251
|
Surendran P, Feofanova EV, Lahrouchi N, Ntalla I, Karthikeyan S, Cook J, Chen L, Mifsud B, Yao C, Kraja AT, Cartwright JH, Hellwege JN, Giri A, Tragante V, Thorleifsson G, Liu DJ, Prins BP, Stewart ID, Cabrera CP, Eales JM, Akbarov A, Auer PL, Bielak LF, Bis JC, Braithwaite VS, Brody JA, Daw EW, Warren HR, Drenos F, Nielsen SF, Faul JD, Fauman EB, Fava C, Ferreira T, Foley CN, Franceschini N, Gao H, Giannakopoulou O, Giulianini F, Gudbjartsson DF, Guo X, Harris SE, Havulinna AS, Helgadottir A, Huffman JE, Hwang SJ, Kanoni S, Kontto J, Larson MG, Li-Gao R, Lindström J, Lotta LA, Lu Y, Luan J, Mahajan A, Malerba G, Masca NGD, Mei H, Menni C, Mook-Kanamori DO, Mosen-Ansorena D, Müller-Nurasyid M, Paré G, Paul DS, Perola M, Poveda A, Rauramaa R, Richard M, Richardson TG, Sepúlveda N, Sim X, Smith AV, Smith JA, Staley JR, Stanáková A, Sulem P, Thériault S, Thorsteinsdottir U, Trompet S, Varga TV, Velez Edwards DR, Veronesi G, Weiss S, Willems SM, Yao J, Young R, Yu B, Zhang W, Zhao JH, Zhao W, Zhao W, Evangelou E, Aeschbacher S, Asllanaj E, Blankenberg S, Bonnycastle LL, Bork-Jensen J, Brandslund I, Braund PS, Burgess S, et alSurendran P, Feofanova EV, Lahrouchi N, Ntalla I, Karthikeyan S, Cook J, Chen L, Mifsud B, Yao C, Kraja AT, Cartwright JH, Hellwege JN, Giri A, Tragante V, Thorleifsson G, Liu DJ, Prins BP, Stewart ID, Cabrera CP, Eales JM, Akbarov A, Auer PL, Bielak LF, Bis JC, Braithwaite VS, Brody JA, Daw EW, Warren HR, Drenos F, Nielsen SF, Faul JD, Fauman EB, Fava C, Ferreira T, Foley CN, Franceschini N, Gao H, Giannakopoulou O, Giulianini F, Gudbjartsson DF, Guo X, Harris SE, Havulinna AS, Helgadottir A, Huffman JE, Hwang SJ, Kanoni S, Kontto J, Larson MG, Li-Gao R, Lindström J, Lotta LA, Lu Y, Luan J, Mahajan A, Malerba G, Masca NGD, Mei H, Menni C, Mook-Kanamori DO, Mosen-Ansorena D, Müller-Nurasyid M, Paré G, Paul DS, Perola M, Poveda A, Rauramaa R, Richard M, Richardson TG, Sepúlveda N, Sim X, Smith AV, Smith JA, Staley JR, Stanáková A, Sulem P, Thériault S, Thorsteinsdottir U, Trompet S, Varga TV, Velez Edwards DR, Veronesi G, Weiss S, Willems SM, Yao J, Young R, Yu B, Zhang W, Zhao JH, Zhao W, Zhao W, Evangelou E, Aeschbacher S, Asllanaj E, Blankenberg S, Bonnycastle LL, Bork-Jensen J, Brandslund I, Braund PS, Burgess S, Cho K, Christensen C, Connell J, Mutsert RD, Dominiczak AF, Dörr M, Eiriksdottir G, Farmaki AE, Gaziano JM, Grarup N, Grove ML, Hallmans G, Hansen T, Have CT, Heiss G, Jørgensen ME, Jousilahti P, Kajantie E, Kamat M, Käräjämäki A, Karpe F, Koistinen HA, Kovesdy CP, Kuulasmaa K, Laatikainen T, Lannfelt L, Lee IT, Lee WJ, Linneberg A, Martin LW, Moitry M, Nadkarni G, Neville MJ, Palmer CNA, Papanicolaou GJ, Pedersen O, Peters J, Poulter N, Rasheed A, Rasmussen KL, Rayner NW, Mägi R, Renström F, Rettig R, Rossouw J, Schreiner PJ, Sever PS, Sigurdsson EL, Skaaby T, Sun YV, Sundstrom J, Thorgeirsson G, Esko T, Trabetti E, Tsao PS, Tuomi T, Turner ST, Tzoulaki I, Vaartjes I, Vergnaud AC, Willer CJ, Wilson PWF, Witte DR, Yonova-Doing E, Zhang H, Aliya N, Almgren P, Amouyel P, Asselbergs FW, Barnes MR, Blakemore AI, Boehnke M, Bots ML, Bottinger EP, Buring JE, Chambers JC, Chen YDI, Chowdhury R, Conen D, Correa A, Davey Smith G, Boer RAD, Deary IJ, Dedoussis G, Deloukas P, Di Angelantonio E, Elliott P, Felix SB, Ferrières J, Ford I, Fornage M, Franks PW, Franks S, Frossard P, Gambaro G, Gaunt TR, Groop L, Gudnason V, Harris TB, Hayward C, Hennig BJ, Herzig KH, Ingelsson E, Tuomilehto J, Järvelin MR, Jukema JW, Kardia SLR, Kee F, Kooner JS, Kooperberg C, Launer LJ, Lind L, Loos RJF, Majumder AAS, Laakso M, McCarthy MI, Melander O, Mohlke KL, Murray AD, Nordestgaard BG, Orho-Melander M, Packard CJ, Padmanabhan S, Palmas W, Polasek O, Porteous DJ, Prentice AM, Province MA, Relton CL, Rice K, Ridker PM, Rolandsson O, Rosendaal FR, Rotter JI, Rudan I, Salomaa V, Samani NJ, Sattar N, Sheu WHH, Smith BH, Soranzo N, Spector TD, Starr JM, Sebert S, Taylor KD, Lakka TA, Timpson NJ, Tobin MD, van der Harst P, van der Meer P, Ramachandran VS, Verweij N, Virtamo J, Völker U, Weir DR, Zeggini E, Charchar FJ, Wareham NJ, Langenberg C, Tomaszewski M, Butterworth AS, Caulfield MJ, Danesh J, Edwards TL, Holm H, Hung AM, Lindgren CM, Liu C, Manning AK, Morris AP, Morrison AC, O'Donnell CJ, Psaty BM, Saleheen D, Stefansson K, Boerwinkle E, Chasman DI, Levy D, Newton-Cheh C, Munroe PB, Howson JMM. Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals. Nat Genet 2020; 52:1314-1332. [PMID: 33230300 PMCID: PMC7610439 DOI: 10.1038/s41588-020-00713-x] [Show More Authors] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/08/2020] [Indexed: 01/14/2023]
Abstract
Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 × 10-8), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
Collapse
Affiliation(s)
- Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Rutherford Fund Fellow, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Elena V Feofanova
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Najim Lahrouchi
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences Amsterdam, Amsterdam, the Netherlands
| | - Ioanna Ntalla
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Savita Karthikeyan
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - James Cook
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Lingyan Chen
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Borbala Mifsud
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Chen Yao
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aldi T Kraja
- Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - James H Cartwright
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jacklyn N Hellwege
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
| | - Ayush Giri
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
- Division of Quantitative Sciences, Department of Obstetrics & Gynecology, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
| | - Vinicius Tragante
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
| | | | - Dajiang J Liu
- Institute of Personalized Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Bram P Prins
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Isobel D Stewart
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Claudia P Cabrera
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - James M Eales
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Artur Akbarov
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Paul L Auer
- Joseph J Zilber School of Public Health, University of Wisconsin, Milwaukee, WI, USA
| | - Lawrence F Bielak
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Vickie S Braithwaite
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
- MRC Nutrition and Bone Health Group, University of Cambridge, Cambridge, UK
- MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - E Warwick Daw
- Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Fotios Drenos
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
| | - Sune Fallgaard Nielsen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Eric B Fauman
- Internal Medicine Research Unit, Pfizer, Cambridge, MA, USA
| | - Cristiano Fava
- Department of Medicine, University of Verona, Verona, Italy
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Teresa Ferreira
- The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Christopher N Foley
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - He Gao
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
| | - Olga Giannakopoulou
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Genomic Health, Queen Mary University of London, London, UK
- Division of Psychiatry, University College of London, London, UK
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
| | - Aki S Havulinna
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Jennifer E Huffman
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, UK
| | - Shih-Jen Hwang
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Boston University and National Heart, Lung and Blood Institute Framingham Heart Study, Framingham, MA, USA
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Genomic Health, Life Sciences, Queen Mary University of London, London, UK
| | - Jukka Kontto
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Martin G Larson
- Boston University and National Heart, Lung and Blood Institute Framingham Heart Study, Framingham, MA, USA
- Biostatistics Department, Boston University School of Public Health, Boston, MA, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jaana Lindström
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Luca A Lotta
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Yingchang Lu
- The Charles Bronfman Institute for Personalized Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Giovanni Malerba
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Nicholas G D Masca
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Biomedical Research Centre, Leicester, UK
| | - Hao Mei
- Department of Data Science, School of Population Health, University of Mississippi Medical Center, Jackson, MS, USA
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - David Mosen-Ansorena
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Medicine I, Ludwig-Maximilians-University Munich, Munich, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU, Munich, Germany
| | - Guillaume Paré
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Dirk S Paul
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
| | - Markus Perola
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- Clinical and Molecular Metabolism Research Program (CAMM), Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alaitz Poveda
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Rainer Rauramaa
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Melissa Richard
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Nuno Sepúlveda
- Department of Infection Biology, Faculty of Tropical and Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Centre of Statistics and Applications of University of Lisbon, Lisbon, Portugal
| | - Xueling Sim
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Saw Swee Hock School of Public Health, National University of, Singapore, Singapore
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - James R Staley
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Alena Stanáková
- University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | - Sébastien Thériault
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Quebec, Canada
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Stella Trompet
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tibor V Varga
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Digna R Velez Edwards
- Vanderbilt Genetics Institute, Vanderbilt Epidemiology Center, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Tennessee Valley Health Systems VA, Nashville, TN, USA
| | - Giovanni Veronesi
- Research Center in Epidemiology and Preventive Medicine, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and University of Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Sara M Willems
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Robin Young
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
| | - Bing Yu
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UK
| | - Jing-Hua Zhao
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
| | - Wei Zhao
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | | | - Eralda Asllanaj
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Stefan Blankenberg
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- University Medical Center Hamburg Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Lori L Bonnycastle
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivan Brandslund
- Department of Clinical Biochemistry, Lillebaelt Hospital, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Peter S Braund
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Biomedical Research Centre, Leicester, UK
| | - Stephen Burgess
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - John Connell
- University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anna F Dominiczak
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Marcus Dörr
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | | | - Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
- Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, University College London, London, UK
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Megan L Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Göran Hallmans
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian T Have
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gerardo Heiss
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | | | - Pekka Jousilahti
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Eero Kajantie
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Hospital for Children and Adolescents, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Mihir Kamat
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
| | - AnneMari Käräjämäki
- Department of Primary Health Care, Vaasa Central Hospital, Vaasa, Finland
- Diabetes Center, Vaasa Health Care Center, Vaasa, Finland
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Heikki A Koistinen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Csaba P Kovesdy
- Nephrology Section, Memphis VA Medical Center, Memphis, TN, USA
| | - Kari Kuulasmaa
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Tiina Laatikainen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - I-Te Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- School of Medicine, , Chung Shan Medical University, Taichung, Taiwan
- College of Science, Tunghai University, Taichung, Taiwan
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Social Work, Tunghai University, Taichung, Taiwan
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisa W Martin
- George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Marie Moitry
- Department of Public health, Strasbourg University Hospital, University of Strasbourg, Strasbourg, France
| | - Girish Nadkarni
- The Charles Bronfman Institute for Personalized Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matt J Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Colin N A Palmer
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, UK
| | | | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - James Peters
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Neil Poulter
- International Centre for Circulatory Health, Imperial College London, London, UK
| | - Asif Rasheed
- Centre for Non-Communicable Diseases, Karachi, Pakistan
| | - Katrine L Rasmussen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - N William Rayner
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Reedik Mägi
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Frida Renström
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Rainer Rettig
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Institute of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Jacques Rossouw
- Division of Cardiovascular Sciences, NHLBI, Bethesda, MD, USA
| | - Pamela J Schreiner
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Peter S Sever
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Emil L Sigurdsson
- Department of Family Medicine, University of Iceland, Reykjavik, Iceland
- Development Centre for Primary Health Care in Iceland, Reykjavik, Iceland
| | - Tea Skaaby
- Center for Clinical Research and Disease Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Johan Sundstrom
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Gudmundur Thorgeirsson
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Internal Medicine, Division of Cardiology, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | - Tõnu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Elisabetta Trabetti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Philip S Tsao
- VA Palo Alto Health Care System, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Tiinamaija Tuomi
- Folkhälsan Research Centre, Helsinki, Finland
- Department of Endocrinology, Helsinki University Central Hospital, Helsinki, Finland
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden Institute for Molecular Medicine Helsinki (FIMM), Helsinki University, Helsinki, Finland
| | - Stephen T Turner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Ilonca Vaartjes
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University of Utrecht, University of Utrecht, Utrecht, the Netherlands
- Center for Circulatory Health, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Anne-Claire Vergnaud
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Peter W F Wilson
- Atlanta VAMC and Emory Clinical Cardiovascular Research Institute, Atlanta, GA, USA
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Danish Diabetes Academy, Odense, Denmark
- Steno Diabetes Center Aarhus, Aarhus, Denmark
| | - Ekaterina Yonova-Doing
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - He Zhang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Naheed Aliya
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Peter Almgren
- Department of Medicine, Lund University, Malmö, Sweden
| | - Philippe Amouyel
- Univ Lille, U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
- INSERM, U1167, Lille, France
- CHU Lille, U1167, Lille, France
- Institut Pasteur de Lille, U1167, Lille, France
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
- Health Data Research UK, Institute of Health Informatics, University College London, London, UK
| | - Michael R Barnes
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Alexandra I Blakemore
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
- Section of Investigative Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Michiel L Bots
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University of Utrecht, University of Utrecht, Utrecht, the Netherlands
- Center for Circulatory Health, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julie E Buring
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - John C Chambers
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Imperial College Healthcare NHS Trust, London, UK
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Rajiv Chowdhury
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Non-communicable Disease Research (CNCR), Dhaka, Bangladesh
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Cardiovascular Research Institute Basel, Basel, Switzerland
| | - Adolfo Correa
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rudolf A de Boer
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
- Centre for Genomic Health, Life Sciences, Queen Mary University of London, London, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emanuele Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
- National Institute for Health Research (NIHR) Blood and Transplant Research Unit (BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
- Health Data Research UK-London at Imperial College London, London, UK
- UKDRI, Dementia Research Institute at Imperial College London, London, UK
- British Heart Foundation (BHF) Centre of Research Excellence, Imperial College London, London, UK
| | - Stephan B Felix
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Jean Ferrières
- Department of Cardiology and Department of Epidemiology, INSERM UMR 1027, Toulouse University Hospital, Toulouse, France
| | - Ian Ford
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, Sweden
- Oxford Center for Diabetes, Endocrinology & Metabolism, Radcliff Department of Medicine, University of Oxford, Oxford, UK
| | - Stephen Franks
- Institute of Reproductive & Developmental Biology, Imperial College London, London, UK
| | | | - Giovanni Gambaro
- Division of Nephrology, Department of Medicine, University of Verona, Verona, Italy
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
- Institute for Molecular Medicine Helsinki (FIMM), Helsinki University, Helsinki, Finland
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute of Aging, Bethesda, MD, USA
| | - Caroline Hayward
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, UK
| | - Branwen J Hennig
- MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, Gambia
- Wellcome Trust, London, UK
| | - Karl-Heinz Herzig
- Institute of Biomedicine, Medical Research Center (MRC), University of Oulu, and University Hospital Oulu, Oulu, Finland
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
| | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Jaakko Tuomilehto
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Saudi Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
- National Institute of Public Health, Madrid, Spain
| | - Marjo-Riitta Järvelin
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
- Unit of Primary Care, Oulu University Hospital, Kajaanintie, Oulu, Finland
- Center for Life-Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Frank Kee
- Centre for Public Health, Queens University Belfast, Belfast, UK
| | - Jaspal S Kooner
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UK
- National Heart and Lung Institute, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Charles Kooperberg
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute of Aging, Bethesda, MD, USA
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
- Genentech, South San Francisco, San Francisco, CA, USA
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Alison D Murray
- The Institute of Medical Sciences, Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK
| | - Børge Grønne Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | | | | | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Walter Palmas
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Ozren Polasek
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Andrew M Prentice
- MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, Gambia
- MRC International Nutrition Group at London School of Hygiene and Tropical Medicine, Keppel St, London, UK
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Olov Rolandsson
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, Sweden
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Scotland, UK
| | - Veikko Salomaa
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Biomedical Research Centre, Leicester, UK
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Wayne H-H Sheu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Institute of Medical Technology, National Chung-Hsing University, Taichung, Taiwan
| | - Blair H Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Nicole Soranzo
- National Institute for Health Research (NIHR) Blood and Transplant Research Unit (BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
- Department of Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Alzheimer Scotland Research Centre, University of Edinburgh, Edinburgh, UK
| | - Sylvain Sebert
- Center for Life-Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Timo A Lakka
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Institute of Biomedicine/Physiology, University of Eastern Finland, Kuopio, Finland
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Martin D Tobin
- National Institute for Health Research Leicester Biomedical Research Centre, Leicester, UK
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Pim van der Harst
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
- Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, the Netherlands
| | - Peter van der Meer
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Vasan S Ramachandran
- Boston University and National Heart, Lung and Blood Institute Framingham Heart Study, Framingham, MA, USA
- Boston University Schools of Medicine and Public Health, Boston, MA, USA
| | - Niek Verweij
- University Medical Center Groningen, Groningen, the Netherlands
| | - Jarmo Virtamo
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and University of Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Eleftheria Zeggini
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| | - Fadi J Charchar
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- Health Innovation and Transformation Center, Federation University Australia, Ballarat, Victoria, Australia
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
- Division of Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
- National Institute for Health Research (NIHR) Blood and Transplant Research Unit (BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
- National Institute for Health Research (NIHR) Blood and Transplant Research Unit (BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
- Department of Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
| | - Hilma Holm
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
| | - Adriana M Hung
- VA Tennessee Valley Healthcare System, Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cecilia M Lindgren
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Chunyu Liu
- Boston University School of Public Health, Boston, MA, USA
| | - Alisa K Manning
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew P Morris
- Department of Biostatistics, University of Liverpool, Liverpool, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester, UK
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christopher J O'Donnell
- VA Boston Healthcare, Section of Cardiology and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Danish Saleheen
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Daniel Levy
- Boston University and National Heart, Lung and Blood Institute Framingham Heart Study, Framingham, MA, USA
- Population Sciences, Branch, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MD, USA
| | - Christopher Newton-Cheh
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK.
| | - Joanna M M Howson
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK.
- Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK.
- Novo Nordisk Research Centre Oxford, Novo Nordisk Ltd, Oxford, UK.
| |
Collapse
|
252
|
Miao X, Liu W, Fan B, Lin H. Transcriptomic Heterogeneity of Alzheimer's Disease Associated with Lipid Genetic Risk. Neuromolecular Med 2020; 22:534-541. [PMID: 32862331 DOI: 10.1007/s12017-020-08610-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial disease that affects more than 5 million Americans. Multiple pathways might be involved in the AD pathogenesis. The implication of lipid genetic susceptibility on brain gene expression is yet to be investigated. The current study included 192 brain samples from AD patients who were enrolled in the ROSMAP study. The samples were genotyped and imputed to the HRC Reference Panel. Lipid polygenetic risk score was constructed from the weighted sum of genetic variants associated with low-density lipoprotein cholesterol (LDL-C). The gene expression was profiled by RNA sequencing, and the association of gene expression with lipid polygenetic risk scores was tested by linear regression models adjusted for age, sex and APOE e4 alleles. Three genes were found to associate with lipid polygenetic risk scores, including HMCN2 (P = 3.6 × 10-7), PDLIM5 (P = 1.2 × 10-6), and FHL5 (P = 2.0 × 10-6). Network analysis revealed multiple related pathways, including dopaminergic synapse (P = 4.5 × 10-5), circadian entrainment (P = 1.1 × 10-4), and cholinergic synapse (P = 2.3 × 10-4). Our study underscores the importance of lipid regulation and metabolism to AD heterogeneity.
Collapse
Affiliation(s)
- Xiao Miao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weifeng Liu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Fan
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Honghuang Lin
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, 72 East Concord Street, E-632, Boston, MA, 02118, USA.
| |
Collapse
|
253
|
Hjelholt AJ, Charidemou E, Griffin JL, Pedersen SB, Gudiksen A, Pilegaard H, Jessen N, Møller N, Jørgensen JOL. Insulin resistance induced by growth hormone is linked to lipolysis and associated with suppressed pyruvate dehydrogenase activity in skeletal muscle: a 2 × 2 factorial, randomised, crossover study in human individuals. Diabetologia 2020; 63:2641-2653. [PMID: 32945898 DOI: 10.1007/s00125-020-05262-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Growth hormone (GH) causes insulin resistance that is linked to lipolysis, but the underlying mechanisms are unclear. We investigated if GH-induced insulin resistance in skeletal muscle involves accumulation of diacylglycerol (DAG) and ceramide as well as impaired insulin signalling, or substrate competition between fatty acids and glucose. METHODS Nine GH-deficient male participants were randomised and examined in a 2 × 2 factorial design with and without administration of GH and acipimox (an anti-lipolytic compound). As-treated analyses were performed, wherefore data from three visits from two patients were excluded due to incorrect GH administration. The primary outcome was insulin sensitivity, expressed as the AUC of the glucose infusion rate (GIRAUC), and furthermore, the levels of DAGs and ceramides, insulin signalling and the activity of the active form of pyruvate dehydrogenase (PDHa) were assessed in skeletal muscle biopsies obtained in the basal state and during a hyperinsulinaemic-euglycaemic clamp (HEC). RESULTS Co-administration of acipimox completely suppressed the GH-induced elevation in serum levels of NEFA (GH versus GH+acipimox, p < 0.0001) and abrogated GH-induced insulin resistance (mean GIRAUC [95% CI] [mg min-1 kg-1] during the HEC: control, 595 [493, 718]; GH, 468 [382, 573]; GH+acipimox, 654 [539, 794]; acipimox, 754 [618, 921]; GH vs GH+acipimox: p = 0.004). GH did not significantly change either the accumulation of DAGs and ceramides or insulin signalling in skeletal muscle, but GH antagonised the insulin-stimulated increase in PDHa activity (mean ± SEM [% from the basal state to the HEC]: control, 47 ± 19; GH, -15 ± 21; GH+acipimox, 3 ± 21; acipimox, 57 ± 22; main effect: p = 0.02). CONCLUSIONS/INTERPRETATION GH-induced insulin resistance in skeletal muscle is: (1) causally linked to lipolysis; (2) not associated with either accumulation of DAGs and ceramides or impaired insulin signalling; (3) likely to involve substrate competition between glucose and lipid intermediates. TRIAL REGISTRATION ClinicalTrials.gov NCT02782208 FUNDING: The work was supported by the Grant for Growth Innovation (GGI), which was funded by Merck KGaA, Darmstadt, Germany. Graphical abstract.
Collapse
Affiliation(s)
- Astrid J Hjelholt
- Medical Research Laboratory, Department of Clinical Medicine, Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N, Denmark.
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus C, Denmark.
| | - Evelina Charidemou
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Steen B Pedersen
- Medical Research Laboratory, Department of Clinical Medicine, Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Anders Gudiksen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Pilegaard
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Niels Jessen
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus C, Denmark
- Steno Diabetes Centre Aarhus, Aarhus University Hospital, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Niels Møller
- Medical Research Laboratory, Department of Clinical Medicine, Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Jens O L Jørgensen
- Medical Research Laboratory, Department of Clinical Medicine, Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
254
|
Hahn J, Fu YP, Brown MR, Bis JC, de Vries PS, Feitosa MF, Yanek LR, Weiss S, Giulianini F, Smith AV, Guo X, Bartz TM, Becker DM, Becker LC, Boerwinkle E, Brody JA, Chen YDI, Franco OH, Grove M, Harris TB, Hofman A, Hwang SJ, Kral BG, Launer LJ, Markus MRP, Rice KM, Rich SS, Ridker PM, Rivadeneira F, Rotter JI, Sotoodehnia N, Taylor KD, Uitterlinden AG, Völker U, Völzke H, Yao J, Chasman DI, Dörr M, Gudnason V, Mathias RA, Post W, Psaty BM, Dehghan A, O’Donnell CJ, Morrison AC. Genetic loci associated with prevalent and incident myocardial infarction and coronary heart disease in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. PLoS One 2020; 15:e0230035. [PMID: 33186364 PMCID: PMC7665790 DOI: 10.1371/journal.pone.0230035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/26/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Genome-wide association studies have identified multiple genomic loci associated with coronary artery disease, but most are common variants in non-coding regions that provide limited information on causal genes and etiology of the disease. To overcome the limited scope that common variants provide, we focused our investigation on low-frequency and rare sequence variations primarily residing in coding regions of the genome. METHODS AND RESULTS Using samples of individuals of European ancestry from ten cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, both cross-sectional and prospective analyses were conducted to examine associations between genetic variants and myocardial infarction (MI), coronary heart disease (CHD), and all-cause mortality following these events. For prevalent events, a total of 27,349 participants of European ancestry, including 1831 prevalent MI cases and 2518 prevalent CHD cases were used. For incident cases, a total of 55,736 participants of European ancestry were included (3,031 incident MI cases and 5,425 incident CHD cases). There were 1,860 all-cause deaths among the 3,751 MI and CHD cases from six cohorts that contributed to the analysis of all-cause mortality. Single variant and gene-based analyses were performed separately in each cohort and then meta-analyzed for each outcome. A low-frequency intronic variant (rs988583) in PLCL1 was significantly associated with prevalent MI (OR = 1.80, 95% confidence interval: 1.43, 2.27; P = 7.12 × 10-7). We conducted gene-based burden tests for genes with a cumulative minor allele count (cMAC) ≥ 5 and variants with minor allele frequency (MAF) < 5%. TMPRSS5 and LDLRAD1 were significantly associated with prevalent MI and CHD, respectively, and RC3H2 and ANGPTL4 were significantly associated with incident MI and CHD, respectively. No loci were significantly associated with all-cause mortality following a MI or CHD event. CONCLUSION This study identified one known locus (ANGPTL4) and four new loci (PLCL1, RC3H2, TMPRSS5, and LDLRAD1) associated with cardiovascular disease risk that warrant further investigation.
Collapse
Affiliation(s)
- Julie Hahn
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Yi-Ping Fu
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Framingham Heart Study, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, Massachusetts, United States of America
| | - Michael R. Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Paul S. de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mary F. Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Lisa R. Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, The University Medicine and Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Albert Vernon Smith
- Icelandic Heart Association, Kovapvogur, Iceland
- Faculty of Medicine, University of Iceland, Reykajvik, Iceland
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Traci M. Bartz
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Biostatistics, The University of Washington, Seattle, Washington, United States of America
| | - Diane M. Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Lewis C. Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Oscar H. Franco
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Megan Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Tamara B. Harris
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Albert Hofman
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Shih-Jen Hwang
- Framingham Heart Study, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, Massachusetts, United States of America
| | - Brian G. Kral
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Lenore J. Launer
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marcello R. P. Markus
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B - Cardiology, Pneumology, Infectious Diseases, Intensive Care Medicine, The University Medicine Greifswald, Greifswald, Germany
| | - Kenneth M. Rice
- Department of Biostatistics, The University of Washington, Seattle, Washington, United States of America
| | - Stephen S. Rich
- Department of Medicine and Epidemiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Paul M. Ridker
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Nona Sotoodehnia
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - André G. Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, The University Medicine and Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Henry Völzke
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Daniel I. Chasman
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marcus Dörr
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B - Cardiology, Pneumology, Infectious Diseases, Intensive Care Medicine, The University Medicine Greifswald, Greifswald, Germany
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kovapvogur, Iceland
- Faculty of Medicine, University of Iceland, Reykajvik, Iceland
| | - Rasika A. Mathias
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Wendy Post
- Department of Medicine and Epidemiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Epidemiology, The University of Washington, Seattle, Washington, United States of America
- Department of Health Services, The University of Washington, Seattle, Washington, United States of America
- Kaiser Permanente Research Institute, Seattle, Washington, United States of America
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Christopher J. O’Donnell
- Framingham Heart Study, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- VA Boston Healthcare System, Veteran’s Affair, Boston, Massachusetts, United States of America
- Cardiovascular Medicine Division, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
255
|
Bi X, Kuwano T, Lee PC, Millar JS, Li L, Shen Y, Soccio RE, Hand NJ, Rader DJ. ILRUN, a Human Plasma Lipid GWAS Locus, Regulates Lipoprotein Metabolism in Mice. Circ Res 2020; 127:1347-1361. [PMID: 32912065 PMCID: PMC7644615 DOI: 10.1161/circresaha.120.317175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RATIONALE Single-nucleotide polymorphisms near the ILRUN (inflammation and lipid regulator with ubiquitin-associated-like and NBR1 [next to BRCA1 gene 1 protein]-like domains) gene are genome-wide significantly associated with plasma lipid traits and coronary artery disease (CAD), but the biological basis of this association is unknown. OBJECTIVE To investigate the role of ILRUN in plasma lipid and lipoprotein metabolism. METHODS AND RESULTS ILRUN encodes a protein that contains a ubiquitin-associated-like domain, suggesting that it may interact with ubiquitinylated proteins. We generated mice globally deficient for Ilrun and found they had significantly lower plasma cholesterol levels resulting from reduced liver lipoprotein production. Liver transcriptome analysis uncovered altered transcription of genes downstream of lipid-related transcription factors, particularly PPARα (peroxisome proliferator-activated receptor alpha), and livers from Ilrun-deficient mice had increased PPARα protein. Human ILRUN was shown to bind to ubiquitinylated proteins including PPARα, and the ubiquitin-associated-like domain of ILRUN was found to be required for its interaction with PPARα. CONCLUSIONS These findings establish ILRUN as a novel regulator of lipid metabolism that promotes hepatic lipoprotein production. Our results also provide functional evidence that ILRUN may be the casual gene underlying the observed genetic associations with plasma lipids at 6p21 in human.
Collapse
Affiliation(s)
- Xin Bi
- Division of Translational Medicine and Human Genetics, Department of Medicine; University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Takashi Kuwano
- Division of Translational Medicine and Human Genetics, Department of Medicine; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul C. Lee
- Division of Translational Medicine and Human Genetics, Department of Medicine; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John S. Millar
- Division of Translational Medicine and Human Genetics, Department of Medicine; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li Li
- Penn Cardiovascular Institute; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yachen Shen
- Department of Medicine; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raymond E. Soccio
- Department of Medicine; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas J. Hand
- Department of Genetics; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J. Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine; University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics; University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
256
|
Ibanez L, Heitsch L, Carrera C, Farias FH, Dhar R, Budde J, Bergmann K, Bradley J, Harari O, Phuah CL, Lemmens R, Souza AAVO, Moniche F, Cabezas-Juan A, Arenillas JF, Krupinksi J, Cullell N, Torres-Aguila N, Muiño E, Cárcel-Márquez J, Marti-Fabregas J, Delgado-Mederos R, Marin-Bueno R, Hornick A, Vives-Bauza C, Navarro RD, Tur S, Jimenez C, Obach V, Segura T, Serrano-Heras G, Chung JW, Roquer J, Soriano-Tarraga C, Giralt-Steinhauer E, Mola-Caminal M, Pera J, Lapicka-Bodzioch K, Derbisz J, Davalos A, Lopez-Cancio E, Muñoz L, Tatlisumak T, Molina C, Ribo M, Bustamante A, Sobrino T, Castillo-Sanchez J, Campos F, Rodriguez-Castro E, Arias-Rivas S, Rodríguez-Yáñez M, Herbosa C, Ford AL, Arauz A, Lopes-Cendes I, Lowenkopf T, Barboza MA, Amini H, Stamova B, Ander BP, Sharp FR, Kim GM, Bang OY, Jimenez-Conde J, Slowik A, Stribian D, Tsai EA, Burkly LC, Montaner J, Fernandez-Cadenas I, Lee JM, Cruchaga C. Multi-ancestry genetic study in 5,876 patients identifies an association between excitotoxic genes and early outcomes after acute ischemic stroke. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.10.29.20222257. [PMID: 33173895 PMCID: PMC7654887 DOI: 10.1101/2020.10.29.20222257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During the first hours after stroke onset neurological deficits can be highly unstable: some patients rapidly improve, while others deteriorate. This early neurological instability has a major impact on long-term outcome. Here, we aimed to determine the genetic architecture of early neurological instability measured by the difference between NIH stroke scale (NIHSS) within six hours of stroke onset and NIHSS at 24h (ΔNIHSS). A total of 5,876 individuals from seven countries (Spain, Finland, Poland, United States, Costa Rica, Mexico and Korea) were studied using a multi-ancestry meta-analyses. We found that 8.7% of ΔNIHSS variance was explained by common genetic variations, and also that early neurological instability has a different genetic architecture than that of stroke risk. Seven loci (2p25.1, 2q31.2, 2q33.3, 4q34.3, 5q33.2, 6q26 and 7p21.1) were genome-wide significant and explained 2.1% of the variability suggesting that additional variants influence early change in neurological deficits. We used functional genomics and bioinformatic annotation to identify the genes driving the association from each loci. eQTL mapping and SMR indicate that ADAM23 (log Bayes Factor (LBF)=6.34) was driving the association for 2q33.3. Gene based analyses suggested that GRIA1 (LBF=5.26), which is predominantly expressed in brain, is the gene driving the association for the 5q33.2 locus. These analyses also nominated PARK2 (LBF=5.30) and ABCB5 (LBF=5.70) for the 6q26 and 7p21.1 loci. Human brain single nuclei RNA-seq indicates that the gene expression of ADAM23 and GRIA1 is enriched in neurons. ADAM23 , a pre-synaptic protein, and GRIA1 , a protein subunit of the AMPA receptor, are part of a synaptic protein complex that modulates neuronal excitability. These data provides the first evidence in humans that excitotoxicity may contribute to early neurological instability after acute ischemic stroke. RESEARCH INTO CONTEXT Evidence before this study: No previous genome-wide association studies have investigated the genetic architecture of early outcomes after ischemic stroke.Added Value of this study: This is the first study that investigated genetic influences on early outcomes after ischemic stroke using a genome-wide approach, revealing seven genome-wide significant loci. A unique aspect of this genetic study is the inclusion of all of the major ethnicities by recruiting from participants throughout the world. Most genetic studies to date have been limited to populations of European ancestry.Implications of all available evidence: The findings provide the first evidence that genes implicating excitotoxicity contribute to human acute ischemic stroke, and demonstrates proof of principle that GWAS of acute ischemic stroke patients can reveal mechanisms involved in ischemic brain injury.
Collapse
Affiliation(s)
- Laura Ibanez
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Avenue, Saint Louis (63110), Missouri, US
- NeuroGenomics and Informatics, Washington University School of Medicine, 425 S. Euclid Avenue, Saint Louis (63110), Missouri, US
| | - Laura Heitsch
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue; Campus Box 8111; Saint Louis (63110), Missouri, US
- Emergency Medicine, Washington University School of Medicine, 660 S. Euclid Avenue; Campus Box 8072; Saint Louis (63110), Missouri, US
| | - Caty Carrera
- Stroke Unit, Vall d’Hebron University Hospital, Universitat de Barcelona, Passeig de la Vall d’Hebron, 1198; Barcelona (08035), Spain
| | - Fabiana H.G. Farias
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Avenue, Saint Louis (63110), Missouri, US
- NeuroGenomics and Informatics, Washington University School of Medicine, 425 S. Euclid Avenue, Saint Louis (63110), Missouri, US
| | - Rajat Dhar
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue; Campus Box 8111; Saint Louis (63110), Missouri, US
| | - John Budde
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Avenue, Saint Louis (63110), Missouri, US
- NeuroGenomics and Informatics, Washington University School of Medicine, 425 S. Euclid Avenue, Saint Louis (63110), Missouri, US
| | - Kristy Bergmann
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Avenue, Saint Louis (63110), Missouri, US
- NeuroGenomics and Informatics, Washington University School of Medicine, 425 S. Euclid Avenue, Saint Louis (63110), Missouri, US
| | - Joseph Bradley
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Avenue, Saint Louis (63110), Missouri, US
- NeuroGenomics and Informatics, Washington University School of Medicine, 425 S. Euclid Avenue, Saint Louis (63110), Missouri, US
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Avenue, Saint Louis (63110), Missouri, US
- NeuroGenomics and Informatics, Washington University School of Medicine, 425 S. Euclid Avenue, Saint Louis (63110), Missouri, US
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, 4488 Forest Park Avenue; Saint Louis (63110), Missouri, US
- Department of Neuroscience, Katholieke Universiteit Leuven, Campus Gasthuisberg O&N2; Herestraat 49 box 1021; Leuven (BE-3000), Belgium
| | - Chia-Ling Phuah
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue; Campus Box 8111; Saint Louis (63110), Missouri, US
| | - Robin Lemmens
- Department of Neuroscience, Katholieke Universiteit Leuven, Campus Gasthuisberg O&N2; Herestraat 49 box 1021; Leuven (BE-3000), Belgium
| | - Alessandro A. Viana Oliveira Souza
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), R. Tessalia Viera de Camargo, 126; Cidade Universitaria, Campinas (13083-887), Brazil
- Brazilian Institute of Neuroscience and Neurotecnology (BRAINN), R. Tessalia Viera de Camargo, 126; Cidade Universitaria, Campinas (13083-887), Brazil
| | - Francisco Moniche
- Department of neurology, Hospital Virgen del Rocio, University of Seville, Avenida Manuel Siurot, s/n; Seville (41013), Spain
| | - Antonio Cabezas-Juan
- Department of neurology, Hospital Virgen del Rocio, University of Seville, Avenida Manuel Siurot, s/n; Seville (41013), Spain
- Hospital Virgen de la Macarena, University of Seville, Calle Dr. Fedriani, 3; Seville (41009), Spain
| | - Juan Francisco Arenillas
- Department of Neurology, Hospital Clinico Universitario Valladolid, Valladolid University, Avenida Ramon y Cajal, 3; Valladolid (47003), Spain
| | - Jerzy Krupinksi
- Department of Neurology, Mutua Terrassa University Hospital, Universitat de Barcelona, Plaça del Dr. Robert, 5; Terrassa (08221), Spain
- Fundacio Docencia i Recerca Mutua Terrassa, Universitat de Barcelona, Carrer Sant Antoni, 19; Terrassa (08221), Spain
| | - Natalia Cullell
- Fundacio Docencia i Recerca Mutua Terrassa, Universitat de Barcelona, Carrer Sant Antoni, 19; Terrassa (08221), Spain
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Carrer de Sant Quinti, 89; Barcelona (08041), Spain
| | - Nuria Torres-Aguila
- Fundacio Docencia i Recerca Mutua Terrassa, Universitat de Barcelona, Carrer Sant Antoni, 19; Terrassa (08221), Spain
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Carrer de Sant Quinti, 89; Barcelona (08041), Spain
| | - Elena Muiño
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Carrer de Sant Quinti, 89; Barcelona (08041), Spain
| | - Jara Cárcel-Márquez
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Carrer de Sant Quinti, 89; Barcelona (08041), Spain
| | - Joan Marti-Fabregas
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Carrer de Sant Quinti, 89; Barcelona (08041), Spain
| | - Raquel Delgado-Mederos
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Carrer de Sant Quinti, 89; Barcelona (08041), Spain
| | - Rebeca Marin-Bueno
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Carrer de Sant Quinti, 89; Barcelona (08041), Spain
| | - Alejandro Hornick
- Department of Neurology, Southern Illinois Healthcare Memorial Hospital of Carbondale, 405 W Jackson Street, Carbondale (62901), Illinois, US
| | - Cristofol Vives-Bauza
- Department of Biology, Universitat de les Illes Balears, Carretera de Valldemossa, km 7,5, Palma (07122), Spain
| | - Rosa Diaz Navarro
- Department of Neurology, Hospital Universitari Son Espases, Universitat de les Illes Balears, Carretera de Valldemossa, 79, Palma (07120), Spain
| | - Silvia Tur
- Department of Neurology, Hospital Universitari Son Espases, Universitat de les Illes Balears, Carretera de Valldemossa, 79, Palma (07120), Spain
| | - Carmen Jimenez
- Department of Neurology, Hospital Universitari Son Espases, Universitat de les Illes Balears, Carretera de Valldemossa, 79, Palma (07120), Spain
| | - Victor Obach
- Department of Neurology, Hospital Clinic de Barcelona, Universitat de Barcelona, Carrer Villarroel, 170, Barcelona (08036), Spain
| | - Tomas Segura
- Research Unit, Complejo Hospitalario Universitario de Albacete. Calle Laurel s/n. Albacete (02008), Spain
| | - Gemma Serrano-Heras
- Research Unit, Complejo Hospitalario Universitario de Albacete. Calle Laurel s/n. Albacete (02008), Spain
| | - Jong-Won Chung
- Department of Neurology, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, South Korea
| | - Jaume Roquer
- Neurovascular Research Group, Institut Hospital del Mar de Investigations Mediques, Passeig Maritim, 25-29, Barcelona (08003), Spain
| | - Carol Soriano-Tarraga
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Avenue, Saint Louis (63110), Missouri, US
- NeuroGenomics and Informatics, Washington University School of Medicine, 425 S. Euclid Avenue, Saint Louis (63110), Missouri, US
- Neurovascular Research Group, Institut Hospital del Mar de Investigations Mediques, Passeig Maritim, 25-29, Barcelona (08003), Spain
| | - Eva Giralt-Steinhauer
- Neurovascular Research Group, Institut Hospital del Mar de Investigations Mediques, Passeig Maritim, 25-29, Barcelona (08003), Spain
| | - Marina Mola-Caminal
- Neurovascular Research Group, Institut Hospital del Mar de Investigations Mediques, Passeig Maritim, 25-29, Barcelona (08003), Spain
- Department of Surgical Sciences, Orthopedics, Uppsala University, Uppsala, 75185, Sweden
| | - Joanna Pera
- Department of Neurology, Jagiellonian University, Golebia, 24, Krakow(31-007), Poland
| | | | - Justyna Derbisz
- Department of Neurology, Jagiellonian University, Golebia, 24, Krakow(31-007), Poland
| | - Antoni Davalos
- Department of Neurology, Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Carretera de Canyet, s/n; Badalona (08916), Spain
| | - Elena Lopez-Cancio
- Department of Neurology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Lucia Muñoz
- Department of Neurology, Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Carretera de Canyet, s/n; Badalona (08916), Spain
| | - Turgut Tatlisumak
- Department of Neurology, Sahlgrenska University Hospital, University of Gothenburg, Bla straket, 5; Gothenburg (413 45), Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Carlos Molina
- Stroke Unit, Vall d’Hebron University Hospital, Universitat de Barcelona, Passeig de la Vall d’Hebron, 1198; Barcelona (08035), Spain
| | - Marc Ribo
- Stroke Unit, Vall d’Hebron University Hospital, Universitat de Barcelona, Passeig de la Vall d’Hebron, 1198; Barcelona (08035), Spain
| | - Alejandro Bustamante
- Department of Neurology, Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Carretera de Canyet, s/n; Badalona (08916), Spain
| | - Tomas Sobrino
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Avda. Travesa da Choupana s/n; Santiago de Compostela (15706), Spain
| | - Jose Castillo-Sanchez
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Avda. Travesa da Choupana s/n; Santiago de Compostela (15706), Spain
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Avda. Travesa da Choupana s/n; Santiago de Compostela (15706), Spain
| | - Emilio Rodriguez-Castro
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Avda. Travesa da Choupana s/n; Santiago de Compostela (15706), Spain
| | - Susana Arias-Rivas
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Avda. Travesa da Choupana s/n; Santiago de Compostela (15706), Spain
| | - Manuel Rodríguez-Yáñez
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Avda. Travesa da Choupana s/n; Santiago de Compostela (15706), Spain
| | - Christina Herbosa
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue; Campus Box 8111; Saint Louis (63110), Missouri, US
| | - Andria L. Ford
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue; Campus Box 8111; Saint Louis (63110), Missouri, US
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660 S. Euclid Avenue; Campus Box 8111; Saint Louis (63110), Missouri, US
- Department of Radiology, Washington University School of Medicine, 660 S. Euclid Avenue, Saint Louis (63110), Missouri, US
| | - Antonio Arauz
- Instituto Nacional de Neurologia y Neurocirurgia de Mexico, Avenida Insurgentes Sur 3877, Ciudad de Mexico (14269), Mexico
| | - Iscia Lopes-Cendes
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), R. Tessalia Viera de Camargo, 126; Cidade Universitaria, Campinas (13083-887), Brazil
- Brazilian Institute of Neuroscience and Neurotecnology (BRAINN), R. Tessalia Viera de Camargo, 126; Cidade Universitaria, Campinas (13083-887), Brazil
| | - Theodore Lowenkopf
- Department of Neurology, Providence St. Vincent Medical Center, 9205 SW Barnes Rd, Portland (97225), Oregon, US
| | - Miguel A. Barboza
- Neurosciences Department, Hospital Rafael A. Calderon Guardia, Avenidas 7 y 9, calles 15 y 17, Aranjuez, San José, Costa Rica
| | - Hajar Amini
- Department of Neurology and MIND Institute, University of California at Davis, 2825 5 street, Sacramento (95817), California, US
| | - Boryana Stamova
- Department of Neurology and MIND Institute, University of California at Davis, 2825 5 street, Sacramento (95817), California, US
| | - Bradley P. Ander
- Department of Neurology and MIND Institute, University of California at Davis, 2825 5 street, Sacramento (95817), California, US
| | - Frank R Sharp
- Department of Neurology and MIND Institute, University of California at Davis, 2825 5 street, Sacramento (95817), California, US
| | - Gyeong Moon Kim
- Department of Neurology, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, South Korea
| | - Oh Young Bang
- Department of Neurology, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, South Korea
| | - Jordi Jimenez-Conde
- Neurovascular Research Group, Institut Hospital del Mar de Investigations Mediques, Passeig Maritim, 25-29, Barcelona (08003), Spain
| | - Agnieszka Slowik
- Department of Neurology, Jagiellonian University, Golebia, 24, Krakow(31-007), Poland
| | - Daniel Stribian
- Department of Neurology, Helsinki University Hospital, Haartmaninkatu 4 Rakennus 1, Helsinki (00290), Finland
| | - Ellen A. Tsai
- Translational Biology, Biogen, Inc, 115 Brodway, Cambridge (02142), Massachusetts, US
| | - Linda C. Burkly
- Genetics and Neurodevelomental Disease Research Unit, Biogen, Inc, 115 Brodway, Cambridge (02142), Massachusetts, US
| | - Joan Montaner
- Stroke Unit, Vall d’Hebron University Hospital, Universitat de Barcelona, Passeig de la Vall d’Hebron, 1198; Barcelona (08035), Spain
- Department of neurology, Hospital Virgen del Rocio, University of Seville, Avenida Manuel Siurot, s/n; Seville (41013), Spain
- Hospital Virgen de la Macarena, University of Seville, Calle Dr. Fedriani, 3; Seville (41009), Spain
| | - Israel Fernandez-Cadenas
- Stroke Unit, Vall d’Hebron University Hospital, Universitat de Barcelona, Passeig de la Vall d’Hebron, 1198; Barcelona (08035), Spain
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Carrer de Sant Quinti, 89; Barcelona (08041), Spain
| | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue; Campus Box 8111; Saint Louis (63110), Missouri, US
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660 S. Euclid Avenue; Campus Box 8111; Saint Louis (63110), Missouri, US
- Department of Radiology, Washington University School of Medicine, 660 S. Euclid Avenue, Saint Louis (63110), Missouri, US
- Department of Biomedical Engineering, Washington University School of Medicine, 660 S. Euclid Avenue, Saint Louis (63110), Missouri, US
- Stroke and Cerebrovascular Center, Washington University School of Medicine, One Barnes-Jewish Hospital Plaza, Saint Louis (63110), Missouri, US
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Avenue, Saint Louis (63110), Missouri, US
- NeuroGenomics and Informatics, Washington University School of Medicine, 425 S. Euclid Avenue, Saint Louis (63110), Missouri, US
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue; Campus Box 8111; Saint Louis (63110), Missouri, US
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660 S. Euclid Avenue; Campus Box 8111; Saint Louis (63110), Missouri, US
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, 4488 Forest Park Avenue; Saint Louis (63110), Missouri, US
- Department of Genetics, Washington University School of Medicine, 4515 McKinley Ave, Saint Louis (63110), Missouri, US
| |
Collapse
|
257
|
Tada H, Shibayama J, Nishikawa T, Okada H, Nomura A, Usui S, Sakata K, Hashiba A, Inazu A, Takamura M, Kawashiri MA. Prevalence, self-awareness, and LDL cholesterol levels among patients highly suspected as familial hypercholesterolemia in a Japanese community. Pract Lab Med 2020; 22:e00181. [PMID: 33134467 PMCID: PMC7585140 DOI: 10.1016/j.plabm.2020.e00181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/15/2020] [Indexed: 11/30/2022] Open
Abstract
Backgrounds The prevalence of familial hypercholesterolemia (FH) among Japanese populations is still unclear. In addition, no prior data exist regarding the self-awareness. Accordingly, we aimed to investigate the prevalence, self-awareness, and LDL-C of patients with highly suspected as FH using data obtained in a community-based medical checkups. Methods This study included 52,276 subjects (18,588 men, 35.6%) aged ≥40 years who underwent the Japanese specific health checkup in Kanazawa City during 2018. We assessed the self-awareness of dyslipidemia (and the age) as well as the prevalence of patients with highly suspected as FH whose naïve LDL-C levels were ≥250 mg/dl. Naïve LDL-C levels were estimated by the adjustment (LDL-C/0.7) for those on lipid-lowering medication. We divided subjects into 3 groups based on their naïve LDL cholesterol level (≥250 mg/dl, 140–249, and ≤139 mg/dl). Results We identified 262 (0.5%) individuals highly suspected as FH whose naïve LDL-C levels were ≥250 mg/dl. Most of them (234 among 262, 89%) were under lipid-lowering medication; however, the self-awareness as dyslipidemia was not quite high (200 among 262, 76%), and their mean LDL-C level under lipid-lowering medication was 203 ± 35 mg/dl. Interestingly, the age of acknowledgement of dyslipidemia among the patients with highly suspected as FH was significantly younger than those in other categories (58 vs. 60/62 yrs, respectively, p < 0.05 for both). Conclusions The prevalence of patients highly suspected as FH was around 1 in 200, and their self-awareness as well as control were not still good enough among Japanese general populations.
Collapse
Affiliation(s)
- Hayato Tada
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Junichi Shibayama
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Tetsuo Nishikawa
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hirofumi Okada
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Akihiro Nomura
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Soichiro Usui
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kenji Sakata
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | | | - Akihiro Inazu
- Department of Laboratory Science, Molecular Biochemistry and Molecular Biology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Masa-Aki Kawashiri
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
258
|
Morandi A, Di Sessa A, Zusi C, Umano GR, El Mazloum D, Fornari E, Miraglia Del Giudice E, Targher G, Maffeis C. Nonalcoholic Fatty Liver Disease and Estimated Insulin Resistance in Obese Youth: A Mendelian Randomization Analysis. J Clin Endocrinol Metab 2020; 105:5897057. [PMID: 32841326 DOI: 10.1210/clinem/dgaa583] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
CONTEXT Nonalcoholic fatty liver disease (NAFLD) is associated with insulin resistance (IR) and predicts type 2 diabetes. Currently, it is uncertain whether NAFLD may directly cause IR or vice versa. OBJECTIVE To test the hypothesis that NAFLD is causally related to IR. DESIGN AND METHODS We performed a Mendelian randomization (MR) in 904 obese children/adolescents using an NAFLD-related genetic risk score (GRS) as an instrumental variable. We assessed NAFLD by ultrasonography and IR by homeostasis model assessment (HOMA-IR). We also interrogated the MAGIC Consortium dataset of 46 186 adults to assess the association between PNPLA3 rs738409 (ie, the most robust NAFLD-related polymorphism) and HOMA-IR, and we performed a 2-sample MR with 2 large datasets to test reverse causation (HOMA-IR increasing the risk of NAFLD). RESULTS Nonalcoholic fatty liver disease prevalence increased by 20% for every increase in the GRS (β-coefficient = 0.20, P < 0.001), and NAFLD was associated with ln-HOMA-IR (β-coefficient = 0.28, P < 0.001). Thus, the expected increase in ln-HOMA-IR for every increase in the GRS (expected β-coefficient) was 0.056 (0.28*0.20) in the case of complete NAFLD-HOMA-IR causal association, and 0.042 in the case of 75% causality. In our cohort, the GRS did not predict ln-HOMA-IR (β-coefficient = 0.007, P = 0.75). In the MAGIC cohort, the PNPLA3 rs738409 did not associate with ln-HOMA-IR. The 2-sample MR failed to show a causal association between ln-HOMA-IR and NAFLD. CONCLUSIONS Our study shows that genetically-influenced NAFLD does not increase HOMA-IR, and genetically-influenced HOMA-IR does not increase the risk of NAFLD. Shared pathogenic pathways or NAFLD subtypes not "captured" by our MR design might underpin the association between NAFLD and HOMA-IR.
Collapse
Affiliation(s)
- Anita Morandi
- Regional Centre for Pediatric Diabetes, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Anna Di Sessa
- Regional Centre for Pediatric Diabetes, Department of Pediatrics, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Chiara Zusi
- Regional Centre for Pediatric Diabetes, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Giuseppina Rosaria Umano
- Regional Centre for Pediatric Diabetes, Department of Pediatrics, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Dania El Mazloum
- Regional Centre for Pediatric Diabetes, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Elena Fornari
- Regional Centre for Pediatric Diabetes, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Emanuele Miraglia Del Giudice
- Regional Centre for Pediatric Diabetes, Department of Pediatrics, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Claudio Maffeis
- Regional Centre for Pediatric Diabetes, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| |
Collapse
|
259
|
Xue H, Pan W. Inferring causal direction between two traits in the presence of horizontal pleiotropy with GWAS summary data. PLoS Genet 2020; 16:e1009105. [PMID: 33137120 PMCID: PMC7660933 DOI: 10.1371/journal.pgen.1009105] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/12/2020] [Accepted: 09/08/2020] [Indexed: 01/14/2023] Open
Abstract
Orienting the causal relationship between pairs of traits is a fundamental task in scientific research with significant implications in practice, such as in prioritizing molecular targets and modifiable risk factors for developing therapeutic and interventional strategies for complex diseases. A recent method, called Steiger's method, using a single SNP as an instrument variable (IV) in the framework of Mendelian randomization (MR), has since been widely applied. We report the following new contributions. First, we propose a single SNP-based alternative, overcoming a severe limitation of Steiger's method in simply assuming, instead of inferring, the existence of a causal relationship. We also clarify a condition necessary for the validity of the methods in the presence of hidden confounding. Second, to improve statistical power, we propose combining the results from multiple, and possibly correlated, SNPs as multiple instruments. Third, we develop three goodness-of-fit tests to check modeling assumptions, including those required for valid IVs. Fourth, by relaxing one of the three IV assumptions in MR, we propose several methods, including an Egger regression-like approach and its multivariable version (analogous to multivariable MR), to account for horizontal pleiotropy of the SNPs/IVs, which is often unavoidable in practice. All our methods can simultaneously infer both the existence and (if so) the direction of a causal relationship, largely expanding their applicability over that of Steiger's method. Although we focus on uni-directional causal relationships, we also briefly discuss an extension to bi-directional relationships. Through extensive simulations and an application to infer the causal directions between low density lipoprotein (LDL) cholesterol, or high density lipoprotein (HDL) cholesterol, and coronary artery disease (CAD), we demonstrate the superior performance and advantage of our proposed methods over Steiger's method and bi-directional MR. In particular, after accounting for horizontal pleiotropy, our method confirmed the well known causal direction from LDL to CAD, while other methods, including bi-directional MR, might fail.
Collapse
Affiliation(s)
- Haoran Xue
- School of Statistics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wei Pan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
260
|
Kandarakov O, Belyavsky A. Clonal Hematopoiesis, Cardiovascular Diseases and Hematopoietic Stem Cells. Int J Mol Sci 2020; 21:ijms21217902. [PMID: 33114351 PMCID: PMC7663255 DOI: 10.3390/ijms21217902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases and cancer, the leading causes of morbidity and mortality in the elderly, share some common mechanisms, in particular inflammation, contributing to their progression and pathogenesis. However, somatic mutagenesis, a driving force in cancer development, has not been generally considered as an important factor in cardiovascular disease pathology. Recent studies demonstrated that during normal aging, somatic mutagenesis occurs in blood cells, often resulting in expansion of mutant clones that dominate hematopoiesis at advanced age. This clonal hematopoiesis is primarily associated with mutations in certain leukemia-related driver genes and, being by itself relatively benign, not only increases the risks of subsequent malignant hematopoietic transformation, but, unexpectedly, has a significant impact on progression of atherosclerosis and cardiovascular diseases. In this review, we discuss the phenomenon of clonal hematopoiesis, the most important genes involved in it, its impact on cardiovascular diseases, and relevant aspects of hematopoietic stem cell biology.
Collapse
|
261
|
Xu YX, Stanclift C, Nagai TH, Yu H, Vellarikkal SK, Deik A, Bullock K, Schenone M, Cowan C, Clish CB, Carr S, Kathiresan S. Interactomics Analyses of Wild-Type and Mutant A1CF Reveal Diverged Functions in Regulating Cellular Lipid Metabolism. J Proteome Res 2020; 19:3968-3980. [PMID: 32786677 DOI: 10.1021/acs.jproteome.0c00235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Population genetic studies highlight a missense variant (G398S) of A1CF that is strongly associated with higher levels of blood triglycerides (TGs) and total cholesterol (TC). Functional analyses suggest that the mutation accelerates the secretion of very low-density lipoprotein (VLDL) from the liver by an unknown mechanism. Here, we used multiomics approaches to interrogate the functional difference between the WT and mutant A1CF. Using metabolomics analyses, we captured the cellular lipid metabolite changes induced by transient expression of the proteins, confirming that the mutant A1CF is able to relieve the TG accumulation induced by WT A1CF. Using a proteomics approach, we obtained the interactomic data of WT and mutant A1CF. Networking analyses show that WT A1CF interacts with three functional protein groups, RNA/mRNA processing, cytosolic translation, and, surprisingly, mitochondrial translation. The mutation diminishes these interactions, especially with the group of mitochondrial translation. Differential analyses show that the WT A1CF-interacting proteins most significantly different from the mutant are those for mitochondrial translation, whereas the most significant interacting proteins with the mutant are those for cytoskeleton and vesicle-mediated transport. RNA-seq analyses validate that the mutant, but not the WT, A1CF increases the expression of the genes responsible for cellular transport processes. On the contrary, WT A1CF affected the expression of mitochondrial matrix proteins and increased cell oxygen consumption. Thus, our studies confirm the previous hypothesis that A1CF plays broader roles in regulating gene expression. The interactions of the mutant A1CF with the vesicle-mediated transport machinery provide mechanistic insight in understanding the increased VLDL secretion in the A1CF mutation carriers.
Collapse
Affiliation(s)
- Yu-Xin Xu
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Caroline Stanclift
- The Proteomics Platform, Broad Institute, Cambridge, Massachusetts 02142, United States
| | - Taylor Hanta Nagai
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Haojie Yu
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | | | - Amy Deik
- The Metabolomics Program, Broad Institute, Cambridge, Massachusetts 02142, United States
| | - Kevin Bullock
- The Metabolomics Program, Broad Institute, Cambridge, Massachusetts 02142, United States
| | - Monica Schenone
- The Proteomics Platform, Broad Institute, Cambridge, Massachusetts 02142, United States
| | - Chad Cowan
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Clary B Clish
- The Metabolomics Program, Broad Institute, Cambridge, Massachusetts 02142, United States
| | - Steven Carr
- The Proteomics Platform, Broad Institute, Cambridge, Massachusetts 02142, United States
| | - Sekar Kathiresan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| |
Collapse
|
262
|
Deprince A, Haas JT, Staels B. Dysregulated lipid metabolism links NAFLD to cardiovascular disease. Mol Metab 2020; 42:101092. [PMID: 33010471 PMCID: PMC7600388 DOI: 10.1016/j.molmet.2020.101092] [Citation(s) in RCA: 308] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is rapidly becoming a global health problem. Cardiovascular diseases (CVD) are the most common cause of mortality in NAFLD patients. NAFLD and CVD share several common risk factors including obesity, insulin resistance, and type 2 diabetes (T2D). Atherogenic dyslipidemia, characterized by plasma hypertriglyceridemia, increased small dense low-density lipoprotein (LDL) particles, and decreased high-density lipoprotein cholesterol (HDL-C) levels, is often observed in NAFLD patients. Scope of review In this review, we highlight recent epidemiological studies evaluating the link between NAFLD and CVD risk. We further focus on recent mechanistic insights into the links between NAFLD and altered lipoprotein metabolism. We also discuss current therapeutic strategies for NAFLD and their potential impact on NAFLD-associated CVD risk. Major conclusions Alterations in hepatic lipid and lipoprotein metabolism are major contributing factors to the increased CVD risk in NAFLD patients, and many promising NASH therapies in development also improve dyslipidemia in clinical trials.
Collapse
Affiliation(s)
- Audrey Deprince
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000, Lille, France
| | - Joel T Haas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000, Lille, France.
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000, Lille, France.
| |
Collapse
|
263
|
Merino J, Rotter JI. LDL Cholesterol and Dysglycemia: an Intriguing Physiological Relationship. Diabetes 2020; 69:2058-2060. [PMID: 32958607 PMCID: PMC7506830 DOI: 10.2337/dbi20-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Jordi Merino
- Diabetes Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Research Unit on Lipids and Atherosclerosis, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Torrance, CA
- Division of Genomic Outcomes, Departments of Pediatrics and Medicine, Harbor-UCLA Medical Center, Torrance, CA
- Departments of Pediatrics and Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
264
|
Klimentidis YC, Arora A, Newell M, Zhou J, Ordovas JM, Renquist BJ, Wood AC. Phenotypic and Genetic Characterization of Lower LDL Cholesterol and Increased Type 2 Diabetes Risk in the UK Biobank. Diabetes 2020; 69:2194-2205. [PMID: 32493714 PMCID: PMC7506834 DOI: 10.2337/db19-1134] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/29/2020] [Indexed: 01/03/2023]
Abstract
Although hyperlipidemia is traditionally considered a risk factor for type 2 diabetes (T2D), evidence has emerged from statin trials and candidate gene investigations suggesting that lower LDL cholesterol (LDL-C) increases T2D risk. We thus sought to more comprehensively examine the phenotypic and genotypic relationships of LDL-C with T2D. Using data from the UK Biobank, we found that levels of circulating LDL-C were negatively associated with T2D prevalence (odds ratio 0.41 [95% CI 0.39, 0.43] per mmol/L unit of LDL-C), despite positive associations of circulating LDL-C with HbA1c and BMI. We then performed the first genome-wide exploration of variants simultaneously associated with lower circulating LDL-C and increased T2D risk, using data on LDL-C from the UK Biobank (n = 431,167) and the Global Lipids Genetics Consortium (n = 188,577), and data on T2D from the Diabetes Genetics Replication and Meta-Analysis consortium (n = 898,130). We identified 31 loci associated with lower circulating LDL-C and increased T2D, capturing several potential mechanisms. Seven of these loci have previously been identified for this dual phenotype, and nine have previously been implicated in nonalcoholic fatty liver disease. These findings extend our current understanding of the higher T2D risk among individuals with low circulating LDL-C and of the underlying mechanisms, including those responsible for the diabetogenic effect of LDL-C-lowering medications.
Collapse
Affiliation(s)
- Yann C Klimentidis
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ
- BIO5 Institute, University of Arizona, Tucson, AZ
| | - Amit Arora
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ
| | - Michelle Newell
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ
| | - Jin Zhou
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ
| | - Jose M Ordovas
- Nutrition and Genomics Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA
- Instituto Madrileño de Estudios Avanzados (IMDEA) Food Institute, Campus de Excelencia Internacional Universidad Autónoma de Madrid + Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Benjamin J Renquist
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ
| | - Alexis C Wood
- U.S. Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX
| |
Collapse
|
265
|
Li X, Zhang Y, Zhang M, Wang Y. GALNT2 regulates ANGPTL3 cleavage in cells and in vivo of mice. Sci Rep 2020; 10:16168. [PMID: 32999434 PMCID: PMC7527996 DOI: 10.1038/s41598-020-73388-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/16/2020] [Indexed: 01/23/2023] Open
Abstract
Angiopoietin-like protein 3 (ANGPTL3) is an important inhibitor of lipoprotein lipase and endothelial lipase that plays critical roles in lipoprotein metabolism. It specifically expresses in the liver and undergoes proprotein convertase-mediated cleavage during secretion, which generates an N-terminal coiled-coil domain and C-terminal fibrinogen-like domain that has been considered as the activation step for its function. Previous studies have reported that the polypeptide GalNAc-transferase GALNT2 mediates the O-glycosylation of the ANGPTL3 near the cleavage site, which inhibits the proprotein convertase (PC)-mediated cleavage in vitro and in cultured cells. However, loss-of-function mutation for GALNT2 has no effect on ANGPTL3 cleavage in human. Thus whether GALNT2 regulates the cleavage of ANGPTL3 in vivo is unclear. In present study, we systematically characterized the cleavage of Angptl3 in cultured cells and in vivo of mice. We found that endogenous Angptl3 is cleaved in primary hepatocytes and in vivo of mice, and this cleavage can be blocked by Galnt2 overexpression or PC inhibition. Moreover, suppressing galnt2 expression increases the cleavage of Angptl3 in mice dramatically. Thus, our results support the conclusion that Galnt2 is a key endogenous regulator for Angptl3 cleavage both in vitro and in vivo.
Collapse
Affiliation(s)
- Xuedan Li
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yiliang Zhang
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Minzhu Zhang
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
266
|
Parikh NS, Dueker N, Varela D, Del Brutto VJ, Rundek T, Wright CB, Sacco RL, Elkind MSV, Gutierrez J. Association between PNPLA3 rs738409 G variant and MRI cerebrovascular disease biomarkers. J Neurol Sci 2020; 416:116981. [PMID: 32592869 DOI: 10.1016/j.jns.2020.116981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) has been associated with greater cerebral white matter hyperintensity (WMH) volume and microbleeds. The adiponutrin (PNPLA3) rs738409 G variant, a robust NAFLD susceptibility variant, has been variably associated with carotid atherosclerosis. We hypothesized that this variant is associated with WMH volume, microbleeds, covert brain infarction (CBI), and small perivascular spaces. METHODS We performed a cross-sectional analysis of the Northern Manhattan Study-MRI Substudy. The associations between the rs738409 G variant allele and outcomes were assessed using linear regression for WMH volume, logistic regression for microbleeds and CBI, and Poisson regression for small perivascular spaces. Models were adjusted for age, sex, principal components, diabetes, and body mass index. RESULTS We included 1063 Northern Manhattan Study participants who had brain MRI and genotype data available (mean age 70 ± 9 years, 61% women). The G allele frequency was 24%. The prevalence of any microbleeds and CBI were 8% and 18%, respectively. The median WMH volume and small perivascular space count score were 7.7 mL and 6, respectively. GG homozygosity, but not heterozygosity, was associated with WMH volume (β = 0.27; 95% CI, 0.03, 0.51) compared to non-carriers. Having at least one G allele was associated with the presence of microbleeds (Odds ratio, 1.78; 95% CI, 1.02, 3.12); the association was attenuated in other models. No associations were observed for CBI and small perivascular spaces. CONCLUSION The PNPLA3 rs738409 G allele was associated with greater WMH volume, and inconsistent associations with microbleeds were seen.
Collapse
Affiliation(s)
- Neal S Parikh
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Nicole Dueker
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Dalila Varela
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Victor J Del Brutto
- Department of Neurology, Epidemiology and Public Health, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Tatjana Rundek
- Department of Neurology, Epidemiology and Public Health, Miller School of Medicine, University of Miami, Miami, FL, USA; Evelyn F. McKnight Brain Institute, University of Miami, Miami, FL, USA
| | - Clinton B Wright
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ralph L Sacco
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Department of Neurology, Epidemiology and Public Health, Miller School of Medicine, University of Miami, Miami, FL, USA; Evelyn F. McKnight Brain Institute, University of Miami, Miami, FL, USA
| | - Mitchell S V Elkind
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jose Gutierrez
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
267
|
Barbeira AN, Melia OJ, Liang Y, Bonazzola R, Wang G, Wheeler HE, Aguet F, Ardlie KG, Wen X, Im HK. Fine-mapping and QTL tissue-sharing information improves the reliability of causal gene identification. Genet Epidemiol 2020; 44:854-867. [PMID: 32964524 PMCID: PMC7693040 DOI: 10.1002/gepi.22346] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 01/01/2023]
Abstract
The integration of transcriptomic studies and genome-wide association studies (GWAS) via imputed expression has seen extensive application in recent years, enabling the functional characterization and causal gene prioritization of GWAS loci. However, the techniques for imputing transcriptomic traits from DNA variation remain underdeveloped. Furthermore, associations found when linking eQTL studies to complex traits through methods like PrediXcan can lead to false positives due to linkage disequilibrium between distinct causal variants. Therefore, the best prediction performance models may not necessarily lead to more reliable causal gene discovery. With the goal of improving discoveries without increasing false positives, we develop and compare multiple transcriptomic imputation approaches using the most recent GTEx release of expression and splicing data on 17,382 RNA-sequencing samples from 948 post-mortem donors in 54 tissues. We find that informing prediction models with posterior causal probability from fine-mapping (dap-g) and borrowing information across tissues (mashr) can lead to better performance in terms of number and proportion of significant associations that are colocalized and the proportion of silver standard genes identified as indicated by precision-recall and receiver operating characteristic curves. All prediction models are made publicly available at predictdb.org.
Collapse
Affiliation(s)
- Alvaro N. Barbeira
- Section of Genetic Medicine, Department of MedicineThe University of ChicagoChicagoIllinois
| | - Owen J. Melia
- Section of Genetic Medicine, Department of MedicineThe University of ChicagoChicagoIllinois
| | - Yanyu Liang
- Section of Genetic Medicine, Department of MedicineThe University of ChicagoChicagoIllinois
| | - Rodrigo Bonazzola
- Section of Genetic Medicine, Department of MedicineThe University of ChicagoChicagoIllinois
| | - Gao Wang
- Department of Human GeneticsThe University of ChicagoChicagoIllinois
| | - Heather E. Wheeler
- Department of BiologyLoyola University ChicagoChicagoIllinois
- Department of Computer ScienceLoyola University ChicagoChicagoIllinois
- Department of Public Health Sciences, Stritch School of MedicineLoyola University ChicagoMaywoodIllinois
| | - François Aguet
- The Broad Institute of MIT and HarvardCambridgeMassachusetts
| | | | - Xiaoquan Wen
- Department of BiostatisticsUniversity of MichiganAnn ArborMichigan
| | - Hae K. Im
- Section of Genetic Medicine, Department of MedicineThe University of ChicagoChicagoIllinois
- Department of Human GeneticsThe University of ChicagoChicagoIllinois
| |
Collapse
|
268
|
Nikolaou KC, Vatandaslar H, Meyer C, Schmid MW, Tuschl T, Stoffel M. The RNA-Binding Protein A1CF Regulates Hepatic Fructose and Glycerol Metabolism via Alternative RNA Splicing. Cell Rep 2020; 29:283-300.e8. [PMID: 31597092 DOI: 10.1016/j.celrep.2019.08.100] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/09/2019] [Accepted: 08/29/2019] [Indexed: 01/11/2023] Open
Abstract
The regulation of hepatic gene expression has been extensively studied at the transcriptional level; however, the control of metabolism through posttranscriptional gene regulation by RNA-binding proteins in physiological and disease states is less understood. Here, we report a major role for the hormone-sensitive RNA-binding protein (RBP) APOBEC1 complementation factor (A1CF) in the generation of hepatocyte-specific and alternatively spliced transcripts. Among these transcripts are isoforms for the dominant and high-affinity fructose-metabolizing ketohexokinase C and glycerol kinase, two key metabolic enzymes that are linked to hepatic gluconeogenesis and found to be markedly reduced upon hepatic ablation of A1cf. Consequently, mice lacking A1CF exhibit improved glucose tolerance and are protected from fructose-induced hyperglycemia, hepatic steatosis, and development of obesity. Our results identify a previously unreported function of A1CF as a regulator of alternative splicing of a subset of genes influencing hepatic glucose production through fructose and glycerol metabolism.
Collapse
Affiliation(s)
- Kostas C Nikolaou
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Hasan Vatandaslar
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Cindy Meyer
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Marc W Schmid
- MWSchmid GmbH, Möhrlistrasse 25, 8006 Zurich, Switzerland
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland; Medical Faculty, University of Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
269
|
Williams DM, Bandres-Ciga S, Heilbron K, Hinds D, Noyce AJ. Evaluating Lipid-Lowering Drug Targets for Parkinson's Disease Prevention with Mendelian Randomization. Ann Neurol 2020; 88:1043-1047. [PMID: 32841444 PMCID: PMC7693098 DOI: 10.1002/ana.25880] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 11/22/2022]
Abstract
Long‐term exposure to lipid‐lowering drugs might affect Parkinson's disease (PD) risk. We conducted Mendelian randomization analyses where genetic variants indexed expected effects of modulating lipid‐lowering drug targets on PD. Statin exposure was not predicted to increase PD risk, although results were not precise enough to support benefits for prevention clearly (odds ratio [OR] = 0.83; 95% confidence interval [CI] = 0.65, 1.07). Other target results were null, except for variants indicating Apolipoprotein‐A5 or Apolipoprotein‐C3 inhibition might confer protection. These findings suggest peripheral lipid variation may not have a prominent role in PD etiology, but some related drug targets could influence PD via alternate pathways. ANN NEUROL 2020;88:1043–1047
Collapse
Affiliation(s)
- Dylan M Williams
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK.,Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sara Bandres-Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.,Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | | | | | - Alastair J Noyce
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK.,Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
| | -
- 23andMe, Inc, Sunnyvale, CA, USA
| | | |
Collapse
|
270
|
Qadri S, Lallukka-Brück S, Luukkonen PK, Zhou Y, Gastaldelli A, Orho-Melander M, Sammalkorpi H, Juuti A, Penttilä AK, Perttilä J, Hakkarainen A, Lehtimäki TE, Orešič M, Hyötyläinen T, Hodson L, Olkkonen VM, Yki-Järvinen H. The PNPLA3-I148M variant increases polyunsaturated triglycerides in human adipose tissue. Liver Int 2020; 40:2128-2138. [PMID: 32386450 DOI: 10.1111/liv.14507] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/23/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS The I148M variant in PNPLA3 is the major genetic risk factor for non-alcoholic fatty liver disease (NAFLD). The liver is enriched with polyunsaturated triglycerides (PUFA-TGs) in PNPLA3-I148M carriers. Gene expression data indicate that PNPLA3 is liver-specific in humans, but whether it functions in adipose tissue (AT) is unknown. We investigated whether PNPLA3-I148M modifies AT metabolism in human NAFLD. METHODS Profiling of the AT lipidome and fasting serum non-esterified fatty acid (NEFA) composition was conducted in 125 volunteers (PNPLA3148MM/MI , n = 63; PNPLA3148II , n = 62). AT fatty acid composition was determined in 50 volunteers homozygous for the variant (PNPLA3148MM , n = 25) or lacking the variant (PNPLA3148II , n = 25). Whole-body insulin sensitivity of lipolysis was determined using [2 H5 ]glycerol, and PNPLA3 mRNA and protein levels were measured in subcutaneous AT and liver biopsies in a subset of the volunteers. RESULTS PUFA-TGs were significantly increased in AT in carriers versus non-carriers of PNPLA3-I148M. The variant did not alter the rate of lipolysis or the composition of fasting serum NEFAs. PNPLA3 mRNA was 33-fold higher in the liver than in AT (P < .0001). In contrast, PNPLA3 protein levels per tissue protein were three-fold higher in AT than the liver (P < .0001) and nine-fold higher when related to whole-body AT and liver tissue masses (P < .0001). CONCLUSIONS Contrary to previous assumptions, PNPLA3 is highly abundant in AT. PNPLA3-I148M locally remodels AT TGs to become polyunsaturated as it does in the liver, without affecting lipolysis or composition of serum NEFAs. Changes in AT metabolism do not contribute to NAFLD in PNPLA3-I148M carriers.
Collapse
Affiliation(s)
- Sami Qadri
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Susanna Lallukka-Brück
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Panu K Luukkonen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - You Zhou
- Minerva Foundation Institute for Medical Research, Helsinki, Finland.,Systems Immunity University Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | | | - Henna Sammalkorpi
- Department of Gastrointestinal Surgery, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Anne Juuti
- Department of Gastrointestinal Surgery, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Anne K Penttilä
- Department of Gastrointestinal Surgery, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Julia Perttilä
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Antti Hakkarainen
- HUS Medical Imaging Center, Helsinki University Hospital, Helsinki, Finland
| | - Tiina E Lehtimäki
- HUS Medical Imaging Center, Helsinki University Hospital, Helsinki, Finland
| | - Matej Orešič
- Department of Chemistry, Örebro University, Örebro, Sweden
| | | | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.,National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals Foundation Trust, Oxford, UK
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| |
Collapse
|
271
|
Hajny S, Christoffersen M, Dalila N, Nielsen LB, Tybjærg-Hansen A, Christoffersen C. Apolipoprotein M and Risk of Type 2 Diabetes. J Clin Endocrinol Metab 2020; 105:5867499. [PMID: 32621749 DOI: 10.1210/clinem/dgaa433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/03/2020] [Indexed: 12/22/2022]
Abstract
CONTEXT Recent studies have discovered a role of apolipoprotein M (apoM) in energy metabolism, and observational analyses in humans suggest an association with type 2 diabetes. The causal relationship remains however elusive. OBJECTIVE To investigate whether reduced plasma apoM concentrations are causally linked to increased risk of type 2 diabetes. DESIGN Prospective study design analyzed by Mendelian randomization. SETTING AND PARTICIPANTS Two cohorts reflecting the Danish general population: the Copenhagen City Heart Study (CCHS, n = 8589) and the Copenhagen General Population Study (CGPS; n = 93 857). Observational analyses included a subset of participants from the CCHS with available plasma apoM (n = 725). Genetic analyses included the complete cohorts (n = 102 446). During a median follow-up of 16 years (CCHS) and 8 years (CGPS), 563 and 2132 participants developed type 2 diabetes. MAIN OUTCOME MEASURES Plasma apoM concentration, genetic variants in APOM, and type 2 diabetes. RESULTS First, we identified an inverse correlation between plasma apoM and risk of type 2 diabetes in a subset of participants from the CCHS (hazard ratio between highest vs lowest quartile (reference) = 0.32; 95% confidence interval = 0.1-1.01; P for trend = .02). Second, genotyping of specific single nucleotide polymorphisms in APOM further revealed a 10.8% (P = 6.2 × 10-5) reduced plasma apoM concentration in participants with variant rs1266078. Third, a meta-analysis including data from 599 451 individuals showed no association between rs1266078 and risk of type 2 diabetes. CONCLUSIONS The present study does not appear to support a causal association between plasma apoM and risk of type 2 diabetes.
Collapse
Affiliation(s)
- Stefan Hajny
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Science, University of Copenhagen, Copenhagen, Denmark
| | - Mette Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nawar Dalila
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lars B Nielsen
- Faculty of Health, University of Aarhus, Aarhus, Denmark
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- The Copenhagen City Heart Study, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Science, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Bispebjerg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
272
|
Huo S, Sun L, Zong G, Song B, Zheng H, Jin Q, Li H, Lin X. Genetic susceptibility, dietary cholesterol intake, and plasma cholesterol levels in a Chinese population. J Lipid Res 2020; 61:1504-1511. [PMID: 32817344 DOI: 10.1194/jlr.ra120001009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Accompanied with nutrition transition, non-HDL-C levels of individuals in Asian countries has increased rapidly, which has caused the global epicenter of nonoptimal cholesterol to shift from Western countries to Asian countries. Thus, it is critical to underline major genetic and dietary determinants. In the current study of 2,330 Chinese individuals, genetic risk scores (GRSs) were calculated for total cholesterol (TC; GRSTC, 57 SNPs), LDL-C (GRSLDL-C, 45 SNPs), and HDL-C (GRSHDL-C, 65 SNPs) based on SNPs from the Global Lipid Genetics Consortium study. Cholesterol intake was estimated by a 74-item food-frequency questionnaire. Associations of dietary cholesterol intake with plasma TC and LDL-C strengthened across quartiles of the GRSTC (effect sizes: -0.29, 0.34, 2.45, and 6.47; P interaction = 0.002) and GRSLDL-C (effect sizes: -1.35, 0.17, 5.45, and 6.07; P interaction = 0.001), respectively. Similar interactions with non-HDL-C were observed between dietary cholesterol and GRSTC (P interaction = 0.001) and GRSLDL-C (P interaction = 0.004). The adverse effects of GRSTC on TC (effect sizes across dietary cholesterol quartiles: 0.51, 0.82, 1.21, and 1.31; P interaction = 0.023) and GRSLDL-C on LDL-C (effect sizes across dietary cholesterol quartiles: 0.66, 0.52, 1.12, and 1.56; P interaction = 0.020) were more profound in those having higher cholesterol intake compared with those with lower intake. Our findings suggest significant interactions between genetic susceptibility and dietary cholesterol intake on plasma cholesterol profiles in a Chinese population.
Collapse
Affiliation(s)
- Shaofeng Huo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liang Sun
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Geng Zong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Boyu Song
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - He Zheng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qianlu Jin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Huaixing Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xu Lin
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China .,Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
273
|
Abstract
PURPOSE OF REVIEW Clonal hematopoiesis of indeterminate potential (CHIP) is characterized by persistent clonal expansion of adult hematopoietic stem cells, which has been increasingly found to be associated with cardiovascular disease and adverse outcomes in heart failure. Here we outline emerging studies on the prevalence of CHIP, and its association with cardiovascular and heart disease. RECENT FINDINGS Previous genomic studies have found CHIP mutations to be associated with increased risks of arterial disease, stroke, and mortality. Murine studies exploring TET2, DNMT3A, and JAK2 mutations have shown changes in cellularity that decrease cardiac function after insult, as well as increase inflammasome activation. Mutations in driver genes are associated with worse clinical outcomes in heart failure patients, as a potential result of the proinflammatory selection in clonal hematopoiesis. Advances in the field have yielded therapeutic targets tested in recent clinical studies and may provide a valuable diagnostic of risk in heart failure.
Collapse
|
274
|
Meroni M, Longo M, Dongiovanni P. Genetic and metabolic factors: the perfect combination to treat metabolic associated fatty liver disease. EXPLORATION OF MEDICINE 2020; 1:218-243. [DOI: 10.37349/emed.2020.00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/20/2020] [Indexed: 01/04/2025] Open
Abstract
The prevalence of nonalcoholic or more recently re-defined metabolic associated fatty liver disease (MAFLD) is rapidly growing worldwide. It is characterized by hepatic fat accumulation exceeding 5% of liver weight not attributable to alcohol consumption. MAFLD refers to an umbrella of conditions ranging from simple steatosis to nonalcoholic steatohepatitis which may finally progress to cirrhosis and hepatocellular carcinoma. MAFLD is closely related to components of the metabolic syndrome and to environmental factors. In addition to the latter, genetic predisposition plays a key role in MAFLD pathogenesis and strictly contributes to its progressive forms. The candidate genes which have been related to MAFLD hereditability are mainly involved in lipids remodeling, lipid droplets assembly, lipoprotein packaging and secretion, de novo lipogenesis, and mitochondrial redox status. In the recent years, it has emerged the opportunity to translate the genetics into clinics by aggregating the genetic variants mostly associated with MAFLD in polygenic risk scores. These scores might be used in combination with metabolic factors to identify those patients at higher risk to develop more severe liver disease and to schedule an individual therapeutic approach.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| |
Collapse
|
275
|
Kim HI, Ye B, Gosalia N, Köroğlu Ç, Hanson RL, Hsueh WC, Knowler WC, Baier LJ, Bogardus C, Shuldiner AR, Van Hout CV, Van Hout CV. Characterization of Exome Variants and Their Metabolic Impact in 6,716 American Indians from the Southwest US. Am J Hum Genet 2020; 107:251-264. [PMID: 32640185 DOI: 10.1016/j.ajhg.2020.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/10/2020] [Indexed: 12/21/2022] Open
Abstract
Applying exome sequencing to populations with unique genetic architecture has the potential to reveal novel genes and variants associated with traits and diseases. We sequenced and analyzed the exomes of 6,716 individuals from a Southwestern American Indian (SWAI) population with well-characterized metabolic traits. We found that the SWAI population has distinct allelic architecture compared to populations of European and East Asian ancestry, and there were many predicted loss-of-function (pLOF) and nonsynonymous variants that were highly enriched or private in the SWAI population. We used pLOF and nonsynonymous variants in the SWAI population to evaluate gene-burden associations of candidate genes from European genome-wide association studies (GWASs) for type 2 diabetes, body mass index, and four major plasma lipids. We found 19 significant gene-burden associations for 11 genes, providing additional evidence for prioritizing candidate effector genes of GWAS signals. Interestingly, these associations were mainly driven by pLOF and nonsynonymous variants that are unique or highly enriched in the SWAI population. Particularly, we found four pLOF or nonsynonymous variants in APOB, APOE, PCSK9, and TM6SF2 that are private or enriched in the SWAI population and associated with low-density lipoprotein (LDL) cholesterol levels. Their large estimated effects on LDL cholesterol levels suggest strong impacts on protein function and potential clinical implications of these variants in cardiovascular health. In summary, our study illustrates the utility and potential of exome sequencing in genetically unique populations, such as the SWAI population, to prioritize candidate effector genes within GWAS loci and to find additional variants in known disease genes with potential clinical impact.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Cristopher V Van Hout
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA.
| |
Collapse
|
276
|
Poss AM, Summers SA. Too Much of a Good Thing? An Evolutionary Theory to Explain the Role of Ceramides in NAFLD. Front Endocrinol (Lausanne) 2020; 11:505. [PMID: 32849291 PMCID: PMC7411076 DOI: 10.3389/fendo.2020.00505] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), which ranges from the relatively benign and reversible fatty liver (NAFL) to the more advanced and deadly steatohepatitis (NASH), affects a remarkably high percentage of adults in the population. Depending upon severity, NAFLD can increase one's risk for diabetes, cardiovascular disease, and hepatocellular carcinoma. Though the dominant histological feature of all forms of the disease is the accumulation of liver triglycerides, these molecules are likely not pathogenic, but rather serve to protect the liver from the damaging consequences of overnutrition. We propose herein that the less abundant ceramides, through evolutionarily-conserved actions intended to help organisms adapt to nutrient excess, drive the cellular events that define NAFL/NASH. In early stages of the disease process, they promote lipid uptake and storage, whilst inhibiting utilization of glucose. In later stages, they stimulate hepatocyte apoptosis and fibrosis. In rodents, blocking ceramide synthesis ameliorates all stages of NAFLD. In humans, serum and liver ceramides correlate with the severity of NAFLD and its comorbidities diabetes and heart disease. These studies identify key roles for ceramides in these hepatic manifestations of the metabolic syndrome.
Collapse
Affiliation(s)
| | - Scott A. Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
277
|
Hu W, Zhang P, Su Q, Li D, Hang Y, Ye X, Guan P, Dong J, Lu Y. Peripheral leukocyte counts vary with lipid levels, age and sex in subjects from the healthy population. Atherosclerosis 2020; 308:15-21. [PMID: 32795745 DOI: 10.1016/j.atherosclerosis.2020.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/22/2020] [Accepted: 07/15/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND AIMS Disorders in blood lipid metabolism and leukocyte-mediated inflammation are considered the main mechanisms of the pathogenesis of atherosclerosis. This study aims to show whether and how peripheral leukocyte counts are associated with serum lipid levels. METHODS This is a cross-sectional study of 175,079 subjects from the healthy population. RESULTS Age and sex are two key factors dictating the relationship between peripheral leukocyte counts and serum lipid levels. The log-transformed level of triglycerides (LnTG) was positively associated with all leukocyte counts in males except monocyte count in younger subjects. LnTG was positively associated with total leukocyte count in females regardless of age, and it was positively associated with lymphocyte and monocyte counts and neutrophil count only in elderly and young women, respectively. Total cholesterol levels were positively associated with total leukocyte, neutrophil and lymphocyte counts only in young males and with lymphocyte counts only in elderly women. LDL-C was negatively associated with monocyte count in males regardless of age; by contrast, it was positively associated with total leukocyte and lymphocyte counts in females regardless of age range and neutrophil and LnEosinophil counts only in young women. HDL-C was negatively associated with total leukocyte, lymphocyte and monocyte counts in both young men and young women; was negatively associated with monocyte count in elderly men and women; and was negatively associated with LnEosinophil count only in older men. CONCLUSIONS Peripheral leukocyte counts are extensively associated with serum lipid levels, with patterns differing by sex, age, lipid and leukocyte subset.
Collapse
Affiliation(s)
- Wei Hu
- Department of Cardiology, Minhang Hospital, Fudan University, 170 Xinsong Road, Minhang District, Shanghai, 201199, PR China.
| | - Peng Zhang
- Department of Cardiology, Minhang Hospital, Fudan University, 170 Xinsong Road, Minhang District, Shanghai, 201199, PR China
| | - Qian Su
- Department of Cardiology, Minhang Hospital, Fudan University, 170 Xinsong Road, Minhang District, Shanghai, 201199, PR China
| | - Dandan Li
- Department of Cardiology, Minhang Hospital, Fudan University, 170 Xinsong Road, Minhang District, Shanghai, 201199, PR China
| | - Yanwen Hang
- Department of Cardiology, Minhang Hospital, Fudan University, 170 Xinsong Road, Minhang District, Shanghai, 201199, PR China
| | - Xiaomiao Ye
- Department of Cardiology, Minhang Hospital, Fudan University, 170 Xinsong Road, Minhang District, Shanghai, 201199, PR China
| | - Ping Guan
- Department of Cardiology, Minhang Hospital, Fudan University, 170 Xinsong Road, Minhang District, Shanghai, 201199, PR China
| | - Jian Dong
- Department of Cardiology, Minhang Hospital, Fudan University, 170 Xinsong Road, Minhang District, Shanghai, 201199, PR China
| | - Yi Lu
- Department of Cardiology, Minhang Hospital, Fudan University, 170 Xinsong Road, Minhang District, Shanghai, 201199, PR China
| |
Collapse
|
278
|
Wong MWK, Thalamuthu A, Braidy N, Mather KA, Liu Y, Ciobanu L, Baune BT, Armstrong NJ, Kwok J, Schofield P, Wright MJ, Ames D, Pickford R, Lee T, Poljak A, Sachdev PS. Genetic and environmental determinants of variation in the plasma lipidome of older Australian twins. eLife 2020; 9:e58954. [PMID: 32697195 PMCID: PMC7394543 DOI: 10.7554/elife.58954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
The critical role of blood lipids in a broad range of health and disease states is well recognised but less explored is the interplay of genetics and environment within the broader blood lipidome. We examined heritability of the plasma lipidome among healthy older-aged twins (75 monozygotic/55 dizygotic pairs) enrolled in the Older Australian Twins Study (OATS) and explored corresponding gene expression and DNA methylation associations. 27/209 lipids (13.3%) detected by liquid chromatography-coupled mass spectrometry (LC-MS) were significantly heritable under the classical ACE twin model (h2 = 0.28-0.59), which included ceramides (Cer) and triglycerides (TG). Relative to non-significantly heritable TGs, heritable TGs had a greater number of associations with gene transcripts, not directly associated with lipid metabolism, but with immune function, signalling and transcriptional regulation. Genome-wide average DNA methylation (GWAM) levels accounted for variability in some non-heritable lipids. We reveal a complex interplay of genetic and environmental influences on the ageing plasma lipidome.
Collapse
Affiliation(s)
- Matthew WK Wong
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South WalesSydneyAustralia
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South WalesSydneyAustralia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South WalesSydneyAustralia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South WalesSydneyAustralia
- Neuroscience Research AustraliaSydneyAustralia
| | - Yue Liu
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South WalesSydneyAustralia
| | - Liliana Ciobanu
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South WalesSydneyAustralia
- The University of Adelaide, Adelaide Medical School, Discipline of PsychiatryAdelaideAustralia
| | - Bernhardt T Baune
- The University of Adelaide, Adelaide Medical School, Discipline of PsychiatryAdelaideAustralia
- Department of Psychiatry, University of MünsterMünsterGermany
- Department of Psychiatry, Melbourne Medical School, The University of MelbourneMelbourneAustralia
- The Florey Institute of Neuroscience and Mental Health, The University of MelbourneMelbourneAustralia
| | | | - John Kwok
- Brain and Mind Centre, The University of SydneySydneyAustralia
| | - Peter Schofield
- Neuroscience Research AustraliaSydneyAustralia
- School of Medical Sciences, University of New South WalesSydneyAustralia
| | - Margaret J Wright
- Queensland Brain Institute, University of QueenslandBrisbaneAustralia
- Centre for Advanced Imaging, University of QueenslandBrisbaneAustralia
| | - David Ames
- University of Melbourne Academic Unit for Psychiatry of Old AgeKewAustralia
- National Ageing Research InstituteParkvilleAustralia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South WalesSydneyAustralia
| | - Teresa Lee
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South WalesSydneyAustralia
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales HospitalSydneyAustralia
| | - Anne Poljak
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South WalesSydneyAustralia
- School of Medical Sciences, University of New South WalesSydneyAustralia
- Bioanalytical Mass Spectrometry Facility, University of New South WalesSydneyAustralia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South WalesSydneyAustralia
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales HospitalSydneyAustralia
| |
Collapse
|
279
|
Kasper P, Martin A, Lang S, Kütting F, Goeser T, Demir M, Steffen HM. NAFLD and cardiovascular diseases: a clinical review. Clin Res Cardiol 2020; 110:921-937. [PMID: 32696080 PMCID: PMC8238775 DOI: 10.1007/s00392-020-01709-7] [Citation(s) in RCA: 371] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver DISEASE (NAFLD) is the most common chronic liver disease in Western countries and affects approximately 25% of the adult population. Since NAFLD is frequently associated with further metabolic comorbidities such as obesity, type 2 diabetes mellitus, or dyslipidemia, it is generally considered as the hepatic manifestation of the metabolic syndrome. In addition to its potential to cause liver-related morbidity and mortality, NAFLD is also associated with subclinical and clinical cardiovascular disease (CVD). Growing evidence indicates that patients with NAFLD are at substantial risk for the development of hypertension, coronary heart disease, cardiomyopathy, and cardiac arrhythmias, which clinically result in increased cardiovascular morbidity and mortality. The natural history of NAFLD is variable and the vast majority of patients will not progress from simple steatosis to fibrosis and end stage liver disease. However, patients with progressive forms of NAFLD, including non-alcoholic steatohepatitis (NASH) and/or advanced fibrosis, as well as NAFLD patients with concomitant types 2 diabetes are at highest risk for CVD. This review describes the underlying pathophysiological mechanisms linking NAFLD and CVD, discusses the role of NAFLD as a metabolic dysfunction associated cardiovascular risk factor, and focuses on common cardiovascular manifestations in NAFLD patients.
Collapse
Affiliation(s)
- Philipp Kasper
- Department of Gastroenterology and Hepatology, Faculty of Medicine, and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Anna Martin
- Department of Gastroenterology and Hepatology, Faculty of Medicine, and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Sonja Lang
- Department of Medicine, University of California, La Jolla, San Diego, USA
| | - Fabian Kütting
- Department of Gastroenterology and Hepatology, Faculty of Medicine, and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Tobias Goeser
- Department of Gastroenterology and Hepatology, Faculty of Medicine, and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Charité University Medicine, Campus Virchow Clinic, Berlin, Germany
| | - Hans-Michael Steffen
- Department of Gastroenterology and Hepatology, Faculty of Medicine, and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany. .,Hypertension Center, Faculty of Medicine, and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
280
|
Liebe R, Keitel-Anselmino V. Genetisches Risiko bei metabolischer Fettlebererkrankung. DIABETOLOGE 2020. [DOI: 10.1007/s11428-020-00647-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
281
|
Lonardo A, Mantovani A, Lugari S, Targher G. Epidemiology and pathophysiology of the association between NAFLD and metabolically healthy or metabolically unhealthy obesity. Ann Hepatol 2020; 19:359-366. [PMID: 32349939 DOI: 10.1016/j.aohep.2020.03.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is continuing to rise in many countries, paralleling the epidemic of obesity worldwide. In the last years, the concept of metabolically healthy obesity [MHO, generally defined as obesity without metabolic syndrome (MetS)] has raised considerable scientific interest. MHO is a complex phenotype with risks intermediate between metabolically healthy individuals with normal-weight (NWMH) and patients who are obese and metabolically unhealthy (MUO, i.e. obesity with MetS). In this review we aimed to examine the association and pathophysiological link of NAFLD with MHO and MUO. Compared to NWMH individuals, patients with obesity, regardless of the presence of MetS features, are at higher risk of all-cause mortality and cardiovascular events. Moreover, MHO patients have a greater risk of NAFLD development and progression compared to NWMH individuals. However, this risk is generally lower than that of MUO patients, suggesting a stronger adverse effect of coexisting MetS disorders than obesity per se on the severity of NAFLD. Nevertheless, since MHO is a dynamic state (with a significant proportion of MHO subjects progressing to MUO over time) and NAFLD itself may predict the transition from MHO to MUO, we believe that any effort should be made to identify NAFLD in all obese individuals, although they appear to be "metabolically healthy". Future research is needed to better understand the role of NAFLD and other pathogenic factors potentially involved in the transition from MHO to MUO and to elucidate how this transition may affect the presence and severity of NAFLD.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Operating Unit of Metabolic Syndrome, Azienda Ospedaliero-Universitaria di Modena, Ospedale Civile di Baggiovara, Modena, Italy.
| | - Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, University of Verona, Verona, Italy
| | | | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, University of Verona, Verona, Italy
| |
Collapse
|
282
|
Zheng J, Brion MJ, Kemp JP, Warrington NM, Borges MC, Hemani G, Richardson TG, Rasheed H, Qiao Z, Haycock P, Ala-Korpela M, Davey Smith G, Tobias JH, Evans DM. The Effect of Plasma Lipids and Lipid-Lowering Interventions on Bone Mineral Density: A Mendelian Randomization Study. J Bone Miner Res 2020; 35:1224-1235. [PMID: 32163637 DOI: 10.1002/jbmr.3989] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/14/2020] [Accepted: 02/18/2020] [Indexed: 11/09/2022]
Abstract
Several epidemiological studies have reported a relationship between statin treatment and increased bone mineral density (BMD) and reduced fracture risk, but the mechanism underlying the purported relationship is unclear. We used Mendelian randomization (MR) to assess whether this relationship is explained by a specific effect in response to statin use or by a general effect of lipid lowering. We utilized 400 single-nucleotide polymorphisms (SNPs) robustly associated with plasma lipid levels as exposure. The outcome results were obtained from a heel estimated BMD (eBMD) genomewide association study (GWAS) from the UK Biobank and dual-energy X-ray absorptiometry (DXA) BMD at four body sites and fracture GWAS from the GEFOS consortium. We performed univariate and multivariable MR analyses of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglyceride levels on BMD and fracture. Univariate MR analyses suggested a causal effect of LDL-C on eBMD (β = -0.06; standard deviation change in eBMD per standard deviation change in LDL-C, 95% confidence interval [CI] = -0.08 to -0.04; p = 4 × 10-6 ), total body BMD (β = -0.05, 95% CI = -0.08 to -0.01, p = 6 × 10-3 ) and potentially on lumbar spine BMD. Multivariable MR suggested that the effects of LDL-C on eBMD and total body BMD were independent of HDL-C and triglycerides. Sensitivity MR analyses suggested that the LDL-C results were robust to pleiotropy. MR analyses of LDL-C restricted to SNPs in the HMGCR region showed similar effects on eBMD (β = -0.083; -0.132 to -0.034; p = .001) to those excluding these SNPs (β = -0.063; -0.090 to -0.036; p = 8 × 10-6 ). Bidirectional MR analyses provided some evidence for a causal effect of eBMD on plasma LDL-C levels. Our results suggest that effects of statins on eBMD and total body BMD are at least partly due to their LDL-C lowering effect. Further studies are required to examine the potential role of modifying plasma lipid levels in treating osteoporosis. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jie Zheng
- Medical Research Council (MRC) Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Marie-Jo Brion
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - John P Kemp
- Medical Research Council (MRC) Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK.,University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Nicole M Warrington
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Maria-Carolina Borges
- Medical Research Council (MRC) Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Gibran Hemani
- Medical Research Council (MRC) Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Tom G Richardson
- Medical Research Council (MRC) Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Humaira Rasheed
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Zhen Qiao
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Philip Haycock
- Medical Research Council (MRC) Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Mika Ala-Korpela
- Medical Research Council (MRC) Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,Systems Epidemiology, Baker Heart and Diabetes Institute, Melbourne, Australia.,Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland.,Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, The Alfred Hospital, Monash University, Melbourne, Australia
| | - George Davey Smith
- Medical Research Council (MRC) Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jon H Tobias
- Musculoskeletal Research Unit, University of Bristol, Bristol, UK
| | - David M Evans
- Medical Research Council (MRC) Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK.,University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| |
Collapse
|
283
|
Lee MKS, Dragoljevic D, Bertuzzo Veiga C, Wang N, Yvan-Charvet L, Murphy AJ. Interplay between Clonal Hematopoiesis of Indeterminate Potential and Metabolism. Trends Endocrinol Metab 2020; 31:525-535. [PMID: 32521236 DOI: 10.1016/j.tem.2020.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP), defined as a clone of hematopoietic cells consisting of a single acquired mutation during a lifetime, has recently been discovered to be a major risk factor for atherosclerotic cardiovascular disease (CVD). As such, this phenomenon has sparked interest into the role that these single mutations may play in CVD. Atherosclerotic CVD is a complex disease and we have previously shown that atherosclerosis can be accelerated by metabolic- or autoimmune-related risk factors such as diabetes, obesity, and rheumatoid arthritis. In this review, we discuss the role of CHIP, the interplay between CHIP and metabolic diseases, as well as how metabolism of hematopoietic stem cells (HSCs) could regulate CHIP-related HSC fate.
Collapse
Affiliation(s)
- Man K S Lee
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Dragana Dragoljevic
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Camilla Bertuzzo Veiga
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Nan Wang
- Columbia University, New York, NY, USA
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204 Nice, France
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department Medicine, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
284
|
Xie T, Wang B, Nolte IM, van der Most PJ, Oldehinkel AJ, Hartman CA, Snieder H. Genetic Risk Scores for Complex Disease Traits in Youth. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 13:e002775. [PMID: 32527150 PMCID: PMC7439939 DOI: 10.1161/circgen.119.002775] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND For most disease-related traits the magnitude of the contribution of genetic factors in adolescents remains unclear. METHODS Twenty continuous traits related to anthropometry, cardiovascular and renal function, metabolism, and inflammation were selected from the ongoing prospective Tracking Adolescents' Individual Lives Survey cohort in the Netherlands with measurements of up to 5 waves from age 11 to 22 years (n=1354, 47.6% males) and all traits available at the third wave (mean age [SD]=16.22 [0.66]). For each trait, unweighted and weighted genetic risk scores (GRSs) were generated based on significantly associated single nucleotide polymorphisms identified from literature. The variance explained by the GRSs in adolescents were estimated by linear regression after adjustment for covariates. RESULTS Except for ALT (alanine transaminase), all GRSs were significantly associated with their traits. The trait variance explained by the GRSs was highest for lipoprotein[a] (39.59%) and varied between 0.09% (ALT) and 18.49% (LDL [low-density lipoprotein]) for the other traits. For most traits, the variances explained in adolescents were comparable with or slightly smaller than those in adults. Significant increases of trait levels (except ALT) and increased risks for overweight/obesity (odds ratio, 6.41 [95% CI, 2.95-15.56]) and hypertension (odds ratio, 2.86 [95% CI, 1.39-6.17]) were found in individuals in the top GRS decile compared with those at the bottom decile. CONCLUSIONS Variances explained by adult-based GRSs for disease-related traits in adolescents, although still relatively modest, were comparable with or slightly smaller than in adults offering promise for improved risk prediction at early ages.
Collapse
Affiliation(s)
- Tian Xie
- Department of Epidemiology (T.X., B.W., I.M.N., P.J.v.d.M., H.S.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Bin Wang
- Department of Epidemiology (T.X., B.W., I.M.N., P.J.v.d.M., H.S.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Ilja M Nolte
- Department of Epidemiology (T.X., B.W., I.M.N., P.J.v.d.M., H.S.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Peter J van der Most
- Department of Epidemiology (T.X., B.W., I.M.N., P.J.v.d.M., H.S.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Albertine J Oldehinkel
- Department of Psychiatry (A.J.O., C.A.H.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Catharina A Hartman
- Department of Psychiatry (A.J.O., C.A.H.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Harold Snieder
- Department of Epidemiology (T.X., B.W., I.M.N., P.J.v.d.M., H.S.), University of Groningen, University Medical Center Groningen, the Netherlands
| |
Collapse
|
285
|
Luo L, Shen J, Zhang H, Chhibber A, Mehrotra DV, Tang ZZ. Multi-trait analysis of rare-variant association summary statistics using MTAR. Nat Commun 2020; 11:2850. [PMID: 32503972 PMCID: PMC7275056 DOI: 10.1038/s41467-020-16591-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 05/09/2020] [Indexed: 12/13/2022] Open
Abstract
Integrating association evidence across multiple traits can improve the power of gene discovery and reveal pleiotropy. Most multi-trait analysis methods focus on individual common variants in genome-wide association studies. Here, we introduce multi-trait analysis of rare-variant associations (MTAR), a framework for joint analysis of association summary statistics between multiple rare variants and different traits. MTAR achieves substantial power gain by leveraging the genome-wide genetic correlation measure to inform the degree of gene-level effect heterogeneity across traits. We apply MTAR to rare-variant summary statistics for three lipid traits in the Global Lipids Genetics Consortium. 99 genome-wide significant genes were identified in the single-trait-based tests, and MTAR increases this to 139. Among the 11 novel lipid-associated genes discovered by MTAR, 7 are replicated in an independent UK Biobank GWAS analysis. Our study demonstrates that MTAR is substantially more powerful than single-trait-based tests and highlights the value of MTAR for novel gene discovery.
Collapse
Affiliation(s)
- Lan Luo
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Judong Shen
- Biostatistics and Research Decision Sciences, Merck & Co., Inc., Rahway, New Jersey, 07065, USA
| | - Hong Zhang
- Biostatistics and Research Decision Sciences, Merck & Co., Inc., Rahway, New Jersey, 07065, USA
| | - Aparna Chhibber
- Genetics and Pharmacogenomics, Merck & Co., Inc., West Point, Pennsylvania, 19446, USA
| | - Devan V Mehrotra
- Biostatistics and Research Decision Sciences, Merck & Co., Inc., North Wales, Pennsylvania, 19454, USA
| | - Zheng-Zheng Tang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, 53715, USA.
- Wisconsin Institute for Discovery, Madison, Wisconsin, 53715, USA.
| |
Collapse
|
286
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver diseases and can progress to advanced fibrosis and end-stage liver disease. Thus, intensive research has been performed to develop noninvasive methods for the diagnosis of nonalcoholic steatohepatitis (NASH) and fibrosis. Currently, no single noninvasive tool covers all of the stages of pathologies and conditions of NAFLD, and the cost and feasibility of known techniques are also important issues. Blood biomarkers for NAFLD may be useful to select subjects who need ultrasonography (US) screening for NAFLD, and noninvasive tools for assessing fibrosis may be helpful to exclude the probability of significant fibrosis and to predict advanced fibrosis, thus guiding the decision of whether to perform liver biopsy in patients with NAFLD. Among various methods, magnetic resonance-based methods have been shown to perform better than other methods in assessing steatosis as well as in detecting hepatic fibrosis. Many genetic markers are associated with the development and progression of NAFLD. Further well-designed studies are needed to determine which biomarker panels, imaging studies, genetic marker panels, or combinations thereof perform well for diagnosing NAFLD, differentiating NASH and fibrosis, and following-up NAFLD, respectively.
Collapse
Affiliation(s)
- Dae Ho Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| |
Collapse
|
287
|
Carlsson B, Lindén D, Brolén G, Liljeblad M, Bjursell M, Romeo S, Loomba R. Review article: the emerging role of genetics in precision medicine for patients with non-alcoholic steatohepatitis. Aliment Pharmacol Ther 2020; 51:1305-1320. [PMID: 32383295 PMCID: PMC7318322 DOI: 10.1111/apt.15738] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/13/2020] [Accepted: 03/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease (NAFLD) characterised by liver fat accumulation, inflammation and progressive fibrosis. Emerging data indicate that genetic susceptibility increases risks of NAFLD, NASH and NASH-related cirrhosis. AIMS To review NASH genetics and discuss the potential for precision medicine approaches to treatment. METHOD PubMed search and inclusion of relevant literature. RESULTS Single-nucleotide polymorphisms in PNPLA3, TM6SF2, GCKR, MBOAT7 and HSD17B13 are clearly associated with NASH development or progression. These genetic variants are common and have moderate-to-large effect sizes for development of NAFLD, NASH and hepatocellular carcinoma (HCC). The genes play roles in lipid remodelling in lipid droplets, hepatic very low-density lipoprotein (VLDL) secretion and de novo lipogenesis. The PNPLA3 I148M variant (rs738409) has large effects, with approximately twofold increased odds of NAFLD and threefold increased odds of NASH and HCC per allele. Obesity interacts with PNPLA3 I148M to elevate liver fat content and increase rates of NASH. Although the isoleucine-to-methionine substitution at amino acid position 148 of the PNPLA3 enzyme inactivates its lipid remodelling activity, the effect of PNPLA3 I148M results from trans-repression of another lipase (ATGL/PNPLA2) by sequestration of a shared cofactor (CGI-58/ABHD5), leading to decreased hepatic lipolysis and VLDL secretion. In homozygous Pnpla3 I148M knock-in rodent models of NAFLD, targeted PNPLA3 mRNA knockdown reduces hepatic steatosis, inflammation and fibrosis. CONCLUSION The emerging genetic and molecular understanding of NASH paves the way for novel interventions, including precision medicines that can modulate the activity of specific genes associated with NASH.
Collapse
Affiliation(s)
- Björn Carlsson
- Research and Early DevelopmentCardiovascular, Renal and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Daniel Lindén
- Research and Early DevelopmentCardiovascular, Renal and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden,Division of EndocrinologyDepartment of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Gabriella Brolén
- Precision MedicineCardiovascular, Renal and MetabolismR&DAstraZenecaGothenburgSweden
| | - Mathias Liljeblad
- Research and Early DevelopmentCardiovascular, Renal and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Mikael Bjursell
- Research and Early DevelopmentCardiovascular, Renal and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Stefano Romeo
- Department of Molecular and Clinical MedicineUniversity of GothenburgGothenburgSweden,Clinical Nutrition UnitDepartment of Medical and Surgical SciencesMagna Graecia UniversityCatanzaroItaly,Cardiology DepartmentSahlgrenska University HospitalGothenburgSweden
| | - Rohit Loomba
- NAFLD Research CenterDivision of GastroenterologyUniversity of California San DiegoSan DiegoCAUSA
| |
Collapse
|
288
|
Lee BW, Lee YH, Park CY, Rhee EJ, Lee WY, Kim NH, Choi KM, Park KG, Choi YK, Cha BS, Lee DH. Non-Alcoholic Fatty Liver Disease in Patients with Type 2 Diabetes Mellitus: A Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association. Diabetes Metab J 2020; 44:382-401. [PMID: 32431115 PMCID: PMC7332334 DOI: 10.4093/dmj.2020.0010] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
This clinical practice position statement, a product of the Fatty Liver Research Group of the Korean Diabetes Association, proposes recommendations for the diagnosis, progression and/or severity assessment, management, and follow-up of non-alcoholic fatty liver disease (NAFLD) in patients with type 2 diabetes mellitus (T2DM). Patients with both T2DM and NAFLD have an increased risk of non-alcoholic steatohepatitis (NASH) and fibrosis and a higher risk of cardiovascular diseases and diabetic complications compared to those without NAFLD. With regards to the evaluation of patients with T2DM and NAFLD, ultrasonography-based stepwise approaches using noninvasive biomarker models such as fibrosis-4 or the NAFLD fibrosis score as well as imaging studies such as vibration-controlled transient elastography with controlled attenuation parameter or magnetic resonance imaging-proton density fat fraction are recommended. After the diagnosis of NAFLD, the stage of fibrosis needs to be assessed appropriately. For management, weight reduction achieved by lifestyle modification has proven beneficial and is recommended in combination with antidiabetic agent(s). Evidence that some antidiabetic agents improve NAFLD/NASH with fibrosis in patients with T2DM is emerging. However, there are currently no definite pharmacologic treatments for NAFLD in patients with T2DM. For specific cases, bariatric surgery may be an option if indicated.
Collapse
Affiliation(s)
- Byung Wan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Ho Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Cheol Young Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Nan Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Keun Gyu Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Yeon Kyung Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Bong Soo Cha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| | - Dae Ho Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Korea.
| |
Collapse
|
289
|
Yang Q, Civelek M. Transcription Factor KLF14 and Metabolic Syndrome. Front Cardiovasc Med 2020; 7:91. [PMID: 32548128 PMCID: PMC7274157 DOI: 10.3389/fcvm.2020.00091] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome (MetSyn) is a combination of metabolic abnormalities that lead to the development of cardiovascular disease (CVD) and Type 2 Diabetes (T2D). Although various criteria for defining MetSyn exist, common abnormalities include abdominal obesity, elevated serum triglyceride, insulin resistance, and blood glucose, decreased high-density lipoprotein cholesterol (HDL-C), and hypertension. MetSyn prevalence has been increasing with the rise of obesity worldwide, with significantly higher prevalence in women compared with men and in Hispanics compared with Whites. Affected individuals are at a higher risk of developing T2D (5-fold) and CVD (2-fold). Heritability estimates for individual components of MetSyn vary between 40 and 70%, suggesting a strong contribution of an individual's genetic makeup to disease pathology. The advent of next-generation sequencing technologies has enabled large-scale genome-wide association studies (GWAS) into the genetics underlying MetSyn pathogenesis. Several such studies have implicated the transcription factor KLF14, a member of the Krüpple-like factor family (KLF), in the development of metabolic diseases, including obesity, insulin resistance, and T2D. How KLF14 regulates these metabolic traits and increases the risk of developing T2D, atherosclerosis, and liver dysfunction is still unknown. There have been some debate and controversial results with regards to its expression profile and functionality in various tissues, and a systematic review of current knowledge on KLF14 is lacking. Here, we summarize the research progress made in understanding the function of KLF14 and describe common attributes of its biochemical, physiological, and pathophysiological roles. We also discuss the current challenges in understanding the role of KLF14 in metabolism and provide suggestions for future directions.
Collapse
Affiliation(s)
- Qianyi Yang
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
290
|
Yu H, Rimbert A, Palmer AE, Toyohara T, Xia Y, Xia F, Ferreira LMR, Chen Z, Chen T, Loaiza N, Horwitz NB, Kacergis MC, Zhao L, Soukas AA, Kuivenhoven JA, Kathiresan S, Cowan CA. GPR146 Deficiency Protects against Hypercholesterolemia and Atherosclerosis. Cell 2020; 179:1276-1288.e14. [PMID: 31778654 DOI: 10.1016/j.cell.2019.10.034] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/12/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023]
Abstract
Although human genetic studies have implicated many susceptible genes associated with plasma lipid levels, their physiological and molecular functions are not fully characterized. Here we demonstrate that orphan G protein-coupled receptor 146 (GPR146) promotes activity of hepatic sterol regulatory element binding protein 2 (SREBP2) through activation of the extracellular signal-regulated kinase (ERK) signaling pathway, thereby regulating hepatic very low-density lipoprotein (VLDL) secretion, and subsequently circulating low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG) levels. Remarkably, GPR146 deficiency reduces plasma cholesterol levels substantially in both wild-type and LDL receptor (LDLR)-deficient mice. Finally, aortic atherosclerotic lesions are reduced by 90% and 70%, respectively, in male and female LDLR-deficient mice upon GPR146 depletion. Taken together, these findings outline a regulatory role for the GPR146/ERK axis in systemic cholesterol metabolism and suggest that GPR146 inhibition could be an effective strategy to reduce plasma cholesterol levels and atherosclerosis.
Collapse
Affiliation(s)
- Haojie Yu
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA 02215, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| | - Antoine Rimbert
- Department of Pediatrics, Section Molecular Genetics, University of Groningen, University Medical Center, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands; Institute of Thorax, INSERM, CNRS, UNIV Nantes, Nantes, 44007, France
| | - Alice E Palmer
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA 02215, USA
| | - Takafumi Toyohara
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA 02215, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Yulei Xia
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Fang Xia
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Leonardo M R Ferreira
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Zhifen Chen
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA 02215, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Tao Chen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Natalia Loaiza
- Department of Pediatrics, Section Molecular Genetics, University of Groningen, University Medical Center, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | | | - Michael C Kacergis
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Liping Zhao
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Alexander A Soukas
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jan Albert Kuivenhoven
- Department of Pediatrics, Section Molecular Genetics, University of Groningen, University Medical Center, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Sekar Kathiresan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Disease Initiative of the Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Chad A Cowan
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA 02215, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
291
|
Abstract
Diabetes mellitus is a major risk factor for coronary heart disease (CHD). The major form of diabetes mellitus is type 2 diabetes mellitus (T2D), which is thus largely responsible for the CHD association in the general population. Recent years have seen major advances in the genetics of T2D, principally through ever-increasing large-scale genome-wide association studies. This article addresses the question of whether this expanding knowledge of the genomics of T2D provides insight into the etiologic relationship between T2D and CHD. We will investigate this relationship by reviewing the evidence for shared genetic loci between T2D and CHD; by examining the formal testing of this interaction (Mendelian randomization studies assessing whether T2D is causal for CHD); and then turn to the implications of this genetic relationship for therapies for CHD, for therapies for T2D, and for therapies that affect both. In conclusion, the growing knowledge of the genetic relationship between T2D and CHD is beginning to provide the promise for improved prevention and treatment of both disorders.
Collapse
Affiliation(s)
- Mark O. Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| |
Collapse
|
292
|
Kim K, Yu J, Kang JK, Morrow JP, Pajvani UB. Liver-selective γ-secretase inhibition ameliorates diet-induced hepatic steatosis, dyslipidemia and atherosclerosis. Biochem Biophys Res Commun 2020; 527:979-984. [PMID: 32439159 DOI: 10.1016/j.bbrc.2020.04.157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 04/30/2020] [Indexed: 01/05/2023]
Abstract
Hepatic γ-secretase regulates low-density lipoprotein receptor (LDLR) cleavage and degradation, affecting clearance of plasma triglyceride (TG)-rich lipoproteins (TRLs). In this study, we investigated whether γ-secretase inhibition modulates risk of Western (high-fat/sucrose and high-cholesterol)-type diet (WTD)-induced hepatic steatosis, dyslipidemia and atherosclerosis. We evaluated liver and plasma lipids in WTD-fed mice with hepatocyte-specific ablation of the non-redundant γ-secretase-targeting subunit Nicastrin (L-Ncst). In parallel, we investigated the effect of liver-selective Ncst antisense oligonucleotides (ASO) on lipid metabolism and atherosclerosis in wildtype (WT) and ApoE knockout (ApoE-/-) mice fed normal chow or WTD. WTD-fed L-Ncst and Ncst ASO-treated WT mice showed reduced total cholesterol and LDL-cholesterol (LDL-C), as well as reduced hepatic lipid content as compared to Cre- and control ASO-treated WT mice. Treatment of WTD-fed ApoE-/- mice with Ncst ASO markedly lowered total and LDL cholesterol, hepatic TG and attenuated atherosclerotic lesions in the aorta, as compared to control ASO-treated mice. L-Ncst and Ncst ASO similarly showed reduced plasma glucose as compared to control mice. In conclusion, inhibition of hepatic γ-secretase reduces plasma glucose, and attenuates WTD-induced dyslipidemia, hepatic fat accumulation and atherosclerosis, suggesting potential pleiotropic application for diet-induced metabolic dysfunction.
Collapse
Affiliation(s)
- KyeongJin Kim
- Department of Medicine, Columbia University, New York, NY, 10032, USA; Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, 22212, South Korea.
| | - Junjie Yu
- Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Jin Ku Kang
- Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - John P Morrow
- Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
293
|
Eslam M, Sanyal AJ, George J. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 2020; 158:1999-2014.e1. [PMID: 32044314 DOI: 10.1053/j.gastro.2019.11.312] [Citation(s) in RCA: 2158] [Impact Index Per Article: 431.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/27/2019] [Accepted: 11/05/2019] [Indexed: 12/02/2022]
Abstract
Fatty liver associated with metabolic dysfunction is common, affects a quarter of the population, and has no approved drug therapy. Although pharmacotherapies are in development, response rates appear modest. The heterogeneous pathogenesis of metabolic fatty liver diseases and inaccuracies in terminology and definitions necessitate a reappraisal of nomenclature to inform clinical trial design and drug development. A group of experts sought to integrate current understanding of patient heterogeneity captured under the acronym nonalcoholic fatty liver disease (NAFLD) and provide suggestions on terminology that more accurately reflects pathogenesis and can help in patient stratification for management. Experts reached consensus that NAFLD does not reflect current knowledge, and metabolic (dysfunction) associated fatty liver disease "MAFLD" was suggested as a more appropriate overarching term. This opens the door for efforts from the research community to update the nomenclature and subphenotype the disease to accelerate the translational path to new treatments.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| | - Arun J Sanyal
- Virginia Commonwealth University School of Medicine, Richmond, Virginia.
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| |
Collapse
|
294
|
Kleinstern G, Camp NJ, Berndt SI, Birmann BM, Nieters A, Bracci PM, McKay JD, Ghesquières H, Lan Q, Hjalgrim H, Benavente Y, Monnereau A, Wang SS, Zhang Y, Purdue MP, Zeleniuch-Jacquotte A, Giles GG, Vermeulen R, Cocco P, Albanes D, Teras LR, Brooks-Wilson AR, Vajdic CM, Kane E, Caporaso NE, Smedby KE, Salles G, Vijai J, Chanock SJ, Skibola CF, Rothman N, Slager SL, Cerhan JR. Lipid Trait Variants and the Risk of Non-Hodgkin Lymphoma Subtypes: A Mendelian Randomization Study. Cancer Epidemiol Biomarkers Prev 2020; 29:1074-1078. [PMID: 32108027 PMCID: PMC7196490 DOI: 10.1158/1055-9965.epi-19-0803] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/08/2019] [Accepted: 02/07/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Lipid traits have been inconsistently linked to risk of non-Hodgkin lymphoma (NHL). We examined the association of genetically predicted lipid traits with risk of diffuse large B-cell lymphoma (DLBCL), chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), and marginal zone lymphoma (MZL) using Mendelian randomization (MR) analysis. METHODS Genome-wide association study data from the InterLymph Consortium were available for 2,661 DLBCLs, 2,179 CLLs, 2,142 FLs, 824 MZLs, and 6,221 controls. SNPs associated (P < 5 × 10-8) with high-density lipoprotein (HDL, n = 164), low-density lipoprotein (LDL, n = 137), total cholesterol (TC, n = 161), and triglycerides (TG, n = 123) were used as instrumental variables (IV), explaining 14.6%, 27.7%, 16.8%, and 12.8% of phenotypic variation, respectively. Associations between each lipid trait and NHL subtype were calculated using the MR inverse variance-weighted method, estimating odds ratios (OR) per standard deviation and 95% confidence intervals (CI). RESULTS HDL was positively associated with DLBCL (OR = 1.14; 95% CI, 1.00-1.30) and MZL (OR = 1.09; 95% CI, 1.01-1.18), while TG was inversely associated with MZL risk (OR = 0.90; 95% CI, 0.83-0.99), all at nominal significance (P < 0.05). A positive trend was observed for HDL with FL risk (OR = 1.08; 95% CI, 0.99-1.19; P = 0.087). No associations were noteworthy after adjusting for multiple testing. CONCLUSIONS We did not find evidence of a clear or strong association of these lipid traits with the most common NHL subtypes. While these IVs have been previously linked to other cancers, our findings do not support any causal associations with these NHL subtypes. IMPACT Our results suggest that prior reported inverse associations of lipid traits are not likely to be causal and could represent reverse causality or confounding.
Collapse
MESH Headings
- Causality
- Cholesterol/blood
- Cholesterol/metabolism
- Genetic Predisposition to Disease
- Genome-Wide Association Study
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/epidemiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Lipid Metabolism/genetics
- Lipoproteins, HDL/blood
- Lipoproteins, HDL/metabolism
- Lipoproteins, LDL/blood
- Lipoproteins, LDL/metabolism
- Lymphoma, B-Cell, Marginal Zone/blood
- Lymphoma, B-Cell, Marginal Zone/epidemiology
- Lymphoma, B-Cell, Marginal Zone/genetics
- Lymphoma, B-Cell, Marginal Zone/metabolism
- Lymphoma, Follicular/blood
- Lymphoma, Follicular/epidemiology
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/metabolism
- Lymphoma, Large B-Cell, Diffuse/blood
- Lymphoma, Large B-Cell, Diffuse/epidemiology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Mendelian Randomization Analysis
- Odds Ratio
- Polymorphism, Single Nucleotide
- Quantitative Trait Loci
- Risk Factors
- Triglycerides/blood
- Triglycerides/metabolism
Collapse
Affiliation(s)
| | - Nicola J Camp
- Department of Internal Medicine, Huntsman Cancer Institute and University of Utah School of Medicine, Salt Lake City, Utah
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Brenda M Birmann
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Alexandra Nieters
- Institute for Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - James D McKay
- International Agency for Research on Cancer, Lyon, France
| | - Hervé Ghesquières
- Department of Hematology, Centre Hospitalier Lyon Sud, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Henrik Hjalgrim
- Department of Epidemiology Research, Division of Health Surveillance and Research, Statens Serum Institut, Copenhagen, Denmark
| | - Yolanda Benavente
- Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Unit of Molecular and Genetic Epidemiology in Infections and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Alain Monnereau
- Registre des Hémopathies Malignes de la Gironde, Institut Bergonié, Epidemiology of Childhood and Adolescent Cancers Group, Inserm, Center of Research in Epidemiology and Statistics Sorbonne Paris Cité (CRESS), Paris, France
| | - Sophia S Wang
- City of Hope Beckman Research Institute, Duarte, California
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut
| | - Mark P Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Anne Zeleniuch-Jacquotte
- Department of Population Health and Perlmutter Cancer Center, NYU School of Medicine, New York, New York
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, Monash University, Melbourne, Victoria, Australia
| | - Roel Vermeulen
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Pierluigi Cocco
- Department of Medical Sciences and Public Health, Occupational Health Section, University of Cagliari, Monserrato, Italy
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | | | - Angela R Brooks-Wilson
- BC Cancer, Vancouver, and Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Claire M Vajdic
- Centre for Big Data Research in Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Eleanor Kane
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, Heslington, York, United Kingdom
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Karin E Smedby
- Karolinska Institutet, Division of Clinical Epidemiology, Department of Medicine Solna, Stockholm, Sweden
| | - Gilles Salles
- Department of Hematology, Centre Hospitalier Lyon Sud, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Joseph Vijai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | | | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | | | | |
Collapse
|
295
|
Krawczyk M, Liebe R, Lammert F. Toward Genetic Prediction of Nonalcoholic Fatty Liver Disease Trajectories: PNPLA3 and Beyond. Gastroenterology 2020; 158:1865-1880.e1. [PMID: 32068025 DOI: 10.1053/j.gastro.2020.01.053] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is on the verge of becoming the leading cause of liver disease. NAFLD develops at the interface between environmental factors and inherited predisposition. Genome-wide association studies, followed by exome-wide analyses, led to identification of genetic risk variants (eg, PNPLA3, TM6SF2, and SERPINA1) and key pathways involved in fatty liver disease pathobiology. Functional studies improved our understanding of these genetic factors and the molecular mechanisms underlying the trajectories from fat accumulation to fibrosis, cirrhosis, and cancer over time. Here, we summarize key NAFLD risk genes and illustrate their interactions in a 3-dimensional "risk space." Although NAFLD genomics sometimes appears to be "lost in translation," we envision clinical utility in trial design, outcome prediction, and NAFLD surveillance.
Collapse
Affiliation(s)
- Marcin Krawczyk
- Department of Medicine II (Gastroenterology and Endocrinology), Saarland University Medical Center, Saarland University, Homburg; Laboratory of Metabolic Liver Diseases, Center for Preclinical Research, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Roman Liebe
- Department of Medicine II (Gastroenterology and Endocrinology), Saarland University Medical Center, Saarland University, Homburg; Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Frank Lammert
- Department of Medicine II (Gastroenterology and Endocrinology), Saarland University Medical Center, Saarland University, Homburg.
| |
Collapse
|
296
|
Simons N, Bijnen M, Wouters KAM, Rensen SS, Beulens JWJ, van Greevenbroek MMJ, ’t Hart LM, Greve JWM, van der Kallen CJH, Schaper NC, Schalkwijk CG, Stehouwer CDA, Brouwers MCGJ. The endothelial function biomarker soluble E-selectin is associated with nonalcoholic fatty liver disease. Liver Int 2020; 40:1079-1088. [PMID: 31960587 PMCID: PMC7317803 DOI: 10.1111/liv.14384] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Plasma soluble E-selectin (sE-selectin) is a frequently used biomarker of systemic endothelial dysfunction. The present study explored the relationship between nonalcoholic fatty liver disease (NAFLD) and plasma sE-selectin levels. METHODS Expression of E-selectin in liver, visceral adipose tissue (VAT) and muscle was studied in relation to plasma sE-selectin in severely obese individuals (n = 74). The course of hepatic E-selectin expression in relation to hepatic steatosis and inflammation was examined in C57BL/6J LDLR-/- mice on a Western-type diet. The relationship between biomarkers of NAFLD, that is, plasma aminotransferase (ALT) and NAFLD susceptibility genes (rs738409 [PNPLA3] and rs1260326 [GCKR]), and plasma sE-selectin was studied in the combined CODAM (n = 571) and Hoorn (n = 694) studies. RESULTS E-selectin expression in liver, not VAT or muscle, was associated with plasma sE-selectin in severely obese individuals (β = 0.26; 95% CI: 0.05-0.47). NAFLD severity was associated with hepatic E-selectin expression (P = .02) and plasma sE-selectin (P = .003). LDLR-/- mice on a Western-type diet displayed increased hepatic E-selectin expression that followed the same course as hepatic inflammation, but not steatosis. In the CODAM study, plasma ALT was associated with plasma sE-selectin, independent of potential confounders (β = 0.25; 95% CI: 0.16-0.34). Both rs738409 and rs1260326 were associated with higher plasma sE-selectin in the combined CODAM and Hoorn studies (P = .01 and P = .004 respectively). CONCLUSIONS NAFLD and related markers are associated with higher expression of hepatic E-selectin and higher levels of plasma sE-selectin. Further studies are required to investigate the role of E-selectin in the pathogenesis of NAFLD and the applicability of sE-selectin as a plasma biomarker of NAFLD/NASH.
Collapse
Affiliation(s)
- Nynke Simons
- Department of Internal MedicineDivision of Endocrinology and Metabolic DiseasesMaastricht University Medical CenterMaastrichtThe Netherlands,Department of Internal MedicineDivision of General Internal MedicineLaboratory for Metabolism and Vascular MedicineMaastricht University Medical CenterMaastrichtThe Netherlands,CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
| | - Mitchell Bijnen
- Department of Internal MedicineDivision of General Internal MedicineLaboratory for Metabolism and Vascular MedicineMaastricht University Medical CenterMaastrichtThe Netherlands,CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
| | - Kristiaan A. M. Wouters
- Department of Internal MedicineDivision of General Internal MedicineLaboratory for Metabolism and Vascular MedicineMaastricht University Medical CenterMaastrichtThe Netherlands,CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
| | - Sander S. Rensen
- Department of General SurgeryMaastricht University Medical CenterMaastrichtThe Netherlands,NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands
| | - Joline W. J. Beulens
- Department of Epidemiology and BiostatisticsAmsterdam University Medical Center – location VUmcthe Amsterdam Public Health Research Institute AmsterdamAmsterdamThe Netherlands,Julius Center for Health Sciences and Primary CareUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Marleen M. J. van Greevenbroek
- Department of Internal MedicineDivision of General Internal MedicineLaboratory for Metabolism and Vascular MedicineMaastricht University Medical CenterMaastrichtThe Netherlands,CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
| | - Leen M. ’t Hart
- Department of Epidemiology and BiostatisticsAmsterdam University Medical Center – location VUmcthe Amsterdam Public Health Research Institute AmsterdamAmsterdamThe Netherlands,Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands,Department of Biomedical Data SciencesSection Molecular EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jan Willem M. Greve
- Department of General SurgeryMaastricht University Medical CenterMaastrichtThe Netherlands,NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands,Department of General SurgeryZuyderland Medical CenterHeerlenThe Netherlands
| | - Carla J. H. van der Kallen
- Department of Internal MedicineDivision of General Internal MedicineLaboratory for Metabolism and Vascular MedicineMaastricht University Medical CenterMaastrichtThe Netherlands,CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
| | - Nicolaas C. Schaper
- Department of Internal MedicineDivision of Endocrinology and Metabolic DiseasesMaastricht University Medical CenterMaastrichtThe Netherlands,CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands,CAPHRI School for Public Health and Primary CareMaastricht UniversityMaastrichtThe Netherlands
| | - Casper G. Schalkwijk
- Department of Internal MedicineDivision of General Internal MedicineLaboratory for Metabolism and Vascular MedicineMaastricht University Medical CenterMaastrichtThe Netherlands,CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
| | - Coen D. A. Stehouwer
- Department of Internal MedicineDivision of General Internal MedicineLaboratory for Metabolism and Vascular MedicineMaastricht University Medical CenterMaastrichtThe Netherlands,CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands,Department of Internal MedicineDivision of General Internal MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Martijn C. G. J. Brouwers
- Department of Internal MedicineDivision of Endocrinology and Metabolic DiseasesMaastricht University Medical CenterMaastrichtThe Netherlands,Department of Internal MedicineDivision of General Internal MedicineLaboratory for Metabolism and Vascular MedicineMaastricht University Medical CenterMaastrichtThe Netherlands,CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
297
|
Xu YX, Peloso GM, Nagai TH, Mizoguchi T, Deik A, Bullock K, Lin H, Musunuru K, Yang Q, Vasan RS, Gerszten RE, Clish CB, Rader D, Kathiresan S. EDEM3 Modulates Plasma Triglyceride Level through Its Regulation of LRP1 Expression. iScience 2020; 23:100973. [PMID: 32213464 PMCID: PMC7093811 DOI: 10.1016/j.isci.2020.100973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/06/2019] [Accepted: 03/05/2020] [Indexed: 01/10/2023] Open
Abstract
Human genetics studies have uncovered genetic variants that can be used to guide biological research and prioritize molecular targets for therapeutic intervention for complex diseases. We have identified a missense variant (P746S) in EDEM3 associated with lower blood triglyceride (TG) levels in >300,000 individuals. Functional analyses in cell and mouse models show that EDEM3 deficiency strongly increased the uptake of very-low-density lipoprotein and thereby reduced the plasma TG level, as a result of up-regulated expression of LRP1 receptor. We demonstrate that EDEM3 deletion up-regulated the pathways for RNA and endoplasmic reticulum protein processing and transport, and consequently increased the cell surface mannose-containing glycoproteins, including LRP1. Metabolomics analyses reveal a cellular TG accumulation under EDEM3 deficiency, a profile consistent with individuals carrying EDEM3 P746S. Our study identifies EDEM3 as a regulator of blood TG, and targeted inhibition of EDEM3 may provide a complementary approach for lowering elevated blood TG concentrations.
Collapse
Affiliation(s)
- Yu-Xin Xu
- Center for Genomic Medicine, Massachusetts General Hospital, Simches 5.500, 185 Cambridge St., Boston, MA 02114, USA.
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Taylor H Nagai
- Center for Genomic Medicine, Massachusetts General Hospital, Simches 5.500, 185 Cambridge St., Boston, MA 02114, USA
| | - Taiji Mizoguchi
- Center for Genomic Medicine, Massachusetts General Hospital, Simches 5.500, 185 Cambridge St., Boston, MA 02114, USA
| | - Amy Deik
- The Metabolomics Program, Broad Institute, Cambridge, MA 02142, USA
| | - Kevin Bullock
- The Metabolomics Program, Broad Institute, Cambridge, MA 02142, USA
| | - Honghuang Lin
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kiran Musunuru
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Ramachandran S Vasan
- Preventive Medicine and Epidemiology, Boston University School of Medicine, Boston, MA 02118, USA; Framingham Heart Study of the NHLBI and Boston University School of Medicine, Framingham, MA 01702, USA
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Clary B Clish
- The Metabolomics Program, Broad Institute, Cambridge, MA 02142, USA
| | - Daniel Rader
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sekar Kathiresan
- Center for Genomic Medicine, Massachusetts General Hospital, Simches 5.500, 185 Cambridge St., Boston, MA 02114, USA.
| |
Collapse
|
298
|
Emdin CA, Haas ME, Khera AV, Aragam K, Chaffin M, Klarin D, Hindy G, Jiang L, Wei WQ, Feng Q, Karjalainen J, Havulinna A, Kiiskinen T, Bick A, Ardissino D, Wilson JG, Schunkert H, McPherson R, Watkins H, Elosua R, Bown MJ, Samani NJ, Baber U, Erdmann J, Gupta N, Danesh J, Saleheen D, Chang KM, Vujkovic M, Voight B, Damrauer S, Lynch J, Kaplan D, Serper M, Tsao P, Million Veteran Program, Mercader J, Hanis C, Daly M, Denny J, Gabriel S, Kathiresan S. A missense variant in Mitochondrial Amidoxime Reducing Component 1 gene and protection against liver disease. PLoS Genet 2020; 16:e1008629. [PMID: 32282858 PMCID: PMC7200007 DOI: 10.1371/journal.pgen.1008629] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 05/05/2020] [Accepted: 01/24/2020] [Indexed: 12/15/2022] Open
Abstract
Analyzing 12,361 all-cause cirrhosis cases and 790,095 controls from eight cohorts, we identify a common missense variant in the Mitochondrial Amidoxime Reducing Component 1 gene (MARC1 p.A165T) that associates with protection from all-cause cirrhosis (OR 0.91, p = 2.3*10−11). This same variant also associates with lower levels of hepatic fat on computed tomographic imaging and lower odds of physician-diagnosed fatty liver as well as lower blood levels of alanine transaminase (-0.025 SD, 3.7*10−43), alkaline phosphatase (-0.025 SD, 1.2*10−37), total cholesterol (-0.030 SD, p = 1.9*10−36) and LDL cholesterol (-0.027 SD, p = 5.1*10−30) levels. We identified a series of additional MARC1 alleles (low-frequency missense p.M187K and rare protein-truncating p.R200Ter) that also associated with lower cholesterol levels, liver enzyme levels and reduced risk of cirrhosis (0 cirrhosis cases for 238 R200Ter carriers versus 17,046 cases of cirrhosis among 759,027 non-carriers, p = 0.04) suggesting that deficiency of the MARC1 enzyme may lower blood cholesterol levels and protect against cirrhosis. Cirrhosis is a leading cause of death worldwide. However, the genetic underpinnings of cirrhosis remain poorly understood. In this study, we analyze twelve thousand individuals with cirrhosis and identify a common missense variant in a gene called MARC1 that protects against cirrhosis. Carriers of this missense variant also have lower blood cholesterol levels, lower liver enzyme levels and reduced liver fat. We identify an additional two low-frequency coding variants in MARC1 that are also associated with lower cholesterol levels, lower liver enzyme levels and protection from cirrhosis. Finally, we identify an individual homozygous for a predicted loss-of-function variant in MARC1 who exhibits very low blood LDL cholesterol levels. These genetic findings suggest that MARC1 deficiency may lower blood cholesterol levels and protect against cirrhosis, pointing to MARC1 as a potential therapeutic target for liver disease.
Collapse
Affiliation(s)
- Connor A. Emdin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Mary E. Haas
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Amit V. Khera
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Krishna Aragam
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Mark Chaffin
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Derek Klarin
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - George Hindy
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Lan Jiang
- Departments of Biomedical Informatics, Vanderbilt University, Vanderbilt, Tennessee, United States of America
- Departments of Medicine, Vanderbilt University, Vanderbilt, Tennessee, United States of America
| | - Wei-Qi Wei
- Departments of Biomedical Informatics, Vanderbilt University, Vanderbilt, Tennessee, United States of America
| | - Qiping Feng
- Departments of Medicine, Vanderbilt University, Vanderbilt, Tennessee, United States of America
| | - Juha Karjalainen
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI, Helsinki, Finland
| | - Aki Havulinna
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI, Helsinki, Finland
| | - Tuomo Kiiskinen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI, Helsinki, Finland
| | - Alexander Bick
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Diego Ardissino
- Division of Cardiology, Azienda Ospedaliero–Universitaria di Parma, Parma, Italy
- Associazione per lo Studio Della Trombosi in Cardiologia, Pavia, Italy
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Technische Universität München, Deutsches Zentrum für Herz-Kreislauf-Forschung, München, Germany
| | - Ruth McPherson
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Roberto Elosua
- Cardiovascular Epidemiology and Genetics, Hospital del Mar Research Institute, Barcelona, Spain
- CIBER Enfermedades Cardiovasculares (CIBERCV), Barcelona, Spain
- Facultat de Medicina, Universitat de Vic-Central de Cataluña, Vic, Spain
| | - Matthew J. Bown
- Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Biomedical Research Centre, Leicester, United Kingdom
| | - Nilesh J. Samani
- Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Biomedical Research Centre, Leicester, United Kingdom
| | - Usman Baber
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Namrata Gupta
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - John Danesh
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- National Institute of Health Research Blood and Transplant; Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Danish Saleheen
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | - Kyong-Mi Chang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marijana Vujkovic
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ben Voight
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Scott Damrauer
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Julie Lynch
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David Kaplan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marina Serper
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Philip Tsao
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | | | - Josep Mercader
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Craig Hanis
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Mark Daly
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI, Helsinki, Finland
| | - Joshua Denny
- Departments of Biomedical Informatics, Vanderbilt University, Vanderbilt, Tennessee, United States of America
- Departments of Medicine, Vanderbilt University, Vanderbilt, Tennessee, United States of America
| | - Stacey Gabriel
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Sekar Kathiresan
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Verve Therapeutics, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
299
|
Integrating Mouse and Human Genetic Data to Move beyond GWAS and Identify Causal Genes in Cholesterol Metabolism. Cell Metab 2020; 31:741-754.e5. [PMID: 32197071 PMCID: PMC7184639 DOI: 10.1016/j.cmet.2020.02.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 01/14/2020] [Accepted: 02/20/2020] [Indexed: 12/27/2022]
Abstract
Identifying the causal gene(s) that connects genetic variation to a phenotype is a challenging problem in genome-wide association studies (GWASs). Here, we develop a systematic approach that integrates mouse liver co-expression networks with human lipid GWAS data to identify regulators of cholesterol and lipid metabolism. Through our approach, we identified 48 genes showing replication in mice and associated with plasma lipid traits in humans and six genes on the X chromosome. Among these 54 genes, 25 have no previously identified role in lipid metabolism. Based on functional studies and integration with additional human lipid GWAS datasets, we pinpoint Sestrin1 as a causal gene associated with plasma cholesterol levels in humans. Our validation studies demonstrate that Sestrin1 influences plasma cholesterol in multiple mouse models and regulates cholesterol biosynthesis. Our results highlight the power of combining mouse and human datasets for prioritization of human lipid GWAS loci and discovery of lipid genes.
Collapse
|
300
|
Villette R, Kc P, Beliard S, Salas Tapia MF, Rainteau D, Guerin M, Lesnik P. Unraveling Host-Gut Microbiota Dialogue and Its Impact on Cholesterol Levels. Front Pharmacol 2020; 11:278. [PMID: 32308619 PMCID: PMC7145900 DOI: 10.3389/fphar.2020.00278] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Disruption in cholesterol metabolism, particularly hypercholesterolemia, is a significant cause of atherosclerotic cardiovascular disease. Large interindividual variations in plasma cholesterol levels are traditionally related to genetic factors, and the remaining portion of their variance is accredited to environmental factors. In recent years, the essential role played by intestinal microbiota in human health and diseases has emerged. The gut microbiota is currently viewed as a fundamental regulator of host metabolism and of innate and adaptive immunity. Its bacterial composition but also the synthesis of multiple molecules resulting from bacterial metabolism vary according to diet, antibiotics, drugs used, and exposure to pollutants and infectious agents. Microbiota modifications induced by recent changes in the human environment thus seem to be a major factor in the current epidemic of metabolic/inflammatory diseases (diabetes mellitus, liver diseases, inflammatory bowel disease, obesity, and dyslipidemia). Epidemiological and preclinical studies report associations between bacterial communities and cholesterolemia. However, such an association remains poorly investigated and characterized. The objectives of this review are to present the current knowledge on and potential mechanisms underlying the host-microbiota dialogue for a better understanding of the contribution of microbial communities to the regulation of cholesterol homeostasis.
Collapse
Affiliation(s)
- Remy Villette
- INSERM, UMRS U1166, "Integrative Biology of Atherosclerosis" and Sorbonne Université, Paris, France
| | - Pukar Kc
- INSERM, UMRS U1166, "Integrative Biology of Atherosclerosis" and Sorbonne Université, Paris, France
| | - Sophie Beliard
- Aix-Marseille Université, INSERM U1263, INRA, C2VN, Marseille, France.,APHM, La Conception Hospital, Marseille, France
| | | | - Dominique Rainteau
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint Antoine, Département de Métabolomique Clinique, Paris, France
| | - Maryse Guerin
- INSERM, UMRS U1166, "Integrative Biology of Atherosclerosis" and Sorbonne Université, Paris, France
| | - Philippe Lesnik
- INSERM, UMRS U1166, "Integrative Biology of Atherosclerosis" and Sorbonne Université, Paris, France
| |
Collapse
|