201
|
Lu J, Zhang Y, Dong X, Lu J, Zhang C, Liu J, Yu Q, Teng H, Yao Q, Yin J, Qin L. Association between MIC-1 and Type 2 Diabetes: A Combined Analysis. DISEASE MARKERS 2019; 2019:7284691. [PMID: 31827641 PMCID: PMC6885201 DOI: 10.1155/2019/7284691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Type 2 diabetes mellitus (T2DM) is an epidemic disease that endangers human health seriously. Recently, a large number of reports have revealed that macrophage-inhibiting cytokine-1 (MIC-1) is linked with T2DM, but the results were inconclusive. The aim of this study was to perform bioinformatics analysis of the association between MIC-1 and T2DM. MATERIAL AND METHODS Datasets and relevant literatures were searched in Gene Expression Omnibus (GEO), PubMed, Google Scholar, and Web of Science till September 20, 2019. Expression levels of MIC-1 were extracted, pooled, and compared between T2DM cases and controls. RESULTS In summary, 11 GEO datasets and 3 articles with 421 T2DM cases and 711 controls were finally included. The expression level of MIC-1 was significantly higher in T2DM patients compared with controls, with a standard mean difference (SMD) of 0.54 and a 95% confidence interval (95% CI) of 0.24-0.83; in blood samples, the difference was still significant (SMD = 0.65; 95%CI = 0.24-1.06). Meanwhile, the expression level of MIC-1 plays a significant role in differentiating T2DM cases from controls; the combined sensitivity, specificity, and odds ratio were 0.83 (95%CI = 0.72-0.90), 0.59 (95%CI = 0.45-0.72), and 1.64 (95%CI = 1.35-1.99), respectively. The summary receiver operating characteristic (SROC) curve demonstrated that the area under the curve (AUC) was 0.81 (95%CI = 0.77-0.84). CONCLUSION Our results suggested that the expression levels of MIC-1 were significantly higher in T2DM patients in multiple tissues including blood samples.
Collapse
Affiliation(s)
- Jianan Lu
- Department of Epidemiology and Biostatics, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, 199 Ren Ai Road, Suzhou, China
| | - Yue Zhang
- Department of Epidemiology and Biostatics, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, 199 Ren Ai Road, Suzhou, China
| | - Xingxuan Dong
- Department of Epidemiology and Biostatics, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, 199 Ren Ai Road, Suzhou, China
| | - Jiawen Lu
- Department of Epidemiology and Biostatics, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, 199 Ren Ai Road, Suzhou, China
| | - Chen Zhang
- Department of Epidemiology and Biostatics, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, 199 Ren Ai Road, Suzhou, China
| | - Jieyu Liu
- Department of Epidemiology and Biostatics, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, 199 Ren Ai Road, Suzhou, China
| | - Qingzhou Yu
- Department of Epidemiology and Biostatics, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, 199 Ren Ai Road, Suzhou, China
| | - Haoyue Teng
- Department of Epidemiology and Biostatics, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, 199 Ren Ai Road, Suzhou, China
| | - Qingkui Yao
- Community Health Service Center of Minglou, Subdistrict Jiangdong District, Ningbo, China
| | - Jieyun Yin
- Department of Epidemiology and Biostatics, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, 199 Ren Ai Road, Suzhou, China
| | - Liqiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| |
Collapse
|
202
|
Abstract
Throughout the animal kingdom, mitochondria are the only organelles that retain their own genome and the transcription and translation machineries that are all essential for energy harvesting. Mitochondria have developed a complex communication network, allowing them to stay in tune with cellular needs and nuclear transcriptional programs and to alleviate mitochondrial dysfunction. Here, we review recent findings on the wide array of mechanisms that contribute to these mitocellular communication networks, spanning from well-studied messenger molecules to mitonuclear genetic interactions. Based on these observations and developments, we advocate a broad and inclusive view on mitocellular interactions, which can have profound impacts on physiological, pathological, and evolutionary processes.
Collapse
Affiliation(s)
- Adrienne Mottis
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sébastien Herzig
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
203
|
De Spiegeleer A, Elewaut D, Van Den Noortgate N, Janssens Y, Debunne N, Van Langenhove S, Govindarajan S, De Spiegeleer B, Wynendaele E. WITHDRAWN: This article has been withdrawn. Biochim Biophys Acta Mol Basis Dis 2019:165585. [PMID: 31678164 DOI: 10.1016/j.bbadis.2019.165585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 11/21/2022]
Abstract
This article has been withdrawn at the request of the author for administrative reasons. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Anton De Spiegeleer
- Department of Geriatrics, Faculty of Medicine and Health Sciences, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium; Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Technologiepark 71, 9052, Zwijnaarde, Ghent, Belgium
| | - Dirk Elewaut
- Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Technologiepark 71, 9052, Zwijnaarde, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Nele Van Den Noortgate
- Department of Geriatrics, Faculty of Medicine and Health Sciences, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Yorick Janssens
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Nathan Debunne
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Selien Van Langenhove
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Srinath Govindarajan
- Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Technologiepark 71, 9052, Zwijnaarde, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
204
|
Arkoumani M, Papadopoulou-Marketou N, Nicolaides NC, Kanaka-Gantenbein C, Tentolouris N, Papassotiriou I. The clinical impact of growth differentiation factor-15 in heart disease: A 2019 update. Crit Rev Clin Lab Sci 2019; 57:114-125. [PMID: 31663791 DOI: 10.1080/10408363.2019.1678565] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Growth differentiation factor-15 (GDF-15), also known as macrophage inhibitory cytokine-1 (MIC-1) or non-steroidal anti-inflammatory drug-activated gene (NAG-1) has been identified as a biomarker of response to treatment and prognosis in cardiovascular diseases. GDF-15 is a member of the transforming growth factor-β superfamily and is involved in several pathological conditions such as inflammation, cancer, cardiovascular, pulmonary and renal diseases. Cardiac myocytes produce and secrete GDF-15 in response to oxidative stress, stimulation with angiotensin II or proinflammatory cytokines, ischemia, and mechanical stretch. Other cellular sources of GDF-15 production are macrophages, vascular smooth muscle cells, endothelial cells, and adipocytes, which secrete GDF-15 in response to oxidative or metabolic stress or stimulation of proinflammatory cytokines. GDF-15 is induced in hypertrophic and dilated cardiomyopathy after volume overload, ischemia, and heart failure. GDF-15 can be used as a marker of prognosis in patients with cardiovascular disorders, in combination with conventional prognostic factors, such as N-terminal pro B-type natriuretic peptide (NT-proBNP) and high-sensitivity troponin T (hs-TnT).
Collapse
Affiliation(s)
- Maria Arkoumani
- Department of Clinical Biochemistry, "Aghia Sophia" Children's Hospital, Athens, Greece.,First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Nektaria Papadopoulou-Marketou
- Department of Clinical Biochemistry, "Aghia Sophia" Children's Hospital, Athens, Greece.,First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Nicolas C Nicolaides
- First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Christina Kanaka-Gantenbein
- First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Nikolaos Tentolouris
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, "Laiko" General Hospital, Athens, Greece
| | - Ioannis Papassotiriou
- Department of Clinical Biochemistry, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
205
|
Kang YE, Kim HJ, Shong M. Regulation of Systemic Glucose Homeostasis by T Helper Type 2 Cytokines. Diabetes Metab J 2019; 43:549-559. [PMID: 31694077 PMCID: PMC6834846 DOI: 10.4093/dmj.2019.0157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/16/2019] [Indexed: 12/25/2022] Open
Abstract
Obesity results in an inflammatory microenvironment in adipose tissue, leading to the deterioration of tissue protective mechanisms. Although recent studies suggested the importance of type 2 immunity in an anti-inflammatory microenvironment in adipose tissue, the regulatory effects of T helper 2 (Th2) cytokines on systemic metabolic regulation are not fully understood. Recently, we identified the roles of the Th2 cytokine (interleukin 4 [IL-4] and IL-13)-induced adipokine, growth differentiation factor 15 (GDF15), in adipose tissue in regulating systemic glucose metabolism via signal transducer and activator of transcription 6 (STAT6) activation. Moreover, we showed that mitochondrial oxidative phosphorylation is required to maintain these macrophage-regulating autocrine and paracrine signaling pathways via Th2 cytokine-induced secretion of GDF15. In this review, we discuss how the type 2 immune response and Th2 cytokines regulate metabolism in adipose tissue. Specifically, we review the systemic regulatory roles of Th2 cytokines in metabolic disease and the role of mitochondria in maintenance of type 2 responses in adipose tissue homeostasis.
Collapse
Affiliation(s)
- Yea Eun Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hyun Jin Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Korea
| | - Minho Shong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Korea.
| |
Collapse
|
206
|
Min BK, Oh CJ, Park S, Lee JM, Go Y, Park BY, Kang HJ, Kim DW, Kim JE, Yoo EK, Kim HE, Kim MJ, Jeon YH, Kim YH, Lee CH, Jeon JH, Lee IK. Therapeutic effect of dichloroacetate against atherosclerosis via hepatic FGF21 induction mediated by acute AMPK activation. Exp Mol Med 2019; 51:1-12. [PMID: 31570705 PMCID: PMC6802614 DOI: 10.1038/s12276-019-0315-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/03/2019] [Accepted: 06/17/2019] [Indexed: 12/20/2022] Open
Abstract
Dyslipidemia-induced atherosclerosis, which has a risk of high morbidity and mortality, can be alleviated by metabolic activation associated with mitochondrial function. The effect of dichloroacetate (DCA), a general pyruvate dehydrogenase kinase (PDK) inhibitor, on in vivo energy expenditure in ApoE-/- mice fed a western diet (WD) has not yet been investigated. WD-fed ApoE-/- mice developed atherosclerotic plaques and hyperlipidemia along with obesity, which were significantly ameliorated by DCA administration. Increased oxygen consumption was associated with heat production in the DCA-treated group, with no change in food intake or physical activity compared with those of the control. These processes were correlated with the increased gene expression of Dio2 and Ucp-1, which represents brown adipose tissue (BAT) activation, in both WD-induced atherosclerosis and high-fat-induced obesity models. In addition, we found that DCA stimulated hepatic fibroblast growth factor 21 (Fgf21) mRNA expression, which might be important for lowering lipid levels and insulin sensitization via BAT activation, in a dose- and time-dependent manner associated with serum FGF21 levels. Interestingly, Fgf21 mRNA expression was mediated in an AMP-activated protein kinase (AMPK)-dependent manner within several minutes after DCA treatment independent of peroxisome proliferator-activated receptor alpha (PPARα). Taken together, the results suggest that enhanced glucose oxidation by DCA protects against atherosclerosis by inducing hepatic FGF21 expression and BAT activation, resulting in augmented energy expenditure for heat generation.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/genetics
- AMP-Activated Protein Kinases/metabolism
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/pathology
- Animals
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Atherosclerosis/drug therapy
- Atherosclerosis/etiology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Cardiovascular Agents/pharmacology
- Dichloroacetic Acid/pharmacology
- Diet, Western/adverse effects
- Dyslipidemias/drug therapy
- Dyslipidemias/etiology
- Dyslipidemias/genetics
- Dyslipidemias/pathology
- Energy Metabolism/drug effects
- Enzyme Inhibitors/pharmacology
- Fibroblast Growth Factors/agonists
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/metabolism
- Gene Expression Regulation
- Iodide Peroxidase/genetics
- Iodide Peroxidase/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Mitochondria/drug effects
- Mitochondria/metabolism
- Obesity/drug therapy
- Obesity/etiology
- Obesity/genetics
- Obesity/pathology
- Oxygen Consumption/drug effects
- PPAR alpha/genetics
- PPAR alpha/metabolism
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/etiology
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/pathology
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/antagonists & inhibitors
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction
- Uncoupling Protein 1/genetics
- Uncoupling Protein 1/metabolism
- Iodothyronine Deiodinase Type II
Collapse
Affiliation(s)
- Byong-Keol Min
- Department of Biomedical Science, Graduate School and BK21 plus KNU Biomedical Convergence Programs, Daegu, South Korea
| | - Chang Joo Oh
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, South Korea
| | - Sungmi Park
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, South Korea
| | - Ji-Min Lee
- Department of Biomedical Science, Graduate School and BK21 plus KNU Biomedical Convergence Programs, Daegu, South Korea
| | - Younghoon Go
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, South Korea
| | - Bo-Yoon Park
- Department of Biomedical Science, Graduate School and BK21 plus KNU Biomedical Convergence Programs, Daegu, South Korea
| | - Hyeon-Ji Kang
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, South Korea
| | - Dong Wook Kim
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, South Korea
| | - Jeong-Eun Kim
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, South Korea
| | - Eun Kyung Yoo
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, South Korea
| | - Hui Eon Kim
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, South Korea
| | - Mi-Jin Kim
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, South Korea
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jae-Han Jeon
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, South Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - In-Kyu Lee
- Department of Biomedical Science, Graduate School and BK21 plus KNU Biomedical Convergence Programs, Daegu, South Korea.
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, South Korea.
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, South Korea.
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
207
|
Kim EY, Jin BR, Chung TW, Bae SJ, Park H, Ryu D, Jin L, An HJ, Ha KT. 6-sialyllactose ameliorates dihydrotestosterone-induced benign prostatic hyperplasia through suppressing VEGF-mediated angiogenesis. BMB Rep 2019. [PMID: 31383249 PMCID: PMC6774418 DOI: 10.5483/bmbrep.2019.52.9.113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Benign prostatic hyperplasia (BPH), a common disease in elderly males, is accompanied by non-malignant growth of prostate tissues, subsequently causing hypoxia and angiogenesis. Although VEGF-related angiogenesis is one of the therapeutic targets of prostate cancer, there is no previous study targeting angiogenesis for treatment of BPH. Dihydrotestosterone (DHT)-induced expressions of vascular endothelial growth factor (VEGF) in prostate epithelial RWPE-1 cells and human umbilical vascular endothelial cells (HUVECs). Conditioned media (CM) from DHT-treated RWPE-1 cells were transferred to HUVECs. Then, 6SL inhibited proliferation, VEGFR-2 activation, and tube formation of HUVECs transferred with CM from DHT-treated RWPE-1 cells. In the rat BPH model, 6SL reduced prostate weight, size, and thickness of the prostate tissue. Formation of vessels in prostatic tissues were also reduced with 6SL treatment. We found that 6SL has an ameliorative effect on in vitro and in vivo the BPH model via inhibition of VEGFR-2 activation and subsequent angiogenesis. These results suggest that 6SL might be a candidate for development of novel BPH drugs.
Collapse
Affiliation(s)
- Eun-Yeong Kim
- Department of Korean Medical Science, School of Korean Medicine, Yangsan 50612, Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Korea
| | - Bo-Ram Jin
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju 26339, Korea
| | - Tae-Wook Chung
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Korea
| | - Sung-Jin Bae
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Korea
| | - Hyerin Park
- Department of Korean Medical Science, School of Korean Medicine, Yangsan 50612, Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Ling Jin
- Department of Korean Medical Science, School of Korean Medicine, Yangsan 50612, Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Korea
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju 26339, Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Yangsan 50612, Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|
208
|
Signaling and Regulation of the Mitochondrial Unfolded Protein Response. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033944. [PMID: 30617048 DOI: 10.1101/cshperspect.a033944] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mitochondrial proteome encompasses more than a thousand proteins, which are encoded by the mitochondrial and nuclear genomes. Mitochondrial biogenesis and network health relies on maintenance of protein import pathways and the protein-folding environment. Cell-extrinsic or -intrinsic stressors that challenge mitochondrial proteostasis negatively affect organellar function. During conditions of stress, cells use impaired protein import as a sensor for mitochondrial dysfunction to activate a stress response called the mitochondrial unfolded protein response (UPRmt). UPRmt activation leads to an adaptive transcriptional program that promotes mitochondrial recovery, metabolic adaptations, and innate immunity. In this review, we discuss the regulation of UPRmt activation as well as its role in maintaining mitochondrial homeostasis in physiological and pathological scenarios.
Collapse
|
209
|
Desmedt S, Desmedt V, De Vos L, Delanghe JR, Speeckaert R, Speeckaert MM. Growth differentiation factor 15: A novel biomarker with high clinical potential. Crit Rev Clin Lab Sci 2019; 56:333-350. [PMID: 31076013 DOI: 10.1080/10408363.2019.1615034] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | - Valérie Desmedt
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Leen De Vos
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | | | | | - Marijn M. Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
- Research Foundation Flanders, Brussels, Belgium
| |
Collapse
|
210
|
Holzer T, Probst K, Etich J, Auler M, Georgieva VS, Bluhm B, Frie C, Heilig J, Niehoff A, Nüchel J, Plomann M, Seeger JM, Kashkar H, Baris OR, Wiesner RJ, Brachvogel B. Respiratory chain inactivation links cartilage-mediated growth retardation to mitochondrial diseases. J Cell Biol 2019; 218:1853-1870. [PMID: 31085560 PMCID: PMC6548139 DOI: 10.1083/jcb.201809056] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/12/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
Children with mitochondrial diseases often present with slow growth and short stature, but the underlying mechanism remains unclear. In this study, Holzer et al. provide in vivo evidence that mitochondrial respiratory chain dysfunction induces cartilage degeneration coincident with altered metabolism, impaired extracellular matrix formation, and cell death at the cartilage–bone junction. In childhood, skeletal growth is driven by transient expansion of cartilage in the growth plate. The common belief is that energy production in this hypoxic tissue mainly relies on anaerobic glycolysis and not on mitochondrial respiratory chain (RC) activity. However, children with mitochondrial diseases causing RC dysfunction often present with short stature, which indicates that RC activity may be essential for cartilage-mediated skeletal growth. To elucidate the role of the mitochondrial RC in cartilage growth and pathology, we generated mice with impaired RC function in cartilage. These mice develop normally until birth, but their later growth is retarded. A detailed molecular analysis revealed that metabolic signaling and extracellular matrix formation is disturbed and induces cell death at the cartilage–bone junction to cause a chondrodysplasia-like phenotype. Hence, the results demonstrate the overall importance of the metabolic switch from fetal glycolysis to postnatal RC activation in growth plate cartilage and explain why RC dysfunction can cause short stature in children with mitochondrial diseases.
Collapse
Affiliation(s)
- Tatjana Holzer
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Kristina Probst
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Julia Etich
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Markus Auler
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Veronika S Georgieva
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Björn Bluhm
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Christian Frie
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Juliane Heilig
- Institute of Biomechanics and Orthopedics, German Sport University Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, University of Cologne, Cologne, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopedics, German Sport University Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, University of Cologne, Cologne, Germany
| | - Julian Nüchel
- Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Markus Plomann
- Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Jens M Seeger
- Institute for Medical Microbiology, Immunology, and Hygiene, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Medical Microbiology, Immunology, and Hygiene, Faculty of Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Olivier R Baris
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Bent Brachvogel
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany .,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
211
|
Zhang H, Fealy CE, Kirwan JP. Exercise training promotes a GDF15-associated reduction in fat mass in older adults with obesity. Am J Physiol Endocrinol Metab 2019; 316:E829-E836. [PMID: 30860878 PMCID: PMC6580172 DOI: 10.1152/ajpendo.00439.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is a major risk factor for metabolic disease. Growth differentiation factor 15 (GDF15) has shown promise as a weight loss agent for obesity in animal studies. In healthy lean humans, fasting plasma GDF15 increases after acute exercise. However, the role of GDF15 in human obesity and the response of plasma GDF15 to exercise training in patients with obesity is unknown. Here, 24 sedentary volunteers with obesity [age: 65 ± 1 yr; body mass index (BMI): 35.3 ± 0.9 kg/m2] participated in a supervised 12-wk aerobic exercise intervention: 1 h/day, 5 days/wk at ~85% maximum heart rate with controlled isocaloric diet. As a result, plasma GDF15 was significantly increased (PRE: 644.1 ± 42.6 pg/ml, POST: 704.4 ± 47.2 pg/ml, P < 0.01) after the exercise intervention. Inconsistent with animal models, ΔGDF15 was not correlated with change in weight, BMI, or resting energy expenditure. However, ΔGDF15 was correlated with a reduction in total fat mass (P < 0.05), abdominal fat mass (P < 0.05), and android fat mass (P ≤ 0.05). Participants with a positive GDF15 response to exercise had increased total fat oxidation (PRE: 0.25 ± 0.05 mg·kg-1·min-1, POST: 0.43 ± 0.07 mg·kg-1·min-1, P ≤ 0.05), metabolic flexibility [PRE: -0.01 ± 0.01 delta respiratory quotient (RQ), POST: 0.06 ± 0.01 delta RQ, P < 0.001], and insulin sensitivity (PRE: 0.33 ± 0.01 QUICKI index, POST: 0.34 ± 0.01 QUICKI index, P < 0.01), suggesting a link between GDF15 and fat mass loss as well as exercise-induced metabolic improvement in humans with obesity. We conclude that the exercise-induced increase in plasma GDF15 and the association with reduced fat mass may indicate a role for GDF15 as a therapeutic target for human obesity.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University , Cleveland, Ohio
- Department of Pathobiology, Lerner Research Institution, Cleveland Clinic , Cleveland, Ohio
- Integrated Physiology and Molecular Medicine, Pennington Biomedical Research Center , Baton Rouge, Louisiana
| | - Ciarán E Fealy
- Department of Pathobiology, Lerner Research Institution, Cleveland Clinic , Cleveland, Ohio
| | - John P Kirwan
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University , Cleveland, Ohio
- Department of Pathobiology, Lerner Research Institution, Cleveland Clinic , Cleveland, Ohio
- Integrated Physiology and Molecular Medicine, Pennington Biomedical Research Center , Baton Rouge, Louisiana
| |
Collapse
|
212
|
Tarabeih N, Shalata A, Trofimov S, Kalinkovich A, Livshits G. Growth and differentiation factor 15 is a biomarker for low back pain-associated disability. Cytokine 2019; 117:8-14. [DOI: 10.1016/j.cyto.2019.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 11/29/2022]
|
213
|
Lundqvist MH, Almby K, Abrahamsson N, Eriksson JW. Is the Brain a Key Player in Glucose Regulation and Development of Type 2 Diabetes? Front Physiol 2019; 10:457. [PMID: 31133864 PMCID: PMC6524713 DOI: 10.3389/fphys.2019.00457] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/01/2019] [Indexed: 01/08/2023] Open
Abstract
Ever since Claude Bernards discovery in the mid 19th-century that a lesion in the floor of the third ventricle in dogs led to altered systemic glucose levels, a role of the CNS in whole-body glucose regulation has been acknowledged. However, this finding was later overshadowed by the isolation of pancreatic hormones in the 20th century. Since then, the understanding of glucose homeostasis and pathology has primarily evolved around peripheral mechanism. Due to scientific advances over these last few decades, however, increasing attention has been given to the possibility of the brain as a key player in glucose regulation and the pathogenesis of metabolic disorders such as type 2 diabetes. Studies of animals have enabled detailed neuroanatomical mapping of CNS structures involved in glucose regulation and key neuronal circuits and intracellular pathways have been identified. Furthermore, the development of neuroimaging techniques has provided methods to measure changes of activity in specific CNS regions upon diverse metabolic challenges in humans. In this narrative review, we discuss the available evidence on the topic. We conclude that there is much evidence in favor of active CNS involvement in glucose homeostasis but the relative importance of central vs. peripheral mechanisms remains to be elucidated. An increased understanding of this field may lead to new CNS-focusing pharmacologic strategies in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
| | - Kristina Almby
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Jan W Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
214
|
Belbellaa B, Reutenauer L, Monassier L, Puccio H. Correction of half the cardiomyocytes fully rescue Friedreich ataxia mitochondrial cardiomyopathy through cell-autonomous mechanisms. Hum Mol Genet 2019; 28:1274-1285. [PMID: 30544254 DOI: 10.1093/hmg/ddy427] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/17/2023] Open
Abstract
Friedreich ataxia (FA) is currently an incurable inherited mitochondrial neurodegenerative disease caused by reduced levels of frataxin. Cardiac failure constitutes the main cause of premature death in FA. While adeno-associated virus-mediated cardiac gene therapy was shown to fully reverse the cardiac and mitochondrial phenotype in mouse models, this was achieved at high dose of vector resulting in the transduction of almost all cardiomyocytes, a dose and biodistribution that is unlikely to be replicated in clinic. The purpose of this study was to define the minimum vector biodistribution corresponding to the therapeutic threshold, at different stages of the disease progression. Correlative analysis of vector cardiac biodistribution, survival, cardiac function and biochemical hallmarks of the disease revealed that full rescue of the cardiac function was achieved when only half of the cardiomyocytes were transduced. In addition, meaningful therapeutic effect was achieved with as little as 30% transduction coverage. This therapeutic effect was mediated through cell-autonomous mechanisms for mitochondria homeostasis, although a significant increase in survival of uncorrected neighboring cells was observed. Overall, this study identifies the biodistribution thresholds and the underlying mechanisms conditioning the success of cardiac gene therapy in Friedreich ataxia and provides guidelines for the development of the clinical administration paradigm.
Collapse
Affiliation(s)
- Brahim Belbellaa
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine and Neurogenetics, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Centre National de la Recherche Scientifique, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Laurence Reutenauer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine and Neurogenetics, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Centre National de la Recherche Scientifique, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Laurent Monassier
- Faculté de Médecine, Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire, Strasbourg, France
| | - Hélène Puccio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine and Neurogenetics, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Centre National de la Recherche Scientifique, Illkirch, France
- Université de Strasbourg, Illkirch, France
| |
Collapse
|
215
|
Schernthaner-Reiter MH, Itariu BK, Krebs M, Promintzer-Schifferl M, Stulnig TM, Tura A, Anderwald CH, Clodi M, Ludvik B, Pacini G, Luger A, Vila G. GDF15 reflects beta cell function in obese patients independently of the grade of impairment of glucose metabolism. Nutr Metab Cardiovasc Dis 2019; 29:334-342. [PMID: 30718144 DOI: 10.1016/j.numecd.2018.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/17/2018] [Accepted: 12/27/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Growth differentiation factor 15 (GDF15) is a strong predictor of cardiovascular morbidity and mortality found to be both marker and target of impaired glucose metabolism. GDF15 increases following glucose administration and is up-regulated in obesity and diabetes. We investigate here the relationship between GDF15 and beta cell function. METHODS AND RESULTS In this cross-sectional study we evaluated GDF15 concentrations in 160 obese subjects (BMI 35-63 kg/m2, age 39.4 ± 18.6 years, m/f 38/122) who underwent a 75 g oral glucose tolerance test (OGTT). Based on the OGTT results, the cohort was divided into two groups: 1) normal fasting glucose and normal glucose tolerance (n = 80), 2) impaired fasting glucose, impaired glucose tolerance or type 2 diabetes (n = 80). The relationship of GDF15 to fasting and OGTT-based dynamic insulin sensitivity and insulin secretion parameters was evaluated. GDF15 was higher in the prediabetes and diabetes groups and correlated with HbA1c, glucose, insulin as well as baseline and dynamic indices of insulin sensitivity and estimated beta cell function. Multiple regression analysis revealed that age, waist-to-height ratio, glomerular filtration rate and prehepatic beta cell function, but not the grade of impairment of glucose metabolism, were independent predictors of GDF15. Subgroup analysis showed that of all parameters of glucose metabolism only C-peptide, fasting prehepatic beta cell function and insulinogenic index remained significantly related to GDF15 in both groups. CONCLUSION We conclude that in patients with severe obesity, GDF15 strongly relates to beta cell function and should be further investigated as a potential therapeutic target and biomarker guiding treatment options.
Collapse
Affiliation(s)
- M H Schernthaner-Reiter
- Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| | - B K Itariu
- Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - M Krebs
- Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - M Promintzer-Schifferl
- Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - T M Stulnig
- Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - A Tura
- Metabolic Unit, Institute of Neuroscience, National Research Council, Padova, Italy
| | - C H Anderwald
- Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Metabolic Unit, Institute of Neuroscience, National Research Council, Padova, Italy
| | - M Clodi
- Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - B Ludvik
- Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Department of Medicine 1 and Karl Landsteiner Institute for Obesity and Metabolic Disorders, Rudolfstiftung Hospital, Vienna, Austria
| | - G Pacini
- Metabolic Unit, Institute of Neuroscience, National Research Council, Padova, Italy
| | - A Luger
- Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - G Vila
- Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
216
|
Yi HS, Kim SY, Kim JT, Lee YS, Moon JS, Kim M, Kang YE, Joung KH, Lee JH, Kim HJ, Chun K, Shong M, Ku BJ. T-cell senescence contributes to abnormal glucose homeostasis in humans and mice. Cell Death Dis 2019; 10:249. [PMID: 30867412 PMCID: PMC6416326 DOI: 10.1038/s41419-019-1494-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 02/06/2023]
Abstract
Chronic inflammation is a driving force for the development of metabolic disease including diabetes and obesity. However, the functional characteristics of T-cell senescence in the abnormal glucose homeostasis are not fully understood. We studied the patients visiting a hospital for routine health check-ups, who were divided into two groups: normal controls and people with prediabetes. Gene expression profiling of peripheral blood mononuclear cells from normal controls and patients with type 2 diabetes was undertaken using microarray analysis. We also investigated the immunometabolic characteristics of peripheral and hepatic senescent T cells in the normal subjects and patients with prediabetes. Moreover, murine senescent T cells were tested functionally in the liver of normal or mice with metabolic deterioration caused by diet-induced obesity. Human senescent (CD28-CD57+) CD8+ T cells are increased in the development of diabetes and proinflammatory cytokines and cytotoxic molecules are highly expressed in senescent T cells from patients with prediabetes. Moreover, we demonstrate that patients with prediabetes have higher concentrations of reactive oxygen species (ROS) in their senescent CD8+ T cells via enhancing capacity to use glycolysis. These functional properties of senescent CD8+ T cells contribute to the impairment of hepatic insulin sensitivity in humans. Furthermore, we found an increase of hepatic senescent T cells in mouse models of aging and diet-induced obesity. Adoptive transfer of senescent CD8+ T cells also led to a significant deterioration in systemic abnormal glucose homeostasis, which is improved by ROS scavengers in mice. This study defines a new clinically relevant concept of T-cell senescence-mediated inflammatory responses in the pathophysiology of abnormal glucose homeostasis. We also found that T-cell senescence is associated with systemic inflammation and alters hepatic glucose homeostasis. The rational modulation of T-cell senescence would be a promising avenue for the treatment or prevention of diabetes.
Collapse
Affiliation(s)
- Hyon-Seung Yi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea. .,Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| | - So Yeon Kim
- Laboratory of Liver Research, Biomedical Science and Engineering Interdisciplinary Program, Korean Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Jung Tae Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon, 35015, Republic of Korea
| | - Young-Sun Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul, 08308, Republic of Korea
| | - Ji Sun Moon
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Mingyo Kim
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University School of Medicine, 79, Gangnam-ro, Jinju, Gyeongnam, 660-702, Republic of Korea
| | - Yea Eun Kang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Kyong Hye Joung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Ju Hee Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyun Jin Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Kwangsik Chun
- Department of Surgery, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Bon Jeong Ku
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea. .,Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
217
|
Patel S, Alvarez-Guaita A, Melvin A, Rimmington D, Dattilo A, Miedzybrodzka EL, Cimino I, Maurin AC, Roberts GP, Meek CL, Virtue S, Sparks LM, Parsons SA, Redman LM, Bray GA, Liou AP, Woods RM, Parry SA, Jeppesen PB, Kolnes AJ, Harding HP, Ron D, Vidal-Puig A, Reimann F, Gribble FM, Hulston CJ, Farooqi IS, Fafournoux P, Smith SR, Jensen J, Breen D, Wu Z, Zhang BB, Coll AP, Savage DB, O'Rahilly S. GDF15 Provides an Endocrine Signal of Nutritional Stress in Mice and Humans. Cell Metab 2019; 29:707-718.e8. [PMID: 30639358 PMCID: PMC6408327 DOI: 10.1016/j.cmet.2018.12.016] [Citation(s) in RCA: 309] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/10/2018] [Accepted: 12/17/2018] [Indexed: 01/07/2023]
Abstract
GDF15 is an established biomarker of cellular stress. The fact that it signals via a specific hindbrain receptor, GFRAL, and that mice lacking GDF15 manifest diet-induced obesity suggest that GDF15 may play a physiological role in energy balance. We performed experiments in humans, mice, and cells to determine if and how nutritional perturbations modify GDF15 expression. Circulating GDF15 levels manifest very modest changes in response to moderate caloric surpluses or deficits in mice or humans, differentiating it from classical intestinally derived satiety hormones and leptin. However, GDF15 levels do increase following sustained high-fat feeding or dietary amino acid imbalance in mice. We demonstrate that GDF15 expression is regulated by the integrated stress response and is induced in selected tissues in mice in these settings. Finally, we show that pharmacological GDF15 administration to mice can trigger conditioned taste aversion, suggesting that GDF15 may induce an aversive response to nutritional stress.
Collapse
Affiliation(s)
- Satish Patel
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Anna Alvarez-Guaita
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Audrey Melvin
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Debra Rimmington
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Alessia Dattilo
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Emily L Miedzybrodzka
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Irene Cimino
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Anne-Catherine Maurin
- INRA, Unité de Nutrition Humaine, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Geoffrey P Roberts
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Claire L Meek
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Samuel Virtue
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Lauren M Sparks
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA
| | - Stephanie A Parsons
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA
| | | | - George A Bray
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Alice P Liou
- Internal Medicine Research Unit, Pfizer Global R&D, 1 Portland Street, Cambridge, MA, USA
| | - Rachel M Woods
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| | - Sion A Parry
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| | - Per B Jeppesen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark
| | - Anders J Kolnes
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Heather P Harding
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - David Ron
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Frank Reimann
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Fiona M Gribble
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Carl J Hulston
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| | - I Sadaf Farooqi
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Pierre Fafournoux
- INRA, Unité de Nutrition Humaine, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA
| | - Jorgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Danna Breen
- Internal Medicine Research Unit, Pfizer Global R&D, 1 Portland Street, Cambridge, MA, USA
| | - Zhidan Wu
- Internal Medicine Research Unit, Pfizer Global R&D, 1 Portland Street, Cambridge, MA, USA
| | - Bei B Zhang
- Internal Medicine Research Unit, Pfizer Global R&D, 1 Portland Street, Cambridge, MA, USA
| | - Anthony P Coll
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - David B Savage
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK.
| | - Stephen O'Rahilly
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
218
|
Yi HS. Implications of Mitochondrial Unfolded Protein Response and Mitokines: A Perspective on Fatty Liver Diseases. Endocrinol Metab (Seoul) 2019; 34:39-46. [PMID: 30912337 PMCID: PMC6435852 DOI: 10.3803/enm.2019.34.1.39] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/16/2019] [Accepted: 01/24/2019] [Indexed: 12/31/2022] Open
Abstract
The signaling network of the mitochondrial unfolded protein response (UPRmt) and mitohormesis is a retrograde signaling pathway through which mitochondria-to-nucleus communication occurs in organisms. Recently, it has been shown that the UPRmt is closely associated with metabolic disorders and conditions involving insulin resistance, such as alcoholic and non-alcoholic fatty liver and fibrotic liver disease. Scientific efforts to understand the UPRmt and mitohormesis, as well as to establish the mitochondrial proteome, have established the importance of mitochondrial quality control in the development and progression of metabolic liver diseases, including non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). In this review, we integrate and discuss the recent data from the literature on the UPRmt and mitohormesis in metabolic liver diseases, including NAFLD/NASH and fibrosis.
Collapse
Affiliation(s)
- Hyon Seung Yi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon, Korea.
| |
Collapse
|
219
|
Baek SJ, Eling T. Growth differentiation factor 15 (GDF15): A survival protein with therapeutic potential in metabolic diseases. Pharmacol Ther 2019; 198:46-58. [PMID: 30790643 DOI: 10.1016/j.pharmthera.2019.02.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/14/2019] [Indexed: 12/18/2022]
Abstract
Growth Differentiation Factor 15 (GDF15), also known as NSAID activated gene-1 (NAG-1), is associated with a large number of biological processes and diseases, including cancer and obesity. GDF15 is synthesized as pro-GDF15, is dimerized, and is cleaved and secreted into the circulation as a mature dimer GDF15. Both the intracellular GDF15 and the circulating mature GDF15 are implicated in biological processes, such as energy homeostasis and body weight regulation. Although there have been many studies on GDF15, GFRAL, a member of the glial-derived neurotropic factor receptor α family, has only been recently identified as a receptor for mature GDF15. In this review, we focused on cancer and energy homeostasis along with obesity and body weight, and the effect of the identification of the GDF15 receptor in these investigations. In addition, the therapeutic potential of GDF15 as a pharmacological agent in obesity and other metabolic diseases was discussed.
Collapse
Affiliation(s)
- Seung Joon Baek
- Bldg 81 Rm 413, Laboratory of Signal Transduction, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea..
| | - Thomas Eling
- Scientist Emeritus, NIEHS/NIH, 111 TW Alexander Dr. Bldg. 101 F-095, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
220
|
Koga Y, Povalko N, Inoue E, Nashiki K, Tanaka M. Biomarkers and clinical rating scales for sodium pyruvate therapy in patients with mitochondrial disease. Mitochondrion 2019; 48:11-15. [PMID: 30738201 DOI: 10.1016/j.mito.2019.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 01/19/2019] [Accepted: 02/06/2019] [Indexed: 12/11/2022]
Abstract
Biomarkers and two clinical rating scales-the Japanese mitochondrial disease-rating scale (JMDRS) and Newcastle mitochondrial disease adult scale (NMDAS)-are clinically used when treating patients with mitochondrial disease. We explored the biomarker(s) and clinical rating scale(s) that are appropriate in preparing the protocol for a future clinical trial of sodium pyruvate (SP) therapy. A 48-week, prospective, single-centre, exploratory, clinical study enrolled 11 Japanese adult patients with genetically, biochemically, and clinically confirmed mitochondrial disease; they had intractable lactic acidosis and received SP (0.5 g/kg t.i.d. PO). Plasma concentrations of lactate and pyruvate, lateral ventricular levels of lactate, and serum concentrations of growth differentiation factor 15 (GDF15) and fibroblast growth factor 21 were measured at baseline and at weeks 12 and 48 of SP therapy. At week 48, plasma lactate (P = .004), the lactate/pyruvate ratio (P = .012), serum GDF15 (P = .020), and lateral ventricular lactate (P = .038) decreased significantly from the baseline values; the JMDRS and NMDAS scores did not decrease significantly, although the NMDAS overall score showed a strong tendency (P = .059). Two patients with end-stage MELAS at baseline died during SP therapy. The present study showed significant decreases in plasma and lateral ventricular lactate, the L/P ratio, and serum GDF15. Therefore, the protocol for a future clinical study of SP therapy in this patient population needs to include plasma and lateral ventricular lactate, the L/P ratio, and serum GDF15 as diagnostic indicators, and exclude patients with end-stage mitochondrial disease.
Collapse
Affiliation(s)
- Yasutoshi Koga
- Department of Pediatrics and Child Health, Kurume University Graduate School of Medicine, Kurume, Japan.
| | - Nataliya Povalko
- Department of Pediatrics and Child Health, Kurume University Graduate School of Medicine, Kurume, Japan; Institute of Fundamental Medicine and Biology, OpenLab Gene and Cell Technology, Kazan Federal University, Kazan Respublika Tatarstan, Russia
| | - Eisuke Inoue
- Division of Medical Informatics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Kazutaka Nashiki
- Center for Diagnostic Imaging, Kurume University Hospital, Kurume, Japan
| | - Masashi Tanaka
- Department of Clinical Laboratory, Tokyo Metropolitan Geriatric Hospital, Itabashi-ku, Japan
| |
Collapse
|
221
|
De Paepe B. Sporadic Inclusion Body Myositis: An Acquired Mitochondrial Disease with Extras. Biomolecules 2019; 9:biom9010015. [PMID: 30621041 PMCID: PMC6359202 DOI: 10.3390/biom9010015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
The sporadic form of inclusion body myositis (IBM) is the most common late-onset myopathy. Its complex pathogenesis includes degenerative, inflammatory and mitochondrial aspects. However, which of those mechanisms are cause and which effect, as well as their interrelations, remain partly obscured to this day. In this review the nature of the mitochondrial dysregulation in IBM muscle is explored and comparison is made with other muscle disorders. Mitochondrial alterations in IBM are evidenced by histological and serum biomarkers. Muscular mitochondrial dynamics is disturbed, with deregulated organelle fusion leading to subsequent morphological alterations and muscle displays abnormal mitophagy. The tissue increases mitochondrial content in an attempt to compensate dysfunction, yet mitochondrial DNA (mtDNA) alterations and mild mtDNA depletion are also present. Oxidative phosphorylation defects have repeatedly been shown, most notably a reduction in complex IV activities and levels of mitokines and regulatory RNAs are perturbed. Based on the cumulating evidence of mitochondrial abnormality as a disease contributor, it is therefore warranted to regard IBM as a mitochondrial disease, offering a feasible therapeutic target to be developed for this yet untreatable condition.
Collapse
Affiliation(s)
- Boel De Paepe
- Neuromuscular Reference Centre, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| |
Collapse
|
222
|
Xu Z, Fu T, Guo Q, Sun W, Gan Z. Mitochondrial quality orchestrates muscle-adipose dialog to alleviate dietary obesity. Pharmacol Res 2018; 141:176-180. [PMID: 30583080 DOI: 10.1016/j.phrs.2018.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 01/14/2023]
Abstract
Skeletal muscle fitness is vital for human health and disease and is determined by the capacity for burning fuel, mitochondrial ATP production, and contraction. High quality mitochondria in skeletal muscle are essential for maintaining energy homeostasis in response to a myriad of physiologic or pathophysiological stresses. A sophisticated mitochondrial quality control system including mitochondrial autophagy, dynamics, and proteolysis has been identified, which maintains their functional integrity. In this review, we discuss recent studies highlighting mitochondrial quality control mechanisms that govern systemic metabolism by skeletal muscles. Increasing evidence suggests that mitochondria can "communicate" with the nucleus and triggers adaptive genomic re-programming during stress response. We focus on participation of the mitochondrial quality control system in the regulation of mitochondrial communications that drive the muscle to adipose dialog and suggest that muscle-specific regulation of mitochondrial quality impacts systemic homeostasis.
Collapse
Affiliation(s)
- Zhisheng Xu
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Tingting Fu
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Qiqi Guo
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Wanping Sun
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Zhenji Gan
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, Nanjing 210061, China.
| |
Collapse
|
223
|
Justice JN, Ferrucci L, Newman AB, Aroda VR, Bahnson JL, Divers J, Espeland MA, Marcovina S, Pollak MN, Kritchevsky SB, Barzilai N, Kuchel GA. A framework for selection of blood-based biomarkers for geroscience-guided clinical trials: report from the TAME Biomarkers Workgroup. GeroScience 2018; 40:419-436. [PMID: 30151729 PMCID: PMC6294728 DOI: 10.1007/s11357-018-0042-y] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/15/2018] [Indexed: 12/25/2022] Open
Abstract
Recent advances indicate that biological aging is a potentially modifiable driver of late-life function and chronic disease and have led to the development of geroscience-guided therapeutic trials such as TAME (Targeting Aging with MEtformin). TAME is a proposed randomized clinical trial using metformin to affect molecular aging pathways to slow the incidence of age-related multi-morbidity and functional decline. In trials focusing on clinical end-points (e.g., disease diagnosis or death), biomarkers help show that the intervention is affecting the underlying aging biology before sufficient clinical events have accumulated to test the study hypothesis. Since there is no standard set of biomarkers of aging for clinical trials, an expert panel was convened and comprehensive literature reviews conducted to identify 258 initial candidate biomarkers of aging and age-related disease. Next selection criteria were derived and applied to refine this set emphasizing: (1) measurement reliability and feasibility; (2) relevance to aging; (3) robust and consistent ability to predict all-cause mortality, clinical and functional outcomes; and (4) responsiveness to intervention. Application of these selection criteria to the current literature resulted in a short list of blood-based biomarkers proposed for TAME: IL-6, TNFα-receptor I or II, CRP, GDF15, insulin, IGF1, cystatin C, NT-proBNP, and hemoglobin A1c. The present report provides a conceptual framework for the selection of blood-based biomarkers for use in geroscience-guided clinical trials. This work also revealed the scarcity of well-vetted biomarkers for human studies that reflect underlying biologic aging hallmarks, and the need to leverage proposed trials for future biomarker discovery and validation.
Collapse
Affiliation(s)
- Jamie N Justice
- Internal Medicine Section on Gerontology and Geriatrics, and the Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Anne B Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Vanita R Aroda
- Department of Medicine, Division of Diabetes, Endocrinology, and Hypertension Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Judy L Bahnson
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Jasmin Divers
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Mark A Espeland
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Santica Marcovina
- Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, 98109, USA
| | - Michael N Pollak
- Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, H3T1E2, Canada
| | - Stephen B Kritchevsky
- Internal Medicine Section on Gerontology and Geriatrics, and the Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Nir Barzilai
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| |
Collapse
|
224
|
Visceral white adipose tissue and serum proteomic alternations in metabolically healthy obese patients undergoing bariatric surgery. Cytokine 2018; 115:76-83. [PMID: 30472106 DOI: 10.1016/j.cyto.2018.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 09/21/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
Abstract
Metabolically healthy obesity is characterized as a comorbidity-free obesity status, however the exact pathogenetic mechanisms implicated in its transition to unhealthy obesity have not yet been unveiled. Our aim was to investigate the effect of metabolic health on the proteomic profile both in serum and visceral fat of morbidly obese subjects. 28 patients undergoing bariatric surgery were prospectively enrolled. They were divided into two groups: metabolically healthy (MHO, n = 18) and unhealthy (MUO, n = 10) obese patients. 30 biomarkers were measured in serum and visceral adipose tissue with the use of targeted proteomic analysis (Luminex assays). TNF weak inducer of apoptosis (TWEAK) (p = 0.043), TNF related apoptosis inducing ligand (TRAIL) (p = 0.037), Growth differentiation factor-15 (GDF-15) (p = 0.04), Resistin (RETN) (p = 0.047), Matrix metalloproteinase-9 (MMP-9) (p = 0.011) and C-terminal telopeptide (ICTP) (p = 0.022) were up-regulated in the MUO group in the visceral white adipose tissue. Moreover, C-C motif ligand-3 (CCL-3) (p = 0.056), Interleukin-20 (IL-20) (p = 0.04), Prokineticin-1 (PROK-1) (p = 0.028) and TWEAK (p = 0.016) were found to be suppressed in the serum of MHO group. Significant correlations between serum and adipose tissue levels of certain cytokines were also observed, while 16 biomarkers were associated with BMI. Our results indicate metabolic health substantially attenuates the expression of TWEAK, TRAIL, GDF-15, RETN, MMP-9 and ICTP expression locally, in the visceral white adipose tissue, and the expression of CCL-3, IL-20, PROK-1 and TWEAK in the peripheral blood. Intriguingly, different cytokines -except for TWEAK- are up-regulated in each site, suggesting that obesity is not a homogenous but a multi-dimensional disease.
Collapse
|
225
|
Dogan SA, Cerutti R, Benincá C, Brea-Calvo G, Jacobs HT, Zeviani M, Szibor M, Viscomi C. Perturbed Redox Signaling Exacerbates a Mitochondrial Myopathy. Cell Metab 2018; 28:764-775.e5. [PMID: 30122554 PMCID: PMC6224544 DOI: 10.1016/j.cmet.2018.07.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/18/2018] [Accepted: 07/18/2018] [Indexed: 12/13/2022]
Abstract
Alternative oxidases (AOXs) bypass respiratory complexes III and IV by transferring electrons from coenzyme Q directly to O2. They have therefore been proposed as a potential therapeutic tool for mitochondrial diseases. We crossed the severely myopathic skeletal muscle-specific COX15 knockout (KO) mouse with an AOX-transgenic mouse. Surprisingly, the double KO-AOX mutants had decreased lifespan and a substantial worsening of the myopathy compared with KO alone. Decreased ROS production in KO-AOX versus KO mice led to impaired AMPK/PGC-1α signaling and PAX7/MYOD-dependent muscle regeneration, blunting compensatory responses. Importantly, the antioxidant N-acetylcysteine had a similar effect, decreasing the lifespan of KO mice. Our findings have major implications for understanding pathogenic mechanisms in mitochondrial diseases and for the design of therapies, highlighting the benefits of ROS signaling and the potential hazards of antioxidant treatment.
Collapse
Affiliation(s)
- Sukru Anil Dogan
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK
| | - Raffaele Cerutti
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK
| | - Cristiane Benincá
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Sevilla 41013, Spain
| | - Howard Trevor Jacobs
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5, Helsinki 00790, Finland; Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpön katu 34, Tampere 33520, Finland
| | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK
| | - Marten Szibor
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5, Helsinki 00790, Finland; Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpön katu 34, Tampere 33520, Finland.
| | - Carlo Viscomi
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
226
|
|
227
|
Yi HS, Chang JY, Shong M. The mitochondrial unfolded protein response and mitohormesis: a perspective on metabolic diseases. J Mol Endocrinol 2018; 61:R91-R105. [PMID: 30307158 PMCID: PMC6145237 DOI: 10.1530/jme-18-0005] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mitochondria perform essential roles as crucial organelles for cellular and systemic energy homeostasis, and as signaling hubs, which coordinate nuclear transcriptional responses to the intra- and extra-cellular environment. Complex human diseases, including diabetes, obesity, fatty liver disease and aging-related degenerative diseases are associated with alterations in mitochondrial oxidative phosphorylation (OxPhos) function. However, a recent series of studies in animal models have revealed that an integrated response to tolerable mitochondrial stress appears to render cells less susceptible to subsequent aging processes and metabolic stresses, which is a key feature of mitohormesis. The mitochondrial unfolded protein response (UPRmt) is a central part of the mitohormetic response and is a retrograde signaling pathway, which utilizes the mitochondria-to-nucleus communication network. Our understanding of the UPRmt has contributed to elucidating the role of mitochondria in metabolic adaptation and lifespan regulation. In this review, we discuss and integrate recent data from the literature on the present status of mitochondrial OxPhos function in the development of metabolic diseases, relying on evidence from human and other animal studies, which points to alterations in mitochondrial function as a key factor in the regulation of metabolic diseases and conclude with a discussion on the specific roles of UPRmt and mitohormesis as a novel therapeutic strategy for the treatment of obesity and insulin resistance.
Collapse
Affiliation(s)
- Hyon-Seung Yi
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Department of Medical ScienceChungnam National University School of Medicine, Daejeon, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Correspondence should be addressed to M Shong:
| |
Collapse
|
228
|
The MIC-1/GDF15-GFRAL Pathway in Energy Homeostasis: Implications for Obesity, Cachexia, and Other Associated Diseases. Cell Metab 2018; 28:353-368. [PMID: 30184485 DOI: 10.1016/j.cmet.2018.07.018] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MIC-1/GDF15 is a stress response cytokine and a distant member of the transforming growth factor beta (TGFb) superfamily, with no close relatives. It acts via a recently identified receptor called glial-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL), which is a distant orphan member of the GDNF receptor family that signals through the tyrosine kinase receptor Ret. MIC-1/GDF15 expression and serum levels rise in response to many stimuli that initiate cell stress and as part of a wide variety of disease processes, most prominently cancer and cardiovascular disease. The best documented actions of MIC-1/GDF15 are on regulation of energy homeostasis. When MIC-1/GDF15 serum levels are substantially elevated in diseases like cancer, it subverts a physiological pathway of appetite regulation to induce an anorexia/cachexia syndrome initiated by its actions on hindbrain neurons. These effects make it a potential target for the treatment of both obesity and anorexia/cachexia syndromes, disorders lacking any highly effective, readily accessible therapies.
Collapse
|
229
|
Ito T, Nakanishi Y, Yamaji N, Murakami S, Schaffer SW. Induction of Growth Differentiation Factor 15 in Skeletal Muscle of Old Taurine Transporter Knockout Mouse. Biol Pharm Bull 2018; 41:435-439. [PMID: 29491220 DOI: 10.1248/bpb.b17-00969] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been identified that skeletal muscle is an endocrine tissue. Since skeletal muscle aging affects not only to muscle strength and function but to systemic aging and lifespan, myokines secreted from skeletal muscle may be crucial factors for intertissue communication during aging. In the present study, we investigated the expression of myokines associated with skeletal muscle aging in taurine transporter knockout (TauTKO) mice, which exhibit the accelerated skeletal muscle aging. Among transforming growth factor (TGF)-beta family genes, only growth and differentiation factor 15 (GDF15) was markedly higher (>3-fold) in skeletal muscle of old TauTKO mice compared with that of either young TauTKO mice or old wild-type mice. Circulating levels of GDF15 were also elevated in old TauTKO mice. An elevation in circulating GDF15 was also observed in very old (30-month-old) wild-type mice, while skeletal GDF15 levels were normal. The treatment of cultured mouse C2C12 myotubular cells with aging-related factors that mediate cellular stresses, such as oxidative stress (hydrogen peroxide) and endoplasmic reticulum stress (tunicamycin and thapsigargin), leads to an increase in GDF15 secretion. In conclusion, GDF15 is a myokine secreted by aging-related stress and may control aging phenotype.
Collapse
Affiliation(s)
- Takashi Ito
- Faculty of Biotechnology, Fukui Prefectural University
| | | | - Noriko Yamaji
- School of Pharmacy, Hyogo University of Health Sciences
| | | | | |
Collapse
|
230
|
Gan Z, Fu T, Kelly DP, Vega RB. Skeletal muscle mitochondrial remodeling in exercise and diseases. Cell Res 2018; 28:969-980. [PMID: 30108290 DOI: 10.1038/s41422-018-0078-7] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle fitness and plasticity is an important determinant of human health and disease. Mitochondria are essential for maintaining skeletal muscle energy homeostasis by adaptive re-programming to meet the demands imposed by a myriad of physiologic or pathophysiological stresses. Skeletal muscle mitochondrial dysfunction has been implicated in the pathogenesis of many diseases, including muscular dystrophy, atrophy, type 2 diabetes, and aging-related sarcopenia. Notably, exercise counteracts the effects of many chronic diseases on skeletal muscle mitochondrial function. Recent studies have revealed a finely tuned regulatory network that orchestrates skeletal muscle mitochondrial biogenesis and function in response to exercise and in disease states. In addition, increasing evidence suggests that mitochondria also serve to "communicate" with the nucleus and mediate adaptive genomic re-programming. Here we review the current state of knowledge relevant to the dynamic remodeling of skeletal muscle mitochondria in response to exercise and in disease states.
Collapse
Affiliation(s)
- Zhenji Gan
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, 210061, Nanjing, China.
| | - Tingting Fu
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, 210061, Nanjing, China
| | - Daniel P Kelly
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Rick B Vega
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, 32804, USA.
| |
Collapse
|
231
|
Mullican SE, Rangwala SM. Uniting GDF15 and GFRAL: Therapeutic Opportunities in Obesity and Beyond. Trends Endocrinol Metab 2018; 29:560-570. [PMID: 29866502 DOI: 10.1016/j.tem.2018.05.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/04/2018] [Accepted: 05/12/2018] [Indexed: 01/25/2023]
Abstract
Growth differentiation factor-15 (GDF15) is a circulating protein that has been implicated in multiple biological processes, including energy homeostasis, body weight regulation, and cachexia driven by cancer and chronic disease. The potential to target GDF15 in the treatment of energy-intake disorders, including obesity and anorexia, is an area of intense investigation, but has been limited by the lack of an identified receptor, signaling mechanism, and target tissue. GDNF family receptor α-like (GFRAL) was recently identified as the neuronal brainstem receptor responsible for mediating the anorectic actions of GDF15. Herein, we provide a brief overview of GDF15 biology with a focus on energy homeostasis, and highlight the implications of the recent receptor identification to this field and beyond.
Collapse
Affiliation(s)
- Shannon E Mullican
- Cardiovascular & Metabolism Therapeutic Area, Janssen Pharmaceuticals, Inc., Spring House, PA 19477, USA
| | - Shamina M Rangwala
- Cardiovascular & Metabolism Therapeutic Area, Janssen Pharmaceuticals, Inc., Spring House, PA 19477, USA.
| |
Collapse
|
232
|
Soustek MS, Balsa E, Barrow JJ, Jedrychowski M, Vogel R, Jan Smeitink, Gygi SP, Puigserver P. Inhibition of the ER stress IRE1α inflammatory pathway protects against cell death in mitochondrial complex I mutant cells. Cell Death Dis 2018; 9:658. [PMID: 29855477 PMCID: PMC5981317 DOI: 10.1038/s41419-018-0696-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 12/25/2022]
Abstract
Mitochondrial mutations cause bioenergetic defects associated with failures to use the electron transfer chain and oxidize substrates. These defects are exacerbated under energetic stress conditions and ultimately cause cell deterioration and death. However, little is known about cellular strategies that rescue mitochondrial stress failures and maintain cell survival under these conditions. Here, we have designed and performed a high-throughput chemical screen to identify small molecules that rescue human mitochondrial complex I mutations from energetic stress-induced cell death. The top positive hits were a series of sulfonylureas that efficiently maintain prolonged cell survival and growth under energetic stress conditions. The addition of galactose instead of glucose, to experimentally force mitochondrial respiration, triggered an initial ER stress response that was associated with IRE1α-dependent inflammatory signals including JNK and p38 MAP kinases in mutant cells. Sulfonylureas, similar to inhibition of IRE1α and p38 MAP kinase, potently blocked this ER stress inflammatory and cell death pathway and maintained viability and cell growth under severe energetic stress conditions. These studies reveal that sulfonylureas and specific inhibition of the IRE1α inflammatory pathway protect against cell death and can be used to rescue bioenergetic failures in mitochondrial complex I-mutated cells under stress conditions.
Collapse
Affiliation(s)
- Meghan S Soustek
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Eduardo Balsa
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Joeva J Barrow
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Mark Jedrychowski
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Rutger Vogel
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, 6500HB, The Netherlands
| | - Jan Smeitink
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, 6500HB, The Netherlands
| | - Steve P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA. .,Department of Cell Biology, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
233
|
Kim KH, Kim SH, Han DH, Jo YS, Lee YH, Lee MS. Growth differentiation factor 15 ameliorates nonalcoholic steatohepatitis and related metabolic disorders in mice. Sci Rep 2018; 8:6789. [PMID: 29717162 PMCID: PMC5931608 DOI: 10.1038/s41598-018-25098-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/04/2018] [Indexed: 02/08/2023] Open
Abstract
Growth differentiation factor 15 (GDF15) is an endocrine hormone belonging to the TGFβ superfamily member. GDF15 administration or GDF15 overexpression has been reported to have anti-obesity and anti-diabetic effects. Although non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) is frequently associated with obesity and insulin resistance, the functional role of endogenous GDF15 and therapeutic effect of GDF15 overexpression in NASH and related metabolic deterioration have not been evaluated. Here, we found that GDF15 expression was increased in the livers of NASH animal models and human subjects with NASH. Elevated expression of GDF15 was due to diet-induced hepatic endoplasmic reticulum (ER) stress. Gdf15-knockout mice exhibited aggravated NASH phenotypes such as increased steatosis, hepatic inflammation, fibrosis, liver injury, and metabolic deterioration. Furthermore, GDF15 directly suppressed expression of fibrosis-related genes and osteopontin (OPN), contributing factors for NASH-related fibrosis, in hepatic stellate cells in vitro and in the liver of mice in vivo. Finally, we found that GDF15-transgenic mice showed attenuation of NASH phenotypes and metabolic deterioration. Therefore, our results suggest that induction of endogenous GDF15 is a compensatory mechanism to protect against the progression of NASH and that GDF15 could be an attractive therapeutic candidate for treatment of NASH and NASH-related metabolic deterioration.
Collapse
Affiliation(s)
- Kook Hwan Kim
- Severance Biomedical Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| | - Seong Hun Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Dai Hoon Han
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Young Suk Jo
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Yong-Ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Myung-Shik Lee
- Severance Biomedical Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea. .,Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
234
|
Jung SB, Choi MJ, Ryu D, Yi HS, Lee SE, Chang JY, Chung HK, Kim YK, Kang SG, Lee JH, Kim KS, Kim HJ, Kim CS, Lee CH, Williams RW, Kim H, Lee HK, Auwerx J, Shong M. Reduced oxidative capacity in macrophages results in systemic insulin resistance. Nat Commun 2018; 9:1551. [PMID: 29674655 PMCID: PMC5908799 DOI: 10.1038/s41467-018-03998-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 03/27/2018] [Indexed: 01/10/2023] Open
Abstract
Oxidative functions of adipose tissue macrophages control the polarization of M1-like and M2-like phenotypes, but whether reduced macrophage oxidative function causes systemic insulin resistance in vivo is not clear. Here, we show that mice with reduced mitochondrial oxidative phosphorylation (OxPhos) due to myeloid-specific deletion of CR6-interacting factor 1 (Crif1), an essential mitoribosomal factor involved in biogenesis of OxPhos subunits, have M1-like polarization of macrophages and systemic insulin resistance with adipose inflammation. Macrophage GDF15 expression is reduced in mice with impaired oxidative function, but induced upon stimulation with rosiglitazone and IL-4. GDF15 upregulates the oxidative function of macrophages, leading to M2-like polarization, and reverses insulin resistance in ob/ob mice and HFD-fed mice with myeloid-specific deletion of Crif1. Thus, reduced macrophage oxidative function controls systemic insulin resistance and adipose inflammation, which can be reversed with GDF15 and leads to improved oxidative function of macrophages. M1-like polarization of macrophages is thought to control adipose inflammation and associated insulin resistance and metabolic syndrome. Here the authors show that macrophage-specific deletion of the OxPhos-related gene Crif1 results in an M1-like phenotype in mice, and that the effects can be reversed by recombinant GDF15.
Collapse
Affiliation(s)
- Saet-Byel Jung
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Min Jeong Choi
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Dongryeol Ryu
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.,Laboratory of Molecular and Integrative Biology, Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, 50612, Korea
| | - Hyon-Seung Yi
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, 35015, Korea
| | - Seong Eun Lee
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Hyo Kyun Chung
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Seul Gi Kang
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Ju Hee Lee
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, 35015, Korea
| | - Koon Soon Kim
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea.,Department of Internal Medicine, Chungnam National University Hospital, Daejeon, 35015, Korea
| | - Hyun Jin Kim
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, 35015, Korea
| | - Cuk-Seong Kim
- Department of Physiology, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34051, Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34051, Korea
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea. .,Department of Internal Medicine, Chungnam National University Hospital, Daejeon, 35015, Korea.
| |
Collapse
|
235
|
Moehle EA, Shen K, Dillin A. Mitochondrial proteostasis in the context of cellular and organismal health and aging. J Biol Chem 2018; 294:5396-5407. [PMID: 29622680 DOI: 10.1074/jbc.tm117.000893] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
As a central hub of cellular metabolism and signaling, the mitochondrion is a crucial organelle whose dysfunction can cause disease and whose activity is intimately connected to aging. We review how the mitochondrial network maintains proteomic integrity, how mitochondrial proteotoxic stress is communicated and resolved in the context of the entire cell, and how mitochondrial systems function in the context of organismal health and aging. A deeper understanding of how mitochondrial protein quality control mechanisms are coordinated across these distinct biological levels should help explain why these mechanisms fail with age and, ultimately, how routes to intervention might be attained.
Collapse
Affiliation(s)
- Erica A Moehle
- From the Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Koning Shen
- From the Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Andrew Dillin
- From the Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| |
Collapse
|
236
|
Li D, Zhang H, Zhong Y. Hepatic GDF15 is regulated by CHOP of the unfolded protein response and alleviates NAFLD progression in obese mice. Biochem Biophys Res Commun 2018; 498:388-394. [DOI: 10.1016/j.bbrc.2017.08.096] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 08/24/2017] [Indexed: 10/19/2022]
|
237
|
Koo BK, Um SH, Seo DS, Joo SK, Bae JM, Park JH, Chang MS, Kim JH, Lee J, Jeong WI, Kim W. Growth differentiation factor 15 predicts advanced fibrosis in biopsy-proven non-alcoholic fatty liver disease. Liver Int 2018; 38:695-705. [PMID: 28898507 DOI: 10.1111/liv.13587] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/05/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS We explored whether growth differentiation factor 15 (GDF15) affects the histological severity of non-alcoholic fatty liver disease (NAFLD) independent of insulin resistance. METHODS In a biopsy-proven NAFLD cohort, we measured serum GDF15 levels using enzyme-linked immunosorbent assays. RESULTS Among 190 subjects (mean age, 53 ± 14 years; men, 52.1%), 72 (men, 65.3%) and 78 (men, 44.9%) were diagnosed with biopsy-proven non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH) respectively. GDF15 levels were significantly higher in NASH patients than in controls (P = .010) or NAFL patients (P = .001). Subjects with advanced fibrosis (≥F3) also showed higher GDF15 levels compared to the others (F0-2; P < .001). Among NAFLD patients, the highest quartile of GDF15 levels was significantly associated with a risk of advanced fibrosis even after adjustment for age, gender, body mass index, smoking status, hypertension, diabetes, aspartate aminotransferase, platelet, albumin, insulin resistance and low skeletal muscle mass (odds ratio, 4.27; 95% confidence interval, 1.04-17.63), but not with NASH risk. GDF15 levels showed a significant positive correlation with liver stiffness (Spearman's ρ, .525; P < .001). Palmitate treatment increased the GDF15 mRNA expression level significantly in Kupffer cells, but not in hepatocytes. In LX-2 cells, GDF15 treatment resulted in enhanced expression of α-smooth muscle actin and collagen I, as well as phosphorylation of SMAD2 and SMAD3. CONCLUSIONS Our findings suggest that GDF15 may serve as a novel biomarker of advanced fibrosis in NAFLD, thereby indicating the need for urgent anti-fibrotic pharmacotherapy.
Collapse
Affiliation(s)
- Bo Kyung Koo
- Division of Endocrinology, Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Hee Um
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Gyeonggi-do, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Korea
| | - Dong Soo Seo
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Gyeonggi-do, Korea
| | - Sae Kyung Joo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Hwan Park
- Department of Pathology, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Mee Soo Chang
- Department of Pathology, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jieun Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Won-Il Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Won Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
238
|
Braun K, Oeckl J, Westermeier J, Li Y, Klingenspor M. Non-adrenergic control of lipolysis and thermogenesis in adipose tissues. ACTA ACUST UNITED AC 2018. [PMID: 29514884 DOI: 10.1242/jeb.165381] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The enormous plasticity of adipose tissues, to rapidly adapt to altered physiological states of energy demand, is under neuronal and endocrine control. In energy balance, lipolysis of triacylglycerols and re-esterification of free fatty acids are opposing processes operating in parallel at identical rates, thus allowing a more dynamic transition from anabolism to catabolism, and vice versa. In response to alterations in the state of energy balance, one of the two processes predominates, enabling the efficient mobilization or storage of energy in a negative or positive energy balance, respectively. The release of noradrenaline from the sympathetic nervous system activates lipolysis in a depot-specific manner by initiating the canonical adrenergic receptor-Gs-protein-adenylyl cyclase-cyclic adenosine monophosphate-protein kinase A pathway, targeting proteins of the lipolytic machinery associated with the interface of the lipid droplets. In brown and brite adipocytes, lipolysis stimulated by this signaling pathway is a prerequisite for the activation of non-shivering thermogenesis. Free fatty acids released by lipolysis are direct activators of uncoupling protein 1-mediated leak respiration. Thus, pro- and anti-lipolytic mediators are bona fide modulators of thermogenesis in brown and brite adipocytes. In this Review, we discuss adrenergic and non-adrenergic mechanisms controlling lipolysis and thermogenesis and provide a comprehensive overview of pro- and anti-lipolytic mediators.
Collapse
Affiliation(s)
- Katharina Braun
- Chair of Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences Weihenstephan, Gregor-Mendel-Str. 2, D-85354 Freising, Germany.,EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, D-85354 Freising, Germany.,ZIEL - Institute for Food & Health, Technical University of Munich, Gregor-Mendel-Str. 2, D-85354 Freising, Germany
| | - Josef Oeckl
- Chair of Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences Weihenstephan, Gregor-Mendel-Str. 2, D-85354 Freising, Germany.,EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, D-85354 Freising, Germany.,ZIEL - Institute for Food & Health, Technical University of Munich, Gregor-Mendel-Str. 2, D-85354 Freising, Germany
| | - Julia Westermeier
- Chair of Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences Weihenstephan, Gregor-Mendel-Str. 2, D-85354 Freising, Germany.,EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, D-85354 Freising, Germany
| | - Yongguo Li
- Chair of Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences Weihenstephan, Gregor-Mendel-Str. 2, D-85354 Freising, Germany.,EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, D-85354 Freising, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences Weihenstephan, Gregor-Mendel-Str. 2, D-85354 Freising, Germany .,EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, D-85354 Freising, Germany.,ZIEL - Institute for Food & Health, Technical University of Munich, Gregor-Mendel-Str. 2, D-85354 Freising, Germany
| |
Collapse
|
239
|
Zhang M, Sun W, Qian J, Tang Y. Fasting exacerbates hepatic growth differentiation factor 15 to promote fatty acid β-oxidation and ketogenesis via activating XBP1 signaling in liver. Redox Biol 2018; 16:87-96. [PMID: 29482168 PMCID: PMC5952356 DOI: 10.1016/j.redox.2018.01.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/17/2018] [Accepted: 01/29/2018] [Indexed: 02/05/2023] Open
Abstract
Liver coordinates a series of metabolic adaptations to maintain systemic energy balance and provide adequate nutrients for critical organs, tissues and cells during starvation. However, the mediator(s) implicated in orchestrating these fasting-induced adaptive responses and the underlying molecular mechanisms are still obscure. Here we show that hepatic growth differentiation factor 15 (GDF15) is regulated by IRE1α-XBP1s branch and promotes hepatic fatty acids β-oxidation and ketogenesis upon fasting. GDF15 expression was exacerbated in liver of mice subjected to long-term fasted or ketogenic diet feeding. Abrogation of hepatic Gdf15 dramatically attenuated hepatic β-oxidation and ketogenesis in fasted mice or mice with STZ-initiated type I diabetes. Further study revealed that XBP1s activated Gdf15 transcription via binding to its promoter. Elevated GDF15 in liver reduced lipid accumulation and impaired NALFD development in obese mice through enhancing fatty acids oxidation in liver. Therefore, our results demonstrate a novel and critical role of hepatic GDF15 activated by IRE1α-XBP1s branch in regulating adaptive responses of liver upon starvation stress. GDF15 is augmented in livers of mice subjected to fasting or ketogenic diet feeding. XBP1s activates the transcription of Gdf15 via binding to its promoter. Abrogation of hepatic Gdf15 impairs fatty acid β-oxidation and ketogenesis. Inhibition of hepatic Gdf15 attenuates ketoacidosis of diabetic mice. Ectopic expression of hepatic GDF15 alleviates obese-induced NAFLD development.
Collapse
Affiliation(s)
- Meiyuan Zhang
- Emergency Intensive Care Unit, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| | - Weilan Sun
- Emergency Intensive Care Unit, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| | - Jin Qian
- Emergency Intensive Care Unit, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| | - Yan Tang
- Emergency Intensive Care Unit, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China.
| |
Collapse
|
240
|
Kleinert M, Clemmensen C, Sjøberg KA, Carl CS, Jeppesen JF, Wojtaszewski JFP, Kiens B, Richter EA. Exercise increases circulating GDF15 in humans. Mol Metab 2018; 9:187-191. [PMID: 29398617 PMCID: PMC5870087 DOI: 10.1016/j.molmet.2017.12.016] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE The growth differentiation factor 15 (GDF15) is a stress-sensitive circulating factor that regulates systemic energy balance. Since exercise is a transient physiological stress that has pleiotropic effects on whole-body energy metabolism, we herein explored the effect of exercise on a) circulating GDF15 levels and b) GDF15 release from skeletal muscle in humans. METHODS Seven healthy males either rested or exercised at 67% of their VO2max for 1 h and blood was sampled from the femoral artery and femoral vein before, during, and after exercise. Plasma GDF15 concentrations were determined in these samples. RESULTS Plasma GDF15 levels increased 34% with exercise (p < 0.001) and further increased to 64% above resting values at 120 min (p < 0.001) after the cessation of exercise. There was no difference between the arterial and venous GDF15 concentration before, during, and after exercise. During a resting control trial, GDF15 levels measured in the same subjects were unaltered. CONCLUSIONS Vigorous submaximal exercise increases circulating GDF15 levels in humans, but skeletal muscle tissue does not appear to be the source.
Collapse
Affiliation(s)
- Maximilian Kleinert
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2200, Copenhagen, Denmark; Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Kim A Sjøberg
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Christian Strini Carl
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2200, Copenhagen, Denmark
| | | | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
241
|
Mitohormesis, an Antiaging Paradigm. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:35-77. [DOI: 10.1016/bs.ircmb.2018.05.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
242
|
Kim KH, Lee MS. Pathogenesis of Nonalcoholic Steatohepatitis and Hormone-Based Therapeutic Approaches. Front Endocrinol (Lausanne) 2018; 9:485. [PMID: 30197624 PMCID: PMC6117414 DOI: 10.3389/fendo.2018.00485] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an emerging global health problem and a potential risk factor for type 2 diabetes, cardiovascular disease, and chronic kidney disease. Nonalcoholic steatohepatitis (NASH), an advanced form of NAFLD, is a predisposing factor for development of cirrhosis and hepatocellular carcinoma. The increasing prevalence of NASH emphasizes the need for novel therapeutic approaches. Although therapeutic drugs against NASH are not yet available, fundamental insights into the pathogenesis of NASH have been made during the past few decades. Multiple therapeutic strategies have been developed and are currently being explored in clinical trials or preclinical testing. The pathogenesis of NASH involves multiple intracellular/extracellular events in various cell types in the liver or crosstalk events between the liver and other organs. Here, we review current findings and knowledge regarding the pathogenesis of NASH, focusing on the most recent advances. We also highlight hormone-based therapeutic approaches for treatment of NASH.
Collapse
Affiliation(s)
- Kook Hwan Kim
- Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Kook Hwan Kim ;
| | - Myung-Shik Lee
- Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Myung-Shik Lee
| |
Collapse
|
243
|
Chung HK, Kim JT, Kim HW, Kwon M, Kim SY, Shong M, Kim KS, Yi HS. GDF15 deficiency exacerbates chronic alcohol- and carbon tetrachloride-induced liver injury. Sci Rep 2017; 7:17238. [PMID: 29222479 PMCID: PMC5722931 DOI: 10.1038/s41598-017-17574-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022] Open
Abstract
Growth differentiation factor 15 (GDF15) has recently been shown to have an important role in the regulation of mitochondrial function and in the pathogenesis of complex human diseases. Nevertheless, the role of GDF15 in alcohol-induced or fibrotic liver diseases has yet to be determined. In this study, we demonstrate that alcohol- or carbon tetrachloride (CCl4)-mediated hepatic GDF15 production ameliorates liver inflammation and fibrosis. Alcohol directly enhanced GDF15 expression in primary hepatocytes, which led to increased oxygen consumption. Moreover, GDF15 reduced the expression of pro-inflammatory cytokines in liver-resident macrophages, leading to an improvement in inflammation and fibrosis in the liver. GDF15 knockout (KO) mice had more TNF-α-producing T cells and more activated CD4+ and CD8+ T cells in the liver than wild-type mice. Liver-infiltrating monocytes and neutrophils were also increased in the GDF15 KO mice during liver fibrogenesis. These changes in hepatic immune cells were associated with increased tissue inflammation and fibrosis. Finally, recombinant GDF15 decreased the expression of pro-inflammatory cytokines and fibrotic mediators and prevented the activation of T cells in the livers of mice with CCl4-induced liver fibrosis. These results suggest that GDF15 could be a potential therapeutic target for the treatment of alcohol-induced and fibrotic liver diseases.
Collapse
Affiliation(s)
- Hyo Kyun Chung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon, 35015, Republic of Korea.,Research Institute for Medical Sciences, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon, 35015, Republic of Korea
| | - Jung Tae Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon, 35015, Republic of Korea
| | - Hyeon-Woo Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon, 35015, Republic of Korea
| | - Minjoo Kwon
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon, 35015, Republic of Korea
| | - So Yeon Kim
- Laboratory of Liver Research, Biomedical Science and Engineering Interdisciplinary program, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon, 35015, Republic of Korea.,Department of Internal Medicine, Chungnam National University Hospital, 282 Munhwaro, Daejeon, 35015, Republic of Korea
| | - Koon Soon Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon, 35015, Republic of Korea. .,Department of Medical Science, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon, 35015, Republic of Korea.
| | - Hyon-Seung Yi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon, 35015, Republic of Korea. .,Department of Internal Medicine, Chungnam National University Hospital, 282 Munhwaro, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
244
|
Shpilka T, Haynes CM. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat Rev Mol Cell Biol 2017; 19:109-120. [DOI: 10.1038/nrm.2017.110] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
245
|
Hunt RJ, Bateman JM. Mitochondrial retrograde signaling in the nervous system. FEBS Lett 2017; 592:663-678. [PMID: 29086414 DOI: 10.1002/1873-3468.12890] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 01/12/2023]
Abstract
Mitochondria generate the majority of cellular ATP and are essential for neuronal function. Loss of mitochondrial activity leads to primary mitochondrial diseases and may contribute to neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Mitochondria communicate with the cell through mitochondrial retrograde signaling pathways. These signaling pathways are triggered by mitochondrial dysfunction and allow the organelle to control nuclear gene transcription. Neuronal mitochondrial retrograde signaling pathways have been identified in disease model systems and targeted to restore neuronal function and prevent neurodegeneration. In this review, we describe yeast and mammalian cellular models that have paved the way in the investigation of mitochondrial retrograde mechanisms. We then discuss the evidence for retrograde signaling in neurons and our current knowledge of retrograde signaling mechanisms in neuronal model systems. We argue that targeting mitochondrial retrograde pathways has the potential to lead to novel treatments for neurological diseases.
Collapse
Affiliation(s)
- Rachel J Hunt
- Wolfson Centre for Age-Related Diseases, King's College London, UK
| | - Joseph M Bateman
- Wolfson Centre for Age-Related Diseases, King's College London, UK
| |
Collapse
|
246
|
Yu HM, Chung HK, Kim KS, Lee JM, Hong JH, Park KS. PDE 5 inhibitor improves insulin sensitivity by enhancing mitochondrial function in adipocytes. Biochem Biophys Res Commun 2017; 493:631-636. [DOI: 10.1016/j.bbrc.2017.08.140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 08/24/2017] [Indexed: 01/07/2023]
|
247
|
Systems Phytohormone Responses to Mitochondrial Proteotoxic Stress. Mol Cell 2017; 68:540-551.e5. [DOI: 10.1016/j.molcel.2017.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 08/07/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
|
248
|
Lee SE, Kang SG, Choi MJ, Jung SB, Ryu MJ, Chung HK, Chang JY, Kim YK, Lee JH, Kim KS, Kim HJ, Lee HK, Yi HS, Shong M. Growth Differentiation Factor 15 Mediates Systemic Glucose Regulatory Action of T-Helper Type 2 Cytokines. Diabetes 2017; 66:2774-2788. [PMID: 28874416 DOI: 10.2337/db17-0333] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/24/2017] [Indexed: 11/13/2022]
Abstract
T-helper type 2 (Th2) cytokines, including interleukin (IL)-13 and IL-4, produced in adipose tissue, are critical regulators of intra-adipose and systemic lipid and glucose metabolism. Furthermore, IL-13 is a potential therapy for insulin resistance in obese mouse models. Here, we examined mediators produced by adipocytes that are responsible for regulating systemic glucose homeostasis in response to Th2 cytokines. We used RNA sequencing data analysis of cultured adipocytes to screen factors secreted in response to recombinant IL-13. Recombinant IL-13 induced expression of growth differentiation factor 15 (GDF15) via the Janus kinase-activated STAT6 pathway. In vivo administration of α-galactosylceramide or IL-33 increased IL-4 and IL-13 production, thereby increasing GDF15 levels in adipose tissue and in plasma of mice; however, these responses were abrogated in STAT6 knockout mice. Moreover, administration of recombinant IL-13 to wild-type mice fed a high-fat diet (HFD) improved glucose intolerance; this was not the case for GDF15 knockout mice fed the HFD. Taken together, these data suggest that GDF15 is required for IL-13-induced improvement of glucose intolerance in mice fed an HFD. Thus, beneficial effects of Th2 cytokines on systemic glucose metabolism and insulin sensitivity are mediated by GDF15. These findings open up a potential pharmacological route for reversing insulin resistance associated with obesity.
Collapse
Affiliation(s)
- Seong Eun Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Seul Gi Kang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Min Jeong Choi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Saet-Byel Jung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Min Jeong Ryu
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyo Kyun Chung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Ju Hee Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Koon Soon Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyun Jin Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Hyon-Seung Yi
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
249
|
Nagai H, Satomi T, Abiru A, Miyamoto K, Nagasawa K, Maruyama M, Yamamoto S, Kikuchi K, Fuse H, Noda M, Tsujihata Y. Antihypertrophic Effects of Small Molecules that Maintain Mitochondrial ATP Levels Under Hypoxia. EBioMedicine 2017; 24:147-158. [PMID: 28942281 PMCID: PMC5652136 DOI: 10.1016/j.ebiom.2017.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 12/23/2022] Open
Abstract
Since impaired mitochondrial ATP production in cardiomyocytes is thought to lead to heart failure, a drug that protects mitochondria and improves ATP production under disease conditions would be an attractive treatment option. In this study, we identified small-molecule drugs, including the anti-parasitic agent, ivermectin, that maintain mitochondrial ATP levels under hypoxia in cardiomyocytes. Mechanistically, transcriptomic analysis and gene silencing experiments revealed that ivermectin increased mitochondrial ATP production by inducing Cox6a2, a subunit of the mitochondrial respiratory chain. Furthermore, ivermectin inhibited the hypertrophic response of human induced pluripotent stem cell-derived cardiomyocytes. Pharmacological inhibition of importin β, one of the targets of ivermectin, exhibited protection against mitochondrial ATP decline and cardiomyocyte hypertrophy. These findings indicate that maintaining mitochondrial ATP under hypoxia may prevent hypertrophy and improve cardiac function, providing therapeutic options for mitochondrial dysfunction.
Collapse
Affiliation(s)
- Hiroaki Nagai
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan.
| | - Tomoko Satomi
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Akiko Abiru
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazumasa Miyamoto
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Koji Nagasawa
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Minoru Maruyama
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Satoshi Yamamoto
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Kuniko Kikuchi
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiromitsu Fuse
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Masakuni Noda
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshiyuki Tsujihata
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
250
|
Abstract
Mitochondria are essential organelles for many aspects of cellular homeostasis, including energy harvesting through oxidative phosphorylation. Alterations of mitochondrial function not only impact on cellular metabolism but also critically influence whole-body metabolism, health, and life span. Diseases defined by mitochondrial dysfunction have expanded from rare monogenic disorders in a strict sense to now also include many common polygenic diseases, including metabolic, cardiovascular, neurodegenerative, and neuromuscular diseases. This has led to an intensive search for new therapeutic and preventive strategies aimed at invigorating mitochondrial function by exploiting key components of mitochondrial biogenesis, redox metabolism, dynamics, mitophagy, and the mitochondrial unfolded protein response. As such, new findings linking mitochondrial function to the progression or outcome of this ever-increasing list of diseases has stimulated the discovery and development of the first true mitochondrial drugs, which are now entering the clinic and are discussed in this review.
Collapse
Affiliation(s)
- Vincenzo Sorrentino
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| | - Keir J Menzies
- Interdisciplinary School of Health Sciences, University of Ottawa Brain and Mind Research Institute and Centre for Neuromuscular Disease, Ottawa K1H 8M5, Canada;
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|