1
|
Guerbette T, Ciesielski V, Brien M, Catheline D, Viel R, Bostoën M, Perrin JB, Burel A, Janvier R, Rioux V, Lan A, Boudry G. Bioenergetic adaptations of small intestinal epithelial cells reduce cell differentiation enhancing intestinal permeability in obese mice. Mol Metab 2025; 92:102098. [PMID: 39814101 PMCID: PMC11795564 DOI: 10.1016/j.molmet.2025.102098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
OBJECTIVE Obesity and overweight are associated with low-grade inflammation induced by adipose tissue expansion and perpetuated by altered intestinal homeostasis, including increased epithelial permeability. Intestinal epithelium functions are supported by intestinal epithelial cells (IEC) mitochondria function. However, diet-induced obesity (DIO) may impair mitochondrial activity of IEC and consequently, intestinal homeostasis. The aim of the project was to determine whether DIO alters the mitochondrial function of IEC, and what are the consequences on intestinal homeostasis. METHODS C57Bl/6J mice were fed a control diet for 22 weeks or a high fat diet (58 kcal% fat). Bioenergetic adaptations of IEC were evaluated on isolated crypts and villi from mouse jejunum. To determine the link between mitochondrial function and alterations of intestinal homeostasis in response to lipid overload, we used the jejunal epithelial cell line IPEC-J2 in vitro and mouse jejunum organoids. RESULTS Here, we report that DIO in mice induced lipid metabolism adaptations favoring lipid storage in IEC together with reduced number, altered dynamics and diminished oxidative phosphorylation activity of IEC mitochondria. Using the IPEC-J2 cell line, we showed that IEC lipid metabolism and oxidative stress machinery adaptations preceded mitochondrial bioenergetic ones. Moreover, we unraveled the intricate link between IEC energetic status and proliferation / differentiation balance since enhancing mitochondrial function with the AMPK activator AICAR in jejunal organoids reduced proliferation and initiated IEC differentiation and conversely. We confirmed that the reduced IEC mitochondrial function observed in DIO mice was associated with increased proliferation and reduced differentiation, promoting expression of the permissive Cldn2 in the jejunal epithelium of DIO mice. CONCLUSIONS Our study provides new insights into metabolic adaptations of IEC in obesity by revealing that excess lipid intake diminishes mitochondrial number in IEC, reducing IEC differentiation that contribute to increased epithelial permeability.
Collapse
Affiliation(s)
| | - Vincent Ciesielski
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France; Institut Agro Rennes Angers, Rennes, France
| | - Manon Brien
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France
| | - Daniel Catheline
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France; Institut Agro Rennes Angers, Rennes, France
| | - Roselyne Viel
- Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, France-BioImaging (ANR-10-INBS-04), plateforme H2P2, Rennes, France
| | - Mégane Bostoën
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France
| | | | - Agnès Burel
- Plateforme MRic, UMS 3480 BIOSIT, Rennes, France
| | - Régis Janvier
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France
| | - Vincent Rioux
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France; Institut Agro Rennes Angers, Rennes, France
| | - Annaïg Lan
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France; Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 91120, Palaiseau, France
| | - Gaëlle Boudry
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France.
| |
Collapse
|
2
|
Ribeiro MGC, Kravchychyn ACP, Bressan J, Hermsdorff HHM. Adiposity and inflammation markers explain mostly part of the plasma zonulin variation in Brazilian adults with overweight/obesity: A cross-sectional analysis from Brazilian nuts study. Clin Nutr 2025; 45:22-30. [PMID: 39731881 DOI: 10.1016/j.clnu.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
OBJECTIVE This study evaluated intestinal permeability according to plasma zonulin and its association with adiposity, inflammation, cardiometabolic risk, liver function, and intestinal health markers in adults with overweight/obesity. METHODOLOGY This study is a cross-sectional analysis using baseline data from the Brazilian Nut Study, which involved 123 participants (93 women, age 33.2 ± 8.58 years, BMI 33.9 ± 4.30kg/m2). Subjects were divided into quartiles according to plasma zonulin, assessed by Elisa. Cytokines were assessed by flow cytometry; anthropometric measurements were collected by standard procedure and body composition was assessed by DXA. SCFA analysis was performed by high-performance liquid chromatography, and fecal pH, by a pH meter. Linear regression models were performed (α<5 %). RESULTS Participants included in the last quartile of plasma zonulin had higher values of body fat (%), pro-inflammatory cytokines (CRP, IL-1). According to the multivariate regression model, each one-unit increased in body fat, CRP, IL-12p70, IL-6 and IL-8 resulted correspondingly in an increment of 0.42, 0.14, 0.192, 0.250 and 0.312 ng/ml in plasma zonulin, respectively. Conversely, a one-unit decreased in IL-10 led to an increase of 0.40 ng/ml in plasma zonulin. CONCLUSION Intestinal permeability assessed by plasma zonulin is associated with adiposity, subclinical inflammation and reduced serum HDL levels adults with overweight/obesity, while adiposity and inflammation markers are independent factors for plasma zonulin variation.
Collapse
Affiliation(s)
- Madalena Geralda Cupertino Ribeiro
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| | - Ana Claudia Pelissari Kravchychyn
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Josefina Bressan
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Helen Hermana Miranda Hermsdorff
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
3
|
Romo EZ, Hong BV, Agus JK, Jin Y, Kang JW, Zivkovic AM. A low-dose prebiotic fiber supplement reduces lipopolysaccharide-binding protein concentrations in a subgroup of young, healthy adults consuming low-fiber diets. Nutr Res 2025; 133:138-147. [PMID: 39733508 DOI: 10.1016/j.nutres.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/19/2024] [Accepted: 11/30/2024] [Indexed: 12/31/2024]
Abstract
Although the beneficial effects of fiber supplementation on overall health and the gut microbiome are well-known, it is not clear whether fiber supplementation can also alter the concentrations of lipopolysaccharide-binding protein (LBP), a marker of intestinal permeability. A secondary analysis of a previously conducted study was performed. In the randomized-order, placebo-controlled, double-blinded, cross-over study 20 healthy, young participants consuming a low-fiber diet at baseline were administered a daily dose of 12 g of prebiotic fiber compared with a placebo over a period of 4 weeks with a 4-week washout between arms. In this secondary analysis, we hypothesized that the fiber supplement would reduce LBP concentration. We further hypothesized that lecithin cholesterol acyltransferase activity, a measure of high-density lipoprotein functional capacity, would be altered. Fiber supplementation did not significantly alter LBP concentration or lecithin cholesterol acyltransferase activity in the overall cohort. However, in a subgroup of individuals with elevated baseline LBP concentrations, fiber supplementation significantly reduced LBP from 9.27 ± 3.52 to 7.02 ± 2.32 µg/mL (P = .003). Exploratory analyses found positive correlations between microbial genes involved in lipopolysaccharide synthesis and conversely negative correlations with genes involved in antibiotic synthesis and LBP. Positive correlations between LBP and multiple sulfated molecules including sulfated bile acids and perfluorooctanesulfonate, and ibuprofen metabolites were also found. These findings highlight multiple environmental and lifestyle factors such as exposure to industrial chemicals and medication intake, in addition to diet, which may influence the association between the gut microbiome and gut barrier function.
Collapse
Affiliation(s)
- Eduardo Z Romo
- Department of Nutrition, University of California, Davis, CA, USA
| | - Brian V Hong
- Department of Nutrition, University of California, Davis, CA, USA
| | - Joanne K Agus
- Department of Nutrition, University of California, Davis, CA, USA
| | - Yanshan Jin
- Department of Nutrition, University of California, Davis, CA, USA
| | - Jea Woo Kang
- Department of Nutrition, University of California, Davis, CA, USA
| | | |
Collapse
|
4
|
Hadefi A, Leprovots M, Dinsart G, Marefati M, Vermeersch M, Monteyne D, Pérez-Morga D, Lefort A, Libert F, Verset L, Liefferinckx C, Moreno C, Devière J, Trépo E, Garcia MI. Duodenal Organoids From Metabolic Dysfunction-Associated Steatohepatitis Patients Exhibit Absorptive and Barrier Alterations. GASTRO HEP ADVANCES 2024; 4:100599. [PMID: 39996241 PMCID: PMC11849614 DOI: 10.1016/j.gastha.2024.100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/07/2024] [Indexed: 02/26/2025]
Abstract
Background and Aims Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive liver disease that can lead to fibrosis, cirrhosis, and hepatocellular carcinoma. Though MASH is closely tied to metabolic risk factors, the underlying pathogenic mechanisms remain scarcely understood. Recent research has emphasized the importance of the gut-liver axis in its pathogenesis, an aspect less explored in human studies. Here, we investigated whether the duodenal epithelium of MASH patients could exhibit intrinsic dysfunctions. Methods Duodenal epithelial organoids were generated from 16 MASH patients and 14 healthy controls. Biopsies and patient-derived organoid transcriptomes were then analyzed to evaluate if specific intestinal pathways were differentially modulated in MASH subjects. Functional assays were performed to assess the duodenal epithelial absorptive potential and barrier functionality. Results Organoid formation efficiency was similar between control-derived duodenal epithelial organoids and MASH-derived duodenal epithelial organoids (MDEOs) (71% and 69%, respectively). Despite global heterogeneity in growth patterns, MDEOs frequently exhibited cystic spheroid morphology. MDEOs displayed altered digestive potential associated with reduced mature absorptive cell fate, but they retained their lipid metabolic capacity, possibly mediated by lipid oxidation in stem/progenitor cells. Additionally, MDEOs misexpressed components of tight and adherens junctions and desmosomes compared to controls. However, MDEOs maintained pore and leak pathway integrity, indicating that the duodenal epithelial barrier remained functionally preserved under tested conditions. Conclusion This study provides evidence that the duodenal epithelium of MASH patients exhibits significant alterations in its nutrition-related and barrier functions. This study sheds light on the intricate dynamics of duodenal epithelial alterations in MASH, highlighting potential therapeutic avenues for restoring intestinal functions.
Collapse
Affiliation(s)
- Alia Hadefi
- IRIBHM, Jacques E. Dumont, Faculty of Medicine, Université Libre de Bruxelles ULB, Brussels, Belgium
- Department of Gastroenterology, Hepatopancreatology, and Digestive Oncology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Morgane Leprovots
- IRIBHM, Jacques E. Dumont, Faculty of Medicine, Université Libre de Bruxelles ULB, Brussels, Belgium
| | - Gilles Dinsart
- IRIBHM, Jacques E. Dumont, Faculty of Medicine, Université Libre de Bruxelles ULB, Brussels, Belgium
| | - Maryam Marefati
- IRIBHM, Jacques E. Dumont, Faculty of Medicine, Université Libre de Bruxelles ULB, Brussels, Belgium
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Charleroi, Belgium
| | - Daniel Monteyne
- Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Charleroi, Belgium
| | - David Pérez-Morga
- Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Charleroi, Belgium
| | - Anne Lefort
- BRIGHTcore ULB-VUB and Institute of Interdisciplinary Research in Human and Molecular Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Frédérick Libert
- BRIGHTcore ULB-VUB and Institute of Interdisciplinary Research in Human and Molecular Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Laurine Verset
- Institut Jules Bordet, Hôpital Universitaire de Bruxelles, Centre d’Anatomie pathologique, rue Meylermeersch, Brussels, Belgium
| | - Claire Liefferinckx
- Department of Gastroenterology, Hepatopancreatology, and Digestive Oncology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Christophe Moreno
- Department of Gastroenterology, Hepatopancreatology, and Digestive Oncology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Jacques Devière
- Department of Gastroenterology, Hepatopancreatology, and Digestive Oncology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Eric Trépo
- Department of Gastroenterology, Hepatopancreatology, and Digestive Oncology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Marie-Isabelle Garcia
- IRIBHM, Jacques E. Dumont, Faculty of Medicine, Université Libre de Bruxelles ULB, Brussels, Belgium
| |
Collapse
|
5
|
Ruiz-Malagón AJ, Rodríguez-Sojo MJ, Redondo E, Rodríguez-Cabezas ME, Gálvez J, Rodríguez-Nogales A. Systematic review: The gut microbiota as a link between colorectal cancer and obesity. Obes Rev 2024:e13872. [PMID: 39614602 DOI: 10.1111/obr.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
Microbiome modulation is one of the novel strategies in medicine with the greatest future to improve the health of individuals and reduce the risk of different conditions, including metabolic, immune, inflammatory, and degenerative diseases, as well as cancer. Regarding the latter, many studies have reported the role of the gut microbiome in carcinogenesis, formation and progression of colorectal cancer (CRC), as well as its response to different systemic therapies. Likewise, obesity, one of the most important risk factors for CRC, is also well known for its association with gut dysbiosis. Moreover, obesity and CRC display, apart from microbial dysbiosis, chronic inflammation, which participates in their pathogenesis. Although human and murine studies demonstrate the significant impact of the microbiome in regulating energy metabolism and CRC development, little is understood about the contribution of the microbiome to the development of obesity-associated CRC. Therefore, this systematic review explores the evidence for microbiome changes associated with these conditions and hypothesizes that this may contribute to the pathogenesis of obesity-related CRC. Two databases were searched, and different studies on the relationship among obesity, intestinal microbiota and CRC in clinical and preclinical models were selected. Data extraction was carried out by two reviewers independently, and 101 studies were finally considered. Findings indicate the existence of a risk association between obesity and CRC derived from metabolic, immune, and microbial disorders.
Collapse
Affiliation(s)
- Antonio Jesús Ruiz-Malagón
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malga, Spain
| | - María Jesús Rodríguez-Sojo
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
| | - Eduardo Redondo
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
- Servicio de Digestivo, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - María Elena Rodríguez-Cabezas
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
| |
Collapse
|
6
|
Yang Y, Miao J, Du J, Xu S, Zhang K, Wu T, Tao C, Wang Y, Fang M, Yang S. Deficiency of SLC26A3 promotes jejunal barrier damage in metabolic disease-susceptible transgenic pigs. Int J Biol Macromol 2024; 281:136245. [PMID: 39368571 DOI: 10.1016/j.ijbiomac.2024.136245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Intestinal disorders are common in metabolic syndrome. However, their pathogenesis is still not fully understood. Pig and human intestines are highly similar in terms of associated metabolic processes. Here, we successfully constructed a metabolic disease-susceptible transgenic (TG) Bama pig model by knocking in three humanized disease risk genes with the CRISPR/Cas9 technique to assess its potential as a model for human intestinal diseases and explore the possible pathological mechanisms involved. We found that jejunal barrier integrity was disrupted and that the infiltration of inflammatory cells increased in TG pigs after high-fat and high-sucrose diet (HFHSD) treatment. We revealed significant differences in the transcriptome, associated microbiome profiles and microbial metabolite short-chain fatty acid (SCFA) content of the jejunum of TG pigs. Notably, we found that SLC26A3 was significantly downregulated in TG pigs. Knockdown or overexpression of the SLC26A3 gene in IPEC-J2 cells significantly affected the expression of MUC2, MUC13 and occludin. Furthermore, in vitro experiments further verified that CDX2 directly regulated the expression of SLC26A3. Mechanistically, CDX2 mediated intestinal barrier function by enhancing the expression of SLC26A3 by binding to its promoter region between -1120 and - 1070 bp. TG pigs represent a promising model that provides new insights into preclinical research on human intestinal metabolic diseases associated with metabolic disorders and revealed that SLC26A3 may be a potential therapeutic target for intestinal metabolic diseases.
Collapse
Affiliation(s)
- Yu Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiakun Miao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Juan Du
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuang Xu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kaiyi Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tianwen Wu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Cong Tao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanfang Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Meiying Fang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Shulin Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
7
|
Alisi A, McCaughan G, Grønbæk H. Role of gut microbiota and immune cells in metabolic-associated fatty liver disease: clinical impact. Hepatol Int 2024; 18:861-872. [PMID: 38995341 DOI: 10.1007/s12072-024-10674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/18/2024] [Indexed: 07/13/2024]
Abstract
In 2020, a revised definition of fatty liver disease associated with metabolic dysfunction (MAFLD) was proposed to replace non-alcoholic fatty liver (NAFLD). Liver steatosis and at least one of the three metabolic risk factors, including type 2 diabetes, obesity, or signs of metabolic dysregulation, are used to diagnose MAFLD. MAFLD, similarly to NAFLD, is characterized by a spectrum of disease ranging from simple steatosis to advanced metabolic steatohepatitis with or without fibrosis, and may progress to cirrhosis and liver cancer, including increased risk of other critical extrahepatic diseases. Even though the pathophysiology of MAFLD and potential therapeutic targets have been explored in great detail, there is yet no Food and Drug Administration approved treatment. Recently, gut microbiome-derived products (e.g., endotoxins and metabolites) involved in intestinal barrier disruption, systemic inflammation, and modification of intrahepatic immunity have been associated with MAFLD development and progression. Therefore, different strategies could be adopted to modify the gut microbiome to improve outcomes in early and progressive MAFLD. Here, we provide an overview of mechanisms that may link the gut microbiome and immune response during the onset of liver steatosis and progression to steatohepatitis and fibrosis in patients with MAFLD. Finally, gut microbiota-based approaches are discussed as potential personalized treatments against MAFLD.
Collapse
Affiliation(s)
- Anna Alisi
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesu' Children Hospital, IRCCS, Rome, Italy.
| | - Geoffrey McCaughan
- A.W Morrow Gastroenterology and Liver Center, Royal Prince Alfred Hospital, Sydney, Australia
- Centenary Institute, University of Sydney, Sydney, Australia
| | - Henning Grønbæk
- Department of Hepatology & Gastroenterology, Aarhus University Hospital and Clinical Institute, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Wu Q, Yuan LW, Yang LC, Zhang YW, Yao HC, Peng LX, Yao BJ, Jiang ZX. Role of gut microbiota in Crohn's disease pathogenesis: Insights from fecal microbiota transplantation in mouse model. World J Gastroenterol 2024; 30:3689-3704. [PMID: 39193000 PMCID: PMC11346162 DOI: 10.3748/wjg.v30.i31.3689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/24/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease, particularly Crohn's disease (CD), has been associated with alterations in mesenteric adipose tissue (MAT) and the phenomenon termed "creeping fat". Histopathological evaluations showed that MAT and intestinal tissues were significantly altered in patients with CD, with these tissues characterized by inflammation and fibrosis. AIM To evaluate the complex interplay among MAT, creeping fat, inflammation, and gut microbiota in CD. METHODS Intestinal tissue and MAT were collected from 12 patients with CD. Histological manifestations and protein expression levels were analyzed to determine lesion characteristics. Fecal samples were collected from five recently treated CD patients and five control subjects and transplanted into mice. The intestinal and mesenteric lesions in these mice, as well as their systemic inflammatory status, were assessed and compared in mice transplanted with fecal samples from CD patients and control subjects. RESULTS Pathological examination of MAT showed significant differences between CD-affected and unaffected colons, including significant differences in gut microbiota structure. Fetal microbiota transplantation (FMT) from clinically healthy donors into mice with 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced CD ameliorated CD symptoms, whereas FMT from CD patients into these mice exacerbated CD symptoms. Notably, FMT influenced intestinal permeability, barrier function, and levels of proinflammatory factors and adipokines. Furthermore, FMT from CD patients intensified fibrotic changes in the colon tissues of mice with TNBS-induced CD. CONCLUSION Gut microbiota play a critical role in the histopathology of CD. Targeting MAT and creeping fat may therefore have potential in the treatment of patients with CD.
Collapse
Affiliation(s)
- Qiang Wu
- Geriatric Surgery of Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Lian-Wen Yuan
- Geriatric Surgery of Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Li-Chao Yang
- Geriatric Surgery of Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Ya-Wei Zhang
- Geriatric Surgery of Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Heng-Chang Yao
- Geriatric Surgery of Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Liang-Xin Peng
- Geriatric Surgery of Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Bao-Jia Yao
- Geriatric Surgery of Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Zhi-Xian Jiang
- Geriatric Surgery of Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
9
|
Keivanlou MH, Amini-Salehi E, Sattari N, Hashemi M, Saberian P, Prabhu SV, Javid M, Mirdamadi A, Heidarzad F, Bakhshi A, Letafatkar N, Zare R, Hassanipour S, Nayak SS. Gut microbiota interventions in type 2 diabetes mellitus: An umbrella review of glycemic indices. Diabetes Metab Syndr 2024; 18:103110. [PMID: 39213690 DOI: 10.1016/j.dsx.2024.103110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND We aimed to explore how probiotics, prebiotics, or synbiotics impact glycemic indices in patients with diabetes mellitus. METHOD A comprehensive search was conducted on PubMed, Scopus, and Web of Science from inception up to April 2023. The random-effects model was employed for the study analysis. Furthermore, sensitivity and subgroup analyses were conducted to investigate potential sources of heterogeneity. AMSTAR2 checklist was used to determine the quality of studies. Comprehensive meta-analysis version 3 was used for the study analysis. RESULT A total of 31 studies were included in the final analysis. Based on the results of the meta-analysis, gut microbial therapy could significantly decrease serum fasting blood glucose levels in patients with type 2 diabetes mellitus (effect size: -0.211; 95 % CI: -0.257, -0.164; P < 0.001). Additionally, significant associations were also found between gut microbial therapy and improved serum levels of fasting insulin, glycated hemoglobin, and homeostatic model assessment for insulin resistance (effect size: -0.087; 95 % confidence interval: -0.120, -0.053; P < 0.001; effect size: -0.166; 95 % confidence interval: -0.200, -0.132; P < 0.001; effect size: -0.230; 95 % confidence interval: -0.288, -0.172; P < 0.001, respectively). CONCLUSION Our results revealed promising effects of gut microbiota modulation on glycemic profile of patients with type 2 diabetes mellitus. The use of these agents as additional treatments can be considered.
Collapse
Affiliation(s)
- Mohammad-Hossein Keivanlou
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nazila Sattari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Hashemi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parsa Saberian
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Mona Javid
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Arian Mirdamadi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Forough Heidarzad
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Arash Bakhshi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Negin Letafatkar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Zare
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | - Sandeep Samethadka Nayak
- Department of Internal Medicine, Yale New Haven Health Bridgeport Hospital , Bridgeport, CT, USA
| |
Collapse
|
10
|
AlMarzooqi SK, Almarzooqi F, Sadida HQ, Jerobin J, Ahmed I, Abou-Samra AB, Fakhro KA, Dhawan P, Bhat AA, Al-Shabeeb Akil AS. Deciphering the complex interplay of obesity, epithelial barrier dysfunction, and tight junction remodeling: Unraveling potential therapeutic avenues. Obes Rev 2024; 25:e13766. [PMID: 38745386 DOI: 10.1111/obr.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/11/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Obesity stands as a formidable global health challenge, predisposing individuals to a plethora of chronic illnesses such as cardiovascular disease, diabetes, and cancer. A confluence of genetic polymorphisms, suboptimal dietary choices, and sedentary lifestyles significantly contribute to the elevated incidence of obesity. This multifaceted health issue profoundly disrupts homeostatic equilibrium at both organismal and cellular levels, with marked alterations in gut permeability as a salient consequence. The intricate mechanisms underlying these alterations have yet to be fully elucidated. Still, evidence suggests that heightened inflammatory cytokine levels and the remodeling of tight junction (TJ) proteins, particularly claudins, play a pivotal role in the manifestation of epithelial barrier dysfunction in obesity. Strategic targeting of proteins implicated in these pathways and metabolites such as short-chain fatty acids presents a promising intervention for restoring barrier functionality among individuals with obesity. Nonetheless, recognizing the heterogeneity among affected individuals is paramount; personalized medical interventions or dietary regimens tailored to specific genetic backgrounds and allergy profiles may prove indispensable. This comprehensive review delves into the nexus of obesity, tight junction remodeling, and barrier dysfunction, offering a critical appraisal of potential therapeutic interventions.
Collapse
Affiliation(s)
- Sara K AlMarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Fajr Almarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ikhlak Ahmed
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| |
Collapse
|
11
|
Rajamanickam A, Babu S. Helminth Infections and Diabetes: Mechanisms Accounting for Risk Amelioration. Annu Rev Nutr 2024; 44:339-355. [PMID: 38724017 DOI: 10.1146/annurev-nutr-061121-100742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The global prevalence of type 2 diabetes mellitus (T2D) is increasing rapidly, with an anticipated 600 million cases by 2035. While infectious diseases such as helminth infections have decreased due to improved sanitation and health care, recent research suggests a link between helminth infections and T2D, with helminths such as Schistosoma, Nippostrongylus, Strongyloides, and Heligmosomoides potentially mitigating or slowing down T2D progression in human and animal models. Helminth infections enhance host immunity by promoting interactions between innate and adaptive immune systems. In T2D, type 1 immune responses are suppressed and type 2 responses are augmented, expanding regulatory T cells and innate immune cells, particularly type 2 immune cells and macrophages. This article reviews recent research shedding light on the favorable effects of helminth infections on T2D. The potential defense mechanisms identified include heightened insulin sensitivity and reduced inflammation. The synthesis of findings from studies investigating parasitic helminths and their derivatives underscores promising avenues for defense against T2D.
Collapse
Affiliation(s)
- Anuradha Rajamanickam
- National Institutes of Health-National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, Chennai, India;
| | - Subash Babu
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- National Institutes of Health-National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, Chennai, India;
| |
Collapse
|
12
|
Fardous RS, Alshmmari S, Tawfik E, Khadra I, Ramadan Q, Zourob M. An Integrated and Modular Compartmentalized Microfluidic System with Tunable Electrospun Porous Membranes for Epithelialized Organs-on-a-Chip. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39047263 DOI: 10.1021/acsami.4c08864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A modular and 3D compartmentalized microfluidic system with electrospun porous membranes (PMs) for epithelialized organ-on-a-chip systems is presented. Our novel approach involves direct deposition of polymer nanofibers onto a patterned poly(methyl methacrylate) (PMMA) substrate using electrospinning, resulting in an integrated PM within the microfluidic chip. The in situ deposition of the PM eliminates the need for additional assembly processes. To demonstrate the high throughput membrane integration capability of our approach, we successfully deposited nanofibers onto various chip designs with complex microfluidic planar structures and expanded dimensions. We characterized and tested the fully PMMA chip by growing an epithelial monolayer using the Caco-2 cell line to study drug permeability. A comprehensive analysis of the bulk and surface properties of the membrane's fibers made of PMMA and polystyrene (PS) was conducted to determine the polymer with the best performance for cell culture and drug transport applications. The PMMA-based membrane, with a PMMA/PVP ratio of 5:1, allowed for the fabrication of a uniform membrane structure along the aligned nanofibers. By modulating the fiber diameter and total thickness of the membrane, we could adjust the membrane's porosity for specific cell culture applications. The PMMA-PVP nanofibers exhibited a low polydispersity index value, indicating monodispersed nanofibers and a more homogeneous and uniform fiber network. Both types of membranes demonstrated excellent mechanical integrity under medium perfusion flow rates. However, the PMMA-PVP composition offered a tailored porous structure with modulable porosity based on the fiber diameter and thickness. Our developed platform enables dynamic in vitro modeling of the epithelial barrier and has applications in drug transport and in vitro microphysiological systems.
Collapse
Affiliation(s)
- Roa S Fardous
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow G4 0RE, U.K
- Alfaisal University, Riyadh 11533, Kingdome Saudi Arabia
| | - Sultan Alshmmari
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany
- Alfaisal University, Riyadh 11533, Kingdome Saudi Arabia
| | - Essam Tawfik
- Advanced Diagnostics & Therapeutics Institute, King Abdulaziz City for Science and Technology, Riyadh 12354, Kingdome Saudi Arabia
| | - Ibrahim Khadra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow G4 0RE, U.K
| | - Qasem Ramadan
- Alfaisal University, Riyadh 11533, Kingdome Saudi Arabia
| | | |
Collapse
|
13
|
Harvei S, Skogen V, Egelandsdal B, Birkeland S, Paulsen JE, Carlsen H. Chronic oral LPS administration does not increase inflammation or induce metabolic dysregulation in mice fed a western-style diet. Front Nutr 2024; 11:1376493. [PMID: 39077160 PMCID: PMC11284168 DOI: 10.3389/fnut.2024.1376493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Lipopolysaccharides (LPS) present in the intestine are suggested to enter the bloodstream after consumption of high-fat diets and cause systemic inflammation and metabolic dysregulation through a process named "metabolic endotoxemia." This study aimed to determine the role of orally administered LPS to mice in the early stage of chronic low-grade inflammation induced by diet. Methods We supplemented the drinking water with E. coli derived LPS to mice fed either high-fat Western-style diet (WSD) or standard chow (SC) for 7 weeks (n = 16-17). Body weight was recorded weekly. Systemic inflammatory status was assessed by in vivo imaging of NF-κB activity at different time points, and glucose dysregulation was assessed by insulin sensitivity test and glucose tolerance test near the end of the study. Systemic LPS exposure was estimated indirectly via quantification of LPS-binding protein (LBP) and antibodies against LPS in plasma, and directly using an LPS-sensitive cell reporter assay. Results and discussion Our results demonstrate that weight development and glucose regulation are not affected by LPS. We observed a transient LPS dependent upregulation of NF-κB activity in the liver region in both diet groups, a response that disappeared within the first week of LPS administration and remained low during the rest of the study. However, WSD fed mice had overall a higher NF-κB activity compared to SC fed mice at all time points independent of LPS administration. Our findings indicate that orally administered LPS has limited to no impact on systemic inflammation and metabolic dysregulation in mice fed a high-fat western diet and we question the capability of intestinally derived LPS to initiate systemic inflammation through a healthy and uncompromised intestine, even when exposed to a high-fat diet.
Collapse
Affiliation(s)
- Silje Harvei
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| | - Vemund Skogen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| | - Bjørg Egelandsdal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| | - Signe Birkeland
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| | - Jan Erik Paulsen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, As, Norway
| | - Harald Carlsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| |
Collapse
|
14
|
Custers E, Vreeken D, Schuren F, van den Broek TJ, van Dongen L, Geenen B, de Blaauw I, Wiesmann M, Hazebroek EJ, Kleemann R, Kiliaan AJ. Impact of Microbiota and Metabolites on Intestinal Integrity and Inflammation in Severe Obesity. Pharmaceuticals (Basel) 2024; 17:918. [PMID: 39065768 PMCID: PMC11279642 DOI: 10.3390/ph17070918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity is a multifactorial disease associated with low-grade inflammation. The gut is thought to be involved in obesity-related inflammation, as it is continuously exposed to antigens from food, microbiota and metabolites. However, the exact underlying mechanisms are still unknown. Therefore, we examined the relation between gut pathology, microbiota, its metabolites and cytokines in adults with severe obesity. Individuals eligible for bariatric surgery were included. Fecal and plasma samples were collected at surgery timepoint, to assess microbiota and metabolite composition. Jejunal biopsies were collected during surgery and stained for cytotoxic T cells, macrophages, mast cells and tight junction component zonula occludens-1. Based on these stainings, the cohort was divided into four groups: high versus low intestinal inflammation and high versus low intestinal integrity. We found no significant differences in microbiota diversity between groups, nor for individual bacterial species. No significant differences in metabolites were observed between the intestinal inflammatory groups. However, some metabolites and cytokines differed between the intestinal integrity groups. Higher plasma levels of interleukin-8 and tauro-chenodeoxycholic acid were found, whereas isovaleric acid and acetic acid were lower in the high intestinal integrity group. As the results were very subtle, we suggest that our cohort shows very early and minor intestinal pathology.
Collapse
Affiliation(s)
- Emma Custers
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Radboud Alzheimer Center, Donders Institute for Brain Cognition and Behaviour, Center for Medical Neuroscience, 6500 HB Nijmegen, The Netherlands; (E.C.); (B.G.); (M.W.)
- Department of Bariatric Surgery, Vitalys, Rijnstate Hospital, 6815 AD Arnhem, The Netherlands;
| | - Debby Vreeken
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Radboud Alzheimer Center, Donders Institute for Brain Cognition and Behaviour, Center for Medical Neuroscience, 6500 HB Nijmegen, The Netherlands; (E.C.); (B.G.); (M.W.)
- Department of Bariatric Surgery, Vitalys, Rijnstate Hospital, 6815 AD Arnhem, The Netherlands;
| | - Frank Schuren
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands; (F.S.); (R.K.)
| | - Tim J. van den Broek
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands; (F.S.); (R.K.)
| | - Lieke van Dongen
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Radboud Alzheimer Center, Donders Institute for Brain Cognition and Behaviour, Center for Medical Neuroscience, 6500 HB Nijmegen, The Netherlands; (E.C.); (B.G.); (M.W.)
| | - Bram Geenen
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Radboud Alzheimer Center, Donders Institute for Brain Cognition and Behaviour, Center for Medical Neuroscience, 6500 HB Nijmegen, The Netherlands; (E.C.); (B.G.); (M.W.)
| | - Ivo de Blaauw
- Division of Pediatric Surgery, Department of Surgery, Radboudumc-Amalia Children’s Hospital, 6525 GA Nijmegen, The Netherlands;
| | - Maximilian Wiesmann
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Radboud Alzheimer Center, Donders Institute for Brain Cognition and Behaviour, Center for Medical Neuroscience, 6500 HB Nijmegen, The Netherlands; (E.C.); (B.G.); (M.W.)
| | - Eric J. Hazebroek
- Department of Bariatric Surgery, Vitalys, Rijnstate Hospital, 6815 AD Arnhem, The Netherlands;
- Division of Human Nutrition and Health, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands; (F.S.); (R.K.)
| | - Amanda J. Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Radboud Alzheimer Center, Donders Institute for Brain Cognition and Behaviour, Center for Medical Neuroscience, 6500 HB Nijmegen, The Netherlands; (E.C.); (B.G.); (M.W.)
| |
Collapse
|
15
|
Bai H, Zhang H, Wang C, Lambo MT, Li Y, Zhang Y. Effects of altering the ratio of C16:0 and cis-9 C18:1 in rumen bypass fat on growth performance, lipid metabolism, intestinal barrier, cecal microbiota, and inflammation in fattening bulls. J Anim Sci Biotechnol 2024; 15:94. [PMID: 38971799 PMCID: PMC11227724 DOI: 10.1186/s40104-024-01052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/20/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND C16:0 and cis-9 C18:1 may have different effects on animal growth and health due to unique metabolism in vivo. This study was investigated to explore the different effects of altering the ratio of C16:0 and cis-9 C18:1 in fat supplements on growth performance, lipid metabolism, intestinal barrier, cecal microbiota, and inflammation in fattening bulls. Thirty finishing Angus bulls (626 ± 69 kg, 21 ± 0.5 months) were divided into 3 treatments according to the randomized block design: (1) control diet without additional fat (CON), (2) CON + 2.5% palmitic acid calcium salt (PA, 90% C16:0), and (3) CON + 2.5% mixed fatty acid calcium salt (MA, 60% C16:0 + 30% cis-9 C18:1). The experiment lasted for 104 d, after which all the bulls were slaughtered and sampled for analysis. RESULTS MA tended to reduce 0-52 d dry matter intake compared to PA (DMI, P = 0.052). Compared with CON and MA, PA significantly increased 0-52 d average daily gain (ADG, P = 0.027). PA tended to improve the 0-52 d feed conversion rate compared with CON (FCR, P = 0.088). Both PA and MA had no significant effect on 52-104 days of DMI, ADG and FCR (P > 0.05). PA tended to improve plasma triglycerides compared with MA (P = 0.077), significantly increased plasma cholesterol (P = 0.002) and tended to improve subcutaneous adipose weight (P = 0.066) when compared with CON and MA. Both PA and MA increased visceral adipose weight compared with CON (P = 0.021). Only PA increased the colonization of Rikenellaceae, Ruminococcus and Proteobacteria in the cecum, and MA increased Akkermansia abundance (P < 0.05). Compared with CON, both PA and MA down-regulated the mRNA expression of Claudin-1 in the jejunum (P < 0.001), increased plasma diamine oxidase (DAO, P < 0.001) and lipopolysaccharide (LPS, P = 0.045). Compared with CON and MA, PA down-regulated the ZO-1 in the jejunum (P < 0.001) and increased plasma LPS-binding protein (LBP, P < 0.001). Compared with CON, only PA down-regulated the Occludin in the jejunum (P = 0.013). Compared with CON, PA and MA significantly up-regulated the expression of TLR-4 and NF-κB in the visceral adipose (P < 0.001) and increased plasma IL-6 (P < 0.001). Compared with CON, only PA up-regulated the TNF-α in the visceral adipose (P = 0.01). Compared with CON and MA, PA up-regulated IL-6 in the visceral adipose (P < 0.001), increased plasma TNF-α (P < 0.001), and reduced the IgG content in plasma (P = 0.035). Compared with CON, PA and MA increased C16:0 in subcutaneous fat and longissimus dorsi muscle (P < 0.05), while more C16:0 was also deposited by extension and desaturation into C18:0 and cis-9 C18:1. However, neither PA nor MA affected the content of cis-9 C18:1 in longissimus dorsi muscle compared with CON (P > 0.05). CONCLUSIONS MA containing 30% cis-9 C18:1 reduced the risk of high C16:0 dietary fat induced subcutaneous fat obesity, adipose tissue and systemic low-grade inflammation by accelerating fatty acid oxidative utilization, improving colonization of Akkermansia, reducing intestinal barrier damage, and down-regulating NF-κB activation.
Collapse
Affiliation(s)
- Haixin Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Haosheng Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Congwen Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650500, China
| | - Modinat Tolani Lambo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Yang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
16
|
Manzo R, Gallardo-Becerra L, Díaz de León-Guerrero S, Villaseñor T, Cornejo-Granados F, Salazar-León J, Ochoa-Leyva A, Pedraza-Alva G, Pérez-Martínez L. Environmental Enrichment Prevents Gut Dysbiosis Progression and Enhances Glucose Metabolism in High-Fat Diet-Induced Obese Mice. Int J Mol Sci 2024; 25:6904. [PMID: 39000013 PMCID: PMC11241766 DOI: 10.3390/ijms25136904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 07/14/2024] Open
Abstract
Obesity is a global health concern implicated in numerous chronic degenerative diseases, including type 2 diabetes, dyslipidemia, and neurodegenerative disorders. It is characterized by chronic low-grade inflammation, gut microbiota dysbiosis, insulin resistance, glucose intolerance, and lipid metabolism disturbances. Here, we investigated the therapeutic potential of environmental enrichment (EE) to prevent the progression of gut dysbiosis in mice with high-fat diet (HFD)-induced metabolic syndrome. C57BL/6 male mice with obesity and metabolic syndrome, continuously fed with an HFD, were exposed to EE. We analyzed the gut microbiota of the mice by sequencing the 16s rRNA gene at different intervals, including on day 0 and 12 and 24 weeks after EE exposure. Fasting glucose levels, glucose tolerance, insulin resistance, food intake, weight gain, lipid profile, hepatic steatosis, and inflammatory mediators were evaluated in serum, adipose tissue, and the colon. We demonstrate that EE intervention prevents the progression of HFD-induced dysbiosis, reducing taxa associated with metabolic syndrome (Tepidimicrobium, Acidaminobacteraceae, and Fusibacter) while promoting those linked to healthy physiology (Syntrophococcus sucrumutans, Dehalobacterium, Prevotella, and Butyricimonas). Furthermore, EE enhances intestinal barrier integrity, increases mucin-producing goblet cell population, and upregulates Muc2 expression in the colon. These alterations correlate with reduced systemic lipopolysaccharide levels and attenuated colon inflammation, resulting in normalized glucose metabolism, diminished adipose tissue inflammation, reduced liver steatosis, improved lipid profiles, and a significant reduction in body weight gain despite mice's continued HFD consumption. Our findings highlight EE as a promising anti-inflammatory strategy for managing obesity-related metabolic dysregulation and suggest its potential in developing probiotics targeting EE-modulated microbial taxa.
Collapse
Affiliation(s)
- Rubiceli Manzo
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Luigui Gallardo-Becerra
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Sol Díaz de León-Guerrero
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Tomas Villaseñor
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Fernanda Cornejo-Granados
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Jonathan Salazar-León
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Gustavo Pedraza-Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| |
Collapse
|
17
|
Florkowski M, Abiona E, Frank KM, Brichacek AL. Obesity-associated inflammation countered by a Mediterranean diet: the role of gut-derived metabolites. Front Nutr 2024; 11:1392666. [PMID: 38978699 PMCID: PMC11229823 DOI: 10.3389/fnut.2024.1392666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
The prevalence of obesity has increased dramatically worldwide and has become a critical public health priority. Obesity is associated with many co-morbid conditions, including hypertension, diabetes, and cardiovascular disease. Although the physiology of obesity is complex, a healthy diet and sufficient exercise are two elements known to be critical to combating this condition. Years of research on the Mediterranean diet, which is high in fresh fruits and vegetables, nuts, fish, and olive oil, have demonstrated a reduction in numerous non-communicable chronic diseases associated with this diet. There is strong evidence to support an anti-inflammatory effect of the diet, and inflammation is a key driver of obesity. Changes in diet alter the gut microbiota which are intricately intertwined with human physiology, as gut microbiota-derived metabolites play a key role in biological pathways throughout the body. This review will summarize recent published studies that examine the potential role of gut metabolites, including short-chain fatty acids, bile acids, trimethylamine-N-oxide, and lipopolysaccharide, in modulating inflammation after consumption of a Mediterranean-like diet. These metabolites modulate pathways of inflammation through the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, toll-like receptor 4 signaling, and macrophage driven effects in adipocytes, among other mechanisms.
Collapse
Affiliation(s)
- Melanie Florkowski
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Esther Abiona
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Karen M Frank
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Allison L Brichacek
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| |
Collapse
|
18
|
Casselbrant A, Elias E, Hallersund P, Elebring E, Cervin J, Fändriks L, Wallenius V. Intestinal Ketogenesis and Permeability. Int J Mol Sci 2024; 25:6555. [PMID: 38928261 PMCID: PMC11204016 DOI: 10.3390/ijms25126555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Consumption of a high-fat diet (HFD) has been suggested as a contributing factor behind increased intestinal permeability in obesity, leading to increased plasma levels of microbial endotoxins and, thereby, increased systemic inflammation. We and others have shown that HFD can induce jejunal expression of the ketogenic rate-limiting enzyme mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS). HMGCS is activated via the free fatty acid binding nuclear receptor PPAR-α, and it is a key enzyme in ketone body synthesis that was earlier believed to be expressed exclusively in the liver. The function of intestinal ketogenesis is unknown but has been described in suckling rats and mice pups, possibly in order to allow large molecules, such as immunoglobulins, to pass over the intestinal barrier. Therefore, we hypothesized that ketone bodies could regulate intestinal barrier function, e.g., via regulation of tight junction proteins. The primary aim was to compare the effects of HFD that can induce intestinal ketogenesis to an equicaloric carbohydrate diet on inflammatory responses, nutrition sensing, and intestinal permeability in human jejunal mucosa. Fifteen healthy volunteers receiving a 2-week HFD diet compared to a high-carbohydrate diet were compared. Blood samples and mixed meal tests were performed at the end of each dietary period to examine inflammation markers and postprandial endotoxemia. Jejunal biopsies were assessed for protein expression using Western blotting, immunohistochemistry, and morphometric characteristics of tight junctions by electron microscopy. Functional analyses of permeability and ketogenesis were performed in Caco-2 cells, mice, and human enteroids. Ussing chambers were used to analyze permeability. CRP and ALP values were within normal ranges and postprandial endotoxemia levels were low and did not differ between the two diets. The PPARα receptor was ketone body-dependently reduced after HFD. None of the tight junction proteins studied, nor the basal electrical parameters, were different between the two diets. However, the ketone body inhibitor hymeglusin increased resistance in mucosal biopsies. In addition, the tight junction protein claudin-3 was increased by ketone inhibition in human enteroids. The ketone body β-Hydroxybutyrate (βHB) did not, however, change the mucosal transition of the large-size molecular FD4-probe or LPS in Caco-2 and mouse experiments. We found that PPARα expression was inhibited by the ketone body βHB. As PPARα regulates HMGCS expression, the ketone bodies thus exert negative feedback signaling on their own production. Furthermore, ketone bodies were involved in the regulation of permeability on intestinal mucosal cells in vitro and ex vivo. We were not, however, able to reproduce these effects on intestinal permeability in vivo in humans when comparing two weeks of high-fat with high-carbohydrate diet in healthy volunteers. Further, neither the expression of inflammation markers nor the aggregate tight junction proteins were changed. Thus, it seems that not only HFD but also other factors are needed to permit increased intestinal permeability in vivo. This indicates that the healthy gut can adapt to extremes of macro-nutrients and increased levels of intestinally produced ketone bodies, at least during a shorter dietary challenge.
Collapse
Affiliation(s)
- Anna Casselbrant
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden; (E.E.); (P.H.); (L.F.); (V.W.)
| | - Erik Elias
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden; (E.E.); (P.H.); (L.F.); (V.W.)
| | - Peter Hallersund
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden; (E.E.); (P.H.); (L.F.); (V.W.)
| | - Erik Elebring
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden; (E.E.); (P.H.); (L.F.); (V.W.)
| | - Jakob Cervin
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden;
| | - Lars Fändriks
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden; (E.E.); (P.H.); (L.F.); (V.W.)
- Department of Surgery, Region Västra Götaland, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Ville Wallenius
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden; (E.E.); (P.H.); (L.F.); (V.W.)
- Department of Surgery, Region Västra Götaland, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| |
Collapse
|
19
|
Niu XT, Wang XY, Wang Y, Han K, Ru N, Xiang JY, Linghu EQ. Transcriptome analysis suggests broad jejunal alterations in Linghu's obesity-diarrhea syndrome: A pilot study. World J Gastroenterol 2024; 30:2777-2792. [PMID: 38899329 PMCID: PMC11185300 DOI: 10.3748/wjg.v30.i21.2777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Obesity is associated with a significantly increased risk for chronic diarrhea, which has been proposed as Linghu's obesity-diarrhea syndrome (ODS); however, its molecular mechanisms are largely unknown. AIM To reveal the transcriptomic changes in the jejunum involved in ODS. METHODS In a cohort of 6 ODS patients (JOD group), 6 obese people without diarrhea (JO group), and 6 healthy controls (JC group), high-throughput sequencing and bioinformatics analyses were performed to identify jejunal mucosal mRNA expression alterations and dysfunctional biological processes. In another cohort of 16 ODS patients (SOD group), 16 obese people without diarrhea (SO group), and 16 healthy controls (SC group), serum diamine oxidase (DAO) and D-lactate (D-LA) concentrations were detected to assess changes in intestinal barrier function. RESULTS The gene expression profiles of jejunal mucosa in the JO and JC groups were similar, with only 1 differentially expressed gene (DEG). The gene expression profile of the JOD group was significantly changed, with 411 DEGs compared with the JO group and 211 DEGs compared with the JC group, 129 of which overlapped. The enrichment analysis of these DEGs showed that the biological processes such as digestion, absorption, and transport of nutrients (especially lipids) tended to be up-regulated in the JOD group, while the biological processes such as rRNA processing, mitochondrial translation, antimicrobial humoral response, DNA replication, and DNA repair tended to be down-regulated in the JOD group. Eight DEGs (CDT1, NHP2, EXOSC5, EPN3, NME1, REG3A, PLA2G2A, and PRSS2) may play a key regulatory role in the pathological process of ODS, and their expression levels were significantly decreased in ODS patients (P < 0.001). In the second cohort, compared with healthy controls, the levels of serum intestinal barrier function markers (DAO and D-LA) were significantly increased in all obese individuals (P < 0.01), but were higher in the SOD group than in the SO group (P < 0.001). CONCLUSION Compared with healthy controls and obese individuals without diarrhea, patients with Linghu's ODS had extensive transcriptomic changes in the jejunal mucosa, likely affecting intestinal barrier function and thus contributing to the obesity and chronic diarrhea phenotypes.
Collapse
Affiliation(s)
- Xiao-Tong Niu
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing 100853, China
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xiang-Yao Wang
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Wang
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Ke Han
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing 100853, China
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Nan Ru
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jing-Yuan Xiang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing 100853, China
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - En-Qiang Linghu
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
20
|
Mantri A, Köhlmoos A, Schelski DS, Seel W, Stoffel-Wagner B, Krawitz P, Stehle P, Holst JJ, Weber B, Koban L, Plassmann H, Simon MC. Impact of Synbiotic Intake on Liver Metabolism in Metabolically Healthy Participants and Its Potential Preventive Effect on Metabolic-Dysfunction-Associated Fatty Liver Disease (MAFLD): A Randomized, Placebo-Controlled, Double-Blinded Clinical Trial. Nutrients 2024; 16:1300. [PMID: 38732547 PMCID: PMC11085762 DOI: 10.3390/nu16091300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Synbiotics modulate the gut microbiome and contribute to the prevention of liver diseases such as metabolic-dysfunction-associated fatty liver disease (MAFLD). This study aimed to evaluate the effect of a randomized, placebo-controlled, double-blinded seven-week intervention trial on the liver metabolism in 117 metabolically healthy male participants. Anthropometric data, blood parameters, and stool samples were analyzed using linear mixed models. After seven weeks of intervention, there was a significant reduction in alanine aminotransferase (ALT) in the synbiotic group compared to the placebo group (-14.92%, CI: -26.60--3.23%, p = 0.013). A stratified analysis according to body fat percentage revealed a significant decrease in ALT (-20.70%, CI: -40.88--0.53%, p = 0.045) in participants with an elevated body fat percentage. Further, a significant change in microbiome composition (1.16, CI: 0.06-2.25, p = 0.039) in this group was found, while the microbial composition remained stable upon intervention in the group with physiological body fat. The 7-week synbiotic intervention reduced ALT levels, especially in participants with an elevated body fat percentage, possibly due to modulation of the gut microbiome. Synbiotic intake may be helpful in delaying the progression of MAFLD and could be used in addition to the recommended lifestyle modification therapy.
Collapse
Affiliation(s)
- Aakash Mantri
- Institute of Nutrition and Food Science, Nutrition and Microbiota, University of Bonn, 53115 Bonn, Germany; (A.M.); (A.K.); (W.S.)
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, 53127 Bonn, Germany;
| | - Anika Köhlmoos
- Institute of Nutrition and Food Science, Nutrition and Microbiota, University of Bonn, 53115 Bonn, Germany; (A.M.); (A.K.); (W.S.)
| | - Daniela Stephanie Schelski
- Center for Economics and Neuroscience, University of Bonn, 53113 Bonn, Germany; (D.S.S.); (B.W.)
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, 53113 Bonn, Germany
| | - Waldemar Seel
- Institute of Nutrition and Food Science, Nutrition and Microbiota, University of Bonn, 53115 Bonn, Germany; (A.M.); (A.K.); (W.S.)
| | - Birgit Stoffel-Wagner
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, 53127 Bonn, Germany;
| | - Peter Stehle
- Institute of Nutrition and Food Science, Nutritional Physiology, University of Bonn, 53115 Bonn, Germany;
| | - Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department for Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Bernd Weber
- Center for Economics and Neuroscience, University of Bonn, 53113 Bonn, Germany; (D.S.S.); (B.W.)
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, 53113 Bonn, Germany
| | - Leonie Koban
- Institut Européen d’Administration des Affaires (INSEAD), 77300 Fontainebleau, France; (L.K.); (H.P.)
- Control-Interoception-Attention Team, Paris Brain Institute (ICM), 75013 Paris, France
- Lyon Neuroscience Research Center (CRNL), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université Claude Bernard Lyon 1, 69500 Bron, France
| | - Hilke Plassmann
- Institut Européen d’Administration des Affaires (INSEAD), 77300 Fontainebleau, France; (L.K.); (H.P.)
- Control-Interoception-Attention Team, Paris Brain Institute (ICM), 75013 Paris, France
| | - Marie-Christine Simon
- Institute of Nutrition and Food Science, Nutrition and Microbiota, University of Bonn, 53115 Bonn, Germany; (A.M.); (A.K.); (W.S.)
| |
Collapse
|
21
|
Acciarino A, Diwakarla S, Handreck J, Bergola C, Sahakian L, McQuade RM. The role of the gastrointestinal barrier in obesity-associated systemic inflammation. Obes Rev 2024; 25:e13673. [PMID: 38111141 DOI: 10.1111/obr.13673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 12/20/2023]
Abstract
Systemic inflammation is a key contributor to the onset and progression of several obesity-associated diseases and is thought to predominantly arise from the hyperplasia and hypertrophy of white adipose tissue. However, a growing body of works suggests that early changes in the gastrointestinal (GI) barrier may contribute to both local, within the GI lining, and systemic inflammation in obesity. Intestinal barrier dysfunction is well-characterized in inflammatory GI disorders such as inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) and is known to contribute to systemic inflammation. Thus, drawing parallels between GI disorders, where intestinal permeability and systemic inflammation are prominent features, and obesity-induced GI manifestations may provide insights into the potential role of the intestinal barrier in systemic inflammation in obesity. This review summarizes the current literature surrounding intestinal barrier dysfunction in obesity and explores the potential role of intestinal hyperpermeability and intestinal barrier dysfunction in the development of systemic inflammation and GI dysfunction in obesity.
Collapse
Affiliation(s)
- Adriana Acciarino
- Gut Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine, Western Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Shanti Diwakarla
- Gut Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine, Western Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jessica Handreck
- Gut Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine, Western Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Cedrick Bergola
- Gut Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lauren Sahakian
- Gut Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rachel M McQuade
- Gut Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine, Western Health, The University of Melbourne, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Melbourne University, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Zhang E, Zhu H, Song B, Shi Y, Cao Z. Recent advances in oral insulin delivery technologies. J Control Release 2024; 366:221-230. [PMID: 38161033 PMCID: PMC10932876 DOI: 10.1016/j.jconrel.2023.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
With the rise in diabetes mellitus cases worldwide, oral delivery of insulin is preferred over subcutaneous insulin administration due to its good patient compliance and non-invasiveness, simplicity, and versatility. However, oral insulin delivery is hampered by various gastrointestinal barriers that result in low drug bioavailability and insufficient therapeutic efficiency. Numerous strategies have been developed to overcome these barriers and increase the bioavailability of oral insulin. Yet, no commercial oral insulin product is available to address all clinical hurdles because of various substantial obstacles related to the structural organization and physiological function of the gastrointestinal tract. Herein, we discussed the significant physiological barriers (including chemical, enzymatic, and physical barriers) that hinder the transportation and absorption of orally delivered insulin. Then, we showcased recent significant and innovative advances in oral insulin delivery technologies. Finally, we concluded the review with remarks on future perspectives on oral insulin delivery technologies and potential challenges for forthcoming clinical translation of oral insulin delivery technologies.
Collapse
Affiliation(s)
- Ershuai Zhang
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA
| | - Hui Zhu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA
| | - Boyi Song
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA
| | - Yuanjie Shi
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
23
|
Steinbach E, Belda E, Alili R, Adriouch S, Dauriat CJG, Donatelli G, Dumont JL, Pacini F, Tuszynski T, Pelloux V, Jacques F, Creusot L, Coles E, Taillandier P, Vazquez Gomez M, Masi D, Mateo V, André S, Kordahi M, Rouault C, Zucker JD, Sokol H, Genser L, Chassaing B, Le Roy T, Clément K. Comparative analysis of the duodenojejunal microbiome with the oral and fecal microbiomes reveals its stronger association with obesity and nutrition. Gut Microbes 2024; 16:2405547. [PMID: 39679619 DOI: 10.1080/19490976.2024.2405547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 12/17/2024] Open
Abstract
The intestinal microbiota is increasingly recognized as a crucial player in the development and maintenance of various chronic conditions, including obesity and associated metabolic diseases. While most research focuses on the fecal microbiota due to its easier accessibility, the small intestine, as a major site for nutrient sensing and absorption, warrants further investigation to determine its microbiota composition and functions. Here, we conducted a clinical research project in 30 age- and sex-matched participants with (n = 15) and without (n = 15) obesity. Duodenojejunal fluid was obtained by aspiration during endoscopy. Phenotyping included clinical variables related to metabolic status, lifestyle, and psychosocial factors using validated questionnaires. We performed metagenomic analyses of the oral, duodenojejunal, and fecal microbiome, alongside metabolomic data from duodenojejunal fluid and feces, integrating these data with clinical and lifestyle information. Our results highlight significant associations between duodenojejunal microbiota composition and usual dietary intake, as well as clinical phenotypes, with larger effect sizes than the associations between these variables and fecal microbiota. Notably, we found that the duodenojejunal microbiota of patients with obesity exhibited higher diversity and showed distinct differences in the abundance of several duodenojejunal microbiota species compared with individuals without obesity. Our findings support the relevance of studying the role of the small intestinal microbiota in the pathogenesis of nutrition-related diseases.
Collapse
Affiliation(s)
- Emilie Steinbach
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Eugeni Belda
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, Sorbonne Université, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Rohia Alili
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Solia Adriouch
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Charlène J G Dauriat
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM, Paris, France
- Mucosal Microbiota in Chronic Inflammatory Diseases, INSERM, CNRS UMR8104, Université de Paris, Paris, France
| | - Gianfranco Donatelli
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
- Endoscopy Department, Peupliers Hospital, Ramsay-Santé, Paris, France
| | - Jean-Loup Dumont
- Endoscopy Department, Peupliers Hospital, Ramsay-Santé, Paris, France
| | - Filippo Pacini
- Endoscopy Department, Peupliers Hospital, Ramsay-Santé, Paris, France
| | - Thierry Tuszynski
- Endoscopy Department, Peupliers Hospital, Ramsay-Santé, Paris, France
| | - Véronique Pelloux
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Flavien Jacques
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Laura Creusot
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Emavieve Coles
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Paul Taillandier
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Marta Vazquez Gomez
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Davide Masi
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| | - Véronique Mateo
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Sébastien André
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Melissa Kordahi
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM, Paris, France
- Mucosal Microbiota in Chronic Inflammatory Diseases, INSERM, CNRS UMR8104, Université de Paris, Paris, France
| | - Christine Rouault
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Jean-Daniel Zucker
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, Sorbonne Université, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Harry Sokol
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
- INRAE, UMR1319 Micalis & AgroParisTech, Jouy en Josas, France
| | - Laurent Genser
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
- Sorbonne Université, Department of Hepato-Biliary and Pancreatic Surgery, Assistance Publique-Hôpitaux de Paris, AP-HP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Benoit Chassaing
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM, Paris, France
- Mucosal Microbiota in Chronic Inflammatory Diseases, INSERM, CNRS UMR8104, Université de Paris, Paris, France
| | - Tiphaine Le Roy
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Karine Clément
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
- Assistance Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
24
|
Taboun ZS, Sadeghi J. The bidirectional relationship between opioids and the gut microbiome: Implications for opioid tolerance and clinical interventions. Int Immunopharmacol 2023; 125:111142. [PMID: 37918085 DOI: 10.1016/j.intimp.2023.111142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
Opioids are widely used in treating patients with acute and chronic pain; however, this class of drugs is also commonly abused. Opioid use disorder and associated overdoses are becoming more prevalent as the opioid crisis continues. Chronic opioid use is associated with tolerance, which decreases the efficacy of opioids over time, but also puts individuals at risk of fatal overdoses. Therefore, it is essential to identify strategies to reduce opioid tolerance in those that use these agents. The gut microbiome has been found to play a critical role in opioid tolerance, with opioids causing dysbiosis of the gut, and changes in the gut microbiome impacting opioid tolerance. These changes in turn have a detrimental effect on the gut microbiome, creating a positive feedback cycle. We review the bidirectional relationship between the gut microbiome and opioid tolerance, discuss the role of modulation of the gut microbiome as a potential therapeutic option in opioid-induced gut dysbiosis, and suggest opportunities for further research and clinical interventions.
Collapse
Affiliation(s)
- Zahra S Taboun
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Javad Sadeghi
- School of Engineering, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.
| |
Collapse
|
25
|
Serrano E, Bastard JP, Trystram L, Fellahi S, Soula HA, Thenet S, Oppert JM, Clément K, Poitou C, Genser L. Serum Versus Fecal Calprotectin Levels in Patients with Severe Obesity Before and 6 Months After Roux-Y-Gastric Bypass: Report of the Prospective Leaky-Gut Study. Obes Surg 2023; 33:4017-4025. [PMID: 37924465 DOI: 10.1007/s11695-023-06911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023]
Abstract
INTRODUCTION Obesity is associated with low-grade inflammation, including intestinal inflammation based on fecal or serum calprotectin (FC-SC) measurement. Roux-en-Y gastric bypass (RYGB) improves obesity-related parameters. However, the association between FC-SC levels and postoperative course and the link with metabolic and inflammatory phenotypes before and after RYGB remains unclear. METHODS We determined SC levels in 48 patients before (T0) and 6 months after (T6M) RYGB. We then analyzed postoperative changes in FC-SC levels and the relationship with inflammation and metabolic status. RESULTS Twenty-three patients (48%) had elevated SC levels (˃2.9 μg/mL) at T0 and T6M. Six of 29 patients (20.7%) had elevated FC concentrations (>50 μg/g) at T0 vs. 16 of 17 patients (94.1%) at T6M (p=0.006). At T0, FC levels correlated with BMI (Rho=0.63; p=0.001) and systemic inflammation (CRP: Rho=0.66, p=0.0006; IL-6: Rho=0.48, p=0.03; haptoglobin: Rho=0.75; p= 0.0006). SC tended to be positively associated with triglyceride levels (Rho=0.34; p=0.08), BMI (Rho=0.34; p=0.08), and inflammatory markers (CRP: Rho=0.33; p=0.09; IL-6: Rho=0.36; p=0.06). FC levels were associated with increased jejunal IL-17+CD8+ T-cell densities (Rho:0.90; p=0.0002). FC and SC were correlated together at T0 (Rho=0.83; p<0.001) but not at T6M. At T6M, SC decreased by 53.6%, whereas FC increased by 79.7%. SC and FC were not associated with any of the variables studied at T6M. CONCLUSION FC is a surrogate marker of systemic and intestinal inflammation and adiposity, whereas SC only tends to correlate with systemic inflammation. At 6 months after RYGB, SC-based systemic inflammation decreased, whereas FC-based intestinal inflammation increased. FC and SC levels follow different trajectories and are unrelated to improvements following bariatric surgery.
Collapse
Affiliation(s)
- Ella Serrano
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches, NutriOmics, research unit, 91 boulevard de l'hôpital, Paris, France
| | - Jean-Philippe Bastard
- Département de Biochimie-Pharmacologie-Biologie Moléculaire-Génétique Médicale, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Créteil, France
- FHU-SENEC, INSERM U955 and Université Paris Est (UPEC), UMR U955, Faculté de Santé, Créteil, France
| | - Laurence Trystram
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Functional Coprology, Paris, France
| | - Soraya Fellahi
- Département de Biochimie-Pharmacologie-Biologie Moléculaire-Génétique Médicale, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Créteil, France
| | - Hedi A Soula
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches, NutriOmics, research unit, 91 boulevard de l'hôpital, Paris, France
| | - Sophie Thenet
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, EPHE, PSL University, F-75012, F-75014, Paris, France
| | - Jean-Michel Oppert
- Sorbonne Université, Department of Nutrition, Assistance Publique- Hôpitaux de Paris, AP-HP, Pitié Salpêtrière University Hospital, 75013, Paris, France
| | - Karine Clément
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches, NutriOmics, research unit, 91 boulevard de l'hôpital, Paris, France
- Sorbonne Université, Department of Nutrition, Assistance Publique- Hôpitaux de Paris, AP-HP, Pitié Salpêtrière University Hospital, 75013, Paris, France
| | - Christine Poitou
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches, NutriOmics, research unit, 91 boulevard de l'hôpital, Paris, France
- Sorbonne Université, Department of Nutrition, Assistance Publique- Hôpitaux de Paris, AP-HP, Pitié Salpêtrière University Hospital, 75013, Paris, France
| | - Laurent Genser
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches, NutriOmics, research unit, 91 boulevard de l'hôpital, Paris, France.
- Sorbonne Université, Department of Hepato-Biliary and Pancreatic Surgery, Assistance Publique- Hôpitaux de Paris, AP-HP, Pitié-Salpêtrière University Hospital, 47-83 boulevard de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
26
|
Rella S, Onyiah J, Baker C, Singh V, Her A, Rasouli N. Design and rationale for the SIB trial: a randomized parallel comparison of semaglutide versus placebo on intestinal barrier function in type 2 diabetes mellitus. Ther Adv Endocrinol Metab 2023; 14:20420188231207348. [PMID: 37916028 PMCID: PMC10617296 DOI: 10.1177/20420188231207348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Objective To describe the rationale and design of the SIB trial, an interventional clinical trial testing the hypothesis that subcutaneous (s.c.) once-weekly semaglutide can improve intestinal permeability and reduce systemic inflammation in participants with type 2 diabetes (T2D) and obesity. Methods SIB (NCT04979130) is an investigator-initiated, single-center randomized, double-blinded, placebo-controlled clinical study being conducted at the University of Colorado Anschutz Medical Campus. The primary objective of this novel trial is to test the hypothesis that subcutaneous (s.c.) once-weekly semaglutide could improve intestinal permeability and reduce systemic inflammation in participants with T2D and obesity. Eligible participants had a diagnosis of type 2 diabetes, elevated body mass index, and evidence of systemic inflammation. Participants were randomized 1:1 to s.c. semaglutide or placebo. Participants were assessed for intestinal permeability and markers of inflammation at baseline, mid-study, and at the end of the study. Efficacy assessments were based on the analysis of the following: lactulose:mannitol ratio test, serum lipopolysaccharide-binding protein (LBP), fecal calprotectin, inflammatory biomarkers (IL-6, TNF, IL-1, IL-8, hs-CRP), and HbA1c. All participants who enrolled in the trial provided written informed consent after having received written and oral information on the trial. The risks of semaglutide use were minimized by administration according to FDA-labeled use and close monitoring for adverse events. Discussion SIB is the first study to examine the effects of GLP-1 receptor agonists on intestinal permeability in humans and will provide important data on their impact on systemic inflammation and intestinal permeability in the setting of T2D and obesity.
Collapse
Affiliation(s)
- Steven Rella
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Mail Stop 8106, 12631 East 17th Avenue, Aurora, CO 80045-2559, USA
| | - Joseph Onyiah
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Chelsea Baker
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Vatsala Singh
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew Her
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Neda Rasouli
- University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
27
|
Almanza-Aguilera E, Cano A, Gil-Lespinard M, Burguera N, Zamora-Ros R, Agudo A, Farràs M. Mediterranean diet and olive oil, microbiota, and obesity-related cancers. From mechanisms to prevention. Semin Cancer Biol 2023; 95:103-119. [PMID: 37543179 DOI: 10.1016/j.semcancer.2023.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/02/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Olive oil (OO) is the main source of added fat in the Mediterranean diet (MD). It is a mix of bioactive compounds, including monounsaturated fatty acids, phytosterols, simple phenols, secoiridoids, flavonoids, and terpenoids. There is a growing body of evidence that MD and OO improve obesity-related factors. In addition, obesity has been associated with an increased risk for several cancers: endometrial, oesophageal adenocarcinoma, renal, pancreatic, hepatocellular, gastric cardia, meningioma, multiple myeloma, colorectal, postmenopausal breast, ovarian, gallbladder, and thyroid cancer. However, the epidemiological evidence linking MD and OO with these obesity-related cancers, and their potential mechanisms of action, especially those involving the gut microbiota, are not clearly described or understood. The goals of this review are 1) to update the current epidemiological knowledge on the associations between MD and OO consumption and obesity-related cancers, 2) to identify the gut microbiota mechanisms involved in obesity-related cancers, and 3) to report the effects of MD and OO on these mechanisms.
Collapse
Affiliation(s)
- Enrique Almanza-Aguilera
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Ainara Cano
- Food Research, AZTI, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160, Derio, Spain
| | - Mercedes Gil-Lespinard
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Nerea Burguera
- Food Research, AZTI, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160, Derio, Spain
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain; Department of Nutrition, Food Sciences, and Gastronomy, Food Innovation Network (XIA), Institute for Research on Nutrition and Food Safety (INSA), Faculty of Pharmacy and Food Sciences University of Barcelona, Barcelona, Spain.
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Marta Farràs
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
28
|
Rusnak T, Azarcoya-Barrera J, Wollin B, Makarowski A, Nelson R, Field CJ, Jacobs RL, Richard C. A Physiologically Relevant Dose of 50% Egg-Phosphatidylcholine Is Sufficient in Improving Gut Permeability while Attenuating Immune Cell Dysfunction Induced by a High-Fat Diet in Male Wistar Rats. J Nutr 2023; 153:3131-3143. [PMID: 37586605 DOI: 10.1016/j.tjnut.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Obesity is associated with increased intestinal permeability and a diminished immune response. Phosphatidylcholine (PC), a form of choline found in eggs, has been shown to beneficially modulate T-cell response in the context of obesity when provided as the sole form of choline in the diet. OBJECTIVE This study aimed to determine the impact of varying doses of PC as part of a high-fat diet (HFD) on immune cell function and intestinal permeability. METHODS Male Wistar rats 4 wk of age were randomly assigned to consume 1 of 6 diets for 12 wk containing the same amount of total choline but differing in the forms of choline: 1-control low-fat (CLF, 20% fat, 100% free choline [FC]); 2-control high-fat (CHF, 50% fat, 100% FC); 3-100% PC (100PC, 50% fat, 100% egg-PC); 4-75% PC (75PC, 50% fat, 75% egg-PC+25% FC); 5-50% PC (50PC, 50% fat, 50% egg-PC+50% FC); and 6-25% PC (25PC; 50% fat, 25% egg-PC+75% FC). Intestinal permeability was measured by fluorescein isothiocyanate-dextran. Immune function was assessed by ex vivo cytokine production of splenocytes and cells isolated from the mesenteric lymph node (MLN) after stimulation with different mitogens. RESULTS Feeding the CHF diet increased intestinal permeability compared with the CLF diet, and doses of PC 50% or greater returned permeability to levels similar to that of the CLF diet. Feeding the CHF diet lowered splenocyte production of interleukin (IL)-1β, IL-2, IL-10, and tumor necrosis factor-alpha, and MLN production of IL-2 compared with the CLF group. The 50PC diet most consistently significantly improved cytokine levels (IL-2, IL-10, tumor necrosis factor-alpha) compared with the CHF diet. CONCLUSIONS Our results show that a dose of 50% of total choline derived from egg-PC can ameliorate HFD-induced intestinal permeability and immune cell dysfunction.
Collapse
Affiliation(s)
- Tianna Rusnak
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jessy Azarcoya-Barrera
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Bethany Wollin
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Alexander Makarowski
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Randal Nelson
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - René L Jacobs
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline Richard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
29
|
Gai Z, Liao W, Huang Y, Dong Y, Feng H, Han M. Effects of Bifidobacterium BL21 and Lacticaseibacillus LRa05 on gut microbiota in type 2 diabetes mellitus mice. AMB Express 2023; 13:97. [PMID: 37716924 PMCID: PMC10505128 DOI: 10.1186/s13568-023-01603-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023] Open
Abstract
Gut dysbiosis causes damage to the intestinal barrier and is associated with type 2 diabetes mellitus (T2DM). We tested the potential protective effects of probiotic BL21 and LRa05 on gut microbiota in type 2 diabetes mellitus mice and determined whether these effects were related to the modulation of gut microbiota.Thirty specific pathogen-free C57BL/6J mice were randomly allocated to three groups-the (CTL) control group, HFD/STZ model (T2DM) group, and HFD/STZ-probiotic intervention (PRO) group-and intragastrically administered strains BL21 and LRa05 for 11 weeks. The administration of strains BL21 and LRa05 significantly regulated blood glucose levels, accompanied by ameliorated oxidative stress in mice. The BL21/LRa05-treated mice were protected from liver, cecal, and colon damage. Microbiota analysis showed that the cecal and fecal microbiota of the mice presented significantly different spatial distributions from one another. Principal coordinate analysis results indicated that both T2DM and the BL21/LRa05 intervention had significant effects on the cecal contents and fecal microbiota structure. In terms of the fecal microbiota, an abundance of Akkermansia and Anaeroplasma was noted in the PRO group. In terms of the cecal content microbiota, enrichment of Akkermansia, Desulfovibrio, Bifidobacterium, Lactobacillus, and Limosilactobacillus was noted in the PRO group. The probiotics BL21 and LRa05 prevent or ameliorate T2DM by regulating the intestinal flora and reducing inflammation and oxidative stress. Our results suggest that BL21 and LRa05 colonize in the cecum. Thus, BL21/LRa05 combined with probiotics having a strong ability to colonize in the colon may achieve better therapeutic effects in T2DM. Our study illustrated the feasibility and benefits of the combined use of probiotics and implied the importance of intervening at multiple intestinal sites in T2DM mice.
Collapse
Affiliation(s)
- Zhonghui Gai
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou, 215200, China
| | - Wenyan Liao
- State Key Laboratory of Dairy Biotechnology, Technology Center Bright Dairy & Food Co., Ltd., Shanghai, 200436, China
| | - Yue Huang
- Department of Food Science, Shanghai Business School, 2271# Zhongshanxilu Road, Shanghai, 200235, China
| | - Yao Dong
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou, 215200, China
| | - Huafeng Feng
- Department of Food Science, Shanghai Business School, 2271# Zhongshanxilu Road, Shanghai, 200235, China
| | - Mei Han
- Department of Food Science, Shanghai Business School, 2271# Zhongshanxilu Road, Shanghai, 200235, China.
| |
Collapse
|
30
|
Chen Y, Tseng SH, Chen CY, Tsai YH. Application of Intestinal Barrier Molecules in the Diagnosis of Acute Cellular Rejection After Intestinal Transplantation. Transpl Int 2023; 36:11595. [PMID: 37745643 PMCID: PMC10514359 DOI: 10.3389/ti.2023.11595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023]
Abstract
Diagnosing acute rejection after intestinal transplantation currently heavily relies on histopathological analysis of graft biopsies. However, the invasive risks associated with ileoscopic examination and the inaccessibility for biopsy after ileostomy closure hinder real-time detection of rejection responses. Molecules comprising the intestinal barrier have been identified as physiological and molecular biomarkers for various bowel conditions and systemic diseases. To investigate the potential of barrier function-related molecules in diagnosing rejection after intestinal transplantation, plasma samples were collected longitudinally from transplant recipients. The samples were categorized into "indeterminate for rejection (IND)" and "acute rejection (AR)" groups based on clinical diagnoses at each time point. The longitudinal association between plasma levels of these barrier function-related molecules and acute rejection was analyzed using the generalized estimating equations (GEE) method. Logistic GEE models revealed that plasma levels of claudin-3, occludin, sIgA, and zonulin were independent variables correlated with the clinical diagnosis of acute rejection. The subsequent prediction model demonstrated moderate ability in discriminating between IND and AR samples, with a sensitivity of 76.0%, specificity of 89.2%, and accuracy of 84.6%. In conclusion, monitoring plasma levels of claudin-3, occludin, sIgA, and zonulin shows great potential in aiding the diagnosis of acute rejection after intestinal transplantation.
Collapse
Affiliation(s)
- Yun Chen
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan
| | - Sheng-Hong Tseng
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Yen Chen
- Medicine and Institute of Emergency and Critical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Association for the Study of Small Intestinal Diseases, Taoyuan, Taiwan
| | - Ya-Hui Tsai
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan
| |
Collapse
|
31
|
Mooradian AD. Diabetes-related perturbations in the integrity of physiologic barriers. J Diabetes Complications 2023; 37:108552. [PMID: 37356233 DOI: 10.1016/j.jdiacomp.2023.108552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
One of the hallmarks of health is the integrity of barriers at the cellular and tissue levels. The two cardinal functions of barriers include preventing access of deleterious elements of the environment (barrier function) while facilitating the transport of essential ions, signaling molecules and nutrients needed to maintain the internal milieu (transport function). There are several cellular and subcellular barriers and some of these barriers can be interrelated. The principal physiologic barriers include blood-retinal barrier, blood-brain barrier, blood-testis barrier, renal glomerular/tubular barrier, intestinal barrier, pulmonary blood-alveolar barrier, blood-placental barrier and skin barrier. Tissue specific barriers are the result of the vasculature, cellular composition of the tissue and extracellular matrix within the tissue. Uncontrolled diabetes and acute hyperglycemia may disrupt the integrity of physiologic barriers, primarily through altering the vascular integrity of the tissues and may well contribute to the clinically recognized complications of diabetes. Although diabetes is a systemic disease, some of the organs display clinically significant deterioration in function while others undergo subclinical changes. The pathophysiology of the disruption of these barriers is not entirely clear but it may be related to diabetes-related cellular stress. Understanding the mechanisms of diabetes related dysfunction of various physiologic barriers might help identifying novel therapeutic targets for reducing clinically significant complications of diabetes.
Collapse
Affiliation(s)
- Arshag D Mooradian
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, Jacksonville, FL, USA.
| |
Collapse
|
32
|
Zhang L, Wang Y, Sun Y, Zhang X. Intermittent Fasting and Physical Exercise for Preventing Metabolic Disorders through Interaction with Gut Microbiota: A Review. Nutrients 2023; 15:2277. [PMID: 37242160 PMCID: PMC10224556 DOI: 10.3390/nu15102277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Metabolic disorders entail both health risks and economic burdens to our society. A considerable part of the cause of metabolic disorders is mediated by the gut microbiota. The gut microbial structure and function are susceptible to dietary patterns and host physiological activities. A sedentary lifestyle accompanied by unhealthy eating habits propels the release of harmful metabolites, which impair the intestinal barrier, thereby triggering a constant change in the immune system and biochemical signals. Noteworthy, healthy dietary interventions, such as intermittent fasting, coupled with regular physical exercise can improve several metabolic and inflammatory parameters, resulting in stronger beneficial actions for metabolic health. In this review, the current progress on how gut microbiota may link to the mechanistic basis of common metabolic disorders was discussed. We also highlight the independent and synergistic effects of fasting and exercise interventions on metabolic health and provide perspectives for preventing metabolic disorders.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China; (L.Z.); (Y.W.)
| | - Yuanshang Wang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China; (L.Z.); (Y.W.)
| | - Ying Sun
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China;
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China;
| |
Collapse
|
33
|
Kim HR, Ingram JL, Que LG. Effects of Oxidative Stress on Airway Epithelium Permeability in Asthma and Potential Implications for Patients with Comorbid Obesity. J Asthma Allergy 2023; 16:481-499. [PMID: 37181453 PMCID: PMC10171222 DOI: 10.2147/jaa.s402340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/15/2023] [Indexed: 05/16/2023] Open
Abstract
20 million adults and 4.2 million children in the United States have asthma, a disease resulting in inflammation and airway obstruction in response to various factors, including allergens and pollutants and nonallergic triggers. Obesity, another highly prevalent disease in the US, is a major risk factor for asthma and a significant cause of oxidative stress throughout the body. People with asthma and comorbid obesity are susceptible to developing severe asthma that cannot be sufficiently controlled with current treatments. More research is needed to understand how asthma pathobiology is affected when the patient has comorbid obesity. Because the airway epithelium directly interacts with the outside environment and interacts closely with the immune system, understanding how the airway epithelium of patients with asthma and comorbid obesity is altered compared to that of lean asthma patients will be crucial for developing more effective treatments. In this review, we discuss how oxidative stress plays a role in two chronic inflammatory diseases, obesity and asthma, and propose a mechanism for how these conditions may compromise the airway epithelium.
Collapse
Affiliation(s)
- Haein R Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jennifer L Ingram
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| | - Loretta G Que
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
34
|
Horowitz A, Chanez-Paredes SD, Haest X, Turner JR. Paracellular permeability and tight junction regulation in gut health and disease. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-023-00766-3. [PMID: 37186118 PMCID: PMC10127193 DOI: 10.1038/s41575-023-00766-3] [Citation(s) in RCA: 196] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 05/17/2023]
Abstract
Epithelial tight junctions define the paracellular permeability of the intestinal barrier. Molecules can cross the tight junctions via two distinct size-selective and charge-selective paracellular pathways: the pore pathway and the leak pathway. These can be distinguished by their selectivities and differential regulation by immune cells. However, permeability increases measured in most studies are secondary to epithelial damage, which allows non-selective flux via the unrestricted pathway. Restoration of increased unrestricted pathway permeability requires mucosal healing. By contrast, tight junction barrier loss can be reversed by targeted interventions. Specific approaches are needed to restore pore pathway or leak pathway permeability increases. Recent studies have used preclinical disease models to demonstrate the potential of pore pathway or leak pathway barrier restoration in disease. In this Review, we focus on the two paracellular flux pathways that are dependent on the tight junction. We discuss the latest evidence that highlights tight junction components, structures and regulatory mechanisms, their impact on gut health and disease, and opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Arie Horowitz
- UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, Normandie University, Rouen, France
| | - Sandra D Chanez-Paredes
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xenia Haest
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Stillhart C, Asteriadis A, Bocharova E, Eksteen G, Harder F, Kusch J, Tzakri T, Augustijns P, Matthys C, Vertzoni M, Weitschies W, Reppas C. The impact of advanced age on gastrointestinal characteristics that are relevant to oral drug absorption: An AGePOP review. Eur J Pharm Sci 2023; 187:106452. [PMID: 37098371 DOI: 10.1016/j.ejps.2023.106452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 04/27/2023]
Abstract
The purpose of this review is to summarize the current knowledge on three physiological determinants of oral drug absorption, i.e., gastric emptying, volumes and composition of luminal fluids, and intestinal permeability, in the advanced age population, so that potential knowledge gaps and directions for further research efforts are identified. Published data on gastric emptying rates in older people are conflicting. Also, there are significant knowledge gaps, especially on gastric motility and emptying rates of drugs and of non-caloric fluids. Compared with younger adults, volumes of luminal contents seem to be slightly smaller in older people. Our understanding on the impact of advanced age on luminal physicochemical characteristics is, at best, very limited, whereas the impact of (co)morbidities and geriatric syndromes in the advanced age population has not been addressed to date. The available literature on the effect of advanced age on intestinal permeability is limited, and should be approached with caution, primarily due to the limitations of the experimental methodologies used.
Collapse
Affiliation(s)
| | - Adam Asteriadis
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Ekaterina Bocharova
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Gabriel Eksteen
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Fritz Harder
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium
| | - Jonas Kusch
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodora Tzakri
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Patrick Augustijns
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium
| | - Christophe Matthys
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Maria Vertzoni
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Werner Weitschies
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Christos Reppas
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
36
|
Taladrid D, Rebollo-Hernanz M, Martin-Cabrejas MA, Moreno-Arribas MV, Bartolomé B. Grape Pomace as a Cardiometabolic Health-Promoting Ingredient: Activity in the Intestinal Environment. Antioxidants (Basel) 2023; 12:antiox12040979. [PMID: 37107354 PMCID: PMC10135959 DOI: 10.3390/antiox12040979] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. These components and their metabolites generated at the intestinal level have been shown to play an important role in promoting health locally and systemically. This review focuses on the potential bioactivities of GP in the intestinal environment, which is the primary site of interaction for food components and their biological activities. These mechanisms include (i) regulation of nutrient digestion and absorption (GP has been shown to inhibit enzymes such as α-amylase and α-glucosidase, protease, and lipase, which can help to reduce blood glucose and lipid levels, and to modulate the expression of intestinal transporters, which can also help to regulate nutrient absorption); (ii) modulation of gut hormone levels and satiety (GP stimulates GLP-1, PYY, CCK, ghrelin, and GIP release, which can help to regulate appetite and satiety); (iii) reinforcement of gut morphology (including the crypt-villi structures, which can improve nutrient absorption and protect against intestinal damage); (iv) protection of intestinal barrier integrity (through tight junctions and paracellular transport); (v) modulation of inflammation and oxidative stress triggered by NF-kB and Nrf2 signaling pathways; and (vi) impact on gut microbiota composition and functionality (leading to increased production of SCFAs and decreased production of LPS). The overall effect of GP within the gut environment reinforces the intestinal function as the first line of defense against multiple disorders, including those impacting cardiometabolic health. Future research on GP's health-promoting properties should consider connections between the gut and other organs, including the gut-heart axis, gut-brain axis, gut-skin axis, and oral-gut axis. Further exploration of these connections, including more human studies, will solidify GP's role as a cardiometabolic health-promoting ingredient and contribute to the prevention and management of cardiovascular diseases.
Collapse
Affiliation(s)
- Diego Taladrid
- Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Miguel Rebollo-Hernanz
- Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Maria A Martin-Cabrejas
- Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - Begoña Bartolomé
- Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
| |
Collapse
|
37
|
Guerbette T, Beaumont M, Andriamihaja M, Ciesielski V, Perrin JB, Janvier R, Randuineau G, Leroyer P, Loréal O, Rioux V, Boudry G, Lan A. Obesogenic diet leads to luminal overproduction of the complex IV inhibitor H 2 S and mitochondrial dysfunction in mouse colonocytes. FASEB J 2023; 37:e22853. [PMID: 36939304 DOI: 10.1096/fj.202201971r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/29/2023] [Accepted: 02/20/2023] [Indexed: 03/21/2023]
Abstract
Obesity is characterized by systemic low-grade inflammation associated with disturbances of intestinal homeostasis and microbiota dysbiosis. Mitochondrial metabolism sustains epithelial homeostasis by providing energy to colonic epithelial cells (CEC) but can be altered by dietary modulations of the luminal environment. Our study aimed at evaluating whether the consumption of an obesogenic diet alters the mitochondrial function of CEC in mice. Mice were fed for 22 weeks with a 58% kcal fat diet (diet-induced obesity [DIO] group) or a 10% kcal fat diet (control diet, CTRL). Colonic crypts were isolated to assess mitochondrial function while colonic content was collected to characterize microbiota and metabolites. DIO mice developed obesity, intestinal hyperpermeability, and increased endotoxemia. Analysis of isolated colonic crypt bioenergetics revealed a mitochondrial dysfunction marked by decreased basal and maximal respirations and lower respiration linked to ATP production in DIO mice. Yet, CEC gene expression of mitochondrial respiration chain complexes and mitochondrial dynamics were not altered in DIO mice. In parallel, DIO mice displayed increased colonic bile acid concentrations, associated with higher abundance of Desulfovibrionaceae. Sulfide concentration was markedly increased in the colon content of DIO mice. Hence, chronic treatment of CTRL mouse colon organoids with sodium sulfide provoked mitochondrial dysfunction similar to that observed in vivo in DIO mice while acute exposure of isolated mitochondria from CEC of CTRL mice to sodium sulfide diminished complex IV activity. Our study provides new insights into colon mitochondrial dysfunction in obesity by revealing that increased sulfide production by DIO-induced dysbiosis impairs complex IV activity in mouse CEC.
Collapse
Affiliation(s)
| | - Martin Beaumont
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | | | - Vincent Ciesielski
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France
- Institut Agro, Univ Rennes, INRAE, INSERM, NuMeCan, Rennes, France
| | | | - Régis Janvier
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France
| | | | | | - Olivier Loréal
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France
| | - Vincent Rioux
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France
- Institut Agro, Univ Rennes, INRAE, INSERM, NuMeCan, Rennes, France
| | - Gaëlle Boudry
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France
| | - Annaïg Lan
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France
- UMR PNCA, AgroParisTech, INRAE, Université Paris-Saclay, Palaiseau, France
| |
Collapse
|
38
|
Jamar G, Pisani LP. Inflammatory crosstalk between saturated fatty acids and gut microbiota-white adipose tissue axis. Eur J Nutr 2023; 62:1077-1091. [PMID: 36484808 DOI: 10.1007/s00394-022-03062-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE High-fat diets have different metabolic responses via gut dysbiosis. In this review, we discuss the complex interaction between the intake of long- and medium-chain saturated fatty acids (SFAs), gut microbiota, and white adipose tissue (WAT) dysfunction, particularly focusing on the type of fat. RESULTS The evidence for the impact of dietary SFAs on the gut microbiota-WAT axis has been mostly derived from in vitro and animal models, but there is now also evidence emerging from human studies. Most current reports show that, in response to high long- and medium-chain SFA diets, WAT functions are altered and can be modulated from microbial metabolites in several manners; and it appears to be also modified under conditions of obesity. SFAs overconsumption can reduce bacterial content and disrupt the gut environment. Both long- and medium-chain SFAs may contribute to proinflammatory cytokines release and TLR4 cascade signaling, either by regulation of endotoxemia markers or myristoylated protein. Palmitic and stearic acids have pathological effects on the intestinal epithelium, microbes, and inflammatory and lipogenic WAT profiles. While myristic and lauric acids display somewhat controversial outcomes, from probiotic effects and contribution to weight loss to cardiometabolic alterations from WAT inflammation. CONCLUSION Identifying an interference of distinct types of SFA in the binomial gut microbiota-WAT may elucidate essential mechanisms of metabolic endotoxemia, which may be the key to triggering obesity, innovating the therapeutic tools for this disease.
Collapse
Affiliation(s)
- Giovana Jamar
- Post-Graduate Program in Nutrition, Federal University of São Paulo-UNIFESP, São Paulo, SP, Brazil
- Department of Biosciences, Institute of Health and Society, Laboratory of Nutrition and Endocrine Physiology, Federal University of São Paulo-UNIFESP, Rua Silva Jardim, 136/311, Vila Mathias, Santos, SP, 11015-020, Brazil
| | - Luciana Pellegrini Pisani
- Post-Graduate Program in Nutrition, Federal University of São Paulo-UNIFESP, São Paulo, SP, Brazil.
- Department of Biosciences, Institute of Health and Society, Laboratory of Nutrition and Endocrine Physiology, Federal University of São Paulo-UNIFESP, Rua Silva Jardim, 136/311, Vila Mathias, Santos, SP, 11015-020, Brazil.
| |
Collapse
|
39
|
Asuncion P, Liu C, Castro R, Yon V, Rosas M, Hooshmand S, Kern M, Hong MY. The effects of fresh mango consumption on gut health and microbiome - Randomized controlled trial. Food Sci Nutr 2023; 11:2069-2078. [PMID: 37051355 PMCID: PMC10084975 DOI: 10.1002/fsn3.3243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/19/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Some individual fruits have been widely researched for their effects on overall health and correlations with chronic diseases. The beneficial effects of mango supplementation on metabolic diseases have been detected. However, research into mango consumption on gut health, including the microbiome, is limited to processed mango preparations or peels. Our goal was to examine the effects of fresh mango consumption on the gut microbiome, gut permeability proteins, and bowel movement habits in overweight/obese individuals. In a 12-week crossover design study, 27 participants consumed 100 kcal/day of either mangos or low-fat cookies with a washout period of 4 weeks. The mango intervention showed higher Shannon-Wiener and Simpson alpha diversity indices of the microbiome than the low-fat cookie intervention in week 4. Significant differences in beta diversity of the microbiome were found between diet interventions at week 12. Mango consumption increased the abundance of Prevotella maculosa, Corynebacterium pyruviciproducens, and Mogibacterium timidum while it decreased Prevotella copri. Low-fat cookie intake increased Cyanobacterium aponinum and Desulfovibrio butyratiphilus and reduced Alloscardovia omnicolens. There were no significant differences in circulating gut permeability protein (ZO-1, claudin-2, and occludin) levels. There was a slight increase in the amount of bowel movement with mango consumption, but no significant findings for frequency, consistency, strain, pain, and constipation in bowel movement between trials. Given these results, it can be concluded that consumption of mango may have positive effects on the gut health, which may yield possible health benefits for chronic disease that deserve further study.
Collapse
Affiliation(s)
- Pia Asuncion
- School of Exercise and Nutritional SciencesSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Changqi Liu
- School of Exercise and Nutritional SciencesSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Robert Castro
- School of Exercise and Nutritional SciencesSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Viviana Yon
- School of Exercise and Nutritional SciencesSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Martin Rosas
- School of Exercise and Nutritional SciencesSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Shirin Hooshmand
- School of Exercise and Nutritional SciencesSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Mark Kern
- School of Exercise and Nutritional SciencesSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Mee Young Hong
- School of Exercise and Nutritional SciencesSan Diego State UniversitySan DiegoCaliforniaUSA
| |
Collapse
|
40
|
Muto H, Honda T, Tanaka T, Yokoyama S, Yamamoto K, Ito T, Imai N, Ishizu Y, Maeda K, Ishikawa T, Adachi S, Sato C, Tsuji NM, Ishigami M, Fujishiro M, Kawashima H. Proteomic Analysis Reveals Changes in Tight Junctions in the Small Intestinal Epithelium of Mice Fed a High-Fat Diet. Nutrients 2023; 15:nu15061473. [PMID: 36986203 PMCID: PMC10056729 DOI: 10.3390/nu15061473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
The impact of a high-fat diet (HFD) on intestinal permeability has been well established. When bacteria and their metabolites from the intestinal tract flow into the portal vein, inflammation in the liver is triggered. However, the exact mechanism behind the development of a leaky gut caused by an HFD is unclear. In this study, we investigated the mechanism underlying the leaky gut related to an HFD. C57BL/6J mice were fed an HFD or control diet for 24 weeks, and their small intestine epithelial cells (IECs) were analyzed using deep quantitative proteomics. A significant increase in fat accumulation in the liver and a trend toward increased intestinal permeability were observed in the HFD group compared to the control group. Proteomics analysis of the upper small intestine epithelial cells identified 3684 proteins, of which 1032 were differentially expressed proteins (DEPs). Functional analysis of DEPs showed significant enrichment of proteins related to endocytosis, protein transport, and tight junctions (TJ). Expression of Cldn7 was inversely correlated with intestinal barrier function and strongly correlated with that of Epcam. This study will make important foundational contributions by providing a comprehensive depiction of protein expression in IECs affected by HFD, including an indication that the Epcam/Cldn7 complex plays a role in leaky gut.
Collapse
Affiliation(s)
- Hisanori Muto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Taku Tanaka
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shinya Yokoyama
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kenta Yamamoto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takanori Ito
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Norihiro Imai
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoji Ishizu
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Keiko Maeda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tetsuya Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shungo Adachi
- Biological Systems Control Team, Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Chikara Sato
- School of Integrative and Global Majors (SIGMA), Tsukuba University, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
- Biological Science Course, Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuou-ku, Sagamihara 252-5258, Japan
- Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamimachi, Itabashi, Tokyo 173-8610, Japan
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamimachi, Itabashi, Tokyo 173-8610, Japan
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8560, Japan
| | - Noriko M Tsuji
- Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamimachi, Itabashi, Tokyo 173-8610, Japan
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamimachi, Itabashi, Tokyo 173-8610, Japan
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8560, Japan
- Microbiology and Immunology, School of Dentistry at Matsudo, Nihon University, 22-870-1 Sakae-cho-nishi, Tokyo 271-8587, Japan
- Department of Food Science, Jumonji University, 2-1-28 Sugasawa, Niiza 352-8510, Japan
| | - Masatoshi Ishigami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
41
|
Niu G, Jian T, Gai Y, Chen J. Microbiota and plant-derived vesicles that serve as therapeutic agents and delivery carriers to regulate metabolic syndrome. Adv Drug Deliv Rev 2023; 196:114774. [PMID: 36906231 DOI: 10.1016/j.addr.2023.114774] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/13/2023]
Abstract
The gut is a fundamental organ in controlling human health. Recently, researches showed that substances in the intestine can alter the course of many diseases through the intestinal epithelium, especially intestinal flora and exogenously ingested plant vesicles that can be transported over long distances to various organs. This article reviews the current knowledge on extracellular vesicles in modulating gut homeostasis, inflammatory response and numerous metabolic disease that share obesity as a co-morbidity. These complex systemic diseases that are difficult to cure, but can be managed by some bacterial and plant vesicles. Vesicles, due to their digestive stability and modifiable properties, have emerged as novel and targeted drug delivery vehicles for effective treatment of metabolic diseases.
Collapse
Affiliation(s)
- Guanting Niu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Tunyu Jian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yanan Gai
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jian Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
42
|
Bastings JJAJ, Venema K, Blaak EE, Adam TC. Influence of the gut microbiota on satiety signaling. Trends Endocrinol Metab 2023; 34:243-255. [PMID: 36870872 DOI: 10.1016/j.tem.2023.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 03/06/2023]
Abstract
Recent studies show a link between the gut microbiota and the regulation of satiety and energy intake, processes that contribute to the development and pathophysiology of metabolic diseases. However, this link is predominantly established in animal and in vitro studies, whereas human intervention studies are scarce. In this review we focus on recent evidence linking satiety and the gut microbiome, with specific emphasis on gut microbial short-chain fatty acids (SCFAs). Based on a systematic search we provide an overview of human studies linking the intake of prebiotics with gut microbial alterations and satiety signaling. Our outcomes highlight the importance of in-depth examination of the gut microbiota in relation to satiety and provide insights into recent and future studies in this field.
Collapse
Affiliation(s)
- Jacco J A J Bastings
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Koen Venema
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands; Centre for Healthy Eating and Food Innovation, Maastricht University, Campus Venlo, Venlo, The Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| | - Tanja C Adam
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
43
|
Ji L, Deng H, Xue H, Wang J, Hong K, Gao Y, Kang X, Fan G, Huang W, Zhan J, You Y. Research progress regarding the effect and mechanism of dietary phenolic acids for improving nonalcoholic fatty liver disease via gut microbiota. Compr Rev Food Sci Food Saf 2023; 22:1128-1147. [PMID: 36717374 DOI: 10.1111/1541-4337.13106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 02/01/2023]
Abstract
Phenolic acids (PAs), a class of small bioactive molecules widely distributed in food and mainly found as secondary plant metabolites, present significant advantages such as antioxidant activity and other health benefits. The global epidemic of nonalcoholic fatty liver disease (NAFLD) is becoming a serious public health problem. Existing studies showed that gut microbiota (GM) dysbiosis is highly associated with the occurrence and development of NAFLD. In recent years, progress has been made in the study of the relationship among PA compounds, GM, and NAFLD. PAs can regulate the composition and functions of the GM to promote human health, while GM can increase the dietary sources of PAs and improve its bioavailability. This paper discussed PAs, GM, and their interrelationship while introducing several representative dietary PA sources and examining the absorption and metabolism of PAs mediated by GM. It also summarizes the effect and mechanisms of PAs in improving and regulating NAFLD via GM and their metabolites. This helps to better evaluate the potential preventive effect of PAs on NAFLD via the regulation of GM and expands the utilization of PAs and PA-rich food resources.
Collapse
Affiliation(s)
- Lin Ji
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Huan Deng
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Huimin Xue
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Jiting Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Kexin Hong
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yunxiao Gao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Xiping Kang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Guanghe Fan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
44
|
Mei R, Wang Y, Zhao X, Shi S, Wang X, Zhou N, Shen D, Kang Q, Chen L. Skin Interstitial Fluid-Based SERS Tags Labeled Microneedles for Tracking of Peritonitis Progression and Treatment Effect. ACS Sens 2023; 8:372-380. [PMID: 36638363 DOI: 10.1021/acssensors.2c02409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Skin interstitial fluid (ISF)-based microneedle (MN) sensing has recently exhibited wide promise for the minimally invasive and painless diagnosis of diseases. However, it is still a great challenge to diagnose more disease types due to the limited in situ sensing techniques and insufficient ISF biomarker sources. Herein, ISF is employed to pioneer the tracking of acute peritonitis progression via surface-enhanced Raman scattering (SERS) tags labeled MNs patch technique. Densely deposited core-satellite gold nanoparticles and 3-mercaptophenylboronic acid as a Raman reporter enable the developed MNs patch with high sensitivity and selectivity in the determination of H2O2, an indicator of peritonitis development. Importantly, the MNs patch not only reliably tracks the different states of peritonitis but also evaluates the efficacy of drugs in the treatment of peritonitis, as evidenced by the altered SERS signal consistent with plasma pro-inflammatory factor (TNF-α) and peritoneum pathological manifestations. Interestingly, the major source of H2O2 in ISF of acute peritonitis investigated may not be through conventional blood capillary filtration pathway. This work provides a new route and technique for the early diagnosis of acute peritonitis and the evaluation of drug therapy effects. The developed MNs patch is promising to serve as a universal sensing tool to greatly enrich the variety and prospect of ISF-based disease diagnosis.
Collapse
Affiliation(s)
- Rongchao Mei
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.,CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.,School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xizhen Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Shang Shi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Na Zhou
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Dazhong Shen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|
45
|
Gastrointestinal consequences of lipopolysaccharide-induced lung inflammation. Inflamm Res 2023; 72:57-74. [PMID: 36322182 PMCID: PMC9628607 DOI: 10.1007/s00011-022-01657-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/15/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Respiratory inflammation is the body's response to lung infection, trauma or hypersensitivity and is often accompanied by comorbidities, including gastrointestinal (GI) symptoms. Why respiratory inflammation is accompanied by GI dysfunction remains unclear. Here, we investigate the effect of lipopolysaccharide (LPS)-induced lung inflammation on intestinal barrier integrity, tight-junctions, enteric neurons and inflammatory marker expression. METHODS Female C57bl/6 mice (6-8 weeks) were intratracheally administered LPS (5 µg) or sterile saline, and assessed after either 24 or 72 h. Total and differential cell counts in bronchoalveolar lavage fluid (BALF) were used to evaluate lung inflammation. Intestinal barrier integrity was assessed via cross sectional immunohistochemistry of tight junction markers claudin-1, claudin-4 and EpCAM. Changes in the enteric nervous system (ENS) and inflammation in the intestine were quantified immunohistochemically using neuronal markers Hu + and nNOS, glial markers GFAP and S100β and pan leukocyte marker CD45. RESULTS Intratracheal LPS significantly increased the number of neutrophils in BALF at 24 and 72 h. These changes were associated with an increase in CD45 + cells in the ileal mucosa at 24 and 72 h, increased goblet cell expression at 24 h, and increased expression of EpCAM at 72 h. LPS had no effect on the expression of GFAP, S100β, nor the number of Hu + neurons or proportion of nNOS neurons in the myenteric plexus. CONCLUSIONS Intratracheal LPS administration induces inflammation in the ileum that is associated with enhanced expression of EpCAM, decreased claudin-4 expression and increased goblet cell density, these changes may contribute to systemic inflammation that is known to accompany many inflammatory diseases of the lung.
Collapse
|
46
|
Tahapary DL, Fatya AI, Kurniawan F, Marcella C, Rinaldi I, Tarigan TJE, Harbuwono DS, Yunir E, Soewondo P, Purnamasari D. Increased intestinal-fatty acid binding protein in obesity-associated type 2 diabetes mellitus. PLoS One 2023; 18:e0279915. [PMID: 36701395 PMCID: PMC9879407 DOI: 10.1371/journal.pone.0279915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/18/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Obesity is a traditional risk factor for type 2 diabetes mellitus (T2DM). However, recent studies reported that metabolically unhealthy obesity (MUO) exerts a higher risk of developing T2DM than metabolically healthy obesity (MHO) because of its higher state of insulin resistance. This may happen due to metabolic endotoxemia through gut dysbiosis and increased intestinal permeability. Our study aimed to know the association of intestinal permeability using intestinal fatty acid-binding protein (I-FABP) with obesity-related T2DM patients in Indonesia. METHODS This was a cross-sectional study that recruited 63 participants with obesity defined using body mass index (BMI) classification for the Asia-Pacific population (BMI ≥25 kg/m2). All participants were then grouped into T2DM and non-T2DM based on American Diabetes Association (ADA) diagnostic criteria. The I-FABP levels were measured using the enzyme-linked immunosorbent assay method. RESULTS The I-FABP level of T2DM group was higher compared to non-T2DM group, namely 2.82 (1.23) ng/mL vs. 1.78 (0.81) ng/mL (p<0.001; mean difference 1.033 with 95% CI 0.51-1.55). This difference was not attenuated even after adjustment for age. The fitted regression model using linear regression was: i-FABP = 1.787+1.034*(DM) (R2 = 18.20%, standardized ß = 0.442, p<0.001). CONCLUSIONS This study underscores the association of intestinal permeability with T2DM in people with obesity and supports the evidence of the potential role of intestinal permeability in the pathogenesis of obesity-related T2DM.
Collapse
Affiliation(s)
- Dicky L. Tahapary
- Division of Endocrinology, Metabolism, and Diabetes, Dep artment of Internal Medicine, Faculty of Medicine Universitas Indonesia, Depok City, Indonesia
- Metabolic, Cardiovascular, and Aging Research Cluster, The Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- * E-mail: (DLT); (PS)
| | - Atikah I. Fatya
- Department of Internal Medicine, Fa culty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Division of Hematology and Medical Oncology, Depa rtment of Internal Medicine, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Farid Kurniawan
- Division of Endocrinology, Metabolism, and Diabetes, Dep artment of Internal Medicine, Faculty of Medicine Universitas Indonesia, Depok City, Indonesia
- Metabolic, Cardiovascular, and Aging Research Cluster, The Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Cicilia Marcella
- Metabolic, Cardiovascular, and Aging Research Cluster, The Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ikhwan Rinaldi
- Department of Internal Medicine, Fa culty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Division of Hematology and Medical Oncology, Depa rtment of Internal Medicine, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Clinical Epidemiology and Evidence-based Medicine Unit, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Tri J. E. Tarigan
- Division of Endocrinology, Metabolism, and Diabetes, Dep artment of Internal Medicine, Faculty of Medicine Universitas Indonesia, Depok City, Indonesia
- Metabolic, Cardiovascular, and Aging Research Cluster, The Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Dante S. Harbuwono
- Division of Endocrinology, Metabolism, and Diabetes, Dep artment of Internal Medicine, Faculty of Medicine Universitas Indonesia, Depok City, Indonesia
- Metabolic, Cardiovascular, and Aging Research Cluster, The Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Em Yunir
- Division of Endocrinology, Metabolism, and Diabetes, Dep artment of Internal Medicine, Faculty of Medicine Universitas Indonesia, Depok City, Indonesia
- Metabolic, Cardiovascular, and Aging Research Cluster, The Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Pradana Soewondo
- Division of Endocrinology, Metabolism, and Diabetes, Dep artment of Internal Medicine, Faculty of Medicine Universitas Indonesia, Depok City, Indonesia
- Metabolic, Cardiovascular, and Aging Research Cluster, The Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- * E-mail: (DLT); (PS)
| | - Dyah Purnamasari
- Division of Endocrinology, Metabolism, and Diabetes, Dep artment of Internal Medicine, Faculty of Medicine Universitas Indonesia, Depok City, Indonesia
- Metabolic, Cardiovascular, and Aging Research Cluster, The Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
47
|
Zhang Y, Zhu X, Yu X, Novák P, Gui Q, Yin K. Enhancing intestinal barrier efficiency: A novel metabolic diseases therapy. Front Nutr 2023; 10:1120168. [PMID: 36937361 PMCID: PMC10018175 DOI: 10.3389/fnut.2023.1120168] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Physiologically, the intestinal barrier plays a crucial role in homeostasis and nutrient absorption and prevents pathogenic entry, harmful metabolites, and endotoxin absorption. Recent advances have highlighted the association between severely damaged intestinal barriers and diabetes, obesity, fatty liver, and cardiovascular diseases. Evidence indicates that an abated intestinal barrier leads to endotoxemia associated with systemic inflammation, insulin resistance, diabetes, and lipid accumulation, accelerating obesity and fatty liver diseases. Nonetheless, the specific mechanism of intestinal barrier damage and the effective improvement of the intestinal barrier remain to be explored. Here, we discuss the crosstalk between changes in the intestinal barrier and metabolic disease. This paper also highlights how to improve the gut barrier from the perspective of natural medicine, gut microbiota remodeling, lifestyle interventions, and bariatric surgery. Finally, potential challenges and prospects for the regulation of the gut barrier-metabolic disease axis are discussed, which may provide theoretical guidance for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yaoyuan Zhang
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiao Zhu
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Xinyuan Yu
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Petr Novák
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Qingjun Gui
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Qingjun Gui, ; Kai Yin,
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Qingjun Gui, ; Kai Yin,
| |
Collapse
|
48
|
Ojo BA, Alake SE, Kaur A, Wong SY, Keirns B, Ritchey JW, Chowanadisai W, Lin D, Clarke S, Smith BJ, Lucas EA. Supplemental wheat germ modulates phosphorylation of STAT3 in the gut and NF-κBp65 in the adipose tissue of mice fed a Western diet. Curr Dev Nutr 2023; 7:100023. [PMID: 37181127 PMCID: PMC10100941 DOI: 10.1016/j.cdnut.2022.100023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022] Open
Abstract
Background Commensal gut bacteria, including Lactobacillus, can produce metabolites that stimulate the release of gut antimicrobial peptides (AMPs) via the signal transducer and activator of transcription (STAT)3 pathway and prevent obesity-associated leaky gut and chronic inflammation. We have previously reported that wheat germ (WG) selectively increased cecal Lactobacillus in obese mice. Objectives This study investigated the effects of WG on gut STAT3 activation and AMPs (Reg3γ and Reg3β) as well as the potential of WG to inhibit nuclear Nf-κB-activation and immune cell infiltration in the visceral adipose tissue (VAT) of mice fed a Western diet (i.e., high-fat and sucrose diet [HFS]). Methods Six-wk-old male C57BL/6 mice were randomly assigned to 4 groups (n = 12/group): control (C, 10% fat and sucrose kcal) or HFS (45% fat and 26% sucrose kcal) diet with or without 10% WG (wt/wt) for 12 wk. Assessments include serum metabolic parameters jejunal AMPs genes, inflammatory markers, and phosphorylation of STAT3 as well as VAT NF-κBp65. Independent and interaction effects of HFS and WG were analyzed with a 2-factor ANOVA. Results WG significantly improved markers of insulin resistance and upregulated jejunal Il10 and Il22 genes. The HFS + WG group had a 15-fold increase in jejunal pSTAT3 compared with the HFS group. Consequently, WG significantly upregulated jejunal mRNA expression of Reg3γ and Reg3β. The HFS group had a significantly higher VAT NF-κBp65 phosphorylation than the C group, while the HFS + WG group suppressed this to the level of C. Moreover, VAT Il6 and Lbp genes were downregulated in the HFS + WG group compared with HFS. Genes related to macrophage infiltration in the VAT were repressed in the WG-fed mice. Conclusion These findings show the potential of WG to influence vital regulatory pathways in the gut and adipose tissue which may reduce the chronic inflammatory burden on these tissues that are important targets in obesity and insulin resistance.
Collapse
Affiliation(s)
- Babajide A. Ojo
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Sanmi E. Alake
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Amritpal Kaur
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Siau Yen Wong
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Bryant Keirns
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Jerry W. Ritchey
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Winyoo Chowanadisai
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Dingbo Lin
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Stephen Clarke
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Brenda J. Smith
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edralin A. Lucas
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
49
|
Lu J, Jin X, Yang S, Li Y, Wang X, Wu M. Immune mechanism of gut microbiota and its metabolites in the occurrence and development of cardiovascular diseases. Front Microbiol 2022; 13:1034537. [PMID: 36590426 PMCID: PMC9794627 DOI: 10.3389/fmicb.2022.1034537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
The risk of cardiovascular disease (CVD) is associated with unusual changes in the human gut microbiota, most commonly coronary atherosclerotic heart disease, hypertension, and heart failure. Immune mechanisms maintain a dynamic balance between the gut microbiota and the host immune system. When one side changes and the balance is disrupted, different degrees of damage are inflicted on the host and a diseased state gradually develops over time. This review summarizes the immune mechanism of the gut microbiota and its metabolites in the occurrence of common CVDs, discusses the relationship between gut-heart axis dysfunction and the progression of CVD, and lists the currently effective methods of regulating the gut microbiota for the treatment of CVDs.
Collapse
|
50
|
Islam T, Albracht-Schulte K, Ramalingam L, Schlabritz-Lutsevich N, Park OH, Zabet-Moghaddam M, Kalupahana NS, Moustaid-Moussa N. Anti-inflammatory mechanisms of polyphenols in adipose tissue: role of gut microbiota, intestinal barrier integrity and zinc homeostasis. J Nutr Biochem 2022; 115:109242. [PMID: 36442715 DOI: 10.1016/j.jnutbio.2022.109242] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/18/2022] [Accepted: 10/14/2022] [Indexed: 11/27/2022]
Abstract
Obesity is associated with an imbalance of micro-and macro-nutrients, gut dysbiosis, and a "leaky" gut phenomenon. Polyphenols, such as curcumin, resveratrol, and anthocyanins may alleviate the systemic effects of obesity, potentially by improving gut microbiota, intestinal barrier integrity (IBI), and zinc homeostasis. The essential micronutrient zinc plays a crucial role in the regulation of enzymatic processes, including inflammation, maintenance of the microbial ecology, and intestinal barrier integrity. In this review, we focus on IBI- which prevents intestinal lipopolysaccharide (LPS) leakage - as a critical player in polyphenol-mediated protective effects against obesity-associated white adipose tissue (WAT) inflammation. This occurs through mechanisms that block the movement of the bacterial endotoxin LPS across the gut barrier. Available research suggests that polyphenols reduce WAT and systemic inflammation via crosstalk with inflammatory NF-κB, the mammalian target of rapamycin (mTOR) signaling and zinc homeostasis.
Collapse
Affiliation(s)
- Tariful Islam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | - Kembra Albracht-Schulte
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | - Natalia Schlabritz-Lutsevich
- Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Advanced Fertility Center, Odessa, Texas, USA
| | - Oak-Hee Park
- Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; College of Human Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Masoud Zabet-Moghaddam
- Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Center for Biotechnology and Genomics, Texas Tech University, Lubbock, Texas, USA
| | - Nishan S Kalupahana
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Department of Physiology, University of Peradeniya, Peradeniya, Sri Lanka
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA.
| |
Collapse
|