1
|
Huang A, Yeum D, Sewaybricker LE, Aleksic S, Thomas M, Melhorn SJ, Earley YF, Schur EA. Update on Hypothalamic Inflammation and Gliosis: Expanding Evidence of Relevance Beyond Obesity. Curr Obes Rep 2025; 14:6. [PMID: 39775194 DOI: 10.1007/s13679-024-00595-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE OF REVIEW To evaluate the role of hypothalamic inflammation and gliosis in human obesity pathogenesis and other disease processes influenced by obesity. RECENT FINDINGS Recent studies using established and novel magnetic resonance imaging (MRI) techniques to assess alterations in hypothalamic microarchitecture in humans support the presence of hypothalamic inflammation and gliosis in adults and children with obesity. Studies also identify prenatal exposure to maternal obesity or diabetes as a risk factor for hypothalamic inflammation and gliosis and increased obesity risk in offspring. Hypothalamic inflammation and gliosis have been further implicated in reproductive dysfunction (specifically polycystic ovarian syndrome and male hypogonadism), cardiovascular disease namely hypertension, and alterations in the gut microbiome, and may also accelerate neurocognitive aging. The most recent translational studies support the link between hypothalamic inflammation and gliosis and obesity pathogenesis in humans and expand our understanding of its influence on broader aspects of human health.
Collapse
Affiliation(s)
- Alyssa Huang
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Dabin Yeum
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Sandra Aleksic
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Melbin Thomas
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Susan J Melhorn
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Yumei Feng Earley
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Ellen A Schur
- Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Page KA. Neurodevelopmental Pathways to Obesity and Type 2 Diabetes: Insights From Prenatal Exposure to Maternal Obesity and Gestational Diabetes Mellitus: A Report on Research Supported by Pathway to Stop Diabetes. Diabetes 2024; 73:1937-1941. [PMID: 39432818 PMCID: PMC11583106 DOI: 10.2337/dbi24-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/08/2024] [Indexed: 10/23/2024]
Abstract
Incidences of childhood obesity and type 2 diabetes (T2D) are climbing at alarming rates. Evidence points to prenatal exposures to maternal obesity and gestational diabetes mellitus (GDM) as key contributors to these upward trends. Children born to mothers with these conditions face higher risks of obesity and T2D, beyond genetic or shared environmental factors. The underpinnings of this maternal-fetal programming are complex. However, animal studies have shown that such prenatal exposures can lead to changes in brain pathways, particularly in the hypothalamus, leading to obesity and T2D later in life. This article highlights significant findings stemming from research funded by my American Diabetes Association Pathway Accelerator Award and is part of a series of Perspectives that report on research funded by the American Diabetes Association Pathway to Stop Diabetes program. This critical support, received more than a decade ago, paved the way for groundbreaking discoveries, translating the neural programming findings from animal models into human studies and exploring new avenues in maternal-fetal programming. Our BrainChild cohort includes >225 children, one-half of whom were exposed in utero to maternal GDM and one-half born to mothers without GDM. Detailed studies in this cohort, including neuroimaging and metabolic profiling, reveal that early fetal exposure to maternal GDM is linked to alterations in brain regions, including the hypothalamus. These neural changes correlate with increased energy intake and predict greater increases in BMI, indicating that early neural changes may underlie and predict later obesity and T2D, as observed in animal models. Ongoing longitudinal studies in this cohort will provide critical insights toward breaking the vicious cycle of maternal-child obesity and T2D. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Kathleen A. Page
- Division of Endocrinology and Diabetes, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
3
|
Bombassaro B, Araujo EP, Velloso LA. The hypothalamus as the central regulator of energy balance and its impact on current and future obesity treatments. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e240082. [PMID: 39876968 PMCID: PMC11771753 DOI: 10.20945/2359-4292-2024-0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/10/2024] [Indexed: 01/31/2025]
Abstract
The hypothalamus is a master regulator of energy balance in the body. First-order hypothalamic neurons localized in the arcuate nucleus sense systemic signals that indicate the energy stores in the body. Through distinct projections, arcuate nucleus neurons communicate with second-order neurons, which are mostly localized in the paraventricular nucleus and in the lateral hypothalamus. The signals then proceed to third- and fourth-order neurons that activate complex responses aimed at maintaining whole-body energy homeostasis. During the last 30 years, since the identification of leptin in 1994, there has been a great advance in the unveiling of the hypothalamic and extra-hypothalamic neuronal networks that control energy balance. This has contributed to the characterization of the mechanisms by which glucagon-like peptide-1 receptor agonists promote body mass reduction and has opened new windows of opportunity for the development of drugs to treat obesity. This review presents an overview of the mechanisms involved in the hypothalamic regulation of energy balance and discusses how advancements in this field are contributing to the development of new pharmacological strategies to treat obesity.
Collapse
Affiliation(s)
- Bruna Bombassaro
- Universidade de Campinas Centro de Pesquisa em Obesidade e Comorbidades CampinasSP Brasil Centro de Pesquisa em Obesidade e Comorbidades, Universidade de Campinas, Campinas, SP, Brasil
| | - Eliana P Araujo
- Universidade de Campinas Centro de Pesquisa em Obesidade e Comorbidades CampinasSP Brasil Centro de Pesquisa em Obesidade e Comorbidades, Universidade de Campinas, Campinas, SP, Brasil
| | - Licio A Velloso
- Universidade de Campinas Centro de Pesquisa em Obesidade e Comorbidades CampinasSP Brasil Centro de Pesquisa em Obesidade e Comorbidades, Universidade de Campinas, Campinas, SP, Brasil
| |
Collapse
|
4
|
Furube E, Ohgidani M, Tanaka Y, Miyata S, Yoshida S. A high-fat diet influences neural stem and progenitor cell environment in the medulla of adult mice. Neuroscience 2024; 559:64-76. [PMID: 39209104 DOI: 10.1016/j.neuroscience.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
It has been widely established that neural stem cells (NSCs) exist in the adult mammalian brain. The area postrema (AP) and the ependymal cell layer of the central canal (CC) in the medulla were recently identified as NSC niches. There are two types of NSCs: astrocyte-like cells in the AP and tanycyte-like cells in the CC. However, limited information is currently available on the characteristics and functional significance of these NSCs and their progeny in the AP and CC. The AP is a part of the dorsal vagal complex (DVC), together with the nucleus of the solitary tract (Sol) and the dorsal motor nucleus of the vagus (10 N). DVC is the primary site for the integration of visceral neuronal and hormonal cues that act to inhibit food intake. Therefore, we examined the effects of high-fat diet (HFD) on NSCs and progenitor cells in the AP and CC. Eight-week-old male mice were fed HFD for short (1 week) and long periods (4 weeks). To detect proliferating cells, mice consecutively received intraperitoneal injections of BrdU for 7 days. Brain sections were processed with immunohistochemistry using various cell markers and BrdU antibodies. Our data demonstrated that adult NSCs and neural progenitor cells (NPCs) in the medulla responded more strongly to short-term HFD than to long-term HFD. HFD increased astrocyte density in the Sol and 10 N, and increased microglial/macrophage density in the AP and Sol. Furthermore, long-term HFD induced mild inflammation in the medulla, suggesting that it affected the proliferation of NSCs and NPCs.
Collapse
Affiliation(s)
- Eriko Furube
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan.
| | - Masahiro Ohgidani
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
| | - Yusuke Tanaka
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shigetaka Yoshida
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
| |
Collapse
|
5
|
Santos GL, Dias Costa EF, Dalla Costa AP, Zanesco AM, Simoes MR, Rogério F, Demolin DMR, Navarro CDC, Velloso LA, Francisco A, Castilho RF. Influence of Mitochondrial NAD(P) + Transhydrogenase (NNT) on Hypothalamic Inflammation and Metabolic Dysfunction Induced by a High-Fat Diet in Mice. Horm Metab Res 2024. [PMID: 39481390 DOI: 10.1055/a-2420-6549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The mitochondrial protein NAD(P)+ transhydrogenase (NNT) has been implicated in the metabolic derangements observed in obesity. Mice with the C57BL/6J genetic background bear a spontaneous mutation in the Nnt gene and are known to exhibit increased susceptibility to diet-induced metabolic disorders. Most of the studies on NNT in the context of diet-induced obesity have compared C57BL/6J mice with other mouse strains, where differences in genetic background can serve as confounding factors. Moreover, these studies have predominantly employed a high-fat diet (HFD) consisting of approximately 60% of calories from fat, which may not accurately mimic real-world fat-rich diets. In this study, we sought to examine the role of NNT in diet-induced hypothalamic inflammation and metabolic syndrome by using a congenic mice model lacking NNT, along with a HFD providing approximately 45% of calories from fat. Our findings indicate that mice lacking NNT were more protected from HFD-induced weight gain but presented a worse performance on glucose tolerance test, albeit not in insulin tolerance test. Interestingly, the brown adipose tissue of HFD-fed Nnt +/+ mice presented a greater mass and a higher whole-tissue ex-vivo oxygen consumption rate. Also, HFD increased the expression of the inflammatory markers Il1β, Tlr4 and Iba1 in the hypothalamus of Nnt -/- mice. In conclusion, our study highlights the importance of NNT in the context of diet-induced obesity and metabolic syndrome, indicating its contribution to mitigate hypothalamic inflammation and suggesting its role in the brown adipose tissue increased mass.
Collapse
Affiliation(s)
| | | | | | - Ariane Maria Zanesco
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcela Reymond Simoes
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Fábio Rogério
- Department of Pathology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Daniele Masselli Rodrigues Demolin
- Multidisciplinary Center for Biological Investigation on Laboratory Animals Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Lício Augusto Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Annelise Francisco
- Department of Experimental Medical Science, Lunds Universitet, Lund, Sweden
- Department of Pathology, State University of Campinas (UNICAMP), Campinas, Brazil
| | | |
Collapse
|
6
|
Lo J, Melhorn SJ, Kee S, Olerich KLW, Huang A, Yeum D, Beiser A, Seshadri S, De Carli C, Schur EA. Hypothalamic Gliosis is Associated With Multiple Cardiovascular Disease Risk Factors. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.19.24313914. [PMID: 39371136 PMCID: PMC11451704 DOI: 10.1101/2024.09.19.24313914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Hypothalamic gliosis is mechanistically linked to obesity and insulin resistance in rodent models. We tested cross-sectional associations between radiologic measures of hypothalamic gliosis in humans and clinically relevant cardiovascular disease risk factors, as well as prevalent coronary heart disease. Methods Using brain MRI images from Framingham Heart Study participants (N=867; mean age, 55 years; 55% females), T2 signal intensities were extracted bilaterally from the region of interest in the mediobasal hypothalamus (MBH) and reference regions in the amygdala (AMY) and putamen (PUT). T2 signal ratios were created in which greater relative T2 signal intensity suggests gliosis. The primary measure compared MBH to AMY (MBH/AMY); a positive control ratio (MBH/PUT) also assessed MBH whereas a negative control (PUT/AMY) did not. Outcomes were BMI, HDL-C, LDL-C, fasting triglycerides, and the presence of hypertension (n=449), diabetes mellitus (n=66), metabolic syndrome (n=254), or coronary heart disease (n=25). Dietary risk factors for gliosis were assessed in a prospective analysis. Statistical testing was performed using linear or logistic regression. Results Greater MBH/AMY T2 signal ratios were associated with higher BMI (β = 21.5 [95% CI, 15.4-27.6]; P<0.001), higher fasting triglycerides (β = 1.1 [95% CI, 0.6-1.7]; P<0.001), lower HDL-C (β = -20.8 [95% CI, -40.0 to -1.6]; P=0.034), and presence of hypertension (odds ratio, 1.2 [95% CI, 1.1-1.4]; P=0.0088), and the latter two were independent of BMI. Findings for diabetes mellitus were mixed and attenuated by adjusting for BMI. Metabolic syndrome was associated with MBH/AMY T2 signal ratios (odds ratio, 1.3 [95% CI, 1.1-1.6]; P<0.001). Model results were almost uniformly confirmed by the positive control ratios, whereas negative control ratios that did not test the MBH were unrelated to any outcomes (all P≥0.05). T2 signal ratios were not associated with prevalent coronary heart disease (all P>0.05), but confidence intervals were wide. Self-reported percentages of macronutrient intake were not consistently related to future T2 signal ratios. Conclusions Using a well-established study of cardiovascular disease development, we found evidence linking hypothalamic gliosis to multiple cardiovascular disease risk factors, even independent of adiposity. Our results highlight the need to consider neurologic mechanisms to understand and improve cardiometabolic health.
Collapse
Affiliation(s)
- Justin Lo
- School of Medicine, University of Washington, Seattle, WA
| | - Susan J Melhorn
- Department of Medicine, University of Washington, Seattle, WA
| | - Sarah Kee
- Department of Medicine, University of Washington, Seattle, WA
| | - Kelsey LW Olerich
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, University of Washington, Seattle, WA
| | - Alyssa Huang
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Dabin Yeum
- Department of Medicine, University of Washington, Seattle, WA
| | - Alexa Beiser
- School of Public Health, Boston University, Boston, MA
| | - Sudha Seshadri
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Charles De Carli
- Department of Neurology, University of California, Davis, Davis, CA
| | - Ellen A Schur
- Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
7
|
Aleksic S, Fleysher R, Weiss EF, Tal N, Darby T, Blumen HM, Vazquez J, Ye KQ, Gao T, Siegel SM, Barzilai N, Lipton ML, Milman S. Hypothalamic MRI-derived microstructure is associated with neurocognitive aging in humans. Neurobiol Aging 2024; 141:102-112. [PMID: 38850591 PMCID: PMC11295133 DOI: 10.1016/j.neurobiolaging.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The hypothalamus regulates homeostasis across the lifespan and is emerging as a regulator of aging. In murine models, aging-related changes in the hypothalamus, including microinflammation and gliosis, promote accelerated neurocognitive decline. We investigated relationships between hypothalamic microstructure and features of neurocognitive aging, including cortical thickness and cognition, in a cohort of community-dwelling older adults (age range 65-97 years, n=124). Hypothalamic microstructure was evaluated with two magnetic resonance imaging diffusion metrics: mean diffusivity (MD) and fractional anisotropy (FA), using a novel image processing pipeline. Hypothalamic MD was cross-sectionally positively associated with age and it was negatively associated with cortical thickness. Hypothalamic FA, independent of cortical thickness, was cross-sectionally positively associated with neurocognitive scores. An exploratory analysis of longitudinal neurocognitive performance suggested that lower hypothalamic FA may predict cognitive decline. No associations between hypothalamic MD, age, and cortical thickness were identified in a younger control cohort (age range 18-63 years, n=99). To our knowledge, this is the first study to demonstrate that hypothalamic microstructure is associated with features of neurocognitive aging in humans.
Collapse
Affiliation(s)
- Sandra Aleksic
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Roman Fleysher
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States; Department of Radiology, Albert Einstein College of Medicine, Gruss Magnetic Resonance Research Center, Bronx, NY, United States
| | - Erica F Weiss
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Noa Tal
- Department of Medicine, Cedars-Sinai, Los Angeles, CA, United States
| | - Timothy Darby
- Albert Einstein College of Medicine, Bronx, NY, United States
| | - Helena M Blumen
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Juan Vazquez
- Department of Internal Medicine, John Hopkins University, Baltimore, MD, United States
| | - Kenny Q Ye
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Tina Gao
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Shira M Siegel
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States
| | - Nir Barzilai
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michael L Lipton
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States; Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Sofiya Milman
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
8
|
Farooqi IS, Xu Y. Translational potential of mouse models of human metabolic disease. Cell 2024; 187:4129-4143. [PMID: 39067442 DOI: 10.1016/j.cell.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Obesity causes significant morbidity and mortality globally. Research in the last three decades has delivered a step-change in our understanding of the fundamental mechanisms that regulate energy homeostasis, building on foundational discoveries in mouse models of metabolic disease. However, not all findings made in rodents have translated to humans, hampering drug discovery in this field. Here, we review how studies in mice and humans have informed our current framework for understanding energy homeostasis, discuss their challenges and limitations, and offer a perspective on how human studies may play an increasingly important role in the discovery of disease mechanisms and identification of therapeutic targets in the future.
Collapse
Affiliation(s)
- I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Department of Molecular and Cellular Biology and Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Abel ED, Gloyn AL, Evans-Molina C, Joseph JJ, Misra S, Pajvani UB, Simcox J, Susztak K, Drucker DJ. Diabetes mellitus-Progress and opportunities in the evolving epidemic. Cell 2024; 187:3789-3820. [PMID: 39059357 PMCID: PMC11299851 DOI: 10.1016/j.cell.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Diabetes, a complex multisystem metabolic disorder characterized by hyperglycemia, leads to complications that reduce quality of life and increase mortality. Diabetes pathophysiology includes dysfunction of beta cells, adipose tissue, skeletal muscle, and liver. Type 1 diabetes (T1D) results from immune-mediated beta cell destruction. The more prevalent type 2 diabetes (T2D) is a heterogeneous disorder characterized by varying degrees of beta cell dysfunction in concert with insulin resistance. The strong association between obesity and T2D involves pathways regulated by the central nervous system governing food intake and energy expenditure, integrating inputs from peripheral organs and the environment. The risk of developing diabetes or its complications represents interactions between genetic susceptibility and environmental factors, including the availability of nutritious food and other social determinants of health. This perspective reviews recent advances in understanding the pathophysiology and treatment of diabetes and its complications, which could alter the course of this prevalent disorder.
Collapse
Affiliation(s)
- E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Anna L Gloyn
- Department of Pediatrics, Division of Endocrinology & Diabetes, Department of Genetics, Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joshua J Joseph
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Shivani Misra
- Department of Metabolism, Digestion and Reproduction, Imperial College London, and Imperial College NHS Trust, London, UK
| | - Utpal B Pajvani
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Judith Simcox
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Pané A, Videla L, Calvet À, Viaplana J, Vaqué-Alcázar L, Ibarzabal A, Rozalem-Aranha M, Pegueroles J, Moize V, Vidal J, Ortega E, Barroeta I, Camacho V, Chiva-Blanch G, Fortea J, Jiménez A. Hypothalamic Inflammation Improves Through Bariatric Surgery, and Hypothalamic Volume Predicts Short-Term Weight Loss Response in Adults With or Without Type 2 Diabetes. Diabetes Care 2024; 47:1162-1170. [PMID: 38713908 DOI: 10.2337/dc23-2213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/03/2024] [Indexed: 05/09/2024]
Abstract
OBJECTIVE Preclinical research implicates hypothalamic inflammation (HI) in obesity and type 2 diabetes pathophysiology. However, their pathophysiological relevance and potential reversibility need to be better defined. We sought to evaluate the effect of bariatric surgery (BS) on radiological biomarkers of HI and the association between the severity of such radiological alterations and post-BS weight loss (WL) trajectories. The utility of cerebrospinal fluid large extracellular vesicles (CSF-lEVs) enriched for microglial and astrocyte markers in studying HI was also explored. RESEARCH DESIGN AND METHODS We included 72 individuals with obesity (20 with and 52 without type 2 diabetes) and 24 control individuals. Participants underwent lumbar puncture and 3-T MRI at baseline and 1-year post-BS. We assessed hypothalamic mean diffusivity (MD) (higher values indicate lesser microstructural integrity) and the volume of the whole and main hypothalamic subregions. CSF-lEVs enriched for glial and astrocyte markers were determined by flow cytometry. RESULTS Compared with control group, the obesity and type 2 diabetes groups showed a larger volume and higher MD in the hypothalamic tubular inferior region, the area encompassing the arcuate nucleus. These radiological alterations were positively associated with baseline anthropometric and metabolic measures and improved post-BS. A larger baseline tubular inferior hypothalamic volume was independently related to lesser WL 1 and 2 years after BS. CSF-lEVs did not differ among groups and were unrelated to WL trajectories. CONCLUSIONS These findings suggest HI improvement after BS and may support a role for HI in modulating the WL response to these interventions.
Collapse
Affiliation(s)
- Adriana Pané
- Endocrinology and Nutrition Department, Hospital Clínic, Barcelona, Spain
- CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Videla
- Sant Pau Memory Unit, Neurology Department, Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERNED, Instituto de Salud Carlos III
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Àngels Calvet
- Fundació Clínic per la Recerca Biomèdica-Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Judith Viaplana
- Fundació Clínic per la Recerca Biomèdica-Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Lídia Vaqué-Alcázar
- Sant Pau Memory Unit, Neurology Department, Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Fundació Clínic per la Recerca Biomèdica-Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences and Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Ainitze Ibarzabal
- Gastrointestinal Surgery Department, Hospital Clínic, Barcelona, Spain
| | - Mateus Rozalem-Aranha
- Sant Pau Memory Unit, Neurology Department, Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Pegueroles
- Sant Pau Memory Unit, Neurology Department, Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Violeta Moize
- Endocrinology and Nutrition Department, Hospital Clínic, Barcelona, Spain
- Fundació Clínic per la Recerca Biomèdica-Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Josep Vidal
- Endocrinology and Nutrition Department, Hospital Clínic, Barcelona, Spain
- Fundació Clínic per la Recerca Biomèdica-Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
- CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Emilio Ortega
- Endocrinology and Nutrition Department, Hospital Clínic, Barcelona, Spain
- CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
- Fundació Clínic per la Recerca Biomèdica-Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Isabel Barroeta
- Sant Pau Memory Unit, Neurology Department, Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERNED, Instituto de Salud Carlos III
| | - Valle Camacho
- Nuclear Medicine Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Gemma Chiva-Blanch
- CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
- Fundació Clínic per la Recerca Biomèdica-Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
- Health Sciences Faculty, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Neurology Department, Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERNED, Instituto de Salud Carlos III
| | - Amanda Jiménez
- Endocrinology and Nutrition Department, Hospital Clínic, Barcelona, Spain
- CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
- Fundació Clínic per la Recerca Biomèdica-Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| |
Collapse
|
11
|
Devi S, Gedda DUK, Chawla S, Doucette J, Yadav N, Mirshahi S, de Moura LP, Velloso LA, Mekary RA. The effect of weight loss on hypothalamus structure and function in obese individuals: a systematic review and meta-analysis. Int J Neurosci 2024; 134:75-87. [PMID: 35659180 DOI: 10.1080/00207454.2022.2086127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/30/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Obesity presents with structural and functional hypothalamic dysfunction. However, it is unclear whether weight loss can lead to hypothalamic changes. We therefore aimed to conduct a systematic review and meta-analysis to determine the effect of body mass reduction in obese individuals on hypothalamic structure and function. METHODS PubMed, Embase and Cochrane databases were searched for studies that reported the change in hypothalamic structure and function after weight loss. Qualitative and quantitative analyses were performed on magnetic resonance imaging techniques, medio-basal hypothalamus T2-relaxation time, blood oxygen level dependent (BOLD) contrast, voxel-based morphometry (VBM) and biomarkers including glucose, insulin, leptin, ghrelin and inflammatory markers of interleukins. Mean differences between pre- and post-weight loss and 95% confidence intervals (CIs) were pooled using random-effects models. RESULTS Thirteen pre-post studies were included, of which six accounted for the meta-analysis. Studies showed a favorable decrease in T2-relaxation time (n = 1), favorable change in hypothalamic activity after weight loss on BOLD contrast (n = 4), with higher peak activities after surgical weight loss (n = 2). No differences were found in the gray matter density of the hypothalamus on VBM (n = 1). Pooled mean differences between pre- and post-surgical weight loss revealed a decrease of 8.53 mg/dl (95% CI: 5.17, 11.9) in glucose, 7.73 pmol/l (95% CI: 5.07, 10.4) in insulin, 15.5 ng/ml (95% CI: 9.40, 21.6) in leptin, 142.9 pg/ml (95% CI: 79.0, 206.8) in ghrelin and 9.43 pg/ml (95% CI: -6.89, 25.7) in IL-6 level. CONCLUSIONS Our study showed weight reduction in obesity led to limited structural change and significant functional changes in the hypothalamus.
Collapse
Affiliation(s)
- Sharmila Devi
- Faculty of Life Sciences and Medicine, King's College of London (KCL), London, UK
- Department of Neurosurgery, Computational Neurosurgical Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Durga Udaya Keerthi Gedda
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA
| | - Shreya Chawla
- Faculty of Life Sciences and Medicine, King's College of London (KCL), London, UK
- Department of Neurosurgery, Computational Neurosurgical Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joanne Doucette
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA
| | - Nishi Yadav
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA
| | - Shervin Mirshahi
- Department of Neurosurgery, Computational Neurosurgical Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Leandro P de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, Brazil
- CEPECE - Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Lício A Velloso
- Department of Internal Medicine, Laboratory of Cell Signaling, University of Campinas, Campinas, Brazil
| | - Rania A Mekary
- Department of Neurosurgery, Computational Neurosurgical Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA
| |
Collapse
|
12
|
Sewaybricker LE, Melhorn SJ, Entringer S, Buss C, Wadhwa PD, Schur EA, Rasmussen JM. Associations of radiologic characteristics of the neonatal hypothalamus with early life adiposity gain. Pediatr Obes 2024; 19:e13114. [PMID: 38477234 PMCID: PMC11081834 DOI: 10.1111/ijpo.13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND The mediobasal hypothalamus (MBH) is a key brain area for regulation of energy balance. Previous neuroimaging studies suggest that T2-based signal properties indicative of cellular inflammatory response (gliosis) are present in adults and children with obesity, and predicts greater adiposity gain in children at risk of obesity. OBJECTIVES/METHODS The current study aimed to extend this concept to the early life period by considering if, in full-term healthy neonates (up to n = 35), MRI evidence of MBH gliosis is associated with changes in early life (neonatal to six months) body fat percentage measured by DXA. RESULTS In this initial study, neonatal T2 signal in the MBH was positively associated with six-month changes in body fat percentage. CONCLUSION This finding supports the notion that underlying processes in the MBH may play a role in early life growth and, by extension, childhood obesity risk.
Collapse
Affiliation(s)
| | - Susan J. Melhorn
- Dept. of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Sonja Entringer
- Development, Health and Disease Research Program, University of California, Irvine, CA, 92697, USA
- Dept. of Pediatrics, University of California, Irvine, CA, 92697, USA
- Department of Medical Psychology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Claudia Buss
- Development, Health and Disease Research Program, University of California, Irvine, CA, 92697, USA
- Dept. of Pediatrics, University of California, Irvine, CA, 92697, USA
- Department of Medical Psychology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Pathik D. Wadhwa
- Development, Health and Disease Research Program, University of California, Irvine, CA, 92697, USA
- Dept. of Pediatrics, University of California, Irvine, CA, 92697, USA
- Department of Obstetrics & Gynecology, University of California, Irvine, CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, 92697, USA
- Department of Epidemiology, University of California, Irvine, CA, 92697, USA
| | - Ellen A. Schur
- Dept. of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Jerod M. Rasmussen
- Development, Health and Disease Research Program, University of California, Irvine, CA, 92697, USA
- Dept. of Pediatrics, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
13
|
Diao S, Chen C, Benani A, Magnan C, Van Steenwinckel J, Gressens P, Cruciani-Guglielmacci C, Jacquens A, Bokobza C. Preterm birth: A neuroinflammatory origin for metabolic diseases? Brain Behav Immun Health 2024; 37:100745. [PMID: 38511150 PMCID: PMC10950814 DOI: 10.1016/j.bbih.2024.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/16/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Preterm birth and its related complications have become more and more common as neonatal medicine advances. The concept of "developmental origins of health and disease" has raised awareness of adverse perinatal events in the development of diseases later in life. To explore this concept, we propose that encephalopathy of prematurity (EoP) as a potential pro-inflammatory early life event becomes a novel risk factor for metabolic diseases in children/adolescents and adulthood. Here, we review epidemiological evidence that links preterm birth to metabolic diseases and discuss possible synergic roles of preterm birth and neuroinflammation from EoP in the development of metabolic diseases. In addition, we explore theoretical underlying mechanisms regarding developmental programming of the energy control system and HPA axis.
Collapse
Affiliation(s)
- Sihao Diao
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, 201102, China
- Key Laboratory of Neonatal Diseases, National Health Commission, China
| | - Chao Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, 201102, China
- Key Laboratory of Neonatal Diseases, National Health Commission, China
| | - Alexandre Benani
- CSGA, Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | | | | | - Pierre Gressens
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
| | | | - Alice Jacquens
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
- Department of Anesthesia and Critical Care, APHP-Sorbonne University, Hôpital La Pitié- Salpêtrière, Paris, France
| | - Cindy Bokobza
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
| |
Collapse
|
14
|
Olerich KLW, Sewaybricker LE, Kee S, Melhorn SJ, Chandrasekaran S, Schur EA. In utero exposure to maternal diabetes or hypertension and childhood hypothalamic gliosis. Int J Obes (Lond) 2024; 48:594-597. [PMID: 38273035 PMCID: PMC11421291 DOI: 10.1038/s41366-024-01463-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024]
Abstract
Exposure to maternal diabetes (DM) or hypertension (HTN) during pregnancy impacts offspring metabolic health in childhood and beyond. Animal models suggest that induction of hypothalamic inflammation and gliosis in the offspring's hypothalamus is a possible mechanism mediating this effect. We tested, in children, whether in utero exposures to maternal DM or HTN were associated with mediobasal hypothalamic (MBH) gliosis as assessed by brain magnetic resonance imaging (MRI). The study included a subsample of 306 children aged 9-11 years enrolled in the ABCD Study®; 49 were DM-exposed, 53 were HTN-exposed, and 204 (2:1 ratio) were age- and sex-matched children unexposed to DM and/or HTN in utero. We found a significant overall effect of group for the primary outcome of MBH/amygdala (AMY) T2 signal ratio (F(2,300):3.51, p = 0.03). Compared to unexposed children, MBH/AMY T2 signal ratios were significantly higher in the DM-exposed (β:0.05, p = 0.02), but not the HTN-exposed children (β:0.03, p = 0.13), findings that were limited to the MBH and independent of adiposity. We concluded that children exposed to maternal DM in utero display evidence of hypothalamic gliosis, suggesting that gestational DM may have a distinct influence on offspring's brain development and, by extension, children's long-term metabolic health.
Collapse
Affiliation(s)
- Kelsey L W Olerich
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Washington, Seattle, WA, USA
| | | | - Sarah Kee
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Susan J Melhorn
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Ellen A Schur
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Lee J, Xue X, Au E, McIntyre WB, Asgariroozbehani R, Panganiban K, Tseng GC, Papoulias M, Smith E, Monteiro J, Shah D, Maksyutynska K, Cavalier S, Radoncic E, Prasad F, Agarwal SM, Mccullumsmith R, Freyberg Z, Logan RW, Hahn MK. Glucose dysregulation in antipsychotic-naive first-episode psychosis: in silico exploration of gene expression signatures. Transl Psychiatry 2024; 14:19. [PMID: 38199991 PMCID: PMC10781725 DOI: 10.1038/s41398-023-02716-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Antipsychotic (AP)-naive first-episode psychosis (FEP) patients display early dysglycemia, including insulin resistance and prediabetes. Metabolic dysregulation may therefore be intrinsic to psychosis spectrum disorders (PSDs), independent of the metabolic effects of APs. However, the potential biological pathways that overlap between PSDs and dysglycemic states remain to be identified. Using meta-analytic approaches of transcriptomic datasets, we investigated whether AP-naive FEP patients share overlapping gene expression signatures with non-psychiatrically ill early dysglycemia individuals. We meta-analyzed peripheral transcriptomic datasets of AP-naive FEP patients and non-psychiatrically ill early dysglycemia subjects to identify common gene expression signatures. Common signatures underwent pathway enrichment analysis and were then used to identify potential new pharmacological compounds via Integrative Library of Integrated Network-Based Cellular Signatures (iLINCS). Our search results yielded 5 AP-naive FEP studies and 4 early dysglycemia studies which met inclusion criteria. We discovered that AP-naive FEP and non-psychiatrically ill subjects exhibiting early dysglycemia shared 221 common signatures, which were enriched for pathways related to endoplasmic reticulum stress and abnormal brain energetics. Nine FDA-approved drugs were identified as potential drug treatments, of which the antidiabetic metformin, the first-line treatment for type 2 diabetes, has evidence to attenuate metabolic dysfunction in PSDs. Taken together, our findings support shared gene expression changes and biological pathways associating PSDs with dysglycemic disorders. These data suggest that the pathobiology of PSDs overlaps and potentially contributes to dysglycemia. Finally, we find that metformin may be a potential treatment for early metabolic dysfunction intrinsic to PSDs.
Collapse
Grants
- R01 DK124219 NIDDK NIH HHS
- R01 HL150432 NHLBI NIH HHS
- R01 MH107487 NIMH NIH HHS
- R01 MH121102 NIMH NIH HHS
- Holds the Meighen Family Chair in Psychosis Prevention, the Cardy Schizophrenia Research Chair, a Danish Diabetes Academy Professorship, a Steno Diabetes Center Fellowship, and a U of T Academic Scholar Award, and is funded by operating grants from the Canadian Institutes of Health Research (CIHR), the Banting and Best Diabetes Center, the Miners Lamp U of T award, CIHR and Canadian Psychiatric Association Glenda MacQueen Memorial Award, and the PSI Foundation.
- Hilda and William Courtney Clayton Paediatric Research Fund and Dr. LG Rao/Industrial Partners Graduate Student Award from the University of Toronto, and Meighen Family Chair in Psychosis Prevention
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- UofT | Banting and Best Diabetes Centre, University of Toronto (BBDC)
- Canadian Institutes of Health Research (CIHR) Canada Graduate Scholarship-Master’s program
- Cleghorn Award
- University of Toronto (UofT)
- Centre for Addiction and Mental Health (Centre de Toxicomanie et de Santé Mentale)
- U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- U.S. Department of Defense (United States Department of Defense)
- Commonwealth of Pennsylvania Formula Fund, The Pittsburgh Foundation
Collapse
Affiliation(s)
- Jiwon Lee
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Xiangning Xue
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily Au
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - William B McIntyre
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Roshanak Asgariroozbehani
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Kristoffer Panganiban
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - George C Tseng
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Emily Smith
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Divia Shah
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kateryna Maksyutynska
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Samantha Cavalier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emril Radoncic
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Femin Prasad
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Sri Mahavir Agarwal
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Robert Mccullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
- ProMedica, Toledo, OH, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan W Logan
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Margaret K Hahn
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
16
|
Kim JD, Copperi F, Diano S. Microglia in Central Control of Metabolism. Physiology (Bethesda) 2024; 39:0. [PMID: 37962895 PMCID: PMC11283896 DOI: 10.1152/physiol.00021.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 11/15/2023] Open
Abstract
Beyond their role as brain immune cells, microglia act as metabolic sensors in response to changes in nutrient availability, thus playing a role in energy homeostasis. This review highlights the evidence and challenges of studying the role of microglia in metabolism regulation.
Collapse
Affiliation(s)
- Jung Dae Kim
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
| | - Francesca Copperi
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
| | - Sabrina Diano
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York, United States
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, United States
| |
Collapse
|
17
|
Carnell S, Thapaliya G, Jansen E, Chen L. Biobehavioral susceptibility for obesity in childhood: Behavioral, genetic and neuroimaging studies of appetite. Physiol Behav 2023; 271:114313. [PMID: 37544571 PMCID: PMC10591980 DOI: 10.1016/j.physbeh.2023.114313] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/06/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Modern food environments are conducive to overeating and weight gain, but not everyone develops obesity. One reason for this may be that individuals differ in appetitive characteristics, or traits, that manifest early in life and go on to influence their behavioral susceptibility to gain and maintain excess weight. Classic studies showing that eating behavior in children can be measured by behavioral paradigms such as tests of caloric compensation and eating in the absence of hunger inspired the development and validation of psychometric instruments to assess appetitive characteristics in children and infants. A large body of evidence now suggests that food approach traits increase obesity risk, while food avoidant traits, such as satiety responsiveness, decrease obesity risk. Twin studies and genetic association studies have demonstrated that appetitive characteristics are heritable, consistent with a biological etiology. However, family environment factors are also influential, with mounting evidence suggesting that genetic and environmental risk factors interact and correlate with consequences for child eating behavior and weight. Further, neuroimaging studies are revealing that individual differences in responses to visual food cues, as well as to small tastes and larger amounts of food, across a number of brain regions involved in reward/motivation, cognitive control and other functions, may contribute to individual variation in appetitive behavior. Growing evidence also suggests that variation on psychometric measures of appetite is associated with regional differences in brain structure, and differential patterns of resting state functional connectivity. Large prospective studies beginning in infancy promise to enrich our understanding of neural and other biological underpinnings of appetite and obesity development in early life, and how the interplay between genetic and environmental factors affects appetitive systems. The biobehavioral susceptibility model of obesity development and maintenance outlined in this narrative review has implications for prevention and treatment of obesity in childhood.
Collapse
Affiliation(s)
- Susan Carnell
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore MD, USA.
| | - Gita Thapaliya
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | - Elena Jansen
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | - Liuyi Chen
- Division of Psychiatric Neuroimaging, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore MD, USA
| |
Collapse
|
18
|
Ahrendsen JT, Nong Y, Huo Y, Steele J, Anderson MP. CD8 cytotoxic T-cell infiltrates and cellular damage in the hypothalamus in human obesity. Acta Neuropathol Commun 2023; 11:163. [PMID: 37814324 PMCID: PMC10563257 DOI: 10.1186/s40478-023-01659-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/11/2023] Open
Abstract
Rare cases of paraneoplastic obesity in children suggest sporadic obesity might also arise from an adaptive immune cell-mediated mechanism. Since the hypothalamus is a central regulator of feeding behavior and energy expenditure, we quantified lymphocytic inflammation in this region in a cohort of obese and non-obese human post-mortem brains. We report that CD8-positive cytotoxic T-cells are increased in hypothalamic median eminence/arcuate nucleus (ME/Arc) and bed nucleus of the stria terminalis in 40% of obese compared to non-obese patients, but not in other hypothalamic nuclei or brain regions. CD8 T-cells were most abundant in individuals with concurrent obesity and diabetes. Markers of cytotoxic T-cell induced damage, activated caspase 3 and poly-ADP ribose, were also elevated in the ME/Arc of obese patients. To provoke CD8 cytotoxic T-cell infiltrates in ventromedial region of hypothalamus in mice we performed stereotactic injections of an adeno-associated virus expressing immunogenic green fluorescent protein or saline. AAV but not saline injections triggered hypothalamic CD8 T-cell infiltrates associated with a rapid weight gain in mice recapitulating the findings in human obesity. This is the first description of the neuropathology of human obesity and when combined with its reconstitution in a mouse model suggests adaptive immunity may drive as much as 40% of the human condition.
Collapse
Affiliation(s)
- Jared T Ahrendsen
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yi Nong
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Neuroscience Therapeutic Focus Area, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Yuda Huo
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Neuroscience Therapeutic Focus Area, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Jasmine Steele
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew P Anderson
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
- Neuroscience Therapeutic Focus Area, Regeneron Pharmaceuticals, Tarrytown, NY, USA.
| |
Collapse
|
19
|
Douglass JD, Ness KM, Valdearcos M, Wyse-Jackson A, Dorfman MD, Frey JM, Fasnacht RD, Santiago OD, Niraula A, Banerjee J, Robblee M, Koliwad SK, Thaler JP. Obesity-associated microglial inflammatory activation paradoxically improves glucose tolerance. Cell Metab 2023; 35:1613-1629.e8. [PMID: 37572666 PMCID: PMC10528677 DOI: 10.1016/j.cmet.2023.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/09/2023] [Accepted: 07/19/2023] [Indexed: 08/14/2023]
Abstract
Hypothalamic gliosis associated with high-fat diet (HFD) feeding increases susceptibility to hyperphagia and weight gain. However, the body-weight-independent contribution of microglia to glucose regulation has not been determined. Here, we show that reducing microglial nuclear factor κB (NF-κB) signaling via cell-specific IKKβ deletion exacerbates HFD-induced glucose intolerance despite reducing body weight and adiposity. Conversely, two genetic approaches to increase microglial pro-inflammatory signaling (deletion of an NF-κB pathway inhibitor and chemogenetic activation through a modified Gq-coupled muscarinic receptor) improved glucose tolerance independently of diet in both lean and obese rodents. Microglial regulation of glucose homeostasis involves a tumor necrosis factor alpha (TNF-α)-dependent mechanism that increases activation of pro-opiomelanocortin (POMC) and other hypothalamic glucose-sensing neurons, ultimately leading to a marked amplification of first-phase insulin secretion via a parasympathetic pathway. Overall, these data indicate that microglia regulate glucose homeostasis in a body-weight-independent manner, an unexpected mechanism that limits the deterioration of glucose tolerance associated with obesity.
Collapse
Affiliation(s)
- John D Douglass
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Kelly M Ness
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Martin Valdearcos
- The Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alice Wyse-Jackson
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Mauricio D Dorfman
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Jeremy M Frey
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Rachael D Fasnacht
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Olivia D Santiago
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Anzela Niraula
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Jineta Banerjee
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Megan Robblee
- The Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Suneil K Koliwad
- The Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Joshua P Thaler
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
20
|
Becetti I, Bwenyi EL, de Araujo IE, Ard J, Cryan JF, Farooqi IS, Ferrario CR, Gluck ME, Holsen LM, Kenny PJ, Lawson EA, Lowell BB, Schur EA, Stanley TL, Tavakkoli A, Grinspoon SK, Singhal V. The Neurobiology of Eating Behavior in Obesity: Mechanisms and Therapeutic Targets: A Report from the 23rd Annual Harvard Nutrition Obesity Symposium. Am J Clin Nutr 2023; 118:314-328. [PMID: 37149092 PMCID: PMC10375463 DOI: 10.1016/j.ajcnut.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/03/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023] Open
Abstract
Obesity is increasing at an alarming rate. The effectiveness of currently available strategies for the treatment of obesity (including pharmacologic, surgical, and behavioral interventions) is limited. Understanding the neurobiology of appetite and the important drivers of energy intake (EI) can lead to the development of more effective strategies for the prevention and treatment of obesity. Appetite regulation is complex and is influenced by genetic, social, and environmental factors. It is intricately regulated by a complex interplay of endocrine, gastrointestinal, and neural systems. Hormonal and neural signals generated in response to the energy state of the organism and the quality of food eaten are communicated by paracrine, endocrine, and gastrointestinal signals to the nervous system. The central nervous system integrates homeostatic and hedonic signals to regulate appetite. Although there has been an enormous amount of research over many decades regarding the regulation of EI and body weight, research is only now yielding potentially effective treatment strategies for obesity. The purpose of this article is to summarize the key findings presented in June 2022 at the 23rd annual Harvard Nutrition Obesity Symposium entitled "The Neurobiology of Eating Behavior in Obesity: Mechanisms and Therapeutic Targets." Findings presented at the symposium, sponsored by NIH P30 Nutrition Obesity Research Center at Harvard, enhance our current understanding of appetite biology, including innovative techniques used to assess and systematically manipulate critical hedonic processes, which will shape future research and the development of therapeutics for obesity prevention and treatment.
Collapse
Affiliation(s)
- Imen Becetti
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States.
| | - Esther L Bwenyi
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Ivan E de Araujo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Jamy Ard
- Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Bariatric and Weight Management Center, Wake Forest Baptist Health, Winston-Salem, NC, United States; Center on Diabetes, Obesity, and Metabolism, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Hypertension and Vascular Research Center, Cardiovascular Sciences Center, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Maya Angelou Center for Healthy Equity, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ismaa Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and National Institute for Health and Care Research (NIHR) Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom; Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom; Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Carrie R Ferrario
- Department of Pharmacology, Psychology Department (Biopsychology Area), University of Michigan, Ann Arbor, MI, United States
| | - Marci E Gluck
- National Institutes of Health, Phoenix, AZ, United States; National Institute of Diabetes and Digestive and Kidney Disease, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, Phoenix, AZ, United States
| | - Laura M Holsen
- Harvard Medical School, Boston, MA, United States; Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States; Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Elizabeth A Lawson
- Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States; Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, United States
| | - Bradford B Lowell
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Ellen A Schur
- Division of General Internal Medicine, University of Washington, Seattle, WA, United States; Univeristy of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, United States; Univeristy of Washington Nutrition and Obesity Research Center, University of Washington, Seattle, WA, United States; Clinical and Translational Research Services Core, University of Washington, Seattle, WA, United States
| | - Takara L Stanley
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States; Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Ali Tavakkoli
- Division of General and Gastrointestinal (GI) Surgery, Center for Weight Management and Wellness, Advanced Minimally Invasive Fellowship, Harvard Medical School, Boston, MA, United States
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Vibha Singhal
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Pediatric Endocrinology and Obesity Medicine, Massachusetts General Hospital, Boston, MA, United States; Pediatric Program MGH Weight Center, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
21
|
Escobar AP, Bonansco C, Cruz G, Dagnino-Subiabre A, Fuenzalida M, Negrón I, Sotomayor-Zárate R, Martínez-Pinto J, Jorquera G. Central and Peripheral Inflammation: A Common Factor Causing Addictive and Neurological Disorders and Aging-Related Pathologies. Int J Mol Sci 2023; 24:10083. [PMID: 37373230 PMCID: PMC10298583 DOI: 10.3390/ijms241210083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Many diseases and degenerative processes affecting the nervous system and peripheral organs trigger the activation of inflammatory cascades. Inflammation can be triggered by different environmental conditions or risk factors, including drug and food addiction, stress, and aging, among others. Several pieces of evidence show that the modern lifestyle and, more recently, the confinement associated with the COVID-19 pandemic have contributed to increasing the incidence of addictive and neuropsychiatric disorders, plus cardiometabolic diseases. Here, we gather evidence on how some of these risk factors are implicated in activating central and peripheral inflammation contributing to some neuropathologies and behaviors associated with poor health. We discuss the current understanding of the cellular and molecular mechanisms involved in the generation of inflammation and how these processes occur in different cells and tissues to promote ill health and diseases. Concomitantly, we discuss how some pathology-associated and addictive behaviors contribute to worsening these inflammation mechanisms, leading to a vicious cycle that promotes disease progression. Finally, we list some drugs targeting inflammation-related pathways that may have beneficial effects on the pathological processes associated with addictive, mental, and cardiometabolic illnesses.
Collapse
Affiliation(s)
- Angélica P. Escobar
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Christian Bonansco
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Gonzalo Cruz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Alexies Dagnino-Subiabre
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Marco Fuenzalida
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Ignacio Negrón
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Jonathan Martínez-Pinto
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gonzalo Jorquera
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile
| |
Collapse
|
22
|
Li ZA, Samara A, Ray MK, Rutlin J, Raji CA, Shimony JS, Sun P, Song SK, Hershey T, Eisenstein SA. Childhood obesity is linked to putative neuroinflammation in brain white matter, hypothalamus, and striatum. Cereb Cortex Commun 2023; 4:tgad007. [PMID: 37207193 PMCID: PMC10191798 DOI: 10.1093/texcom/tgad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
Neuroinflammation is both a consequence and driver of overfeeding and weight gain in rodent obesity models. Advances in magnetic resonance imaging (MRI) enable investigations of brain microstructure that suggests neuroinflammation in human obesity. To assess the convergent validity across MRI techniques and extend previous findings, we used diffusion basis spectrum imaging (DBSI) to characterize obesity-associated alterations in brain microstructure in 601 children (age 9-11 years) from the Adolescent Brain Cognitive DevelopmentSM Study. Compared with children with normal-weight, greater DBSI restricted fraction (RF), reflecting neuroinflammation-related cellularity, was seen in widespread white matter in children with overweight and obesity. Greater DBSI-RF in hypothalamus, caudate nucleus, putamen, and, in particular, nucleus accumbens, correlated with higher baseline body mass index and related anthropometrics. Comparable findings were seen in the striatum with a previously reported restriction spectrum imaging (RSI) model. Gain in waist circumference over 1 and 2 years related, at nominal significance, to greater baseline RSI-assessed restricted diffusion in nucleus accumbens and caudate nucleus, and DBSI-RF in hypothalamus, respectively. Here we demonstrate that childhood obesity is associated with microstructural alterations in white matter, hypothalamus, and striatum. Our results also support the reproducibility, across MRI methods, of findings of obesity-related putative neuroinflammation in children.
Collapse
Affiliation(s)
- Zhaolong Adrian Li
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Amjad Samara
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 United States
| | - Mary Katherine Ray
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Jerrel Rutlin
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Cyrus A Raji
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 United States
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Peng Sun
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Sheng-Kwei Song
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Tamara Hershey
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, United States
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 United States
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Sarah A Eisenstein
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| |
Collapse
|
23
|
Dorfman MD, Monfeuga T, Melhorn SJ, Kanter JE, Frey JM, Fasnacht RD, Chandran A, Lala E, Velasco I, Rubinow KB, Meek TH, Schur EA, Bornfeldt KE, Thaler JP. Central androgen action reverses hypothalamic astrogliosis and atherogenic risk factors induced by orchiectomy and high-fat diet feeding in male mice. Am J Physiol Endocrinol Metab 2023; 324:E461-E475. [PMID: 37053049 PMCID: PMC10202485 DOI: 10.1152/ajpendo.00059.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Hypogonadism in males confers elevated cardiovascular disease (CVD) risk by unknown mechanisms. Recent radiological evidence suggests that low testosterone (T) is associated with mediobasal hypothalamic (MBH) gliosis, a central nervous system (CNS) cellular response linked to metabolic dysfunction. To address mechanisms linking CNS androgen action to CVD risk, we generated a hypogonadal, hyperlipidemic mouse model with orchiectomy (ORX) combined with hepatic PCSK9 overexpression. After 4 wk of high-fat, high-sucrose diet (HFHS) consumption, despite equal body weights and glucose tolerance, androgen-deficient ORX mice had a more atherogenic lipid profile and increased liver and leukocyte inflammatory signaling compared with sham-operated control mice. Along with these early CVD risk indicators, ORX markedly amplified HFHS-induced astrogliosis in the MBH. Transcriptomic analysis further revealed that ORX and high-fat diet feeding induced upregulation of inflammatory pathways and downregulation of metabolic pathways in hypothalamic astrocytes. To interrogate the role of sex steroid signaling in the CNS in cardiometabolic risk and MBH inflammation, central infusion of T and dihydrotestosterone (DHT) was performed on ORX mice. Central DHT prevented MBH astrogliosis and reduced the liver inflammatory signaling and monocytosis induced by HFHS and ORX; T had a partial protective effect. Finally, a cross-sectional study in 41 adult men demonstrated a positive correlation between radiological evidence of MBH gliosis and plasma lipids. These findings demonstrate that T deficiency in combination with a Western-style diet promotes hypothalamic gliosis concomitant with increased atherogenic risk factors and provide supportive evidence for regulation of lipid metabolism and cardiometabolic risk determinants by the CNS action of sex steroids.NEW & NOTEWORTHY This study provides evidence that hypothalamic gliosis is a key early event through which androgen deficiency in combination with a Western-style diet might lead to cardiometabolic dysregulation in males. Furthermore, this work provides the first evidence in humans of a positive association between hypothalamic gliosis and LDL-cholesterol, advancing our knowledge of CNS influences on CVD risk progression.
Collapse
Affiliation(s)
- Mauricio D Dorfman
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, United States
| | | | - Susan J Melhorn
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Jenny E Kanter
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Jeremy M Frey
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Rachael D Fasnacht
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, United States
| | | | - Emaad Lala
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Inmaculada Velasco
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Katya B Rubinow
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Thomas H Meek
- Novo Nordisk Research Centre Oxford, Oxford, United Kingdom
| | - Ellen A Schur
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Karin E Bornfeldt
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States
| | - Joshua P Thaler
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, United States
| |
Collapse
|
24
|
Delle C, Cankar N, Digebjerg Holgersson C, Hvorup Knudsen H, Schiøler Nielsen E, Kjaerby C, Mori Y, Nedergaard M, Weikop P. Long-term high-fat diet increases glymphatic activity in the hypothalamus in mice. Sci Rep 2023; 13:4137. [PMID: 36914703 PMCID: PMC10011420 DOI: 10.1038/s41598-023-30630-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Obesity affects millions of people worldwide and is associated with an increased risk of cognitive decline. The glymphatic system is a brain-wide metabolic waste clearance system, dysfunction of which is linked to dementia. We herein examined glymphatic transport in mice with long-term obesity induced by a high-fat diet for 10 months. The obese mice developed hypertension and elevated heart rate, neuroinflammation and gliosis, but not apparent systemic inflammation. Surprisingly, glymphatic inflow was globally unaffected by the high-fat diet except for the hypothalamus, which displayed increased influx and elevated AQP4 vascular polarization compared to the normal weight control group. We propose that a long-term high-fat diet induced metabolic alteration of hypothalamic neurons and neuroinflammation, which in turn enhanced glymphatic clearance in the effected brain region.
Collapse
Affiliation(s)
- Christine Delle
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Neža Cankar
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Christian Digebjerg Holgersson
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Helle Hvorup Knudsen
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Elise Schiøler Nielsen
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Celia Kjaerby
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Yuki Mori
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark.
- Center for Translational Neuromedicine, University of Rochester Medical School, Elmwood Avenue 601, Rochester, NY, 14642, USA.
| | - Pia Weikop
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| |
Collapse
|
25
|
Sewaybricker LE, Huang A, Chandrasekaran S, Melhorn SJ, Schur EA. The Significance of Hypothalamic Inflammation and Gliosis for the Pathogenesis of Obesity in Humans. Endocr Rev 2023; 44:281-296. [PMID: 36251886 DOI: 10.1210/endrev/bnac023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/12/2022] [Indexed: 11/19/2022]
Abstract
Accumulated preclinical literature demonstrates that hypothalamic inflammation and gliosis are underlying causal components of diet-induced obesity in rodent models. This review summarizes and synthesizes available translational data to better understand the applicability of preclinical findings to human obesity and its comorbidities. The published literature in humans includes histopathologic analyses performed postmortem and in vivo neuroimaging studies measuring indirect markers of hypothalamic tissue microstructure. Both support the presence of hypothalamic inflammation and gliosis in children and adults with obesity. Findings predominantly point to tissue changes in the region of the arcuate nucleus of the hypothalamus, although findings of altered tissue characteristics in whole hypothalamus or other hypothalamic regions also emerged. Moreover, the severity of hypothalamic inflammation and gliosis has been related to comorbid conditions, including glucose intolerance, insulin resistance, type 2 diabetes, and low testosterone levels in men, independent of elevated body adiposity. Cross-sectional findings are augmented by a small number of prospective studies suggesting that a greater degree of hypothalamic inflammation and gliosis may predict adiposity gain and worsening insulin sensitivity in susceptible individuals. In conclusion, existing human studies corroborate a large preclinical literature demonstrating that hypothalamic neuroinflammatory responses play a role in obesity pathogenesis. Extensive or permanent hypothalamic tissue remodeling may negatively affect the function of neuroendocrine regulatory circuits and promote the development and maintenance of elevated body weight in obesity and/or comorbid endocrine disorders.
Collapse
Affiliation(s)
| | - Alyssa Huang
- Department of Pediatrics, University of Washington, Division of Endocrinology and Diabetes, Seattle Children's Hospital, Seattle, WA 98015, USA
| | | | - Susan J Melhorn
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Ellen A Schur
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
26
|
Sonnefeld L, Rohmann N, Geisler C, Laudes M. Is human obesity an inflammatory disease of the hypothalamus? Eur J Endocrinol 2023; 188:R37-R45. [PMID: 36883605 DOI: 10.1093/ejendo/lvad030] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/23/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Obesity and its comorbidities are long-standing, challenging global health problems. Lack of exercise, overnutrition, and especially the consumption of fat-rich foods are some of the most important factors leading to an increase in prevalence in modern society. The pathophysiology of obesity as a metabolic inflammatory disease has moved into focus since new therapeutic approaches are required. The hypothalamus, a brain area responsible for energy homeostasis, has recently received special attention in this regard. Hypothalamic inflammation was identified to be associated with diet-induced obesity and new evidence suggests that it may be, beyond that, a pathological mechanism of the disease. This inflammation impairs the local signaling of insulin and leptin leading to dysfunction of the regulation of energy balance and thus, weight gain. After a high-fat diet consumption, activation of inflammatory mediators such as the nuclear factor κB or c-Jun N-terminal kinase pathway can be observed, accompanied by elevated secretion of pro-inflammatory interleukins and cytokines. Brain resident glia cells, especially microglia and astrocytes, initiate this release in response to the flux of fatty acids. The gliosis occurs rapidly before the actual weight gain. Dysregulated hypothalamic circuits change the interaction between neuronal and non-neuronal cells, contributing to the establishment of inflammatory processes. Several studies have reported reactive gliosis in obese humans. Although there is evidence for a causative role of hypothalamic inflammation in the obesity development, data on underlying molecular pathways in humans are limited. This review discusses the current state of knowledge on the relationship between hypothalamic inflammation and obesity in humans.
Collapse
Affiliation(s)
- Lena Sonnefeld
- Institute of Diabetes and Clinical Metabolic Research, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
| | - Nathalie Rohmann
- Institute of Diabetes and Clinical Metabolic Research, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
| | - Corinna Geisler
- Institute of Diabetes and Clinical Metabolic Research, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
| |
Collapse
|
27
|
Yoon JH, Hwang J, Son SU, Choi J, You SW, Park H, Cha SY, Maeng S. How Can Insulin Resistance Cause Alzheimer's Disease? Int J Mol Sci 2023; 24:3506. [PMID: 36834911 PMCID: PMC9966425 DOI: 10.3390/ijms24043506] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with cognitive decline. Despite worldwide efforts to find a cure, no proper treatment has been developed yet, and the only effective countermeasure is to prevent the disease progression by early diagnosis. The reason why new drug candidates fail to show therapeutic effects in clinical studies may be due to misunderstanding the cause of AD. Regarding the cause of AD, the most widely known is the amyloid cascade hypothesis, in which the deposition of amyloid beta and hyperphosphorylated tau is the cause. However, many new hypotheses were suggested. Among them, based on preclinical and clinical evidence supporting a connection between AD and diabetes, insulin resistance has been pointed out as an important factor in the development of AD. Therefore, by reviewing the pathophysiological background of brain metabolic insufficiency and insulin insufficiency leading to AD pathology, we will discuss how can insulin resistance cause AD.
Collapse
Affiliation(s)
- Ji Hye Yoon
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - JooHyun Hwang
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Sung Un Son
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Junhyuk Choi
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Seung-Won You
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Hyunwoo Park
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
- Health Park Co., Ltd., Seoul 02447, Republic of Korea
| | - Seung-Yun Cha
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Sungho Maeng
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| |
Collapse
|
28
|
Della Guardia L, Codella R. Exercise Restores Hypothalamic Health in Obesity by Reshaping the Inflammatory Network. Antioxidants (Basel) 2023; 12:antiox12020297. [PMID: 36829858 PMCID: PMC9951965 DOI: 10.3390/antiox12020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Obesity and overnutrition induce inflammation, leptin-, and insulin resistance in the hypothalamus. The mediobasal hypothalamus responds to exercise enabling critical adaptions at molecular and cellular level that positively impact local inflammation. This review discusses the positive effect of exercise on obesity-induced hypothalamic dysfunction, highlighting the mechanistic aspects related to the anti-inflammatory effects of exercise. In HFD-fed animals, both acute and chronic moderate-intensity exercise mitigate microgliosis and lower inflammation in the arcuate nucleus (ARC). Notably, this associates with restored leptin sensitivity and lower food intake. Exercise-induced cytokines IL-6 and IL-10 mediate part of these positive effect on the ARC in obese animals. The reduction of obesity-associated pro-inflammatory mediators (e.g., FFAs, TNFα, resistin, and AGEs), and the improvement in the gut-brain axis represent alternative paths through which regular exercise can mitigate hypothalamic inflammation. These findings suggest that the regular practice of exercise can restore a proper functionality in the hypothalamus in obesity. Further analysis investigating the crosstalk muscle-hypothalamus would help toward a deeper comprehension of the subject.
Collapse
Affiliation(s)
- Lucio Della Guardia
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Roberto Codella
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milan, Italy
- Correspondence: ; Tel.: +39-02-50330356
| |
Collapse
|
29
|
Smith DC, Karahan H, Wijeratne HRS, Al-Amin M, McCord B, Moon Y, Kim J. Deletion of the Alzheimer's disease risk gene Abi3 locus results in obesity and systemic metabolic disruption in mice. Front Aging Neurosci 2022; 14:1035572. [PMID: 36620768 PMCID: PMC9813750 DOI: 10.3389/fnagi.2022.1035572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD) genetics studies have identified a coding variant within ABI3 gene that increases the risk of developing AD. Recently, we demonstrated that deletion of the Abi3 gene locus dramatically exacerbates AD neuropathology in a transgenic mouse model of amyloidosis. In the course of this AD project, we unexpectedly found that deletion of the Abi3 gene locus resulted in a dramatic obese phenotype in non-transgenic mice. Here, we report our investigation into this serendipitous metabolic finding. Specifically, we demonstrate that mice with deletion of the Abi3 gene locus (Abi3-/- ) have dramatically increased body weight and body fat. Further, we determined that Abi3-/- mice have impaired energy expenditure. Additionally, we found that deletion of the Abi3 gene locus altered gene expression within the hypothalamus, particularly within immune-related pathways. Subsequent immunohistological analysis of the central nervous system (CNS) revealed that microglia number and area were decreased specifically within the mediobasal hypothalamus of Abi3-/- mice. Altogether, this investigation establishes the functional importance of the Abi3 gene locus in the regulation of systemic metabolism and maintenance of healthy body weight. While our previous findings indicated the importance of Abi3 in neurodegeneration, this study indicates that Abi3 related functions are also essential for metabolic regulation.
Collapse
Affiliation(s)
- Daniel C. Smith
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hande Karahan
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - H. R. Sagara Wijeratne
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Mamun Al-Amin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brianne McCord
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Younghye Moon
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jungsu Kim
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
30
|
Chandrasekaran S, Melhorn S, Olerich KL, Angelo B, Chow T, Xiang A, Schur EA, Page KA. Exposure to Gestational Diabetes Mellitus Prior to 26 Weeks Is Related to the Presence of Mediobasal Hypothalamic Gliosis in Children. Diabetes 2022; 71:2552-2556. [PMID: 36095276 PMCID: PMC9750940 DOI: 10.2337/db22-0448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/08/2022] [Indexed: 01/29/2023]
Abstract
Intrauterine exposure to metabolic dysfunction leads to offspring metabolic dysfunction in human and rodent models, but underlying mechanisms are unclear. The mediobasal hypothalamus (MBH) is involved in energy homeostasis and weight regulation, and MBH gliosis is associated with obesity and insulin resistance. We tested the hypothesis that offspring exposed to gestational diabetes mellitus (GDM) in utero versus those unexposed would show evidence of MBH gliosis. Participants in the BrainChild Study (age 7-11 years with confirmed GDM exposure or no GDM exposure) underwent brain MRI to acquire T2-weighted images. By using the amygdala (AMY) and white matter (WM) as reference regions, MBH:AMY and MBH:WM T2 signal ratios were calculated as a radiologic measure of MBH gliosis. Linear regressions were used to examine associations between GDM exposure (GDM overall) and by timing of GDM exposure (≤26 weeks or >26 weeks) and MBH gliosis. Associations between prepregnancy BMI and child MBH gliosis were examined in secondary analyses. There were no differences in T2 signal ratios in children exposed versus not exposed to GDM overall, but children exposed to early GDM (≤26 weeks of gestation) had higher MBH:WM signal ratios than those not exposed (β = 0.147; SE 0.06; P = 0.03), adjusting for child's age, sex, and BMI z score and maternal prepregnancy BMI, whereas no associations were seen for the control ratio (AMY:WM). Prepregnancy BMI was not associated with evidence of MBH gliosis. Early exposure to GDM was associated with radiologic evidence of MBH gliosis in children. These data provide mechanistic insight into brain pathways by which exposure to GDM may increase risk for metabolic dysfunction.
Collapse
Affiliation(s)
| | - Susan Melhorn
- Department of Medicine, University of Washington, Seattle, WA
| | | | | | - Ting Chow
- Kaiser Permanente Southern California Permanente Medical Group, Pasadena, CA
| | - Anny Xiang
- Kaiser Permanente Southern California Permanente Medical Group, Pasadena, CA
| | - Ellen A. Schur
- Department of Medicine, University of Washington, Seattle, WA
| | | |
Collapse
|
31
|
Trends in Gliosis in Obesity, and the Role of Antioxidants as a Therapeutic Alternative. Antioxidants (Basel) 2022; 11:antiox11101972. [PMID: 36290695 PMCID: PMC9598641 DOI: 10.3390/antiox11101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity remains a global health problem. Chronic low-grade inflammation in this pathology has been related to comorbidities such as cognitive alterations that, in the long term, can lead to neurodegenerative diseases. Neuroinflammation or gliosis in patients with obesity and type 2 diabetes mellitus has been related to the effect of adipokines, high lipid levels and glucose, which increase the production of free radicals. Cerebral gliosis can be a risk factor for developing neurodegenerative diseases, and antioxidants could be an alternative for the prevention and treatment of neural comorbidities in obese patients. AIM Identify the immunological and oxidative stress mechanisms that produce gliosis in patients with obesity and propose antioxidants as an alternative to reducing neuroinflammation. METHOD Advanced searches were performed in scientific databases: PubMed, ProQuest, EBSCO, and the Science Citation index for research on the physiopathology of gliosis in obese patients and for the possible role of antioxidants in its management. CONCLUSION Patients with obesity can develop neuroinflammation, conditioned by various adipokines, excess lipids and glucose, which results in an increase in free radicals that must be neutralized with antioxidants to reduce gliosis and the risk of long-term neurodegeneration.
Collapse
|
32
|
Aleksic S, Desai D, Ye K, Duran S, Gao T, Crandall J, Atzmon G, Barzilai N, Milman S. Integrity of hypothalamic-pituitary-testicular axis in exceptional longevity. Aging Cell 2022; 21:e13656. [PMID: 35770332 PMCID: PMC9381897 DOI: 10.1111/acel.13656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/24/2022] [Accepted: 05/18/2022] [Indexed: 11/27/2022] Open
Abstract
Hypothalamic integrity increasingly is being recognized as a marker of healthy longevity in rodent models. Insight into hypothalamic function in humans with exceptional longevity can be gained via investigation of the hypothalamic-pituitary-testicular (HPT) axis in men with exceptional longevity. This study aimed to characterize the HPT axis function, defined by levels of testosterone (T) and luteinizing hormone (LH), in 84 Ashkenazi Jewish men aged 90-106 years. We found that 94% of men exhibited preserved hypothalamic-pituitary function, as evidenced by either normal testosterone and LH levels (25%) or an appropriate rise in LH in response to aging-related primary testicular dysfunction (69%), a hormone pattern mirroring female menopause. Total T level was not associated with metabolic parameters or survival. These results demonstrate a high prevalence of testicular dysfunction with preserved hypothalamic-pituitary function in men with exceptional longevity. Thus, the role of hypothalamic integrity and HPT axis in healthy aging warrants further investigation.
Collapse
Affiliation(s)
- Sandra Aleksic
- Department of Medicine, Division of Endocrinology, Institute for Aging ResearchAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Dimpi Desai
- Department of Medicine, Division of EndocrinologyBaylor College of MedicineHoustonTexasUSA
| | - Kenny Ye
- Department of Epidemiology and Population Health (Biostatistics)Albert Einstein College of MedicineBronxNew YorkUSA
- Department of Systems & Computational BiologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Sally Duran
- Department of Medicine, Division of Endocrinology, Institute for Aging ResearchAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Tina Gao
- Department of Medicine, Division of Endocrinology, Institute for Aging ResearchAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Jill Crandall
- Department of Medicine, Division of Endocrinology, Institute for Aging ResearchAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Gil Atzmon
- Department of Medicine, Division of Endocrinology, Institute for Aging ResearchAlbert Einstein College of MedicineBronxNew YorkUSA
- Department of GeneticsAlbert Einstein College of MedicineBronxNew YorkUSA
- Department of Natural ScienceUniversity of HaifaHaifaIsrael
| | - Nir Barzilai
- Department of Medicine, Division of Endocrinology, Institute for Aging ResearchAlbert Einstein College of MedicineBronxNew YorkUSA
- Department of GeneticsAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Sofiya Milman
- Department of Medicine, Division of Endocrinology, Institute for Aging ResearchAlbert Einstein College of MedicineBronxNew YorkUSA
- Department of GeneticsAlbert Einstein College of MedicineBronxNew YorkUSA
| |
Collapse
|
33
|
Radiologic evidence that hypothalamic gliosis is associated with obesity and insulin resistance in humans. Obesity (Silver Spring) 2022; 30:1520. [PMID: 35614849 DOI: 10.1002/oby.23460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Folick A, Cheang RT, Valdearcos M, Koliwad SK. Metabolic factors in the regulation of hypothalamic innate immune responses in obesity. Exp Mol Med 2022; 54:393-402. [PMID: 35474339 PMCID: PMC9076660 DOI: 10.1038/s12276-021-00666-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022] Open
Abstract
The hypothalamus is a central regulator of body weight and energy homeostasis. There is increasing evidence that innate immune activation in the mediobasal hypothalamus (MBH) is a key element in the pathogenesis of diet-induced obesity. Microglia, the resident immune cells in the brain parenchyma, have been shown to play roles in diverse aspects of brain function, including circuit refinement and synaptic pruning. As such, microglia have also been implicated in the development and progression of neurological diseases. Microglia express receptors for and are responsive to a wide variety of nutritional, hormonal, and immunological signals that modulate their distinct functions across different brain regions. We showed that microglia within the MBH sense and respond to a high-fat diet and regulate the function of hypothalamic neurons to promote food intake and obesity. Neurons, glia, and immune cells within the MBH are positioned to sense and respond to circulating signals that regulate their capacity to coordinate aspects of systemic energy metabolism. Here, we review the current knowledge of how these peripheral signals modulate the innate immune response in the MBH and enable microglia to regulate metabolic control.
Collapse
Affiliation(s)
- Andrew Folick
- Diabetes Center and Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA, USA
| | - Rachel T Cheang
- Diabetes Center and Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA, USA
| | - Martin Valdearcos
- Diabetes Center and Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA, USA.
| | - Suneil K Koliwad
- Diabetes Center and Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
35
|
Engel DF, Velloso LA. The timeline of neuronal and glial alterations in experimental obesity. Neuropharmacology 2022; 208:108983. [PMID: 35143850 DOI: 10.1016/j.neuropharm.2022.108983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/03/2022] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
Abstract
In experimental models, hypothalamic dysfunction is a key component of the pathophysiology of diet-induced obesity. Early after the introduction of a high-fat diet, neurons, microglia, astrocytes and tanycytes of the mediobasal hypothalamus undergo structural and functional changes that impact caloric intake, energy expenditure and systemic glucose tolerance. Inflammation has emerged as a central component of this response, and as in other inflammatory conditions, there is a time course of events that determine the fate of distinct cells involved in the central regulation of whole-body energy homeostasis. Here, we review the work that identified key mechanisms, cellular players and temporal features of diet-induced hypothalamic abnormalities.
Collapse
Affiliation(s)
- Daiane F Engel
- School of Pharmacy, Federal University of Ouro Preto, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Brazil.
| |
Collapse
|
36
|
Rosenbaum JL, Melhorn SJ, Schoen S, Webb MF, De Leon MRB, Humphreys M, Utzschneider KM, Schur EA. Evidence That Hypothalamic Gliosis Is Related to Impaired Glucose Homeostasis in Adults With Obesity. Diabetes Care 2022; 45:416-424. [PMID: 34848489 PMCID: PMC8914420 DOI: 10.2337/dc21-1535] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/03/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Preclinical research implicates hypothalamic glial cell responses in the pathogenesis of obesity and type 2 diabetes (T2D). In the current study we sought to translate such findings to humans by testing whether radiologic markers of gliosis in the mediobasal hypothalamus (MBH) were greater in individuals with obesity and impaired glucose homeostasis or T2D. RESEARCH DESIGN AND METHODS Using cross-sectional and prospective cohort study designs, we applied a validated quantitative MRI approach to assess gliosis in 67 adults with obesity and normal glucose tolerance, impaired glucose tolerance (IGT), or T2D. Assessments of glucose homeostasis were conducted via oral glucose tolerance tests (OGTT) and β-cell modeling. RESULTS We found significantly greater T2 relaxation times (a marker of gliosis by MRI), that were independent of adiposity, in the groups with IGT and T2D as compared with the group with normal glucose tolerance. Findings were present in the MBH, but not control regions. Moreover, positive linear associations were present in the MBH but not control regions between T2 relaxation time and glucose area under the curve during an OGTT, fasting glucose concentrations, hemoglobin A1c, and visceral adipose tissue mass, whereas negative linear relationships were present in the MBH for markers of insulin sensitivity and β-cell function. In a prospective cohort study, greater MBH T2 relaxation times predicted declining insulin sensitivity over 1 year. CONCLUSIONS Findings support a role for hypothalamic gliosis in the progression of insulin resistance in obesity and thus T2D pathogenesis in humans.
Collapse
Affiliation(s)
- Jennifer L Rosenbaum
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA
| | - Susan J Melhorn
- Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, WA.,UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Stefan Schoen
- University of Washington School of Medicine, Seattle, WA
| | - Mary F Webb
- Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, WA.,UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Mary Rosalynn B De Leon
- Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, WA.,UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Madelaine Humphreys
- Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, WA.,UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Kristina M Utzschneider
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA.,Research and Development, Department of Veterans Affairs, Seattle, WA
| | - Ellen A Schur
- Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, WA.,UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| |
Collapse
|
37
|
Glial Modulation of Energy Balance: The Dorsal Vagal Complex Is No Exception. Int J Mol Sci 2022; 23:ijms23020960. [PMID: 35055143 PMCID: PMC8779587 DOI: 10.3390/ijms23020960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
The avoidance of being overweight or obese is a daily challenge for a growing number of people. The growing proportion of people suffering from a nutritional imbalance in many parts of the world exemplifies this challenge and emphasizes the need for a better understanding of the mechanisms that regulate nutritional balance. Until recently, research on the central regulation of food intake primarily focused on neuronal signaling, with little attention paid to the role of glial cells. Over the last few decades, our understanding of glial cells has changed dramatically. These cells are increasingly regarded as important neuronal partners, contributing not just to cerebral homeostasis, but also to cerebral signaling. Our understanding of the central regulation of energy balance is part of this (r)evolution. Evidence is accumulating that glial cells play a dynamic role in the modulation of energy balance. In the present review, we summarize recent data indicating that the multifaceted glial compartment of the brainstem dorsal vagal complex (DVC) should be considered in research aimed at identifying feeding-related processes operating at this level.
Collapse
|
38
|
Mirzadeh Z, Faber CL, Schwartz MW. Central Nervous System Control of Glucose Homeostasis: A Therapeutic Target for Type 2 Diabetes? Annu Rev Pharmacol Toxicol 2022; 62:55-84. [PMID: 34990204 PMCID: PMC8900291 DOI: 10.1146/annurev-pharmtox-052220-010446] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Historically, pancreatic islet beta cells have been viewed as principal regulators of glycemia, with type 2 diabetes (T2D) resulting when insulin secretion fails to compensate for peripheral tissue insulin resistance. However, glycemia is also regulated by insulin-independent mechanisms that are dysregulated in T2D. Based on evidence supporting its role both in adaptive coupling of insulin secretion to changes in insulin sensitivity and in the regulation of insulin-independent glucose disposal, the central nervous system (CNS) has emerged as a fundamental player in glucose homeostasis. Here, we review and expand upon an integrative model wherein the CNS, together with the islet, establishes and maintains the defended level of glycemia. We discuss the implications of this model for understanding both normal glucose homeostasis and T2D pathogenesis and highlight centrally targeted therapeutic approaches with the potential to restore normoglycemia to patients with T2D.
Collapse
Affiliation(s)
- Zaman Mirzadeh
- Ivy Brain Tumor Center, Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona 85013, USA;
| | - Chelsea L Faber
- Ivy Brain Tumor Center, Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona 85013, USA;
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, Washington 98109, USA;
| | - Michael W Schwartz
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, Washington 98109, USA;
| |
Collapse
|
39
|
Fulton S, Décarie-Spain L, Fioramonti X, Guiard B, Nakajima S. The menace of obesity to depression and anxiety prevalence. Trends Endocrinol Metab 2022; 33:18-35. [PMID: 34750064 DOI: 10.1016/j.tem.2021.10.005] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 02/07/2023]
Abstract
The incidence of depression and anxiety is amplified by obesity. Mounting evidence reveals that the psychiatric consequences of obesity stem from poor diet, inactivity, and visceral adipose accumulation. Resulting metabolic and vascular dysfunction, including inflammation, insulin and leptin resistance, and hypertension, have emerged as key risks to depression and anxiety development. Recent research advancements are exposing the important contribution of these different corollaries of obesity and their impact on neuroimmune status and the neural circuits controlling mood and emotional states. Along these lines, this review connects the clinical manifestations of depression and anxiety in obesity to our current understanding of the origins and biology of immunometabolic threats to central nervous system function and behavior.
Collapse
Affiliation(s)
- Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Nutrition, Université de Montréal, Montréal, QC H3T1J4, Canada.
| | - Léa Décarie-Spain
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Neuroscience, Université de Montréal, Montréal, QC H3T1J4, Canada
| | - Xavier Fioramonti
- NutriNeuro, UMR 1286 INRAE, Bordeaux INP, Bordeaux University, Bordeaux, France
| | - Bruno Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, UPS, Université de Toulouse, Toulouse, France
| | - Shingo Nakajima
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Nutrition, Université de Montréal, Montréal, QC H3T1J4, Canada
| |
Collapse
|
40
|
Neuroimaging and modulation in obesity and diabetes research: 10th anniversary meeting. Int J Obes (Lond) 2022; 46:718-725. [PMID: 34934178 PMCID: PMC8960390 DOI: 10.1038/s41366-021-01025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022]
|
41
|
Bhusal A, Rahman MH, Suk K. Hypothalamic inflammation in metabolic disorders and aging. Cell Mol Life Sci 2021; 79:32. [PMID: 34910246 PMCID: PMC11071926 DOI: 10.1007/s00018-021-04019-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/01/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022]
Abstract
The hypothalamus is a critical brain region for the regulation of energy homeostasis. Over the years, studies on energy metabolism primarily focused on the neuronal component of the hypothalamus. Studies have recently uncovered the vital role of glial cells as an additional player in energy balance regulation. However, their inflammatory activation under metabolic stress condition contributes to various metabolic diseases. The recruitment of monocytes and macrophages in the hypothalamus helps sustain such inflammation and worsens the disease state. Neurons were found to actively participate in hypothalamic inflammatory response by transmitting signals to the surrounding non-neuronal cells. This activation of different cell types in the hypothalamus leads to chronic, low-grade inflammation, impairing energy balance and contributing to defective feeding habits, thermogenesis, and insulin and leptin signaling, eventually leading to metabolic disorders (i.e., diabetes, obesity, and hypertension). The hypothalamus is also responsible for the causation of systemic aging under metabolic stress. A better understanding of the multiple factors contributing to hypothalamic inflammation, the role of the different hypothalamic cells, and their crosstalks may help identify new therapeutic targets. In this review, we focus on the role of glial cells in establishing a cause-effect relationship between hypothalamic inflammation and the development of metabolic diseases. We also cover the role of other cell types and discuss the possibilities and challenges of targeting hypothalamic inflammation as a valid therapeutic approach.
Collapse
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Md Habibur Rahman
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Division of Endocrinology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
42
|
Neves TMG, Simoes E, Otaduy MCG, Calfat ELDB, Bertolazzi P, da Costa NA, Duran FLDS, Correia-Lima J, Martin MDGM, Seelander MCL, Otani VHO, Otani TZDS, Vasques DAC, Filho GB, Kochi C, Uchida RR. Inverse Association Between Hypothalamic N-Acetyl Aspartate/Creatine Ratio and Indices of Body Mass in Adolescents with Obesity. J Nutr 2021; 152:663-670. [PMID: 34888674 PMCID: PMC8891176 DOI: 10.1093/jn/nxab415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/06/2021] [Accepted: 12/03/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Approximately 10% of adolescents worldwide are overweight or obese, hence the urgent and universal need to elucidate possible mechanisms that lead to obesity in the adolescent population. OBJECTIVES We examined the hypothalamic metabolism and its relationship with physical development in obese and eutrophic adolescents. METHODS We performed a case-control study with 115 adolescents between 11 and 18 years of age, to compare obese (BMI z-score ≥ 2) and nonobese individuals (eutrophic controls; BMI z-score ≤ 1). The following hypothalamic metabolite ratios were examined as primary outcomes: glutamate/creatine (Cr), the sum of glutamate and glutamine/Cr, N-acetylaspartate (NAA)/Cr, myoinositol/Cr, and total choline/Cr (glycerophosphocholine + phosphocholine/Cr), quantified by magnetic resonance spectroscopy. BMI z-scores, pubertal status, and scores on the Yale Food Addiction Scale, the Binge Eating Scale, and the Child Depression Inventory were assessed as secondary outcomes. Pearson coefficients (r) or nonparametric Spearman correlation (rho) analyses were performed between hypothalamic metabolite ratios and other parameters, such as BMI z-scores, physical development, food habits, depression symptoms, and serum protein concentrations (cytokines, hormones, and neuropeptides). RESULTS Adolescents with obesity showed a lower hypothalamic NAA/Cr ratio (0.70 ± 0.19) compared to their eutrophic counterparts (0.84 ± 0.20; P = 0.004). The NAA/Cr ratio was negatively correlated with BMI z-scores (r = -0.25; P = 0.03) and serum insulin (rho = -0.27; P = 0.04), C-peptide (rho = -0.26; P = 0.04), amylin (r = -0.27; P = 0.04), ghrelin (rho = -0.30; P = 0.02), and neuropeptide Y (r = -0.27; P = 0.04). Also, the NAA/Cr ratio was positively correlated with circulating IL-8 levels (rho = 0.26; P = 0.04). CONCLUSIONS High BMI z-scores are associated with lower hypothalamic NAA/Cr ratios. The negative correlations found between the NAA/Cr ratio and serum cytokines, hormones, and neuropeptides suggest a broad cross-talk linking hormonal imbalances, neurohumoral alterations, and hypothalamic functions in adolescents with obesity.
Collapse
Affiliation(s)
| | | | | | | | - Pâmela Bertolazzi
- Mental Health Department, Santa Casa de Sao Paulo School of Medical Sciences, São Paulo, Brazil
| | - Naomi Antunes da Costa
- Neuroimaging Laboratory (LIM-21), Institute Psychiatry, University of São Paulo, São Paulo, Brazil
| | | | - Joanna Correia-Lima
- Cancer Metabolism Research Group, University of São Paulo, São Paulo, Brazil
| | | | - Marília Cerqueira Leite Seelander
- Cancer Metabolism Research Group, University of São Paulo, São Paulo, Brazil,Department of Surgery and LIM 26, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Geraldo Busatto Filho
- Neuroimaging Laboratory (LIM-21), Institute Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Cristiane Kochi
- Pediatrics Department, Santa Casa de Sao Paulo School of Medical Sciences, São Paulo, Brazil
| | - Ricardo Riyoiti Uchida
- Mental Health Department, Santa Casa de Sao Paulo School of Medical Sciences, São Paulo, Brazil
| |
Collapse
|
43
|
Sewaybricker LE, Kee S, Melhorn SJ, Schur EA. Greater radiologic evidence of hypothalamic gliosis predicts adiposity gain in children at risk for obesity. Obesity (Silver Spring) 2021; 29:1770-1779. [PMID: 34734493 PMCID: PMC8608399 DOI: 10.1002/oby.23286] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/22/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE This study investigated, in a large pediatric population, whether magnetic resonance imaging (MRI) evidence of mediobasal hypothalamic (MBH) gliosis is associated with baseline or change over 1 year in body adiposity. METHODS Cross-sectional and prospective cohort analyses were conducted within the Adolescent Brain Cognitive Development Study. Study 1 included 169 children with usable baseline T2-weighted MRI images and anthropometrics from baseline and 1-year follow-up study visits. Signal ratios compared T2 signal intensity in MBH and two reference regions (amygdala [AMY] and putamen) as a measure of MBH gliosis. Study 2 included a distinct group of 238 children with overweight or obesity to confirm initial findings in an independent sample. RESULTS In Study 1, MBH/AMY signal ratio was positively associated with BMI z score (β = 4.27, p < 0.001). A significant interaction for the association of MBH/AMY signal ratio with change in BMI z score suggested that relationships differed by baseline weight status. Study 2 found that higher MBH/AMY signal ratios associated with an increase in BMI z score for children with overweight (β = 0.58, p = 0.01), but not those with obesity (β = 0.02, p = 0.91). CONCLUSIONS Greater evidence of hypothalamic gliosis by MRI is associated with baseline BMI z score and predicts adiposity gain in young children at risk of obesity.
Collapse
Affiliation(s)
| | - Sarah Kee
- Dept. of Medicine, University of Washington, Seattle, WA, USA
| | | | - Ellen A. Schur
- Dept. of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
44
|
Neuendorf S, Neuendorf J, Yakub M. Origin, Impact, and Solutions for Lifestyle-Related Chronic Diseases in Samoa and American Samoa. Cureus 2021; 13:e17749. [PMID: 34659962 PMCID: PMC8493186 DOI: 10.7759/cureus.17749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 12/12/2022] Open
Abstract
Samoa and American Samoa are two island groups in the South Pacific inundated with the physiological consequences of swift westernization of diet and lifestyle. These polities face the singular theme of lifestyle-related problems seen in other countries. This paper aims to discuss the current demographics in Samoa and American Samoa and examine the origin and impact of lifestyle-related chronic diseases within a subset of its populace. This review will highlight the prominent nutrition transition that these polities have undergone in their development and examine the pathogenesis and pathophysiology of lifestyle-related diseases, primarily type 2 diabetes and obesity, in the context of a prominent cultural shift. Samoa and American Samoa face a litany of public health concerns as a result of the rising prevalence of lifestyle-related chronic diseases and the persistent threat of obesity. Lifestyle medicine is proposed as the optimal treatment solution for the currently devastating disease states and is adapted to the vibrant agricultural resources and healing roots of the Samoan culture.
Collapse
Affiliation(s)
- Sable Neuendorf
- Medical Education, California University of Science and Medicine, Colton, USA
| | - Jadon Neuendorf
- Medical Education, California University of Science and Medicine, Colton, USA
| | - Mohsin Yakub
- Medical Education, California University of Science and Medicine, Colton, USA
| |
Collapse
|
45
|
Milstein JL, Ferris HA. The brain as an insulin-sensitive metabolic organ. Mol Metab 2021; 52:101234. [PMID: 33845179 PMCID: PMC8513144 DOI: 10.1016/j.molmet.2021.101234] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The brain was once thought of as an insulin-insensitive organ. We now know that the insulin receptor is present throughout the brain and serves important functions in whole-body metabolism and brain function. Brain insulin signaling is involved not only in brain homeostatic processes but also neuropathological processes such as cognitive decline and Alzheimer's disease. SCOPE OF REVIEW In this review, we provide an overview of insulin signaling within the brain and the metabolic impact of brain insulin resistance and discuss Alzheimer's disease, one of the neurologic diseases most closely associated with brain insulin resistance. MAJOR CONCLUSIONS While brain insulin signaling plays only a small role in central nervous system glucose regulation, it has a significant impact on the brain's metabolic health. Normal insulin signaling is important for mitochondrial functioning and normal food intake. Brain insulin resistance contributes to obesity and may also play an important role in neurodegeneration.
Collapse
Affiliation(s)
- Joshua L Milstein
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Heather A Ferris
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA, USA; Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
46
|
Alexaki VI. The Impact of Obesity on Microglial Function: Immune, Metabolic and Endocrine Perspectives. Cells 2021; 10:cells10071584. [PMID: 34201844 PMCID: PMC8307603 DOI: 10.3390/cells10071584] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Increased life expectancy in combination with modern life style and high prevalence of obesity are important risk factors for development of neurodegenerative diseases. Neuroinflammation is a feature of neurodegenerative diseases, and microglia, the innate immune cells of the brain, are central players in it. The present review discusses the effects of obesity, chronic peripheral inflammation and obesity-associated metabolic and endocrine perturbations, including insulin resistance, dyslipidemia and increased glucocorticoid levels, on microglial function.
Collapse
Affiliation(s)
- Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
47
|
Hypothalamic Astrocytes as a Specialized and Responsive Cell Population in Obesity. Int J Mol Sci 2021; 22:ijms22126176. [PMID: 34201099 PMCID: PMC8228119 DOI: 10.3390/ijms22126176] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are a type of glial cell anatomically and functionally integrated into the neuronal regulatory circuits for the neuroendocrine control of metabolism. Being functional integral compounds of synapses, astrocytes are actively involved in the physiological regulatory aspects of metabolic control, but also in the pathological processes that link neuronal dysfunction and obesity. Between brain areas, the hypothalamus harbors specialized functional circuits that seem selectively vulnerable to metabolic damage, undergoing early cellular rearrangements which are thought to be at the core of the pathogenesis of diet-induced obesity. Such changes in the hypothalamic brain region consist of a rise in proinflammatory cytokines, the presence of a reactive phenotype in astrocytes and microglia, alterations in the cytoarchitecture and synaptology of hypothalamic circuits, and angiogenesis, a phenomenon that cannot be found elsewhere in the brain. Increasing evidence points to the direct involvement of hypothalamic astrocytes in such early metabolic disturbances, thus moving the study of these glial cells to the forefront of obesity research. Here we provide a comprehensive review of the most relevant findings of molecular and pathophysiological mechanisms by which hypothalamic astrocytes might be involved in the pathogenesis of obesity.
Collapse
|
48
|
Affiliation(s)
- Leticia E Sewaybricker
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Ellen A Schur
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| |
Collapse
|
49
|
Folick A, Koliwad SK, Valdearcos M. Microglial Lipid Biology in the Hypothalamic Regulation of Metabolic Homeostasis. Front Endocrinol (Lausanne) 2021; 12:668396. [PMID: 34122343 PMCID: PMC8191416 DOI: 10.3389/fendo.2021.668396] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/05/2021] [Indexed: 12/18/2022] Open
Abstract
In mammals, myeloid cells help maintain the homeostasis of peripheral metabolic tissues, and their immunologic dysregulation contributes to the progression of obesity and associated metabolic disease. There is accumulating evidence that innate immune cells also serve as functional regulators within the mediobasal hypothalamus (MBH), a critical brain region controlling both energy and glucose homeostasis. Specifically, microglia, the resident parenchymal myeloid cells of the CNS, play important roles in brain physiology and pathology. Recent studies have revealed an expanding array of microglial functions beyond their established roles as immune sentinels, including roles in brain development, circuit refinement, and synaptic organization. We showed that microglia modulate MBH function by transmitting information resulting from excess nutrient consumption. For instance, microglia can sense the excessive consumption of saturated fats and instruct neurons within the MBH accordingly, leading to responsive alterations in energy balance. Interestingly, the recent emergence of high-resolution single-cell techniques has enabled specific microglial populations and phenotypes to be profiled in unprecedented detail. Such techniques have highlighted specific subsets of microglia notable for their capacity to regulate the expression of lipid metabolic genes, including lipoprotein lipase (LPL), apolipoprotein E (APOE) and Triggering Receptor Expressed on Myeloid Cells 2 (TREM2). The discovery of this transcriptional signature highlights microglial lipid metabolism as a determinant of brain health and disease pathogenesis, with intriguing implications for the treatment of brain disorders and potentially metabolic disease. Here we review our current understanding of how changes in microglial lipid metabolism could influence the hypothalamic control of systemic metabolism.
Collapse
Affiliation(s)
- Andrew Folick
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Suneil K. Koliwad
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Martin Valdearcos
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
50
|
Costa J, Martins S, Ferreira PA, Cardoso AMS, Guedes JR, Peça J, Cardoso AL. The old guard: Age-related changes in microglia and their consequences. Mech Ageing Dev 2021; 197:111512. [PMID: 34022277 DOI: 10.1016/j.mad.2021.111512] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022]
Abstract
Among all major organs, the brain is one of the most susceptible to the inexorable effects of aging. Throughout the last decades, several studies in human cohorts and animal models have revealed a plethora of age-related changes in the brain, including reduced neurogenesis, oxidative damage, mitochondrial dysfunction and cell senescence. As the main immune effectors and first responders of the nervous tissue, microglia are at the center of these events. These cells experience irrevocable changes as a result from cumulative exposure to environmental triggers, such as stress, infection and metabolic dysregulation. The age-related immunosenescent phenotype acquired by microglia is characterized by profound modifications in their transcriptomic profile, secretome, morphology and phagocytic activity, which compromise both their housekeeping and defensive functions. As a result, aged microglia are no longer capable of establishing effective immune responses and sustaining normal synaptic activity, directly contributing to age-associated cognitive decline and neurodegeneration. This review discusses how lifestyle and environmental factors drive microglia dysfunction at the molecular and functional level, also highlighting possible interventions to reverse aging-associated damage to the nervous and immune systems.
Collapse
Affiliation(s)
- Jéssica Costa
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal; PhD Programme in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Solange Martins
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Pedro A Ferreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; PhD Program in Biosciences, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana M S Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Joana R Guedes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - João Peça
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana L Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|