1
|
Wang J, Shen Y, Chen H, Guan J, Li Z, Liu X, Guo S, Wang L, Yan B, Jin C, Li H, Guo T, Sun Y, Zhang W, Zhang Z, Tian Y, Tian Z. Non-lethal sonodynamic therapy inhibits high glucose and palmitate-induced macrophage inflammasome activation through mtROS-DRP1-mitophagy pathway. FASEB J 2024; 38:e70178. [PMID: 39556373 DOI: 10.1096/fj.202402008r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/18/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024]
Abstract
Obesity plays a crucial role in the development and progression of type 2 diabetes mellitus (T2DM) by causing excessive release of free fatty acid from adipose tissue, which in turn leads to systemic infiltration of macrophages. In individuals with T2DM, the infiltration of macrophages into pancreatic islets results in islet inflammation that impairs beta cell function, as evidenced by increased apoptosis and decreased glucose-stimulated insulin secretion. The present study aimed to investigate the effects of non-lethal sonodynamic therapy (NL-SDT) on bone marrow-derived macrophages (BMDMs) exposed to high glucose and palmitic acid (HG/PA). These findings indicate that NL-SDT facilitates the expression of DRP1 through the transient production of mitochondrial ROS, which subsequently promotes mitophagy. This mitophagy was shown to limit the activation of the NLRP3 inflammasome and the secretion of IL-1β in BMDMs exposed to HG/PA. In co-culture experiments, beta cells exhibited significant dysfunction when interacting with HG/PA-treated BMDMs. However, this dysfunction was markedly alleviated when the BMDMs had undergone NL-SDT treatment. Moreover, NL-SDT was found to lower blood glucose levels and elevate serum insulin concentrations in db/db mice. Furthermore, NL-SDT effectively reduced the infiltration of F4/80-positive macrophages and the expression of CASP1 within islets. These findings provide fundamental insights into the mechanisms through which NL-SDT may serve as a promising approach for the treatment of T2DM.
Collapse
Affiliation(s)
- Jiayu Wang
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Yicheng Shen
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Heyu Chen
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Jinwei Guan
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Zhitao Li
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Xianna Liu
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Shuyuan Guo
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
- Department of Cardiology, 1st Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P. R. China
| | - Linxin Wang
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
- Department of Cardiology, 1st Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P. R. China
| | - Baoyue Yan
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Chenrun Jin
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - He Li
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Tian Guo
- Medical College of Jining Medical University, Jining, P. R. China
| | - Yun Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Weihua Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Zhiguo Zhang
- School of Physics, Harbin Institute of Technology, Harbin, P. R. China
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, P. R. China
| | - Ye Tian
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
- Department of Cardiology, 1st Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P. R. China
| | - Zhen Tian
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| |
Collapse
|
2
|
Białek W, Hryniewicz-Jankowska A, Czechowicz P, Sławski J, Collawn JF, Czogalla A, Bartoszewski R. The lipid side of unfolded protein response. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159515. [PMID: 38844203 DOI: 10.1016/j.bbalip.2024.159515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Although our current knowledge of the molecular crosstalk between the ER stress, the unfolded protein response (UPR), and lipid homeostasis remains limited, there is increasing evidence that dysregulation of either protein or lipid homeostasis profoundly affects the other. Most research regarding UPR signaling in human diseases has focused on the causes and consequences of disrupted protein folding. The UPR itself consists of very complex pathways that function to not only maintain protein homeostasis, but just as importantly, modulate lipid biogenesis to allow the ER to adjust and promote cell survival. Lipid dysregulation is known to activate many aspects of the UPR, but the complexity of this crosstalk remains a major research barrier. ER lipid disequilibrium and lipotoxicity are known to be important contributors to numerous human pathologies, including insulin resistance, liver disease, cardiovascular diseases, neurodegenerative diseases, and cancer. Despite their medical significance and continuous research, however, the molecular mechanisms that modulate lipid synthesis during ER stress conditions, and their impact on cell fate decisions, remain poorly understood. Here we summarize the current view on crosstalk and connections between altered lipid metabolism, ER stress, and the UPR.
Collapse
Affiliation(s)
- Wojciech Białek
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | - Paulina Czechowicz
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
3
|
Nicholas DA, Mbongue JC, Garcia-Pérez D, Sorensen D, Ferguson Bennit H, De Leon M, Langridge WHR. Exploring the Interplay between Fatty Acids, Inflammation, and Type 2 Diabetes. IMMUNO 2024; 4:91-107. [PMID: 39606781 PMCID: PMC11600342 DOI: 10.3390/immuno4010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Around 285 million people worldwide currently have type 2 diabetes and it is projected that this number will be surpassed by 2030. Therefore, it is of the utmost importance to enhance our comprehension of the disease's development. The regulation of diet, obesity, and inflammation in type 2 diabetes is believed to play a crucial role in enhancing insulin sensitivity and reducing the risk of onset diabetes. Obesity leads to an increase in visceral adipose tissue, which is a prominent site of inflammation in type 2 diabetes. Dyslipidemia, on the other hand, plays a significant role in attracting activated immune cells such as macrophages, dendritic cells, T cells, NK cells, and B cells to visceral adipose tissue. These immune cells are a primary source of pro-inflammatory cytokines that are believed to promote insulin resistance. This review delves into the influence of elevated dietary free saturated fatty acids and examines the cellular and molecular factors associated with insulin resistance in the initiation of inflammation induced by obesity. Furthermore, it explores novel concepts related to diet-induced inflammation and its relationship with type 2 diabetes.
Collapse
Affiliation(s)
- Dequina A. Nicholas
- School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Jacques C. Mbongue
- Department of Biological Sciences, School of Arts and Sciences, Oakwood University, Huntsville, AL 35896, USA
| | - Darysbel Garcia-Pérez
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 11085, USA
- Division of Molecular Genetics and Microbiology, School of Medicine Alumni Hall, Loma Linda University, Rm 102, 11021 Campus Street, Loma Linda, CA 92350, USA
| | - Dane Sorensen
- Center for Perinatal Biology, Division of Physiology, Loma Linda School of Medicine, Rm A572, 11234 Anderson Street, Loma Linda, CA 92350, USA
| | - Heather Ferguson Bennit
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 11085, USA
| | - Marino De Leon
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 11085, USA
| | - William H. R. Langridge
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 11085, USA
| |
Collapse
|
4
|
Bandet CL, Tan-Chen S, Ali-Berrada S, Campana M, Poirier M, Blachnio-Zabielska A, Pais-de-Barros JP, Rouch C, Ferré P, Foufelle F, Le Stunff H, Hajduch E. Ceramide analogue C2-cer induces a loss in insulin sensitivity in muscle cells through the salvage/recycling pathway. J Biol Chem 2023:104815. [PMID: 37178918 DOI: 10.1016/j.jbc.2023.104815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Ceramides have been shown to play a major role in the onset of skeletal muscle insulin resistance and therefore in the prevalence of type 2 diabetes (T2D). However, many of the studies involved in the discovery of deleterious ceramide actions used a non-physiological cell-permeable short-chain ceramide analogue, the C2-ceramide (C2-cer). In the present study, we determined how C2-cer promotes insulin resistance in muscle cells. We demonstrate that C2-cer enters the salvage/recycling pathway and becomes de-acylated, yielding sphingosine, re-acylation of which depends on the availability of long chain fatty acids provided by the lipogenesis pathway in muscle cells. Importantly, we show these salvaged ceramides are actually responsible for the inhibition of insulin signaling induced by C2-cer. Interestingly, we also show that the exogenous and endogenous mono-unsaturated fatty acid oleate prevents C2-cer to be recycled into endogenous ceramide species in a diacylglycerol O-acyltransferase 1 (DGAT1)-dependent mechanism, which forces free fatty acid metabolism towards triacylglyceride production. Altogether, the study highlights for the first time that C2-cer induces a loss in insulin sensitivity through the salvage/recycling pathway in muscle cells. This study also validates C2-cer as a convenient tool to decipher mechanisms by which long-chain ceramides mediate insulin resistance in muscle cells and suggests that in addition to the de novo ceramide synthesis, recycling of ceramide could contribute to muscle insulin resistance observed in obesity and T2D.
Collapse
Affiliation(s)
- Cécile L Bandet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Sophie Tan-Chen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Sarah Ali-Berrada
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Mélanie Campana
- Université Paris-Saclay, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Saclay, France
| | - Maxime Poirier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | | | - Jean-Paul Pais-de-Barros
- Lipidomics Core Facility, INSERM UMR1231 - Université Bourgogne Franche Comté, 15 Boulevard Mal de Lattre de Tassigny, F-21000 Dijon, France
| | - Claude Rouch
- Université de Paris Cité, Functional and Adaptive Biology Unit, UMR 8251, CNRS, Paris, France
| | - Pascal Ferré
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Fabienne Foufelle
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Hervé Le Stunff
- Université Paris-Saclay, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Saclay, France
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France.
| |
Collapse
|
5
|
Richter E, Geetha T, Burnett D, Broderick TL, Babu JR. The Effects of Momordica charantia on Type 2 Diabetes Mellitus and Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054643. [PMID: 36902074 PMCID: PMC10002567 DOI: 10.3390/ijms24054643] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
T2DM is a complex metabolic disorder characterized by hyperglycemia and glucose intolerance. It is recognized as one of the most common metabolic disorders and its prevalence continues to raise major concerns in healthcare globally. Alzheimer's disease (AD) is a gradual neurodegenerative brain disorder characterized by the chronic loss of cognitive and behavioral function. Recent research suggests a link between the two diseases. Considering the shared characteristics of both diseases, common therapeutic and preventive agents are effective. Certain bioactive compounds such as polyphenols, vitamins, and minerals found in vegetables and fruits can have antioxidant and anti-inflammatory effects that allow for preventative or potential treatment options for T2DM and AD. Recently, it has been estimated that up to one-third of patients with diabetes use some form of complementary and alternative medicine. Increasing evidence from cell or animal models suggests that bioactive compounds may have a direct effect on reducing hyperglycemia, amplifying insulin secretion, and blocking the formation of amyloid plaques. One plant that has received substantial recognition for its numerous bioactive properties is Momordica charantia (M. charantia), otherwise known as bitter melon, bitter gourd, karela, and balsam pear. M. charantia is utilized for its glucose-lowering effects and is often used as a treatment for diabetes and related metabolic conditions amongst the indigenous populations of Asia, South America, India, and East Africa. Several pre-clinical studies have documented the beneficial effects of M. charantia through various postulated mechanisms. Throughout this review, the underlying molecular mechanisms of the bioactive components of M. charantia will be highlighted. More studies will be necessary to establish the clinical efficacy of the bioactive compounds within M. charantia to effectively determine its pertinence in the treatment of metabolic disorders and neurodegenerative diseases, such as T2DM and AD.
Collapse
Affiliation(s)
- Erika Richter
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Donna Burnett
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Tom L. Broderick
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
- Correspondence: ; Tel.: +1-223-844-3840
| |
Collapse
|
6
|
Abstract
Insulin action is impaired in type 2 diabetes. The functions of the hormone are an integrated product of insulin secretion from pancreatic β-cells and insulin clearance by receptor-mediated endocytosis and degradation, mostly in liver (hepatocytes) and, to a lower extent, in extrahepatic peripheral tissues. Substantial evidence indicates that genetic or acquired abnormalities of insulin secretion or action predispose to type 2 diabetes. In recent years, along with the discovery of the molecular foundation of receptor-mediated insulin clearance, such as through the membrane glycoprotein CEACAM1, a consensus has begun to emerge that reduction of insulin clearance contributes to the disease process. In this review, we consider the evidence suggesting a pathogenic role for reduced insulin clearance in insulin resistance, obesity, hepatic steatosis, and type 2 diabetes.
Collapse
Affiliation(s)
- Sonia M Najjar
- Department of Biomedical Sciences and the Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA;
| | - Sonia Caprio
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology-National Research Council, Pisa, Italy
| |
Collapse
|
7
|
Liu Y, Gan L, Zhao B, Yu K, Wang Y, Männistö S, Weinstein SJ, Huang J, Albanes D. Untargeted metabolomic profiling identifies serum metabolites associated with type 2 diabetes in a cross-sectional study of the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. Am J Physiol Endocrinol Metab 2023; 324:E167-E175. [PMID: 36516224 PMCID: PMC9925157 DOI: 10.1152/ajpendo.00287.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes (T2D) is a complex chronic disease with substantial phenotypic heterogeneity affecting millions of individuals. Yet, its relevant metabolites and etiological pathways are not fully understood. The aim of this study is to assess a broad spectrum of metabolites related to T2D in a large population-based cohort. We conducted a metabolomic analysis of 4,281 male participants within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. The serum metabolomic analysis was performed using an LC-MS/GC-MS platform. Associations between 1,413 metabolites and T2D were examined using linear regression, controlling for important baseline risk factors. Standardized β-coefficients and standard errors (SEs) were computed to estimate the difference in metabolite concentrations. We identified 74 metabolites that were significantly associated with T2D based on the Bonferroni-corrected threshold (P < 3.5 × 10-5). The strongest signals associated with T2D were of carbohydrates origin, including glucose, 1,5-anhydroglucitol (1,5-AG), and mannose (β = 0.34, -0.91, and 0.41, respectively; all P < 10-75). We found several chemical class pathways that were significantly associated with T2D, including carbohydrates (P = 1.3 × 10-11), amino acids (P = 2.7 × 10-6), energy (P = 1.5 × 10-4), and xenobiotics (P = 1.2 × 10-3). The strongest subpathway associations were seen for fructose-mannose-galactose metabolism, glycolysis-gluconeogenesis-pyruvate metabolism, fatty acid metabolism (acyl choline), and leucine-isoleucine-valine metabolism (all P < 10-8). Our findings identified various metabolites and candidate chemical class pathways that can be characterized by glycolysis and gluconeogenesis metabolism, fructose-mannose-galactose metabolism, branched-chain amino acids, diacylglycerol, acyl cholines, fatty acid oxidation, and mitochondrial dysfunction.NEW & NOTEWORTHY These metabolomic patterns may provide new additional evidence and potential insights relevant to the molecular basis of insulin resistance and the etiology of T2D.
Collapse
Affiliation(s)
- Yuzhao Liu
- Department of Endocrinology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lu Gan
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yangang Wang
- Department of Endocrinology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Satu Männistö
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
8
|
Anthony N, Bruneau L, Leruste S, Franco JM, Domercq A, Kowalczyk C, Nobecourt E, Marimoutou C. Diabetes incidence in subjects with PREDIABetes from ReUNion Island: the PREDIABRUN observational cohort study protocol. BMJ Open 2022; 12:e062520. [PMID: 36410808 PMCID: PMC9680172 DOI: 10.1136/bmjopen-2022-062520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Improved knowledge of prediabetic subjects' profile and their risk of developing type 2 diabetes mellitus (T2DM) would enhance secondary prevention. The primary objective is to describe factors associated with incident T2DM in subjects with pre-diabetes diagnosed in primary care. METHODS AND ANALYSIS The study is based on Reunion Island, a French overseas region that experiences a particularly high disease burden of T2DM. This is an observational, non-randomised prospective cohort study conducted in primary care in which private general practitioner (GP) investigators recruit participants with pre-diabetes from their practices regardless of the initial motive for consultation. Pre-diabetes is defined by WHO criteria, that is, fasting plasma glucose between 1.10 g/L and 1.25 g/L and/or plasma glucose 2 hours after ingestion of 75 g of glucose (2-hour post load plasma glucose) between 1.40 g/L and 1.99 g/L. The design is based on an annual follow-up by the GP (according to French National Health Authority recommendations) with collection of clinical and laboratory data and specific lifestyle questionnaires answered by telephone at three time points: inclusion, and at 2-year and 5-year follow-up visits. Follow-up clinical and laboratory data are collected by the investigating GP as part of the study, and study-specific laboratory collections (serum, DNA and urine) will be obtained 2 and 5 years after inclusion. The primary outcome is transition to T2DM. ETHICS AND DISSEMINATION This protocol has been approved by the research ethics committee of Saint Etienne (CPP Saint Etienne reference number: 2019-03). Enrolment began in August 2019. Results will be disseminated in at least three papers published in peer-reviewed medical journals, one oral communication and a large-scale communication to the local population and healthcare policymakers. TRIAL REGISTRATION NUMBER NCT04463160 and ID-RCB 2018-A03106-49.
Collapse
Affiliation(s)
- Norah Anthony
- Institut national de la santé et de la recherche, CIC 1410, Saint Pierre, La Réunion, France
- Unité de soutien méthodologique et biostatistique, CHU La Réunion, Saint Denis, La Réunion, France
| | - Léa Bruneau
- Institut national de la santé et de la recherche, CIC 1410, Saint Pierre, La Réunion, France
- Unité de soutien méthodologique et biostatistique, CHU La Réunion, Saint Denis, La Réunion, France
| | - Sebastien Leruste
- Institut national de la santé et de la recherche, CIC 1410, Saint Pierre, La Réunion, France
- Département universitaire de médecine générale (DUMG), Université de La Réunion, France
| | - Jean-Marc Franco
- Institut national de la santé et de la recherche, CIC 1410, Saint Pierre, La Réunion, France
- Département universitaire de médecine générale (DUMG), Université de La Réunion, France
| | - Alain Domercq
- Collège des généralistes enseignants de l'océan indien, La Réunion, France
| | - Christine Kowalczyk
- Union régionale des médecins libéraux Océan Indien (URML), La Réunion, France
| | - Estelle Nobecourt
- Institut national de la santé et de la recherche, CIC 1410, Saint Pierre, La Réunion, France
- Service d'endocrinologie, Diabète et nutrition, CHU de La Réunion, Saint Pierre, La Réunion, France
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI), Saint Denis, La Réunion, France
| | - C Marimoutou
- Institut national de la santé et de la recherche, CIC 1410, Saint Pierre, La Réunion, France
- Unité de soutien méthodologique et biostatistique, CHU La Réunion, Saint Denis, La Réunion, France
| |
Collapse
|
9
|
Sasaki N, Maeda R, Ozono R, Yoshimura K, Nakano Y, Higashi Y. Early-Phase Changes in Serum Free Fatty Acid Levels After Glucose Intake Are Associated With Type 2 Diabetes Incidence: The Hiroshima Study on Glucose Metabolism and Cardiovascular Diseases. Diabetes Care 2022; 45:2309-2315. [PMID: 35944240 DOI: 10.2337/dc21-2554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/27/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Experimental studies suggest that excess serum free fatty acid (FFA) levels result in impaired glucose metabolism. This study investigated the relationship between changes in serum FFA levels after glucose intake and type 2 diabetes risk. RESEARCH DESIGN AND METHODS This observational study included 6,800 individuals without diabetes who underwent a 75-g oral glucose tolerance test. Serum FFA levels were measured before and 30 and 60 min after glucose intake. The percentages of changes in serum FFA levels from 0 to 30 and from 30 to 60 min were compared, and a low rate of change in FFA levels was determined using the receiver operating characteristic curve analysis. RESULTS Over a mean 5.3-year follow-up period, 485 participants developed type 2 diabetes. After adjusting for plasma glucose levels and indices of insulin resistance and β-cell function, low rates of change in FFA levels at 0-30 min (adjusted odds ratio [aOR] 1.91; 95% CI 1.54-2.37) and 30-60 min (aOR 1.48; 95% CI 1.15-1.90) were associated with the incidence of type 2 diabetes. Stratified analysis revealed that the low rate of change in FFA levels at 30-60 min (aOR 1.97; 95% CI 1.05-3.69) was associated with the incidence of type 2 diabetes even in participants with normal fasting glucose levels or glucose tolerance. CONCLUSIONS Changes in serum FFA levels within the 1st h after glucose intake could be a primary predictor of type 2 diabetes. This change may occur prior to the onset of impaired glucose metabolism.
Collapse
Affiliation(s)
- Nobuo Sasaki
- Health Management and Promotion Center, Hiroshima Atomic Bomb Casualty Council, Hiroshima, Japan
| | - Ryo Maeda
- Health Management and Promotion Center, Hiroshima Atomic Bomb Casualty Council, Hiroshima, Japan
| | - Ryoji Ozono
- Department of General Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kenichi Yoshimura
- Department of Biostatistics, Medical Center for Translational and Clinical Research, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yukiko Nakano
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
10
|
Shitole SG, Biggs ML, Ix JH, Fretts AM, Tracy RP, Siscovick DS, Djoussé L, Mukamal KJ, Kizer JR. Fasting and Postload Nonesterified Fatty Acids and Glucose Dysregulation in Older Adults. Am J Epidemiol 2022; 191:1235-1247. [PMID: 35247051 PMCID: PMC9989335 DOI: 10.1093/aje/kwac044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
To evaluate the association of nonesterified fatty acids (NEFA) with dysglycemia in older adults, NEFA levels were measured among participants in the Cardiovascular Health Study (United States; enrolled 1989-1993). Associations with insulin sensitivity and pancreatic β-cell function, and with incident type 2 diabetes mellitus (DM), were examined. The sample comprised 2,144 participants (aged 77.9 (standard deviation, 4.5) years). Participant data from the Cardiovascular Health Study visit in 1996-1997 was used with prospective follow-up through 2010. Fasting and postload NEFA showed significant associations with lower insulin sensitivity and pancreatic β-cell function, individually and on concurrent adjustment. Over median follow-up of 9.7 years, 236 cases of DM occurred. Postload NEFA were associated with risk of DM (per standard deviation, hazard ratio = 1.18, 95% confidence interval: 1.08, 1.29), but fasting NEFA were not (hazard ratio = 1.12, 95% confidence interval: 0.97, 1.29). The association for postload NEFA persisted after adjustment for putative intermediates, and after adjustment for fasting NEFA. Sex and body mass index modified these associations, which were stronger for fasting NEFA with DM in men but were accentuated for postload NEFA in women and among leaner individuals. Fasting and postload NEFA were related to lower insulin sensitivity and pancreatic β-cell function, but only postload NEFA were associated with increased DM. Additional study into NEFA metabolism could uncover novel potential targets for diabetes prevention in elders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jorge R Kizer
- Correspondence to Dr. Jorge R. Kizer, 4150 Clement Street, San Francisco, CA 94121 (e-mail: )
| |
Collapse
|
11
|
Gao D, Jiao J, Wang Z, Huang X, Ni X, Fang S, Zhou Q, Zhu X, Sun L, Yang Z, Yuan H. The roles of cell-cell and organ-organ crosstalk in the type 2 diabetes mellitus associated inflammatory microenvironment. Cytokine Growth Factor Rev 2022; 66:15-25. [PMID: 35459618 DOI: 10.1016/j.cytogfr.2022.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a classic metaflammatory disease, and the inflammatory states of the pancreatic islet and insulin target organs have been well confirmed. However, abundant evidence demonstrates that there are countless connections between these organs in the presence of a low degree of inflammation. In this review, we focus on cell-cell crosstalk among local cells in the islet and organ-organ crosstalk among insulin-related organs. In contrast to that in acute inflammation, macrophages are the dominant immune cells causing inflammation in the islets and insulin target organs in T2DM. In the inflammatory microenvironment (IME) of the islet, cell-cell crosstalk involving local macrophage polarization and proinflammatory cytokine production impair insulin secretion by β-cells. Furthermore, organ-organ crosstalk, including the gut-brain-pancreas axis and interactions among insulin-related organs during inflammation, reduces insulin sensitivity and induces endocrine dysfunction. Therefore, this crosstalk ultimately results in a cascade leading to β-cell dysfunction. These findings could have broad implications for therapies aimed at treating T2DM.
Collapse
Affiliation(s)
- Danni Gao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, PR China; Peking University Fifth School of Clinical Medicine, Beijing 100730, PR China
| | - Juan Jiao
- Department of Clinical Laboratory, the Seventh Medical Centre of Chinese PLA General Hospital, Beijing 100700, PR China
| | - Zhaoping Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, PR China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, PR China
| | - Xiaolin Ni
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, PR China
| | - Sihang Fang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, PR China
| | - Qi Zhou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, PR China
| | - Xiaoquan Zhu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, PR China
| | - Liang Sun
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, PR China
| | - Ze Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, PR China
| | - Huiping Yuan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, PR China; Peking University Fifth School of Clinical Medicine, Beijing 100730, PR China.
| |
Collapse
|
12
|
Moriyama K, Masuda Y, Suzuki N, Yamada C, Kishimoto N, Takashimizu S, Kubo A, Nishizaki Y. Estimated Elovl6 and delta-5 desaturase activities might represent potential markers for insulin resistance in Japanese adults. J Diabetes Metab Disord 2022; 21:197-207. [PMID: 35673485 PMCID: PMC9167368 DOI: 10.1007/s40200-021-00958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/07/2021] [Indexed: 01/31/2023]
Abstract
Purpose Results from a recent study indicated that lower stearic acid/palmitic acid (SA/PA) and arachidonic acid/dihomo-γ-linolenic acid (AA/DGLA) ratios were associated with metabolically unhealthy obesity. However, this has not been extensively studied in the Japanese population. Methods We recruited 291 Japanese subjects with serum free fatty acid profiles undergoing health examinations. Whole serum desaturase activity was estimated as the product: precursor ratio -SA/PA ratio for elongation of long-chain fatty acid family member 6 (Elovl6) and AA/DGLA for delta-5 desaturase (D5D). The determinants of Elovl6 and D5D activity were investigated using multiple regression analyses. Results The Elovl6 and D5D activities exhibited a negative correlation with the logmatic-transformed TG/HDL-C ratio and TyG index. Multiple regression analyses revealed that the TG/HDL-C ratio and TyG index were negatively associated with Elovl6 and D5D activities. Most atherogenic markers were worse in the low Elovl6 or D5D activity group than in the high Elovl6 or D5D activity group. When study subjects were further stratified by TG levels, most atherogenic markers were the worst in the highest TG group in either the lowest Elovl6 or lowest D5D activity groups. Conclusion The estimated Elovl6 and D5D activities might be useful markers of insulin resistance in Japanese subjects.
Collapse
Affiliation(s)
- Kengo Moriyama
- Department of Clinical Health Science, Tokai University School of Medicine, Tokai University Hachioji Hospital, 1838 Ishikawa-machi, Hachioji, Tokyo 192-0032 Japan
| | - Yumi Masuda
- Department of Clinical Health Science, Tokai University School of Medicine, 1-2-5, Yoyogi, Tokyo 151-0053 Japan
| | - Nana Suzuki
- Department of Clinical Health Science, Tokai University School of Medicine, Tokai University Hospital, 143 Shimokasuya, Isehara, Kanagawa 259-1193 Japan
| | - Chizumi Yamada
- Department of Clinical Health Science, Tokai University School of Medicine, 1-2-5, Yoyogi, Tokyo 151-0053 Japan
- Tokai University Tokyo Hospital, 1-2-5, Yoyogi, Tokyo 151-0053 Japan
| | - Noriaki Kishimoto
- Department of Clinical Health Science, Tokai University School of Medicine, 1-2-5, Yoyogi, Tokyo 151-0053 Japan
- Tokai University Tokyo Hospital, 1-2-5, Yoyogi, Tokyo 151-0053 Japan
| | - Shinji Takashimizu
- Department of Clinical Health Science, Tokai University School of Medicine, Tokai University Hospital, 143 Shimokasuya, Isehara, Kanagawa 259-1193 Japan
| | - Akira Kubo
- Department of Clinical Health Science, Tokai University School of Medicine, 1-2-5, Yoyogi, Tokyo 151-0053 Japan
- Tokai University Tokyo Hospital, 1-2-5, Yoyogi, Tokyo 151-0053 Japan
| | - Yasuhiro Nishizaki
- Department of Clinical Health Science, Tokai University School of Medicine, 1-2-5, Yoyogi, Tokyo 151-0053 Japan
- Tokai University Tokyo Hospital, 1-2-5, Yoyogi, Tokyo 151-0053 Japan
| |
Collapse
|
13
|
Henderson GC. Plasma Free Fatty Acid Concentration as a Modifiable Risk Factor for Metabolic Disease. Nutrients 2021; 13:nu13082590. [PMID: 34444750 PMCID: PMC8402049 DOI: 10.3390/nu13082590] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/18/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Plasma free fatty acid (FFA) concentration is elevated in obesity, insulin resistance (IR), non-alcoholic fatty liver disease (NAFLD), type 2 diabetes (T2D), and related comorbidities such as cardiovascular disease (CVD). Furthermore, experimentally manipulating plasma FFA in the laboratory setting modulates metabolic markers of these disease processes. In this article, evidence is presented indicating that plasma FFA is a disease risk factor. Elevations of plasma FFA can promote ectopic lipid deposition, IR, as well as vascular and cardiac dysfunction. Typically, elevated plasma FFA results from accelerated adipose tissue lipolysis, caused by a high adipose tissue mass, adrenal hormones, or other physiological stressors. Reducing an individual’s postabsorptive and postprandial plasma FFA concentration is expected to improve health. Lifestyle change could provide a significant opportunity for plasma FFA reduction. Various factors can impact plasma FFA concentration, such as chronic restriction of dietary energy intake and weight loss, as well as exercise, sleep quality and quantity, and cigarette smoking. In this review, consideration is given to multiple factors which lead to plasma FFA elevation and subsequent disruption of metabolic health. From considering a variety of medical conditions and lifestyle factors, it becomes clear that plasma FFA concentration is a modifiable risk factor for metabolic disease.
Collapse
Affiliation(s)
- Gregory C Henderson
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
14
|
Xiang Z, Xie H, Tong Q, Pan J, Wan L, Fang J, Chen J. Revealing hypoglycemic and hypolipidemic mechanism of Xiaokeyinshui extract combination on streptozotocin-induced diabetic mice in high sucrose/high fat diet by metabolomics and lipidomics. Biomed Pharmacother 2021; 135:111219. [PMID: 33433360 DOI: 10.1016/j.biopha.2021.111219] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/22/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetic mellitus (T2DM), often accompanied by disorders of glucose and lipid metabolism, has troubled hundreds of millions of people. Xiaokeyinshui extract combination (XEC), derived from traditional Chinese medicines formula, has exerted hypoglycemic effects against T2DM. However, its mechanism of metabolic level is still unclear. In this study, a T2DM mice model, induced by a high sucrose/high fat diet combined with low-dose streptozotocin (STZ) injections, was adopted. The biochemical index was determined and a combination of metabolomics and lipidomics analyses of plasma were performed. The results showed that XEC increased secretion of insulin and level of HDL-C, decreased levels of FBG, HbA1c, TC, TG, LDL-C and repaired islet structure in diabetic mice. In addition, the metabolic profiles of plasma were analyzed and 54 potential biomarkers were screened out, mainly including carbohydrates, lipids and amino acids. These potential biomarkers were found to be correlated with the following pathways: galactose metabolism, fructose and mannose metabolism, TCA cycle, arachidonic acid metabolism, glycerolipid metabolism, glycerophospholipid metabolism, sphingolipid metabolism and amino acid metabolism. In conclusion, we speculated that carbohydrate metabolism, lipid metabolism and amino acid metabolism played roles in the therapeutic mechanisms of XEC on T2DM.
Collapse
Affiliation(s)
- Zhinan Xiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China
| | - Haifei Xie
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China
| | - Qilin Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China
| | - Jun Pan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China
| | - Luosheng Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China.
| | - Jinbo Fang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China.
| | - Jiachun Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
15
|
Li Q, Zhao M, Wang Y, Zhong F, Liu J, Gao L, Zhao J. Associations Between Serum Free Fatty Acid Levels and Incident Diabetes in a 3-Year Cohort Study. Diabetes Metab Syndr Obes 2021; 14:2743-2751. [PMID: 34168474 PMCID: PMC8216696 DOI: 10.2147/dmso.s302681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE High circulating free fatty acid (FFA) is associated with the development of diabetes. This study was designed to evaluate longitudinal associations between FFA levels, changes in FFA levels, and mean FFA levels and incident diabetes. PARTICIPANTS AND METHODS This 3-year cohort study was conducted in Ningyang between 2011 and 2014. Serum FFA, fasting blood glucose (FPG), 2-hour postprandial blood glucose (2hPG), and glycosylated hemoglobin (HbA1c) levels were measured at baseline and at the end of follow-up. A multivariate stepwise logistic regression model was used to evaluate associations between serum FFA levels in various groups and the risk of incident diabetes. RESULTS Of the 2905 individuals without baseline diabetes, 290 developed diabetes by the 3-year follow-up. With increasing baseline FFA levels, the mean FPG, 2hPG, and HbA1c levels, and the prevalence of diabetes at the end of follow-up increased. The trend of FPG and HbA1c increase was not statistically significant. Higher baseline FFA levels were not significantly associated with greater risk of incident diabetes. However, longitudinal changes in serum FFA levels showed that individuals with serum FFA levels from normal to high (OR = 2.956, 95% CI: 2.089-4.184) or from high to high (OR = 3.343, 95% CI: 2.300-4.857) had greater risk of incident diabetes compared with those with normal to normal FFA levels. Similarly, individuals with ΔFFA ≥ 0 mmol/L (OR = 1.762, 95% CI: 1.373-2.262) or high mean serum FFA levels (OR = 2.120, 95% CI: 1.620-2.775) were at higher risk of incident diabetes than those with ΔFFA < 0 mmol/L or normal mean serum FFA levels. CONCLUSION The longitudinal status of serum FFA levels, including chronic increases and sustained high levels, was more closely associated with high risk of incident diabetes than was high baseline FFA levels.
Collapse
Affiliation(s)
- Qihang Li
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
| | - Meng Zhao
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Yupeng Wang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
| | - Fang Zhong
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
| | - Jing Liu
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
- Department of Scientific Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
- Correspondence: Jiajun Zhao Tel +86 15168889899 Email
| |
Collapse
|
16
|
Weijers RNM. Fundamentals about onset and progressive disease character of type 2 diabetes mellitus. World J Diabetes 2020; 11:165-181. [PMID: 32477453 PMCID: PMC7243486 DOI: 10.4239/wjd.v11.i5.165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 04/08/2020] [Indexed: 02/05/2023] Open
Abstract
ResearchGate is a world wide web for scientists and researchers to share papers, ask and answer questions, and find collaborators. As one of the more than 15 million members, the author uploads research output and reads and responds to some of the questions raised, which are related to type 2 diabetes. In that way, he noticed a serious gap of knowledge of this disease among medical professionals over recent decades. The main aim of the current study is to remedy this situation through providing a comprehensive review on recent developments in biochemistry and molecular biology, which can be helpful for the scientific understanding of the molecular nature of type 2 diabetes. To fill up the shortcomings in the curricula of medical education, and to familiarize the medical community with a new concept of the onset of type 2 diabetes, items are discussed like: Insulin resistance, glucose effectiveness, insulin sensitivity, cell membranes, membrane flexibility, unsaturation index (UI; number of carbon-carbon double bonds per 100 acyl chains of membrane phospholipids), slow-down principle, effects of temperature acclimation on phospholipid membrane composition, free fatty acids, energy transport, onset of type 2 diabetes, metformin, and exercise. Based on the reviewed data, a new model is presented with proposed steps in the development of type 2 diabetes, a disease arising as a result of a hypothetical hereditary anomaly, which causes hyperthermia in and around the mitochondria. Hyperthermia is counterbalanced by the slow-down principle, which lowers the amount of carbon-carbon double bonds of membrane phospholipid acyl chains. The accompanying reduction in the UI lowers membrane flexibility, promotes a redistribution of the lateral pressure in cell membranes, and thereby reduces the glucose transporter protein pore diameter of the transmembrane glucose transport channel of all Class I GLUT proteins. These events will set up a reduction in transmembrane glucose transport. So, a new blood glucose regulation system, effective in type 2 diabetes and its prediabetic phase, is based on variations in the acyl composition of phospholipids and operates independent of changes in insulin and glucose concentration. UI assessment is currently arising as a promising analytical technology for a membrane flexibility analysis. An increase in mitochondrial heat production plays a pivotal role in the existence of this regulation system.
Collapse
Affiliation(s)
- Rob NM Weijers
- Teaching Hospital, Onze Lieve Vrouwe Gasthuis, Amsterdam 1090, Netherlands
| |
Collapse
|
17
|
Chen H, Nie Q, Hu J, Huang X, Huang W, Nie S. Metabolism amelioration of Dendrobium officinale polysaccharide on type II diabetic rats. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105582] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Chung YC, Chen YI, Lin CM, Chang SW, Hsu TH, Ho WJ, Lin JG, Chang SL, Tzeng CY. Electroacupuncture combined with acarbose improves insulin sensitivity via peroxisome proliferator-activated receptor γ activation and produces a stronger glucose-lowering effect than acarbose alone in a rat model of steroid-induced insulin resistance. Acupunct Med 2020; 38:335-342. [PMID: 32297559 DOI: 10.1177/0964528419901135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Previous studies have reported that electroacupuncture (EA) induces a glucose-lowering effect by improving insulin resistance (IR) and reduces plasma free fatty acid (FFA) levels in rats with steroid-induced insulin resistance (SIIR). In addition, EA can activate cholinergic nerves and stimulate endogenous opioid peptides to lower plasma glucose in streptozotocin-induced hyperglycemic rats. The aim of this study was to investigate the glucose-lowering effects of 15 Hz EA at bilateral ST36 in combination with acarbose (ACA). We hypothesized that EA combined with ACA would produce a stronger glucose-lowering effect than ACA alone. METHODS In this study, normal Wistar rats and SIIR rats were randomly divided into two groups: ACA and ACA + EA. To explore the potential mechanisms underlying the glucose-lowering effect, plasma FFA/insulin and insulin transduction signal pathway proteins were assayed. RESULTS Combined ACA + EA treatment had a greater glucose-lowering effect than ACA alone in normal Wistar rats (-45% ± 3% vs -19% ± 3%, p < 0.001) and SIIR model rats (-43% ± 2% vs -16% ± 6%, p < 0.001). A significant reduction in plasma FFA levels, improvement in homeostatic model assessment of IR (HOMA-IR) index (-48.9% ± 4.0%, p < 0.001) and insulin sensitivity index (102% ± 16.9%, p < 0.001), and significant increases in insulin receptor substrate 1, glucose transporter 4, and peroxisome proliferator-activated receptor γ protein expressions in skeletal muscle, were also observed in the ACA + EA group of SIIR rats. CONCLUSION Combined EA and ACA therapy had a greater glucose-lowering effect than ACA monotherapy; this combined therapy could be more effective at improving IR in SIIR rats, which may be related to a reduction in plasma FFA levels and an elevation of insulin signaling proteins. Whether this combined therapy has an effect in type 2 diabetes mellitus (T2DM) patients still needs to be explored.
Collapse
Affiliation(s)
- Yuan-Chiang Chung
- Department of Surgery, Cheng Ching Hospital, Taichung City.,Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Dacun
| | - Ying-I Chen
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Dacun
| | - Chih-Ming Lin
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Dacun.,Department of Neurology, Changhua Christian Hospital, Changhua
| | - Su-Wei Chang
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Dacun
| | - Tai-Hao Hsu
- Department of Food Science and Biotechnology, Da-Yeh University, Dacun
| | - Wai-Jane Ho
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Dacun
| | - Jaug-Geng Lin
- School of Chinese Medicine, China Medical University, Taichung City
| | - Shih-Liang Chang
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Dacun.,School of Chinese Medicine, China Medical University, Taichung City.,College of Biotechnology and Bioresource, Da-Yeh University, Changhua
| | - Chung-Yuh Tzeng
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Dacun.,Department of Orthopedics, Taichung Veterans General Hospital, Taichung City
| |
Collapse
|
19
|
Opazo-Ríos L, Mas S, Marín-Royo G, Mezzano S, Gómez-Guerrero C, Moreno JA, Egido J. Lipotoxicity and Diabetic Nephropathy: Novel Mechanistic Insights and Therapeutic Opportunities. Int J Mol Sci 2020; 21:E2632. [PMID: 32290082 PMCID: PMC7177360 DOI: 10.3390/ijms21072632] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Lipotoxicity is characterized by the ectopic accumulation of lipids in organs different from adipose tissue. Lipotoxicity is mainly associated with dysfunctional signaling and insulin resistance response in non-adipose tissue such as myocardium, pancreas, skeletal muscle, liver, and kidney. Serum lipid abnormalities and renal ectopic lipid accumulation have been associated with the development of kidney diseases, in particular diabetic nephropathy. Chronic hyperinsulinemia, often seen in type 2 diabetes, plays a crucial role in blood and liver lipid metabolism abnormalities, thus resulting in increased non-esterified fatty acids (NEFA). Excessive lipid accumulation alters cellular homeostasis and activates lipogenic and glycogenic cell-signaling pathways. Recent evidences indicate that both quantity and quality of lipids are involved in renal damage associated to lipotoxicity by activating inflammation, oxidative stress, mitochondrial dysfunction, and cell-death. The pathological effects of lipotoxicity have been observed in renal cells, thus promoting podocyte injury, tubular damage, mesangial proliferation, endothelial activation, and formation of macrophage-derived foam cells. Therefore, this review examines the recent preclinical and clinical research about the potentially harmful effects of lipids in the kidney, metabolic markers associated with these mechanisms, major signaling pathways affected, the causes of excessive lipid accumulation, and the types of lipids involved, as well as offers a comprehensive update of therapeutic strategies targeting lipotoxicity.
Collapse
Affiliation(s)
- Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| | - Sebastián Mas
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| | - Gema Marín-Royo
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| | - Sergio Mezzano
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, 5090000 Valdivia, Chile;
| | - Carmen Gómez-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| | - Juan Antonio Moreno
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain
- Hospital Universitario Reina Sofía, 14004 Cordoba, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| |
Collapse
|
20
|
Ly LD, Ly DD, Nguyen NT, Kim JH, Yoo H, Chung J, Lee MS, Cha SK, Park KS. Mitochondrial Ca 2+ Uptake Relieves Palmitate-Induced Cytosolic Ca 2+ Overload in MIN6 Cells. Mol Cells 2020; 43:66-75. [PMID: 31931552 PMCID: PMC6999716 DOI: 10.14348/molcells.2019.0223] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/20/2019] [Accepted: 12/03/2019] [Indexed: 11/27/2022] Open
Abstract
Saturated fatty acids contribute to β-cell dysfunction in the onset of type 2 diabetes mellitus. Cellular responses to lipotoxicity include oxidative stress, endoplasmic reticulum (ER) stress, and blockage of autophagy. Palmitate induces ER Ca2+ depletion followed by notable store-operated Ca2+ entry. Subsequent elevation of cytosolic Ca2+ can activate undesirable signaling pathways culminating in cell death. Mitochondrial Ca2+ uniporter (MCU) is the major route for Ca2+ uptake into the matrix and couples metabolism with insulin secretion. However, it has been unclear whether mitochondrial Ca2+ uptake plays a protective role or contributes to lipotoxicity. Here, we observed palmitate upregulated MCU protein expression in a mouse clonal β-cell, MIN6, under normal glucose, but not high glucose medium. Palmitate elevated baseline cytosolic Ca2+ concentration ([Ca2+]i) and reduced depolarization-triggered Ca2+ influx likely due to the inactivation of voltage-gated Ca2+ channels (VGCCs). Targeted reduction of MCU expression using RNA interference abolished mitochondrial superoxide production but exacerbated palmitate-induced [Ca2+]i overload. Consequently, MCU knockdown aggravated blockage of autophagic degradation. In contrast, co-treatment with verapamil, a VGCC inhibitor, prevented palmitate-induced basal [Ca2+]i elevation and defective [Ca2+]i transients. Extracellular Ca2+ chelation as well as VGCC inhibitors effectively rescued autophagy defects and cytotoxicity. These observations suggest enhanced mitochondrial Ca2+ uptake via MCU upregulation is a mechanism by which pancreatic β-cells are able to alleviate cytosolic Ca2+ overload and its detrimental consequences.
Collapse
Affiliation(s)
- Luong Dai Ly
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju 26426,
Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426,
Korea
| | - Dat Da Ly
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju 26426,
Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426,
Korea
| | - Nhung Thi Nguyen
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju 26426,
Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426,
Korea
| | - Ji-Hee Kim
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426,
Korea
| | - Heesuk Yoo
- National Creative Research Initiatives Center for Energy Homeostasis Regulation, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826,
Korea
| | - Jongkyeong Chung
- National Creative Research Initiatives Center for Energy Homeostasis Regulation, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826,
Korea
| | - Myung-Shik Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722,
Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Seung-Kuy Cha
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju 26426,
Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426,
Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju 26426,
Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426,
Korea
| |
Collapse
|
21
|
A global perspective on the crosstalk between saturated fatty acids and Toll-like receptor 4 in the etiology of inflammation and insulin resistance. Prog Lipid Res 2019; 77:101020. [PMID: 31870728 DOI: 10.1016/j.plipres.2019.101020] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/16/2022]
Abstract
Obesity is featured by chronic systemic low-grade inflammation that eventually contributes to the development of insulin resistance. Toll-like receptor 4 (TLR4) is an important mediator that triggers the innate immune response by activating inflammatory signaling cascades. Human, animal and cell culture studies identified saturated fatty acids (SFAs), the dominant non-esterified fatty acid (NEFA) in the circulation of obese subjects, as non-microbial agonists that trigger the inflammatory response via activating TLR4 signaling, which acts as an important causative link between fatty acid overload, chronic low-grade inflammation and the related metabolic aberrations. The interaction between SFAs and TLR4 may be modulated through the myeloid differentiation primary response gene 88-dependent and independent signaling pathway. Greater understanding of the crosstalk between dietary SFAs and TLR4 signaling in the pathogenesis of metabolic imbalance may facilitate the design of a more efficient pharmacological strategy to alleviate the risk of developing chronic diseases elicited in part by fatty acid overload. The current review discusses recent advances in the impact of crosstalk between SFAs and TLR4 on inflammation and insulin resistance in multiple cell types, tissues and organs in the context of metabolic dysregulation.
Collapse
|
22
|
Nie Q, Xing M, Chen H, Hu J, Nie S. Metabolomics and Lipidomics Profiling Reveals Hypocholesterolemic and Hypolipidemic Effects of Arabinoxylan on Type 2 Diabetic Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10614-10623. [PMID: 31483658 DOI: 10.1021/acs.jafc.9b03430] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Type 2 diabetes (T2D) is a pandemic disease chiefly characterized by hyperglycemia. In this study, the combination of serum lipidomic and metabolomic approach was employed to investigate the effect of arabinoxylan on type 2 diabetic rats and identify the critical biomarkers of T2D. Metabolomics analysis revealed that branched-chain amino acids, 12α-hydroxylated bile acids, ketone bodies, and several short- and long-chain acylcarnitines were significantly increased in T2D, whereas lysophosphatidylcholines (LPCs) were significantly decreased. Lipidomics analysis indicated T2D-related dyslipidemia was mainly associated with the increased levels of acetylcarnitine, free fatty acids (FFA), diacylglycerols, triacylglycerols, and cholesteryl esters and the decreased levels of some unsaturated phosphatidylcholines (less than 22 carbons). These variations indicated the disturbed amino acid and lipid metabolism in T2D, and the accumulation of incompletely oxidized lipid species might eventually contribute to impaired insulin action and glucose homeostasis. Arabinoxylan treatment decreased the concentrations of 12α-hydroxylated bile acids, carnitines, and FFAs and increased the levels of LPCs. The improved bile acid and lipid metabolism by arabinoxylan might be involved in the alleviation of hypercholesterolemia and hyperlipidemia in T2D.
Collapse
Affiliation(s)
- Qixing Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , Nanchang 330047 , China
| | - Mengmeng Xing
- Shenzhen Longgang District Maternity & Child Healthcare Hospital , Shenzhen 518100 , China
| | - Haihong Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , Nanchang 330047 , China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , Nanchang 330047 , China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , Nanchang 330047 , China
| |
Collapse
|
23
|
Effects and Underlying Mechanisms of Bioactive Compounds on Type 2 Diabetes Mellitus and Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8165707. [PMID: 30800211 PMCID: PMC6360036 DOI: 10.1155/2019/8165707] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 01/11/2023]
Abstract
Type 2 diabetes mellitus is a complicated metabolic disorder characterized by hyperglycemia and glucose intolerance. Alzheimer's disease is a progressive brain disorder characterized by a chronic loss of cognitive and behavioral function. Considering the shared characteristics of both diseases, common therapeutic and preventive agents may be effective. Bioactive compounds such as polyphenols, vitamins, and carotenoids found in vegetables and fruits can have antioxidant and anti-inflammatory effects. These effects make them suitable candidates for the prevention or treatment of diabetes and Alzheimer's disease. Increasing evidence from cell or animal models suggest that bioactive compounds may have direct effects on decreasing hyperglycemia, enhancing insulin secretion, and preventing formation of amyloid plaques. The possible underlying molecular mechanisms are described in this review. More studies are needed to establish the clinical effects of bioactive compounds.
Collapse
|
24
|
Spiller S, Blüher M, Hoffmann R. Plasma levels of free fatty acids correlate with type 2 diabetes mellitus. Diabetes Obes Metab 2018; 20:2661-2669. [PMID: 29943387 DOI: 10.1111/dom.13449] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 01/17/2023]
Abstract
AIMS Free fatty acids (FFA) mediate adverse metabolic effects such as downregulated carbohydrate metabolisms, providing causal links between obesity and the development of type 2 diabetes mellitus (T2DM). Here, we investigated the plasma concentrations of FFA alone and in combination with protein glycation as potential diagnostic and prognostic biomarkers of T2DM. MATERIALS AND METHODS EDTA-plasma obtained from 48 newly diagnosed male T2DM patients, 48 long-term controlled (24 male and 24 female) T2DM patients, 20 prediabetic male T2DM patients and two age-matched control cohorts (48 non-diabetic (ND) men; 24 male and 24 female ND partipants) were analysed for a set of clinical parameters including FFA. Glycation sites were quantified after tryptic digestion using tandem mass spectrometry. RESULTS Median plasma concentrations of FFA were almost three-fold higher in samples obtained from newly diagnosed (long-term controlled) T2DM patients than in those obtained from the control group, providing diagnostic sensitivity (SN) of 92% (85%) and specificity (SP) of 90% (88%). When combined with the glycation level of lysine-141 of haptoglobin, diagnostic accuracy improved further for newly diagnosed (SN, 94%; SP 96%) and long-term controlled (SN, 85%; SP, 94%) T2DM patients (HbA1c: SN, 88%; SP, 96%). A prospective pilot study evaluating the prognostic value revealed initially low FFA levels for pre-diabetic patients that increased in the following four years in patients whose prediabetic state worsened or who developed T2DM. CONCLUSIONS FFA levels are elevated in newly diagnosed and long-term controlled T2DM patients, providing high diagnostic accuracy of 87% and 91%, respectively, which improved further when combined with the glycation degree of lysine-141 in haptoglobin. Additionally, FFA showed higher mean fold-changes than HbA1c or FPG in subjects developing T2DM, indicating higher sensitivity towards the progression of the disease.
Collapse
Affiliation(s)
- Sandro Spiller
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Leipzig, Germany
| | - Matthias Blüher
- University Hospital Leipzig, Department of Internal Medicine, Endocrinology and Nephrology, Universität Leipzig, Leipzig, Germany
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Leipzig, Germany
| |
Collapse
|
25
|
Richter B, Hemmingsen B, Metzendorf M, Takwoingi Y. Development of type 2 diabetes mellitus in people with intermediate hyperglycaemia. Cochrane Database Syst Rev 2018; 10:CD012661. [PMID: 30371961 PMCID: PMC6516891 DOI: 10.1002/14651858.cd012661.pub2] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Intermediate hyperglycaemia (IH) is characterised by one or more measurements of elevated blood glucose concentrations, such as impaired fasting glucose (IFG), impaired glucose tolerance (IGT) and elevated glycosylated haemoglobin A1c (HbA1c). These levels are higher than normal but below the diagnostic threshold for type 2 diabetes mellitus (T2DM). The reduced threshold of 5.6 mmol/L (100 mg/dL) fasting plasma glucose (FPG) for defining IFG, introduced by the American Diabetes Association (ADA) in 2003, substantially increased the prevalence of IFG. Likewise, the lowering of the HbA1c threshold from 6.0% to 5.7% by the ADA in 2010 could potentially have significant medical, public health and socioeconomic impacts. OBJECTIVES To assess the overall prognosis of people with IH for developing T2DM, regression from IH to normoglycaemia and the difference in T2DM incidence in people with IH versus people with normoglycaemia. SEARCH METHODS We searched MEDLINE, Embase, ClincialTrials.gov and the International Clinical Trials Registry Platform (ICTRP) Search Portal up to December 2016 and updated the MEDLINE search in February 2018. We used several complementary search methods in addition to a Boolean search based on analytical text mining. SELECTION CRITERIA We included prospective cohort studies investigating the development of T2DM in people with IH. We used standard definitions of IH as described by the ADA or World Health Organization (WHO). We excluded intervention trials and studies on cohorts with additional comorbidities at baseline, studies with missing data on the transition from IH to T2DM, and studies where T2DM incidence was evaluated by documents or self-report only. DATA COLLECTION AND ANALYSIS One review author extracted study characteristics, and a second author checked the extracted data. We used a tailored version of the Quality In Prognosis Studies (QUIPS) tool for assessing risk of bias. We pooled incidence and incidence rate ratios (IRR) using a random-effects model to account for between-study heterogeneity. To meta-analyse incidence data, we used a method for pooling proportions. For hazard ratios (HR) and odds ratios (OR) of IH versus normoglycaemia, reported with 95% confidence intervals (CI), we obtained standard errors from these CIs and performed random-effects meta-analyses using the generic inverse-variance method. We used multivariable HRs and the model with the greatest number of covariates. We evaluated the certainty of the evidence with an adapted version of the GRADE framework. MAIN RESULTS We included 103 prospective cohort studies. The studies mainly defined IH by IFG5.6 (FPG mmol/L 5.6 to 6.9 mmol/L or 100 mg/dL to 125 mg/dL), IFG6.1 (FPG 6.1 mmol/L to 6.9 mmol/L or 110 mg/dL to 125 mg/dL), IGT (plasma glucose 7.8 mmol/L to 11.1 mmol/L or 140 mg/dL to 199 mg/dL two hours after a 75 g glucose load on the oral glucose tolerance test, combined IFG and IGT (IFG/IGT), and elevated HbA1c (HbA1c5.7: HbA1c 5.7% to 6.4% or 39 mmol/mol to 46 mmol/mol; HbA1c6.0: HbA1c 6.0% to 6.4% or 42 mmol/mol to 46 mmol/mol). The follow-up period ranged from 1 to 24 years. Ninety-three studies evaluated the overall prognosis of people with IH measured by cumulative T2DM incidence, and 52 studies evaluated glycaemic status as a prognostic factor for T2DM by comparing a cohort with IH to a cohort with normoglycaemia. Participants were of Australian, European or North American origin in 41 studies; Latin American in 7; Asian or Middle Eastern in 50; and Islanders or American Indians in 5. Six studies included children and/or adolescents.Cumulative incidence of T2DM associated with IFG5.6, IFG6.1, IGT and the combination of IFG/IGT increased with length of follow-up. Cumulative incidence was highest with IFG/IGT, followed by IGT, IFG6.1 and IFG5.6. Limited data showed a higher T2DM incidence associated with HbA1c6.0 compared to HbA1c5.7. We rated the evidence for overall prognosis as of moderate certainty because of imprecision (wide CIs in most studies). In the 47 studies reporting restitution of normoglycaemia, regression ranged from 33% to 59% within one to five years follow-up, and from 17% to 42% for 6 to 11 years of follow-up (moderate-certainty evidence).Studies evaluating the prognostic effect of IH versus normoglycaemia reported different effect measures (HRs, IRRs and ORs). Overall, the effect measures all indicated an elevated risk of T2DM at 1 to 24 years of follow-up. Taking into account the long-term follow-up of cohort studies, estimation of HRs for time-dependent events like T2DM incidence appeared most reliable. The pooled HR and the number of studies and participants for different IH definitions as compared to normoglycaemia were: IFG5.6: HR 4.32 (95% CI 2.61 to 7.12), 8 studies, 9017 participants; IFG6.1: HR 5.47 (95% CI 3.50 to 8.54), 9 studies, 2818 participants; IGT: HR 3.61 (95% CI 2.31 to 5.64), 5 studies, 4010 participants; IFG and IGT: HR 6.90 (95% CI 4.15 to 11.45), 5 studies, 1038 participants; HbA1c5.7: HR 5.55 (95% CI 2.77 to 11.12), 4 studies, 5223 participants; HbA1c6.0: HR 10.10 (95% CI 3.59 to 28.43), 6 studies, 4532 participants. In subgroup analyses, there was no clear pattern of differences between geographic regions. We downgraded the evidence for the prognostic effect of IH versus normoglycaemia to low-certainty evidence due to study limitations because many studies did not adequately adjust for confounders. Imprecision and inconsistency required further downgrading due to wide 95% CIs and wide 95% prediction intervals (sometimes ranging from negative to positive prognostic factor to outcome associations), respectively.This evidence is up to date as of 26 February 2018. AUTHORS' CONCLUSIONS Overall prognosis of people with IH worsened over time. T2DM cumulative incidence generally increased over the course of follow-up but varied with IH definition. Regression from IH to normoglycaemia decreased over time but was observed even after 11 years of follow-up. The risk of developing T2DM when comparing IH with normoglycaemia at baseline varied by IH definition. Taking into consideration the uncertainty of the available evidence, as well as the fluctuating stages of normoglycaemia, IH and T2DM, which may transition from one stage to another in both directions even after years of follow-up, practitioners should be careful about the potential implications of any active intervention for people 'diagnosed' with IH.
Collapse
Affiliation(s)
- Bernd Richter
- Institute of General Practice, Medical Faculty of the Heinrich‐Heine‐University DüsseldorfCochrane Metabolic and Endocrine Disorders GroupPO Box 101007DüsseldorfGermany40001
| | - Bianca Hemmingsen
- Institute of General Practice, Medical Faculty of the Heinrich‐Heine‐University DüsseldorfCochrane Metabolic and Endocrine Disorders GroupPO Box 101007DüsseldorfGermany40001
| | - Maria‐Inti Metzendorf
- Institute of General Practice, Medical Faculty of the Heinrich‐Heine‐University DüsseldorfCochrane Metabolic and Endocrine Disorders GroupPO Box 101007DüsseldorfGermany40001
| | - Yemisi Takwoingi
- University of BirminghamInstitute of Applied Health ResearchEdgbastonBirminghamUKB15 2TT
| | | |
Collapse
|
26
|
Swe MT, Pongchaidecha A, Chatsudthipong V, Chattipakorn N, Lungkaphin A. Molecular signaling mechanisms of renal gluconeogenesis in nondiabetic and diabetic conditions. J Cell Physiol 2018; 234:8134-8151. [PMID: 30370538 DOI: 10.1002/jcp.27598] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/19/2018] [Indexed: 12/12/2022]
Abstract
The kidneys are as involved as the liver in gluconeogenesis which can significantly contribute to hyperglycemia in the diabetic condition. Substantial evidence has demonstrated the overexpression of rate-limiting gluconeogenic enzymes, especially phosphoenolpyruvate carboxykinase and glucose 6 phosphatase, and the accelerated glucose release both in the isolated proximal tubular cells and in the kidneys of diabetic animal models and diabetic patients. The aim of this review is to provide an insight into the mechanisms that accelerate renal gluconeogenesis in the diabetic conditions and the therapeutic approaches that could affect this process in the kidney. Increase in gluconeogenic substrates, reduced insulin concentration or insulin resistance, downregulation of insulin receptors and insulin signaling, oxidative stress, and inappropriate activation of the renin-angiotensin system are likely to participate in enhancing renal gluconeogenesis in the diabetic milieu. Several studies have suggested that controlling glucose metabolism at the renal level favors effective overall glycemic control in both type 1 and type 2 diabetes. Therefore, renal gluconeogenesis may be a promising target for effective glycemic control as a therapeutic strategy in diabetes.
Collapse
Affiliation(s)
- Myat Theingi Swe
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Physiology, University of Medicine 2, Yangon, Myanmar
| | - Anchalee Pongchaidecha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Varanuj Chatsudthipong
- Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nipon Chattipakorn
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
27
|
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 2018; 98:2133-2223. [PMID: 30067154 PMCID: PMC6170977 DOI: 10.1152/physrev.00063.2017] [Citation(s) in RCA: 1620] [Impact Index Per Article: 231.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022] Open
Abstract
The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have matured, coalescing into solid and fertile ground for clinical application; others remain incompletely investigated and scientifically controversial. Here, we attempt to synthesize this work to guide further mechanistic investigation and to inform the development of novel therapies for type 2 diabetes (T2D). The rational development of such therapies necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D: insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin action. In this review, both the physiology of insulin action and the pathophysiology of insulin resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and white adipose tissue. We aim to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response. First, in section II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III considers the critical and underappreciated role of tissue crosstalk in whole body insulin action, especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The pathophysiology of insulin resistance is then described in section IV. Special attention is given to which signaling pathways and functions become insulin resistant in the setting of chronic overnutrition, and an alternative explanation for the phenomenon of ‟selective hepatic insulin resistanceˮ is presented. Sections V, VI, and VII critically examine the evidence for and against several putative mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol, ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII discusses non-cell autonomous factors proposed to induce insulin resistance, including inflammatory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we propose an integrated model of insulin resistance that links these mediators to final common pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.
Collapse
Affiliation(s)
- Max C Petersen
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
28
|
Mendez-Sanchez N, Cruz-Ramon VC, Ramirez-Perez OL, Hwang JP, Barranco-Fragoso B, Cordova-Gallardo J. New Aspects of Lipotoxicity in Nonalcoholic Steatohepatitis. Int J Mol Sci 2018; 19:E2034. [PMID: 30011790 PMCID: PMC6073816 DOI: 10.3390/ijms19072034] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 02/08/2023] Open
Abstract
NASH is becoming increasingly common worldwide because of the growing global prevalence of obesity and consequently NAFLD. Unfortunately, the mechanism of progression of NAFLD to NASH and then cirrhosis is not completely understood. Several factors, including insulin resistance, inflammation, oxidative stress, lipotoxicity, and bile acid (BA) toxicity, have been reported to be associated with NASH progression. The release of fatty acids from dysfunctional and insulin-resistant adipocytes results in lipotoxicity, which is caused by the ectopic accumulation of triglyceride-derived toxic metabolites and the subsequent activation of inflammatory pathways, cellular dysfunction, and lipoapoptosis. Adipose tissue (AT), especially visceral AT, comprises multiple cell populations that produce adipokines and insulin-like growth factor, plus macrophages and other immune cells that stimulate the development of lipotoxic liver disease. These biomolecules have been recently linked with many digestive diseases and gastrointestinal malignancies such as hepatocellular carcinoma. This made us question what role lipotoxicity has in the natural history of liver fibrosis. Therefore, this review focuses on the close relationship between AT and NASH. A good comprehension of the pathways that are related to dysregulated AT, metabolic dysfunction, and hepatic lipotoxicity will result in the development of prevention strategies and promising therapeutics for patients with NASH.
Collapse
Affiliation(s)
| | | | | | - Jessica P Hwang
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Beatriz Barranco-Fragoso
- Department of Gastroenterology, National Medical Center "20 Noviembre", 03229 Mexico City, Mexico.
| | | |
Collapse
|
29
|
Johnston LW, Harris SB, Retnakaran R, Giacca A, Liu Z, Bazinet RP, Hanley AJ. Association of NEFA composition with insulin sensitivity and beta cell function in the Prospective Metabolism and Islet Cell Evaluation (PROMISE) cohort. Diabetologia 2018; 61:821-830. [PMID: 29275428 DOI: 10.1007/s00125-017-4534-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Our aim was to determine the longitudinal associations of individual NEFA with the pathogenesis of diabetes, specifically with differences in insulin sensitivity and beta cell function over 6 years in a cohort of individuals who are at risk for diabetes. METHODS In the Prospective Metabolism and Islet Cell Evaluation (PROMISE) longitudinal cohort, 477 participants had serum NEFA measured at the baseline visit and completed an OGTT at three time points over 6 years. Outcome variables were calculated using the OGTT values. At each visit, insulin sensitivity was assessed using the HOMA2 of insulin sensitivity (HOMA2-%S) and the Matsuda index, while beta cell function was assessed using the insulinogenic index over HOMA-IR (IGI/IR) and the insulin secretion-sensitivity index-2 (ISSI-2). Generalised estimating equations were used, adjusting for time, waist, sex, ethnicity, baseline age, alanine aminotransferase (ALT) and physical activity. NEFA were analysed as both concentrations (nmol/ml) and proportions (mol%) of the total fraction. RESULTS Participants' (73% female, 70% with European ancestry) insulin sensitivity and beta cell function declined by 14-21% over 6 years of follow-up. In unadjusted models, several NEFA (e.g. 18:1 n-7, 22:4 n-6) were associated with lower insulin sensitivity, however, nearly all of these associations were attenuated in fully adjusted models. In adjusted models, total NEFA, 16:0, 18:1 n-9 and 18:2 n-6 (as concentrations) were associated with 3.7-8.0% lower IGI/IR and ISSI-2, while only 20:5 n-3 (as mol%) was associated with 7.7% higher HOMA2-%S. CONCLUSIONS/INTERPRETATION Total NEFA concentration was a strong predictor of lower beta cell function over 6 years. Our results suggest that the association with beta cell function is due to the absolute size of the serum NEFA fraction, rather than the specific fatty acid composition.
Collapse
Affiliation(s)
- Luke W Johnston
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College Street, Toronto, ON, M5S 3E2, Canada
| | - Stewart B Harris
- Centre for Studies in Family Medicine, University of Western Ontario, London, ON, Canada
| | - Ravi Retnakaran
- Division of Endocrinology, University of Toronto, Toronto, ON, Canada
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Adria Giacca
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Zhen Liu
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College Street, Toronto, ON, M5S 3E2, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College Street, Toronto, ON, M5S 3E2, Canada
| | - Anthony J Hanley
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College Street, Toronto, ON, M5S 3E2, Canada.
- Division of Endocrinology, University of Toronto, Toronto, ON, Canada.
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
30
|
Lu Y, Wang Y, Zou L, Liang X, Ong CN, Tavintharan S, Yuan JM, Koh WP, Pan A. Serum Lipids in Association With Type 2 Diabetes Risk and Prevalence in a Chinese Population. J Clin Endocrinol Metab 2018; 103:671-680. [PMID: 29267865 PMCID: PMC5800830 DOI: 10.1210/jc.2017-02176] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/12/2017] [Indexed: 12/20/2022]
Abstract
CONTEXT We previously reported an association between lysophosphatidylinositol (LPI) (16:1) and risk for type 2 diabetes in a Chinese population using an untargeted analysis. OBJECTIVE To examine the overall associations of LPIs and their related metabolites, such as nonesterified fatty acids (NEFAs) and acylcarnitines, with incident and prevalent type 2 diabetes using a targeted approach. DESIGN AND SETTING A case-control study was nested within the Singapore Chinese Health Study. Cases and controls were individually matched by age, sex, and date of blood collection. We used both liquid and gas chromatography tandem mass spectrometry to measure serum metabolite levels at baseline, including 8 LPIs, 19 NEFAs, and 34 acylcarnitines. Conditional logistic regression models were used to estimate the associations between metabolites and diabetes risk. PARTICIPANTS Participants included 160 incident and 144 prevalent cases with type 2 diabetes and 304 controls. MAIN OUTCOME MEASURE Incident and prevalent type 2 diabetes. RESULTS On the basis of a false discovery rate <0.1, we identified 37 metabolites associated with prevalent type 2 diabetes, including 7 LPIs, 18 NEFAs, and 12 acylcarnitines, and 11 metabolites associated with incident type 2 diabetes, including 2 LPIs and 9 NEFAs. Two metabolites, LPI (16:1) and dihomo-γ-linolenic acid, showed independent associations with incident type 2 diabetes and significantly enhanced the risk prediction. CONCLUSIONS We found several LPIs and NEFAs that were associated with risk for type 2 diabetes and may improve our understanding of the pathogenesis. The findings suggest that lipid profiles could aid in diabetes risk assessment in Chinese populations.
Collapse
Affiliation(s)
- Yonghai Lu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Republic of Singapore
| | - Yeli Wang
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Republic of Singapore
| | - Li Zou
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Republic of Singapore
| | - Xu Liang
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Choon Nam Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Republic of Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Subramaniam Tavintharan
- Department of General Medicine, Diabetes Centre, Khoo Teck Puat Hospital, Singapore 768828, Republic of Singapore
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15261
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Republic of Singapore
- Duke-NUS Medical School Singapore, Singapore 169857, Republic of Singapore
| | - An Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People’s Republic of China
- Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People’s Republic of China
| |
Collapse
|
31
|
Oh YS, Bae GD, Baek DJ, Park EY, Jun HS. Fatty Acid-Induced Lipotoxicity in Pancreatic Beta-Cells During Development of Type 2 Diabetes. Front Endocrinol (Lausanne) 2018; 9:384. [PMID: 30061862 PMCID: PMC6054968 DOI: 10.3389/fendo.2018.00384] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes is caused by chronic insulin resistance and progressive decline in beta-cell function. Optimal beta-cell function and mass is essential for glucose homeostasis and beta-cell impairment leads to the development of diabetes. Elevated levels of circulating fatty acids (FAs) and disturbances in lipid metabolism regulation are associated with obesity, and they are major factors influencing the increase in the incidence of type 2 diabetes. Chronic free FA (FFA) treatment induces insulin resistance and beta-cell dysfunction; therefore, reduction of elevated plasma FFA levels might be an important therapeutic target in obesity and type 2 diabetes. Lipid signals via receptors, and intracellular mechanisms are involved in FFA-induced apoptosis. In this paper, we discuss lipid actions in beta cells, including effects on metabolic pathways and stress responses, to help further understand the molecular mechanisms of lipotoxicity-induced type 2 diabetes.
Collapse
Affiliation(s)
- Yoon S. Oh
- Department of Food and Nutrition, Eulji University, Seongnam, South Korea
- *Correspondence: Yoon S. Oh
| | - Gong D. Bae
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
| | - Dong J. Baek
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, South Korea
| | - Eun-Young Park
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, South Korea
| | - Hee-Sook Jun
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
- Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Incheon, South Korea
- Gachon University Gil Medical Center, Gachon Medical and Convergence Institute, Incheon, South Korea
| |
Collapse
|
32
|
Abstract
The liver is crucial for the maintenance of normal glucose homeostasis - it produces glucose during fasting and stores glucose postprandially. However, these hepatic processes are dysregulated in type 1 and type 2 diabetes mellitus, and this imbalance contributes to hyperglycaemia in the fasted and postprandial states. Net hepatic glucose production is the summation of glucose fluxes from gluconeogenesis, glycogenolysis, glycogen synthesis, glycolysis and other pathways. In this Review, we discuss the in vivo regulation of these hepatic glucose fluxes. In particular, we highlight the importance of indirect (extrahepatic) control of hepatic gluconeogenesis and direct (hepatic) control of hepatic glycogen metabolism. We also propose a mechanism for the progression of subclinical hepatic insulin resistance to overt fasting hyperglycaemia in type 2 diabetes mellitus. Insights into the control of hepatic gluconeogenesis by metformin and insulin and into the role of lipid-induced hepatic insulin resistance in modifying gluconeogenic and net hepatic glycogen synthetic flux are also discussed. Finally, we consider the therapeutic potential of strategies that target hepatosteatosis, hyperglucagonaemia and adipose lipolysis.
Collapse
Affiliation(s)
- Max C Petersen
- Department of Internal Medicine, Yale School of Medicine
- Department of Cellular &Molecular Physiology, Yale School of Medicine
| | | | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine
- Department of Cellular &Molecular Physiology, Yale School of Medicine
- Howard Hughes Medical Institute, Yale School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
33
|
Seghieri M, Tricò D, Natali A. The impact of triglycerides on glucose tolerance: Lipotoxicity revisited. DIABETES & METABOLISM 2017; 43:314-322. [PMID: 28693962 DOI: 10.1016/j.diabet.2017.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/19/2017] [Accepted: 04/27/2017] [Indexed: 12/22/2022]
Abstract
Elevated plasma triglycerides (TGs) are early key features of conditions associated with a dysregulation in glucose metabolism and may predict the development of type 2 diabetes (T2D) over time. Although the acute ingestion of lipid, either mixed with or shortly before the meal, is neutral or slightly beneficial on glucose tolerance, a short-term increase in plasma TGs induced by either an i.v. lipid infusion or a high-fat diet produces a deterioration of glucose control. Accordingly, chronic lowering of plasma TGs by fibrates improves glucose homeostasis and may also prevent T2D. The chronic effects of the elevation of dietary lipid intake are less clear, particularly in humans, being the quality of fat probably more important than total fat intake. Although on the bases of the available experimental and clinical evidence it cannot be easily disentangled, with respect to elevated non-esterified fatty acids (NEFA) the relative contribution of elevated TGs to glucose homeostasis disregulation seems to be greater and also more plausible. In conclusion, although the association between elevated plasma TGs and impaired glucose tolerance is commonly considered not causative or merely a consequence of NEFA-mediated lipotoxicity, the available data suggest that TGs per se may directly contribute to disorders of glucose metabolism.
Collapse
Affiliation(s)
- M Seghieri
- Department of clinical and experimental medicine, laboratory of metabolism, nutrition and atherosclerosis, university of Pisa, Pisa, Italy
| | - D Tricò
- Department of clinical and experimental medicine, laboratory of metabolism, nutrition and atherosclerosis, university of Pisa, Pisa, Italy
| | - A Natali
- Department of clinical and experimental medicine, laboratory of metabolism, nutrition and atherosclerosis, university of Pisa, Pisa, Italy.
| |
Collapse
|
34
|
Raish M, Ahmad A, Jan BL, Alkharfy KM, Mohsin K, Ahamad SR, Ansari MA. GC-MS-based Metabolomic Profiling of Thymoquinone in Streptozotocin-induced Diabetic Nephropathy in Rats. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Diabetic nephropathy is a common complication of diabetes mellitus and one of the major etiologies of end-stage renal disease. Specific therapeutic interventions are necessary to treat such complications. The present study was designed to investigate the metabolomic changes induced by thymoquinone for the treatment of diabetic nephropathy, using a rodent model. Rats were divided into three different groups (n = 6 each): control, diabetic, and thymoquinone-treated diabetic groups. Metabolites in serum samples were analyzed via gas chromatography-mass spectrometry. Multiple changes were observed, including those related to the metabolism of amino acids and fatty acids. The correlation analysis suggested that treatment with thymoquinone led to the reversal of diabetic nephropathy that was associated with modulations in the metabolism and proteolysis of amino acids, fatty acids, glycerol phospholipids, and organic acids. In addition, we explored the mechanisms linking the metabolic profiling of diabetic nephropathy, with a particular emphasis on the potential roles of increased reactive oxygen species production and mitochondrial dysfunctions. Our findings demonstrated that metabolomic profiling provided significant insights into the basic mechanisms of diabetic nephropathy and the therapeutic effects of thymoquinone.
Collapse
Affiliation(s)
- Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Basit L. Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalid M. Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kazi Mohsin
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Syed Rizwan Ahamad
- Research Centre, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
35
|
Lu J, Varghese RT, Zhou L, Vella A, Jensen MD. Glucose tolerance and free fatty acid metabolism in adults with variations in TCF7L2 rs7903146. Metabolism 2017; 68:55-63. [PMID: 28183453 PMCID: PMC5308561 DOI: 10.1016/j.metabol.2016.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/25/2016] [Accepted: 11/27/2016] [Indexed: 01/22/2023]
Abstract
OBJECTIVE TCF7L2 variant rs7903146 is associated with increased risk for type 2 diabetes. We investigated the effect of TCF7L2 variant rs7903146 and glucose tolerance on free fatty acid (FFA) metabolism. RESEARCH DESIGN AND METHODS We recruited 120 individuals, half homozygous for the major CC allele and half homozygous for the minor TT allele at rs7903146; each underwent a 2-h, 75g oral glucose tolerance test (OGTT). Plasma glucose, insulin and free fatty acid concentrations were measured on blood collected before and during the OGTT. RESULTS Total FFA concentrations and percent FA species during OGTT were not different in CC and TT carriers when males and females were considered together. However, monounsaturated fatty acid (MUFA) concentrations and percentages were greater in TT than CC females during the OGTT. TT carriers with high HOMA-IR had significantly greater fasting FFA concentrations, lower disposition index (DI) and greater AUC of glucose than high HOMA-IR CC carriers, whereas no such differences were observed in the low HOMA-IR group. We found that fasting (826±25 vs. 634±22μmol/L, P<0.0001) and OGTT plasma FFA concentrations were greater in IGT than NGT subjects, and the difference remained after adjusting for sex, age, BMI, and genotype. Finally, IGT subjects had greater MUFA concentrations and percentages than NGT subjects during OGTT. CONCLUSIONS Despite similar fasting insulin and glucose, fasting plasma FFA are greater in IGT than NGT adults. Insulin resistance and sex influence plasma FFA responses amongst carriers of the minor T allele of TCF7L2 rs7903146.
Collapse
Affiliation(s)
- Jin Lu
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai, PR China; Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, MN
| | - Ron T Varghese
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, MN
| | - Lianzhen Zhou
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, MN
| | - Adrian Vella
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, MN
| | - Michael D Jensen
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, MN.
| |
Collapse
|
36
|
Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp Mol Med 2017; 49:e291. [PMID: 28154371 PMCID: PMC5336562 DOI: 10.1038/emm.2016.157] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/07/2016] [Accepted: 10/16/2016] [Indexed: 12/12/2022] Open
Abstract
Free fatty acids (FFAs) are important substrates for mitochondrial oxidative metabolism and ATP synthesis but also cause serious stress to various tissues, contributing to the development of metabolic diseases. CD36 is a major mediator of cellular FFA uptake. Inside the cell, saturated FFAs are able to induce the production of cytosolic and mitochondrial reactive oxygen species (ROS), which can be prevented by co-exposure to unsaturated FFAs. There are close connections between oxidative stress and organellar Ca2+ homeostasis. Highly oxidative conditions induced by palmitate trigger aberrant endoplasmic reticulum (ER) Ca2+ release and thereby deplete ER Ca2+ stores. The resulting ER Ca2+ deficiency impairs chaperones of the protein folding machinery, leading to the accumulation of misfolded proteins. This ER stress may further aggravate oxidative stress by augmenting ER ROS production. Secondary to ER Ca2+ release, cytosolic and mitochondrial matrix Ca2+ concentrations can also be altered. In addition, plasmalemmal ion channels operated by ER Ca2+ depletion mediate persistent Ca2+ influx, further impairing cytosolic and mitochondrial Ca2+ homeostasis. Mitochondrial Ca2+ overload causes superoxide production and functional impairment, culminating in apoptosis. This vicious cycle of lipotoxicity occurs in multiple tissues, resulting in β-cell failure and insulin resistance in target tissues, and further aggravates diabetic complications.
Collapse
|
37
|
Tanabe K, Amo-Shiinoki K, Hatanaka M, Tanizawa Y. Interorgan Crosstalk Contributing to β-Cell Dysfunction. J Diabetes Res 2017; 2017:3605178. [PMID: 28168202 PMCID: PMC5266810 DOI: 10.1155/2017/3605178] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/23/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) results from pancreatic β-cell failure in the setting of insulin resistance. In the early stages of this disease, pancreatic β-cells meet increased insulin demand by both enhancing insulin-secretory capacity and increasing β-cell mass. As the disease progresses, β-cells fail to maintain these compensatory responses. This involves both extrinsic signals and mediators intrinsic to β-cells, which adversely affect β-cells by impairing insulin secretion, decreasing proliferative capacities, and ultimately causing apoptosis. In recent years, it has increasingly been recognized that changes in circulating levels of various factors from other organs play roles in β-cell dysfunction and cellular loss. In this review, we discuss current knowledge of interorgan communications underlying β-cell failure during the progression of T2DM.
Collapse
Affiliation(s)
- Katsuya Tanabe
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- *Katsuya Tanabe:
| | - Kikuko Amo-Shiinoki
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Masayuki Hatanaka
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yukio Tanizawa
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
38
|
Lu Y, Wang Y, Ong CN, Subramaniam T, Choi HW, Yuan JM, Koh WP, Pan A. Metabolic signatures and risk of type 2 diabetes in a Chinese population: an untargeted metabolomics study using both LC-MS and GC-MS. Diabetologia 2016; 59:2349-2359. [PMID: 27514531 DOI: 10.1007/s00125-016-4069-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/13/2016] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS Metabolomics has provided new insight into diabetes risk assessment. In this study we characterised the human serum metabolic profiles of participants in the Singapore Chinese Health Study cohort to identify metabolic signatures associated with an increased risk of type 2 diabetes. METHODS In this nested case-control study, baseline serum metabolite profiles were measured using LC-MS and GC-MS during a 6-year follow-up of 197 individuals with type 2 diabetes but without a history of cardiovascular disease or cancer before diabetes diagnosis, and 197 healthy controls matched by age, sex and date of blood collection. RESULTS A total of 51 differential metabolites were identified between cases and controls. Of these, 35 were significantly associated with diabetes risk in the multivariate analysis after false discovery rate adjustment, such as increased branched-chain amino acids (leucine, isoleucine and valine), non-esterified fatty acids (palmitic acid, stearic acid, oleic acid and linoleic acid) and lysophosphatidylinositol (LPI) species (16:1, 18:1, 18:2, 20:3, 20:4 and 22:6). A combination of six metabolites including proline, glycerol, aminomalonic acid, LPI (16:1), 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid and urea showed the potential to predict type 2 diabetes in at-risk individuals with high baseline HbA1c levels (≥6.5% [47.5 mmol/mol]) with an AUC of 0.935. Combined lysophosphatidylglycerol (LPG) (12:0) and LPI (16:1) also showed the potential to predict type 2 diabetes in individuals with normal baseline HbA1c levels (<6.5% [47.5 mmol/mol]; AUC = 0.781). CONCLUSIONS/INTERPRETATION Our findings show that branched-chain amino acids and NEFA are potent predictors of diabetes development in Chinese adults. Our results also indicate the potential of lysophospholipids for predicting diabetes.
Collapse
Affiliation(s)
- Yonghai Lu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Republic of Singapore
| | - Yeli Wang
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Republic of Singapore
| | - Choon-Nam Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Republic of Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore, Republic of Singapore
| | - Tavintharan Subramaniam
- Department of General Medicine, Diabetes Centre, Khoo Teck Puat Hospital, Singapore, Republic of Singapore
| | - Hyung Won Choi
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Republic of Singapore
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Republic of Singapore.
- Office of Clinical Sciences, Duke-NUS Medical School, 8 College Road Level 4, Singapore, 169857, Republic of Singapore.
| | - An Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, People's Republic of China.
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
39
|
Weng S, Zhang B, Xu C, Feng S, He H. Influence of New Modified Biliopancreatic Diversion on Blood Glucose and Lipids in GK rats. Obes Surg 2016; 27:657-664. [PMID: 27525641 DOI: 10.1007/s11695-016-2320-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND This study aimed to investigate the influence of new biliopancreatic diversion (NBPD) and duodenal-jejunal bypass (DJB) surgery on blood glucose, lipids, gastrointestinal hormones, and insulin in Goto-Kakizaki (GK) rats, an animal model for type 2 diabetes, in order to elucidate the mechanisms underlying the therapeutic effect of these types of surgery on this clinical condition. METHODS Thirty 30 male GK rats (SPF) aged 12 weeks were randomly assigned into three groups (n = 10 per group): sham group, NBPD group, and DJB group. Body weight, random plasma glucose, fasting plasma glucose (FPG), oral glucose tolerance (OGT), blood lipids, plasma insulin, glucagon like peptide-1 (GLP-1), and gastric inhibitory polypeptide (GIP) were measured before and after surgery. RESULTS NBPD surgery improved glucose tolerance, decreased fasting free fatty acids, triglycerides, and cholesterol. It also increased fasting and postprandial GIP, but caused no change in GLP-1. DJB surgery produced results similar to NBPD surgery except for causing a decrease in postprandial GLP-1 and insulin, and a larger increase in fasting GIP. CONCLUSIONS Moving the biliopancreatic duct outlet to the mid-jejunum (NBPD surgery) improves glucose tolerance and increases GIP, but does not change GLP-1. Adding duodenal bypass (DJB surgery) increases fasting GIP and decreases postprandial GLP-1.
Collapse
Affiliation(s)
- Shangeng Weng
- Hepatopancreatobiliary Surgery Department, the First Affiliated Hospital of Fujian Medical University, No 20 Chazhong Road, Fuzhou City, Fujian, People's Republic of China.
| | - Bin Zhang
- Hepatopancreatobiliary Surgery Department, the First Affiliated Hospital of Fujian Medical University, No 20 Chazhong Road, Fuzhou City, Fujian, People's Republic of China
| | - Changguo Xu
- Hepatopancreatobiliary Surgery Department, the First Affiliated Hospital of Fujian Medical University, No 20 Chazhong Road, Fuzhou City, Fujian, People's Republic of China
| | - Su Feng
- Hepatopancreatobiliary Surgery Department, the First Affiliated Hospital of Fujian Medical University, No 20 Chazhong Road, Fuzhou City, Fujian, People's Republic of China
| | - Hongxing He
- Hepatopancreatobiliary Surgery Department, the First Affiliated Hospital of Fujian Medical University, No 20 Chazhong Road, Fuzhou City, Fujian, People's Republic of China
| |
Collapse
|
40
|
Comparative evaluation of the therapeutic effect of metformin monotherapy with metformin and acupuncture combined therapy on weight loss and insulin sensitivity in diabetic patients. Nutr Diabetes 2016; 6:e209. [PMID: 27136447 PMCID: PMC4895377 DOI: 10.1038/nutd.2016.16] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/01/2016] [Accepted: 02/08/2016] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Obesity induces insulin resistance (IR), the key etiologic defect of type 2 diabetes mellitus (T2DM). Therefore, an incidence of obesity-induced diabetes is expected to decrease if obesity is controlled. Although Metformin is currently one of the main treatment options for T2DM in obese patients, resulting in an average of 5% weight loss, adequate weight control in all patients cannot be achieved with Metformin alone. Thus, additional therapies with a weight loss effect, such as acupuncture, may improve the effectiveness of Metformin.Subjective:We designed this randomized clinical trial (RCT) to compare the effects of Metformin monotherapy with that of Metformin and acupuncture combined therapy on weight loss and insulin sensitivity among overweight/obese T2DM patients, to understand whether acupuncture plus Metformin is a better approach than Metformin only on treating diabetes. To understand whether acupuncture can be an insulin sensitizer and, if so, its therapeutic mechanism. RESULTS Our results show that Metformin and acupuncture combined therapy significantly improves body weight, body mass index (BMI), fasting blood sugar (FBS), fasting insulin (FINS), homeostasis model assessment (HOMA) index, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), leptin, adiponectin, glucagon-like peptide-1 (GLP-1), resistin, serotonin, free fatty acids (FFAs), triglyceride (TG), low-density lipoprotein cholesterol (LDLc), high-density lipoprotein cholesterol (HDLc) and ceramides. CONCLUSIONS Consequently, Metformin and acupuncture combined therapy is more effective than Metformin only, proving that acupuncture is an insulin sensitizer and is able to improve insulin sensitivity possibly by reducing body weight and inflammation, while improving lipid metabolism and adipokines. As a result, electro-acupuncture (EA) might be useful in controlling the ongoing epidemics in obesity and T2DM.
Collapse
|
41
|
Weijers RNM. Membrane flexibility, free fatty acids, and the onset of vascular and neurological lesions in type 2 diabetes. J Diabetes Metab Disord 2016; 15:13. [PMID: 27123439 PMCID: PMC4847252 DOI: 10.1186/s40200-016-0235-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/10/2016] [Indexed: 12/13/2022]
Abstract
Free fatty acids released from human adipose tissue contain a limited amount of non-esterified poly-cis-unsaturated fatty acids. In cases of elevated plasma free fatty acids, this condition ultimately leads to a shift from unsaturated to saturated fatty-acyl chains in membrane phospholipids. Because this shift promotes the physical attractive van der Waals interactions between phospholipid acyl chains, it increases stiffness of both erythrocyte and endothelial membranes, which causes a reduction in both insulin-independent and insulin-dependent Class 1 glucose transporters, a reduction in cell membrane functionality, and a decreased microcirculatory blood flow which results in tissue hypoxia. Against the background of these processes, we review recently published experimental phospholipid data obtained from Drosophila melanogaster and from human erythrocytes of controls and patients with type 2 diabetes, with and without retinopathy, along the way free fatty acids interfere with eye and kidney function in patients with type 2 diabetes and give rise to endoplasmic reticulum stress, reduced insulin sensitivity, and ischemia.
Collapse
Affiliation(s)
- Rob N M Weijers
- Teaching Hospital, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Cassel R, Ducreux S, Alam MR, Dingreville F, Berlé C, Burda-Jacob K, Chauvin MA, Chikh K, Païta L, Al-Mawla R, Crola Da Silva C, Rieusset J, Thivolet C, Van Coppenolle F, Madec AM. Protection of Human Pancreatic Islets from Lipotoxicity by Modulation of the Translocon. PLoS One 2016; 11:e0148686. [PMID: 26862742 PMCID: PMC4749224 DOI: 10.1371/journal.pone.0148686] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 01/20/2016] [Indexed: 12/04/2022] Open
Abstract
Type 2 diabetes is characterized by peripheral insulin resistance and pancreatic beta cell dysfunction. Elevated free fatty acids (FFAs) may impair beta cell function and mass (lipotoxicity). Altered calcium homeostasis may be involved in defective insulin release. The endoplasmic reticulum (ER) is the major intracellular calcium store. Lipotoxicity induces ER stress and in parallel an ER calcium depletion through unknown ER calcium leak channels. The main purposes of this study is first to identify one of these channels and secondly, to check the opportunity to restore beta cells function (i.e., insulin secretion) after pharmacological inhibition of ER calcium store depletion. We investigated the functionality of translocon, an ER calcium leak channel and its involvement on FFAs-induced alterations in MIN6B1 cells and in human pancreatic islets. We evidenced that translocon acts as a functional ER calcium leak channel in human beta cells using anisomycin and puromycin (antibiotics), respectively blocker and opener of this channel. Puromycin induced a significant ER calcium release, inhibited by anisomycin pretreatment. Palmitate treatment was used as FFA model to induce a mild lipotoxic effect: ER calcium content was reduced, ER stress but not apoptosis were induced and glucose induced insulin secretion was decreased in our beta cells. Interestingly, translocon inhibition by chronic anisomycin treatment prevented dysfunctions induced by palmitate, avoiding reticular calcium depletion, ER stress and restoring insulin secretion. Our results provide for the first time compelling evidence that translocon actively participates to the palmitate-induced ER calcium leak and insulin secretion decrease in beta cells. Its inhibition reduces these lipotoxic effects. Taken together, our data indicate that TLC may be a new potential target for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- R. Cassel
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Charles Mérieux Lyon-Sud, F-69003 Lyon, France
| | - S. Ducreux
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Rockefeller, F-69003 Lyon, France
| | - M. R. Alam
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Rockefeller, F-69003 Lyon, France
| | - F. Dingreville
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Charles Mérieux Lyon-Sud, F-69003 Lyon, France
| | - C. Berlé
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Charles Mérieux Lyon-Sud, F-69003 Lyon, France
| | - K. Burda-Jacob
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Charles Mérieux Lyon-Sud, F-69003 Lyon, France
| | - M. A. Chauvin
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Charles Mérieux Lyon-Sud, F-69003 Lyon, France
| | - K. Chikh
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Charles Mérieux Lyon-Sud, F-69003 Lyon, France
| | - L. Païta
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Rockefeller, F-69003 Lyon, France
| | - R. Al-Mawla
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Rockefeller, F-69003 Lyon, France
| | - C. Crola Da Silva
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Rockefeller, F-69003 Lyon, France
| | - J. Rieusset
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Charles Mérieux Lyon-Sud, F-69003 Lyon, France
| | - C. Thivolet
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Charles Mérieux Lyon-Sud, F-69003 Lyon, France
- Hospices Civils de Lyon, Hôpital Lyon-Sud, Service d’Endocrinologie, Diabétologie et Nutrition, F-69310 Pierre Bénite, France
| | - F. Van Coppenolle
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Rockefeller, F-69003 Lyon, France
| | - A. M. Madec
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Charles Mérieux Lyon-Sud, F-69003 Lyon, France
| |
Collapse
|
43
|
Angptl4 links α-cell proliferation following glucagon receptor inhibition with adipose tissue triglyceride metabolism. Proc Natl Acad Sci U S A 2015; 112:15498-503. [PMID: 26621734 DOI: 10.1073/pnas.1513872112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Type 2 diabetes is characterized by a reduction in insulin function and an increase in glucagon activity that together result in hyperglycemia. Glucagon receptor antagonists have been developed as drugs for diabetes; however, they often increase glucagon plasma levels and induce the proliferation of glucagon-secreting α-cells. We find that the secreted protein Angiopoietin-like 4 (Angptl4) is up-regulated via Pparγ activation in white adipose tissue and plasma following an acute treatment with a glucagon receptor antagonist. Induction of adipose angptl4 and Angptl4 supplementation promote α-cell proliferation specifically. Finally, glucagon receptor antagonist improves glycemia in diet-induced obese angptl4 knockout mice without increasing glucagon levels or α-cell proliferation, underscoring the importance of this protein. Overall, we demonstrate that triglyceride metabolism in adipose tissue regulates α-cells in the endocrine pancreas.
Collapse
|
44
|
Circulating Unsaturated Fatty Acids Delineate the Metabolic Status of Obese Individuals. EBioMedicine 2015; 2:1513-22. [PMID: 26629547 PMCID: PMC4634820 DOI: 10.1016/j.ebiom.2015.09.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 09/03/2015] [Accepted: 09/03/2015] [Indexed: 02/06/2023] Open
Abstract
Background Obesity is not a homogeneous condition across individuals since about 25–40% of obese individuals can maintain healthy status with no apparent signs of metabolic complications. The simple anthropometric measure of body mass index does not always reflect the biological effects of excessive body fat on health, thus additional molecular characterizations of obese phenotypes are needed to assess the risk of developing subsequent metabolic conditions at an individual level. Methods To better understand the associations of free fatty acids (FFAs) with metabolic phenotypes of obesity, we applied a targeted metabolomics approach to measure 40 serum FFAs from 452 individuals who participated in four independent studies, using an ultra-performance liquid chromatograph coupled to a Xevo G2 quadruple time-of-flight mass spectrometer. Findings FFA levels were significantly elevated in overweight/obese subjects with diabetes compared to their healthy counterparts. We identified a group of unsaturated fatty acids (UFAs) that are closely correlated with metabolic status in two groups of obese individuals who underwent weight loss intervention and can predict the recurrence of diabetes at two years after metabolic surgery. Two UFAs, dihomo-gamma-linolenic acid and palmitoleic acid, were also able to predict the future development of metabolic syndrome (MS) in a group of obese subjects. Interpretation These findings underscore the potential role of UFAs in the MS pathogenesis and also as important markers in predicting the risk of developing diabetes in obese individuals or diabetes remission after a metabolic surgery. Four independent studies were applied to examine the association of free fatty acids with metabolic status of obesity. Our data supported an important role for unsaturated fatty acids in the pathogenesis of metabolic syndrome. Two unsaturated fatty acids were predictive of future diabetes risk and diabetes remission after metabolic surgery.
About 25–40% of obese individuals, defined by the body mass index, are metabolically healthy. Because obesity is a risk factor for developing type 2 diabetes, it is important to monitor obese individuals for changes in metabolic status. Simpler means of assessing the efficacy of surgical or dietary interventions are also desirable. We examined blood fatty acid levels in patients to locate potential biomarkers that would signify either greater risk of diabetes acquisition or effectiveness of diabetes treatment. Two unsaturated fatty acids, dihomo-gamma-linolenic acid and palmitoleic acid, were shown to predict acquisition of diabetes and also evaluate diabetes remission post-metabolic surgery.
Collapse
Key Words
- AA, arachidonic acid
- BMI, body mass index
- CVD, cardiovascular disease
- DAG, diacylglycerol
- DBP, diastolic blood pressure
- DGLA, dihomo-gamma-linolenic acid
- DNL, de novo lipogenesis
- FATPs, fatty acid transport proteins
- FFA, free fatty acids
- Free fatty acids
- GLA, γ-linolenic acid
- HA, heptadecanoic acid
- HDL, high-density lipoprotein
- HO, metabolically healthy obese
- HbA1c, glycated hemoglobin
- Insulin resistance
- LA, linoleic acid
- LDL, low-density lipoprotein
- MS, metabolic syndrome
- MUFA, monounsaturated acid
- Metabolic syndrome
- NAFLD, nonalcoholic fatty liver disease
- NW, normal weight
- OGTT, oral glucose tolerance test
- OPLS-DA, orthogonal partial least square discriminant analysis
- Obesity
- PA, palmitoleic acid
- PUFA, polyunsaturated fatty acid
- RSD, relative standard deviation
- SBP, systolic blood pressure
- SCD, stearoyl-CoA desaturase
- SFA, saturated fatty acid
- SHDS, the Shanghai Diabetes Study
- SHOS, the Shanghai Obesity Study
- T2D, type 2 diabetes
- TC, total cholesterol
- TG, triglycerides
- Type 2 diabetes
- UFA, unsaturated fatty acid
- UO, metabolically unhealthy obese
- Unsaturated fatty acids
- VLCD, very low carbohydrate diet
Collapse
|
45
|
Toledo-Corral CM, Alderete TL, Richey J, Sequeira P, Goran MI, Weigensberg MJ. Fasting, post-OGTT challenge, and nocturnal free fatty acids in prediabetic versus normal glucose tolerant overweight and obese Latino adolescents. Acta Diabetol 2015; 52:277-84. [PMID: 25109287 PMCID: PMC4324370 DOI: 10.1007/s00592-014-0634-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/23/2014] [Indexed: 01/16/2023]
Abstract
Type 2 diabetes risk and its relationship to free fatty acid (FFA) exposure and visceral fat by prediabetes status in minority adolescents have yet to be explored. Therefore, the objective of this study was to examine the association of circulating FFA under varying conditions with prediabetes in Latino adolescents and to determine the relative relationships of FFA and visceral adiposity to insulin sensitivity, secretion, and β-cell function. Overweight or obese, but otherwise healthy Latino adolescent males and females (n = 164, 14.2 ± 2.5 years), were recruited for assessment of prediabetes, abdominal fat, and FFA levels taken at a fasting state (FFAF), during an OGTT (FFAOGTT), and overnight (FFANOCTURNAL). Prediabetic adolescents had a higher FFAF than those with normal glucose tolerance when controlling for age, sex, pubertal status, total percent body fat, and visceral fat. FFAOGTT and FFANOCTURNAL did not differ between participants with prediabetes and those with normal glucose tolerance after adjusting for covariates. Visceral fat was independently related to insulin sensitivity and secretion in pubertal adolescents; however, in post-pubertal adolescents, FFAF and visceral fat were both independent and negatively related to β-cell function. These results support a plausible progression of the lipotoxicity theory of diabetes development during the pubertal transition.
Collapse
Affiliation(s)
- Claudia M. Toledo-Corral
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033
- Department of Public Health, California State University, Los Angeles; Los Angeles, CA 90032
| | - Tanya L. Alderete
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033
| | - Joyce Richey
- Department of Physiology & Biophysics, University of Southern California, Los Angeles, CA, 90033
| | - Paola Sequeira
- Department of Pediatrics, University of Southern California, Los Angeles, CA, 90033
| | - Michael I. Goran
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033
- Department of Physiology & Biophysics, University of Southern California, Los Angeles, CA, 90033
| | - Marc J. Weigensberg
- Department of Pediatrics, University of Southern California, Los Angeles, CA, 90033
| |
Collapse
|
46
|
Steffen BT, Steffen LM, Zhou X, Ouyang P, Weir NL, Tsai MY. n-3 Fatty acids attenuate the risk of diabetes associated with elevated serum nonesterified fatty acids: the multi-ethnic study of atherosclerosis. Diabetes Care 2015; 38:575-80. [PMID: 25573885 PMCID: PMC4370329 DOI: 10.2337/dc14-1919] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Chronically high nonesterified fatty acids (NEFAs) are a marker of metabolic dysfunction and likely increase risk of type 2 diabetes. By comparison, n-3 fatty acids (FAs) have been shown to have various health benefits and may protect against disease development. In 5,697 participants of the Multi-Ethnic Study of Atherosclerosis (MESA), we examined whether serum levels of NEFAs relate to risk of incident type 2 diabetes and further tested whether plasma n-3 FA levels may interact with this relation. RESEARCH DESIGN AND METHODS NEFAs were measured in fasting serum using an enzymatic colorimetric assay and phospholipid n-3 FAs eicosapentaenoic and docosahexaenoic acids were determined in plasma through gas chromatography-flame ionization detection in 5,697 MESA participants. Cox proportional hazards regression evaluated the association between NEFA levels and incident type 2 diabetes and whether plasma n-3 FAs modified this association adjusting for age, sex, race, education, field center, smoking, and alcohol use. RESULTS Over a mean 11.4 years of the study period, higher diabetes incidence was found across successive NEFA quartiles (Q) (hazard ratio [95% CI]): Q1, 1.0; Q2, 1.35 (1.07, 1.71); Q3, 1.58 (1.24, 2.00); and Q4, 1.86 (1.45, 2.38) (P(trend) < 0.001). A significant interaction of n-3 FAs on the relation between NEFAs and type 2 diabetes was also observed (P(interaction) = 0.03). For individuals with lower n-3 levels (<75th percentile), a higher risk of type 2 diabetes was observed across quartiles of NEFAs: Q1, 1.0; Q2, 1.41 (1.07, 1.84); Q3, 1.77 (1.35, 2.31); and Q4, 2.18 (1.65, 2.88) (P(trend) < 0.001). No significant associations were observed in those with n-3 FAs ≥ 75th percentile (P(trend) = 0.54). CONCLUSIONS NEFAs are a marker of type 2 diabetes and may have clinical utility for detecting risk of its development. The modifying influence of n-3 FAs suggests a protective effect against disease and/or metabolic dysfunction related to NEFAs and requires further study.
Collapse
Affiliation(s)
- Brian T Steffen
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Lyn M Steffen
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
| | - Xia Zhou
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
| | - Pamela Ouyang
- Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Natalie L Weir
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
47
|
Shikama Y, Aki N, Hata A, Nishimura M, Oyadomari S, Funaki M. Palmitate-stimulated monocytes induce adhesion molecule expression in endothelial cells via IL-1 signaling pathway. J Cell Physiol 2015; 230:732-42. [PMID: 25201247 DOI: 10.1002/jcp.24797] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/05/2014] [Indexed: 12/12/2022]
Abstract
Increased intake of saturated fatty acids (SFAs), such as palmitate (Pal), is linked to a higher risk of type 2 diabetes and cardiovascular disease. Although recent studies have investigated the direct effects of SFAs on inflammatory responses in vascular endothelial cells, it remains unknown whether SFAs also induce these responses mediated by circulating cells. In this study, especially focused on adhesion molecules and monocytes, we investigated the indirect effects of Pal on expression and release of ICAM-1 and E-selectin in vascular endothelial cells. Phorbol 12-myristate 13-acetate (PMA)-treated THP-1 (pTHP-1) cells and human monocytes were stimulated with various free fatty acids (FFAs). SFAs, but not unsaturated fatty acids (UFAs), increased interleukin (IL)-1β secretion and decreased IL-1 receptor antagonist (IL-1Ra) secretion, resulting in an increase in the IL-1β/IL-1Ra secretion ratio. UFAs dose-dependently inhibited the increase in IL-1β secretion and decrease in IL-1Ra secretion induced by Pal. Moreover, in human aortic and vein endothelial cells, expression and release of ICAM-1 and E-selectin were induced by treatment with conditioned medium collected from Pal-stimulated pTHP-1 cells and human monocytes, but not by Pal itself. The up-regulated expression and release of adhesion molecules by the conditioned medium were mostly abolished by recombinant human IL-1Ra supplementation. These results suggest that the Pal-induced increase in the ratio of IL-1β/IL-1Ra secretion in monocytes up-regulates endothelial adhesion molecules, which could enhance leukocyte adhesion to endothelium. This study provides further evidence that IL-1β neutralization through receptor antagonism may be useful for preventing the onset and development of cardiovascular disease.
Collapse
Affiliation(s)
- Yosuke Shikama
- Clinical Research Center for Diabetes, Tokushima University Hospital, Kuramoto-cho, Tokushima, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Metabolic syndrome is associated with adverse health outcomes and is a growing problem worldwide. Although efforts to harmonise the definition of metabolic syndrome have helped to better understand the prevalence and the adverse outcomes associated with the disorder on a global scale, the mechanisms underpinning the metabolic changes that define it are incompletely understood. Accumulating evidence from laboratory and human studies suggests that activation of the sympathetic nervous system has an important role in metabolic syndrome. Indeed, treatment strategies commonly recommended for patients with metabolic syndrome, such as diet and exercise to induce weight loss, are associated with sympathetic inhibition. Pharmacological and device-based approaches to target activation of the sympathetic nervous system directly are available and have provided evidence to support the important part played by sympathetic regulation, particularly for blood pressure and glucose control. Preliminary evidence is encouraging, but whether therapeutically targeting sympathetic overactivity could help to prevent metabolic syndrome and attenuate its adverse outcomes remains to be determined.
Collapse
Affiliation(s)
- Markus Schlaich
- Neurovascular Hypertension and Kidney Disease and Human Neurotransmitters Laboratories, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Cardiovascular Medicine, Alfred Hospital, Melbourne, VIC, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.
| | - Nora Straznicky
- Neurovascular Hypertension and Kidney Disease and Human Neurotransmitters Laboratories, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Elisabeth Lambert
- Neurovascular Hypertension and Kidney Disease and Human Neurotransmitters Laboratories, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Gavin Lambert
- Neurovascular Hypertension and Kidney Disease and Human Neurotransmitters Laboratories, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
49
|
Hage Hassan R, Bourron O, Hajduch E. Defect of insulin signal in peripheral tissues: Important role of ceramide. World J Diabetes 2014; 5:244-257. [PMID: 24936246 PMCID: PMC4058729 DOI: 10.4239/wjd.v5.i3.244] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/29/2014] [Accepted: 05/08/2014] [Indexed: 02/05/2023] Open
Abstract
In healthy people, balance between glucose production and its utilization is precisely controlled. When circulating glucose reaches a critical threshold level, pancreatic β cells secrete insulin that has two major actions: to lower circulating glucose levels by facilitating its uptake mainly into skeletal muscle while inhibiting its production by the liver. Interestingly, dietary triglycerides are the main source of fatty acids to fulfill energy needs of oxidative tissues. Normally, the unconsumed fraction of excess of fatty acids is stored in lipid droplets that are localized in adipocytes to provide energy during fasting periods. Thus, adipose tissue acts as a trap for fatty acid excess liberated from plasma triglycerides. When the buffering action of adipose tissue to store fatty acids is impaired, fatty acids that build up in other tissues are metabolized as sphingolipid derivatives such as ceramides. Several studies suggest that ceramides are among the most active lipid second messengers to inhibit the insulin signaling pathway and this review describes the major role played by ceramide accumulation in the development of insulin resistance of peripherals tissues through the targeting of specific proteins of the insulin signaling pathway.
Collapse
|
50
|
Hayashi H, Yamada R, Das SS, Sato T, Takahashi A, Hiratsuka M, Hirasawa N. Glucagon-like peptide-1 production in the GLUTag cell line is impaired by free fatty acids via endoplasmic reticulum stress. Metabolism 2014; 63:800-11. [PMID: 24680601 DOI: 10.1016/j.metabol.2014.02.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 02/15/2014] [Accepted: 02/17/2014] [Indexed: 12/16/2022]
Abstract
OBJECTS Glucagon-like peptide-1 (GLP-1) is secreted from intestinal L cells, enhances glucose-stimulated insulin secretion, and protects pancreas beta cells. However, few studies have examined hypernutrition stress in L cells and its effects on their function. Here, we demonstrated that a high-fat diet reduced glucose-stimulated secretion of GLP-1 and induced expression of an endoplasmic reticulum (ER) stress markers in the intestine of a diet-induced obesity mouse model. METHODS To clarify whether ER stress in L cells caused the attenuation of GLP-1 secretion, we treated the mouse intestinal L cell line, GLUTag cells with palmitate or oleate. RESULTS Palmitate, but not oleate caused ER stress and decreased the protein levels of prohormone convertase 1/3 (PC1/3), an essential enzyme in GLP-1 production. The same phenomena were observed in GLUTag cells treated with in ER stress inducer, thapsigargin. Moreover, oleate improved palmitate-induced ER stress, reduced protein and activity levels of PC1/3, and attenuated GLP-1 secretion from GLUTag cells. CONCLUSIONS/INTERPRETATION These results suggest that the intake of abundant saturated fatty acids induces ER stress in the intestine and decreases GLP-1 production.
Collapse
Affiliation(s)
- Hiroto Hayashi
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Ren Yamada
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Siddhartha Shankar Das
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Taiki Sato
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Aki Takahashi
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|