1
|
Ji J, Chen L, Wu Z, Tang T, Zhu L, Zhu M, Chen Y, Lu X, Yao H. Enhancing antibody levels and T cell activity of quadrivalent influenza vaccine by combining it with CpG HP021. Sci Rep 2024; 14:31424. [PMID: 39733119 PMCID: PMC11682164 DOI: 10.1038/s41598-024-83026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024] Open
Abstract
Influenza virus infections are a serious danger to people's health worldwide as they are responsible for seasonal flu outbreaks. There is an urgent need to improve the effectiveness and durability longevity of the immune response to influenza vaccines. We synthesized the CpG HP021 and examined the impact of it on the immune response to an influenza vaccine. In BALB/c mice, hemagglutination inhibition (HI) titers to the vaccine were increased four- to eightfold against H1N1, H3N2, BV, and BY viruses by 3 μg IIV4 + 40 μg CpG HP021 compared with those of the non-adjuvanted IIV4 group, and the CpG HP021 group had a broader HI activity. Additionally, the immune response was directed towards Type 1 T helper (Th1) cells due to the CpG HP021 adjuvant. The CpG HP021-adjuvanted IIV4 induced a higher number of T cells secreting interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α), and increased the percentage of effector memory T cells in mice. In SD rats, the immune responses induced by IIV4 with CpG HP021 were similar to those in BALB/c mice. The development of CpG HP021 may expand the options for adjuvants in vaccines against infectious diseases.
Collapse
Affiliation(s)
- Jia Ji
- State Key Laboratory for Diagnosis, Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China
| | - Lei Chen
- Zhejiang Toyouvax Bio-pharmaceutical Co., Ltd, Hangzhou, 311100, China
| | - Zhigang Wu
- State Key Laboratory for Diagnosis, Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Taoming Tang
- State Key Laboratory for Diagnosis, Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Linwei Zhu
- State Key Laboratory for Diagnosis, Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Miaojin Zhu
- State Key Laboratory for Diagnosis, Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yan Chen
- Jiangsu Taipurui Biotechnology Co., Ltd, Taizhou, 225300, China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis, Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis, Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China.
| |
Collapse
|
2
|
Oliveira GE, da Silva Barbirato D, de Menezes BS, Fuly MS, Pelegrine HCL, Bonilha DC, de Alencar JGP, Theodoro LH, de Molon RS. Exploring the Impact of Biological Agents on Protecting Against Experimental Periodontitis: A Systematic Review of Animal-Based Studies. BIOMED RESEARCH INTERNATIONAL 2024; 2024:1716735. [PMID: 39654845 PMCID: PMC11628168 DOI: 10.1155/bmri/1716735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/18/2024] [Indexed: 12/12/2024]
Abstract
Aim: This systematic review was aimed at addressing the focused question: What is the protective potential of biological agents against alveolar bone resorption during the progression of experimental periodontitis (EP)? Material and Methods: The study protocol was registered in the Open Science Framework database (doi:10.17605/OSF.IO/3P2HY). A comprehensive literature search was conducted across PubMed, Web of Science, Cochrane Library, Scopus, and Embase databases up to December 2023. Inclusion criteria consisted of preclinical studies in animal models of EP that examined the effects of biological agents on preventing periodontal bone loss and reducing tissue inflammation. Studies were excluded if they (i) used non-EP animal models; (ii) focused on antimicrobial agents; (iii) centered on prebiotics or probiotics; (iv) evaluated compounds not classified as biologicals; or (v) included randomized clinical trials, clinical studies, or reviews. Eligibility was determined based on the PI/ECOs framework, and study quality was assessed using the SYRCLE risk-of-bias tool. Results: After screening an initial pool of 5236 records from databases, registries, and hand searches, 39 studies met the inclusion criteria. A total of 23 biological agents were evaluated across these studies. The majority of studies employed the ligature-induced model of EP to test the effectiveness of biologicals as preventive or therapeutic interventions. The dosage of biological agents and the duration of disease induction varied depending on the EP model. In all studies, the main outcome-alveolar bone loss, a hallmark of EP-was significantly inhibited by biological agents, which also reduced proinflammatory mediators when compared to untreated controls. A key strength of this review is the high number of studies included, most of which were classified as having low risk of bias. However, a notable limitation is the absence of a meta-analysis, the short follow-up periods in the included studies, and the heterogeneity among the compound dosages and route of administration. Conclusion: This systematic review demonstrates that biological agents are effective in reducing bone loss and mitigating inflammation during EP progression. Randomized clinical trials are needed to confirm these findings in human populations.
Collapse
Affiliation(s)
- Gabriela Ezequiel Oliveira
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University-UNESP, Aracatuba, São Paulo 16015-050, Brazil
| | - Davi da Silva Barbirato
- Department of Basic and Oral Biology, Faculty of Dentistry of Ribeirão Preto, University of São Paulo (FORP/USP) 14040-904, Ribeirão Preto, São Paulo, Brazil
| | - Bruna Silva de Menezes
- Division of Periodontics, Dental School, Federal University of Rio de Janeiro-UFRJ, Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - Milenna Silva Fuly
- Division of Periodontics, Dental School, Federal University of Rio de Janeiro-UFRJ, Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - Henrique Cassebe Ledo Pelegrine
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University-UNESP, Aracatuba, São Paulo 16015-050, Brazil
| | - Debora Caliendo Bonilha
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University-UNESP, Aracatuba, São Paulo 16015-050, Brazil
| | | | - Leticia Helena Theodoro
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University-UNESP, Aracatuba, São Paulo 16015-050, Brazil
| | - Rafael Scaf de Molon
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University-UNESP, Aracatuba, São Paulo 16015-050, Brazil
| |
Collapse
|
3
|
Amosu MM, Jankowski AM, McCright JC, Yang BE, Grano de Oro Fernandez J, Moore KA, Gadde HS, Donthi M, Kaluzienski ML, Maisel K. Plasmacytoid Dendritic Cells Mediate CpG-ODN-induced Increase in Survival in a Mouse Model of Lymphangioleiomyomatosis. Am J Respir Cell Mol Biol 2024; 71:519-533. [PMID: 38990702 PMCID: PMC11568470 DOI: 10.1165/rcmb.2023-0410oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/11/2024] [Indexed: 07/13/2024] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a devastating disease primarily found in women of reproductive age that leads to cystic destruction of the lungs. Recent work has shown that LAM causes immunosuppression and that checkpoint inhibitors can be used as LAM treatment. Toll-like receptor (TLR) agonists can also reactivate immunity, and the TLR9 agonist CpG oligodeoxynucleotide (CpG-ODN) has been effective in treating lung cancer in animal models. In this study, we investigated the use of TLR9 agonist CpG-ODN as LAM immunotherapy in combination with checkpoint inhibitor anti-PD1 and standard of care rapamycin, and determined the immune mechanisms underlying therapeutic efficacy. We used survival studies, flow cytometry, ELISA, and histology to assess immune response and survival after intranasal treatment with CpG-ODN in combination with rapamycin or anti-PD1 therapy in a mouse model of metastatic LAM. We found that local administration of CpG-ODN enhances survival in a mouse model of LAM. We found that a lower dose led to longer survival, likely because of fewer local side effects, but increased LAM nodule count and size compared with the higher dose. CpG-ODN treatment also reduced regulatory T cells and increased the number of T-helper type 17 cells as well as cytotoxic T cells. These effects appear to be mediated in part by plasmacytoid dendritic cells because depletion of plasmacytoid dendritic cells reduces survival and abrogates T-helper type 17 cell response. Finally, we found that CpG-ODN treatment is effective in early-stage and progressive disease and is additive with anti-PD1 therapy and rapamycin. In summary, we have found that TLR9 agonist CpG-ODN can be used as LAM immunotherapy and effectively synergizes with rapamycin and anti-PD1 therapy in LAM.
Collapse
Affiliation(s)
- Mayowa M Amosu
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Ashleigh M Jankowski
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Jacob C McCright
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Bennett E Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | | | - Kaitlyn A Moore
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Havish S Gadde
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Mehul Donthi
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Michele L Kaluzienski
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Katharina Maisel
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
4
|
Parthasarathy S, Moreno de Lara L, Carrillo-Salinas FJ, Werner A, Borchers A, Iyer V, Vogell A, Fortier JM, Wira CR, Rodriguez-Garcia M. Human genital dendritic cell heterogeneity confers differential rapid response to HIV-1 exposure. Front Immunol 2024; 15:1472656. [PMID: 39524443 PMCID: PMC11543421 DOI: 10.3389/fimmu.2024.1472656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Dendritic cells (DCs) play critical roles in HIV pathogenesis and require further investigation in the female genital tract, a main portal of entry for HIV infection. Here we characterized genital DC populations at the single cell level and how DC subsets respond to HIV immediately following exposure. We found that the genital CD11c+HLA-DR+ myeloid population contains three DC subsets (CD1c+ DC2s, CD14+ monocyte-derived DCs and CD14+CD1c+ DC3s) and two monocyte/macrophage populations with distinct functional and phenotypic properties during homeostasis. Following HIV exposure, the antiviral response was dominated by DCs' rapid secretory response, activation of non-classical inflammatory pathways and host restriction factors. Further, we uncovered subset-specific differences in anti-HIV responses. CD14+ DCs were the main population activated by HIV and mediated the secretory antimicrobial response, while CD1c+ DC2s activated inflammasome pathways and IFN responses. Identification of subset-specific responses to HIV immediately after exposure could aid targeted strategies to prevent HIV infection.
Collapse
Affiliation(s)
- Siddharth Parthasarathy
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Laura Moreno de Lara
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | | | - Alexandra Werner
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
- C.S Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Anna Borchers
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Vidya Iyer
- Department of Gynecology and Obstetrics, Tufts Medical Center, Boston, MA, United States
- Mass General Research Institute (MGRI), Division of Clinical Research, Massachusetts General Hospital, Boston, MA, United States
| | - Alison Vogell
- Department of Gynecology and Obstetrics, Tufts Medical Center, Boston, MA, United States
| | - Jared M. Fortier
- C.S Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Charles R. Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Marta Rodriguez-Garcia
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
- C.S Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
5
|
Huang X, Qin X, Huang W, Huang B. The predictive value of hematological inflammatory markers for severe oral mucositis in patients with nasopharyngeal carcinoma during intensity-modulated radiation therapy: A retrospective cohort study. Curr Probl Cancer 2024; 51:101117. [PMID: 38945022 DOI: 10.1016/j.currproblcancer.2024.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/12/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND This study aims to investigate the predictive value of the circulating blood cell count, including neutro-philto-lymphocyte ratio (NLR), platelet-to-lymphocyte (PLR), and thesystemic inflammation index (SII) for the development of severe oral mucositis (SOM) induced by radiation in patients undergoing radiotherapy for nasopharyngeal carcinoma (NPC). METHODS In this retrospective study, 142 NPC patients were screened, and based on mucositis toxicity grade, they were categorized into two groups: SOM and nonSOM. Peripheral blood cell counts were conducted prior to Intensity-Modulated Radiation Therapy (IMRT). Associations between blood cell count, NLR, PLR, SII, and SOM occurrence were examined. RESULTS Revealed elevated NLR and SII levels, along with reduced lymphocyte (LYM), eosinophil (EOS), and basophil (BAS) in patients with SOM. LYM, EOS, BAS, NLR, and SII were effective predictors of the severity of radiation-induced oral mucositis (RIOM) in NPC patients. CONCLUSIONS The occurrence of SOM was strongly linked to the hematological status at the start of Radiation Therapy (RT). Integrating BAS count and NLR into comprehensive risk prediction models could prove valuable for predicting SOM in NPC patients.
Collapse
Affiliation(s)
- Xiaoxian Huang
- Clinical Laboratory, Guangxi Orthopaedic Hospital, 32 Xinmin Rd, Nanning, Guangxi 530016, PR China
| | - Xinling Qin
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, Nanning, Guangxi 530021, PR China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, PR China
| | - Weimei Huang
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, Nanning, Guangxi 530021, PR China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, PR China
| | - Ben Huang
- Clinical Laboratory, Guangxi Orthopaedic Hospital, 32 Xinmin Rd, Nanning, Guangxi 530016, PR China.
| |
Collapse
|
6
|
Kleberg L, Courey-Ghaouzi AD, Lautenbach MJ, Färnert A, Sundling C. Regulation of B-cell function and expression of CD11c, T-bet, and FcRL5 in response to different activation signals. Eur J Immunol 2024; 54:e2350736. [PMID: 38700378 DOI: 10.1002/eji.202350736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
CD11c, FcRL5, or T-bet are commonly expressed by B cells expanding during inflammation, where they can make up >30% of mature B cells. However, the association between the proteins and differentiation and function in the host response remains largely unclear. We have assessed the co-expression of CD11c, T-bet, and FcRL5 in an in vitro B-cell culture system to determine how stimulation via the BCR, toll-like receptor 9 (TLR9), and different cytokines influence CD11c, T-bet, and FcRL5 expression. We observed different expression dynamics for all markers, but a largely overlapping regulation of CD11c and FcRL5 in response to BCR and TLR9 activation, while T-bet was strongly dependent on IFN-γ signaling. Investigating plasma cell differentiation and APC functions, there was no association between marker expression and antibody secretion or T-cell help. Rather the functions were associated with TLR9-signalling and B-cell-derived IL-6 production, respectively. These results suggest that the expression of CD11c, FcRL5, and T-bet and plasma cell differentiation and improved APC functions occur in parallel and are regulated by similar activation signals, but they are not interdependent.
Collapse
Affiliation(s)
- Linn Kleberg
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Alan-Dine Courey-Ghaouzi
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Maximilian Julius Lautenbach
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Goetz M, Thotathil N, Zhao Z, Mitragotri S. Vaccine adjuvants for infectious disease in the clinic. Bioeng Transl Med 2024; 9:e10663. [PMID: 39036089 PMCID: PMC11256182 DOI: 10.1002/btm2.10663] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 07/23/2024] Open
Abstract
Adjuvants, materials added to vaccines to enhance the resulting immune response, are important components of vaccination that are many times overlooked. While vaccines always include an antigen to tell the body what to vaccinate to, of equal importance the adjuvant provides the how, a significant factor in producing a complete response. The adjuvant space has been slow to develop with the first use of an adjuvant in a licensed vaccine occurring in the 1930s, and remaining the only adjuvant in licensed vaccines for the next 80 years. However, with vaccination at the forefront of protection against new and complex pathogens, it is important to consider all components when designing an effective vaccine. Here we summarize the adjuvant space in licensed vaccines as well as the novel adjuvant space in clinical trials with a specific focus on the materials utilized and their resulting impact on the immune response. We discuss five major categories of adjuvant materials: aluminum salts, nanoparticles, viral vectors, TLR agonists, and emulsions. For each category, we delve into the current clinical trials space, the impact of these materials on vaccination, as well as some of the ways in which they could be improved. Adjuvants present an exciting opportunity to improve vaccine responses and stability, this review will help inform about the current progress of this space. Translational impact statement In the aftermath of the COVID-19 pandemic, vaccines for infectious diseases have come into the spotlight. While antigens have always been an important focus of vaccine design, the adjuvant is a significant tool for enhancing the immune response to the vaccine that has been largely underdeveloped. This article provides a broad review of the history of adjuvants and, the current vaccine adjuvant space, and the progress seen in adjuvants in clinical trials. There is specific emphasis on the material landscape for adjuvants and their resulting mechanism of action. Looking ahead, while the novel vaccine adjuvant space features exciting new technologies and materials, there is still a need for more to meet the protective needs of new and complex pathogens.
Collapse
Affiliation(s)
- Morgan Goetz
- John A Paulson School of Engineering & Applied SciencesHarvard UniversityAllstonMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Naaz Thotathil
- University of Massachusetts AmherstAmherstMassachusettsUSA
| | - Zongmin Zhao
- Department of Pharmaceutical SciencesCollege of Pharmacy, University of Illinois ChicagoChicagoIllinoisUSA
| | - Samir Mitragotri
- John A Paulson School of Engineering & Applied SciencesHarvard UniversityAllstonMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| |
Collapse
|
8
|
Amosu MM, Jankowski AM, McCright JC, Yang BE, de Oro Fernandez JG, Moore KA, Gadde HS, Donthi M, Kaluzienski ML, Sriram V, Maisel K. Plasmacytoid dendritic cells mediate CpG-ODN induced increase in survival in a mouse model of lymphangioleiomyomatosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.06.527331. [PMID: 36798234 PMCID: PMC9934559 DOI: 10.1101/2023.02.06.527331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Lymphangioleiomyomatosis (LAM) is a devastating disease primarily found in women of reproductive age that leads to cystic destruction of the lungs. Recent work has shown that LAM causes immunosuppression and that checkpoint inhibitors can be used as LAM treatment. Toll-like receptor (TLR) agonists can also re-activate immunity and the TLR9 agonist, CpG-ODN, has been effective in treating lung cancer in animal models. Here we investigate the use of TLR9 agonist CpG-ODN as LAM immunotherapy in combination with checkpoint inhibitor, anti-PD1, standard of care rapamycin and determine the immune mechanisms underlying therapeutic efficacy. We used survival studies, flow cytometry, ELISA, and histology to assess immune response and survival after intranasal treatment with CpG-ODN in combination with rapamycin or anti-PD1 therapy in a mouse model of metastatic LAM. We found that local administration of CpG-ODN enhances survival in a mouse model of LAM. We found that a lower dose led to longer survival likely due to fewer local side effects but increased LAM nodule count and size compared to the higher dose. CpG-ODN treatment also reduced regulatory T cells and increased the number of Th17 helper T cells as well as cytotoxic T cells. These effects appear to be mediated in part by plasmacytoid dendritic cells (pDCs), as depletion of pDCs reduces survival and abrogates Th17 T cell response. Finally, we found that CpG-ODN treatment is effective in early stage and progressive disease and is additive with anti-PD1 therapy and rapamycin. In summary, we have found that TLR9 agonist CpG-ODN can be used as LAM immunotherapy and effectively synergizes with rapamycin and anti-PD1 therapy in LAM.
Collapse
Affiliation(s)
- Mayowa M Amosu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Ashleigh M Jankowski
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Jacob C McCright
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Bennett E Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | | | - Kaitlyn A Moore
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Havish S Gadde
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Mehul Donthi
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Michele L Kaluzienski
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Vedanth Sriram
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Katharina Maisel
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| |
Collapse
|
9
|
Wang J, Li G, Liu S, Miao J, Sun Q, Gu W, Mao X. Activation of Toll-like receptor 4 by thyroid hormone triggers abnormal B-cell activation. Immun Inflamm Dis 2023; 11:e1007. [PMID: 37773690 PMCID: PMC10540142 DOI: 10.1002/iid3.1007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 10/01/2023] Open
Abstract
OBJECTIVE Breakdown of tolerance and abnormal activation of B cells is an important mechanism in the pathogenesis of Graves' disease (GD). High levels of thyroid hormones (THs) play important roles in GD progression. However, the interactions between THs and abnormal activation of B cells remain elusive. This study aimed to explore the effect of high levels of THs on TLR4 expression and abnormal B cell differentiation. MATERIALS AND METHODS Blood samples were collected from patients with GD and healthy controls (HCs) to evaluate the frequency of B cells, their subsets, and TLR4 expression in B cells. A high-level T3 mouse model was used to study the interaction between THs and the TLR4 signalling pathway. RESULTS We found that the frequencies of CD19+ , CD19+ TLR4+ , CD19+ CD86+ , and CD19+ CD138+ B cells were significantly higher, as were the expression levels of MRP8/MRP14 and MRP6 and MRP8, MRP14, and MRP6 messenger RNA (mRNA) in peripheral blood mononuclear cells in patients with GD. In high-level T3 mice models, the serum MRP8/MRP14 and MRP6 levels and the TLR4 mRNA expression in PBMCs were significantly higher. TLR4 mRNA, protein expression, and cytokines downstream of TLR4, such as myeloid differentiation factor 88 (MyD88) and nuclear transcription factor-κB, were also increased in mouse spleen mononuclear cells. CONCLUSION The present study indicated that high levels of T3 can induce abnormal differentiation and activation of B cells by promoting TLR4 overexpression and provide novel insights into the roles of THs in the pathogenesis of GD.
Collapse
Affiliation(s)
- Jie Wang
- Department of Endocrinology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Guo‐Qing Li
- Department of Endocrinology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Shu Liu
- Department of Endocrinology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Jing‐Jing Miao
- Department of Endocrinology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Qi Sun
- Department of Endocrinology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Wen‐Sha Gu
- Department of Endocrinology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Xiao‐Ming Mao
- Department of Endocrinology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
10
|
Shuai L, She J, Diao R, Zhao H, Liu X, Hu Q, Li D, Su D, Ye X, Guo Y, Zhong M, Wang L. Hydroxychloroquine protects against autoimmune premature ovarian insufficiency by modulating the Treg/Th17 cell ratio in BALB/c mice. Am J Reprod Immunol 2023; 89:e13686. [PMID: 36752682 DOI: 10.1111/aji.13686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/16/2023] [Accepted: 01/28/2023] [Indexed: 02/09/2023] Open
Abstract
AIMS The role of hydroxychloroquine (HCQ) in premature ovarian insufficiency (POI) remains unclear. The purpose of this study was to evaluate the effect of HCQ on ovarian function in mice with POI and to clarify its potential mechanisms. METHODS POI was induced in mice by injection with zona pellucida 3 peptide (pZP3), and HCQ was administered intragastrically. Stages of the estrous cycle were determined using vaginal cytology. The ovarian structure was observed under a microscope after hematoxylin-eosin staining. The levels of serum hormones and anti-ZP antibody (aZPAb) were measured using enzyme-linked immunosorbent assay (ELISA). The expression levels of CD4, CD45, and ZP2, ZP3 were determined using immunofluorescence and immunohistochemistry, respectively. The T regulatory (Treg)/ T helper 17 (Th17) cell ratio was analyzed using flow cytometry analysis. Western blotting was performed to assess the expression levels of proteins, transcription factors and cytokines. RESULTS Administration of HCQ to mice with POI greatly restored their estrus cycle. In the treatment group compared to the POI group, estradiol (E2 ) levels were higher, and follicle stimulating hormone (FSH) levels were lower. In addition, following pZP3, HCQ treatment increased ZP2 and ZP3 expression. Additionally, by inhibiting the activation of the TLR7 signaling pathway, HCQ attenuated the infiltration of inflammatory cells and prevented the activated naive CD4+ T cells from developing into Th17 cells. CONCLUSION Our findings showed that HCQ effectively restored ovarian function by altering the Treg/Th17 cell ratio in mice with POI, indicating that HCQ maybe a promising therapeutic method for patients with POI.
Collapse
Affiliation(s)
- Ling Shuai
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First Affiliated Hospital of Shenzhen University, Reproductive Medicine Centre, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jiajie She
- The First Affiliated Hospital of Shenzhen University, Reproductive Medicine Centre, Shenzhen Second People's Hospital, Shenzhen, China
| | - Ruiying Diao
- The First Affiliated Hospital of Shenzhen University, Reproductive Medicine Centre, Shenzhen Second People's Hospital, Shenzhen, China
| | - Huihui Zhao
- Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xuemin Liu
- The First Affiliated Hospital of Shenzhen University, Reproductive Medicine Centre, Shenzhen Second People's Hospital, Shenzhen, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Qingyu Hu
- The First Affiliated Hospital of Shenzhen University, Reproductive Medicine Centre, Shenzhen Second People's Hospital, Shenzhen, China
- Department of Medicine, Shenzhen University, Shenzhen, China
| | - Dongdong Li
- The First Affiliated Hospital of Shenzhen University, Reproductive Medicine Centre, Shenzhen Second People's Hospital, Shenzhen, China
- Department of Gynecology and Obstetrics, Graduate College of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Danna Su
- The First Affiliated Hospital of Shenzhen University, Reproductive Medicine Centre, Shenzhen Second People's Hospital, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Xiaofeng Ye
- The First Affiliated Hospital of Shenzhen University, Reproductive Medicine Centre, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yan Guo
- The First Affiliated Hospital of Shenzhen University, Reproductive Medicine Centre, Shenzhen Second People's Hospital, Shenzhen, China
- Guangdong Medical University, Zhanjiang, China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liping Wang
- The First Affiliated Hospital of Shenzhen University, Reproductive Medicine Centre, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
11
|
Deficiency in TLR4 impairs regulatory B cells production induced by Schistosome soluble egg antigen. Mol Biochem Parasitol 2023; 253:111532. [PMID: 36450338 DOI: 10.1016/j.molbiopara.2022.111532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/12/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022]
Abstract
Regulatory B cells (Bregs) producing IL-10 have negative regulatory function. Several studies have shown the important roles for Toll-like receptor 2 (TLR2), TLR4, and TLR9 ligation in the development of Bregs. We have reported that Schistosome soluble egg antigen (SEA) induced the production of Bregs. However, it remains unclear whether such activation is via the TLR pathway. The present study showed that IL-10 and TLR4 mRNA expression in spleen B cells of significantly increased in C57BL/10 J mice spleen B cells following SEA stimulation. The level of secreted IL-10 and IL-10+ B cell proportion decreased in spleen B cells derived from TLR4-deficient C57BL/10ScNJ (TLR4-/-) mice following SEA or LPS stimulation compared with C57BL/10 J mice. The CD1dhiCD5+ B cells proportion decreased in spleen B cells of TLR4-/- mice following SEA stimulation compared with control mice. NF-κB, ERK, p38MAPK and JNK signal transduction inhibitors significantly suppressed IL-10 secretion in CD1dhiCD5+ B cells induced by SEA or LPS. The phosphorylation levels of IκBα, p65, ERK, JNK and p38 were increased in CD1dhiCD5+ B cell of C57BL/10 J mice treated with LPS or SEA. In conclusion, this study suggests that TLR4 plays a critical role in Bregs activation induced by SEA. And the TLR4-triggered NF-κB and MAPK pathways activation in CD1dhiCD5+ B cells stimulated with SEA. The findings elucidated the mechanism of SEA induction of CD1dhiCD5+ B cells and helped us to understand the immune regulation during Schistosoma japonicum infection.
Collapse
|
12
|
Alves JM, Inyushin M, Tsytsarev V, Roldan-Kalil JA, Miranda-Valentin E, Maldonado-Martinez G, Ramos-Feliciano KM, Hunter-Mellado R. Adjuvant effect of dendritic cells activator Imiquimod in genetic immunization with HIV-1 p55 Gag. JOURNAL OF IMMUNOLOGICAL TECHNIQUES IN INFECTIOUS DISEASES 2023; 12:330. [PMID: 37205236 PMCID: PMC10191261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Dendritic cells (DC) are important antigen-presenting cells that have abilities to induce and maintain T-cell immunity, or attenuate it during hyperimmunization. Additional activation of DCs may be useful for vaccination purposes. Imiquimod is known to be a specific agonist of the Toll-like receptors (TLR7), which are located mainly on DCs. To study the effect of DC stimulation on the effectiveness of an HIV-1 p55 gag DNA vaccine in a mice model, we employed 25, 50, and 100 nM of Imiquimod as an adjuvant. Subsequently, Western blot analysis was used to quantify p55 protein production after the immunization. To characterize T-cells immune response, both the frequency of IFN-γ -secreting cells and IFN-γ and IL-4 production were measured, via an ELIspot assay and ELISA, respectively. Low concentrations of Imiquimod were found to effectively stimulate Gag production and the magnitude of the T-cell immune response, whereas higher concentrations reduced vaccination effects. Our results show that the adjuvant effects of Imiquimod depend on concentration. The use of Imiquimod may be helpful to study DC to T cell communication, including possible induction of immunotolerance.
Collapse
Affiliation(s)
- Janaina M Alves
- Universidad Central del Caribe School of Medicine, Bayamón, Puerto Rico 00960
| | - Mikhail Inyushin
- Universidad Central del Caribe School of Medicine, Bayamón, Puerto Rico 00960
| | | | | | - Eric Miranda-Valentin
- University of Puerto Rico, Medical Sciences Campus School of Medicine, San Juan, Puerto Rico
| | | | | | | |
Collapse
|
13
|
Frede N, Lorenzetti R, Hüppe JM, Janowska I, Troilo A, Schleyer MT, Venhoff AC, Voll RE, Thiel J, Venhoff N, Rizzi M. JAK inhibitors differentially modulate B cell activation, maturation and function: A comparative analysis of five JAK inhibitors in an in-vitro B cell differentiation model and in patients with rheumatoid arthritis. Front Immunol 2023; 14:1087986. [PMID: 36776828 PMCID: PMC9908612 DOI: 10.3389/fimmu.2023.1087986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Background Janus kinase (JAK) inhibitors have been approved for the treatment of several immune-mediated diseases (IMIDs) including rheumatoid arthritis (RA) and psoriatic arthritis and are in clinical trials for numerous other IMIDs. However, detailed studies investigating the effects of different JAK inhibitors on B cells are missing. Within this study, we therefore aimed to characterize the effect of JAK inhibition on the B cell compartment. Methods To this end, we investigated the B cell compartment under JAK inhibition and compared the specific effects of the different JAK inhibitors tofacitinib (pan-JAK), baricitinib (JAK1/2), ruxolitinib (JAK1/2), upadacitinib (JAK1/2) as well as filgotinib (selective JAK1) on in-vitro B cell activation, proliferation, and class switch recombination and involved pathways. Results While B cell phenotyping of RA patients showed an increase in marginal zone (MZ) B cells under JAK inhibition, comparison with healthy donors revealed that the relative frequency of MZ B cells was still lower compared to healthy controls. In an in-vitro model of T-cell-independent B cell activation we observed that JAK1/2 and selective JAK1 inhibitor treatment led to a dose-dependent decrease of total B cell numbers. We detected an altered B cell differentiation with a significant increase in MZ-like B cells and an increase in plasmablast differentiation in the first days of culture, most pronounced with the pan-JAK inhibitor tofacitinib, although there was no increase in immunoglobulin secretion in-vitro. Notably, we further observed a profound reduction of switched memory B cell formation, especially with JAK1/2 inhibition. JAK inhibitor treatment led to a dose-dependent reduction of STAT3 expression and phosphorylation as well as STAT3 target gene expression and modulated the secretion of pro- and anti-inflammatory cytokines by B cells. Conclusion JAK inhibition has a major effect on B cell activation and differentiation, with differential outcomes between JAK inhibitors hinting towards distinct and unique effects on B cell homeostasis.
Collapse
Affiliation(s)
- Natalie Frede
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Raquel Lorenzetti
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Janika M Hüppe
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Iga Janowska
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Arianna Troilo
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marei-Theresa Schleyer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ana C Venhoff
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens Thiel
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Division of Rheumatology and Clinical Immunology, Medical University Graz, Graz, Austria
| | - Nils Venhoff
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
McMillan JKP, O’Donnell P, Chang SP. Pattern recognition receptor ligand-induced differentiation of human transitional B cells. PLoS One 2022; 17:e0273810. [PMID: 36040923 PMCID: PMC9426890 DOI: 10.1371/journal.pone.0273810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/15/2022] [Indexed: 12/01/2022] Open
Abstract
B cells represent a critical component of the adaptive immune response whose development and differentiation are determined by antigen-dependent and antigen-independent interactions. In this study, we explored the effects of IL-4 and pattern-recognition receptor (PRR) ligands on B cell development and differentiation by investigating their capacity to drive the in vitro maturation of human transitional B cells. In the presence of IL-4, ligands for TLR7/8, TLR9, and NOD1 were effective in driving the in vitro maturation of cord blood transitional B cells into mature, naïve B cells as measured by CD23 expression, ABCB1 transporter activation and upregulation of sIgM and sIgD. In addition, several stimulation conditions, including TLR9 ligand alone, favored an expansion of CD27+ IgM memory B cells. Transitional B cells stimulated with TLR7/8 ligand + IL-4 or TLR9 ligand, with or without IL-4, induced a significant subpopulation of CD23+CD27+ B cells expressing high levels of sIgM and sIgD, a minor B cell subpopulation found in human peripheral blood. These studies illustrate the heterogeneity of the B cell populations induced by cytokine and PRR ligand stimulation. A comparison of transitional and mature, naïve B cells transcriptomes to identify novel genes involved in B cell maturation revealed that mature, naïve B cells were less transcriptionally active than transitional B cells. Nevertheless, a subset of differentially expressed genes in mature, naïve B cells was identified including genes associated with the IL-4 signaling pathway, PI3K signaling in B lymphocytes, the NF-κB signaling pathway, and the TNFR superfamily. When transitional B cells were stimulated in vitro with IL-4 and PRR ligands, gene expression was found to be dependent on the nature of the stimulants, suggesting that exposure to these stimulants may alter the developmental fate of transitional B cells. The influence of IL-4 and PRR signaling on transitional B cell maturation illustrates the potential synergy that may be achieved when certain PRR ligands are incorporated as adjuvants in vaccine formulations and presented to developing B cells in the context of an inflammatory cytokine environment. These studies demonstrate the potential of the PRR ligands to drive transitional B cell differentiation in the periphery during infection or vaccination independently of antigen mediated BCR signaling.
Collapse
Affiliation(s)
- Jourdan K. P. McMillan
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States of America
- * E-mail:
| | - Patrick O’Donnell
- Kapiolani Medical Center for Women and Children, Hawaii Pacific Health, Honolulu, HI, United States of America
| | - Sandra P. Chang
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States of America
| |
Collapse
|
15
|
Tan R, Nie M, Long W. The role of B cells in cancer development. Front Oncol 2022; 12:958756. [PMID: 36033455 PMCID: PMC9403891 DOI: 10.3389/fonc.2022.958756] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
B cells play a critical role in adaptive immune responses mainly due to antigen presentation and antibody production. Studies about the tumor-infiltrating immune cells so far demonstrated that the function of B cells in tumor immunity is quite different among various tumor types. The antigen presentation of B cells is mainly anti-tumoral, while the role of antibody production is controversial. Moreover, the immunosuppressive regulatory B cells are detrimental to anti-tumor immunity via the secretion of various anti-inflammatory cytokines. This review briefly summarizes the different roles of B cells classified by the primary function of B cells, antigen presentation, antibody production, and immunity regulation. Further, it discusses the potential therapeutic target of B cells in tumor immunity.
Collapse
Affiliation(s)
- Rongying Tan
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Manhua Nie
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Wang Long, ; Manhua Nie,
| | - Wang Long
- Department of Pathology, Nihon University, Tokyo, Japan
- *Correspondence: Wang Long, ; Manhua Nie,
| |
Collapse
|
16
|
Arleevskaya M, Takha E, Petrov S, Kazarian G, Renaudineau Y, Brooks W, Larionova R, Korovina M, Valeeva A, Shuralev E, Mukminov M, Kravtsova O, Novikov A. Interplay of Environmental, Individual and Genetic Factors in Rheumatoid Arthritis Provocation. Int J Mol Sci 2022; 23:ijms23158140. [PMID: 35897715 PMCID: PMC9329780 DOI: 10.3390/ijms23158140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023] Open
Abstract
In this review, we explore systemization of knowledge about the triggering effects of non-genetic factors in pathogenic mechanisms that contribute to the development of rheumatoid arthritis (RA). Possible mechanisms involving environmental and individual factors in RA pathogenesis were analyzed, namely, infections, mental stress, sleep deprivation ecology, age, perinatal and gender factors, eating habits, obesity and smoking. The non-genetic factors modulate basic processes in the body with the impact of these factors being non-specific, but these common challenges may be decisive for advancement of the disease in the predisposed body at risk for RA. The provocation of this particular disease is associated with the presence of congenital loci minoris resistentia. The more frequent non-genetic factors form tangles of interdependent relationships and, thereby, several interdependent external factors hit one vulnerable basic process at once, either provoking or reinforcing each other. Understanding the specific mechanisms by which environmental and individual factors impact an individual under RA risk in the preclinical stages can contribute to early disease diagnosis and, if the factor is modifiable, might be useful for the prevention or delay of its development.
Collapse
Affiliation(s)
- Marina Arleevskaya
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia;
- Correspondence: ; Tel.: +7-89172-886-679; Fax: +7-843-238-5413
| | - Elena Takha
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
| | - Sergey Petrov
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
- Institute of Environmental Sciences, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Gevorg Kazarian
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
| | - Yves Renaudineau
- Department of Immunology, CHU Toulouse, INSERM U1291, CNRS U5051, University Toulouse IIII, 31000 Toulouse, France;
| | - Wesley Brooks
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA;
| | - Regina Larionova
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
| | - Marina Korovina
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia;
| | - Anna Valeeva
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
| | - Eduard Shuralev
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
- Institute of Environmental Sciences, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Malik Mukminov
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
- Institute of Environmental Sciences, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Olga Kravtsova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia;
| | - Andrey Novikov
- Mathematical Center, Sobolev Instiute of Mathematics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| |
Collapse
|
17
|
Patel AJ, Willsmore ZN, Khan N, Richter A, Naidu B, Drayson MT, Papa S, Cope A, Karagiannis SN, Perucha E, Middleton GW. Regulatory B cell repertoire defects predispose lung cancer patients to immune-related toxicity following checkpoint blockade. Nat Commun 2022; 13:3148. [PMID: 35672305 PMCID: PMC9174492 DOI: 10.1038/s41467-022-30863-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 05/22/2022] [Indexed: 12/20/2022] Open
Abstract
Checkpoint blockade with Pembrolizumab, has demonstrated durable clinical responses in advanced non-small cell lung cancer, however, treatment is offset by the development of high-grade immune related adverse events (irAEs) in some patients. Here, we show that in these patients a deficient Breg checkpoint fails to limit self-reactive T cell enhanced activity and auto-antibody formation enabled by PD-1/PD-L1 blockade, leading to severe auto-inflammatory sequelae. Principally a failure of IL-10 producing regulatory B cells as demonstrated through functional ex vivo assays and deep phenotyping mass cytometric analysis, is a major and significant finding in patients who develop high-grade irAEs when undergoing treatment with anti-PD1/PD-L1 checkpoint blockade. There is currently a lack of biomarkers to identify a priori those patients at greatest risk of developing severe auto-inflammatory syndrome. Pre-therapy B cell profiling could provide an important tool to identify lung cancer patients at high risk of developing severe irAEs on checkpoint blockade.
Collapse
Affiliation(s)
- Akshay J Patel
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Zena N Willsmore
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, King's College London, London, SE1 9RT, UK
| | - Naeem Khan
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alex Richter
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Babu Naidu
- Institute of Inflammation and Ageing (IIA), College of Medical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mark T Drayson
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sophie Papa
- Immunoengineering Group, King's College London, London, SE1 9RT, UK
- Department of Medical Oncology, Guy's and St Thomas' NHS Trust, London, SE1 9RT, UK
| | - Andrew Cope
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King's College London, London, SE1 1UL, UK
- Centre for Rheumatic Diseases, King's College London, SE1 1UL, London, UK
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, King's College London, London, SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, SE1 9RT, UK
| | - Esperanza Perucha
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King's College London, London, SE1 1UL, UK
- Centre for Rheumatic Diseases, King's College London, SE1 1UL, London, UK
| | - Gary W Middleton
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
18
|
Molecular dynamics simulations reveal the selectivity mechanism of structurally similar agonists to TLR7 and TLR8. PLoS One 2022; 17:e0260565. [PMID: 35452465 PMCID: PMC9032342 DOI: 10.1371/journal.pone.0260565] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
TLR7 and TLR8 are key members of the Toll-like receptor family, playing crucial roles in the signaling pathways of innate immunity, and thus become attractive therapeutic targets of many diseases including infections and cancer. Although TLR7 and TLR8 show a high degree of sequence homology, their biological response to small molecule binding is very different. Aiming to understand the mechanism of selective profiles of small molecule modulators against TLR7 and TLR8, we carried out molecular dynamic simulations on three imidazoquinoline derivatives bound to the receptors separately. They are Resiquimod (R), Hybrid-2 (H), and Gardiquimod (G), selective agonists of TLR7 and TLR8. Our MD trajectories indicated that in the complex of TLR7-R and TLR7-G, the two chains forming the TLR7 dimer tended to remain “open” conformation, while the rest systems maintained in the closed format. The agonists R, H, and G developed conformational deviation mainly on the aliphatic tail. Furthermore, we attempted to quantify the selectivity between TLR7 and TLR8 by binding free energies via MM-GBSA method. It showed that the three selected modulators were more favorable for TLR7 than TLR8, and the ranking from the strongest to the weakest was H, R and G, aligning well with experimental data. In the TLR7, the flexible and hydrophobic aliphatic side chain of H has stronger van der Waals interactions with V381 and F351 but only pick up interaction with one amino acid residue i.e. Y353 of TLR8. Unsurprisingly, the positively charged side chain of G has less favorable interaction with I585 of TLR7 and V573 of TLR8 explaining G is weak agonist of both TLR7 and TLR8. All three imidazoquinoline derivatives can form stable hydrogen bonds with D555 of TLR7 and the corresponding D543 of TLR8. In brief, the set of total 400ns MD studies sheds light on the potential selectivity mechanisms of agonists towards TLR7 and TLR8, indicating the van der Waals interaction as the driving force for the agonists binding, thus provides us insights for designing more potent and selective modulators to cooperate with the hydrophobic nature of the binding pocket.
Collapse
|
19
|
Tan J, Taitz J, Sun SM, Langford L, Ni D, Macia L. Your Regulatory T Cells Are What You Eat: How Diet and Gut Microbiota Affect Regulatory T Cell Development. Front Nutr 2022; 9:878382. [PMID: 35529463 PMCID: PMC9067578 DOI: 10.3389/fnut.2022.878382] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Modern industrial practices have transformed the human diet over the last century, increasing the consumption of processed foods. Dietary imbalance of macro- and micro-nutrients and excessive caloric intake represent significant risk factors for various inflammatory disorders. Increased ingestion of food additives, residual contaminants from agricultural practices, food processing, and packaging can also contribute deleteriously to disease development. One common hallmark of inflammatory disorders, such as autoimmunity and allergies, is the defect in anti-inflammatory regulatory T cell (Treg) development and/or function. Treg represent a highly heterogeneous population of immunosuppressive immune cells contributing to peripheral tolerance. Tregs either develop in the thymus from autoreactive thymocytes, or in the periphery, from naïve CD4+ T cells, in response to environmental antigens and cues. Accumulating evidence demonstrates that various dietary factors can directly regulate Treg development. These dietary factors can also indirectly modulate Treg differentiation by altering the gut microbiota composition and thus the production of bacterial metabolites. This review provides an overview of Treg ontogeny, both thymic and peripherally differentiated, and highlights how diet and gut microbiota can regulate Treg development and function.
Collapse
Affiliation(s)
- Jian Tan
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jemma Taitz
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Shir Ming Sun
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Lachlan Langford
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Duan Ni
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Laurence Macia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Sydney Cytometry, The University of Sydney and The Centenary Institute, Sydney, NSW, Australia
- *Correspondence: Laurence Macia
| |
Collapse
|
20
|
Yang R, Yu S, Xu T, Zhang J, Wu S. Emerging role of RNA sensors in tumor microenvironment and immunotherapy. J Hematol Oncol 2022; 15:43. [PMID: 35413927 PMCID: PMC9006576 DOI: 10.1186/s13045-022-01261-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022] Open
Abstract
RNA sensors detect foreign and endogenous RNAs to protect the host by initiating innate and adaptive immune response. In tumor microenvironment (TME), activation of RNA sensors induces tumor-inhibitory cytotoxic T lymphocyte responses and inhibits the activity of immunosuppressive cells though stimulating type I IFN signaling pathway. These characteristics allow RNA sensors to be prospective targets in tumor immunotherapy. Therefore, a comprehensive understanding of the roles of RNA sensors in TME could provide new insight into the antitumor immunotherapy. Moreover, RNA sensors could be prominent triggering targets to synergize with immunotherapies. In this review, we highlight the diverse mechanisms of RNA sensors in cancer immunity and their emerging contributions in cancer immunotherapy, including monotherapy with RNA sensor agonists, as well as combination with chemotherapy, radiotherapy, immune checkpoint blockade or cancer vaccine.
Collapse
Affiliation(s)
- Rui Yang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Sihui Yu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tianhan Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Sufang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
21
|
Neu SD, Dittel BN. Characterization of Definitive Regulatory B Cell Subsets by Cell Surface Phenotype, Function and Context. Front Immunol 2022; 12:787464. [PMID: 34987513 PMCID: PMC8721101 DOI: 10.3389/fimmu.2021.787464] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Regulatory B cell or “Breg” is a broad term that represents the anti-inflammatory activity of B cells, but does not describe their individual phenotypes, specific mechanisms of regulation or relevant disease contexts. Thus, given the variety of B cell regulatory mechanisms reported in human disease and their animal models, a more thorough and comprehensive identification strategy is needed for tracking and comparing B cell subsets between research groups and in clinical settings. This review summarizes the discovery process and mechanism of action for well-defined regulatory B cell subsets with an emphasis on the mouse model of multiple sclerosis experimental autoimmune encephalomyelitis. We discuss the importance of conducting thorough B cell phenotyping along with mechanistic studies prior to defining a particular subset of B cells as Breg. Since virtually all B cell subsets can exert regulatory activity, it is timely for their definitive identification across studies.
Collapse
Affiliation(s)
- Savannah D Neu
- Versiti Blood Research Institute, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Bonnie N Dittel
- Versiti Blood Research Institute, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
22
|
Cho KA, Cha JE, Kim J, Kim YH, Ryu KH, Woo SY. Mesenchymal Stem Cell-Derived Exosomes Attenuate TLR7-Mediated Mast Cell Activation. Tissue Eng Regen Med 2022; 19:117-129. [PMID: 34792754 PMCID: PMC8782981 DOI: 10.1007/s13770-021-00395-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Mast cells are immune sentinels in the skin that respond to a wide range of pathological and environmental stimuli; they owe their function to the expression of Toll-like receptors (TLRs). We previously found that tonsil-derived mesenchymal stem cells (T-MSCs) were able to effectively attenuate TLR7-mediated skin inflammation in mice, which was accompanied by an increase in mast cell number. The present study investigated whether T-MSC extracellular vesicles, such as exosomes, are able to regulate mast cell activation in response to TLR7 stimulation. METHODS The HMC-1 human mast cell line was treated with a TLR7 agonist in the presence or absence of T-MSC exosomes, and the levels of expressed inflammatory cytokines were assessed. Additionally, mice were repeatedly injected with a TLR7 agonist with or without interval treatments with T-MSC exosomes and assessed dermal distribution of mast cells and related immune cells. RESULTS We showed that T-MSC exosomes containing microRNAs that target inflammatory cytokines significantly reduced the expression of inflammatory cytokines in TLR7 agonist-treated HMC-1 cells. In addition, T-MSC exosomes inhibited the increase in the number of both dermal mast cells and CD14-positive cells in TLR7 agonist-treated mice. CONCLUSION Our data suggest that T-MSC exosomes have regulatory effects on mast cell activation under inflammatory conditions, including TLR7 stimulation.
Collapse
Affiliation(s)
- Kyung-Ah Cho
- Department of Microbiology, College of Medicine, Ewha Womans University, 25, Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Je-Eun Cha
- Department of Microbiology, College of Medicine, Ewha Womans University, 25, Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Jungwoo Kim
- Department of Microbiology, College of Medicine, Ewha Womans University, 25, Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Yu-Hee Kim
- Advanced Biomedical Research Institute, Ewha Womans University Seoul Hospital, Gangseo-Gu, Seoul, 07804, Republic of Korea
| | - Kyung-Ha Ryu
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea
| | - So-Youn Woo
- Department of Microbiology, College of Medicine, Ewha Womans University, 25, Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea.
| |
Collapse
|
23
|
Smith AS, Knochelmann HM, Wyatt MM, Rangel Rivera GO, Rivera-Reyes AM, Dwyer CJ, Ware MB, Cole AC, Neskey DM, Rubinstein MP, Liu B, Thaxton JE, Bartee E, Paulos CM. B cells imprint adoptively transferred CD8 + T cells with enhanced tumor immunity. J Immunother Cancer 2022; 10:e003078. [PMID: 35017148 PMCID: PMC8753437 DOI: 10.1136/jitc-2021-003078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Adoptive T cell transfer (ACT) therapy improves outcomes in patients with advanced malignancies, yet many individuals relapse due to the infusion of T cells with poor function or persistence. Toll-like receptor (TLR) agonists can invigorate antitumor T cell responses when administered directly to patients, but these responses often coincide with toxicities. We posited that TLR agonists could be repurposed ex vivo to condition T cells with remarkable potency in vivo, circumventing TLR-related toxicity. METHODS In this study we investigated how tumor-specific murine CD8+ T cells and human tumor infiltrating lymphocytes (TILs) are impacted when expanded ex vivo with the TLR9 agonist CpG. RESULTS Herein we reveal a new way to reverse the tolerant state of adoptively transferred CD8+ T cells against tumors using TLR-activated B cells. We repurposed the TLR9 agonist, CpG, commonly used in the clinic, to bolster T cell-B cell interactions during expansion for ACT. T cells expanded ex vivo from a CpG-treated culture demonstrated potent antitumor efficacy and prolonged persistence in vivo. This antitumor efficacy was accomplished without in vivo administration of TLR agonists or other adjuvants of high-dose interleukin (IL)-2 or vaccination, which are classically required for effective ACT therapy. CpG-conditioned CD8+ T cells acquired a unique proteomic signature hallmarked by an IL-2RαhighICOShighCD39low phenotype and an altered metabolic profile, all reliant on B cells transiently present in the culture. Likewise, human TILs benefitted from expansion with CpG ex vivo, as they also possessed the IL-2RαhighICOShighCD39low phenotype. CpG fostered the expansion of potent CD8+ T cells with the signature phenotype and antitumor ability via empowering a direct B-T cell interaction. Isolated B cells also imparted T cells with the CpG-associated phenotype and improved tumor immunity without the aid of additional antigen-presenting cells or other immune cells in the culture. CONCLUSIONS Our results demonstrate a novel way to use TLR agonists to improve immunotherapy and reveal a vital role for B cells in the generation of potent CD8+ T cell-based therapies. Our findings have immediate implications in the clinical treatment of advanced solid tumors.
Collapse
Affiliation(s)
- Aubrey S Smith
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Hannah M Knochelmann
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Megan M Wyatt
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Guillermo O Rangel Rivera
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Amalia M Rivera-Reyes
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Connor J Dwyer
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Michael B Ware
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Anna C Cole
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - David M Neskey
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Cell and Molecular Pharmacology and Developmental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mark P Rubinstein
- Division of Medical Oncology, The Ohio State University, Columbus, Ohio, USA
| | - Bei Liu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Jessica E Thaxton
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eric Bartee
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Chrystal M Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
24
|
Yang H, Hu B. Immunological Perspective: Helicobacter pylori Infection and Gastritis. Mediators Inflamm 2022; 2022:2944156. [PMID: 35300405 PMCID: PMC8923794 DOI: 10.1155/2022/2944156] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is a spiral-shaped gram-negative bacterium. Its infection is mainly transmitted via oral-oral and fecal-oral routes usually during early childhood. It can achieve persistent colonization by manipulating the host immune responses, which also causes mucosal damage and inflammation. H. pylori gastritis is an infectious disease and results in chronic gastritis of different severity in near all patients with infection. It may develop from acute/chronic inflammation, chronic atrophic gastritis, intestinal metaplasia, dysplasia, and intraepithelial neoplasia, eventually to gastric cancer. This review attempts to cover recent studies which provide important insights into how H. pylori causes chronic inflammation and what the characteristic is, which will immunologically explain H. pylori gastritis.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Dyavar SR, Singh R, Emani R, Pawar GP, Chaudhari VD, Podany AT, Avedissian SN, Fletcher CV, Salunke DB. Role of toll-like receptor 7/8 pathways in regulation of interferon response and inflammatory mediators during SARS-CoV2 infection and potential therapeutic options. Biomed Pharmacother 2021; 141:111794. [PMID: 34153851 PMCID: PMC8189763 DOI: 10.1016/j.biopha.2021.111794] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) is the causative agent of Corona Virus Disease 2019 (COVID-19). Lower production of type I and III interferons and higher levels of inflammatory mediators upon SARS-CoV2 infection contribute to COVID-19 pathogenesis. Optimal interferon production and controlled inflammation are essential to limit COVID-19 pathogenesis. However, the aggravated inflammatory response observed in COVID-19 patients causes severe damage to the host and frequently advances to acute respiratory distress syndrome (ARDS). Toll-like receptor 7 and 8 (TLR7/8) signaling pathways play a central role in regulating induction of interferons (IFNs) and inflammatory mediators in dendritic cells. Controlled inflammation is possible through regulation of TLR mediated response without influencing interferon production to reduce COVID-19 pathogenesis. This review focuses on inflammatory mediators that contribute to pathogenic effects and the role of TLR pathways in the induction of interferon and inflammatory mediators and their contribution to COVID-19 pathogenesis. We conclude that potential TLR7/8 agonists inducing antiviral interferon response and controlling inflammation are important therapeutic options to effectively eliminate SARS-CoV2 induced pathogenesis. Ongoing and future studies may provide additional evidence on their safety and efficacy to treat COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Shetty Ravi Dyavar
- University of Nebraska Medical Center (UNMC) Center for Drug Discovery, UNMC, Omaha, NE 68198, USA.
| | - Rahul Singh
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Rohini Emani
- Buck Institute for Research on Ageing, Novato, CA, USA
| | - Ganesh P Pawar
- Division of Medicinal Chemistry, CSIR-Institute of Microbiology Technology Chandigarh, Sector-39A, Chandigarh,160036, India
| | - Vinod D Chaudhari
- Division of Medicinal Chemistry, CSIR-Institute of Microbiology Technology Chandigarh, Sector-39A, Chandigarh,160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anthony T Podany
- University of Nebraska Medical Center (UNMC) Center for Drug Discovery, UNMC, Omaha, NE 68198, USA
| | - Sean N Avedissian
- University of Nebraska Medical Center (UNMC) Center for Drug Discovery, UNMC, Omaha, NE 68198, USA
| | - Courtney V Fletcher
- University of Nebraska Medical Center (UNMC) Center for Drug Discovery, UNMC, Omaha, NE 68198, USA
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India; National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
26
|
Brox R, Hackstein H. Physiologically relevant aspirin concentrations trigger immunostimulatory cytokine production by human leukocytes. PLoS One 2021; 16:e0254606. [PMID: 34428217 PMCID: PMC8384208 DOI: 10.1371/journal.pone.0254606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/29/2021] [Indexed: 01/04/2023] Open
Abstract
Acetylsalicylic acid is a globally used non-steroidal anti-inflammatory drug (NSAID) with diverse pharmacological properties, although its mechanism of immune regulation during inflammation (especially at in vivo relevant doses) remains largely speculative. Given the increase in clinical perspective of Acetylsalicylic acid in various diseases and cancer prevention, this study aimed to investigate the immunomodulatory role of physiological Acetylsalicylic acid concentrations (0.005, 0.02 and 0.2 mg/ml) in a human whole blood of infection-induced inflammation. We describe a simple, highly reliable whole blood assay using an array of toll-like receptor (TLR) ligands 1–9 in order to systematically explore the immunomodulatory activity of Acetylsalicylic acid plasma concentrations in physiologically relevant conditions. Release of inflammatory cytokines and production of prostaglandin E2 (PGE2) were determined directly in plasma supernatant. Experiments demonstrate for the first time that plasma concentrations of Acetylsalicylic acid significantly increased TLR ligand-triggered IL-1β, IL-10, and IL-6 production in a dose-dependent manner. In contrast, indomethacin did not exhibit this capacity, whereas cyclooxygenase (COX)-2 selective NSAID, celecoxib, induced a similar pattern like Acetylsalicylic acid, suggesting a possible relevance of COX-2. Accordingly, we found that exogenous addition of COX downstream product, PGE2, attenuates the TLR ligand-mediated cytokine secretion by augmenting production of anti-inflammatory cytokines and inhibiting release of pro-inflammatory cytokines. Low PGE2 levels were at least involved in the enhanced IL-1β production by Acetylsalicylic acid.
Collapse
Affiliation(s)
- Regine Brox
- Department of Transfusion Medicine and Hemostaseology, University Hospital, Erlangen, Germany
- * E-mail:
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, University Hospital, Erlangen, Germany
| |
Collapse
|
27
|
Barrow F, Khan S, Fredrickson G, Wang H, Dietsche K, Parthiban P, Robert S, Kaiser T, Winer S, Herman A, Adeyi O, Mouzaki M, Khoruts A, Hogquist KA, Staley C, Winer DA, Revelo XS. Microbiota-Driven Activation of Intrahepatic B Cells Aggravates NASH Through Innate and Adaptive Signaling. Hepatology 2021; 74:704-722. [PMID: 33609303 PMCID: PMC8377092 DOI: 10.1002/hep.31755] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/21/2020] [Accepted: 01/08/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Nonalcoholic steatohepatitis is rapidly becoming the leading cause of liver failure and indication for liver transplantation. Hepatic inflammation is a key feature of NASH but the immune pathways involved in this process are poorly understood. B lymphocytes are cells of the adaptive immune system that are critical regulators of immune responses. However, the role of B cells in the pathogenesis of NASH and the potential mechanisms leading to their activation in the liver are unclear. APPROACH AND RESULTS In this study, we report that NASH livers accumulate B cells with elevated pro-inflammatory cytokine secretion and antigen-presentation ability. Single-cell and bulk RNA sequencing of intrahepatic B cells from mice with NASH unveiled a transcriptional landscape that reflects their pro-inflammatory function. Accordingly, B-cell deficiency ameliorated NASH progression, and adoptively transferring B cells from NASH livers recapitulates the disease. Mechanistically, B-cell activation during NASH involves signaling through the innate adaptor myeloid differentiation primary response protein 88 (MyD88) as B cell-specific deletion of MyD88 reduced hepatic T cell-mediated inflammation and fibrosis, but not steatosis. In addition, activation of intrahepatic B cells implicates B cell-receptor signaling, delineating a synergy between innate and adaptive mechanisms of antigen recognition. Furthermore, fecal microbiota transplantation of human NAFLD gut microbiotas into recipient mice promoted the progression of NASH by increasing the accumulation and activation of intrahepatic B cells, suggesting that gut microbial factors drive the pathogenic function of B cells during NASH. CONCLUSION Our findings reveal that a gut microbiota-driven activation of intrahepatic B cells leads to hepatic inflammation and fibrosis during the progression of NASH through innate and adaptive immune mechanisms.
Collapse
Affiliation(s)
- Fanta Barrow
- Department of Integrative Biology & PhysiologyUniversity of Minnesota Medical SchoolMinneapolisMN
| | - Saad Khan
- Departments of Immunology and Laboratory Medicine & PathobiologyUniversity of TorontoTorontoONCanada.,Division of Cellular & Molecular BiologyToronto General Hospital Research InstituteUniversity Health NetworkTorontoONCanada
| | - Gavin Fredrickson
- Department of Integrative Biology & PhysiologyUniversity of Minnesota Medical SchoolMinneapolisMN
| | - Haiguang Wang
- Department of Integrative Biology & PhysiologyUniversity of Minnesota Medical SchoolMinneapolisMN
| | - Katrina Dietsche
- Department of Integrative Biology & PhysiologyUniversity of Minnesota Medical SchoolMinneapolisMN
| | - Preethy Parthiban
- Department of Integrative Biology & PhysiologyUniversity of Minnesota Medical SchoolMinneapolisMN
| | - Sacha Robert
- Department of Integrative Biology & PhysiologyUniversity of Minnesota Medical SchoolMinneapolisMN
| | - Thomas Kaiser
- Department of SurgeryUniversity of MinnesotaMinneapolisMN
| | - Shawn Winer
- Departments of Immunology and Laboratory Medicine & PathobiologyUniversity of TorontoTorontoONCanada
| | - Adam Herman
- Minnesota Supercomputing InstituteUniversity of MinnesotaMinneapolisMN
| | - Oyedele Adeyi
- Department of Laboratory Medicine and PathologyUniversity of MinnesotaMinneapolisMN
| | | | - Alexander Khoruts
- Division of Gastroenterology, Hepatology, and NutritionDepartment of MedicineUniversity of MinnesotaMinneapolisMN.,Center for ImmunologyUniversity of MinnesotaMinneapolisMN
| | - Kristin A Hogquist
- Department of Laboratory Medicine and PathologyUniversity of MinnesotaMinneapolisMN.,Center for ImmunologyUniversity of MinnesotaMinneapolisMN
| | | | - Daniel A Winer
- Departments of Immunology and Laboratory Medicine & PathobiologyUniversity of TorontoTorontoONCanada.,Division of Cellular & Molecular BiologyToronto General Hospital Research InstituteUniversity Health NetworkTorontoONCanada.,Buck Institute for Research on AgingNovatoCA
| | - Xavier S Revelo
- Department of Integrative Biology & PhysiologyUniversity of Minnesota Medical SchoolMinneapolisMN.,Center for ImmunologyUniversity of MinnesotaMinneapolisMN
| |
Collapse
|
28
|
Lee SH, Beck BR, Hwang SH, Song SK. Feeding olive flounder (Paralichthys olivaceus) with Lactococcus lactis BFE920 expressing the fusion antigen of Vibrio OmpK and FlaB provides protection against multiple Vibrio pathogens: A universal vaccine effect. FISH & SHELLFISH IMMUNOLOGY 2021; 114:253-262. [PMID: 33979691 DOI: 10.1016/j.fsi.2021.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Vibriosis, an illness caused by the Vibrio bacteria species, results in significant economic loss in olive flounder farms. Here we present a novel anti-Vibrio feed vaccine protecting multiple strains of Vibrio pathogens, a universal vaccine effect. The vaccine was generated by engineering Lactococcus lactis BFE920 to express the fusion antigens of Vibrio outer membrane protein K (OmpK) and flagellin B subunit (FlaB). These antigen genes are highly conserved among Vibrio species. Olive flounder (7.1 ± 0.8 g and 140 ± 10 g) were fed the vaccine adsorbed to a regular feed (1 × 107 CFU/g) for one week with a 1-week interval, repeating three times (a triple boost). The vaccinated fish increased the significant levels of antigen-specific antibodies, T cell numbers (CD4-1, CD4-2, and CD8α), cytokine production (T-bet and IFN-γ), and innate immune responses (TLR5M, IL-1β, and IL-12p40). Also, the survival rates of adult and juvenile fish fed the vaccine were significantly elevated when challenged with V. anguillarum, V. alginolyticus, and V. harveyi. In addition, weight gain rate and feed conversion ratio were improved in vaccinated fish. The feed vaccine protected multiple Vibrio pathogens, a universal vaccine effect, by activating innate and adaptive immune responses. This oral vaccine may be developed as an anti-Vibrio vaccine to protect against a broad spectrum of Vibrio pathogens.
Collapse
Affiliation(s)
- Soon Ho Lee
- School of Life Science, Handong University, 558 Handong-ro, Pohang-city, Gyeongbuk, 37554, South Korea
| | - Bo Ram Beck
- School of Life Science, Handong University, 558 Handong-ro, Pohang-city, Gyeongbuk, 37554, South Korea
| | - Seok-Hong Hwang
- School of Life Science, Handong University, 558 Handong-ro, Pohang-city, Gyeongbuk, 37554, South Korea
| | - Seong Kyu Song
- School of Life Science, Handong University, 558 Handong-ro, Pohang-city, Gyeongbuk, 37554, South Korea.
| |
Collapse
|
29
|
Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC, Aravena O. Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol 2021; 12:611795. [PMID: 33995344 PMCID: PMC8118522 DOI: 10.3389/fimmu.2021.611795] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.
Collapse
Affiliation(s)
- Diego Catalán
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Miguel Andrés Mansilla
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ashley Ferrier
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Hospital Clínico, Universidad de Chile (HCUCH), Santiago, Chile
| | | | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
30
|
Daïen C, Tan J, Audo R, Mielle J, Quek L, Krycer J, Angelatos A, Duraes M, Pinget G, Ni D, Robert R, Alam M, Amian M, Sierro F, Parmar A, Perkins G, Hoque S, Gosby A, Simpson S, Ribeiro R, Mackay C, Macia L. Gut-derived acetate promotes B10 cells with antiinflammatory effects. JCI Insight 2021; 6:144156. [PMID: 33729999 PMCID: PMC8119207 DOI: 10.1172/jci.insight.144156] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
Autoimmune diseases are characterized by a breakdown of immune tolerance partly due to environmental factors. The short-chain fatty acid acetate, derived mostly from gut microbial fermentation of dietary fiber, promotes antiinflammatory Tregs and protects mice from type 1 diabetes, colitis, and allergies. Here, we show that the effects of acetate extend to another important immune subset involved in tolerance, the IL-10-producing regulatory B cells (B10 cells). Acetate directly promoted B10 cell differentiation from mouse B1a cells both in vivo and in vitro. These effects were linked to metabolic changes through the increased production of acetyl-coenzyme A, which fueled the TCA cycle and promoted posttranslational lysine acetylation. Acetate also promoted B10 cells from human blood cells through similar mechanisms. Finally, we identified that dietary fiber supplementation in healthy individuals was associated with increased blood-derived B10 cells. Direct delivery of acetate or indirect delivery via diets or bacteria that produce acetate might be a promising approach to restore B10 cells in noncommunicable diseases.
Collapse
MESH Headings
- Acetates/blood
- Acetates/metabolism
- Acetates/pharmacology
- Acetyl Coenzyme A/metabolism
- Acetylation
- Animals
- Arthritis, Experimental/immunology
- Arthritis, Experimental/therapy
- B-Lymphocytes, Regulatory/drug effects
- B-Lymphocytes, Regulatory/physiology
- B-Lymphocytes, Regulatory/transplantation
- Cell Differentiation/drug effects
- Dietary Fiber/pharmacology
- Fatty Acids, Volatile/metabolism
- Fatty Acids, Volatile/pharmacology
- Female
- Humans
- Interleukin-10
- Male
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Neutrophils/cytology
- Neutrophils/drug effects
- Receptors, G-Protein-Coupled/genetics
- Mice
Collapse
Affiliation(s)
- C.I. Daïen
- Charles Perkins Centre, The University of Sydney, New South Wales, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney School of Medicine, New South Wales, Sydney, Australia
- Department of Rheumatology, Montpellier Hospital, University of Montpellier, Montpellier, France
- Institute of Molecular Genetics of Montpellier, UMR5535, University of Montpellier, Montpellier, France
| | - J. Tan
- Charles Perkins Centre, The University of Sydney, New South Wales, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney School of Medicine, New South Wales, Sydney, Australia
- Human Health, Nuclear Science & Technology and Landmark Infrastructure (NSTLI) Australian Nuclear Science and Technology Organisation, New South Wales, Sydney, Australia
| | - R. Audo
- Charles Perkins Centre, The University of Sydney, New South Wales, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney School of Medicine, New South Wales, Sydney, Australia
- Department of Rheumatology, Montpellier Hospital, University of Montpellier, Montpellier, France
- Institute of Molecular Genetics of Montpellier, UMR5535, University of Montpellier, Montpellier, France
| | - J. Mielle
- Charles Perkins Centre, The University of Sydney, New South Wales, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney School of Medicine, New South Wales, Sydney, Australia
- Institute of Molecular Genetics of Montpellier, UMR5535, University of Montpellier, Montpellier, France
| | - L.E. Quek
- Charles Perkins Centre, The University of Sydney, New South Wales, Sydney, Australia
- School of Mathematics and Statistics and
| | - J.R. Krycer
- Charles Perkins Centre, The University of Sydney, New South Wales, Sydney, Australia
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, Sydney, Australia
| | - A. Angelatos
- Charles Perkins Centre, The University of Sydney, New South Wales, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney School of Medicine, New South Wales, Sydney, Australia
| | - M. Duraes
- Department of Gynecology, Montpellier Hospital, University of Montpellier, Montpellier, France
| | - G. Pinget
- Charles Perkins Centre, The University of Sydney, New South Wales, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney School of Medicine, New South Wales, Sydney, Australia
| | - D. Ni
- Charles Perkins Centre, The University of Sydney, New South Wales, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney School of Medicine, New South Wales, Sydney, Australia
| | | | - M.J. Alam
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - M.C.B. Amian
- Charles Perkins Centre, The University of Sydney, New South Wales, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney School of Medicine, New South Wales, Sydney, Australia
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, Sydney, Australia
| | - F. Sierro
- Faculty of Medicine and Health, The University of Sydney School of Medicine, New South Wales, Sydney, Australia
- Human Health, Nuclear Science & Technology and Landmark Infrastructure (NSTLI) Australian Nuclear Science and Technology Organisation, New South Wales, Sydney, Australia
| | - A. Parmar
- Human Health, Nuclear Science & Technology and Landmark Infrastructure (NSTLI) Australian Nuclear Science and Technology Organisation, New South Wales, Sydney, Australia
- Brain and Mind Centre, The University of Sydney, New South Wales, Sydney, Australia
| | - G. Perkins
- Biosciences platform, NSTLI Australian Nuclear Science and Technology Organisation, New South Wales, Sydney, Australia
| | - S. Hoque
- Charles Perkins Centre, The University of Sydney, New South Wales, Sydney, Australia
- School of Mathematics and Statistics and
| | - A.K. Gosby
- Charles Perkins Centre, The University of Sydney, New South Wales, Sydney, Australia
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, Sydney, Australia
| | - S.J. Simpson
- Charles Perkins Centre, The University of Sydney, New South Wales, Sydney, Australia
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, Sydney, Australia
| | - R.V. Ribeiro
- Charles Perkins Centre, The University of Sydney, New South Wales, Sydney, Australia
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, Sydney, Australia
| | | | - L. Macia
- Charles Perkins Centre, The University of Sydney, New South Wales, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney School of Medicine, New South Wales, Sydney, Australia
| |
Collapse
|
31
|
Zhang J, Zhang Y, Qu B, Yang H, Hu S, Dong X. If small molecules immunotherapy comes, can the prime be far behind? Eur J Med Chem 2021; 218:113356. [PMID: 33773287 DOI: 10.1016/j.ejmech.2021.113356] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/15/2021] [Accepted: 02/28/2021] [Indexed: 02/07/2023]
Abstract
Anti-cancer immunotherapy, which includes cellular immunotherapy, immune checkpoint inhibitors and cancer vaccines, has transformed the treatment strategies of several malignancies in the past decades. Immune checkpoints blockade (ICB) is the most commonly tested therapy and has the potential to induce a durable immune response in different types of cancers. However, all approved immune checkpoint inhibitors (ICIs) are monoclonal antibodies (mAbs), which are fraught with disadvantages including lack of oral bioavailability, prolonged tissue retention and poor membrane permeability. Therefore, the research focus has shifted to developing small molecule inhibitors to obviate the limitations of mAbs. Given the complexity of the tumor micro-environment (TME), the combination of ICIs with various small molecule agonists/inhibitors are currently being tested in clinical trials to improve treatment outcomes and prevent tumor recurrence. In this review, we have summarized the mechanisms and therapeutic potential of several molecular targets, along with the current status of small molecule inhibitors.
Collapse
Affiliation(s)
- Jingyu Zhang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yu Zhang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Bingxue Qu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Haiyan Yang
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), PR China; Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, PR China
| | - Shengquan Hu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310058, PR China; Cancer Center of Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
32
|
Palm AKE, Kleinau S. Marginal zone B cells: From housekeeping function to autoimmunity? J Autoimmun 2021; 119:102627. [PMID: 33640662 DOI: 10.1016/j.jaut.2021.102627] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Marginal zone (MZ) B cells comprise a subset of innate-like B cells found predominantly in the spleen, but also in lymph nodes and blood. Their principal functions are participation in quick responses to blood-borne pathogens and secretion of natural antibodies. The latter is important for housekeeping functions such as clearance of apoptotic cell debris. MZ B cells have B cell receptors with low poly-/self-reactivity, but they are not pathogenic at steady state. However, if simultaneously stimulated with self-antigen and pathogen- and/or damage-associated molecular patterns (PAMPs/DAMPs), MZ B cells may participate in the initial steps towards breakage of immunological tolerance. This review summarizes what is known about the role of MZ B cells in autoimmunity, both in mouse models and human disease. We cover factors important for shaping the MZ B cell compartment, how the functional properties of MZ B cells may contribute to breaking tolerance, and how MZ B cells are being regulated.
Collapse
Affiliation(s)
- Anna-Karin E Palm
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Sandra Kleinau
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
33
|
Leadbetter EA, Karlsson MCI. Invariant natural killer T cells balance B cell immunity. Immunol Rev 2021; 299:93-107. [PMID: 33438287 DOI: 10.1111/imr.12938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/21/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022]
Abstract
Invariant natural killer T (iNKT) cells mediate rapid immune responses which bridge the gap between innate and adaptive responses to pathogens while also providing key regulation to maintain immune homeostasis. Both types of important iNKT immune responses are mediated through interactions with innate and adaptive B cells. As such, iNKT cells sit at the decision-making fulcrum between regulating inflammatory or autoreactive B cells and supporting protective or regulatory B cell populations. iNKT cells interpret the signals in their environment to set the tone for subsequent adaptive responses, with outcomes ranging from getting licensed to maintain homeostasis as an iNKT regulatory cell (iNKTreg ) or being activated to become an iNKT follicular helper (iNKTFH ) cell supporting pathogen-specific effector B cells. Here we review iNKT and B cell cooperation across the spectrum of immune outcomes, including during allergy and autoimmune disease, tumor surveillance and immunotherapy, or pathogen defense and vaccine responses. Because of their key role as influencers, iNKT cells provide a valuable target for therapeutic interventions. Understanding the nature of the interactions between iNKT and B cells will enable the development of clinical interventions to strategically target regulatory iNKT and B cell populations or inflammatory ones, depending on the circumstance.
Collapse
Affiliation(s)
- Elizabeth A Leadbetter
- Department of Microbiology, Immunology and Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
34
|
Use of Toll-Like Receptor (TLR) Ligation to Characterize Human Regulatory B-Cells Subsets. Methods Mol Biol 2021; 2270:235-261. [PMID: 33479902 DOI: 10.1007/978-1-0716-1237-8_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors (PRRs), which constitute key components in the recognition of pathogens, thereby initiating innate immune responses and promoting adaptive immune responses. In B cells, TLR ligation is important for their activation and, together with CD40, for their differentiation. TLR ligands are also strong promoters of regulatory B (Breg)-cell development, by enhancing the production of IL-10 and their capacity to induce tolerance. In inflammatory diseases, such as autoimmunity or allergies, Breg-cell function is often impaired, while in chronic infections, such as with helminths, or cancer, Breg-cell function is boosted. Following pathogen exposure, B cells can respond directly by producing cytokines and/or IgM (innate response) and develop into various memory B (Bmem)-cell subsets with class-switched immunoglobulin receptors. Depending on the disease state or chronic infection conditions, various Breg subsets can be recognized as well. Currently, a large array of surface markers is known to distinguish between these large range of B-cell subsets. In recent years, the development of mass cytometers and spectral flow cytometry has allowed for high-dimensional detection of up to 48 markers, including both surface and intracellular/intranuclear markers. Therefore, this novel technology is highly suitable to provide a comprehensive overview of Bmem/Breg-cell subsets in different disease states and/or in clinical intervention trials. Here, we provide detailed instructions of the steps necessary to obtain high-quality data for high-dimensional analysis of multiple human Breg-cell subsets using various TLR ligands.
Collapse
|
35
|
Reading the room: iNKT cells influence B cell responses. Mol Immunol 2020; 130:49-54. [PMID: 33360376 DOI: 10.1016/j.molimm.2020.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/02/2020] [Indexed: 12/31/2022]
Abstract
Rapid immune responses regulated by invariant Natural Killer T (iNKT) cells bridge the gap between innate and adaptive responses to pathogens, while also providing key regulation to maintain immune homeostasis. iNKT immune protection and immune regulation are both mediated through interactions with innate and adaptive B cell populations that express CD1d. Recent studies have expanded our understanding of the position of iNKT cells at the fulcrum between regulating inflammatory and autoreactive B cells. Environmental signals influence iNKT cells to set the tone for subsequent adaptive responses, ranging from maintaining homeostasis as an iNKT regulatory cell (iNKTreg) or supporting pathogen-specific effector B cells as an iNKT follicular helper (iNKTFH). Here we review recent advances in iNKT and B cell cooperation during autoimmunity and sterile inflammation. Understanding the nature of the interactions between iNKT and B cells will enable the development of clinical interventions to strategically target regulatory iNKT and B cell populations or inflammatory ones, across a range of indications.
Collapse
|
36
|
Kong H, He J, Guo S, Song Q, Xiang D, Tao R, Yu H, Chen G, Huang Z, Ning Q, Huang J. Endothelin receptors promote schistosomiasis-induced hepatic fibrosis via splenic B cells. PLoS Pathog 2020; 16:e1008947. [PMID: 33075079 PMCID: PMC7595619 DOI: 10.1371/journal.ppat.1008947] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/29/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Endothelin receptors (ETRs) are activated by vasoactive peptide endothelins and involved in the pathogenesis of hepatic fibrosis. However, less is known about the role of ETRs in Schistosoma (S.) japonicum-induced hepatic fibrosis. Here, we show that the expression of ETRs is markedly enhanced in the liver and spleen tissues of patients with schistosome-induced fibrosis, as well as in murine models. Additional analyses have indicated that the expression levels of ETRs in schistosomiasis patients are highly correlated with the portal vein and spleen thickness diameter, both of which represent the severity of fibrosis. Splenomegaly is a characteristic symptom of schistosome infection, and splenic abnormality may promote the progression of hepatic fibrosis. We further demonstrate that elevated levels of ETRs are predominantly expressed on splenic B cells in spleen tissues during infection. Importantly, using a well-studied model of human schistosomiasis, we demonstrate that endothelin receptor antagonists can partially reverse schistosome-induced hepatic fibrosis by suppressing the activation of splenic B cells characterized by interleukin-10 (IL-10) secretion and regulatory T (Treg) cell-inducing capacity. Our study provides insights into the mechanisms by which ETRs regulate schistosomiasis hepatic fibrosis and highlights the potential of endothelin receptor antagonist as a therapeutic intervention for fibrotic diseases. Schistosomiasis is a serious but neglected tropical infectious disease. which can lead to hepatic fibrosis and death. To date, there are still no approved antifibrotic therapies. Hepatic fibrosis results in portal hypertension and variceal bleeding, and it is the primary cause of mortality from schistosomiasis. Splenomegaly and hypersplenism can manifest following the development of portal hypertension. Accumulating evidence suggests that the spleen plays a critical role in the development of hepatic fibrosis. In this study, using Schistosoma (S.) japonicum in both humans and mice, we show that progressive hepatic schistosomiasis caused elevation of endothelin receptors (ETRs) both in liver and spleen tissues, and the endothelin receptor-producing cells are mainly located in splenic B cells. More importantly, we demonstrate that endothelin receptor antagonists can partially reverse schistosome-induced hepatic fibrosis by suppressing the activation of splenic B cells during infection. Thus, our study highlights the potential of endothelin receptor antagonist as a therapeutic intervention for schistosomiasis and other fibrotic diseases.
Collapse
Affiliation(s)
- Hongyan Kong
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinan He
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shusen Guo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiqin Song
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan Xiang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Tao
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haijing Yu
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guang Chen
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Ning
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaquan Huang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
37
|
Harnessing the Complete Repertoire of Conventional Dendritic Cell Functions for Cancer Immunotherapy. Pharmaceutics 2020; 12:pharmaceutics12070663. [PMID: 32674488 PMCID: PMC7408110 DOI: 10.3390/pharmaceutics12070663] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
The onset of checkpoint inhibition revolutionized the treatment of cancer. However, studies from the last decade suggested that the sole enhancement of T cell functionality might not suffice to fight malignancies in all individuals. Dendritic cells (DCs) are not only part of the innate immune system, but also generals of adaptive immunity and they orchestrate the de novo induction of tolerogenic and immunogenic T cell responses. Thus, combinatorial approaches addressing DCs and T cells in parallel represent an attractive strategy to achieve higher response rates across patients. However, this requires profound knowledge about the dynamic interplay of DCs, T cells, other immune and tumor cells. Here, we summarize the DC subsets present in mice and men and highlight conserved and divergent characteristics between different subsets and species. Thereby, we supply a resource of the molecular players involved in key functional features of DCs ranging from their sentinel function, the translation of the sensed environment at the DC:T cell interface to the resulting specialized T cell effector modules, as well as the influence of the tumor microenvironment on the DC function. As of today, mostly monocyte derived dendritic cells (moDCs) are used in autologous cell therapies after tumor antigen loading. While showing encouraging results in a fraction of patients, the overall clinical response rate is still not optimal. By disentangling the general aspects of DC biology, we provide rationales for the design of next generation DC vaccines enabling to exploit and manipulate the described pathways for the purpose of cancer immunotherapy in vivo. Finally, we discuss how DC-based vaccines might synergize with checkpoint inhibition in the treatment of malignant diseases.
Collapse
|
38
|
Khalil MI, Gurski CJ, Dittel LJ, Neu SD, Dittel BN. Discovery and Function of B-Cell IgD Low (BD L) B Cells in Immune Tolerance. J Mol Biol 2020; 433:166584. [PMID: 32615130 DOI: 10.1016/j.jmb.2020.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/30/2022]
Abstract
It is now appreciated that in addition to their role in humoral immunity, B cells also exert regulatory mechanisms that lead to attenuation of inflammatory responses. The concept of B-cell regulation became well recognized when mice deficient in B cells due to genetic disruption were shown to be refractory to recovery from the signs of experimental autoimmune encephalomyelitis (EAE), the mouse model of multiple sclerosis. This seminal study spurred the search for B-cell regulatory phenotypes and mechanisms of action. Our approach was to utilize differential B-cell depletion with anti-CD20 to retain B cells whose presence were required to achieve EAE recovery. Utilizing flow cytometry, adoptive cell therapy and genetic approaches, we discovered a new B-cell subset that, upon adoptive transfer into B cell-deficient mice, was sufficient to promote EAE recovery. This B-cell subset is IgM+, but due to low/negative IgD cell surface expression, it was named B-cell IgD low (BDL). Mechanistically, we found that in the absence of BDL, the absolute cell number of CD4+Foxp3+ T regulatory cells (Treg), essential for immune tolerance, was significantly reduced. Furthermore, we found that BDL expression of glucocorticoid-induced tumor necrosis factor ligand (GITRL) was essential for induction of Treg proliferation and maintenance of their homeostasis. Thus, we have identified a new B-cell subset that is critical for immunological tolerance through interactions with Treg.
Collapse
Affiliation(s)
- Mohamed I Khalil
- Versiti Blood Research Institute, Milwaukee, WI, USA; Molecular Biology Department, National Research Centre, El-Buhouth St., Doki, Cairo, Egypt
| | - Cody J Gurski
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Landon J Dittel
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Savannah D Neu
- Versiti Blood Research Institute, Milwaukee, WI, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Bonnie N Dittel
- Versiti Blood Research Institute, Milwaukee, WI, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
39
|
Nicolai O, Pötschke C, Schmoeckel K, Darisipudi MN, van der Linde J, Raafat D, Bröker BM. Antibody Production in Murine Polymicrobial Sepsis-Kinetics and Key Players. Front Immunol 2020; 11:828. [PMID: 32425951 PMCID: PMC7205023 DOI: 10.3389/fimmu.2020.00828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
Although antigen-specific priming of antibody responses is impaired during sepsis, there is nevertheless a strong increase in IgM and IgG serum concentrations. Using colon ascendens stent peritonitis (CASP), a mouse model of polymicrobial abdominal sepsis, we observed substantial increases in IgM as well as IgG of all subclasses, starting at day 3 and peaking 2 weeks after sepsis induction. The dominant source of antibody-secreting cells was by far the spleen, with a minor contribution of the mesenteric lymph nodes. Remarkably, sepsis induction in splenectomized mice did not change the dynamics of the serum IgM/IgG reaction, indicating that the marginal zone B cells, which almost exclusively reside in the spleen, are dispensable in such a setting. Hence, in systemic bacterial infection, the function of the spleen as dominant niche of antibody-producing cells can be compensated by extra-splenic B cell populations as well as other lymphoid organs. Depletion of CD4+ T cells did not affect the IgM response, while it impaired IgG generation of all subclasses with the exception of IgG3. Taken together, our data demonstrate that the robust class-switched antibody response in sepsis encompasses both T cell-dependent and -independent components.
Collapse
Affiliation(s)
- Oliver Nicolai
- Immunology Department, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Christian Pötschke
- Immunology Department, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Katrin Schmoeckel
- Immunology Department, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Murthy N Darisipudi
- Immunology Department, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Julia van der Linde
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Dina Raafat
- Immunology Department, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany.,Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Barbara M Bröker
- Immunology Department, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
40
|
Agupitan AD, Neeson P, Williams S, Howitt J, Haupt S, Haupt Y. P53: A Guardian of Immunity Becomes Its Saboteur through Mutation. Int J Mol Sci 2020; 21:E3452. [PMID: 32414156 PMCID: PMC7278985 DOI: 10.3390/ijms21103452] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Awareness of the importance of immunity in controlling cancer development triggered research into the impact of its key oncogenic drivers on the immune response, as well as their value as targets for immunotherapy. At the heart of tumour suppression is p53, which was discovered in the context of viral infection and now emerges as a significant player in normal and cancer immunity. Wild-type p53 (wt p53) plays fundamental roles in cancer immunity and inflammation. Mutations in p53 not only cripple wt p53 immune functions but also sinisterly subvert the immune function through its neomorphic gain-of-functions (GOFs). The prevalence of mutant p53 across different types of human cancers, which are associated with inflammatory and immune dysfunction, further implicates mutant p53 in modulating cancer immunity, thereby promoting tumorigenesis, metastasis and invasion. In this review, we discuss several mutant p53 immune GOFs in the context of the established roles of wt p53 in regulating and responding to tumour-associated inflammation, and regulating innate and adaptive immunity. We discuss the capacity of mutant p53 to alter the tumour milieu to support immune dysfunction, modulate toll-like receptor (TLR) signalling pathways to disrupt innate immunity and subvert cell-mediated immunity in favour of immune privilege and survival. Furthermore, we expose the potential and challenges associated with mutant p53 as a cancer immunotherapy target and underscore existing therapies that may benefit from inquiry into cancer p53 status.
Collapse
Affiliation(s)
- Arjelle Decasa Agupitan
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
| | - Paul Neeson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia
| | - Scott Williams
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia;
| | - Jason Howitt
- School of Health Sciences, Swinburne University, Melbourne 3122, Victoria, Australia;
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Sue Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
| | - Ygal Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
- Department of Clinical Pathology, University of Melbourne, Parkville 3010, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800, Victoria, Australia
| |
Collapse
|
41
|
Gu Y, Han X. Toll-Like Receptor Signaling and Immune Regulatory Lymphocytes in Periodontal Disease. Int J Mol Sci 2020; 21:ijms21093329. [PMID: 32397173 PMCID: PMC7247565 DOI: 10.3390/ijms21093329] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/27/2022] Open
Abstract
Periodontitis is known to be initiated by periodontal microbiota derived from biofilm formation. The microbial dysbiotic changes in the biofilm trigger the host immune and inflammatory responses that can be both beneficial for the protection of the host from infection, and detrimental to the host, causing tissue destruction. During this process, recognition of Pathogen-Associated Molecular Patterns (PAMPs) by the host Pattern Recognition Receptors (PRRs) such as Toll-like receptors (TLRs) play an essential role in the host–microbe interaction and the subsequent innate as well as adaptive responses. If persistent, the adverse interaction triggered by the host immune response to the microorganisms associated with periodontal biofilms is a direct cause of periodontal inflammation and bone loss. A large number of T and B lymphocytes are infiltrated in the diseased gingival tissues, which can secrete inflammatory mediators and activate the osteolytic pathways, promoting periodontal inflammation and bone resorption. On the other hand, there is evidence showing that immune regulatory T and B cells are present in the diseased tissue and can be induced for the enhancement of their anti-inflammatory effects. Changes and distribution of the T/B lymphocytes phenotype seem to be a key determinant of the periodontal disease outcome, as the functional activities of these cells not only shape up the overall immune response pattern, but may directly regulate the osteoimmunological balance. Therefore, interventional strategies targeting TLR signaling and immune regulatory T/B cells may be a promising approach to rebalance the immune response and alleviate bone loss in periodontal disease. In this review, we will examine the etiological role of TLR signaling and immune cell osteoclastogenic activity in the pathogenesis of periodontitis. More importantly, the protective effects of immune regulatory lymphocytes, particularly the activation and functional role of IL-10 expressing regulatory B cells, will be discussed.
Collapse
Affiliation(s)
- Yingzhi Gu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA;
| | - Xiaozhe Han
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA;
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
42
|
Lee SB, Park YH, Chungu K, Woo SJ, Han ST, Choi HJ, Rengaraj D, Han JY. Targeted Knockout of MDA5 and TLR3 in the DF-1 Chicken Fibroblast Cell Line Impairs Innate Immune Response Against RNA Ligands. Front Immunol 2020; 11:678. [PMID: 32425931 PMCID: PMC7204606 DOI: 10.3389/fimmu.2020.00678] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/26/2020] [Indexed: 01/29/2023] Open
Abstract
The innate immune system, which senses invading pathogens, plays a critical role as the first line of host defense. After recognition of foreign RNA ligands (e.g., RNA viruses), host cells generate an innate immune or antiviral response via the interferon-mediated signaling pathway. Retinoic acid-inducible gene I (RIG-1) acts as a major sensor that recognizes a broad range of RNA ligands in mammals; however, chickens lack a RIG-1 homolog, meaning that RNA ligands should be recognized by other cellular sensors such as melanoma differentiation-associated protein 5 (MDA5) and toll-like receptors (TLRs). However, it is unclear which of these cellular sensors compensates for the loss of RIG-1 to act as the major sensor for RNA ligands. Here, we show that chicken MDA5 (cMDA5), rather than chicken TLRs (cTLRs), plays a pivotal role in the recognition of RNA ligands, including poly I:C and influenza virus. First, we used a knockdown approach to show that both cMDA5 and cTLR3 play roles in inducing interferon-mediated innate immune responses against RNA ligands in chicken DF-1 cells. Furthermore, targeted knockout of cMDA5 or cTLR3 in chicken DF-1 cells revealed that loss of cMDA5 impaired the innate immune responses against RNA ligands; however, the responses against RNA ligands were retained after loss of cTLR3. In addition, double knockout of cMDA5 and cTLR3 in chicken DF-1 cells abolished the innate immune responses against RNA ligands, suggesting that cMDA5 is the major sensor whereas cTLR3 is a secondary sensor. Taken together, these findings provide an understanding of the functional role of cMDA5 in the recognition of RNA ligands in chicken DF-1 cells and may facilitate the development of an innate immune-deficient cell line or chicken model.
Collapse
Affiliation(s)
- Su Bin Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Young Hyun Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kelly Chungu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seung Je Woo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Soo Taek Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hee Jung Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Deivendran Rengaraj
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
43
|
Patinote C, Karroum NB, Moarbess G, Cirnat N, Kassab I, Bonnet PA, Deleuze-Masquéfa C. Agonist and antagonist ligands of toll-like receptors 7 and 8: Ingenious tools for therapeutic purposes. Eur J Med Chem 2020; 193:112238. [PMID: 32203790 PMCID: PMC7173040 DOI: 10.1016/j.ejmech.2020.112238] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022]
Abstract
The discovery of the TLRs family and more precisely its functions opened a variety of gates to modulate immunological host responses. TLRs 7/8 are located in the endosomal compartment and activate a specific signaling pathway in a MyD88-dependant manner. According to their involvement into various autoimmune, inflammatory and malignant diseases, researchers have designed diverse TLRs 7/8 ligands able to boost or block the inherent signal transduction. These modulators are often small synthetic compounds and most act as agonists and to a much lesser extent as antagonists. Some of them have reached preclinical and clinical trials, and only one has been approved by the FDA and EMA, imiquimod. The key to the success of these modulators probably lies in their combination with other therapies as recently demonstrated. We gather in this review more than 360 scientific publications, reviews and patents, relating the extensive work carried out by researchers on the design of TLRs 7/8 modulators, which are classified firstly by their biological activities (agonist or antagonist) and then by their chemical structures, which total syntheses are not discussed here. This review also reports about 90 clinical cases, thereby showing the biological interest of these modulators in multiple pathologies.
Collapse
Affiliation(s)
- Cindy Patinote
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Nour Bou Karroum
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France; Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, EDST, BP 90656, Fanar Jdeideh, Lebanon
| | - Georges Moarbess
- Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, EDST, BP 90656, Fanar Jdeideh, Lebanon
| | - Natalina Cirnat
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Issam Kassab
- Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, EDST, BP 90656, Fanar Jdeideh, Lebanon
| | | | | |
Collapse
|
44
|
Chen C, Zhang C, Li R, Wang Z, Yuan Y, Li H, Fu Z, Zhou M, Zhao L. Monophosphoryl-Lipid A (MPLA) is an Efficacious Adjuvant for Inactivated Rabies Vaccines. Viruses 2019; 11:E1118. [PMID: 31816996 PMCID: PMC6950009 DOI: 10.3390/v11121118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
Rabies, as one of the most threatening zoonoses in the world, causes a fatal central nervous system (CNS) disease. So far, vaccination with rabies vaccines has been the most effective measure to prevent and control this disease. At present, inactivated rabies vaccines are widely used in humans and domestic animals. However, humoral immune responses induced by inactivated rabies vaccines are relatively low and multiple shots are required to achieve protective immunity. Supplementation with an adjuvant is a practical way to improve the immunogenicity of inactivated rabies vaccines. In this study, we found that monophosphoryl-lipid A (MPLA), a well-known TLR4 agonist, could significantly promote the maturation of bone marrow-derived dendritic cells (BMDC) through a TLR4-dependent pathway in vitro and the maturation of conventional DCs (cDCs) in vivo. We also found that MPLA, serving as an adjuvant for inactivated rabies vaccines, could significantly facilitate the generation of T follicular helper (Tfh) cells, germinal center (GC) B cells, and plasma cells (PCs), consequently enhancing the production of RABV-specific total-IgG, IgG2a, IgG2b, and the virus-neutralizing antibodies (VNAs). Furthermore, MPLA could increase the survival ratio of mice challenged with virulent RABV. In conclusion, our results demonstrate that MPLA serving as an adjuvant enhances the intensity of humoral immune responses by activating the cDC-Tfh-GC B axis. Our findings will contribute to the improvement of the efficiency of traditional rabies vaccines.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengguang Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiming Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Zongmei Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Yueming Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Haoqi Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenfang Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
45
|
Yano A. IL-10-Producing Potential Treg Precursor in Placenta. Kurume Med J 2019; 65:169-176. [PMID: 31723081 DOI: 10.2739/kurumemedj.ms654008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The maternal immune system needs to be tolerant of allogeneic fetal tissue for reproductive success. The regulatory immune cell network plays an essential role in maintaining maternal tolerance to the fetus. We herein demonstrate in a green fluorescent protein (GFP)/IL-10 reporter mouse system that unique IL-10-expressing cells exist presumably in chorionic villi within the placenta. Flow cytometric analysis revealed that these IL-10- expressing cells exhibit a unique CD19 negative, CD3 negative, and B220 positive phenotype. Interestingly, these cells were enriched during in vitro culture, but well-known stimuli for T cells and B cells failed to enhance their growth, suggesting that the CD19- CD3- B220+ cells were self renewing. Unexpectedly, in an adoptive cell trans fer experiment, IL-10 production was detected in Sca-1+ CD4+ CD25+ regulatory T cells (Treg). To our knowledge, this is the first report to identify IL-10-producing CD19- CD3- B220+ cells in the fetus. These cells may rep resent a potential progenitor of Sca-1+ Treg or pluripotent precursor cells for immune tolerance.
Collapse
Affiliation(s)
- Arisa Yano
- Department of Immunology, Kurume University of School of Medicine
| |
Collapse
|
46
|
Blufstein A, Behm C, Gahn J, Uitz O, Naumovska I, Moritz A, Rausch-Fan X, Andrukhov O. Synergistic effects triggered by simultaneous Toll-like receptor-2 and -3 activation in human periodontal ligament stem cells. J Periodontol 2019; 90:1190-1201. [PMID: 31049957 PMCID: PMC6852053 DOI: 10.1002/jper.19-0005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/26/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022]
Abstract
Background Although periodontitis is associated with disruption of the host‐microbial homeostasis, viruses are currently discussed to influence disease progression. Viral pathogens are recognized by Toll‐like receptor (TLR)‐3, which engages a different signaling pathway than other TLRs. This study aimed to investigate the effect of TLR‐3 agonist polyinosinic:polycytidylic acid (Poly I:C) on the expression of inflammatory markers and bone metabolism proteins by human periodontal ligament stem cells (hPDLSCs) compared with TLR‐2 agonist Pam3CSK4, which mimics the effect of bacterial lipoproteins. To assess potential combined effects of bacterial and viral infections, hPDLSCs response to simultaneous TLR‐2 and TLR‐3 activation was investigated. Methods HPDLSCs were stimulated with Poly I:C (0.0001‐1 µg/mL), Pam3CSK4 (1 µg/mL), and their combinations for 24 hours. Gene expression and protein levels of interleukin (IL)‐6, IL‐8, monocyte chemoattractant protein (MCP)‐1, and osteoprotegerin (OPG) were measured with qPCR and ELISA. Results Production of IL‐6, IL‐8, MCP‐1, and OPG was significantly increased by Poly I:C or Pam3CSK4 to a similar extent. The levels of all inflammatory mediators induced by simultaneous stimulation with Poly I:C and Pam3CSK4 were significantly higher compared with single stimuli as well as to their summed response. Gene expression and protein levels of OPG were enhanced by Poly I:C, but by lesser extent than by Pam3CSK4. OPG levels upon simultaneous stimulation with Pam3CSK4 and Poly I:C were significantly lower compared with Pam3CSK4 stimulation alone. Conclusions Simultaneous TLR‐2 and TLR‐3 activation synergistically triggers IL‐6, IL‐8, and MCP‐1 production, which was not observed for OPG. These findings suggest that TLR‐3 activation by viral infections might promote periodontitis progression.
Collapse
Affiliation(s)
- Alice Blufstein
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christian Behm
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Johannes Gahn
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Oksana Uitz
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Ivana Naumovska
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Andreas Moritz
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Xiaohui Rausch-Fan
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Oleh Andrukhov
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
47
|
Lorek D, Kedzierska AE, Slawek A, Chelmonska-Soyta A. Expression of Toll-like receptors and costimulatory molecules in splenic B cells in a normal and abortion-prone murine pregnancy model. Am J Reprod Immunol 2019; 82:e13148. [PMID: 31134706 DOI: 10.1111/aji.13148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/01/2019] [Accepted: 05/13/2019] [Indexed: 12/25/2022] Open
Abstract
PROBLEM The regulatory role of B lymphocytes in the pregnancy-induced maternal immune response is not well recognized. B lymphocytes function as antigen-presenting cells (APCs) and regulate Toll-like receptors and costimulatory molecule expression in response to intrinsic and extrinsic signals. Therefore, the aim of this study was to determine the expression of TLR2, TLR4, TLR9, and MHC class II and the costimulatory molecules CD80, CD86, and CD40 in splenic B cells in a normal and abortion-prone murine pregnancy model. METHODS OF STUDY The expression level of these molecules on female splenic B cells was investigated using real-time PCR and flow cytometry. The analysis was performed on the 3rd and 14th day of normal (CBA/JxBALB/c) and abortion-prone (CBA/JxDBA/2J) murine pregnancy. RESULTS The expression of Tlr9, Cd86, and H2-Ab1 in splenic B cells on the 3rd day after mating was upregulated, whereas Tlr2 was downregulated in abortion-prone females. On day 14, we observed lower expression levels of Tlr4 and Cd80 and higher expression levels of Cd86 in CBA/J females mated with DBA/2J males. At the protein level, the differences were observed only on day 3 of pregnancy. TLR4 and CD40 molecules were upregulated in splenic B cells, while TLR9 and CD86 were downregulated in abortion-prone mice. CONCLUSION Differential expression of TLRs and costimulatory molecules in splenic B cells in abortion-prone and normal pregnancies suggests the involvement of these cells in the regulation of the immune response at the periphery in pregnant females.
Collapse
Affiliation(s)
- Daria Lorek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Anna Ewa Kedzierska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.,Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland
| | - Anna Slawek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Anna Chelmonska-Soyta
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.,Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
48
|
Ebrahimi MM, Shahsavandi S, Shayan P. TIR-TLR7 as a Molecular Adjuvant: Simultaneous Enhancing Humoral and Cell-Mediated Immune Responses Against Inactivated Infectious Bursal Disease Virus. Viral Immunol 2019; 32:252-257. [PMID: 31107184 DOI: 10.1089/vim.2018.0158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Despite the robust induction of humoral immune responses, a limitation of many adjuvants is their weak stimulation of cellular immunity. The development of synthetic gene-encoding adjuvants for simultaneous induction of both humoral and cell-mediated immune responses is under study. In this study, we examined the impact of toll/interleukin-1 receptor (TIR) domain of toll-like receptor 7 (TLR7) as molecular adjuvants on potency of inactivated infectious bursal disease (IBD) vaccines. A total of 60 specific pathogen-free week-old chicks were randomized grouped to receive either TIR-TLR7-adjuvanted IBD-inactivated vaccine or inactivated IBD antigen along with an unvaccinated control. Serum antibody titers were measured to estimate the humoral immunity, as well as lymphocyte proliferation activity for cellular immune responses. The protection was estimated after challenge with a very virulent IBD virus (IBDV) strain at 4 weeks postvaccination. The results indicated that one dose of IBD/TIR-TLR7 vaccine induced specific antibody responses, whereas a lower response after administration of inactivated IBD antigen was observed. The stimulation of splenocytes results indicated that the TIR-TLR7 adjuvanted IBD vaccine is capable of modulating cell-mediated immune response in treated chickens. A full protection against IBDV infection was achieved by injection of one dose IBD/TIR-TLR7 vaccine in the challenge trial. This study demonstrated that codelivery of TIR-TLR7 with inactivated IBD antigen resulted in simultaneous enhancing immune responses against IBD.
Collapse
Affiliation(s)
- Mohammad Majid Ebrahimi
- 1Poultry Research and Viral Vaccines Production Department, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran.,2Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shahla Shahsavandi
- 1Poultry Research and Viral Vaccines Production Department, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Parviz Shayan
- 2Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
49
|
Tonon S, Mion F, Dong J, Chang HD, Dalla E, Scapini P, Perruolo G, Zanello A, Dugo M, Cassatella MA, Colombo MP, Radbruch A, Tripodo C, Pucillo CE. IL-10-producing B cells are characterized by a specific methylation signature. Eur J Immunol 2019; 49:1213-1225. [PMID: 31034584 DOI: 10.1002/eji.201848025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/13/2019] [Accepted: 04/26/2019] [Indexed: 01/13/2023]
Abstract
Among the family of regulatory B cells, the subset able to produce interleukin-10 (IL-10) is the most studied, yet its biology is still a matter of investigation. The DNA methylation profiling of the il-10 gene locus revealed a novel epigenetic signature characterizing murine B cells ready to respond through IL-10 synthesis: a demethylated region located 4.5 kb from the transcription starting site (TSS), that we named early IL10 regulatory region (eIL10rr). This feature allows to distinguish B cells that are immediately prone and developmentally committed to IL-10 production from those that require a persistent stimulation to exert an IL-10-mediated regulatory function. These late IL-10 producers are instead characterized by a delayed IL10 regulatory region (dIL10rr), a partially demethylated DNA portion located 9 kb upstream from the TSS. A demethylated region was also found in human IL-10-producing B cells and, very interestingly, in some B-cell malignancies, such as chronic lymphocytic leukemia and mantle cell lymphoma, characterized by an immunosuppressive microenvironment. Our findings define murine and human regulatory B cells as an epigenetically controlled functional state of mature B cell subsets and open a new perspective on IL-10 regulation in B cells in homeostasis and disease.
Collapse
Affiliation(s)
- Silvia Tonon
- Department of Medical Area, University of Udine, Udine, Italy
| | - Francesca Mion
- Department of Medical Area, University of Udine, Udine, Italy
| | - Jun Dong
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Hyun-Dong Chang
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Emiliano Dalla
- Department of Medical Area, University of Udine, Udine, Italy
| | - Patrizia Scapini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Giuseppe Perruolo
- Department of Translational Medical Science, University of Napoli ''Federico II'', Napoli, Italy
| | - Andrea Zanello
- Department of Medical Area, University of Udine, Udine, Italy
| | - Matteo Dugo
- Platform of Integrated Biology, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Marco A Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Mario P Colombo
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Andreas Radbruch
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Carlo E Pucillo
- Department of Medical Area, University of Udine, Udine, Italy
| |
Collapse
|
50
|
Getahun A, Cambier JC. Non-Antibody-Secreting Functions of B Cells and Their Contribution to Autoimmune Disease. Annu Rev Cell Dev Biol 2019; 35:337-356. [PMID: 30883216 DOI: 10.1146/annurev-cellbio-100617-062518] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
B cells play multiple important roles in the pathophysiology of autoimmune disease. Beyond producing pathogenic autoantibodies, B cells can act as antigen-presenting cells and producers of cytokines, including both proinflammatory and anti-inflammatory cytokines. Here we review our current understanding of the non-antibody-secreting roles that B cells may play during development of autoimmunity, as learned primarily from reductionist preclinical models. Attention is also given to concepts emerging from clinical studies using B cell depletion therapy, which shed light on the roles of these mechanisms in human autoimmune disease.
Collapse
Affiliation(s)
- Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA; .,Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206, USA
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA; .,Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206, USA
| |
Collapse
|