova
- Odesa I. I. Mechnikov National University, Odessa, Ukraine
| |
Collapse
|
240
|
Chuang TJ, Lin JD, Wu CZ, Ku HC, Liao CC, Yeh CJ, Pei D, Chen YL. The relationships between thyroid-stimulating hormone level and insulin resistance, glucose effectiveness, first- and second-phase insulin secretion in Chinese populations. Medicine (Baltimore) 2021; 100:e25707. [PMID: 34106595 PMCID: PMC8133064 DOI: 10.1097/md.0000000000025707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 03/24/2021] [Indexed: 11/21/2022] Open
Abstract
Increased insulin resistance (IR); decreased glucose effectiveness (GE); and both first-and second phase of insulin secretion (FPIS, SPIS) have always been important factors for the development of type 2 diabetes. Therefore, in this study, we evaluated the relationships between thyroid-stimulating hormone (TSH) and these 4 factors in adult Chinese. We randomly enrolled 24,407 men and 24,889 women between 30 and 59 years old. IR, FPIS, SPIS and GE were measured with the equations built by our group. IR = log (1.439 + 0.018 × sex - 0.003 × age + 0.029 × BMI - 0.001 × SBP + 0.006 × DBP + 0.049 × TG - 0.046 × HDLC - 0.0116 × FPG) × 10 3.333. FPIS = 10 [1.477 - 0.119 × FPG + 0.079 × BMI - 0.523 × HDLC]. SPIS = 10 [-2.4 - 0.088 × FPG + 0.072 × BMI]. GE = (29.196 - 0.103 × age - 2.722 × TG - 0.592 × FPG) ×10 −3. The t test was performed to evaluate the differences between normal and diabetic groups. To evaluate the differences of the mean values of the 4 groups, from the highest to the lowest levels of TSH, we used a one-way analysis of variance. Age, high density lipoprotein-cholesterol and GE were higher in women. On the other hand, body mass index, blood pressure, low density lipoprotein-cholesterol, triglyceride, FPIS, SPIS and IR were higher in men. TSH was positively related to IR, FPIS, and SPIS and negatively related to GE. According to the r values, the tightest relationship was between TSH and IR, followed by GE, FPIS and SPIS. In conclusion, our data showed that IR, FPIS, and SPIS were positively related to the TSH level in middle-aged Chinese, whereas GE was negatively related. In both genders, IR had the tightest association followed by GE, FPIS, and SPIS.
Collapse
Affiliation(s)
- Tsung-Ju Chuang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Armed Forces General Hospital, Taichung, National Defense Medical Center, Taipei, Taiwan
- School of Public Health, Chung Shan Medical University, Taichung
| | - Jiunn-Diann Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Shuang Ho Hospital
| | - Chung-Ze Wu
- Division of Endocrinology, Department of Internal Medicine, Shuang Ho Hospital
- College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Hui-Chun Ku
- Department and Institute of Life Science, Fu-Jen Catholic University, New Taipei City
| | - Chun-Cheng Liao
- Department of Family Medicine, Taichung Armed Forces General Hospital, Taichung, National Defense Medical Center, Taipei
| | - Chih-Jung Yeh
- School of Public Health, Chung Shan Medical University, Taichung
| | - Dee Pei
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Fu-Jen Catholic Hospital, Fu Jen Catholic University, School of Medicine, New Taipei City
| | - Yen-Lin Chen
- Department of Pathology, Cardinal Tien Hospital, Fu Jen Catholic University, School of Medicine, New Taipei City, Taiwan, ROC
| |
Collapse
|
241
|
Besutti G, Massaro F, Bonelli E, Braglia L, Casali M, Versari A, Ligabue G, Pattacini P, Cavuto S, Merlo DF, Luminari S, Merli F, Vaccaro S, Pellegrini M. Prognostic Impact of Muscle Quantity and Quality and Fat Distribution in Diffuse Large B-Cell Lymphoma Patients. Front Nutr 2021; 8:620696. [PMID: 34026803 PMCID: PMC8138563 DOI: 10.3389/fnut.2021.620696] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
Baseline CT scans of 116 patients (48% female, median 64 years) with diffuse large B-cell lymphoma (DLBCL) were retrospectively reviewed to investigate the prognostic role of sarcopenia and fat compartment distributions on overall survival (OS), progression-free survival (PFS), and early therapy termination. Skeletal muscle index (SMI), skeletal muscle density (SMD), and intermuscular adipose tissue (IMAT) were quantified at the level of the third lumbar vertebra (L3) and proximal thigh (PT). Low L3-SMD, but not low L3-SMI, was associated with early therapy termination (p = 0.028), shorter OS (HR = 6.29; 95% CI = 2.17-18.26; p < 0.001), and shorter PFS (HR = 2.42; 95% CI = 1.26-4.65; p = 0.008). After correction for sex, International Prognostic Index (IPI), BMI, and R-CHOP therapy (rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone), low L3-SMD remained associated with poor OS (HR = 3.54; 95% CI = 1.10-11.40; p = 0.034) but not with PFS. Increased PT-IMAT was prognostic for poor OS and PFS after correction for sex, IPI, BMI, and R-CHOP therapy (HR = 1.35; CI = 1.03-1.7; p = 0.03, and HR = 1.30; CI = 1.04-1.64; p = 0.024, respectively). Reduced muscle quality (SMD) and increased intermuscular fat (IMAT), rather than low muscle quantity (SMI), are associated with poor prognosis in DLBCL, when measured at the L3 level, and particularly at the level of the proximal thigh. The proximal thigh represents a novel radiological landmark to study body composition.
Collapse
Affiliation(s)
- Giulia Besutti
- Radiology Unit, Department of Imaging and Laboratory Medicine, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Fulvio Massaro
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy.,Hematology Unit, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Efrem Bonelli
- Radiology Unit, Department of Imaging and Laboratory Medicine, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Luca Braglia
- Research and Biostatistics Unit, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Massimiliano Casali
- Nuclear Medicine Unit, Oncology Department, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Annibale Versari
- Nuclear Medicine Unit, Oncology Department, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Guido Ligabue
- Radiology Unit, Azienda Ospedaliero-Universitaria Policlinico di Modena, Modena, Italy
| | - Pierpaolo Pattacini
- Radiology Unit, Department of Imaging and Laboratory Medicine, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Silvio Cavuto
- Research and Biostatistics Unit, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Domenico F Merlo
- Research and Biostatistics Unit, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Stefano Luminari
- Hematology Unit, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Francesco Merli
- Hematology Unit, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Salvatore Vaccaro
- Clinical Nutrition Unit, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Massimo Pellegrini
- Clinical Nutrition Unit, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
242
|
Abstract
BACKGROUND Obesity has been proven to be a risk factor for type 2 diabetes mellitus (T2DM) through numerous pathogenetic mechanisms. Unexpectedly, some studies suggest that subjects with overweight/obesity and T2DM have better clinical outcome than their normal weight peers. This finding is described as "obesity paradox" and calls into question the importance of weight loss in this specific population. OBJECTIVE This article is a narrative overview on the obesity and type 2 diabetes mellitus, particularly regarding the obesity paradox in T2DM patients. METHODS We used as sources MEDLINE/PubMed, CINAHL, EMBASE, and Cochrane Library, from inception to March 2020; we chose 30 relevant papers regarding the association of obesity with clinical outcome and mortality of patients affected by T2DM. RESULTS Many studies report that in patients with T2DM, overweight and obesity are associated with a better prognosis than underweight or normal weight, suggesting the presence of an obesity paradox. However, these studies have numerous limitations due to their mainly retrospective nature and to numerous confounding factors, such as associated pathologies, antidiabetic treatments, smoking habit, lack of data about distribution of body fat or weight history. CONCLUSION Literature data regarding the phenomenon of obesity paradox in T2DM patients are controversial due to the several limitations of the studies; therefore in the management of patients with overweight/obesity and T2DM is recommended referring to the established guidelines, which indicate diet and physical activity as the cornerstone of the treatment. LEVEL OF EVIDENCE Level V: narrative review.
Collapse
|
243
|
Petersen KF, Rothman DL, Shulman GI. Point: An alternative hypothesis for why exposure to static magnetic and electric fields treats type 2 diabetes. Am J Physiol Endocrinol Metab 2021; 320:E999-E1000. [PMID: 33843279 DOI: 10.1152/ajpendo.00657.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Kitt Falk Petersen
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Douglas L Rothman
- Department of Radiology & Bioengineering, Yale School of Medicine, New Haven, Connecticut
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
244
|
Sharma BR, Kanneganti TD. NLRP3 inflammasome in cancer and metabolic diseases. Nat Immunol 2021; 22:550-559. [PMID: 33707781 PMCID: PMC8132572 DOI: 10.1038/s41590-021-00886-5] [Citation(s) in RCA: 530] [Impact Index Per Article: 176.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/25/2021] [Indexed: 01/31/2023]
Abstract
The NLRP3 inflammasome is a multimeric cytosolic protein complex that assembles in response to cellular perturbations. This assembly leads to the activation of caspase-1, which promotes maturation and release of the inflammatory cytokines interleukin-1β (IL-1β) and IL-18, as well as inflammatory cell death (pyroptosis). The inflammatory cytokines contribute to the development of systemic low-grade inflammation, and aberrant NLRP3 activation can drive a chronic inflammatory state in the body to modulate the pathogenesis of inflammation-associated diseases. Therefore, targeting NLRP3 or other signaling molecules downstream, such as caspase-1, IL-1β or IL-18, has the potential for great therapeutic benefit. However, NLRP3 inflammasome-mediated inflammatory cytokines play dual roles in mediating human disease. While they are detrimental in the pathogenesis of inflammatory and metabolic diseases, they have a beneficial role in numerous infectious diseases and some cancers. Therefore, fine tuning of NLRP3 inflammasome activity is essential for maintaining proper cellular homeostasis and health. In this Review, we will cover the mechanisms of NLRP3 inflammasome activation and its divergent roles in the pathogenesis of inflammation-associated diseases such as cancer, atherosclerosis, diabetes and obesity, highlighting the therapeutic potential of targeting this pathway.
Collapse
Affiliation(s)
- Bhesh Raj Sharma
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Correspondence to: Thirumala-Devi Kanneganti, Department of Immunology, St. Jude Children’s Research Hospital, MS #351, 262 Danny Thomas Place, Memphis TN 38105-3678, Tel: (901) 595-3634; Fax. (901) 595-5766.,
| |
Collapse
|
245
|
Rottenkolber M, Gar C, Then C, Wanger L, Sacco V, Banning F, Potzel AL, Kern-Matschilles S, Nevinny-Stickel-Hinzpeter C, Grallert H, Hesse N, Seissler J, Lechner A. A Pathophysiology of Type 2 Diabetes Unrelated to Metabolic Syndrome. J Clin Endocrinol Metab 2021; 106:1460-1471. [PMID: 33515032 PMCID: PMC8063234 DOI: 10.1210/clinem/dgab057] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Clinically, type 2 diabetes mellitus (T2DM) is heterogeneous, but the prevailing pathophysiologic hypothesis nevertheless contends that components of metabolic syndrome are central to all cases of T2DM. Here, we re-evaluated this hypothesis. RESEARCH DESIGN AND METHODS We conducted a cross-sectional analysis of 138 women from the monocenter, post gestational diabetes study PPSDiab, 73 of which had incident prediabetes or T2DM. Additionally, we examined all the 412 incident cases of T2DM in phases 3 to 9 of the Whitehall II study in comparison to healthy controls. Our analysis included a medical history, anthropometrics, oral glucose tolerance testing, and laboratory chemistry in both studies. Additional analyses from the PPSDiab Study consisted of cardiopulmonary exercise testing, magnetic resonance imaging, auto-antibody testing, and the exclusion of glucokinase maturity-onset diabetes of the young. RESULTS We found that 33 (45%) of the women with prediabetes or T2DM in the PPSDiab study displayed no components of metabolic syndrome. They reached no point for metabolic syndrome in the National Cholesterol Education Program Adult Treatment Panel III score other than hyperglycemia and, moreover, had levels of liver fat content, plasma triglycerides, high-density lipoprotein cholesterol, c-reactive protein, and blood pressure that were comparable to healthy controls. In the Whitehall II study, 62 (15%) of the incident T2DM cases fulfilled the same criteria. In both studies, these cases without metabolic syndrome revealed insulin resistance and inadequately low insulin secretion. CONCLUSIONS Our results contradict the hypothesis that components of metabolic syndrome are central to all cases of T2DM. Instead, they suggest the common occurrence of a second, unrelated pathophysiology.
Collapse
Affiliation(s)
- Marietta Rottenkolber
- Diabetes Research Group, Medizinische Klinik und Poliklinik IV, LMU Klinikum, München, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), LMU Klinikum, München, Germany
| | - Christina Gar
- Diabetes Research Group, Medizinische Klinik und Poliklinik IV, LMU Klinikum, München, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), LMU Klinikum, München, Germany
| | - Cornelia Then
- Diabetes Research Group, Medizinische Klinik und Poliklinik IV, LMU Klinikum, München, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), LMU Klinikum, München, Germany
| | - Lorena Wanger
- Klinik und Poliklinik für Radiologie, LMU Klinikum, München, Germany
| | - Vanessa Sacco
- Diabetes Research Group, Medizinische Klinik und Poliklinik IV, LMU Klinikum, München, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), LMU Klinikum, München, Germany
| | - Friederike Banning
- Diabetes Research Group, Medizinische Klinik und Poliklinik IV, LMU Klinikum, München, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), LMU Klinikum, München, Germany
| | - Anne L Potzel
- Diabetes Research Group, Medizinische Klinik und Poliklinik IV, LMU Klinikum, München, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), LMU Klinikum, München, Germany
| | - Stefanie Kern-Matschilles
- Diabetes Research Group, Medizinische Klinik und Poliklinik IV, LMU Klinikum, München, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), LMU Klinikum, München, Germany
| | | | - Harald Grallert
- German Center for Diabetes Research (DZD), LMU Klinikum, München, Germany
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nina Hesse
- Klinik und Poliklinik für Radiologie, LMU Klinikum, München, Germany
| | - Jochen Seissler
- Diabetes Research Group, Medizinische Klinik und Poliklinik IV, LMU Klinikum, München, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), LMU Klinikum, München, Germany
| | - Andreas Lechner
- Diabetes Research Group, Medizinische Klinik und Poliklinik IV, LMU Klinikum, München, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), LMU Klinikum, München, Germany
- Correspondence: Andreas Lechner, MD, Diabetes Research Group, Medizinische Klinik und Poliklinik 4, LMU Klinikum, Ziemssenstr. 1, 80336 München, Germany.
| |
Collapse
|
246
|
Lechner K, Lechner B, Crispin A, Schwarz PEH, von Bibra H. Waist-to-height ratio and metabolic phenotype compared to the Matsuda index for the prediction of insulin resistance. Sci Rep 2021; 11:8224. [PMID: 33859227 PMCID: PMC8050044 DOI: 10.1038/s41598-021-87266-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Current screening algorithms for type 2 diabetes (T2D) rely on fasting plasma glucose (FPG) and/or HbA1c. This fails to identify a sizeable subgroup of individuals in early stages of metabolic dysregulation who are at high risk for developing diabetes or cardiovascular disease. The Matsuda index, a combination of parameters derived from a fasting and postprandial insulin assay, is an early biomarker for metabolic dysregulation (i.e. insulin resistance/compensatory hyperinsulinemia). The aim of this analysis was to compare four widely available anthropometric and biochemical markers indicative of this condition [waist-to-height ratio (WHtR), hypertriglyceridemic-waist phenotype (HTW), triglycerides-to-HDL-C ratio (TG/HDL-C) and FPG] to the Matsuda index. This cross-sectional analysis included 2231 individuals with normal fasting glucose (NFG, n = 1333), impaired fasting glucose (IFG, n = 599) and T2D (n = 299) from an outpatient diabetes clinic in Germany and thus extended a prior analysis from our group done on the first two subgroups. We analyzed correlations of the Matsuda index with WHtR, HTW, TG/HDL-C and FPG and their predictive accuracies by correlation and logistic regression analyses and receiver operating characteristics. In the entire group and in NFG, IFG and T2D, the best associations were observed between the Matsuda index and the WHtR (r = - 0.458), followed by HTW phenotype (r = - 0.438). As for prediction accuracy, WHtR was superior to HTW, TG/HDL-C and FPG in the entire group (AUC 0.801) and NFG, IFG and T2D. A multivariable risk score for the prediction of insulin resistance was tested and demonstrated an area under the ROC curve of 0.765 for WHtR and its interaction with sex as predictor controlled by age and sex. The predictive power increased to 0.845 when FPG and TG/HDL-C were included. Using as a comparator the Matsuda index, WHtR, compared to HTW, TG/HDL-C and FPG, showed the best predictive value for detecting metabolic dysregulation. We conclude that WHtR, a widely available anthropometric index, could refine phenotypic screening for insulin resistance/hyperinsulinemia. This may ameliorate early identification of individuals who are candidates for appropriate therapeutic interventions aimed at addressing the twin epidemic of metabolic and cardiovascular disease in settings where more extended testing such as insulin assays are not feasible.
Collapse
Affiliation(s)
- Katharina Lechner
- Kardiologie, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Benjamin Lechner
- Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alexander Crispin
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peter E H Schwarz
- Center for Evidence-Based Healthcare, University Hospital Carl Gustav Carus, TU, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD E.V.), Neuherberg, Germany
| | - Helene von Bibra
- Technical University of Munich, Stelznerstr. 7, 81479, Munich, Germany.
| |
Collapse
|
247
|
Zhang K, Zhu H, Wang L, Yang H, Pan H, Gong F. Serum glypican4 and glycosylphosphatidylinositol-specific phospholipase D levels are associated with adipose tissue insulin resistance in obese subjects with different glucose metabolism status. J Endocrinol Invest 2021; 44:781-790. [PMID: 32816247 DOI: 10.1007/s40618-020-01372-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Glypican4 (GPC4) is a novel adipokine associated with obesity and insulin resistance. GPC4 was cleaved by the glycosylphosphatidylinositol-specific phospholipase D (GPLD1) in an anchored site of the glycosylphosphatidylinositol, and then was released into the extracellular environment. Herein, we investigated the changes of serum GPC4 and GPLD1 levels in obese subjects with different glucose metabolism status and their relationship with adipose tissue insulin resistance index (Adipo-IR) in Chinese north populations. METHODS A total of 221 obese subjects and 37 normal controls (NC) were recruited in this study. Obese subjects were divided into normal insulin (NI) group, hyperinsulinemia (HI) group, impaired glucose tolerance (IGT) group, and type 2 diabetes mellitus (DM) group. Serum GPC4, GPLD1, and adiponectin were determined by commercially available ELISA kits. RESULTS Serum GPC4 levels in the HI, IGT, and DM groups were significantly higher than those in the NC and NI groups (2.27 ± 0.58 ng/mL, 2.21 ± 0.60 ng/mL, 2.49 ± 0.67 ng/mL vs. 1.70 ± 0.33 ng/mL, 1.93 ± 0.34 ng/mL, P < 0.05). GPC4 was positively correlated with GPLD1, which was the most important influencing factor of GPC4. Adipo-IR was independently and positively associated with serum GPC4 and GPLD1. For GPC4, after adjustment for confounders, the risk of adipose tissue insulin resistance in subjects with the highest tertile was 2.974-fold that of those with the lowest tertile (OR = 2.974, P = 0.013). For GPLD1, before adjustment for lipids, the increased probability still existed (Model 2, OR = 3.568, P = 0.003). CONCLUSION GPC4 is an adipokine associated with adipose tissue insulin resistance, and its activity may be regulated by GPLD1. GPC4 may be a marker for adipose tissue insulin resistance in Chinese north obese populations.
Collapse
Affiliation(s)
- K Zhang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
- Department of Endocrinology, The First Hospital of Shijiazhuang City, Shijiazhuang, Hebei, People's Republic of China
| | - H Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - L Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - H Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - H Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China.
| | - F Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
248
|
Albaugh VL, Kindel TL, Nissen SE, Aminian A. Cardiovascular Risk Reduction Following Metabolic and Bariatric Surgery. Surg Clin North Am 2021; 101:269-294. [PMID: 33743969 DOI: 10.1016/j.suc.2020.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cardiovascular disease (CVD) remains a leading cause of morbidity and mortality in developed countries, with worsening pandemics of type 2 diabetes mellitus and obesity as major cardiovascular (CV) risk factors. Clinical trials of nonsurgical obesity treatments have not shown benefits in CVD, although recent diabetes trials have demonstrated major CV benefits. In many retrospective and prospective cohort studies, however, metabolic (bariatric) surgery is associated with substantial and reproducible CVD benefits. Despite a lack of prospective, randomized clinical trials, data suggest metabolic surgery may be the most effective modality for CVD risk reduction, likely through weight loss and weight loss-independent mechanisms.
Collapse
Affiliation(s)
- Vance L Albaugh
- Department of General Surgery, Bariatric and Metabolic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tammy L Kindel
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Steven E Nissen
- Department of Cardiovascular Medicine, Heart & Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ali Aminian
- Department of General Surgery, Bariatric and Metabolic Institute, Cleveland Clinic, 9500 Euclid Avenue, M61, Cleveland, OH 44195, USA.
| |
Collapse
|
249
|
Sinnott-Armstrong N, Sousa IS, Laber S, Rendina-Ruedy E, Nitter Dankel SE, Ferreira T, Mellgren G, Karasik D, Rivas M, Pritchard J, Guntur AR, Cox RD, Lindgren CM, Hauner H, Sallari R, Rosen CJ, Hsu YH, Lander ES, Kiel DP, Claussnitzer M. A regulatory variant at 3q21.1 confers an increased pleiotropic risk for hyperglycemia and altered bone mineral density. Cell Metab 2021; 33:615-628.e13. [PMID: 33513366 PMCID: PMC7928941 DOI: 10.1016/j.cmet.2021.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 11/14/2019] [Accepted: 12/31/2020] [Indexed: 02/07/2023]
Abstract
Skeletal and glycemic traits have shared etiology, but the underlying genetic factors remain largely unknown. To identify genetic loci that may have pleiotropic effects, we studied Genome-wide association studies (GWASs) for bone mineral density and glycemic traits and identified a bivariate risk locus at 3q21. Using sequence and epigenetic modeling, we prioritized an adenylate cyclase 5 (ADCY5) intronic causal variant, rs56371916. This SNP changes the binding affinity of SREBP1 and leads to differential ADCY5 gene expression, altering the chromatin landscape from poised to repressed. These alterations result in bone- and type 2 diabetes-relevant cell-autonomous changes in lipid metabolism in osteoblasts and adipocytes. We validated our findings by directly manipulating the regulator SREBP1, the target gene ADCY5, and the variant rs56371916, which together imply a novel link between fatty acid oxidation and osteoblast differentiation. Our work, by systematic functional dissection of pleiotropic GWAS loci, represents a framework to uncover biological mechanisms affecting pleiotropic traits.
Collapse
Affiliation(s)
- Nasa Sinnott-Armstrong
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Cell Circuits and Epigenomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Stanford University, Stanford 94305 CA, USA
| | - Isabel S Sousa
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Samantha Laber
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Cell Circuits and Epigenomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Big Data Institute, University of Oxford, Oxford, UK
| | - Elizabeth Rendina-Ruedy
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | - Simon E Nitter Dankel
- University of Bergen, Bergen 5020, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway; Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway
| | | | - Gunnar Mellgren
- University of Bergen, Bergen 5020, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway; Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway
| | - David Karasik
- Institute for Aging Research, Hebrew SeniorLife and Harvard Medical School, Boston, MA 02131, USA; Faculty of Medicine of the Galilee, Bar-Ilan University, Safed, Israel
| | - Manuel Rivas
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Pritchard
- Department of Genetics, Stanford University, Stanford 94305 CA, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Anyonya R Guntur
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | - Roger D Cox
- Medical Research Council Harwell, Oxfordshire, UK
| | - Cecilia M Lindgren
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Big Data Institute, University of Oxford, Oxford, UK
| | - Hans Hauner
- Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising 85354, Germany; Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Freising 85354, Germany; Clinical Cooperation Group "Nutrigenomics and Type 2 Diabetes" of the German Center of Diabetes Research, Helmholtz Center Munich, Munich 85764, Germany
| | - Richard Sallari
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Clifford J Rosen
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | - Yi-Hsiang Hsu
- Institute for Aging Research, Hebrew SeniorLife and Harvard Medical School, Boston, MA 02131, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02131, USA
| | - Eric S Lander
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Cell Circuits and Epigenomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Douglas P Kiel
- Institute for Aging Research, Hebrew SeniorLife and Harvard Medical School, Boston, MA 02131, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02131, USA
| | - Melina Claussnitzer
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Cell Circuits and Epigenomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02131, USA; University of Hohenheim, Institute of Nutritional Science, Stuttgart 70599, Germany.
| |
Collapse
|
250
|
Wiebe N, Ye F, Crumley ET, Bello A, Stenvinkel P, Tonelli M. Temporal Associations Among Body Mass Index, Fasting Insulin, and Systemic Inflammation: A Systematic Review and Meta-analysis. JAMA Netw Open 2021; 4:e211263. [PMID: 33710289 PMCID: PMC7955272 DOI: 10.1001/jamanetworkopen.2021.1263] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
IMPORTANCE Obesity is associated with a number of noncommunicable chronic diseases and is purported to cause premature death. OBJECTIVE To summarize evidence on the temporality of the association between higher body mass index (BMI) and 2 potential mediators: chronic inflammation and hyperinsulinemia. DATA SOURCES MEDLINE (1946 to August 20, 2019) and Embase (from 1974 to August 19, 2019) were searched, although only studies published in 2018 were included because of a high volume of results. The data analysis was conducted between January 2020 and October 2020. STUDY SELECTION AND MEASURES Longitudinal studies and randomized clinical trials that measured fasting insulin level and/or an inflammation marker and BMI with at least 3 commensurate time points were selected. DATA EXTRACTION AND SYNTHESIS Slopes of these markers were calculated between time points and standardized. Standardized slopes were meta-regressed in later periods (period 2) with standardized slopes in earlier periods (period 1). Evidence-based items potentially indicating risk of bias were assessed. RESULTS Of 1865 records, 60 eligible studies with 112 cohorts of 5603 participants were identified. Most standardized slopes were negative, meaning that participants in most studies experienced decreases in BMI, fasting insulin level, and C-reactive protein level. The association between period 1 fasting insulin level and period 2 BMI was positive and significant (β = 0.26; 95% CI, 0.13-0.38; I2 = 79%): for every unit of SD change in period 1 insulin level, there was an ensuing associated change in 0.26 units of SD in period 2 BMI. The association of period 1 fasting insulin level with period 2 BMI remained significant when period 1 C-reactive protein level was added to the model (β = 0.57; 95% CI, 0.27-0.86). In this bivariable model, period 1 C-reactive protein level was not significantly associated with period 2 BMI (β = -0.07; 95% CI, -0.42 to 0.29; I2 = 81%). CONCLUSIONS AND RELEVANCE In this meta-analysis, the finding of temporal sequencing (in which changes in fasting insulin level precede changes in weight) is not consistent with the assertion that obesity causes noncommunicable chronic diseases and premature death by increasing levels of fasting insulin.
Collapse
Affiliation(s)
- Natasha Wiebe
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Feng Ye
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ellen T. Crumley
- Department of Health, St Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Aminu Bello
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Peter Stenvinkel
- Department of Renal Medicine M99, Karolinska University Hospital, Stockholm, Sweden
| | - Marcello Tonelli
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|